Service Manual

Handheld Spectrum Analyzer

R&S® FSH

1145.5850.03
1145.5850.06
1145.5850.13
1145.5850.23
1145.5850.26
Dear Customer,

R&S® is a registered trademark of Rohde & Schwarz GmbH & Co. KG.
Trade names are trademarks of the owners.
Contents

Safety Instructions

Certificate of Quality

Spare Parts Express Service
List of R&S Representatives

Contents of Manuals for Spectrum Analyzer R&S FSH
Service and Repair

1 Performance Test ... 1.1

Test Instructions .. 1.1

Measuring Equipment and Accessories ... 1.1

Performance Test ... 1.2

 Checking the frequency accuracy .. 1.2
 Checking the level accuracy and the frequency response ... 1.3
 Checking the accuracy of the RF attenuator ... 1.5
 Checking the accuracy of the IF gain setting .. 1.6
 Checking the displayed average noise floor ... 1.7
 Checking the phase noise ... 1.8
 Checking the display linearity ... 1.9

Performance Test Tracking Generator ... 1.11

 Checking output level / frequency response ... 1.11

Performance Test Report .. 1.12

Performance Test Report Tracking Generator ... 1.19
Contents

2 Adjustment

- Quick Verification .. 2.1
- Measurement Equipment and Accessories for Quick Verification .. 2.2
 - Verifying on/off functionality ... 2.2
 - Verifying power and AF connections ... 2.2
 - Verifying the display .. 2.3
 - Verifying the level and noise .. 2.3
 - Verify the tracking generator output level .. 2.4
 - Adjustment functions... 2.4
- Adjustment .. 2.5
 - Adjustment Instructions ... 2.5
- Measurement Equipment and Accessories .. 2.6
 - Adjusting the reference frequency accuracy .. 2.6
 - Adjusting the level accuracy ... 2.7
- Frequency Response Correction ... 2.8
3 Repair

Instrument Design and Functional Description

Description of the block diagram
Attenuator
RF to IF conversion
Tracking generator (Model 1145.5850.13/23/26 only)
RF/IF control
Mainboard
Power and battery management
Processing of measured data detectors
Resolution bandwidths (RBW)
Video bandwidths (VBW)
Detectors
Keypad control
Serial optical interface
Power sensor
Color LCD module

Module Replacement

Overview of the modules
Opening the instrument
Closing the instrument
Replacing the battery
Replacing the housing
Replacing the front unit for R&S FSH
Replacing the Color LCD Module
Replacing the RF/IF module
Replacing the mainboard
Replacing the N connector
Replacing the binder and BNC connector block
Replacing the power/audio connections
Replacing a cable from the cable set

Troubleshooting

Overview of errors, causes, and possible corrective actions
Troubleshooting problems in switching on the instrument
4 Software Updates / Installing Options ... 4.1
 Installing New R&S FSH Software .. 4.1
 Installing the Options ... 4.1

5 Documents ... 5.1
 Shipping of Instrument and Ordering of Spare Parts ... 5.1
 Shipping of instrument .. 5.1
 Shipping of a module .. 5.1
 Ordering spare parts ... 5.2
 Refurbished modules ... 5.2
 Return of defective replaced modules ... 5.2
 Spare Parts ... 5.3
Safety Instructions

This unit has been designed and tested in accordance with the EC Certificate of Conformity and has left the manufacturer’s plant in a condition fully complying with safety standards.

To maintain this condition and to ensure safe operation, the user must observe all instructions and warnings given in this operating manual.

Safety-related symbols used on equipment and documentation from R&S:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Legend</th>
</tr>
</thead>
<tbody>
<tr>
<td>⚠️</td>
<td>Observe operating instructions</td>
</tr>
<tr>
<td>📡 32 kg</td>
<td>Weight indication for units >18 kg</td>
</tr>
<tr>
<td>🛡</td>
<td>PE terminal</td>
</tr>
<tr>
<td>⚤</td>
<td>Ground terminal</td>
</tr>
<tr>
<td>⚠️</td>
<td>Danger! Shock hazard</td>
</tr>
<tr>
<td>⚠️</td>
<td>Warning! Hot surfaces</td>
</tr>
<tr>
<td>⚤</td>
<td>Ground</td>
</tr>
<tr>
<td>⚠️</td>
<td>Attention! Electrostatic sensitive devices require special care</td>
</tr>
</tbody>
</table>

1. The unit may be used only in the operating conditions and positions specified by the manufacturer. Unless otherwise agreed, the following applies to R&S products:
 - IP degree of protection 2X, pollution severity 2, overvoltage category 2, only for indoor use, altitude max. 2000 m.
 - The unit may be operated only from supply networks fused with max. 16 A.
 - Unless specified otherwise in the data sheet, a tolerance of ±10% shall apply to the nominal voltage and of ±5% to the nominal frequency.

2. For measurements in circuits with voltages \(V_{\text{rms}} > 30 \text{ V} \), suitable measures should be taken to avoid any hazards.
 (using, for example, appropriate measuring equipment, fusing, current limiting, electrical separation, insulation).

3. For permanently installed units without built-in fuses, circuit breakers or similar protective devices, the supply circuit must be fused such as to provide suitable protection for the users and equipment.

4. Prior to switching on the unit, it must be ensured that the nominal voltage set on the unit matches the nominal voltage of the AC supply network.
 If a different voltage is to be set, the power fuse of the unit may have to be changed accordingly.

5. If the unit has no power switch for disconnection from the AC supply, the plug of the connecting cable is regarded as the disconnecting device. In such cases it must be ensured that the power plug is easily reachable and accessible at all times (length of connecting cable approx. 2 m). Functional or electronic switches are not suitable for providing disconnection from the AC supply.
 If units without power switches are integrated in racks or systems, a disconnecting device must be provided at system level.

6. Applicable local or national safety regulations and rules for the prevention of accidents must be observed in all work performed.
 Prior to performing any work on the unit or opening the unit, the latter must be disconnected from the supply network.
 Any adjustments, replacements of parts, maintenance or repair may be carried out only by authorized R&S technical personnel.
 Only original parts may be used for replacing parts relevant to safety (e.g. power switches, power transformers, fuses). A safety test must be performed after each replacement of parts relevant to safety.
 (visual inspection, PE conductor test, insulation-resistance, leakage-current measurement, functional test).

7. Ensure that the connections with information technology equipment comply with IEC950 / EN60950.

8. NiMH batteries must not be exposed to high temperatures or fire.
 Keep batteries away from children.
 If the battery is replaced improperly, there is danger of explosion. Only replace the battery by R&S type (see spare part list).
 NiMH batteries are suitable for environmentally-friendly disposal or specialized recycling. Dispose them into appropriate containers, only.
 Do not short-circuit the battery.

9. Equipment returned or sent in for repair must be packed in the original packing or in packing with electrostatic and mechanical protection.

10. Electrostatics via the connectors may damage the equipment. For the safe handling and operation of the equipment, appropriate measures against electrostatics should be implemented.
Safety Instructions

11. The outside of the instrument is suitably cleaned using a soft, lint-free dustcloth. Never use solvents such as thinners, acetone and similar things, as they may damage the front panel labeling or plastic parts.

12. Any additional safety instructions given in this manual are also to be observed.
Sehr geehrter Kunde,

Certified Quality System
ISO 9001
DQS REG. NO 1954 QM

Certified Environmental System
ISO 14001
DQS REG. NO 1954 UM

Qualitätszertifikat

Certificate of quality

Certificat de qualité

Dear Customer,

You have decided to buy a Rohde & Schwarz product. You are thus assured of receiving a product that is manufactured using the most modern methods available. This product was developed, manufactured and tested in compliance with our quality management system standards. The Rohde & Schwarz quality management system is certified according to standards such as ISO 9001 and ISO 14001.

Cher client,

Vous avez choisi d’acheter un produit Rohde & Schwarz. Vous disposez donc d’un produit fabriqué d’après les méthodes les plus avancées. Le développement, la fabrication et les tests respectent nos normes de gestion qualité. Le système de gestion qualité de Rohde & Schwarz a été homologué, entre autres, conformément aux normes ISO 9001 et ISO 14001.
Spare Parts Express Service

Phone: +49 89 4129 - 12465
Fax: +49 89 41 29 - 13306
E-mail: werner.breidling@rsd.rohde-schwarz.com

In case of urgent spare parts requirements for this Rohde & Schwarz unit, please contact our spare parts express service.

Outside business hours, please leave us a message or send a fax or e-mail. We shall contact you promptly.
FIRMENSITZ/HEADQUARTERS
Rohde & Schwarz GmbH & Co. KG
Postfach 98 02 60 · D-51130 Köln
Graf-Zeppelin-Straße 18 · D-51147 Köln
Dienstleistungszentrum Köln
Rohde & Schwarz GmbH & Co. KG
Kaikenrieder Straße 27 · D-94244 Teisnach
Werk Teisnach
Rohde & Schwarz Messgerätebau GmbH
Postfach 900 149 · D-51111 Köln
Niederkasseler Straße 33 · D-51147 Köln
Diernsrother Straße 16 · D-51167 Köln

WERKE/PLANTS
Rohde & Schwarz GmbH & Co. KG
Mühldorfstraße 15 · D-81671 München
Postfach 80 14 69 · D-81614 München

TOCHTERUNTERNEHMEN/
Rohde & Schwarz Vertriebs-GmbH
Postfach 80 14 69 · D-81614 München
Mühldorfstraße 15 · D-81671 München
Rohde & Schwarz Engineering and Sales GmbH
Mühlkreuzer Straße 15 · D-81671 München
Postfach 80 14 69 · D-81614 München

ADRESSEN DEUTSCHLAND/ADDRESSES GERMANY
Rohde & Schwarz Vertriebs-GmbH
Mühlkreuzer Straße 15 · D-81671 München
Postfach 80 14 69 · D-81614 München

Zweigniederlassung Süd, Geschäftsstelle
+49 (89) 41 86 95-0
München
+49 (89) 40 47 64
Mühlkreuzer Straße 15 · D-81671 München
Postfach 80 14 69 · D-81614 München

Zweigniederlassung Süd, Geschäftsstelle
+49 (911) 64 23 03-0
Nürnberg
+49 (911) 64 23 03-33
Nauernastraße 36 · D-90451 Nürnberg

Zweigniederlassung Mitte, Geschäftsstelle
+49 (602) 20 07-0
Neu-Isenburg
+49 (602) 20 07 12
Siemensstraße 20 · D-63263 Neu-Isenburg

ADRESSEN WELTWEIT/ADRESSES WORLDWIDE
Albania
siehe / see Austria

Argentina
PRECISION ELECTRONICA S.R.L.
Av. Pde Julio A. Roca 710 - 6° Piso
(C1061ABP) Buenos Aires
alberto_lombardi@prec-elec.com.ar

Australia
Rohde & Schwarz (Australia) Pty. Ltd.
Bureau d’Aiger
+61 (2) 86 45 41 00
5B Place de Laperrine
1603 Hydra-Aiger

Baltic Countries
siehe / see Denmark

Bangladesh
BIL Consortium Ltd.
Corporate Office
House-33, Road-4, Block-F
Banani
Dhaka-1213

Belgium
Rohde & Schwarz Belgium N.V.
Excellorlaan 31 Bus 1
1930 Zaventem
info@rsb.rohde-schwarz.com

Brazil
Rohde & Schwarz do Brasil Ltda.
Av. Alfredo Eguidio de Souza Aranha n° 177,
1º andar - Santo Amaro
04726-170 São Paulo - SP
sales-brazil@rohde-schwarz.com

Brunei
GKL Equipment PTE Ltd.
#11-01 BP Tower
396 Alexandra Road
Singapore 119954
gkleqpt@singnet.com.sg

Bulgaria
Rohde & Schwarz Österreich
Representation Office Bulgaria
+359 (2) 963 43 34
39, Frondtp Nansen Blvd.
1000 Sofia
rohdebg@rs.srohde-schwarz.com

Bosnia-
Herzegovina
siehe / see Slovenia

Argentina
PRECISION ELECTRONICA S.R.L.
Av. Pde Julio A. Roca 710 - 6° Piso
(C1061ABP) Buenos Aires
alberto_lombardi@prec-elec.com.ar

Australia
Rohde & Schwarz (Australia) Pty. Ltd.
Bureau d’Aiger
+61 (2) 86 45 41 00
5B Place de Laperrine
1603 Hydra-Aiger

Baltic Countries
siehe / see Denmark

Bangladesh
BIL Consortium Ltd.
Corporate Office
House-33, Road-4, Block-F
Banani
Dhaka-1213

Belgium
Rohde & Schwarz Belgium N.V.
Excellorlaan 31 Bus 1
1930 Zaventem
info@rsb.rohde-schwarz.com

Brazil
Rohde & Schwarz do Brasil Ltda.
Av. Alfredo Eguidio de Souza Aranha n° 177,
1º andar - Santo Amaro
04726-170 São Paulo - SP
sales-brazil@rohde-schwarz.com

Brunei
GKL Equipment PTE Ltd.
#11-01 BP Tower
396 Alexandra Road
Singapore 119954
gkleqpt@singnet.com.sg

