HP 53131A/132A/181A
225 MHz Counter
Assembly-Level Service Guide

This guide describes how to service the HP 53131A and HP 53132A Universal Counters, and the HP 53181A Frequency Counter. The information in this guide applies to instruments having the number prefix listed below, unless accompanied by a “Manual Updating Changes” package indicating otherwise.

SERIAL PREFIX NUMBER: 3711 AND ABOVE (HP 53131A)
3710 AND ABOVE (HP 53132A)
3711 AND ABOVE (HP 53181A)
Certification and Warranty

Certification

Hewlett-Packard Company certifies that this product met its published specification at the time of shipment from the factory. Hewlett-Packard further certifies that its calibration measurements are traceable to the United States National Institute of Standards and Technology (formerly National Bureau of Standards), to the extent allowed by the Institute's calibration facility, and to the calibration facilities of other International Standards Organization members.

Warranty

HP warrants HP hardware, accessories and supplies against defects in materials and workmanship for a period of three years from date of shipment. If HP receives notice of such defects during the warranty period, HP will, at its option, either repair or replace products which prove to be defective. Replacement products may be either new or like-new.

HP warrants that HP software will not fail to execute its programming instructions, for the period specified above, due to defects in material and workmanship when properly installed and used. If HP receives notice of such defects during the warranty period, HP will either repair or replace products which prove to be defective. Replacement products may be either new or like-new.

For detailed warranty information, see back matter.

Safety Considerations

General

This product and related documentation must be reviewed for familiarization with these safety markings and instructions before operation.

Before Cleaning

Disconnect the product from operating power before cleaning.

Warning Symbols That May Be Used In This Book

Instruction manual symbol: the product will be marked with this symbol when it is necessary for the user to refer to the instruction manual.

Indicates hazardous voltages.

Indicates earth (ground) terminal.

Indicates terminal is connected to chassis when such connection is not apparent.

Indicates Alternating current.

Indicates Direct current.

Safety Considerations (contd)

WARNING

BODILY INJURY OR DEATH MAY RESULT FROM FAILURE TO HEED A WARNING. DO NOT PROCEED BEYOND A WARNING UNTIL THE INDICATED CONDITIONS ARE FULLY UNDERSTOOD AND MET.

CAUTION

Damage to equipment, or incorrect measurement data, may result from failure to heed a caution. Do not proceed beyond a CAUTION until the indicated conditions are fully understood and met.

Safety Earth Ground

An uninterruptible safety earth ground must be maintained from the mains power source to the product's ground circuitry.

WARNING

WHEN MEASURING POWER LINE SIGNALS, BE EXTREMELY CAREFUL AND ALWAYS USE A STEP-DOWN ISOLATION TRANSFORMER WHICH OUTPUT IS COMPATIBLE WITH THE INPUT MEASUREMENT CAPABILITIES OF THIS PRODUCT. THIS PRODUCT'S FRONT AND REAR PANELS ARE TYPICALLY AT EARTH GROUND. THUS, NEVER TRY TO MEASURE AC POWER LINE SIGNALS WITHOUT AN ISOLATION TRANSFORMER.

For additional safety and acoustic noise information, see back matter.
Contents

Preface

How to Use This Guide xiii
Repair Strategy xiii
Instrument Identification xiii
Instruments Covered by this Guide xiv
Assembly-Level Service Guide Organization xiv
How to Order Guides xv

Description of the 225 MHz Counters xvi

Options xviii
Hardware xviii
Support xix

Accessories Supplied and Available xix
Accessories Supplied xix
Accessories Available xix

1 Performance Tests

Introduction 1-2
Operational Verification 1-2
Complete Performance Tests 1-3
Optional HP-IB Verification 1-3
Recommended Calibration Cycle 1-3
Test Record 1-3

Equipment Required 1-4

HP 53131A/132A/181A Operational Verification 1-5
Power-On Self Tests 1-5
Run Self Test 1-8
Termination Check 1-8
External Arm Test (HP 53131A/132A Only) 1-10
Equipment 1-10
Contents

Counter Setup 1-10
Procedure 1-11

External Timebase Tests 1-12
Equipment 1-12
1 MHz External Timebase Input (HP 53131A and HP 53181A Only) 1-13
5 MHz External Timebase Input (HP 53131A and HP 53181A Only) 1-14
10 MHz External Timebase Input (HP 53131A and HP 53181A Only) 1-14
10 MHz External Timebase Input for the HP 53132A 1-15

HP 53131A/132A Complete Performance Tests 1-16

Test 1: Time Interval (HP 53131A/132A Only) 1-17
Equipment 1-17
Counter Setup 1-17
Procedure 1-18

Test 2: Trigger Level (HP 53131A/132A Only) 1-19
Equipment 1-19
Counter Setup 1-19
Procedure 1-20

Test 3: Channels 1 and 2 Frequency Sensitivity (HP 53131A/132A Only) 1-22
Equipment 1-22
Counter Setup 1-22
100 kHz to 100 MHz Sensitivity for HP 53131A/132A 1-23
100 MHz to 200 MHz Sensitivity for HP 53131A/132A 1-25
200 MHz to 225 MHz Sensitivity for HP 53131A/132A 1-26

Test 4: Channels 1 and 2 Frequency Accuracy (HP 53131A/132A Only) 1-27
Equipment 1-27
Test 5: Option 030/050/124 Channel 3 Frequency Sensitivity (HP 53131A/132A Only) 1-30
 Equipment 1-30
 Counter Setup 1-30
 100 MHz to 2.5 GHz Sensitivity for HP 53131A/132A Option 030 only 1-31
 2.7 to 3.0 GHz Sensitivity for Option 030 only 1-32
 200 MHz to 5.0 GHz Sensitivity for HP 53131A/132A (Option 050 only) 1-33
 200 MHz to 12.4 GHz Sensitivity for HP 53131A/132A (Option 124 only) 1-34
Test 6: Option 030/050/124 Channel 3 Frequency Accuracy (HP 53131A/132A Only) 1-35
 Equipment 1-35
 Counter Setup 1-35
 Procedure 1-35
Test 7: Peak Volts, Channels 1 and 2 (HP 53131A/132A Only) 1-37
 Equipment 1-37
 Counter Setup 1-37
 Volt Peak 1 1-38
 Volt Peak 2 1-39
HP 53131A/132A HP-IB Verification Program (Optional) 1-40
HP 53131A/132A Performance Test Record 1-41
HP 53181A Complete Performance Tests 1-47
Test 1: Trigger Level (HP 53181A Only) 1-48
 Equipment 1-48
 Counter Setup 1-48
 Procedure 1-49
Test 2: Channel 1 Frequency Sensitivity (HP 53181A Only) 1-51
 Equipment 1-51
 Counter Setup 1-51
 100 kHz to 100 MHz Sensitivity for HP 53181A 1-52
 100 MHz to 200 MHz Sensitivity for HP 53181A 1-54
 200 MHz to 225 MHz Sensitivity for HP 53181A 1-54
Test 3: Channel 1 Frequency Accuracy (HP 53181A Only) 1-55
 Equipment 1-55
 Counter Setup 1-55
 Procedure 1-56
Test 4: Option 015/030/050/124 Channel 2 Frequency Sensitivity 1-58
 Equipment 1-58
 Counter Setup 1-58
 100 MHz to 1.5 GHz Sensitivity for Option 015 Only 1-59
 100 MHz to 2.7 GHz Sensitivity for Option 030 Only 1-60
 2.8 to 3.0 GHz Sensitivity for Option 030 Only 1-61
 200 MHz to 5.0 GHz Sensitivity for Option 050 only 1-61
 200 MHz to 12.4 GHz Sensitivity for Option 124 only 1-62
Test 5: Option 015/030/050/124 Channel 2 Frequency Accuracy (HP 53181A Only) 1-63
 100 MHz to 1.5 GHz Accuracy Test for Option 015 1-63
 Equipment 1-63
 Counter Setup 1-63
 Procedure 1-64
Minimum to Maximum Accuracy Test for Options 030/050/124 1-65
 Equipment 1-65
 Counter Setup 1-65
 Procedure 1-66

Test 6: Peak Volts, Channel 1 (HP 53181A Only) 1-68
 Equipment 1-68
 Counter Setup 1-68
 Procedure 1-69

HP 53181A HP-IB Verification Program (Optional) 1-70
HP 53181A Performance Test Record 1-71

2 Service

Introduction 2-2
Returning the Instrument to Hewlett-Packard for Service 2-3
 To Provide Repair Information 2-3
 To Pack in the Original Packaging Materials 2-4
 To Pack in the Commercially Available Materials 2-5
About the HP 53131A/132A Calibration Menu 2-6
 Overview of the HP 53131A/132A Calibration Menu 2-6
 The HP 53131A/132A Calibration Menu Tree 2-8
 To View the Calibration Menu and Security Status 2-9
 To Unsecure for Calibration 2-9
 To Initiate the Calibration Routines 2-9
 To Secure Against Calibration 2-13
 To Change to a New Security Code 2-13
 To View the Calibration Count 2-14
 To Get Help with the Calibration Menu 2-14

The HP 53131A/132A Calibration Procedures 2-15
 First Determine the Counter Firmware Revision 2-15
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Mount Repair</td>
<td>2-38</td>
</tr>
<tr>
<td>Disassembly and Reassembly Specifics</td>
<td>2-38</td>
</tr>
<tr>
<td>After Service Considerations</td>
<td>2-39</td>
</tr>
<tr>
<td>Product Safety Checks</td>
<td>2-39</td>
</tr>
<tr>
<td>Product Performance Checks</td>
<td>2-39</td>
</tr>
<tr>
<td>Assembly Identification and Location</td>
<td>2-40</td>
</tr>
<tr>
<td>Troubleshooting the Counter</td>
<td>2-45</td>
</tr>
<tr>
<td>Power Supply Check</td>
<td>2-45</td>
</tr>
<tr>
<td>Overview of the Self-Test Routines</td>
<td>2-47</td>
</tr>
<tr>
<td>Diagnosing the Faulty Assembly by Using the Self Tests</td>
<td>2-49</td>
</tr>
<tr>
<td>To Run the Test-All Self Test</td>
<td>2-49</td>
</tr>
<tr>
<td>To Run the Individual Self Tests</td>
<td>2-50</td>
</tr>
</tbody>
</table>

3 Replacing Assemblies

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>3-2</td>
</tr>
<tr>
<td>Tools Required</td>
<td>3-3</td>
</tr>
<tr>
<td>Do This First</td>
<td>3-3</td>
</tr>
<tr>
<td>To Remove the Cover</td>
<td>3-4</td>
</tr>
<tr>
<td>To Remove the Front Bezel</td>
<td>3-6</td>
</tr>
<tr>
<td>To Remove A1 Motherboard Assembly</td>
<td>3-9</td>
</tr>
<tr>
<td>To Remove the A2 Display Board, Keypads, and Window</td>
<td>3-11</td>
</tr>
<tr>
<td>To Remove A3 1.5/3.0/5.0/12.4 GHz Channel Assembly (Option 015/030/050/124)</td>
<td>3-13</td>
</tr>
<tr>
<td>To Remove A4 AC Power Supply Assembly</td>
<td>3-15</td>
</tr>
<tr>
<td>To Remove A5 DC Power Input Assembly (Option 002)</td>
<td>3-17</td>
</tr>
<tr>
<td>To Remove A6 High Stability Timebase Assembly (Options 001, 010, and 012)</td>
<td>3-19</td>
</tr>
<tr>
<td>To Remove the Rear Terminals (Option 060)</td>
<td>3-21</td>
</tr>
</tbody>
</table>
4 Retrofitting Options

Introduction 4-2
Tools Required 4-2
Do This First 4-2
To Retrofit A3 1.5/3.0/5.0/12.4 GHz Channel Assembly (Option 015/030/050/124) 4-3
To Retrofit A5 DC Power Input Assembly (Option 002) 4-4
 Option 002 DC Power Input Assembly Parts 4-4
 Preliminary Procedure 4-4
 Retrofitting Procedure 4-5
To Retrofit A6 High Stability Timebase Assembly (Options 001, 010, and 012) 4-11
 Option 001 Medium Stability Timebase Assembly Parts 4-11
 Option 010 High Stability Timebase Assembly Parts 4-11
 *Option 012 Ultra-High Stability Timebase Assembly Parts 4-11
 Procedure 4-12
To Retrofit the Rear Terminals (Option 060) 4-14
 Option 060 Rear Terminals Parts 4-14

5 Replaceable Parts

Introduction 5-2
Exchange Assemblies 5-2
Reference Designations 5-3
Replaceable Parts 5-3
How To Order A Part 5-4
 Parts Identification 5-4
 Contacting Hewlett-Packard 5-5
Contents

6 Backdating

Introduction 6-2
Manual Changes 6-2
Older Instruments 6-2
Backdating Hardware 6-3
Backdating Firmware 6-8
Backdating Specifications 6-16

7 HP 53131A/132A Specifications

Introduction 7-2
Instrument Inputs 7-2
Time Base 7-4
Measurement Specifications 7-5
Measurement Definitions 7-12
Measurement Arming and Processing 7-14
General Information 7-16

8 HP 53181A Specifications

Introduction 8-2
Instrument Inputs 8-2
Time Base 8-4
Measurement Specifications 8-5
Measurement Definitions 8-9
Measurement Arming and Processing 8-10
General Information 8-11

Index
Preface

This guide provides assembly-level service information for the HP 53131A and HP 53132A Universal Counters, and the HP 53181A Frequency Counter.

How to Use This Guide

Repair Strategy
This service guide is designed to isolate failures to the assembly level only.

The HP 53131A/132A/181A Counter can be returned to Hewlett-Packard (HP) for all service work, including troubleshooting, and verifying specifications. Contact your nearest HP Sales and Service Office for more details.

Note there is an Express Repair/ Performance Calibration Service for USA customers if downtime is critical. You can receive your repaired Counter via overnight shipment. Just call 800-403-0801 and ask for Express Repair/ Performance Calibration Service. When your Counter is repaired, it will be returned via overnight shipment at no extra charge.

If you decide to service the Counter yourself, use the troubleshooting procedures in Chapter 2 (Service) and the disassembly and reassembly procedures in Chapter 3 (Replacing Assemblies). Then use the calibration instructions in Chapter 2 to calibrate the Counter for peak-performance operation, and finally perform the complete performance tests in Chapter 1 to verify the Counter’s specifications.

Instrument Identification
Instrument identification is made from the serial number on the rear panel of the Counter. HP uses a two-part serial number with the first part (prefix) identifying a series of instruments and the second part (suffix) identifying a particular instrument within a series. An HP-assigned alpha character between the prefix and suffix identifies the country in which the instrument was manufactured.
Preface

Instruments Covered by this Guide

This guide applies directly to HP 53131A, HP 53132A, and HP 53181A Counters that have the same serial number prefix(es) shown on the title page. If the serial number prefix of your Counter differs from that listed on the title page of this guide, then there may be differences between this guide and your instrument.

Instruments having a higher serial prefix are covered when required by one or more manual-change sheets included with this guide. If a required change sheet is missing, contact your nearest HP Sales Office listed at the back of this guide. Instruments having a serial prefix lower than that listed on the title page are covered in Chapter 6, “Backdating.”

Assembly-Level Service Guide Organization

This assembly-level service guide consists of a table of contents, preface, eight chapters and an index. The page running headers identify the chapters and sections of this manual. The chapter contents are summarized as follows:

Chapter 1, “Performance Tests,” provides procedures that verify the Counter operates properly and meets the HP 53131A/132A or HP 53181A specifications given in Chapter 7, “HP 53131A/132A Specifications,” or Chapter 8, “HP 53181A Specifications,” in this guide.

Chapter 2, “Service,” is divided into seven main sections that provide instructions for returning the Counter to HP for service, calibrating the Counter, and troubleshooting the assemblies in the Counter.

Chapter 3, “Replacing Assemblies,” provides procedures for replacing defective assemblies and/or modules in the Counter.

Chapter 4, “Retrofitting Options,” provides field-installation procedures that help you install options into the Counter.

Chapter 5, “Replaceable Parts,” lists the replaceable parts contained in the Counter, and explains how to order replacement parts for your Counter.
Preface

Chapter 6, “Backdating,” contains information required to adapt this manual for older instruments.

Chapter 7, “HP 53131A/132A Specifications,” lists all the specifications and operating characteristics for the HP 53131A/132A Universal Counter.

Chapter 8, “HP 53181A Specifications,” lists all the specifications and operating characteristics for the HP 53181A Frequency Counter.

How to Order Guides

The part number for this guide is listed in the Certification and Warranty page (located on the back of the title page) and on the rear cover of this guide. Preface will always follow table of contents. Page numbers will be in roman lower case.
Description of the 225 MHz Counters

The **HP 53131A** and **HP 53132A** are universal counters capable of measuring frequencies to 225 MHz on Channels 1 and 2. With an optional Channel 3, this frequency is extended to 3.0 GHz (Option 030); 5.0 GHz (Option 050) or 12.4 GHz (Option 124).

For the HP 53131A, frequency and time interval resolutions are 10 digits in one second and 500 picoseconds, respectively. The HP 53131A provides users with an HP-IB measuring speed of 200 measurements per second, and is suitable for bench-top operation and lower-volume ATE operation. The frequency and time interval resolutions for the HP 53132A are up to 12 digits in one second and 150 picoseconds, respectively. The HP 53132A provides users with exceptional resolution, and is ideal for ATE systems operation.

The HP 53131A/132A basic measurement functions include Frequency, Period, Pulse Width, Duty Cycle, Rise/Fall Time, Time Interval, Frequency Ratio, Totalize, Phase, and Peak Voltage.

The **HP 53181A** is a frequency counter capable of measuring frequencies to 225 MHz on Channel 1. Depending on which optional Channel 2 the counter contains, this capability is extended to 1.5 GHz (Option 015) or 3.0 GHz (Option 030). The HP 53181A has a frequency resolution of 10 digits in one second.

The HP 53181A provides users with an HP-IB measuring speed of 200 measurements per second, and is suitable for bench-top and ATE operation.

The HP 53181A basic measurement functions include Frequency, Period, Peak Voltage, and Frequency Ratio (if Channel 2 is installed).

The HP 53131A/132A/181A include additional measurement functions and features that are designed specifically for manufacturing and service applications:
• 1, 5, 10 MHz external reference capability—to match customer’s house standard (however, the HP 53132A’s external reference capability is 10 MHz only),
• optional ultra-high stability, high stability, or medium stability oven oscillators for high accuracy needs,
• external gating,
• statistics,
• automatic limit testing,
• SCPI programming capability, and
• analog display mode limit testing

Programmable control is performed via an HP-IB. The HP-IB and a talk-only RS-232C serial port are standard for the HP 53131A/132A/181A. The serial port is for printing measured and analyzed data on serial printers, or for outputting an out-of-limit signal.
Options

The options available for the HP 53131A/132A/181A Counter are listed following this paragraph. Specifications for the options are listed in Chapter 7, “HP 53131A/132A Specifications,” and Chapter 8, “HP 53181A Specifications.” If you've purchased an option with the initial order, it will be installed at the factory and ready for operation at delivery. Refer to the “Retrofitting Options” chapter in this guide for instructions on field installation of the options.

NOTE

The “0’s” and “1’s” in the following option numbers are numeric characters (that is, they are not letters).

Hardware

• Medium Stability Oven Timebase, Option 001
• DC Power Input, Option 002
• High Stability Oven Timebase, Option 010
• Ultra-High Stability Oven Timebase, Option 012 (HP 53132A and HP 53181A Only)
• 1.5 GHz RF Input Channel (Channel 2), Option 015 (HP 53181A Only)
• 3.0 GHz RF Input Channel (Channel 3), Option 030
• 5.0 GHz RF Input Channel (Channel 3), Option 050
• 12.4 GHz RF Input Channel (Channel 3), Option 124
• *Rear Terminals, Option 060
• Rack Mount Kit, Option 1CM (HP part number 5063-9240)

* For the HP 53131A/132A Option 030, front and rear terminals can exist for Channel 1 and 2. The optional Channel 3 can be configured as rear terminals only or front terminals only. For the HP 53181A, front and rear terminals can exist for Channel 1. The optional Channel 2 can be configured as rear terminals only or front terminals only. Option 050 and Option 124 can be configured only as front terminals.
Support
• 5-year Return to HP for Repair, Option W50
• 5-year Return to HP for Calibration, Option W52

Accessories Supplied and Available

Accessories Supplied
• Power cord, 2.3 meters

Accessories Available
• HP 34161A Accessory Pouch
• Printer RS-232 Interface cables, HP 24542G or HP 24542H
• HP-IB cables, HP 10833A/B/C/D
Performance Tests

Verifying Specifications
Chapter 1 Performance Tests

Introduction

This chapter provides procedures to test the electrical performance of the HP 53131A/132A Universal Counter and HP 53181A Frequency Counter, using the specifications listed in Chapter 7, “HP 53131A/132A Specifications,” and Chapter 8, “HP 53181A Specifications,” of this guide.

Three types of testing are provided:

- Operational Verification
- Complete Performance Tests
- Optional HP-IB Verification

This chapter is organized as follows:

- Introduction page 1-2
- Equipment Required page 1-4
- HP 53131A/132A/181A Operational Verification page 1-5
- HP 53131A/132A Complete Performance Tests page 1-16
- HP 53131A/132A HP-IB Verification Program (Optional) page 1-40
- HP 53131A/132A Performance Test Record (Page 1 of 6) page 1-41
- HP 53181A Complete Performance Tests page 1-47
- HP 53181A HP-IB Verification Program (Optional) page 1-70
- HP 53181A Performance Test Record (Page 1 of 4) page 1-71

Operational Verification

The operational verification is an abbreviated series of checks that may be performed to give a high degree of confidence that the instrument is operating properly without performing the complete performance tests. An operational verification is useful for incoming inspection, routine maintenance, and after instrument repair.
Chapter 1 Performance Tests

Introduction

Complete Performance Tests

The complete performance tests verify the specifications listed in Chapter 7, “HP 53131A/132A Specifications,” and Chapter 8, “HP 53181A Specifications.” All tests can be performed without accessing the inside of the instrument.

Optional HP-IB Verification

The HP-IB verification program, described on page 1-40 (HP 53131A/132A) or page 1-70 (HP 53181A), exercises the Counter via the HP-IB interface. The program is written for an HP 9000 series 200 or 300 Desktop Computer as the controller. If the instrument successfully completes all phases of the verification program, there is a very high probability that the HP-IB interface is working properly.

The HP-IB program is available on disks as indicated in the following listing:

- For HP 53131A/132A Counters—HP part number 53131-13501 (3 1/2-inch LIF disk) and HP part number 53131-13502 (5 1/4-inch LIF disk).
- For HP 53181A Counters—HP part number 53181-13501 (3 1/2-inch LIF disk) and HP part number 53131-13502 (5 1/4-inch LIF disk).

Recommended Calibration Cycle

The Counter requires periodic verification of operation. Depending on the use and environmental conditions, aging, and measurement accuracy required, the Counter should be checked using the operational verification procedure at least once every year.

Test Record

The results of the operational verification, complete performance tests, and HP-IB verification test should be recorded on a copy of the Performance Test Record, located at the end of each (i.e., HP 53131A/132A and HP 53181A) complete performance tests section in this chapter.
Equipment Required

Table 1-1. Recommended Test Equipment

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Required Characteristics</th>
<th>Recommended Model</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthesizer</td>
<td>DC to 13 MHz</td>
<td>HP 3325B</td>
<td>OV, P, T</td>
</tr>
<tr>
<td>Synthesized Signal Generator</td>
<td>100 kHz to 2560 MHz</td>
<td>HP 8663A</td>
<td>OV, P, T</td>
</tr>
<tr>
<td>Pulse Generator</td>
<td>5 ns pulse width</td>
<td>HP 8130A or equivalent</td>
<td>OV, C</td>
</tr>
<tr>
<td>Sweep Oscillator</td>
<td>3.0 GHz</td>
<td>HP 8340B</td>
<td>P, T</td>
</tr>
<tr>
<td>Primary Frequency Standard (10 MHz House Standard)</td>
<td>Absolute accuracy >1 x 10^{-10}</td>
<td>HP 5071A</td>
<td>C</td>
</tr>
<tr>
<td>DC Power Supply</td>
<td>Adjustable to 5.000V</td>
<td>HP 6234A</td>
<td>C</td>
</tr>
<tr>
<td>Digital Voltmeter</td>
<td>Microvolt accuracy</td>
<td>HP 3458A</td>
<td>OV, C</td>
</tr>
<tr>
<td>Time Interval Calibrator</td>
<td>Effective edge repeatability: <10 ps</td>
<td>HP 59992A J 06</td>
<td>C</td>
</tr>
<tr>
<td>Type N-to-BNC Connector</td>
<td>—</td>
<td>HP 1250-0780</td>
<td>OV, P</td>
</tr>
<tr>
<td>BNC-to-Dual Banana Plug</td>
<td>BNC(m) to banana plug</td>
<td>HP 11001-60001</td>
<td>OV, P, C T</td>
</tr>
<tr>
<td>50Ω Feedthrough (3)</td>
<td>—</td>
<td>HP 10100C</td>
<td>OV, P, C</td>
</tr>
<tr>
<td>50Ω Coaxial Cable with BNC connectors (5)</td>
<td>BNC(m) to BNC(m), 48 inches</td>
<td>HP 10503A</td>
<td>OV, P, C, T</td>
</tr>
<tr>
<td>Coaxial BNC Tee Connector</td>
<td>—</td>
<td>1250-0781</td>
<td>P, C</td>
</tr>
</tbody>
</table>

P = Performance Tests
OV = Operational Verification
C = Calibration
T = Troubleshooting

Some of this equipment may no longer be available as new. Use an equivalent model number.
HP 53131A/132A/181A Operational Verification

The operational verification is an abbreviated series of checks that may be performed to give a high degree of confidence that the instrument is operating properly without performing the complete performance tests.

If you are unfamiliar with the operation of the Counter, you should review the Chapter 1, “Getting Started,” in the Operating Guide. However, the procedures in this chapter are written so that little experience is necessary. The procedures should be followed in the order in which they appear.

Power-On Self Tests

1. **Inspect the Counter for any damage.**

2. **Make sure no cables are connected to the input channels (rear and front panels) of the Counter.**

 NOTE

 It is normal for the fan in the Counter to continue to run after the Counter is placed in Standby mode. Power to the timebase is continuous to maintain long term measurement reliability, and the fan helps maintain timebase temperature stability.

 NOTE

 The power supply will automatically sense the input voltage; thus, there is no need to change the ac voltage setting.

3. **Connect the power cord to the Counter, and connect the other end of the power cord to the primary power source.**

4. **Press POWER key to turn on the Counter.**
Chapter 1 Performance Tests
HP 53131A/132A/181A Operational Verification

5 Verify that the following happens:

- All segments of the front-panel display light up,
- SELFTST: PASS is displayed,
- HP-IB AT n is quickly displayed—where “n” represents the HP-IB address (Note that some earlier versions of the Counter’s firmware did not display the HP-IB address at power-up.), and
- dashes are displayed.

The Counter is now ready to measure frequency of a signal applied to CHANNEL 1 input as indicated by illumination of the Freq and Ch1 annunciators.

If a fail message is displayed, refer to the troubleshooting section in Chapter 2, “Service,” of this guide.

6 For HP 53131A/132A, mark Pass or Fail in the HP 53131A/132A Performance Test Record on page 1-41, Test 1.

6’ For HP 53181A, mark Pass or Fail in the HP 53181A Performance Test Record on page 1-71, Test 1.

7 Connect the Counter’s rear-panel 10 MHz Out as shown in Figure 1-1A or Figure 1-1B, depending on which Counter you are testing.