Bulgaria
Rohde & Schwarz Österreich
Representation Office Bulgaria
+359 (2) 963 43 34
39, Frondtp Nansen Blvd.
1000 Sofia
rohdebg@rs.srohde-schwarz.com

Bosnia-
Herzegovina
siehe / see Slovenia
<table>
<thead>
<tr>
<th>Country</th>
<th>Address</th>
<th>Phone</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>ROHDE & SCHWARZ CANADA Inc. 555 March Rd. Kanata, Ontario K2K 2M5</td>
<td>+1 (613) 592 80 00</td>
<td>cgwarnauth@rsca.rohde-schwarz.com</td>
</tr>
<tr>
<td>Canada</td>
<td>Tektronix Canada Inc. Test and Measurement 4929 Place Oliva Saint-Laurent, Pq Montreal H4R 2V6</td>
<td>+1 (514) 331 43 34 +1 (514) 331 59 91</td>
<td></td>
</tr>
<tr>
<td>Chile</td>
<td>DYMEQ Ltda. Av. Larrain 666 Santiago</td>
<td>+56 (2) 339 20 00 +56 (2) 339 20 10</td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>ROHDE & SCHWARZ China Ltd. Representative Office Shanghai Central Plaza 227 Huangpi North Road RM 807/809 Shanghai 200003</td>
<td>+86 (21) 63 75 00 18 +86 (21) 63 75 91 70</td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>ROHDE & SCHWARZ China Ltd. Representative Office Beijing Room 602, Parkview Center 2 Jiangtai Road Beijing 100016</td>
<td>+86 (10) 64 31 28 28 +86 (10) 64 31 78 48</td>
<td>info.rchina@rsbp.rohde-schwarz.com schwarz.com</td>
</tr>
<tr>
<td>China</td>
<td>ROHDE & SCHWARZ China Ltd. Representative Office Guangzhou Room 2003, Metro Plaza 183 Tianhe North Road Guangzhou 510075</td>
<td>+86 (20) 87 55 47 58 +86 (20) 87 55 47 59</td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>ROHDE & SCHWARZ China Ltd. Representative Office Chengdu Unit Q, 28F, First City Plaza 308 Shuncheng Avenue Chengdu 610017</td>
<td>+86 (28) 65 76 05 09 +86 (28) 65 76 10</td>
<td>info.rschina@rsbp.rohde-schwarz.com</td>
</tr>
<tr>
<td>China</td>
<td>ROHDE & SCHWARZ China Ltd. Representative Office Shanghai Unit 3115 31/F Entertainment Building 30 Queen's Road Central Hongkong</td>
<td>+85 (2) 21 68 06 70 +85 (2) 21 68 08 99</td>
<td>rsbpcl@mail.sc.cninfo.net</td>
</tr>
<tr>
<td>China</td>
<td>ROHDE & SCHWARZ China Ltd. Representative Office Xi'an Room 10125, Jianguo Hotel Xi'an No. 2, Huifu Road Xi'an 710048</td>
<td>+86 (29) 331 83 33 +86 (29) 329 80 15</td>
<td>sherry.yu@rsbp.rohde-schwarz.com</td>
</tr>
<tr>
<td>China</td>
<td>ROHDE & SCHWARZ China Ltd. Representative Office Shenzhen No. 2002 Jiajin Road Shenzen 518001</td>
<td>+86 (755) 25 18 50 18 +86 (755) 25 18 50 18</td>
<td>jessica.lia@rsbp.rohde-schwarz.com</td>
</tr>
<tr>
<td>China</td>
<td>Shanghai ROHDE & SCHWARZ Communication Technology Co.Ltd.</td>
<td>+86 (21) 63 75 00 18 +86 (21) 63 75 91 70</td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>Beijing ROHDE & SCHWARZ Communication Technology Co.Ltd. Room 106, Parkview Centre No. 2, Jiangtai Road Chao Yang District Beijing 100016</td>
<td>+86 (10) 64 36 80 80 +86 (10) 64 36 97 06</td>
<td></td>
</tr>
<tr>
<td>Croatia</td>
<td></td>
<td></td>
<td>siehe / see Slovenia</td>
</tr>
<tr>
<td>Cyprus</td>
<td>HINIS TELECAST LTD. Agiou Thoma 18 Kiti Limassol 7550</td>
<td>+357 (24) 42 51 78 +357 (24) 42 46 21</td>
<td>hinis@logos.cy.net</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>ROHDE & SCHWARZ - Praha s.r.o. Habovka Office Park Evropská 33c 16000 Praha 6</td>
<td>+42 (2) 24 31 12 32 +42 (2) 24 31 70 43</td>
<td>office@rsz.rohde-schwarz.com</td>
</tr>
<tr>
<td>Denmark</td>
<td>ROHDE & SCHWARZ DANMARK A/S Ejby Industrivej 40 2600 Glostrup</td>
<td>+45 (43) 43 66 99 +45 (43) 43 77 44</td>
<td></td>
</tr>
<tr>
<td>Ecuador</td>
<td>REPRESENTACIONES MANFRED WINZIERL Vía Láctea No. 4 y Via Sta. Inés P.O.Box 11-22-20309 1722 Cumbaya-Quito</td>
<td>+593 (22) 89 65 97 +593 (22) 89 65 97</td>
<td>mweinzierl@plus.net.ec</td>
</tr>
<tr>
<td>Egypt</td>
<td>U.A.S. Universal Advanced Systems 31 Manshet El-Bakry Street Heliospolis 11341 Cairo</td>
<td>+20 (2) 455 67 44 +20 (2) 256 17 40</td>
<td></td>
</tr>
<tr>
<td>El Salvador</td>
<td>siehe / see Mexico</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estonia</td>
<td>ROHDE & SCHWARZ DANMARK A/S Estonian Branch Office Narva mnt. 13 10151 Tallinn</td>
<td>+372 (6) 14 31 23 +372 (6) 14 31 21</td>
<td>margo.fingling@rsdk.rohde-schwarz.com</td>
</tr>
<tr>
<td>Finland</td>
<td>Orbis Oy P.O.Box 15 00421 Helsinki 42</td>
<td>+358 (9) 47 88 30 +358 (9) 53 16 04</td>
<td>info@orbis.fi</td>
</tr>
<tr>
<td>France</td>
<td>ROHDE & SCHWARZ FRANCE Immeuble “Le Newton” 5-11, rue Jeanne Bracconier 92286 Meudon La Forêt Cédex</td>
<td>+33 (1) 41 36 10 00 +33 (1) 41 36 11 73</td>
<td>contact@rsf.rohde-schwarz.com</td>
</tr>
<tr>
<td>France</td>
<td></td>
<td>37 Rue du Bignon</td>
<td>+33 (0) 299 51 98 77</td>
</tr>
<tr>
<td>France</td>
<td></td>
<td>1138 Budapest Váci út 169</td>
<td>+33 (0) 299 51 97 00</td>
</tr>
<tr>
<td>France</td>
<td></td>
<td>9-11, rue Jeanne Bracconier 6, Loukianou Str. Technoparc 3</td>
<td>+33 (0) 561 39 10 69 +33 (0) 561 39 99 10</td>
</tr>
<tr>
<td>France</td>
<td></td>
<td>Accra North 3rd Floor Akai House, Osu</td>
<td>+33 (0) 561 39 09 99 +33 (0) 561 39 09 89</td>
</tr>
<tr>
<td>France</td>
<td></td>
<td></td>
<td>+33 (0) 498 07 93 94 +33 (0) 498 07 95 11</td>
</tr>
<tr>
<td>France</td>
<td></td>
<td></td>
<td>+33 (0) 478 29 88 10 +33 (0) 478 29 18 57</td>
</tr>
<tr>
<td>France</td>
<td></td>
<td></td>
<td>+33 (0) 383 54 51 29 +33 (0) 383 54 62 09</td>
</tr>
<tr>
<td>Ghana</td>
<td>KOP Engineering Ltd. P.O. Box 11012</td>
<td>+233 (21) 77 89 13 +233 (21) 701 06 20</td>
<td></td>
</tr>
<tr>
<td>Greece</td>
<td>MERCURY S.A. 6, Leukianou Str.</td>
<td>+302 (10) 722 92 13 +302 (10) 721 51 98</td>
<td></td>
</tr>
<tr>
<td>Guatemala</td>
<td>siehe / see Mexico 10675 Athens</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Honduras</td>
<td>siehe / see Mexico +36 (1) 412 44 60</td>
<td>+36 (1) 412 44 61</td>
<td></td>
</tr>
<tr>
<td>Hong Kong</td>
<td>ROHDE & SCHWARZ Budapest Iroda 9/F North Somerset House 979 King’s Road</td>
<td>+852 (25) 07 03 33 +852 (25) 07 09 25</td>
<td>stephenchau@fse.com.hk</td>
</tr>
<tr>
<td>Hungary</td>
<td>Váci ut 169 1138 Budapest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iceland</td>
<td>siehe / see Denmark</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country</td>
<td>Address</td>
<td>Phone Numbers</td>
<td>Contact Information</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>---</td>
<td>------------------------------</td>
</tr>
<tr>
<td>India</td>
<td>ROHDE & SCHWARZ India Pvt. Ltd. 244, Okhla Industrial Estate, Phase-III New Delhi 110020</td>
<td>+91 (11) 26 32 63 81</td>
<td>services@rsindia.rohde-schwarz.com</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iraq</td>
<td>ROHDE & SCHWARZ IRAN Khaled Elstambozi (Vozara) Ave. 15117 Tehran</td>
<td>+96 (21) 872 42 96</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ireland</td>
<td>siehe / see United Kingdom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Israel</td>
<td>ELEKTROTECHNIK LTD. 11 Rozanski St. Tel Aviv 61392</td>
<td>+972 (3) 645 87 77</td>
<td>david_hasky@exax.co.il</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Israel</td>
<td>J.M. Moss (Engineering) Ltd. 9 Bledet Street P.O.Box 967</td>
<td>+972 (3) 631 40 58</td>
<td>jmmoss@zahav.net.il</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>ROHDE & SCHWARZ ITALIA S.p.a. Centro Direzionale Lombardo Via Roma 108 20060 Cassina de Pecchi</td>
<td>+39 (02) 96 30 27 72</td>
<td>ornera.crippa@rsi.rohde-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>schwarz.com</td>
</tr>
<tr>
<td>Italy</td>
<td>ROHDE & SCHWARZ ITALIA S.p.a. Via Tiburtina 1182</td>
<td>+39 (06) 41 59 82 18</td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>Rohde & Schwarz Support Center Japan K.K. 7-11-18 Nishi-Shinjuku Shinjuku-ku Tokyo 160-0023</td>
<td>+81 (3) 59 25 12 88</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>ADVANCEST Sales Promotion Department Shinjuku-Ns bldg. 2-4-1, Nishi-Shinjuku Shinjuku-ku Tokyo 160-0880</td>
<td>+81 (3) 59 25 12 90</td>
<td></td>
</tr>
<tr>
<td>Jordan</td>
<td>Jordan Crown Engineering & Trading Co. Jabal Amman, Second Circle Youssef Eziddeen Street</td>
<td>+962 (6) 465 17 29</td>
<td>jocrown@ilco.com.jo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kazakhstan</td>
<td>ROHDE & SCHWARZ Kazakhstan Representative Office Almaty Pl. Respubliki 15 480013 Almaty</td>
<td>+7 (22) 73 63 55 55</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Korea</td>
<td>ROHDE & SCHWARZ Korea Ltd. 83-29 Nonhyun-Dong, Kangnam-Ku</td>
<td>+82 (2) 514 45 46</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kuwait</td>
<td>Group Five Trading & Contracting Co. Mezanine Floor</td>
<td>+965 (244) 94 95 28</td>
<td>jik_agarwal@yahoo.com</td>
</tr>
<tr>
<td>Lebanon</td>
<td>ROHDE & SCHWARZ. Liaison Office Riyadh P.O.Box 361</td>
<td>+966 (1) 465 64 28 Ext. 303</td>
<td>chris.porzyk@rsd.rohde-schwarz.com</td>
</tr>
<tr>
<td>Lebanon</td>
<td>Netcom P.O.Box 55199</td>
<td>+961-1-48 69 99</td>
<td></td>
</tr>
<tr>
<td>Liechtenstein</td>
<td>siehe / see Switzerland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lithuania</td>
<td>ROHDE & SCHWARZ DANMARK A/S 83-29 Nonhyun-Dong, Kangnam-Ku</td>
<td>+82 (2) 514 45 46</td>
<td></td>
</tr>
<tr>
<td>Luxembourg</td>
<td>siehe / see Belgium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macedonia</td>
<td>siehe / see Slovenia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malaysia</td>
<td>DAGANG TEKNIK SDN. BHD. No. 5, Jalan SS 4D/2 Selangor Darul Esan 47301 Penaling Jaya</td>
<td>+60 (3) 27 03 34 39</td>
<td>maryanne@dktn.com.my</td>
</tr>
<tr>
<td>Mexico</td>
<td>Rohde & Schwarz Mexico (RSMX) S. de R.L. de C.V. German Centre Oficina 4-2-2 Av. Santa Fe 170 01210 Mexico D.F.</td>
<td>+52 (55) 85 03 99 13</td>
<td>latinoamerica@rsd.rohde-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>schwarz.com</td>
</tr>
<tr>
<td>Mexico</td>
<td>Rohde & Schwarz Mexico (RSMX) Av. Prol. Americas No. 1000, 2nd Piso Col. Country Club Guadalajara, Jal. Mexico DF, 44610</td>
<td>+52 (33) 36 78 91 70</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moldavia</td>
<td>siehe / see Romania</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nepal</td>
<td>ICTC Pvt. Ltd. Hattoran, Post Box No. 660 Kathmandu</td>
<td>+977 (1) 443 49 37</td>
<td>iictc@mos.com.mp</td>
</tr>
<tr>
<td>Netherlands</td>
<td>ROHDE & SCHWARZ NEDERLAND B.V. Perkruinaan 3439 ND Nieuwegein</td>
<td>+31 (30) 600 17 00</td>
<td></td>
</tr>
</tbody>
</table>
Adressen

Trinidad & Tobago

siehe / see Mexico

Tunisia

TELETEK
71, Rue Alain Savary
Residence Alain Savary (G54)
1003 Tunis
Tunisia

Turkey

RÖHDE & SCHWARZ International GmbH
+90 (216) 385 19 17
Bagdad Cad. 191/3, Anda Apt. B-Blok
81038 Selanicesme-Istanbul

Ukraine

RÖHDE & SCHWARZ
+38 (044) 268 60 55
Representative Office Kiev
+38 (044) 268 83 84
4, Patris Loumoumba ul
rohdeukr@rsse.rohde-schwarz.com
01042 Kiev

United Arab Emirates

ROHDE & SCHWARZ International GmbH
+971 (2) 633 56 70
Liaison Office Abu Dhabi
+971 (2) 633 56 71
P.O. Box 31156
Abu Dhabi
www.rsbick.de

United Arab Emirates

ROHDE & SCHWARZ Bick Mobile Communication
+971 (4) 883 71 35
P.O.Box 17485

United Arab Emirates

ROHDE & SCHWARZ Emirates L.L.C.
Ahmed Al Nasr Building, Mezzanine Floor,
+971 (2) 631 20 40
P.O.Box 31156
Off old Airport Road
rsuaeaml@emirates.net.ae
Behind new GEMACO Furniture

United Kingdom

ROHDE & SCHWARZ UK Ltd.
Anceills Business Park
+44 (1252) 81 88 88 (sales)
Fleet
+44 (1252) 81 14 47
Hampshire
sales@rsuk.rohde-schwarz.com
GU 51 2UZ England

Uruguay

AEROMARINE S.A.
Cerro Largo 1497
+596 (2) 400 39 62
11200 Montevideo
myn@aeromarine.com.uy

USA

ROHDE & SCHWARZ, Inc.
Broadcast & Comm. Equipment
+1 (410) 910 78 00
(US Headquarters)
+1 (410) 910 78 01
8661-A Robert Fulton Drive
rsatv@rsd.rohde-schwarz.com
Columbia, MD 21046-2295

USA

Rhode & Schwarz Inc.
Marketing & Support Center / T&M Equipment
+1 (503) 627 26 84
2540 SW Alan Bumlein Way
+1 (503) 627 25 85
M/S 58-925
Beaverton, OR 97077-0001

USA

Rhode & Schwarz Inc.
Systems & EMI Products
+1 (469) 713 53 00
8889 Tistar Drive
+1 (469) 713 53 01
Suite 120
Irving, Texas 75063
info@rsd.rohde-schwarz.com

Venezuela

EQUILAB TELECOM C.A.
Centro Seguros La Paz
+58 (2) 12 34 46 26
Piso 6, Local E-61
r_ramirez@equilabtelecom.com
Av. Francisco de Miranda
Boleita, Caracas 1070

Venezuela

REPRESENTACIONES BOPIC S.A.
Calle C-4
+58 (2) 129 85 21 29
Qta. San Jose
+58 (2) 129 85 39 94
Urb. Caurimare
incotr@camv.net
Caracas 1081

Vietnam

Schmidt Vietnam Co., (H.K.) Ltd.,
Representative Office in Hanoi
+84 (4) 834 61 86
Intern. Technology Centre
8/F, HTC Building
239 Xuan Thuy Road
Cau Giay, Tu Liem
Hanoi
svehni@schmidtgroup.com

West Indies

siehe / see Mexico
Contents of Manual for Spectrum Analyzer R&S FSH

Service Manual - Instrument

The Service Manual - Instrument describes how to check compliance with rated specifications, as well as instrument function, repair, troubleshooting and fault elimination. It contains all information required when repairing the R&S FSH by replacing modules.

This Service Manual consists of four chapters and an annex (chapter 5) that describes how to ship the instrument and to order spare parts.

Chapter 1 provides all the information necessary to check for compliance with rated specifications. The required test equipment is also specified.

Chapter 2 describes the manual adjustment of the calibration source and of the frequency accuracy as well as the automatic adjustment of individual module data following module replacement.

Chapter 3 describes the design as well as simple measures for repair and fault diagnosis, including in particular the replacement of modules.

Chapter 4 contains information about extensions and modifications by installing instrument software and retrofitting options.

Chapter 5 describes how to ship the instrument and order spare parts, and contains spare parts lists.

Operating Manual

The Operating Manual provides information about the technical specifications, the controls and connectors on the front and rear panel, required steps for placing the instrument into operation, the basic operating concept, as well as manual and remote control.

Typical measurement tasks are explained in detail using the functions of the user interface and program examples.

The Operating Manual also provides useful information on preventive maintenance and fault diagnosis by means of warnings and error messages output by the unit.

Quick Start Manual

The Quick Start Manual provides information about typical measurement tasks, the basic operation concept, as well as manual and remote control. Each of these items is explained in detail using the functions of the user interface and program examples.
Service and Repair

If your equipment requires service or repair or if you want to order spare parts and modules, please contact your Rohde & Schwarz support center or our spare parts express service.

Rohde & Schwarz representatives and the address of our spare parts express service are listed in the front section of this service manual.

You will need to provide the following information in order for us to respond to your inquiries quickly and accurately and to determine whether the warranty for your instrument is still valid:
- Instrument model
- Serial number
- Firmware version
- Detailed error description in case of repair
- Contact partner for checkbacks

Rohde & Schwarz offers the following calibrations:
- Calibration on R&S-type test systems. The calibration documentation meets the requirements of the quality management system ISO 9000.
- Calibration at an R&S calibration center approved by the German Calibration Service (DKD). The calibration documentation consists of the DKD calibration certificate.

Refer to Chapter 5 for a detailed description of how to ship the instrument and to order spare parts.
1 Performance Test

Test Instructions

- The rated specifications of the analyzer are tested after a warm-up time of at least 15 minutes. Only by adhering to this requirement can compliance with the guaranteed data be ensured.
- Values specified in the following sections are not guaranteed. Only the technical specifications provided on the data sheet are binding.
- The values specified in the data sheet are the guaranteed limits.
- Inputs for settings during measurements are shown as following:
 - \[<\text{KEY}>\] Press a key on the front panel, eg \[\text{SPAN}\]
 - \[<\text{SOFTKEY}>\] Press a softkey, e.g. [MARKER \(\rightarrow\) PEAK].
 - \[<\text{nn unit}>\] Enter a value and terminate by entering the unit, e.g. \[12 \text{ kHz}\].
 Successive entries are separated by [], e.g. \[\text{BW} : \text{MANUAL RES BW} : 3 \text{ kHz}\].

Measuring Equipment and Accessories

<table>
<thead>
<tr>
<th>Item</th>
<th>Type of equipment</th>
<th>Specifications recommended</th>
<th>Equipment recommended</th>
<th>R&S order no.</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Signal generator</td>
<td>Frequency: R&S°FSH3 10 MHz to 3 GHz, R&S°FSH6 10 MHz to 6 GHz, Uncertainty of frequency: 0.1 ppm, Phase noise at 500 MHz: (<-100 \text{ dBc} (1\text{Hz}) @ 10 \text{kHz}), (<-110 \text{ dBc} (1\text{Hz}) @ 100 \text{kHz}), (<-130 \text{ dBc} (1\text{Hz}) @ 1 \text{MHz})</td>
<td>R&S SML03, R&S SMT06</td>
<td>1090.3000.13, 1039.2000.06</td>
<td>Frequency response, Frequency accuracy of reference oscillator</td>
</tr>
<tr>
<td>2</td>
<td>6-dB divider (power splitter)</td>
<td></td>
<td>Weinschel 1506A</td>
<td></td>
<td>Frequency response</td>
</tr>
<tr>
<td>3</td>
<td>Power meter</td>
<td></td>
<td>R&S NRVD</td>
<td>0857.8008.02</td>
<td>Frequency response</td>
</tr>
<tr>
<td>4</td>
<td>Power sensor</td>
<td>1 MHz to 6 GHz, RSS (\leq 0.8%), Meter noise (\leq 20 \text{pW})</td>
<td>R&S NRV-Z4</td>
<td>0828.3618.02</td>
<td>Frequency response</td>
</tr>
<tr>
<td>5</td>
<td>N cable</td>
<td>Attenuation (< 1 \text{ dB} to 6 \text{GHz})</td>
<td></td>
<td></td>
<td>Tracking generator output level</td>
</tr>
<tr>
<td>6</td>
<td>50-(\Omega) termination</td>
<td>1 MHz to 6 GHz, Return loss (\leq -10 \text{dB})</td>
<td></td>
<td></td>
<td>Noise display</td>
</tr>
</tbody>
</table>
Performance Test

Checking the frequency accuracy

Test equipment: Signal generator (refer to section "Measurement Equipment and Accessories", item 1)

Test setup: ➢ Connect the signal generator to the RF input of the R&S FSH.

Signal generator settings:
- Frequency 1 GHz
- Level -30 dBm

R&S FSH settings:
- [PRESET]
- [FREQ : 1 GHz]
- [SPAN : 100 kHz]
- [BW : MANUAL RES BW : 10 kHz]
- [MARKER : MARKER MODE : FREQ COUNT]

Measurement: ➢ Read out the frequency value (Count:) of the marker.
Nominal frequency: .. 1.0 GHz ± 1 kHz

Note: The frequency of the reference oscillator can be adjusted by means of a service function (refer to Chapter 2 "Adjustment").
Checking the level accuracy and the frequency response

Test equipment:
- Signal generator (refer to section "Measurement Equipment and Accessories", item 1)
- Power meter (refer to section "Measurement Equipment and Accessories", item 3)
- Power sensor (refer to section "Measurement Equipment and Accessories", item 4)
- 6-dB power splitter (refer to section "Measurement Equipment and Accessories", item 2)

Determining the level accuracy at 100 MHz

Test setup:
- Connect the power sensor (item 4) to the power meter and execute function 'ZERO' when there is no signal applied to the power sensor.
- Connect the RF output of the signal generator to the input of the divider.
- Connect output 1 of the divider to the power sensor / power meter.
- Connect output 2 of the divider to the RF input of the R&S FSH.

Signal generator settings:
- Frequency 100 MHz
- Level 6 dBm

R&S FSH settings:
- [PRESET]
- [FREQ : 100 MHz]
- [AMPT : 0 dBm]
- [SPAN : 100 kHz]
- [BW : MANUAL RES BW : 10 kHz]
- [TRACE : DETECTOR : RMS]

- Set the marker to the peak of the signal.
- [MARKER : SET MARKER : PEAK]

Evaluation:
The difference between the signal levels measured with the power meter and the level reading of the marker reflects the absolute level error of the R&S FSH. It can be calculated as:

\[\text{Level error}_{100 \text{ MHz}} = L - L_{\text{powermeter}} \]
Checking the frequency response

For the measurement of the frequency response, the value at 100 MHz for each reference level setting is used as the reference. The reference level influences the RF attenuation (RF attenuation = +10 dBm + reference level).

Test setup:
- Connect the RF output of the signal generator to the input of the divider.
- Connect output 1 of the divider to the power sensor / power meter.
- Connect output 2 of the divider to the RF input of the SA.

Signal generator settings:
- Frequency \(f_{\text{in}} \) \(^*\)
- Level -4 dBm

Determine the output power of the signal generator with the power meter. Adjust the output power of the generator until the power meter shows -10 dBm.

R&S FSH settings:
- [PRESET]
- [AMPT : Ref_Lev\(^*\)]
- [SPAN : 100 kHz]
- [BW : MANUAL RES BW : 10 kHz]
- [TRACE : DETECTOR : RMS]
- [FREQ : CENTER : \(f_{\text{in}} \)]
- [SETUP : Hardware Setup: Low Noise]

\(^*\) Refer to table under “Performance Test Report” for values of Ref_Lev and \(f_{\text{in}} \).

If the a RF preamplifier is installed, its frequency response has to be checked also. To switch it on please enter:
- [SETUP : Hardware Setup: Preamp: ON]

Reference measurement:
- Determine signal level \(L_{\text{powermeter}} \).
- Set the marker to the peak of the signal.
- [MARKER: SET MARKER: PEAK]

The signal level \(L \) is displayed by the level reading of the marker.

\[\text{Ref}_{100\,\text{MHz}} = L - L_{\text{powermeter}} \]

Measurement

Signal generator settings:
- Frequency \(f_{\text{in}} \)

Refer to table under “Performance Test Report” for values of \(f_{\text{in}} \).