Figure 1-1A. Operational Verification Setup for HP 53131A/132A
Chapter 1 Performance Tests

HP 53131A/132A/181A Operational Verification

Figure 1-1B. Operational Verification Setup for HP 53181A

8 Depending on which Counter you are testing, verify the appropriate reading as shown below:

For HP 53131A and HP 53181A, verify a reading of 10.000,000,00 MHz.

For the HP 53132A, verify a reading of 10.000,000,000 MHz.

9 For HP 53131A/132A, mark Pass or Fail in the HP 53131A/132A Performance Test Record on page 1-41, Test 2.

9’ For HP 53181A, mark Pass or Fail in the HP 53181A Performance Test Record on page 1-71, Test 2.

NOTE

The remaining steps apply to the HP 53131A and HP 53132A only since the HP 53181A does not have a standard Channel 2 input. For the HP 53181A, proceed to the following “Run Self Test” section.

10 Press Freq & Ratio key until FREQUENCY 2 is displayed to select Channel 2 for frequency measurements.

For the HP 53131A, verify a reading of 10.000,000,00 MHz.

For the HP 53132A, verify a reading of 10.000,000,000 MHz.

11 For HP 53131A/132A, mark Pass or Fail in the HP 53131A/132A Performance Test Record on page 1-41, Test 3.
Chapter 1 Performance Tests
HP 53131A/132A/181A Operational Verification

Run Self Test

1. Disconnect the input signals from the Counter.

2. Power down (turn off the Counter), press and hold Recall (Utility) key, then press POWER key.

3. Press Recall key until *TEST: ALL ?* is displayed.

4. Press Enter key.

Observe that *ALL: PASS* is displayed after the self test is completed.

If *ALL: FAIL* is displayed or a failure is indicated, refer to the troubleshooting section in Chapter 2, “Service,” of this guide.

5. For HP 53131A/132A, mark Pass or Fail in the HP 53131A/132A Performance Test Record on page 1-41, Test 4.

5’ For HP 53181A, mark Pass or Fail in the HP 53181A Performance Test Record on page 1-71, Test 3.

Termination Check

1. Cycle the POWER key to preset the Counter.

2. Connect a digital voltmeter (DVM) to CHANNEL 1 as shown in Figure 1-2, and set it to measure ohms (set DVM to appropriate \(\Omega \) range).

![Termination Check Setup](image_url)

HP 53131A/132A is shown in above figure. This setup for the HP 53181A requires a connection to Channel 1 only.

Figure 1-2. Termination Check Setup
3 Press Channel 1 50Ω/1MΩ key.

The LED turns on, indicating a 50Ω input impedance for Channel 1.

4 Press Channel 1 DC/ AC key.

The LED turns on, indicating DC input coupling for Channel 1.

5 Verify the DVM reads 51.1Ω ± 3Ω.

6 For HP 53131A/132A, mark Pass or Fail in the HP 53131A/132A Performance Test Record on page 1-41, Test 5a.

6’ For HP 53181A, mark Pass or Fail in the HP 53181A Performance Test Record on page 1-71, Test 4a.

7 Press Channel 1 50Ω/1MΩ key.

The LED turns off, indicating a 1 MΩ input impedance for Channel 1.

8 Verify the DVM reads approximately 1.0000000 MOHM.

9 For HP 53131A/132A, mark Pass or Fail in the HP 53131A/132A Performance Test Record on page 1-41, Test 5b.

9’ For HP 53181A, mark Pass or Fail in the HP 53181A Performance Test Record on page 1-71, Test 4b.

10 Repeat steps 3 through 9 for Channel 2 for the HP 53131A/132A Counter ONLY since the HP 53181A Counter does not have a standard Channel 2.

11 For HP 53131A/132A, mark Pass or Fail in the HP 53131A/132A Performance Test Record on page 1-41, Tests 6a and 6b.

12 Disconnect the test setup.
External Arm Test (HP 53131A/132A Only)
This test verifies the External Arm port of the HP 53131A and HP 53132A Counter is operational.

Equipment
HP 8663A Synthesized Signal Generator
HP 8130A Pulse Generator (or equivalent)
HP 10100C 50Ω Feedthrough
HP 10503A BNC Cables (2)
HP 1250-0780 N-to-BNC Connector

Counter Setup
1 Cycle the POWER key to preset the Counter.
2 Set the Counter as follows:
 Other Meas, TOTALIZE 1
 Gate & ExtArm, GATE: EXTERNL (ENTER)
3 Set CHANNEL 1 input conditions to:
 Trigger/Sensitivity, AUTO TRG: ON
 Trigger/Sensitivity, LEVEL: 50 PCT
 50Ω/1MΩ, 50Ω
 DC/AC, DC
 X10 Attenuator, Off
 100kHz Filter, Off
Chapter 1 Performance Tests

HP 53131A/132A/181A Operational Verification

Procedure

1. Set the Pulse Generator to the following:

 PERIOD: 20 µs
 WIDTH: 5 µs
 High: 3.00 V Low : 0.8 V
 Trailing/Leading: 1.0 ns
 Input Mode: TRIG

2. Connect the equipment as shown in Figure 1-3.

![Figure 1-3. External Arm Test Setup (HP 53131A/132A Only)](image-url)
3 Set the HP 8663A to output a 200 MHz, 100 mV sine wave signal to Channel 1.

4 On the Counter, Press Run key.

5 Send a single pulse by pressing the MAN key on the HP 8130A, and observe that with each press the Gate annunciator flashes.

 The Counter should display approximately 1000.

6 For HP 53131A/132A, mark Pass or Fail in the HP 53131A/132A Performance Test Record on page 1-41, Test 7.

7 Disconnect the test setup.

External Timebase Tests

These tests verify the External Timebase 1, 5, 10 MHz specifications of the HP 53131A and HP 53181A Counters by checking that TIMEBASE AUTO allows the Counter to be synchronized to the external reference.

Note that the HP 53132A only operates with the 10 MHz external timebase; therefore, perform the procedure in the section titled “10 MHz External Timebase Input for the HP 53132A” on page 1-15 to verify that TIMEBASE AUTO allows the Counter to be synchronized to the external reference.

Equipment

HP 3325B Synthesizers (2)
HP 10100C 50W Feedthrough
HP 10503 BNC Cables (2)
Chapter 1 Performance Tests
HP 53131A/132A/181A Operational Verification

1 MHz External Timebase Input (HP 53131A and HP 53181A Only)

1 Connect the equipment as shown in Figure 1-4.

2 Cycle the POWER key to preset the Counter.

3 Set Synthesizer #1 (i.e., the HP 3325B connected to the rear-panel Ref In input of the Counter via a 50Ω feedthrough) to output a 1 MHz, 200 mV rms sine wave signal.

4 Set Synthesizer #2 (i.e., the HP 3325B connected to Channel 1) to output a 2 MHz, 100 mV rms square wave signal.

Verify the Counter displays a reading of approximately 2 MHz and the ExtRef annunciator is lit.

5 For HP 53131A, mark Pass or Fail in the HP 53131A/132A Performance Test Record on page 1-41, Test 8a.
5’ For HP 53181A, mark Pass or Fail in the HP 53181A Performance Test Record on page 1-71, Test 5a.

5 MHz External Timebase Input (HP 53131A and HP 53181A Only)

1 Change the frequency of Synthesizer #1, which is connected to the Counter’s rear-panel Ref In input to 5 MHz.

2 On the Counter, press Run key.

Verify the Counter displays a reading of approximately 2 MHz and the ExtRef annunciator is lit.

3 For HP 53131A, mark Pass or Fail in the HP 53131A/132A Performance Test Record on page 1-41, Test 8b.

3’ For HP 53181A, mark Pass or Fail in the HP 53181A Performance Test Record on page 1-71, Test 5b.

10 MHz External Timebase Input (HP 53131A and HP 53181A Only)

1 Change the frequency of Synthesizer #1, which is connected to the Counter’s rear-panel Ref In input to 10 MHz.

2 On the Counter, press Run key.

Verify the Counter displays a reading of approximately 2 MHz and the ExtRef annunciator is lit.

3 For HP 53131A, mark Pass or Fail in the HP 53131A/132A Performance Test Record on page 1-41, Test 8c.

3’ For HP 53181A, mark Pass or Fail in the HP 53181A Performance Test Record on page 1-71, Test 5c.

4 Disconnect the test setup.

This completes the Operational Verification for the HP 53131A and HP 53181A.
10 MHz External Timebase Input for the HP 53132A

1. Connect the equipment as shown in Figure 1-4.

2. Set Synthesizer #1 (i.e., the HP 3325B that is connected to the rear-panel Ref In input of the Counter via a 50Ω feedthrough) to output a 10 MHz, 200 mV rms sine wave signal.

3. Set Synthesizer #2 (i.e., the HP 3325B that is connected to Channel 1) to output a 2 MHz, 100 mV rms square wave signal.

 Verify the Counter displays a reading of approximately 2 MHz and the ExtRef annunciator is lit.

4. Mark Pass or Fail in the HP 53131A/132A Performance Test Record on page 1-41, Test 8d.

5. Disconnect the test setup.

 This completes the Operational Verification for the HP 53132A.
HP 53131A/132A Complete Performance Tests

The specifications of the HP 53131A/132A Universal Counter can be verified by performing the performance tests provided in this section. Table 1-2 lists a summary of the HP 53131A/132A performance tests.

Record the results of the performance tests in the appropriate place on HP 53131A/132A Performance Test Record, which starts on page 1-41.

(Note: the complete performance tests for the HP 53181A Frequency Counter begin on page 1-47 of this chapter.)

NOTE

To perform valid testing of the specifications, warm up the Counter and test equipment for 30 minutes.

Table 1-2. The HP 53131A/132A Performance Tests

<table>
<thead>
<tr>
<th>Page Number</th>
<th>Test Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>page 1-17</td>
<td>Test 1: Time Interval (HP 53131A/132A Only)</td>
</tr>
<tr>
<td>page 1-19</td>
<td>Test 2: Trigger Level (HP 53131A/132A Only)</td>
</tr>
<tr>
<td>page 1-22</td>
<td>Test 3: Channels 1 and 2 Frequency Sensitivity (HP 53131A/132A Only)</td>
</tr>
<tr>
<td>page 1-27</td>
<td>Test 4: Channels 1 and 2 Frequency Accuracy (HP 53131A/132A Only)</td>
</tr>
<tr>
<td>page 1-30</td>
<td>Test 5: Option 030/050/124 Channel 3 Frequency Sensitivity (HP 53131A/132A Only)</td>
</tr>
<tr>
<td>page 1-35</td>
<td>Test 6: Option 030/050/124 Channel 3 Frequency Accuracy (HP 53131A/132A Only)</td>
</tr>
<tr>
<td>page 1-37</td>
<td>Test 7: Peak Volts, Channels 1 and 2 (HP 53131A/132A Only)</td>
</tr>
<tr>
<td>page 1-40</td>
<td>HP 53131A/132A HP-IB Verification Program (Optional)</td>
</tr>
</tbody>
</table>

* Other Counter measurement functions (e.g., Period) are mathematically derived by the microprocessor from the parameters verified by these performance tests. If the Counter passes the performance tests, the other measurement functions are functioning to specifications.
Chapter 1 Performance Tests

Test 1: Time Interval (HP 53131A/132A Only)

This test verifies the Time Interval specifications between Channels 1 and 2.

Equipment

HP 8130A Pulse Generator (or equivalent)
HP 10503A BNC Cable

Counter Setup

1. Cycle the POWER key to preset the Counter.
2. Press Time & Period key until TI 1 TO 2 is displayed.
3. Set CHANNEL 1 input conditions to:
 - Trigger/Sensitivity, AUTO TRG: OFF
 - Trigger/Sensitivity, LEVEL: .500V (Enter)
 - Trigger/Sensitivity, COMMON 1: ON
 - 50Ω/1MΩ, 50Ω
 - DC/AC, DC
 - X10 Attenuate, Off
 - 100kHz Filter, Off
4. Set CHANNEL 2 input conditions to:
 - Trigger/Sensitivity, AUTO TRG: OFF
 - Trigger/Sensitivity, LEVEL: .500V (Enter)
 - Trigger/Sensitivity, SLOPE: NEG
 - 50Ω/1MΩ, 50Ω
 - DC/AC, DC
 - X10 Attenuate, Off
 - 100kHz Filter, Off
Chapter 1 Performance Tests

Test 1: Time Interval (HP 53131A/132A Only)

Procedure

1 Connect the pulse generator signal to Channel 1 of the Counter as shown in Figure 1-5.

![Diagram of HP 53131A/132 Counter and HP 8130A Pulse Generator](image)

Figure 1-5. Time Interval (Channel 1 TO 2) Test Setup

2 Set the Pulse Generator to the following:

 PERIOD: 10 µs
 WIDTH: 150 ns
 High: 1.00 V Low : 0.00 V
 Input Mode: Normal

3 On the Counter, Press Single/Stop key.

 The HP 53131A Counter should display 0.1500 µs ±0.0040 µs.

 The HP 53132A Counter should display 0.1500 µs ±0.0025 µs.

4 Record this value in the appropriate place in the Performance Test Record (Test 1, Line 1 for HP 53131A or Test 1, Line 2 for HP 53132A).

5 Disconnect the test setup.
Test 2: Trigger Level (HP 53131A/132A Only)

This test verifies the Trigger Level accuracy of the HP 53131A and HP 53132A Universal Counters.

Equipment

HP 3325B Synthesizer
HP 10503A BNC Cable

Counter Setup

1. **Cycle the POWER key to preset the Counter.**

2. **Set CHANNEL 1 input conditions to:**
 - Trigger/Sensitivity, **AUTO TRG: OFF**
 - Trigger/Sensitivity, LEVEL: **0.000V**
 - 50Ω/1MΩ, 50Ω
 - DC/AC, DC
 - X10 Attenuate, Off
 - 100kHz Filter, Off

3. **Set CHANNEL 2 input conditions to:**
 - Trigger/Sensitivity, **AUTO TRG: OFF**
 - Trigger/Sensitivity, LEVEL: **0.000V**
 - 50Ω/1MΩ, 50Ω
 - DC/AC, DC
 - X10 Attenuate, Off
 - 100kHz Filter, Off
Chapter 1 Performance Tests

Test 2: Trigger Level (HP 53131A/132A Only)

Procedure

1 Connect the output of the HP 3325B to Channel 1 of the Counter as shown in Figure 1-6.

![Figure 1-6. Trigger Level Test Setup](image)

2 Set the HP 3325B to output a 1 MHz, 80 mVp-p square wave signal.

3 Set the HP 3325B DC OFFSET to -60 mV.

4 On the Counter, press Run key.

5 Now, increment the dc offset on the HP 3325B by +1 mV until the Counter’s Gate annunciator flashes and continue incrementing until the Counter displays a stable reading of approximately 1 MHz.

 Observe the offset value on the display of the HP 3325B.

 Record the dc offset value________ mV.

6 Add the upper peak voltage (40 mV) of the 80 mV p-p signal to the offset value in step 5 (For example, -24 mV + 40 mV = 16 mV).

 This is the upper hysteresis level.

 Record the upper hysteresis level________ mV.
7 In the Counter’s Channel 1 Trigger/Sensitivity menu, change the SLOPE to NEG.

8 Set the HP 3325B DC OFFSET to +60 mV.

9 On the Counter, press Run key.

10 Now, decrement the offset on the HP 3325B by −1 mV until the Counter’s Gate annunciator flashes and continue decrementing until the Counter displays a stable reading of approximately 1 MHz.

 Observe the offset value on the display of the HP 3325B.

 Record the value ________ mV.

11 Add the lower peak voltage (−40 mV) of the 80 mVp-p signal to the offset value in step 10 (for example, 21 mV − 40 mV = −19 mV.)

 This result is the lower hysteresis level.

 Record the lower hysteresis level ________ mV.

12 Now, add the upper hysteresis value (recorded in step 6) and lower hysteresis value (recorded in step 11).

 This is the trigger level; it should be 0.0 V ±15 mV.

13 Record the trigger level value in the appropriate place in the Performance Test Record (Test 2, Line 1).

14 Repeat steps 1 through 13 for Channel 2.

15 Record the trigger level value in the appropriate place in the Performance Test Record (Test 2, Line 2).

16 Disconnect the test setup.
Test 3: Channels 1 and 2 Frequency Sensitivity (HP 53131A/132A Only)

This set of tests verifies frequency sensitivity specifications of the HP 53131A and 53132A Universal Counters.

Equipment

HP 8663A Synthesized Signal Generator
HP 1250-0780 Type N-to-BNC Connector
HP 10100C 50Ω Feedthrough
HP 10503A BNC Cables (2)

Counter Setup

1. Cycle the POWER key to preset the Counter.

2. Set CHANNEL 1 input conditions to:
 - Trigger/Sensitivity, AUTO TRG: OFF
 - Trigger/Sensitivity, LEVEL: 0.000 V
 - 50Ω/1MΩ, 50Ω
 - DC/AC, DC
 - X10 Attenuate, Off
 - 100kHz Filter, Off

3. Set CHANNEL 2 input conditions to:
 - Trigger/Sensitivity, AUTO TRG: OFF
 - Trigger/Sensitivity, LEVEL: 0.000 V
 - 50Ω/1MΩ, 50Ω
 - DC/AC, DC
 - X10 Attenuate, Off
 - 100kHz Filter, Off
Chapter 1 Performance Tests

Test 3: Channels 1 and 2 Frequency Sensitivity (HP 53131A/132A Only)

100 kHz to 100 MHz Sensitivity for HP 53131A/132A

1. Connect the timebase output of the unit with the better timebase to the timebase reference input of the other unit as shown in Figure 1-7.

For this test, make sure you always use the unit (HP 53131A/132A or HP 8663A) that contains the better 10 MHz timebase as the output source as shown in Figure 1-7.

Figure 1-7. Channels 1 and 2 Frequency Sensitivity Test Setup
Chapter 1 Performance Tests
Test 3: Channels 1 and 2 Frequency Sensitivity (HP 53131A/132A Only)

2 Set the HP 8663A Signal Generator to output a 100 MHz,
−35.0 dBm sine wave signal (−20.0 dBm for Option 060 Rear
Terminals) to the Counter’s Channel 1 input.

3 On the Counter, press Run key.

4 In 0.1 dB steps, increase the power level until the Counter
displays a stable reading of 100 MHz.

The Counter should display 100 MHz when the signal generator level is
≤ −21.0 dBm (20 mVrms). **Counters with Option 060 should display**
100 MHz when the signal generator level is ≤ −9.5 dBm (75 mVrms).

5 Sweep the frequency from 100 MHz to 100 kHz. For Option 060,
sweep frequencies from 225 MHz to 100 kHz.

The Counter should read frequencies from 100 MHz to 100 kHz at an
input power level of ≤ −21.0 dBm (20 mVrms). **Counters with**
Option 060 should read frequencies from 225 MHz to 100 kHz at ≤ −
9.5 dBm (75 mVrms).

6 Record the actual reading in the appropriate place in the
Performance Test Record (Test 3, Line 1).

 If you are testing a Counter with front-panel terminals (Standard),
 record the reading on Line 1 of the **Standard** portion of the test record.

 If you are testing a Counter with rear terminals (Option 060),
 record the reading on Line 1 of the **Option 060** portion of the test record.

NOTE
DO NOT test the front terminals if rear terminals are installed. The front
terminal performance is not specified when the rear terminals are installed.

7 Connect the HP 8663A to Channel 2 of the Counter.

8 On the Counter, press Freq & Ratio key until **FREQUENCY 2** is
displayed.

9 Repeat steps 2 through 5 for Channel 2.
Chapter 1 Performance Tests

Test 3: Channels 1 and 2 Frequency Sensitivity (HP 53131A/132A Only)

10 Record the actual reading in the appropriate place in the Performance Test Record (Test 3, Line 2).

If you are testing a Counter with front-panel terminals (Standard), record the reading on Line 2 of the Standard portion of the test record.

If you are testing a Counter with rear terminals (Option 060), record the reading on Line 2 of the Option 060 portion of the test record.

NOTE
The remaining sensitivity procedures are NOT required for Counters that contain Option 060 Rear Terminals; thus, this completes the sensitivity portion of the Frequency Performance Test. Go to the Frequency Accuracy Test on page 1-27.

100 MHz to 200 MHz Sensitivity for HP 53131A/132A

1 Leave the signal generator connected to Channel 2. Change the signal generator settings to 200 MHz at −30 dBm.

2 On the Counter, press Run key.

3 Increase the power level by 0.1 dB steps until the Counter displays a stable 200 MHz reading.

The Counter should display 200 MHz when the input signal level is \(\leq -17.5 \) dBm (30 mVrms).

4 Sweep the signal generator frequency from 200 MHz to 100 MHz.

The Counter should read frequencies from 200 MHz to 100 MHz when the input signal level is \(\leq -17.5 \) dBm (30 mVrms).

5 Record the actual reading in the Performance Test Record (Test 3, Line 3).

6 Connect the signal generator to Channel 1.

7 On the Counter, press Freq & Ratio key until Frequency 1 is displayed.
Chapter 1 Performance Tests
Test 3: Channels 1 and 2 Frequency Sensitivity (HP 53131A/132A Only)

8 Repeat steps 1 through 4 for Channel 1.

9 Record the actual reading in the Performance Test Record (Test 3, Line 4).

200 MHz to 225 MHz Sensitivity for HP 53131A/132A

1 Leave the signal generator connected to Channel 1. Change the signal generator settings to 225 MHz at −30 dBm.

2 On the Counter, press Run key.

3 Increase the power level by 0.1 dB steps until the Counter displays a stable reading of 225 MHz.

 The Counter should read 225 MHz when the input signal level is ≤ −15.0 dBm (40 mVrms).

4 Sweep the signal generator frequency from 225 MHz to 200 MHz.

 The Counter should read frequencies from 225 MHz to 200 MHz when the input signal level is ≤ −15.0 dBm (40 mVrms).

5 Record the actual reading in the Performance Test Record (Test 3, Line 5).

6 Connect the signal generator to Channel 2.

7 On the Counter, press Freq & Ratio key until Frequency 2 is displayed.

8 Repeat steps 1 through 4 for Channel 2.

9 Record the actual reading in the Performance Test Record (Test 3, Line 6).

10 Disconnect the test setup.
Chapter 1 Performance Tests

Test 4: Channels 1 and 2 Frequency Accuracy (HP 53131A/132A Only)

This set of tests verifies the frequency accuracy specifications of the HP 53131A and HP 53132A Universal Counters.

Equipment

- HP 8663A Synthesized Signal Generator
- HP 1250-0780 Type N-to-BNC Connector
- HP 10100C 50Ω Feedthrough
- HP 10503A BNC Cables (2)

Counter Setup

1. **Cycle the POWER key to preset the Counter.**

2. **Using the Gate & ExtArm key, set the gate time to **TIME 1.000 s**.**

3. **Set CHANNEL 1 input conditions to:**
 - Trigger/Sensitivity, AUTO TRG: OFF
 - Trigger/Sensitivity, LEVEL: 0.000 V
 - 50Ω/1MΩ, 50Ω
 - DC/AC, DC
 - X10 Attenuate, Off
 - 100kHz Filter, Off

4. **Set CHANNEL 2 input conditions to:**
 - Trigger/Sensitivity, AUTO TRG: OFF
 - Trigger/Sensitivity, LEVEL: 0.000 V
 - 50Ω/1MΩ, 50Ω
 - DC/AC, DC
 - X10 Attenuate, Off
 - 100kHz Filter, Off
Chapter 1 Performance Tests
Test 4: Channels 1 and 2 Frequency Accuracy (HP 53131A/132A Only)

Procedure

1. Connect the equipment as shown in Figure 1-8 with the signal generator connected to Channel 1 of the Counter.

2. Set the Signal Generator to output 1 MHz at –7 dBm.

3. On the Counter, press Run key.

 Verify the HP 53131A Counter reads 1 MHz ±1 mHz.

 Verify the HP 53132A Counter reads 1 MHz ±200 µHz.

4. Record the actual reading in the appropriate place in the Performance Test Record (Test 4, Line 1 for HP 53131A or Test 4, Line 3 for HP 53132A.)
Chapter 1 Performance Tests
Test 4: Channels 1 and 2 Frequency Accuracy (HP 53131A/132A Only)

5 Change the signal generator frequency to 100 MHz.
 Verify the HP 53131A Counter reads 100 MHz ±70 mHz.
 Verify the HP 53132A Counter reads 100 MHz ±15 mHz.

6 Record the actual reading in the appropriate place in the Performance Test Record (Test 4, Line 5 for HP 53131A or Test 4, Line 7 for HP 53132A).

7 Change the signal generator frequency to 200 MHz.
 Verify the HP 53131A Counter reads 200 MHz ±130 mHz.
 Verify the HP 53132A Counter reads 200 MHz ±30 mHz.

8 Record the actual reading in the appropriate place in the Performance Test Record (Test 4, Line 9 for HP 53131A or Test 4, Line 11 for HP 53132A).

9 Change the signal generator frequency to 225 MHz.
 Verify the HP 53131A Counter reads 225 MHz ±150 mHz.
 Verify the HP 53132A Counter reads 225 MHz ±35 mHz.

10 Record the actual reading in the appropriate place in the Performance Test Record (Test 4, Line 13 for HP 53131A or Test 4, Line 15 for HP 53132A).

11 Connect the signal generator to Channel 2.

12 On the Counter, press Freq & Ratio key until Frequency 1 is displayed.

13 Repeat steps 2 through 9 for Channel 2.

14 Record the actual readings in the appropriate places in the Performance Test Record.

15 Disconnect the test setup.
Test 5: Option 030/050/124 Channel 3 Frequency Sensitivity (HP 53131A/132A Only)

This test verifies the frequency range, and sensitivity of the optional 3-GHz and 5-GHz Channel 3 (Option 030/050/124) for the HP 53131A and the HP 53132A Universal Counters.

Equipment

HP 8663A Synthesized Signal Generator (not needed for Option 050)
HP 8340B Sweep Oscillator
HP 1250-0780 Type N-to-BNC Connector (not needed for Option 050)
HP 10503A BNC Cable(2)
HP 10100C 50Ω Feedthrough
HP 11500D N-N Cable (Option 050 only)
HP 1250-1250 N(M) to SMA(F)
HP 1250-0777 N(F) to N(F)

Counter Setup

1 Cycle the POWER key to preset the Counter.

2 Set the Counter as follows:
Freq & Ratio, FREQUENCY 3
Chapter 1 Performance Tests

Test 5: Option 030/050/124 Channel 3 Frequency Sensitivity (HP 53131A/132A Only)

100 MHz to 2.5 GHz Sensitivity for HP 53131A/132A Option 030 only

1 Set the HP 8663B Synthesized Signal Generator to output a 2500 MHz, −40 dBm sine wave, and connect the signal to Channel 3 of the Counter as shown in Figure 1-9.

2 On the Counter, Press Run key.

Figure 1-9. Option 030/050/124 Channel 3 Frequency Sensitivity and Accuracy Test Setup
Chapter 1 Performance Tests

Test 5: Option 030/050/124 Channel 3 Frequency Sensitivity (HP 53131A/132A Only)

3 Increase the power level in 5 dB steps until the Counter displays a stable reading of approximately 2.5 GHz.

The Counter should display 2.5 GHz at \(\leq -27.0 \) dBm (10 mVrms).

4 Sweep the frequencies from 2.5 GHz to 200 MHz.

The Counter should read frequencies from 2.5 GHz to 200 MHz at \(\leq -27.0 \) dBm (10 mVrms).

5 Record the actual reading in the Performance Test Record (Test 5, Line 1).

2.7 to 3.0 GHz Sensitivity for Option 030 only

1 Disconnect the HP 8663A Synthesized Signal Generator from the Counter (see Figure 1-9), and connect the HP 8340B Sweep Oscillator to Channel 3 of the Counter.