Power meter settings:
Determine the signal level \(L_{\text{powermeter}} \). To achieve higher accuracy, compensating the frequency response of the power sensor is recommended.

R&S FSH settings:
- [FREQ : \(f_{\text{in}} \)]

Refer to table under “Performance Test Report” for values of \(f_{\text{in}} \).

Evaluation:
The frequency response can be calculated as:

\[\text{Frequency response} = L - L_{\text{powermeter}} - \text{Ref}_{100\,\text{MHz}} \]
Checking the accuracy of the RF attenuator

Test principle: The RF attenuator of the R&S FSH can be switched from 0 to 30 dB in 10-dB increments by changing the reference level (RF attenuation = +10 dBm + reference level).

Test equipment: - Signal generator (refer to section "Measurement Equipment and Accessories", item 3)
 Frequency 100 MHz
 Maximum level ≥ 6 dBm

Test setup:
- Connect the RF output of the signal generator to the input of the divider.
- Connect output 1 of the divider to the power sensor / power meter.
- Connect output 2 of the divider to the RF input of the R&S FSH.

Signal generator settings:
- Frequency 100 MHz
- Level -14 dBm
- Determine the output power of the signal generator with the power meter. Adjust the output power of the signal generator until the power meter shows -20 dBm ± 0.2 dB.

R&S FSH settings:
- [PRESET]
- [FREQ : 100 MHz]
- [SPAN : 10 kHz]
- [BW : MANUAL RES BW : 1 kHz]
- [BW : MANUAL VIDEO BW : 100 Hz]
- [TRACE : DETECTOR : RMS]
- [AMPT : 0 dBm]
- [SETUP : Hardware Setup: Low Noise]

Reference measurement:
- Set the marker to the peak of the signal.
 [MARKER: SET MARKER: PEAK]

The signal level L is displayed by the level reading of the marker.

Ref_{0dBm} = L - L_{powermeter}

Measurement

Signal generator settings:
- Frequency 100 MHz
- Level Ref_{Lev} *) – 14 dB

*) Refer to table under “Performance Test Report" for values of {Ref_{Lev}}.
- Determine the output power of the signal generator with the power meter. Adjust the output power of the generator until the power meter shows the value Ref_{Lev} – 10 dB.

R&S FSH settings:
- [AMPT : {Ref_{Lev}}]
- [MARKER: SET MARKER: PEAK]

Evaluation:
The signal level L is displayed by the level reading of the marker.
The difference between the level inaccuracy of the R&S FSH and Ref_{0dBm} (at 10 dB RF-Att) is the uncertainty of the RF attenuation:

IF-Gain_{accuracy} = (L - L_{powermeter}) - Ref_{0dBm}
Checking the accuracy of the IF gain setting

Test principle: The IF gain of the R&S FSH can be switched from 0 to 15 dB by changing the reference level.

Test equipment: - Signal generator (refer to section "Measurement Equipment and Accessories", item 3)
 - Frequency 100 MHz
 - Maximum level ≥ -10 dBm

Test setup:
- Connect the RF output of the signal generator to the input of the divider.
- Connect output 1 of the divider to the power sensor / power meter.
- Connect output 2 of the divider to the RF input of the SA.

Signal generator settings:
- Frequency 100 MHz
- Level -4 dBm

- Determine the output power of the signal generator with the power meter. Adjust the output power of the generator until the power meter shows -10 dBm ± 0.2 dB.

R&S FSH settings:
- [PRESET]
- [FREQ: 100 MHz]
- [SPAN : 10 kHz]
- [BW : MANUAL RES BW : 1 kHz]
- [BW : MANUAL VIDEO BW : 100 Hz]
- [TRACE : DETECTOR : RMS]
- [AMPT : Ref_Lev *]

*) Refer to table under “Performance Test Report” for values of {Ref_Lev}.

Reference measurement:
- [MARKER: SET MARKER: PEAK]

The signal level L is displayed by the level reading of the marker.
\[\text{Ref}_{-10\text{dBm}} = L - L_{\text{powermeter}} \]

Measurement

Signal generator settings:
- Frequency 100 MHz
- Level Ref_Lev + 6 dB

- Determine the output power of the signal generator with the power meter. Adjust the output power of the generator until the power meter shows the value Ref_Lev ± 0.2 dB.

R&S FSH settings:
- [AMPT : {Ref_Lev}]

*) Refer to table under “Performance Test Report” for values of Ref_Lev.
- [MARKER: SET MARKER: PEAK]

Evaluation: The signal level L is displayed by the level reading of the marker.
The difference between the level inaccuracy of the R&S FSH and Ref.
\[10\text{dBm} \text{ (at 0 dB IF gain) is the uncertainty of the IF gain:} \]
\[\text{IF-Gain}_{\text{accuracy}} = (L - L_{\text{powermeter}}) - \text{Ref}_{-10\text{dBm}} \]
Checking the displayed average noise floor

Test equipment: 50-Ω termination (refer to section "Measurement Equipment and Accessories", item 6)

Test setup:
➢ Terminate the RF input of the R&S FSH with 50 Ω.

R&S FSH settings:
- [PRESET]
- [SPAN : ZERO SPAN]
- [Manual Res BW : 1 kHz]
- [Manual Video BW : 10 Hz]
- [TRACE : TRACE MODE: AVERAGE]
- [AMPT : -30 dBm]
- [FREQ : f_n]
Refer to table under “Performance Test Report” for values of f_n.

Measurement:
➢ Read out the marker level.

Evaluation: The displayed average noise floor is displayed by the level reading of the marker.
Checking the phase noise

Test equipment: Signal generator (refer to section "Measurement Equipment and Accessories", item 3)
- Frequency 500 MHz
- Level ≥ 0 dBm
- Phase noise at 500 MHz:
 - < -100 dBc (1Hz) @ 10 kHz
 - < -110 dBc (1Hz) @ 100 kHz
 - < -120 dBc (1Hz) @ 1 MHz

Test setup:
- Connect the RF output of the signal generator to the RF input of the R&S FSH.

Signal generator settings:
- Frequency 500 MHz
- Level 8 dBm *)

*) The overrange of the AD converter is used for higher dynamic range.

R&S FSH settings:
- [PRESET]
- [FREQ : 500 MHz]
- [AMPT : 0 dBm]
- [SPAN : {span}]
- [BW : RBW MANUAL : {RBW}]
 Depending on the offset, refer to the table below for values of RBW and span.
- [TRACE : TRACE MODE: AVERAGE]
- Marker to peak
 [MARKER: SET MARKER: PEAK]
- Delta marker to {offset}
 [MARKER: DELTA: {offset}: kHz]
- Set marker mode to noise measurement
 [MARKER: MARKER MODE: NOISE]

Evaluation: The phase noise is displayed in the marker field by the reading Delta [dBc/Hz]'.

<table>
<thead>
<tr>
<th>Offset</th>
<th>Span</th>
<th>RBW</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 kHz</td>
<td>100 kHz</td>
<td>1 kHz</td>
</tr>
<tr>
<td>100 kHz</td>
<td>220 kHz</td>
<td>10 kHz</td>
</tr>
<tr>
<td>1 MHz</td>
<td>2.2 MHz</td>
<td>100 kHz</td>
</tr>
</tbody>
</table>
Checking the display linearity

Test equipment:
- Signal generator (refer to section "Measurement Equipment and Accessories", item 1)
- Power meter (refer to section "Measurement Equipment and Accessories", item 3)
- Power sensor (refer to section "Measurement Equipment and Accessories", item 3)
- 6-dB power splitter (refer to section "Measurement Equipment and Accessories", item 2)

Test setup:
- Connect the power sensor (item 4) to the power meter and execute function ´ZERO´ when there is no signal applied to the power sensor.
- Connect the RF output of the signal generator to the input of the divider.
- Connect output 1 of the divider to the power sensor / power meter.
- Connect output 2 of the divider to the RF input of the R&S FSH.

1st Measurement
0 to 30 dB below reference level

Signal generator settings:
- Frequency 100 MHz
- Level + 6 dBm

R&S FSH settings:
- [PRESET]
- [AMPT: 0 dBm]
- [FREQ: 100 MHz]
- [SPAN : 10 kHz]
- [Manual Res BW : 1 kHz]
- [Manual SWPTime : 1 s]
- [TRACE : DETECTOR : RMS]

Reference measurement:
- Set the marker to the peak of the signal.
 - [MARKER: SET MARKER: PEAK]

The signal level L is displayed by the level reading of the marker.

\[
\text{Ref}_{\text{dBm}} = L - L_{\text{powermeter}}
\]

Signal generator settings:
- Frequency 100 MHz
- Level Sig_Lev + 6 dB

Refer to table under “Performance Test Report” for values of (Sig_Lev).

- Determine the output power of the signal generator with the power meter. Adjust the output power of the generator until the power meter shows the value of (Sig_Lev).
Evaluation: The signal level L is displayed by the level reading of the marker. The difference between the level inaccuracy of the R&S FSH and $Ref_{0\text{dBm}}$ is the uncertainty of the display linearity:

$$\text{Linearity}_{\text{uncertainty}} = (L - L_{\text{powermeter}}) - Ref_{0\text{dBm}}$$

2nd Measurement 30 to 50 dB below reference level

Because the sensitivity of the power meter is limited, the internal RF attenuator of the Galaxy is used to increase the dynamic range of the input signal.

R&S FSH settings:

- [AMPT: 20 dBm]

Signal generator settings:

- Frequency 100 MHz
- Level -4 dBm

- Determine the output power of the signal generator with the power meter. Adjust the output power of the generator until the power meter shows -10 dBm.

Reference measurement:

- Set the marker to the peak of the signal.
- [MARKER: SET MARKER: PEAK]

The signal level L is displayed by the level reading of the marker. With the result of the 1st linearity measurement, a new correction factor is to be calculated. “Linearity$_{\text{uncertainty}}$ (−30dB)” is the measured uncertainty of the R&S FSH linearity at 30 dB below reference level.

$$Ref_{20\text{dBm}} = (L - L_{\text{powermeter}}) - \text{Linearity}_{\text{uncertainty}} (−30\text{dB})$$

Signal generator settings:

- Frequency 100 MHz
- Level $\text{Sig}_\text{Lev} + 6$ dB

Refer to table under “Performance Test Report” for values of Sig_Lev.

- Determine the output power of the signal generator with the power meter. Adjust the output power of the generator until the power meter shows the value $\text{Sig}_\text{Lev} ± 0.2$ dB.

Evaluation:

The signal level L is displayed by the level reading of the marker. The difference between the level inaccuracy of the R&S FSH and $Ref_{20\text{dBm}}$ is the uncertainty of the display linearity:

$$\text{Linearity}_{\text{uncertainty}} = (L - L_{\text{powermeter}}) - Ref_{20\text{dBm}}$$
Performance Test Tracking Generator

(Model 1145.5973.13, 1145.5973.23 or 1145.5973.26 only)

Checking output level / frequency response

Test equipment:
- N cable (refer to section "Measurement Equipment and Accessories", item 5)
 - Frequency: up to 3 GHz
 - Maximum attenuation: < 0.2 dB

Test setup:
- Connect the tracking generator output to the RF input of the R&S FSH.

R&S FSH settings:
- [PRESET]
- [MEAS: TRACKING GENERATOR]
- [AMPT : REF: 10 dB]
- [FREQ : START FREQ 10 MHz]

In the model 1145.5973.23 the output level of the tracking generator can be set to 0 dBm. Check the output level also with this setting:

- [PRESET]
- [MEAS: TRACKING GENERATOR]
- [Output Level : 0 dBm]
- [AMPT : REF: 10 dB]

In the FSH6 the output level of the tracking generator is measured with two different frequency settings:

1)
- [FREQ : START FREQ 10 MHz]
- [FREQ : STOP FREQ 3 GHz]

2)
- [FREQ : START FREQ 3 GHz]
- [FREQ : STOP FREQ 6 GHz]

Measurement:
- Tune the marker to the maximum level of the trace.
 - [MARKER: <tune the marker>]
- Read out the marker level.