2 Change the settings of the Sweep Oscillator to 3.0 GHz, \(-40 \) dBm.

3 Increase the power level in 1 dB steps until the Counter displays a stable reading of approximately 3.0 GHz.

The Counter should display 3.0 GHz at \(\leq -21.0 \) dBm.

4 Sweep the frequencies from 3.0 GHz to 2.7 GHz.

The Counter should read frequencies from 3.0 GHz to 2.7 GHz at \(\leq -21.0 \) dBm.

5 Record the actual reading in the Performance Test Record (Test 5, Line 2).

6 Disconnect the test setup.
Chapter 1 Performance Tests
Test 5: Option 030/050/124 Channel 3 Frequency Sensitivity (HP 53131A/132A Only)

200 MHz to 5.0 GHz Sensitivity for HP 53131A/132A (Option 050 only)

1 Connect the 8340B Sweep Oscillator to Channel 3 of the counter.

2 Change the settings of the Sweep Oscillator to 5.0 GHz, −40 dBm.

3 Increase the power level in 1 dB steps until the Counter displays a stable reading of approximately 5.0 GHz.

 The Counter should display 5.0 GHz at ≤ −23 dBm.

NOTE

Use a power meter and sensor to ensure the accuracy of the power being input.

4 Sweep the frequencies from 200 MHz to 5.0 GHz.

 The Counter should read frequencies from 200 MHz to 5.0 GHz at ≤ −3 dBm.

5 Record the actual reading in the Performance Test Record (Test 5, Line 3).

6 Disconnect the test setup.
Chapter 1 Performance Tests

Test 5: Option 030/050/124 Channel 3 Frequency Sensitivity (HP 53131A/132A Only)

200 MHz to 12.4 GHz Sensitivity for HP 53131A/132A (Option 124 only)

1. Connect the 8340B Sweep Oscillator to Channel 3 of the counter.

2. Change the settings of the Sweep Oscillator to 12.4 GHz, −40 dBm.

3. Increase the power level in 1 dB steps until the Counter displays a stable reading of approximately 12.4 GHz.

 The Counter should display 12.4 GHz at ≤ −23 dBm.

 NOTE

 Use a power meter and sensor to ensure the accuracy of the power being input.

4. Sweep the frequencies from 200 MHz to 12.4 GHz.

 The Counter should read frequencies from 200 MHz to 12.4 GHz at ≤ −3 dBm.

5. Record the actual reading in the Performance Test Record (Test 5, Line 4).

6. Disconnect the test setup.
Test 6: Option 030/050/124 Channel 3 Frequency Accuracy (HP 53131A/132A Only)

This test verifies the frequency accuracy of the optional 3-GHz or 5-GHz Channel 3 (Option 030).

Equipment

- HP 8663A Synthesized Signal Generator (Option 030 only)
- HP 8340B Sweep Oscillator
- HP 1250-0780 Type N-to-BNC Connector (Option 030 only)
- HP 10503A BNC Cable (2)
- HP 10100C 50Ω Feedthrough
- HP 11500D N-N Cable (Option 050 only)
- HP 1250-1250 N(M) to SMA(F)
- HP 1250-0777 N(F) to N(F)

Counter Setup

1. Cycle the POWER key to preset the Counter.

2. Set the Counter as follows:

 - Freq & Ratio, *FREQUENCY 3*
 - Gate & ExtArm, *TIME: TIME 1.000 s*

Procedure

1. Connect equipment as shown in Figure 1-9.

 (NOTE: For Options 050 and 124, skip steps 2 through 5. Proceed to step 6.)

2. Set the HP 8663A Synthesized Signal Generator to output 100 MHz at −17.0 dBm.
Chapter 1 Performance Tests
Test 6: Option 030/050/124 Channel 3 Frequency Accuracy
(HP 53131A/132A Only)

3 On the Counter, press Run key.
 Verify the HP 53131A Counter reads 100 MHz ±70 mHz.
 Verify the HP 53132A Counter reads 100 MHz ±20 mHz.

4 Record the actual reading in the Performance Test Record
 (Test 6, Line 1 for HP 53131A or Test 6, Line 2 for HP 53132A).

5 Disconnect the HP 8663A output from Channel 3 of the Counter, and
 connect the HP 8340B Sweep Oscillator output to Channel 3
 of the Counter as shown in Figure 1-9.

6 Set the HP 8340B to output 3.0 GHz at −17.0 dBm.
 Verify the HP 53131A Counter reads 3.0 GHz ±2 Hz.
 Verify the HP 53132A Counter reads 3.0 GHz ±0.4 Hz.

7 Record the actual reading in the Performance Test Record
 (Test 6, Line 3 for HP 53131A or Test 6, Line 4 for HP 53132A).

8 Set the HP 8340B to output 5.0 GHz at −17 dBm.
 Verify the HP 53131A Counter reads 5.0 GHz ±3 Hz.
 Verify the HP 53132A Counter reads 5.0 GHz ±0.7 Hz.

9 Record the actual reading in the Performance Test Record
 (Test 6, Line 5 for HP 53131A or Test 6, Line 6 for HP 53132A).

10 Set the HP 8340B to output 12.4 GHz at −17 dBm. (This step is for
 Option 124 only.)
 Verify the HP 53131A Counter reads 12.4 GHz ±8 Hz.
 Verify the HP 53132A Counter reads 12.4 GHz ±2 Hz.

11 Record the actual reading in the Performance Test Record
 (Test 6, Line 7 for HP 53131A or Test 6, Line 8 for HP 53132A.)

12 Disconnect the test setup.
Chapter 1 Performance Tests

Test 7: Peak Volts, Channels 1 and 2 (HP 53131A/132A Only)

Test 7: Peak Volts, Channels 1 and 2
(HP 53131A/132A Only)

This test verifies the Peak Volts accuracy specification of the HP 53131A and HP 53132A Universal Counters.

Equipment

HP 3325B Synthesizer
HP 10100C 50Ω Feedthrough
HP 10503A BNC Cable

Counter Setup

1. **Cycle the POWER key to preset the Counter.**

2. **Press Other Meas key until VOLT PEAKS 1 is displayed.**

3. **Set CHANNEL 1 input to:**

 50Ω/1MΩ, 50Ω
 X10 Attenuate, Off
 100kHz Filter, Off

4. **Set CHANNEL 2 input to:**

 50Ω/1MΩ, 50Ω
 X10 Attenuate, Off
 100kHz Filter, Off
Chapter 1 Performance Tests
Test 7: Peak Volts, Channels 1 and 2 (HP 53131A/132A Only)

Volt Peak 1

1 Connect the equipment as shown in Figure 1-10.

2 Set the HP 3325B to output a 2 MHz, 2 Vp-p sine wave.

 The Counter should display $-1.00 \pm 0.12V$ for the negative peak of the sine wave. This reading is displayed on the left side of the display.

 Record the actual reading in the Performance Test Record (Test 7, Line 1a).

 Also, the Counter should display $+1.00 \pm 0.12V$ for the positive peak of the sine wave. This reading is displayed on the right side of the display.

 Record the actual reading in the Performance Test Record (Test 7, Line 1b).
Chapter 1 Performance Tests

Test 7: Peak Volts, Channels 1 and 2 (HP 53131A/132A Only)

Volt Peak 2

1. Remove the signal from Channel 1 of the Counter and connect it to Channel 2.

2. Press Other Meas key until VOLT PEAK 2 is displayed.

 The Counter should display -1.00 ±0.12V for the negative peak of the sine wave. This reading is displayed on the left side of the display.

 Record the actual reading in the Performance Test Record (Test 7, Line 2a).

 Also, the Counter should display +1.00 ±0.12V for the positive peak of the sine wave. This reading is displayed on the right side of the display.

 Record the actual reading in the Performance Test Record (Test 7, Line 2b).

3. Disconnect the test setup.
The HP-IB Verification program exercises the HP 53131A/132A and through various operating modes via the its HP-IB interface. If the Counter successfully completes all phases of the verification program, there is a high probability that the HP-IB interface is operating correctly. If the Counter fails the verification program, refer to the troubleshooting section in Chapter 2, “Service,” of this guide.

The HP-IB Verification program may be loaded into the HP 9000 series 200 or 300 Desktop Computer from the 3 1/2-inch disk (HP P/N 53131-13501) or the 5 1/4-inch disk (HP P/N 53131-13502).

1 To run the program on the disk, insert the disk into the Desktop Computer, load the program by typing Load “VER31”, and press RUN key on the computer’s keyboard.

2 Follow the instructions displayed in the computer’s screen.

3 After running this program, record the result (Pass or Fail) on the last page (page 1-46) of the HP 53131A/132A Performance Test Record.
HP 53131A/132A Performance Test Record

Hewlett-Packard Model 53131A/132A Universal Counter

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Operational Verification</th>
<th>Test Results</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Power on Self Test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Channel 1, 10 MHz Test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Channel 2, 10 MHz Test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Run Self Test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5a</td>
<td>Termination Check Ch 1, 50Ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5b</td>
<td>Termination Check Ch 1, 1MΩ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6a</td>
<td>Termination Check Ch 2, 50Ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6b</td>
<td>Termination Check Ch 2, 1MΩ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>External Arm Test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8a</td>
<td>1 MHz External Timebase Input Test (HP 53131A Only)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8b</td>
<td>5 MHz External Timebase Input Test (HP 53131A Only)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8c</td>
<td>10 MHz External Timebase Input Test (HP 53131A Only)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8d</td>
<td>10 MHz External Timebase Input Test for the HP 53132A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Complete Performance Tests

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Test Description</th>
<th>Minimum</th>
<th>Actual Reading</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Time Interval (HP 53131A/132A Only):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>For HP 53131A</td>
<td>0.1460 µs</td>
<td>1. __________</td>
<td>0.1540 µs</td>
</tr>
<tr>
<td></td>
<td>For HP 53132A</td>
<td>0.1475 µs</td>
<td>2. __________</td>
<td>0.1525 µs</td>
</tr>
<tr>
<td>2</td>
<td>Trigger Level: Channel 1</td>
<td>−15 mV</td>
<td>1. __________</td>
<td>+15 mV</td>
</tr>
<tr>
<td></td>
<td>Channel 2 (HP 53131A/132A Only)</td>
<td>−15 mV</td>
<td>2. __________</td>
<td>+15 mV</td>
</tr>
</tbody>
</table>

Test 3: Channels 1 and 2 Frequency Sensitivity (HP 53131A/132A Only)

<table>
<thead>
<tr>
<th>Standard (Front Panel Terminals)</th>
<th>Actual Reading</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 kHz–100 MHz, Channel 1</td>
<td>1. __________</td>
<td>≤ −21 dBm (20 mVrms)</td>
</tr>
<tr>
<td>100 kHz–100 MHz, Channel 2</td>
<td>2. __________</td>
<td>≤ −21 dBm (20 mVrms)</td>
</tr>
<tr>
<td>100 MHz–200 MHz, Channel 2</td>
<td>3. __________</td>
<td>≤ −17.5 dBm (30 mVrms)</td>
</tr>
<tr>
<td>100 MHz–200 MHz, Channel 1</td>
<td>4. __________</td>
<td>≤ −17.5 dBm (30 mVrms)</td>
</tr>
<tr>
<td>200 MHz–225 MHz, Channel 1</td>
<td>5. __________</td>
<td>≤ −15.0 dBm (40 mVrms)</td>
</tr>
<tr>
<td>200 MHz–225 MHz, Channel 2</td>
<td>6. __________</td>
<td>≤ −15.0 dBm (40 mVrms)</td>
</tr>
</tbody>
</table>

Option 060 Rear Terminals

<table>
<thead>
<tr>
<th>Standard (Front Panel Terminals)</th>
<th>Actual Reading</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 kHz–225 MHz, Channel 1</td>
<td>1. __________</td>
<td>≤ −9.5 dBm (75 mVrms)</td>
</tr>
<tr>
<td>100 kHz–225 MHz, Channel 2</td>
<td>2. __________</td>
<td>≤ −9.5 dBm (75 mVrms)</td>
</tr>
<tr>
<td>Test Number</td>
<td>Test Description</td>
<td>Minimum</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>4</td>
<td>Channels 1 and 2 Frequency Accuracy (HP 53131A/132A Only)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 MHz Test (HP 53131A): Channel 1</td>
<td>999,999.999 Hz</td>
</tr>
<tr>
<td></td>
<td>Channel 2</td>
<td>999,999.999 Hz</td>
</tr>
<tr>
<td></td>
<td>1 MHz Test (HP 53132A): Channel 1</td>
<td>999,999.9998 Hz</td>
</tr>
<tr>
<td></td>
<td>Channel 2</td>
<td>999,999.9998 Hz</td>
</tr>
<tr>
<td>4</td>
<td>100 MHz Test (HP 53131A): Channel 1</td>
<td>99,999,999.93 MHz</td>
</tr>
<tr>
<td></td>
<td>Channel 2</td>
<td>99,999,999.93 MHz</td>
</tr>
<tr>
<td></td>
<td>100 MHz Test (HP 53132A): Channel 1</td>
<td>99,999,999,980 MHz</td>
</tr>
<tr>
<td></td>
<td>Channel 2</td>
<td>99,999,999,980 MHz</td>
</tr>
</tbody>
</table>
HP 53131A/132A Performance Test Record

Complete Performance Tests (Continued)

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Test Description</th>
<th>Minimum</th>
<th>Actual Reading</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>200 MHz Test (HP 53131A):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Channel 1</td>
<td>199.999,999,87 MHz</td>
<td>9. _____</td>
<td>200.000,000,13 MHz</td>
</tr>
<tr>
<td></td>
<td>Channel 2</td>
<td>199.999,999,87 MHz</td>
<td>10. _____</td>
<td>200.000,000,13 MHz</td>
</tr>
<tr>
<td></td>
<td>200 MHz Test (HP 53132A):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Channel 1</td>
<td>199.999,999,970 MHz</td>
<td>11. _____</td>
<td>200.000,000,03 MHz</td>
</tr>
<tr>
<td></td>
<td>Channel 2</td>
<td>199.999,999,970 MHz</td>
<td>12. _____</td>
<td>200.000,000,03 MHz</td>
</tr>
<tr>
<td>4</td>
<td>225 MHz Test (HP 53131A):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Channel 1</td>
<td>224.999,999,85 MHz</td>
<td>13. _____</td>
<td>225.000,000,15 MHz</td>
</tr>
<tr>
<td></td>
<td>Channel 2</td>
<td>224.999,999,85 MHz</td>
<td>14. _____</td>
<td>225.000,000,15 MHz</td>
</tr>
<tr>
<td></td>
<td>225 MHz Test (HP 53132A):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Channel 1</td>
<td>224.999,999,965 MHz</td>
<td>15. _____</td>
<td>225.000,000,035 MHz</td>
</tr>
<tr>
<td></td>
<td>Channel 2</td>
<td>224.999,999,965 MHz</td>
<td>16. _____</td>
<td>225.000,000,035 MHz</td>
</tr>
</tbody>
</table>

Test 5: Option 030/050/124 Channel 3 Frequency Sensitivity (HP 53131A/132A Only)

<table>
<thead>
<tr>
<th>Actual Reading</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 MHz–2.5 GHz</td>
<td>1. _____</td>
</tr>
<tr>
<td>2.7–3.0 GHz</td>
<td>2. _____</td>
</tr>
<tr>
<td>200 MHz–5.0 GHz</td>
<td>3. _____</td>
</tr>
<tr>
<td>200 MHz–12.4 GHz</td>
<td>4. _____</td>
</tr>
</tbody>
</table>
HP 53131A/132A Performance Test Record (Page 5 of 6)

Complete Performance Tests (Continued)

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Test Description</th>
<th>Minimum</th>
<th>Actual Reading</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Option 030</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Channel 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frequency Accuracy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(HP 53131A/132A Only)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 MHz Test (HP 53131A): Channel 3</td>
<td>99.999,999,93 MHz</td>
<td>1. _______</td>
<td>100.000,000,07 MHz</td>
<td></td>
</tr>
<tr>
<td>100 MHz Test (HP 53132A): Channel 3</td>
<td>99.999,999,980 MHz</td>
<td>2. _______</td>
<td>100.000,000,020 MHz</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3.0 GHz Test (HP 53131A): Channel 3</td>
<td>2,999.999,998 MHz</td>
<td>3. _______</td>
<td>3,000.000,002 MHz</td>
</tr>
<tr>
<td></td>
<td>3.0 GHz Test (HP 53132A): Channel 3</td>
<td>2,999.999,999,60 MHz</td>
<td>4. _______</td>
<td>3,000.000,000,4 MHz</td>
</tr>
<tr>
<td>6</td>
<td>5.0 GHz Test (HP 53131A): Channel 3</td>
<td>4,999.999,997,0 MHz</td>
<td>5. _______</td>
<td>5,000.000,003,0 MHz</td>
</tr>
<tr>
<td></td>
<td>5.0 GHz Test (HP 53132A): Channel 3</td>
<td>4,999.999,999,3 MHz</td>
<td>6. _______</td>
<td>5,000.000,000,7 MHz</td>
</tr>
<tr>
<td>Test Number</td>
<td>Test Description</td>
<td>Minimum</td>
<td>Actual Reading</td>
<td>Maximum</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>--------------------------</td>
<td>----------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>6</td>
<td>12.4 GHz Test (HP 53131A): Channel 3</td>
<td>12,399.999 992 MHz</td>
<td>7. ________</td>
<td>12,400.000 008 MHz</td>
</tr>
<tr>
<td>6</td>
<td>12.4 GHz Test (HP 53132A): Channel 3</td>
<td>12,399.999 998 MHz</td>
<td>8. ________</td>
<td>12,400.000 002 MHz</td>
</tr>
<tr>
<td>6</td>
<td>12.4 GHz Test (HP 53131A): Channel 3</td>
<td>12,399.999,982,0 MHz</td>
<td>7. ________</td>
<td>12,400.000 018, MHz</td>
</tr>
<tr>
<td>6</td>
<td>12.4 GHz Test (HP 53132A): Channel 3</td>
<td>12,399.999,992,0 MHz</td>
<td>8. ________</td>
<td>12,400.000, 008,0 MHz</td>
</tr>
<tr>
<td>7</td>
<td>Peak Volts, Channels 1 and 2 (HP 53131A/132A Only):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Volt Peak 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Channel 1</td>
<td>−1.12 V</td>
<td>1 a. ________</td>
<td>−0.88 V</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>+0.88 V</td>
<td>1 b. ________</td>
<td>+1.12 V</td>
</tr>
<tr>
<td>7</td>
<td>Volt Peak 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Channel 2</td>
<td>−1.12 V</td>
<td>2 a. ________</td>
<td>−0.88 V</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>+0.88 V</td>
<td>2 b. ________</td>
<td>+1.12 V</td>
</tr>
</tbody>
</table>

Complete Performance Tests (Continued)

<table>
<thead>
<tr>
<th>HP-IB Verification (Optional)</th>
<th>Test Results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pass</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assembly-Level Service Guide
Chapter 1 Performance Tests
HP 53181A Complete Performance Tests

HP 53181A Complete Performance Tests

The specifications of the HP 53181A Frequency Counter can be verified by performing the performance tests provided in this section. Table 1-3 lists a summary of the HP 53181A performance tests.

Record the results of the performance tests in the appropriate place on HP 53181A Performance Test Record, which starts on page 1-71.

(Note: the complete performance tests for the HP 53131A/132A Universal Counter begin on page 1-16 of this chapter.)

NOTE
To perform valid testing of the specifications, warm up the Counter and test equipment for 30 minutes.

Table 1-3. The HP 53181A Performance Tests

<table>
<thead>
<tr>
<th>Page Number</th>
<th>Test Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>page 1-48</td>
<td>Test 1: Trigger Level (HP 53181A Only)</td>
</tr>
<tr>
<td>page 1-51</td>
<td>Test 2: Channel 1 Frequency Sensitivity (HP 53181A Only)</td>
</tr>
<tr>
<td>page 1-55</td>
<td>Test 3: Channel 1 Frequency Accuracy (HP 53181A Only)</td>
</tr>
<tr>
<td>page 1-58</td>
<td>Test 4: Option 015/030/050/124 Channel 2 Frequency Sensitivity</td>
</tr>
<tr>
<td>page 1-63</td>
<td>Test 5: Option 015/030/050/124 Channel 2 Frequency Accuracy (HP 53181A Only)</td>
</tr>
<tr>
<td>page 1-68</td>
<td>Test 6: Peak Volts, Channel 1 (HP 53181A Only)</td>
</tr>
<tr>
<td>page 1-70</td>
<td>HP 53181A HP-IB Verification Program (Optional)</td>
</tr>
</tbody>
</table>

* Other Counter measurement functions (e.g., Period) are mathematically derived by the microprocessor from the parameters verified by these performance tests.
Test 1: Trigger Level (HP 53181A Only)

This test verifies the Trigger Level accuracy of the HP 53181A Frequency Counter.

Equipment

HP 3325B Synthesizer
HP 10503A BNC Cable

Counter Setup

1. Cycle the POWER key to preset the Counter.

2. Set CHANNEL 1 input condition to:

 - Trigger/Sensitivity, **AUTO TRG**: OFF
 - Trigger/Sensitivity, **LEVEL**: 0.000V
 - 50Ω/1MΩ, 50Ω
 - **DC/AC**: DC
 - **X10 Attenuate**: Off
 - **100kHz Filter**: Off
Chapter 1 Performance Tests
Test 1: Trigger Level (HP 53181A Only)

Procedure

1. Connect the output of the HP 3325B to Channel 1 of the Counter as shown in Figure 1-11.

2. Set the HP 3325B to output a 1 MHz, 80 mVp-p square wave signal.

3. Set the HP 3325B DC OFFSET to −60 mV.

4. On the Counter, press Run key.

5. Now, increment the dc offset on the HP 3325B by +1 mV until the Counter’s Gate annunciator flashes and continue incrementing until the Counter displays approximately 1 MHz.

 Observe the offset value on the display of the HP 3325B.

 Record the dc offset value__________ mV.

6. Add the upper peak voltage (40 mV) of the 80 mV p-p signal to the offset value in step 5 (For example, −24 mV + 40 mV = 16 mV).

 This is the upper hysteresis level.

 Record the upper hysteresis level__________ mV.
Chapter 1 Performance Tests
Test 1: Trigger Level (HP 53181A Only)

7 In the Counter’s Channel 1 Trigger/Sensitivity menu, change the SLOPE to NEG.

8 On the Counter, press Run key.

9 Set the HP 3325B DC OFFSET to +60 mV.

10 Now, decrement the offset on the HP 3325B by −1 mV until the Counter’s Gate annunciator flashes and continue decrementing until the Counter displays approximately 1 MHz.

Observe the offset value on the display of the HP 3325B.

Record the value__________ mV.

11 Add the lower peak voltage (−40mV) of the 80 mVP-p signal to the offset value in step 10 (for example, 21 mV − 40 mV = −19 mV.)

This result is the lower hysteresis level.

Record the lower hysteresis level _________ mV.

12 Now, add the upper hysteresis value (recorded in step 6) and lower hysteresis value (recorded in step 11).

This is the trigger level; it should be 0.0 V ±15 mV.

13 Record the trigger level value in the Performance Test Record (Test 1, Line 1).
Test 2: Channel 1 Frequency Sensitivity (HP 53181A Only)

This set of tests verifies frequency sensitivity specifications of the HP 53181A Frequency Counter.

Equipment

HP 8663A Synthesized Signal Generator
HP 1250-0780 Type N-to-BNC Connector
HP 10100C 50Ω Feedthrough
HP 10503A BNC Cables (2)

Counter Setup

1. Cycle the POWER key to preset the Counter.

2. Set CHANNEL 1 input conditions to:

 - Trigger/Sensitivity, **AUTO TRG: OFF**
 - Trigger/Sensitivity, **LEVEL: 0.000 V**
 - 50Ω/1MΩ, 50Ω
 - DC/AC, DC
 - X10 Attenuate, Off
 - 100kHz Filter, Off
Chapter 1 Performance Tests
Test 2: Channel 1 Frequency Sensitivity (HP 53181A Only)

100 kHz to 100 MHz Sensitivity for HP 53181A

1 Connect the equipment as shown in Figure 1-12 with the signal generator connected to Channel 1 of the Counter.

![Figure 1-12. Channels 1 Frequency Sensitivity Test Setup](image)

2 Set the HP 8663A Signal Generator to output a 100 kHz, −35.0 dBm sine wave signal (−20.0 dBm for Option 060) to the Counter’s Channel 1 input.

3 In 0.1 dB steps, increase the power level until the Counter displays a stable reading of 100 kHz.

The Counter should display 100 kHz when the signal generator level is ≤ −21.0 dBm (20 mVrms). Counters with Option 060 Rear Terminals should display 100 kHz when the signal generator level is ≤ −9.5 dBm (75 mVrms).
Chapter 1 Performance Tests

Test 2: Channel 1 Frequency Sensitivity (HP 53181A Only)

4 **Sweep the frequency from 100 kHz to 100 MHz. For Option 060, sweep frequencies from 100 kHz to 225 MHz.**

The Counter should read frequencies from 100 kHz to 100 MHz at an input power level of \(-21.0\) dBm (20 mVrms). Option 060 Counters should read frequencies from 100 kHz to 225 MHz at \(-9.5\) dBm (75 mVrms).

5 **Record the actual reading in the Performance Test Record (Test 2, Line 1).**

 - **If you are testing a Counter with front-panel terminals (Standard),** record the reading on Line 1 of the **Standard** portion of the test record.
 - **If you are testing a Counter with rear terminals (Option 060),** record the reading on Line 1 of the **Option 060** portion of the test record.

NOTE

DO NOT test the front terminals if rear terminals are installed. The front terminal performance is not specified when the rear terminals are installed.

NOTE

The remaining sensitivity procedures are NOT required for Counters that contain Option 060 Rear Terminals; thus, this completes the sensitivity portion of the Frequency Performance Test. Go to the Frequency Accuracy Test on page 1-55.
Chapter 1 Performance Tests
Test 2: Channel 1 Frequency Sensitivity (HP 53181A Only)

100 MHz to 200 MHz Sensitivity for HP 53181A

1 Change the signal generator settings to 110 MHz at −30 dBm.

2 Increase the power level by 0.1 dB steps until the Counter displays a stable 110 MHz reading.

 The Counter should read 200 MHz when the input signal level is ≤ −17.5 dBm (30 mVrms).

3 Sweep the signal generator frequency from 100 MHz to 200 MHz.

 The Counter should read frequencies from 100 MHz to 200 MHz when the input signal level is ≤ −17.5 dBm (30 mVrms).

4 Record the actual reading in the Performance Test Record (Test 2, Line 2).

200 MHz to 225 MHz Sensitivity for HP 53181A

1 Change the signal generator settings to 200 MHz at −30 dBm.

2 Increase the power level by 0.1 dB steps until the Counter displays a stable 200 MHz reading.

 The Counter should read 200 MHz when the input signal level is ≤ −15.0 dBm (40 mVrms).

3 Sweep the signal generator frequency from 200 MHz to 225 MHz.

 The Counter should read frequencies from 200 MHz to 225 MHz when the input signal level is ≤ −15.0 dBm (40 mVrms).

4 Record the actual reading in the Performance Test Record (Test 2, Line 3).

5 Disconnect the test setup.
Test 3: Channel 1 Frequency Accuracy
(HP 53181A Only)

This set of tests verifies the frequency accuracy specifications of the HP 53181A Frequency Counter.