Tune the marker to the minimum value of the trace.
- Read out the marker level.
Performance Test Report

Table 1-1 Performance Test Report

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Included in</th>
<th>Min. value</th>
<th>Actual value</th>
<th>Max. value</th>
<th>Unit</th>
<th>Measurement uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency accuracy</td>
<td>Page 1.2</td>
<td>0.999999</td>
<td>_______</td>
<td>1.000001</td>
<td>GHz</td>
<td></td>
</tr>
<tr>
<td>Reference oscillator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level accuracy at 100 MHz with Ref_Lev = 0 dBm</td>
<td>Page 1.3</td>
<td>-0.5</td>
<td>_______</td>
<td>+0.5</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Characteristic</td>
<td>Included in</td>
<td>Min. value</td>
<td>Actual value</td>
<td>Max. value</td>
<td>Unit</td>
<td>Measurement uncertainty</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Frequency response with Ref_Lev = 20 dBm</td>
<td>Page 1.3</td>
<td>-1</td>
<td>Reference</td>
<td>+1</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>f<sub>ref</sub></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 MHz</td>
<td>-1</td>
<td></td>
<td>+1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 MHz</td>
<td>-1</td>
<td></td>
<td>+1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500 MHz</td>
<td>-1</td>
<td></td>
<td>+1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000 MHz</td>
<td>-1</td>
<td></td>
<td>+1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1500 MHz</td>
<td>-1</td>
<td></td>
<td>+1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000 MHz</td>
<td>-1</td>
<td></td>
<td>+1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2500 MHz</td>
<td>-1</td>
<td></td>
<td>+1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2990 MHz</td>
<td>-1</td>
<td></td>
<td>+1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R&S°FSH6 only :</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3500 MHz</td>
<td>-1</td>
<td></td>
<td>+1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4000 MHz</td>
<td>-1</td>
<td></td>
<td>+1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4500 MHz</td>
<td>-1</td>
<td></td>
<td>+1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5000 MHz</td>
<td>-1</td>
<td></td>
<td>+1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5500 MHz</td>
<td>-1</td>
<td></td>
<td>+1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5990 MHz</td>
<td>-1</td>
<td></td>
<td>+1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency response with Ref_Lev = 10 dBm</td>
<td>Page 1.3</td>
<td>-1</td>
<td>Reference</td>
<td>+1</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>f<sub>ref</sub></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 MHz</td>
<td>-1</td>
<td></td>
<td>+1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 MHz</td>
<td>-1</td>
<td></td>
<td>+1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500 MHz</td>
<td>-1</td>
<td></td>
<td>+1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000 MHz</td>
<td>-1</td>
<td></td>
<td>+1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1500 MHz</td>
<td>-1</td>
<td></td>
<td>+1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000 MHz</td>
<td>-1</td>
<td></td>
<td>+1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2500 MHz</td>
<td>-1</td>
<td></td>
<td>+1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2990 MHz</td>
<td>-1</td>
<td></td>
<td>+1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R&S°FSH6 only :</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3500 MHz</td>
<td>-1</td>
<td></td>
<td>+1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4000 MHz</td>
<td>-1</td>
<td></td>
<td>+1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4500 MHz</td>
<td>-1</td>
<td></td>
<td>+1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5000 MHz</td>
<td>-1</td>
<td></td>
<td>+1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5500 MHz</td>
<td>-1</td>
<td></td>
<td>+1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5990 MHz</td>
<td>-1</td>
<td></td>
<td>+1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Frequency response with Ref_Lev = 0 dBm

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Included in</th>
<th>Min. value</th>
<th>Actual value</th>
<th>Max. value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{\text{ref}}</td>
<td>Page 1.3</td>
<td>-1</td>
<td>Reference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 MHz</td>
<td></td>
<td>-1</td>
<td>+1</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>100 MHz</td>
<td></td>
<td>-1</td>
<td>+1</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>500 MHz</td>
<td></td>
<td>-1</td>
<td>+1</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>1000 MHz</td>
<td></td>
<td>-1</td>
<td>+1</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>1500 MHz</td>
<td></td>
<td>-1</td>
<td>+1</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>2000 MHz</td>
<td></td>
<td>-1</td>
<td>+1</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>2500 MHz</td>
<td></td>
<td>-1</td>
<td>+1</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>2990 MHz</td>
<td>R&S®FSH6 only:</td>
<td>-1</td>
<td>+1</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>3500 MHz</td>
<td></td>
<td>-1</td>
<td>+1</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>4000 MHz</td>
<td></td>
<td>-1</td>
<td>+1</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>4500 MHz</td>
<td></td>
<td>-1</td>
<td>+1</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>5000 MHz</td>
<td></td>
<td>-1</td>
<td>+1</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>5500 MHz</td>
<td></td>
<td>-1</td>
<td>+1</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>5990 MHz</td>
<td></td>
<td>-1</td>
<td>+1</td>
<td>dB</td>
<td></td>
</tr>
</tbody>
</table>

Frequency response with Ref_Lev = -10 dBm

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Included in</th>
<th>Min. value</th>
<th>Actual value</th>
<th>Max. value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{\text{ref}}</td>
<td>Page 1.3</td>
<td>-1</td>
<td>Reference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 MHz</td>
<td></td>
<td>-1</td>
<td>+1</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>100 MHz</td>
<td></td>
<td>-1</td>
<td>+1</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>500 MHz</td>
<td></td>
<td>-1</td>
<td>+1</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>1000 MHz</td>
<td></td>
<td>-1</td>
<td>+1</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>1500 MHz</td>
<td></td>
<td>-1</td>
<td>+1</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>2000 MHz</td>
<td></td>
<td>-1</td>
<td>+1</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>2500 MHz</td>
<td></td>
<td>-1</td>
<td>+1</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>2990 MHz</td>
<td>R&S®FSH6 only:</td>
<td>-1</td>
<td>+1</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>3500 MHz</td>
<td></td>
<td>-1</td>
<td>+1</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>4000 MHz</td>
<td></td>
<td>-1</td>
<td>+1</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>4500 MHz</td>
<td></td>
<td>-1</td>
<td>+1</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>5000 MHz</td>
<td></td>
<td>-1</td>
<td>+1</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>5500 MHz</td>
<td></td>
<td>-1</td>
<td>+1</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>5990 MHz</td>
<td></td>
<td>-1</td>
<td>+1</td>
<td>dB</td>
<td></td>
</tr>
</tbody>
</table>
Frequency response with PreAmp = ON

(only if PreAmp is implemented)

Ref_Lev = -15 dBm

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Included in</th>
<th>Min. value</th>
<th>Actual value</th>
<th>Max. value</th>
<th>Unit</th>
<th>Measurement uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Page 1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{ref}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 MHz</td>
<td>-1</td>
<td>Reference</td>
<td>+1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 MHz</td>
<td>-1</td>
<td>Reference</td>
<td>+1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500 MHz</td>
<td>-1</td>
<td>Reference</td>
<td>+1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000 MHz</td>
<td>-1</td>
<td>Reference</td>
<td>+1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1500 MHz</td>
<td>-1</td>
<td>Reference</td>
<td>+1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000 MHz</td>
<td>-1</td>
<td>Reference</td>
<td>+1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2500 MHz</td>
<td>-1</td>
<td>Reference</td>
<td>+1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2990 MHz</td>
<td>-1</td>
<td>Reference</td>
<td>+1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R&S®FSH6 only :</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3500 MHz</td>
<td>-1</td>
<td>Reference</td>
<td>+1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4000 MHz</td>
<td>-1</td>
<td>Reference</td>
<td>+1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4500 MHz</td>
<td>-1</td>
<td>Reference</td>
<td>+1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5000 MHz</td>
<td>-1</td>
<td>Reference</td>
<td>+1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5500 MHz</td>
<td>-1</td>
<td>Reference</td>
<td>+1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5990 MHz</td>
<td>-1</td>
<td>Reference</td>
<td>+1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Frequency response with PreAmp = ON

(only if PreAmp is implemented)

Ref_Lev = -25 dBm

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Included in</th>
<th>Min. value</th>
<th>Actual value</th>
<th>Max. value</th>
<th>Unit</th>
<th>Measurement uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Page 1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{ref}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 MHz</td>
<td>-1</td>
<td>Reference</td>
<td>+1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 MHz</td>
<td>-1</td>
<td>Reference</td>
<td>+1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500 MHz</td>
<td>-1</td>
<td>Reference</td>
<td>+1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000 MHz</td>
<td>-1</td>
<td>Reference</td>
<td>+1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1500 MHz</td>
<td>-1</td>
<td>Reference</td>
<td>+1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000 MHz</td>
<td>-1</td>
<td>Reference</td>
<td>+1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2500 MHz</td>
<td>-1</td>
<td>Reference</td>
<td>+1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2990 MHz</td>
<td>-1</td>
<td>Reference</td>
<td>+1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R&S®FSH6 only :</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3500 MHz</td>
<td>-1</td>
<td>Reference</td>
<td>+1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4000 MHz</td>
<td>-1</td>
<td>Reference</td>
<td>+1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4500 MHz</td>
<td>-1</td>
<td>Reference</td>
<td>+1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5000 MHz</td>
<td>-1</td>
<td>Reference</td>
<td>+1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5500 MHz</td>
<td>-1</td>
<td>Reference</td>
<td>+1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5990 MHz</td>
<td>-1</td>
<td>Reference</td>
<td>+1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Characteristic</td>
<td>Included in</td>
<td>Min. value</td>
<td>Actual value</td>
<td>Max. value</td>
<td>Unit</td>
<td>Measurement uncertainty</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Attenuator accuracy</td>
<td>Page 1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF_Att / Ref_Lev :</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 dB / -10 dBm</td>
<td>-0.5</td>
<td>Reference</td>
<td>+0.5</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 dB / 0 dBm</td>
<td>-</td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 dB / 10 dBm</td>
<td>-0.5</td>
<td>Reference</td>
<td>+0.5</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 dB / 20 dBm</td>
<td>-0.5</td>
<td>Reference</td>
<td>+0.5</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PreAmp = ON (only if PreAmp is</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>implemented)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 dB / -15 dBm</td>
<td>-0.5</td>
<td>Reference</td>
<td>+0.5</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IF gain</td>
<td>Page 1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switching accuracy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-10 dBm</td>
<td>-</td>
<td>Reference</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-15 dBm</td>
<td>-0.5</td>
<td>Reference</td>
<td>+0.5</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-20 dBm</td>
<td>-0.5</td>
<td>Reference</td>
<td>+0.5</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-25 dBm</td>
<td>-0.5</td>
<td>Reference</td>
<td>+0.5</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Displayed average Noise floor f_noise:</td>
<td>Page 1.7</td>
<td>-105</td>
<td>-105</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.9 MHz</td>
<td>-</td>
<td>Reference</td>
<td>-105</td>
<td>dBm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>101 MHz</td>
<td>-</td>
<td>Reference</td>
<td>-105</td>
<td>dBm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>501 MHz</td>
<td>-</td>
<td>Reference</td>
<td>-105</td>
<td>dBm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1001 MHz</td>
<td>-</td>
<td>Reference</td>
<td>-105</td>
<td>dBm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1501 MHz</td>
<td>-</td>
<td>Reference</td>
<td>-105</td>
<td>dBm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001 MHz</td>
<td>-</td>
<td>Reference</td>
<td>-105</td>
<td>dBm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2501 MHz</td>
<td>-</td>
<td>Reference</td>
<td>-105</td>
<td>dBm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2999 MHz</td>
<td>-</td>
<td>Reference</td>
<td>-105</td>
<td>dBm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R&S°FSH6 only :</td>
<td></td>
<td>-103</td>
<td>-103</td>
<td>dBm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3501 MHz</td>
<td>-</td>
<td>Reference</td>
<td>-103</td>
<td>dBm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4001 MHz</td>
<td>-</td>
<td>Reference</td>
<td>-103</td>
<td>dBm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4501 MHz</td>
<td>-</td>
<td>Reference</td>
<td>-103</td>
<td>dBm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4999 MHz</td>
<td>-</td>
<td>Reference</td>
<td>-103</td>
<td>dBm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5501 MHz</td>
<td>-</td>
<td>Reference</td>
<td>-96</td>
<td>dBm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5999 MHz</td>
<td>-</td>
<td>Reference</td>
<td>-96</td>
<td>dBm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
R&S FSH Performance Test Report

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Included in</th>
<th>Min. value</th>
<th>Actual value</th>
<th>Max. value</th>
<th>Unit</th>
<th>Measurement uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displayed average Noise floor with PreAmp = ON (only if PreAmp is implemented)</td>
<td>Page 1.7</td>
<td>-</td>
<td>-120</td>
<td>-120</td>
<td>dBm</td>
<td></td>
</tr>
<tr>
<td>f_{noise}:</td>
<td></td>
<td>9.9 MHz</td>
<td>-</td>
<td>-120</td>
<td>dBm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>101 MHz</td>
<td>-</td>
<td>-120</td>
<td>dBm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>501 MHz</td>
<td>-</td>
<td>-120</td>
<td>dBm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1001 MHz</td>
<td>-</td>
<td>-120</td>
<td>dBm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1501 MHz</td>
<td>-</td>
<td>-120</td>
<td>dBm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2001 MHz</td>
<td>-</td>
<td>-120</td>
<td>dBm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2499 MHz</td>
<td>-</td>
<td>-120</td>
<td>dBm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2999 MHz</td>
<td>-</td>
<td>-120</td>
<td>dBm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>R&S°FSH6 only:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3501 MHz</td>
<td>-</td>
<td>-115</td>
<td>dBm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4001 MHz</td>
<td>-</td>
<td>-115</td>
<td>dBm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4501 MHz</td>
<td>-</td>
<td>-115</td>
<td>dBm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4999 MHz</td>
<td>-</td>
<td>-115</td>
<td>dBm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5501 MHz</td>
<td>-</td>
<td>-105</td>
<td>dBm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5999 MHz</td>
<td>-</td>
<td>-105</td>
<td>dBm</td>
<td></td>
</tr>
<tr>
<td>Phase noise at 500 MHz</td>
<td>Page 1.8</td>
<td>-</td>
<td>-85</td>
<td>-85</td>
<td>dBc (1Hz)</td>
<td></td>
</tr>
<tr>
<td>Offset frequency:</td>
<td></td>
<td>30 kHz</td>
<td>-</td>
<td>-100</td>
<td>dBc (1Hz)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 kHz</td>
<td>-</td>
<td>-100</td>
<td>dBc (1Hz)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 MHz</td>
<td>-</td>
<td>-120</td>
<td>dBc (1Hz)</td>
<td></td>
</tr>
<tr>
<td>Characteristic</td>
<td>Included in</td>
<td>Min. value</td>
<td>Actual value</td>
<td>Max. value</td>
<td>Unit</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Display linearity</td>
<td>Page 1.9</td>
<td>-</td>
<td>Reference</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>0 to -30 dB</td>
<td></td>
<td>-0.2</td>
<td>+0.2</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-5 dBm</td>
<td></td>
<td>-0.2</td>
<td>+0.2</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-10 dBm</td>
<td></td>
<td>-0.2</td>
<td>+0.2</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-15 dBm</td>
<td></td>
<td>-0.2</td>
<td>+0.2</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-20 dBm</td>
<td></td>
<td>-0.2</td>
<td>+0.2</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-25 dBm</td>
<td></td>
<td>-0.2</td>
<td>+0.2</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-30 dBm</td>
<td></td>
<td>-0.2</td>
<td>+0.2</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Display linearity</td>
<td>Page 1.9</td>
<td>-</td>
<td>Reference</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>-30 to -50 dB</td>
<td></td>
<td>-0.3</td>
<td>+0.3</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-10 dBm</td>
<td></td>
<td>-0.3</td>
<td>+0.3</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-15 dBm</td>
<td></td>
<td>-0.3</td>
<td>+0.3</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-20 dBm</td>
<td></td>
<td>-0.3</td>
<td>+0.3</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-25 dBm</td>
<td></td>
<td>-0.3</td>
<td>+0.3</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-30 dBm</td>
<td></td>
<td>-0.3</td>
<td>+0.3</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Performance Test Report Tracking Generator

(model 1145.5850.13, 1145.5850.23 or 1145.5850.26 only)

Table 1-2 Performance Test Report

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Included in</th>
<th>Min. value</th>
<th>Actual value</th>
<th>Max. value</th>
<th>Unit</th>
<th>Measurement uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>R&S®FSH3: Level accuracy output level: -20 dBm</td>
<td>Page 1.11</td>
<td>-3</td>
<td>_____</td>
<td>+5</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>R&S®FSH3: Level accuracy output level: 0 dBm (model 1145.5850.23 only)</td>
<td>Page 1.11</td>
<td>-3</td>
<td>_____</td>
<td>+5</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>R&S®FSH6: Level accuracy 10 MHz to: 3 GHz</td>
<td>Page 1.11</td>
<td>-2</td>
<td>_____</td>
<td>+6</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>R&S®FSH6: Level accuracy 3 GHz to 6 GHz</td>
<td>Page 1.11</td>
<td>-11</td>
<td>_____</td>
<td>6</td>
<td>dB</td>
<td></td>
</tr>
</tbody>
</table>

Note: The table continues with more entries, but the above entries are representative of the format and data structure of the table.
2 Adjustment

This chapter describes the adjustment of the software-controlled module data following the replacement of modules.

Adjustments can be performed only by using the adjustment program that is available from the R&S Service Board on the R&S Internet site. Using this program prevents mistakes in the calibration data.

The R&S FSH permits the following manual adjustments:

- Adjustment of the 10-MHz reference oscillator that determines the frequency accuracy of the R&S FSH.
- Adjustment of the level accuracy of the R&S FSH for different attenuator settings.

Adjustment enables you to maintain and restore the data integrity of the instrument.

Manual adjustments must be performed at an ambient temperature between +20°C and +30°C after the instrument has warmed up.

After the adjustments have been performed, the R&S FSH is ready for use and offers full data integrity. This can be verified by performing the Performance Test as described in Chapter 1.

Verifying the functionality of the R&S FSH is recommended before you start performing adjustments or the performance test. The verification procedure is described in the following section, "Quick Verification".

Quick Verification

The quick verification procedure verifies hardware functionality before full testing can start. Testing of the following is recommended:

- On/off functionality
- Connections of the power adapter and the AF output
- Display
- Level and noise
Measurement Equipment and Accessories for Quick Verification

The quick verification procedure requires a very limited amount of equipment.

<table>
<thead>
<tr>
<th>Item</th>
<th>Type of equipment</th>
<th>Specifications recommended</th>
<th>Equipment recommended</th>
<th>R&S order no.</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Signal generator</td>
<td>Frequency: 10 MHz to 3 GHz</td>
<td>R&S SML</td>
<td></td>
<td>Level</td>
</tr>
<tr>
<td>2</td>
<td>N-cable</td>
<td>Attenuation: < 0.2 dB to 3 GHz</td>
<td></td>
<td></td>
<td>Tracking generator output level</td>
</tr>
</tbody>
</table>

Verifying on/off functionality

Test equipment None
R&S FSH settings Switch instrument ON.
Measurement ➢ Verify that the instrument switches ON.

Verifying power and AF connections

Test equipment None
Accessories AC power adapter
Headphone
R&S FSH settings Switch instrument ON.
Connect the AC power supply.
Reference measurement ➢ Verify in the display that the battery symbol changes to a power plug.
R&S FSH settings Connect the headphone.
- [Marker : MARKER DEMOD : AM]
Reference measurement ➢ Verify that a noise signal is heard on the headphone.
Verifying the display

Test equipment None

R&S FSH settings Switch instrument ON.

Reference measurement ➢ Check the display for disturbance.

Verifying the level and noise

Test principle The RF attenuator of the R&S FSH can be switched from 0 to 30 dB by changing the reference level in the instrument.

Test equipment - Signal generator (refer to section "Measurement Equipment and Accessories for Quick Verification", item 1).

- Frequency 100 MHz
- Maximum level ≥ 6 dBm

Test setup ➢ Connect the RF output of the signal generator to the input of the R&S FSH.

Signal generator settings - Frequency 100 MHz
- Level - 20 dBm

R&S FSH settings - [PRESET]
- [FREQ : 100 MHz]
- [SPAN : 10 kHz]
- [BW : RES BW MANUAL : 1 kHz]
- [BW : VIDEO BW MANUAL : 100 Hz]
- [TRACE : DETECTOR : RMS]
- [AMPT : 0 dBm]

Verification ➢ Read the level and verify that it shows -20 dBm +/- 2 dB.
➢ Verify that the noise level in the display is < - 60 dBm.

Check 30 dB attenuation
Change signal generator setting - Level -30 dBm

Change R&S FSH setting - [AMPT : -10 dBm]

Verification ➢ Read the level and verify that it shows -30 dBm +/- 2 dB.

Check 10 dB attenuation
Change signal generator setting - Level -10 dBm

Change R&S FSH setting - [AMPT : 10 dBm]

Verification ➢ Read the level and verify that it shows -10 dBm +/- 2 dB.

Check 0 dB attenuation
Change signal generator setting - Level 0 dBm

Change R&S FSH setting - [AMPT : 20 dBm]

Verification ➢ Read the level and verify that it shows 0 dBm +/- 2 dB.
Measurement Equipment and Accessories for Quick Verification R&S FSH

Verify the tracking generator output level

Test principle The generator output must be connected to the RF input and verified.
Test equipment None
Test setup ➢ Connect the generator output of the R&S FSH to the RF input.
R&S FSH settings - [PRESET]
 - [MEAS : TRACKING GEN :]
Verification ➢ Verify that the level of the sweep shows 0 dB ±5 /-7 dB.
 ➢ Following internal calibration, verify that the level shows 0 ±/-1 dB.

Adjustment functions

Caution:

Only qualified personnel should carry out the re-alignment since any change substantially influences the measurement accuracy of the instrument. For this reason, the calibration program is available only on the R&S Service Board.
Adjustment

This section describes the measurement equipment and accessories required for the manual adjustment of the R&S FSH, the appropriate preparations of the equipment, and the individual adjustments.

An adjustment program provides the instructions for the input settings.

Adjustment Instructions

- The adjustment of the analyzer must be performed after a warm-up time of at least 30 minutes. Only by adhering to this requirement can compliance with the guaranteed data be ensured.
- Inputs for setting the R&S FSH during adjustment will be programmed automatically.
Measurement Equipment and Accessories

<table>
<thead>
<tr>
<th>Item</th>
<th>Type of equipment</th>
<th>Specifications recommended</th>
<th>Equipment recommended</th>
<th>R&S order no.</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Signal generator</td>
<td>Frequency: 10 MHz to 3 GHz</td>
<td>R&S SML</td>
<td></td>
<td>Frequency accuracy of reference oscillator</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Uncertainty of frequency: 0.1 ppm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Phase noise at 500 MHz:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>< -100 dBc (1Hz) @ 10 kHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>< -110 dBc (1Hz) @ 100 kHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>< -130 dBc (1Hz) @ 1 MHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6-dB divider</td>
<td></td>
<td></td>
<td></td>
<td>Frequency response</td>
</tr>
<tr>
<td></td>
<td>(power splitter)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Power meter</td>
<td></td>
<td>R&S NRVD</td>
<td>0857.8008.02</td>
<td>Frequency response</td>
</tr>
<tr>
<td>4</td>
<td>Power sensor</td>
<td>1 MHz to 3 GHz</td>
<td>R&S NRV-Z4</td>
<td>0828.3618.02</td>
<td>Frequency response</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RSS ≤ 0.8%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meter noise ≤ 20 pW</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adjusting the reference frequency accuracy

Test equipment Signal generator (refer to section "Measurement Equipment and Accessories", item 2)

Test setup ➢ Connect the generator to the RF input.

Generator settings
- Frequency 1 GHz
- Level -30 dBm

R&S FSH settings
- [PRESET]
- [FREQ : 1 GHz]
- [SPAN : 100 kHz]
- [BW : MANUAL RES BW : 10 kHz]
- [MARKER : MARKER MODE : FREQ COUNT]

Adjustment The program will adjust the reference oscillator to 10 MHz ± 1 ppm.
Adjusting the level accuracy

Test equipment
- Signal generator (refer to section "Measurement Equipment and Accessories ", item 1)
- Power meter (refer to section "Measurement Equipment and Accessories ", item 3)
- Power sensor (refer to section "Measurement Equipment and Accessories ", item 4)
- 6-dB power splitter (refer to section "Measurement Equipment and Accessories ", item 2)

Determining the level accuracy at 100 MHz

Test setup
- Connect the power sensor (item 4) to the power meter and execute function “ZERO” when there is no signal applied to the power sensor.
- Connect the RF output of the signal generator to the input of the divider.
- Connect output 1 of the divider to the power sensor / power meter.
- Connect output 2 of the divider to the RF input of the R&S FSH.

Signal generator settings
- Frequency 100 MHz
- Level 6 dBm
- Determine the output power of the signal generator with the power meter. Adjust the output power of the generator until the power meter shows the expected level “Ampt”. This level is displayed on the PC display during adjustment.

R&S FSH settings
- Performed automatically via the adjustment program.

Adjustment
The program will guide you through the required adjustments for different levels.

Save calibration data
If the measured values are within the programmed limits, the new constants will be automatically stored in the R&S FSH and will be used for future measurements.
Frequency Response Correction

Frequency response correction is part of the RF/IF module and is delivered with the module in an EEPROM. Any change requires the use of a special test program and test setup. If necessary, the module must be sent to R&S Service.
3 Repair

This chapter describes the design of the R&S FSH, simple measures for repair and troubleshooting, and, in particular, the replacement of modules.

Firmware updates and the installation of the DTF option are described in Chapter 4.

Instrument Design and Functional Description

The following figure shows a block diagram of the R&S FSH.

Fig. 3-1 Block Diagram R&S FSH
Description of the block diagram

The R&S FSH is a triple-conversion super-heterodyne receiver for the frequency range 100 kHz to 3 GHz. After signals are received, they are processed by the RF/IF board and the mainboard.

The RF/IF board contains the functions as described below.

Attenuator

The RF signal passes from the input connector RF INPUT to the programmable input attenuator, which can be switched from 0 dB to 30 dB in increments of 10 dB. The circuitry is protected from overvoltage.

RF to IF conversion

The RF/IF board converts the received frequencies in the range 100 kHz to 3 GHz to the low 31.25 MHz IF, which is digitized with 25 MHz before it is sent to the mainboard for digital processing. The RF/IF board also includes the required local oscillators and associated frequency processing circuits. The unit is housed in silver-plated aluminum packaging.

The input signal passes via the input attenuator and the lowpass filter to the first mixer. The lowpass filter provides suppression of the image frequency (image = LO+ IF) to keep the conversion unambiguous. In the 1st mixer the input signal is up-converted to an IF of 4031.25 MHz by means of the first LO (4031.25 MHz to 7031.25 MHz). The mixer is followed by a low noise IF amplifier, which compensates for the loss due to mixing. The signal then passes a filter with a 3-dB bandwidth of approximately 400 MHz for filtering the first IF. The local oscillator frequency required for this conversion is also generated on the board. This signal is generated by three VCOs synchronized to 100 MHz, which in turn is synchronized to a Temperature Compensated 10-MHz Xtal Oscillator (TCXO). This TCXO is electrically calibrated.