Equipment

- HP 8663A Synthesized Signal Generator
- HP 8340B Sweep Oscillator
- HP 1250-0780 Type N-to-BNC Connector
- HP 10100C 50Ω Feedthrough
- HP 10503A BNC Cables (2)

Counter Setup

1. **Cycle the POWER key to preset the Counter.**

2. **Using the Gate & ExtArm key, set gate time to **TIME 1.000 s**.**

3. **Set CHANNEL 1 input conditions to:**

 - **Trigger/Sensitivity, AUTO TRG: OFF**
 - **Trigger/Sensitivity, LEVEL: 0.000 V**
 - **50Ω/1MΩ, 50Ω**
 - **DC/AC, DC**
 - **X10 Attenuate, Off**
 - **100kHz Filter, Off**
Chapter 1 Performance Tests
Test 3: Channel 1 Frequency Accuracy (HP 53181A Only)

Procedure
1. Connect the equipment as shown in Figure 1-13 with the signal generator connected to Channel 1 of the Counter.

![Figure 1-13. Channels 1 Frequency Accuracy Test Setup](image)

2. Set the HP 8663A Signal Generator to output 1 MHz at −7 dBm.

3. On the Counter, press Run key.

Verify the Counter reads 1 MHz ±1 mHz.
Chapter 1 Performance Tests
Test 3: Channel 1 Frequency Accuracy (HP 53181A Only)

4 Record the actual reading in the Performance Test Record (Test 3, Line 1).

5 Change the signal generator frequency to 100 MHz.
 Verify the Counter reads 100 MHz ±70 mHz.

6 Record the actual reading in the Performance Test Record (Test 3, Line 2).

7 Change the signal generator frequency to 200 MHz.
 Verify the Counter reads 200 MHz ±130 mHz.

8 Record the actual reading in the Performance Test Record (Test 3, Line 3).

9 Change the signal generator frequency to 225 MHz.
 Verify the Counter reads 225 MHz ±150 mHz.

10 Record the actual reading in the Performance Test Record (Test 3, Line 4).

11 Disconnect the test setup.
Chapter 1 Performance Tests

Test 4: Option 015/030/050/124 Channel 2 Frequency Sensitivity

Test 4: Option 015/030/050/124 Channel 2 Frequency Sensitivity

This test verifies the frequency range and sensitivity of the optional 1.5-GHz (Option 015), 3-GHz (Option 030), 5.0-GHz (Option 050), or 12.4-GHz (Option 124) Channel 2 for the HP 53181A Frequency Counter.

Equipment

HP 8663A Synthesized Signal Generator (Not needed for Option 050/124)
HP 8340B Sweep Oscillator
HP 1250-0780 Type N-to-BNC Connector (Not needed for Option 050/124)
HP 10503A BNC Cable (2)
HP 10100C 50Ω Feedthrough

Counter Setup

1 Cycle the POWER key to preset the Counter.
2 Set the Counter as follows:

 Freq & Ratio, FREQUENCY 2
Chapter 1 Performance Tests

Test 4: Option 015/030/050/124 Channel 2 Frequency Sensitivity

100 MHz to 1.5 GHz Sensitivity for Option 015 Only

1. Set the HP 8663B Synthesized Signal Generator to output a 500 MHz, −60 dBm sine wave and connect the signal to Channel 2 of the Counter as shown in Figure 1-14.

![Diagram of setup](image)

Figure 1-14. Option 015/030/050 Channel 2 Frequency Test

2. On the Counter, Press Run key.
Chapter 1 Performance Tests

Test 4: Option 015/030/050/124 Channel 2 Frequency Sensitivity

3 Increase the power level in 1 dB steps until the Counter reads 500 MHz.

The Counter should display 500 MHz at ≤ −27.0 dBm (20 mVrms).

4 Sweep the frequencies from 100 MHz to 1.5 GHz.

The Counter should read frequencies from 100 MHz to 1.5 GHz at ≤ −27.0 dBm (20 mVrms).

5 Record the actual reading in the Performance Test Record (Test 4, Line 1).

100 MHz to 2.7 GHz Sensitivity for Option 030 Only

1 Set the HP 8663B Synthesized Signal Generator to output a 500 MHz, −60 dBm sine wave, and connect the signal to Channel 3 of the Counter as shown in Figure 1-14.

2 On the Counter, Press Run key.

3 Increase the power level in 1 dB steps until the Counter reads 500 MHz.

The Counter should display 500 MHz at ≤ −27.0 dBm (20 mVrms).

4 Sweep the frequencies from 100 MHz to 2.7 GHz.

The Counter should read frequencies from 100 MHz to 2.7 GHz at ≤ −27.0 dBm (20 mVrms).

5 Record the actual reading in the Performance Test Record (Test 4, Line 2).
Chapter 1 Performance Tests
Test 4: Option 015/030/050/124 Channel 2 Frequency Sensitivity

2.8 to 3.0 GHz Sensitivity for Option 030 Only

1 Disconnect the HP 8663A Synthesized Signal Generator from the Counter (see Figure 1-14), and connect the HP 8340B Sweep Oscillator to Channel 3 of the Counter.

2 Change the settings of the Sweep Oscillator to 3.0 GHz, −40 dBm.

3 Increase the power level in 1 dB steps until the Counter displays 3.0 GHz.

 The Counter should display 3.0 GHz at ≤ −21.0 dBm.

4 Sweep the frequencies from 3.0 GHz to 2.8 GHz.

 The Counter should read frequencies from 3.0 to 2.8 GHz at ≤ −21.0 dBm.

5 Record the actual reading in the Performance Test Record (Test 4, Line 3).

6 Disconnect the test setup.

200 MHz to 5.0 GHz Sensitivity for Option 050 only

1 Connect the 8340B Sweep Oscillator to Channel 2 of the counter.

2 Change the settings of the Sweep Oscillator to 5.0 GHz, −30 dBm.

3 Increase the power level in 1 dB steps until the Counter displays a stable reading of approximately 5.0 GHz.

 The Counter should display 5.0 GHz at ≤ −23 dBm.

 NOTE Use a power meter and sensor to ensure the accuracy of the power being input.

4 Sweep the frequencies from 200 MHz to 5.0 GHz.

 The Counter should read frequencies from 200 MHz to 5.0 GHz at ≤ −23 dBm.

5 Record the actual reading in the Performance Test Record (Test 4, Line 4).
Chapter 1 Performance Tests
Test 4: Option 015/030/050/124 Channel 2 Frequency Sensitivity

200 MHz to 12.4 GHz Sensitivity for Option 124 only

1. Connect the 8340B Sweep Oscillator to Channel 2 of the counter.

2. Change the settings of the Sweep Oscillator to 12.4 GHz, −30 dBm.

3. Increase the power level in 1 dB steps until the Counter displays a stable reading of approximately 12.4 GHz.

 The Counter should display 12.4 GHz at ≤ −23 dBm.

 NOTE
 Use a power meter and sensor to ensure the accuracy of the power being input.

4. Sweep the frequencies from 200 MHz to 12.4 GHz.

 The Counter should read frequencies from 200 MHz to 12.4 GHz at ≤ −23 dBm.

5. Record the actual reading in the Performance Test Record (Test 4, Line 5).

6. Disconnect the test setup.
Chapter 1 Performance Tests

Test 5: Option 015/030/050/124 Channel 2 Frequency Accuracy (HP 53181A Only)

Test 5: Option 015/030/050/124 Channel 2 Frequency Accuracy (HP 53181A Only)

This test verifies the frequency accuracy of the optional 1.5-GHz (Option 015), 3-GHz (Option 030), 5.0 GHz (Option 050), or 12.4 GHz (Option 124) Channel 2 for the HP 53181A Frequency Counter.

The tests are organized as follows:

- Option 015 Channel 2 Frequency Accuracy Test, starts on page 1-63
- Option 030 Channel 2 Frequency Accuracy Test, starts on page 1-65
- Option 050 Channel 2 Frequency Accuracy Test, starts on page 1-65
- Option 124 Channel 2 Frequency Accuracy Test, starts on page 1-67

100 MHz to 1.5 GHz Accuracy Test for Option 015

Equipment

HP 8663A Synthesized Signal Generator
HP 8340B Sweep Oscillator
HP 1250-0780 Type N-to-BNC Connector
HP 10503A BNC Cable (2)
HP 10100C 50\(\Omega\) Feedthrough
HP 11500D N-N Cable (Option 050 only)
HP 1250-1250 N(M) to SMA(F)
HP 1250-0777 N(F) to N(F)

Counter Setup

1 Cycle the POWER key to preset the Counter.

2 Set the Counter as follows:

 MEASURE/Freq & Ratio, FREQUENCY 2
 Gate & ExtArm, TIME: TIME 1.000 s
Chapter 1 Performance Tests
Test 5: Option 015/030/050/124 Channel 2 Frequency Accuracy (HP 53181A Only)

Procedure
1 Connect equipment as shown in Figure 1-15.

![Figure 1-15. Option 015/030/050/124 Channel 2 Frequency Accuracy Test Setup](image)

2 Set the HP 8663A Synthesized Signal Generator to output 100 MHz at -17.0 dBm.

Verify the Counter reads 100 MHz ±70 mHz.
3 Record the actual reading in the Performance Test Record (Test 5, Line 1).

4 Change the synthesized signal generator’s frequency to 1.5 GHz.
 Verify the Counter reads 1.5 GHz ±1 Hz

5 Record the actual reading in the Performance Test (Test 5, Line 2).

6 Disconnect the test setup.

Minimum to Maximum Accuracy Test for Options 030/050/124

Equipment
- HP 8663A Synthesized Signal Generator (not needed for Option 050)
- HP 8340B Sweep Oscillator
- HP 1250-0780 Type N-to-BNC Connector (not needed for Option 050)
- HP 10503A BNC Cable (2)
- HP 10100C 50Ω Feedthrough
- HP 11500D N-N Cable (Option 050 only)
- HP 1250-1250 N(M) to SMA(F)
- HP 1250-0777 N(F) to N(F)

Counter Setup

1 Cycle the POWER key to preset the Counter.

2 Set the Counter as follows:
 - MEASURE/Freq & Ratio, FREQUENCY 2
 - Gate & ExtArm, TIME: TIME 1.000 s
Chapter 1 Performance Tests

Test 5: Option 015/030/050/124 Channel 2 Frequency Accuracy (HP 53181A Only)

Procedure

1 Connect equipment as shown in Figure 1-15.

 (NOTE: For Option 050/124, skip steps 2 through 7. Proceed to step 8.)

2 Set the HP 8663A Synthesized Signal Generator to output 200 MHz at −17.0 dBm.

3 On the Counter, press Run key.

 Verify the HP 53181A Counter reads 100 MHz ±70 mHz.

4 Record the actual reading in the Performance Test Record (Test 5, Line 3).

5 Disconnect the HP 8663A output from Channel 2 of the Counter, and connect the HP 8340B Sweep Oscillator output to Channel 2 of the Counter as shown in Figure 1-15.

6 Set the HP 8340B to output 3.0 GHz at −17.0 dBm.

 Verify the HP 53181A Counter reads 3.0 GHz ±2 Hz.

7 Record the actual reading in the Performance Test Record. (Test 5, Line 4).
Test 5: Option 015/030/050/124 Channel 2 Frequency Accuracy (HP 53181A Only)

(NOTE: For Options 050/124)

8 Set the HP 8340B to output 5.0 GHz at –17 dBm.

Verify the HP 53181A Counter reads 5.0 GHz ±3 Hz.

9 Record the actual reading in the Performance Test Record (Test 5, Line 5).

(NOTE: For Option 124)

10 Set the HP 8340B to output 12.4 GHz at –17 dBm.

Verify the HP 53181A Counter reads 12.4 GHz ±8 Hz.

11 Record the actual reading in the Performance Test Record (Test 5, Line 6).

12 Disconnect the test setup.
Test 6: Peak Volts, Channel 1 (HP 53181A Only)

This test verifies the Peak Volts accuracy specification of the HP 53181A Frequency Counter.

Equipment

HP 3325B Synthesizer
HP 10100C 50Ω Feedthrough
HP 10503A BNC Cable

Counter Setup

1. Cycle the **POWER** key to preset the Counter.

2. Press **Other Meas** key until **VOLT PEAKS 1** is displayed.

3. Set **CHANNEL 1** and **CHANNEL 2** inputs to:

 50Ω/1MΩ, 50Ω
 X10 **Attenuate**, Off
 100kHz **Filter**, Off
Chapter 1 Performance Tests
Test 6: Peak Volts, Channel 1 (HP 53181A Only)

Procedure

1 Connect the equipment as shown in Figure 1-16.

![Figure 1-16. Peak Volts Test Setup](image)

2 Set the HP 3325B to output a 2 MHz, 2 Vp-p sine wave, and connect the signal to Channel 1 of the Counter.

 The Counter should display $-1.00 \pm 0.12V$ for the negative peak of the sine wave. This reading is displayed on the left side of the display.

 Record the actual readings in the Performance Test Record (Test 6, Line a).

 Also, the Counter should display $+1.00 \pm 0.12V$ for the positive peak of the sine wave. This reading is displayed on the right side of the display.

 Record the actual readings in the Performance Test Record (Test 6, Line b).

3 Disconnect the test setup.
HP 53181A HP-IB Verification Program (Optional)

The HP-IB Verification program exercises the HP 53181A through various operating modes via its HP-IB interface. If the Counter successfully completes all phases of the verification program, there is a high probability that the HP-IB interface is operating correctly. If the Counter fails the verification program, refer to the troubleshooting section in Chapter 2, “Service,” of this guide.

The HP-IB Verification program may be loaded into the HP 9000 series 200 or 300 Desktop Computer from the 3 1/2-inch disk (HP P/N 53181-13501) or the 5 1/4-inch disk (HP P/N 53181-13501).

1 To run the program on the disk, insert the disk into the Desktop Computer, load the program by typing Load “VER81”, and press RUN key on the computer’s keyboard.