The signal from the 1st IF filter is converted to the 2nd IF of 831.25 MHz. The signal is routed to an 831.25 MHz filter with a 3-dB bandwidth of 20 MHz for further signal processing. The filter is followed by the 3rd mixer, which converts to 31.25 MHz and utilizes an IF filter that has a -3-dB bandwidth of approximately 2 MHz.

The frequency range above 3 GHz in the R&S FSH6 is converted via two additional mixers to a first IF of 7231.25 MHz and to the same 2nd IF as in the FSH3 of 831.25 MHz. As LO signals the oscillator signals of the FSH3 are doubled.
Fig. 3-2 Block Diagram: RF to IF Conversion and Synthesizer
Tracking generator (Model 1145.5850.13/23/26 only)

The LO frequency of the 1st mixer is routed via isolation amplifiers to the TG mixer. The other input of the mixer is a fixed frequency of 4031.25 MHz generated with a VCO locked to the TCXO frequency.

The resulting IF signal is routed to the generator output connector.

RF/IF control

The microcontroller available on the mainboard controls the RF/IF setting by programming registers via an internal serial bus.

For calibration purposes the level correction values are stored in an EEPROM. This EEPROM also contains module-specific information.

The temperature of the module is continuously measured, and the measured levels will be compensated for drift if the temperature change is too great.

Mainboard

The mainboard is a combination of the power supply and the functions controlled by a dedicated RISC controller (ARM 720).

Power and battery management

The ON/OFF key is de-bounced with the real-time clock in the controller. The ON/OFF function is completely software controlled. This implies that the controller must be operational in order for the the instrument to be switched ON. The µP-clock (50 MHz) is derived from the RF/IF board, thus requiring that this board be present. This frequency will always be present if the power adapter is connected or the instrument is in the ON state.

If the instrument is in the OFF state and the power supply is connected, the µP will control the charging function of the battery depending on the battery condition. The maximum charging current is 1000 mA, which drops to a trickle charge of about 100 mA if the battery is fully loaded. To prevent damage to the battery, the charging stops if the battery temperature reaches ≤ 0°C or > 45°C. In the OFF state, the charging current is approximately 90 mA.

This power supply and battery management arrangement uses a dedicated IC. The instrument can be switched ON only if the battery is in operating condition. Thus, if the battery is completely empty, the instrument cannot be switched ON until the charging current has re-loaded the battery, which takes several minutes.
Processing of measured data detectors

The measured data is processed in two dedicated ICs to reduce the sample rate of the input signal to a value that can be handled by the hardware. The DDC converts the digital IF signal to I/Q base band and filters the base band signals using low pass filters with programmable bandwidth. In addition it delivers the AM or FM demodulated audio signal. The DCON Asic detects the envelope of the filtered and combined base band signal and calculates its logarithm. It contains also the video filter and the different detectors. In addition it is resposible for the sweep control of the FSH.

![Diagram of measured data processing](image)

Fig. 3-3 Measured Data Processing

Resolution bandwidths (RBW)

The resolution bandwidths are implemented in the R&S FSH through digital processing in the DDC ASIC (Digital Down Converter). The RBW can be selected from within the range 1 kHz to 1 MHz in 1-, 3- or 10-unit increments. The DDC first mixes its input IF to the baseband using an NCO (Numeric Controlled Oscillator) and then filters the resulting IQ signals via a combination of HDF (High Decimation Filter) and an FIR (Finite Impulse Response) stages. At the end of the DDC processing chain, the IQ signal is split into magnitude and phase.

For AF demodulation the amplitude information is used. In the case of FM the phase information is used and fed to the headphone connector. In the analyzer mode the signal at the position of the marker can be demodulated. In this case the R&S FSH stops the sweep for a selectable period of time and demodulates the input signal. The volume can be adjusted.

For a standard log display of the analyzed spectrum, the magnitude data is converted from linear to logarithmic in the DCON ASIC (Digital CONtroller).

Video bandwidths (VBW)

The video filters can be adjusted between 10 Hz and 3 MHz in increments of 1/3/10. They are designed as digital lowpass filters for the video signals in the DCON ASIC. Software can couple the VBW to the RBW, or the VBW can be set independently.
Detectors

The R&S FSH uses a detector for the positive peak and the negative peak value. In the “sample” mode the measured value is routed directly to the display. In the RMS mode the detector determines the rms value of the input signal for one specific point in the display during the measured time.

Keypad control

Keypad control is a dedicated function of the controller. For the implementation of the rotary knob, an encoder is used that is detected with a dedicated CPLD (Complex Programmable Logic Device). This “One Time Programmable” CPLD is programmed during production.

Serial optical interface

The interface to an external PC has been implemented with optical technology to avoid electrical loops. The protocol is RS-232-based and is implemented in the instrument by the UART of the controller. It requires a special optical RS-232 cable for communication (R&S FSH-Z34, delivered with the instrument). The maximum baud rate is 115200.

Power sensor

The power sensor uses the display of the R&S FSH. Communication is achieved with a separate UART from the controller.

Color LCD module

The 1/4 VGA passive matrix display is backlit by an FCC backlight, whose light output can be adjusted to an optimum between visibility and battery use.
Module Replacement

This section describes the service concept and contains the spare parts list and the basic documents for the R&S FSH instrument.

Note: The numbers indicated in brackets refer to items in the mechanical exploded drawings.

Note: The words “left” and “right” in the manual always refer to the front view of the instrument.

- Please pay close attention to the safety instructions in the front section of this manual.
- Disconnect the power connector from the instrument before opening the case.
- Safeguard the replacement site against electrostatic discharge to prevent damage to electronic components of the modules.
- The following two methods of ESD protection can be used together or separately:
 - Wrist strap with cord to ground connection
 - Conductive floor mat and heel strap combination
Fig. 3-4 Exploded View
Overview of the modules

Table 3-1 List of spare parts and order numbers

<table>
<thead>
<tr>
<th>Reference</th>
<th>Part</th>
<th>R&S Order Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Battery Pack for R&S FSH (R&S FSH-Z32)</td>
<td>1145.5796.02</td>
</tr>
<tr>
<td>2</td>
<td>Housing R&S FSH without top holster</td>
<td>1157.3258.00</td>
</tr>
<tr>
<td>2.4</td>
<td>Top holster for FSH without tracking generator</td>
<td>1157.3487.00</td>
</tr>
<tr>
<td></td>
<td>Top holster for FSH with tracking generator</td>
<td>1157.3493.00</td>
</tr>
<tr>
<td>3</td>
<td>Front unit for R&S FSH3</td>
<td>1157.3241.00</td>
</tr>
<tr>
<td></td>
<td>Front unit for R&S FSH6</td>
<td>1300.7591.00</td>
</tr>
<tr>
<td>4</td>
<td>LCD module</td>
<td>1157.3229.00</td>
</tr>
<tr>
<td></td>
<td>LCD plane for FSH3</td>
<td>1300.7704.00</td>
</tr>
<tr>
<td></td>
<td>LCD plane for FSH6</td>
<td>1300.7710.00</td>
</tr>
<tr>
<td>5</td>
<td>RF/IF module for R&S FSH3 without tracking generator</td>
<td>1157.3606.00</td>
</tr>
<tr>
<td></td>
<td>RF/IF Module for R&S FSH3 with tracking generator</td>
<td>1157.3612.00</td>
</tr>
<tr>
<td></td>
<td>RF/IF Module for R&S FSH6 without tracking generator</td>
<td>1300.7604.00</td>
</tr>
<tr>
<td></td>
<td>RF/IF Module for R&S FSH6 with tracking generator</td>
<td>1300.7610.00</td>
</tr>
<tr>
<td>6</td>
<td>Mainboard for R&S FSH</td>
<td>1157.3570.00</td>
</tr>
<tr>
<td>7</td>
<td>N connector</td>
<td>1157.3235.00</td>
</tr>
<tr>
<td>8</td>
<td>Interconnection board</td>
<td>1157.3587.00</td>
</tr>
<tr>
<td>9</td>
<td>Input unit (power and audio connectors, including wire tree)</td>
<td>1157.3270.00</td>
</tr>
<tr>
<td>10</td>
<td>Set of cables for R&S FSH</td>
<td>1157.3329.00</td>
</tr>
<tr>
<td>21</td>
<td>AC mains adapter for R&S FSH (EU Version)</td>
<td>1157.3293.00</td>
</tr>
<tr>
<td>22</td>
<td>AC mains adapter for R&S FSH (UK Version)</td>
<td>1157.3306.00</td>
</tr>
<tr>
<td>23</td>
<td>AC mains adapter for R&S FSH (US Version)</td>
<td>1157.3312.00</td>
</tr>
<tr>
<td></td>
<td>AC mains adapter for R&S FSH (AUS Version)</td>
<td>1157.3370.00</td>
</tr>
</tbody>
</table>

See exploded drawing on the previous page.
Opening the instrument

(See exploded drawing for related numbers.)

- Disconnect the power plug.
- Switch the instrument to OFF.
- Loosen the six (S1) screws and remove the top cover (2.4) and bottom cover (2.1).
- Disconnect the connector (X2).
- Loosen the three (S2) screws and remove the grip cover (2.3).
- Loosen the two (S3) screws and remove the rear case (2.2).
- Loosen the nine (S4) screws and remove the mainboard shielding.

Closing the instrument

- Mount the mainboard shielding and fasten the nine (S4) screws.
 Note that the shielding of wire-tree (W1) is reconnected again.
- Mount the rear case (2.2) and fasten the two (S3) screws.
- Mount the grip cover and fasten the three (S2) screws.
- Connect the connector (X2).
- Mount the top cover (2.4) and bottom cover (2.1).
- Fasten the six (S1) screws.
- Perform the quick verification test.
 Refer to Chapter 2 “Adjustment”.

Caution! Note that the connecting cables are still connected.

- Note: When detaching the connectors, proceed with caution.
Replacing the battery

- Open the instrument.
- Disconnect connector (X1).
- Replace the battery.
- Connect (X1).
- Close the instrument.
- Charge the battery.
- Perform the quick verification test.

Refer to Chapter 2 “Adjustment”.

- **Note:** It is recommended that battery charging be performed with the instrument switched OFF and the AC power connected to the mains. The charging time for a full battery is about 4 hours.

Fig. 3-6 Replacing the battery
Replacing the housing

Housing parts:

2.1: Bottom cover
2.2: Rear case
2.3: Grip cover
2.4: Top cover

Notes: When replacing the rear case, the existing type plate must be placed on the new rear case, or the old series number must be written on the new type plate.

When the grip cover is replaced, the “input unit power/audio connections” have to be placed in the new grip cover. See also Replacing the power/audio connections.

- Open the instrument.
- Replace the specific housing part.
- Close the instrument.
- Perform the quick verification test.

Refer to Chapter 2 “Adjustment”.

Fig. 3-7 Replacing the housing
Replacing the front unit for R&S FSH

- Open the instrument.
- Remove the battery.
- Remove the Main Unit:
 - Disconnect the connectors (X3), (X4), and (X5).
 - Remove the main unit by unscrewing the two (S5) screws.
- Remove the LCD colour module:
 - Losen the four (S6) screws.
 - Remove the LCD colour module.
- Use the new front unit to assemble the instrument again.

![Warning]

Before mounting the unit, make sure that no dust is present between the front unit and the LCD colour module.

- Mount the LCD colour module with the four (S6) screws.
- Mount the Main Unit with the two (S5) screws.
- Connect the connectors (X3), (X4), and (X5).
- Mount the battery.
- Close the instrument.
- Perform the quick verification test.

 Refer to Chapter 2 “Adjustment”.

![Diagram]

Fig. 3-8 Replace Front Unit
Replacing the Color LCD Module

- Open the instrument.
- Remove the battery.
- Remove the Main Unit:
 - Disconnect the connectors (X3), (X4), and (X5).
 - Remove the main unit by unscrewing the two (S5) screws.
- Remove the LCD colour module:
 - Disconnect the connector (X6).
 - Loosen the four (S6) screws.
 - Remove the LCD colour module.
- Use the new module to assemble the instrument again.

Before mounting the unit, make sure that no dust is present between the front unit and the colour module.

- Mount the LCD colour module with the four (S6) screws.
- Mount the Main Unit with the two (S5) screws.
- Connect the connectors (X3), (X4), and (X5).
- Mount the battery.
- Close the instrument.
- Perform the quick verification test.
 Refer to Chapter 2 “Adjustment”.

![Fig. 3-9 Replacing the Color LCD Module](image-url)
Replacing the RF/IF module

- Open the instrument.
- Disconnect the flat cable (X8) and remove the tape.
- Disconnect the connectors (X7) and (X9).
- Remove the RF/IF module by unscrewing (S7).
- Remove the binder and BNC connector block:
 - Loosen the four (S8) screws.
 - Remove the connector block.
- Mount the new RF/IF module.
- Mount the binder and BNC connector block with the four (S8) screws.
- Connect connectors (X7) and (X9).
- Mount the flat cable (X8), including the ferrite.
- Fasten the flat cable with the tape.
- Close the instrument.
- Perform the manual adjustment.

Refer to Chapter 2 “Adjustment”.

Fig. 3-10 Replacing the RF/IF Module
Replacing the mainboard

The mainboard contains information about the instrument like the serial number. Special tools are necessary to update this information after replacement of the mainboard. Therefore the exchange of the mainboard is possible in a R&S Service Center, only.

- Open the instrument.
- Remove the battery.
- Loosen the two (S5) screws.
- Disconnect the connectors (X3), (X4), (X5), (X7), (X8) and (X9).
- Loosen the three screws (S11) and the remove the board.

Note that the two lower screws are isolated.

- Remove the distance screw (S12)
- Mount the new board and fasten (S11) and (S12).
- Connect connectors (X3), (X4), (X5), (X7), (X8) and (X9).
- Mount the Battery.
- Close the instrument.
- Perform the manual adjustment.

Refer to Chapter 2 “Adjustment”.

Fig. 3-11 Replacing the Main Board
Replacing the N connector

- Open the instrument.
- Remove the battery.
- Remove the RF/IF module by unscrewing (S7).
- Disconnect the flat cable (X8).
- Disconnect the connectors (X7) and (X9).
- Remove the binder and BNC connector block:
 - Loosen the four (S8) screws.
 - Remove the connector block.
- Loosen the two screws (S9) from front RF housing for each N connector.
- Loosen the 9 screws (S10) from the RF housing.
- Remove the front RF housing.
- Clean the center contact of solder left from the N connector to be replaced.
- Loosen the other two screws (S9) from the appropriate N connector.
- Mount the new connector by first screwing it into the rear RF housing.
- Solder the center connection.
- Mount the front RF housing (S10).
- Fasten the two screws (S9) to the front RF housing for each the N connector.
- Mount the binder and BNC connector block with the (S8) screws.
- Mount the flat cable (X8), including the ferrite.
- Connect the connectors (X7) and (X9).
- Mount the RF/IF module (S7).
- Mount the Battery and close the instrument.
- Perform the manual adjustment.

Refer to Chapter 2 “Adjustment”.

Fig. 3-12 Replacing the N-Connector
Replacing the binder and BNC connector block

(See exploded view for references).

- Open the instrument.
- Disconnect the flat cable (X10).
- Disconnect the connector (X7).
- Remove the binder and BNC connector block:
 - Loosen the four (S8) screws.
 - Remove the connector block.
- Mount the binder and BNC connector block with the four (S8) screws.
- Connect the connectors (X7).
- Mount the flat cable (X10).
- Close the instrument.
- Perform the quick verification test.

Refer to Chapter 2 “Adjustment”.

Fig. 3-13 Replacing the Binder and BNC connector block
Replacing the power/audio connections

- Remove the top cover.
- Disconnect the connector (X2)
- Remove the connection wire tree from the grip cover.
- Mount the wire tree again.
- Mount the top cover.
- Perform the quick verification test.

Refer to Chapter 2 “Adjustment”.

Fig. 3-14 Replacing the Power/ Audio Connections
Replacing a cable from the cable set

Note: The cable set is needed in the event that a cable is damaged during the replacement of one of the modules.

Cables from the set:
- 10.1: 50-p
- 10.2: Flat flexible cable, 8 connections
- 10.3: Flat cable 22-p

For replacement instructions, refer to the individual modules.

Fig. 3-15 Cable set
Troubleshooting

Malfunctions can have simple causes but can also be due to faulty components or modules. These troubleshooting instructions can be used to locate causes of error down to the board level and to return the instrument to operability by replacing boards.

We recommend that the instrument be shipped to our experts at the service centers (refer to address list) for module replacement and further error correction.

Warning! Do not plug or unplug boards without first disconnecting the battery and the AC Power Supply!

Note: When problems occur, first check whether any connections (cables, plug-in connections of boards, etc) are damaged or incorrectly connected.
Overview of errors, causes, and possible corrective actions

This section lists various errors, the probable module causing the problem, and the suggested corrective action.

Troubleshooting problems in switching on the instrument

- **Error:** R&S FSH cannot be switched on.

 Note: *When the instrument is switched on*, a beep is issued to indicate that the instrument has started.

<table>
<thead>
<tr>
<th>Troubleshooting procedure</th>
<th>Possible cause of error and further steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verify that the AC power is present.</td>
<td>Connect the adapter to the mains and wait several minutes until the charger has recharged the battery.</td>
</tr>
<tr>
<td>Press the On button for > 5 s.</td>
<td>This will force the instrument to perform a software reset and a reset of the internal RAM. The instrument firmware will restart and all data will be reset.</td>
</tr>
<tr>
<td>Open the instrument and check the battery.</td>
<td>Voltage > 7.2 V.</td>
</tr>
<tr>
<td>Check the connectors from the AC power supply: X2 and X7 (refer to section “Repair”).</td>
<td>Power connector broken.</td>
</tr>
<tr>
<td>Replace the power and audio connections.</td>
<td>Replace the power and audio connections. Replace the mainboard (refer to “Replacing the module”).</td>
</tr>
</tbody>
</table>

- **Error:** Display remains dark although the beep indicated that the software was started.

<table>
<thead>
<tr>
<th>Troubleshooting procedure</th>
<th>Possible cause of error and further steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open the instrument and check X4 (backlight connector).</td>
<td>Backlight connection open or backlight converter broken.</td>
</tr>
<tr>
<td></td>
<td>Connect again, or replace the mainboard or LCD colour module.</td>
</tr>
</tbody>
</table>
- Error: Display has erroneous colours and characters.

 Troubleshooting procedure
 Open the instrument and check X5 and X6 (LCD data).

 Possible cause of error and further steps
 Data connection broken, or circuitry on the mainboard defective.
 Connect again, or replace the mainboard or LCD colour module.

- Error: Frequency response not compliant with specification.
 This response can only be corrected at the service center. *Replace the RF/IF module.*

- Error: Level display very noisy.

 Troubleshooting procedure
 Check the N connector.

 Possible cause of error and further steps
 The N connector is soiled.
 Clean or replace the N connector.
 Replace the RF/IF module.

- Error: Several keys on the keypad do not respond.

 Troubleshooting procedure
 Check X3.

 Possible cause of error and further steps
 The connection is not operational or the keypad is broken.
 Correct the connection, or replace the front unit.

- Error: Power sensor does not respond properly.

 Troubleshooting procedure
 Check X8 and X10.

 Possible cause of error and further steps
 The connection is not operating correctly, the binder connector is broken, the mainboard is broken, or the cables are broken.
 Correct the connection.
 Replace the binder and BNC connector block.
 Replace the mainboard.
 Replace any broken cable in the cable set.
4 Software Updates / Installing Options

This chapter provides information on software updates and how to install options on the R&S FSH. Additional manuals supplied along with software/firmware updates or with options obtained later can be recorded here.

Installing New R&S FSH Software

A new firmware version can be installed via the R&S website. You can download the newest software version, and the new software can be loaded onto the R&S FSH by using the setup program. The instructions are included in the program.

Installing the Options

The following options are available with the R&S FSH:

- Distance to Fault Measurement for R&S FSH R&S FSH-B1 1145.5750.02
- Remote Control via RS-232-C R&S FSH-K1 1145.3458.02
- Vector Transmission and Reflection Measurements R&S FSH-K2 1145.3387.02
5 Documents

This chapter provides information on how to order spare parts, and it also contains the spare parts list.

Shipping of Instrument and Ordering of Spare Parts

Please contact your Rohde & Schwarz support center or our spare parts express service if you need to request service, repair your equipment, or order spare parts and modules.

The list of Rohde & Schwarz representatives and the address of our spare parts express service are provided in the front section of this service manual.

You will need to provide the following information in order for us to respond to your inquiries quickly and accurately and to determine whether the warranty for your instrument is still valid:

- Instrument model
- Serial number
- Detailed error description in case of repair
- Contact partner for checkbacks

Shipping of instrument

When shipping the instrument, be sure to provide sufficient mechanical and anti-static protection:

- Repack the instrument as it was originally packed. The antistatic packing foil prevents unintentional electrostatic charging from occurring.

- If you do not use the original packaging, include sufficient padding to prevent the instrument from slipping inside the package. Wrap antistatic packing foil around the instrument to protect it from electrostatic charging.

Shipping of a module

When shipping a module, be sure to provide sufficient mechanical and antistatic protection:

- Ship the module in a sturdy, padded box.

- Wrap the board in antistatic foil.
 If the packaging is antistatic but not conductive, additional conductive packaging is required. The additional packaging is not required if the enclosed packaging is conductive.
Ordering spare parts

To deliver replacement parts promptly and correctly, we need the following information:

- R&S order number (refer to the spare part lists in this chapter)
- Designation
- Number of units
- Instrument type for the replacement part
- Contact person for possible questions

The R&S order number to be used when ordering replacement parts and modules as well as power cables can be found further below.

Refurbished modules

- Refurbished modules are an economical alternative to original modules. It should be kept in mind that refurbished modules are not new, but repaired and fully tested parts. They may have signs of use but they are electrically and mechanically equivalent to new modules.

- To find out which refurbished modules are available, please contact your Rohde & Schwarz representative (or the central service division at Rohde & Schwarz in Munich).

Return of defective replaced modules

- Defective modules of the replacement program that can be repaired may be returned within 3 months after delivery of the replaced module. A repurchasing value is credited.

- Excluded are parts that cannot be repaired, e.g. PCBs that are burned, broken or damaged by repair attempts, incomplete modules, or parts that have endured heavy mechanical damage.

- Defective parts must be sent back with an accompanying document of returned items containing the following information:
 - R&S order number, serial number and designation of the removed part
 - Precise description of the error
 - R&S order number, serial number and designation of the instrument the part was removed from
 - Date of part removal
 - Name of the technician who exchanged the part

- A document of returned items is provided along with each replacement module.
Spare Parts

The R&S Order numbers necessary for ordering replacement parts and modules can be found in the spare part lists provided below.

List of R&S FSH spare parts

The following table lists available spare parts together with their R&S order numbers.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Part</th>
<th>R&S Order Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Battery Pack for R&S FSH (R&S FSH-Z32)</td>
<td>1145.5796.02</td>
</tr>
<tr>
<td>2</td>
<td>Housing R&S FSH without top holster</td>
<td>1157.3258.00</td>
</tr>
<tr>
<td>2.4</td>
<td>Top holster for FSH without tracking generator</td>
<td>1157.3487.00</td>
</tr>
<tr>
<td></td>
<td>Top holster for FSH with tracking generator</td>
<td>1157.3493.00</td>
</tr>
<tr>
<td>3</td>
<td>Front unit for R&S FSH3</td>
<td>1157.3241.00</td>
</tr>
<tr>
<td></td>
<td>Front unit for R&S FSH6</td>
<td>1300.7591.00</td>
</tr>
<tr>
<td>4</td>
<td>LCD module</td>
<td>1157.3229.00</td>
</tr>
<tr>
<td></td>
<td>LCD plane for FSH3</td>
<td>1300.7704.00</td>
</tr>
<tr>
<td></td>
<td>LCD plane for FSH6</td>
<td>1300.7710.00</td>
</tr>
<tr>
<td>5</td>
<td>RF/IF module for R&S FSH3 without tracking generator</td>
<td>1157.3606.00</td>
</tr>
<tr>
<td></td>
<td>RF/IF Module for R&S FSH3 with tracking generator</td>
<td>1157.3612.00</td>
</tr>
<tr>
<td></td>
<td>RF/IF Module for R&S FSH6 without tracking generator</td>
<td>1300.7604.00</td>
</tr>
<tr>
<td></td>
<td>RF/IF Module for R&S FSH6 with tracking generator</td>
<td>1300.7610.00</td>
</tr>
<tr>
<td>6</td>
<td>Mainboard for R&S FSH</td>
<td>1157.3570.00</td>
</tr>
<tr>
<td>7</td>
<td>N connector</td>
<td>1157.3235.00</td>
</tr>
<tr>
<td>8</td>
<td>Interconnection board</td>
<td>1157.3587.00</td>
</tr>
<tr>
<td>9</td>
<td>Input unit (power and audio connectors, including wire tree)</td>
<td>1157.3270.00</td>
</tr>
<tr>
<td>10</td>
<td>Set of cables for R&S FSH</td>
<td>1157.3329.00</td>
</tr>
<tr>
<td>21</td>
<td>AC mains adapter for R&S FSH (EU Version)</td>
<td>1157.3293.00</td>
</tr>
<tr>
<td>22</td>
<td>AC mains adapter for R&S FSH (UK Version)</td>
<td>1157.3306.00</td>
</tr>
<tr>
<td>23</td>
<td>AC mains adapter for R&S FSH (US Version)</td>
<td>1157.3312.00</td>
</tr>
<tr>
<td></td>
<td>AC mains adapter for R&S FSH (AUS Version)</td>
<td>1157.3370.00</td>
</tr>
</tbody>
</table>
Note: The reference can be found in the exploded drawing in Chapter 3.

Important Note!

When replacing a module, please pay careful attention to the safety instructions and the repair instructions provided in chapter 3 and at the beginning of this service manual.

When shipping a module, be sure to provide sufficient mechanical and antistatic protection.