2 Follow the instructions displayed in the computer’s screen.

3 After running this program, record the result (Pass or Fail) on the last page (page 1-74) of the HP 53181A Performance Test Record.
<table>
<thead>
<tr>
<th>Test Number</th>
<th>Operational Verification</th>
<th>Test Results</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Power on Self Test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Channel 1, 10 MHz Test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Run Self Test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4a</td>
<td>Termination Check Ch 1, 50Ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4b</td>
<td>Termination Check Ch 1, 1MΩ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5a</td>
<td>1 MHz External Timebase Input Test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5b</td>
<td>5 MHz External Timebase Input Test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5c</td>
<td>10 MHz External Timebase Input Test</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
HP 53181A Performance Test Record (Page 2 of 4)

Complete Performance Tests

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Test Description</th>
<th>Minimum</th>
<th>Actual Reading</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Trigger Level:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Channel 1</td>
<td>-15 mV</td>
<td>1. __________</td>
<td>+15 mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-15 mV</td>
<td>2. __________</td>
<td>+15 mV</td>
</tr>
</tbody>
</table>

Test 2: Channel 1 Frequency Sensitivity *(HP 53181A Only)*

<table>
<thead>
<tr>
<th>Standard (Front Panel Terminals)</th>
<th>Actual Reading</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 kHz–100 MHz, Channel 1</td>
<td>1. __________</td>
<td>≤ −21 dBm (20 mVrms)</td>
</tr>
<tr>
<td>100 MHz–200 MHz, Channel 1</td>
<td>2. __________</td>
<td>≤ −17.5 dBm (30 mVrms)</td>
</tr>
<tr>
<td>200 MHz–225 MHz, Channel 1</td>
<td>3. __________</td>
<td>≤ −15.0 dBm (40 mVrms)</td>
</tr>
</tbody>
</table>

Option 060 Rear Terminals

<table>
<thead>
<tr>
<th>Actual Reading</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 kHz–225 MHz, Channel 1</td>
<td>1. __________</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Test Description</th>
<th>Minimum</th>
<th>Actual Reading</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Channel 1 Frequency Accuracy</td>
<td>999,999,999 Hz</td>
<td>1. __________</td>
<td>1, 000, 000,001 Hz</td>
</tr>
<tr>
<td></td>
<td>1 MHz Test</td>
<td>99.999,999,93 MHz</td>
<td>2. __________</td>
<td>100.000, 000,07 MHz</td>
</tr>
<tr>
<td></td>
<td>100 MHz Test</td>
<td>199.999,999,87 MHz</td>
<td>3. __________</td>
<td>200.000,000,13 MHz</td>
</tr>
<tr>
<td></td>
<td>200 MHz Test</td>
<td>224.999,999,85 MHz</td>
<td>4. __________</td>
<td>225.000,000,15 MHz</td>
</tr>
</tbody>
</table>
Complete Performance Tests

Test 4: Option 015/030/050 Channel 2 Frequency Sensitivity (HP 53181A Only)

<table>
<thead>
<tr>
<th>Actual Reading</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. __________</td>
<td>≤ −27 dBm</td>
</tr>
<tr>
<td>2. __________</td>
<td>≤ −27 dBm</td>
</tr>
<tr>
<td>3. __________</td>
<td>≤ −21 dBm</td>
</tr>
<tr>
<td>4. __________</td>
<td>≤ −23 dBm</td>
</tr>
<tr>
<td>5. __________</td>
<td>≤ −23 dBm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Test Description</th>
<th>Minimum</th>
<th>Actual Reading</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Option 015/030 Channel 2 Frequency Accuracy (HP 53181A Only)</td>
<td>99,999,999,93 MHz</td>
<td>1. __________</td>
<td>100,000,000,07 MHz</td>
</tr>
<tr>
<td></td>
<td>100 MHz to 1.5 GHz Test for Option 015 (HP 53181A):</td>
<td>1,499,999,999 MHz</td>
<td>2. __________</td>
<td>1,500,000,001 MHz</td>
</tr>
<tr>
<td></td>
<td>Channel 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Channel 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>100 MHz to 3.0 GHz Test for Option 030 (HP 53181A):</td>
<td>99,999,999,93 MHz</td>
<td>3. __________</td>
<td>100,000,000,07 MHz</td>
</tr>
<tr>
<td></td>
<td>Channel 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Channel 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>200 MHz to 5.0 GHz Test for Option 050:</td>
<td>4,999,999,997 MHz</td>
<td>5. __________</td>
<td>5,000,000,003 MHz</td>
</tr>
<tr>
<td>5</td>
<td>200 MHz to 12.4 GHz Test for Option 124:</td>
<td>12,399,999,992</td>
<td>6. __________</td>
<td>12,400,000,008 MHz</td>
</tr>
</tbody>
</table>
Complete Performance Tests

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Test Description</th>
<th>Minimum</th>
<th>Actual Reading</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Peak Volts, Channel 1 (HP 53181A Only):</td>
<td>−1.12 V</td>
<td>a. __________</td>
<td>−0.88 V</td>
</tr>
<tr>
<td></td>
<td>Channel 1</td>
<td>+0.88 V</td>
<td>b. __________</td>
<td>+1.12V</td>
</tr>
<tr>
<td></td>
<td>HP-IB Verification (Optional)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Test Results</td>
<td>Pass</td>
<td>Fail</td>
<td></td>
</tr>
</tbody>
</table>

- [] Pass
- [] Fail

Chapter 1 Performance Tests

HP 53181A Performance Test Record

HP 53181A Performance Test Record (Page 4 of 4)

1-74 Assembly-Level Service Guide
Introduction

This chapter provides service information for your HP 53131A/132A/181A and is divided into seven major sections:

- **Returning the Instrument to Hewlett-Packard for Service** (page 2-3). This section provides you with step-by-step instructions on how to return the instrument for service.

- **About the HP 53131A/132A Calibration Menu** (page 2-6). This section contains reference information that gives a complete overview of the calibration menu of the HP 53131A/132A.

- **The HP 53131A/132A Calibration Procedures** (page 2-15). This section provides step-by-step procedures for calibrating the HP 53131A/132A.

- **About the HP 53181A Calibration Menu** (page 2-25). This section contains reference information that gives a complete overview of the calibration menu of the HP 53181A.

- **The HP 53181A Calibration Procedures** (page 2-31). This section provides step-by-step procedures for calibrating the HP 53181A.

- **Pre-Troubleshooting Information** (page 2-36). This section provides you with pertinent information such as safety considerations, recommended test equipment, repair and after-service considerations, and assembly identification and location.

- **Troubleshooting the Counter** (page 2-45). This section provides you with troubleshooting procedures that isolate the faulty assembly or module.

If the instrument is under warranty, return the instrument to Hewlett-Packard for service. Refer to the first section of this chapter titled “Returning the Instrument to Hewlett-Packard for Service.” If you decide to troubleshoot the instrument yourself, refer to the section titled “Troubleshooting the Counter.”
Returning the Instrument to Hewlett-Packard for Service

To Provide Repair Information

If you are shipping the instrument to an HP office for service or repair, call your nearest Hewlett-Packard Sales Office to make arrangements. Then tag and package the HP 53131A/132A/181A for shipment.

Note there is an Express Repair/Performance Calibration Service for USA customers if downtime is critical. You can receive your repaired Counter via overnight shipment. Just call 800-403-0801 and ask for Express Repair/Performance Calibration Service. When your Counter is repaired, it will be returned via overnight shipment at no extra charge.

1 Write the following information on a tag:
 - Owner’s name and address
 - Instrument model number
 - Complete serial number
 - Description of service required or failure indications

2 Attach the tag to the instrument.

3 Pack the instrument.

 If you have the original packaging materials, refer to the following section titled “To Pack in the Original Packaging Materials.” If the original packaging material are not available, you can order new materials through an HP Sales Office. The new materials are identical to those used by the factory when packaging the instrument. If you want to use commercially available materials, refer to the section titled “To Pack in the Commercially Available Materials.”
To Pack in the Original Packaging Materials

Whenever possible, repack the instrument in its original packaging for shipment. In any correspondence, refer to the instrument by the model number and complete serial number.

1. Disconnect the power cord, probes, cables, or other accessories attached to the instrument.

2. Make sure the folded corrugated spacer (which normally contains the manuals) is in the box to ensure proper fitting.

3. Make sure one of the polystyrene block is in its proper position in the box.

4. Place the instrument, front panel end first, on the polystyrene block.

5. Place the other polystyrene block on top of the rear end of the instrument to secure it.

6. Do not return the manuals with the instrument. Return an accessory only when it is a part of the failure symptoms.

7. Seal the shipping container securely.
Chapter 2 Service

Returning the Instrument to Hewlett-Packard for Service

To Pack in the Commercially Available Materials

If the factory packaging materials are not available, you can use commercially available materials for shipping.

1 **Wrap the instrument in heavy paper or plastic.**

2 **Place the instrument in a strong shipping container.**

 A double-wall carton made of 350-lb. test material is adequate.

3 **Protect the control panel with cardboard.**

4 **Add a layer of shock-absorbing material.**

 The shock-absorbing material should be 70 to 100 mm (3 to 4 inches) thick around all sides of the instrument to prevent movement inside the container.

5 **Seal the shipping container securely.**

6 **Mark the shipping container FRAGILE.**
About the HP 53131A/132A Calibration Menu

NOTE

If you are familiar with the information provided in this section, proceed to the section titled “The HP 53131A/132A Calibration Procedures” on page 2-15 to calibrate your Counter. This section, “About the HP 53131A/132A Calibration Menu,” can be used as a reference.

NOTE

With the exception of the standard timebase oscillator, no adjustments are required for the HP 53131A/132A Counter.

Overview of the HP 53131A/132A Calibration Menu

The Calibration menu is accessed by holding the Scale & Offset key and cycling the POWER key. All of the calibration factors and security settings are stored in non-volatile memory, and do not change when power has been off or after a remote interface reset.

A calibration security code feature allows you to enter a security code (electronic key) to prevent accidental or unauthorized calibrations of the Counter. The security code is set to 53131 or 53132 (corresponding to the model) when the Counter is shipped from the factory. If you forget your security code, you can reset the security code to the model-number default by resetting all of the non-volatile memory to a default state (Contact HP for this confidential procedure).

NOTE

This menu does not exist in early versions of the Counter. In the early versions (firmware revisions 3317, 3335, and 3402) of the HP 53131A/132A, the CAL: menu item resides in the Utility menu, and there is no calibration security capability. See Chapter 6, “Backdating,” in this guide for the correct calibration procedures.
Chapter 2 Service

About the HP 53131A/132A Calibration Menu

The Calibration menu, illustrated on page 2-8, allows you to:

- view the calibration security status of the Counter (CAL SECURE or CAL UNSECURE)
- initiate the Counter's calibration routines, which can perform automatic calibration of the voltage offset and gain of the front-end input amplifiers (CAL: OFFS 1/2?, GAIN 1/2?), of the optional timebase (CAL: TIMEBAS?), and of the differences in electrical path-length between channels 1 and 2 (CAL: TI QUIK? and CAL: TI FINE?)
- secure against calibration by entering the security code while the Counter is unsecured (CODE:)
- unsecure for calibration by entering the security code while the Counter is secured (CODE:)
- change the security code by entering a new code while the Counter is unsecured (CODE:)
- view the calibration count, which indicates the number of times that the Counter has been calibrated (CAL COUNT?). The calibration count increments up to a maximum of 32,767 after which it wraps around to 1. A calibration count of 0 indicates that the Counter is completely uncalibrated. (The calibration count is unaffected by interpolator calibration.)
- get Help (HELP:) with any of the following:
 - how to calibrate (CAL?),
 - how to secure (SECURE?), and
 - how to change the code (CODE?)

NOTE

A good precaution is to use an HP-IB program (see the programming example titled “To Read and Store Calibration Data” in Chapter 3 of the Programming Guide) to read and store the calibration factors prior to initiating any calibration.
Chapter 2 Service
About the HP 53131A/132A Calibration Menu

The HP 53131A/132A Calibration Menu Tree

NOTE

Turn power off, press and hold Scale & Offset key, then press POWER key to access this menu. This menu does not exist in early versions (firmware revisions 3317, 3335, and 3402) of the HP 53131A/132A. In the early versions of the Counter, the CAL: menu item resides in the Utility menu, and there is no calibration security capability. See Chapter 6, “Backdating,” in this guide for correct calibration procedures.

1 This menu item appears and calibration is permitted only if calibration is unsecure. Enter in the correct code to change calibration to secure.

2 Timebase can be automatically calibrated only if the timebase option is installed.

1

2
To View the Calibration Menu and Security Status

The Calibration menu is accessed by holding the Scale & Offset key and cycling the POWER key. The first item in the Calibration menu is a message indicating the calibration security status: CAL SECURE or CAL UNSECURE.

To Unsecure for Calibration

1. Press and hold Scale & Offset key, then cycle POWER key.

 CAL SECURE is displayed.

 If CAL UNSECURE is displayed, then the Counter is already unsecured for calibration, and the remaining steps are not applicable.

2. Press Scale & Offset key until CODE: is displayed.

3. Press the appropriate arrow keys to enter the security code “53131”, for example, if 53131 was the security code set at the factory.

4. Press Enter key.

 CAL UNSECURE is displayed.

 NOTE If “53131” was NOT the correct security code, the Counter would have displayed BAD CODE.

To Initiate the Calibration Routines

1. Press and hold Scale & Offset key, then cycle POWER key.

2. Unsecure for calibration by performing the preceding procedure.

3. Press Scale & Offset key until CAL: OFFS1? is displayed.
Chapter 2 Service

About the HP 53131A/132A Calibration Menu

4 Press any one of the arrow keys until your calibration choice (that is, CAL: OFFS2?, CAL: GAIN 1?, CAL: GAIN 2?, CAL: TI QUIK?, CAL: TI FINE?, or CAL: TIMEBAS?) is displayed.

Note that the timebase choice (CAL: TIMEBAS?) only appears when the Timebase Option is installed.

5 Press Enter key.

A scrolling message is displayed.

6 Follow the instructions in the scrolling message, and press Enter key to start the calibration.

The Counter momentarily displays CALIBRATING, and then displays the calibration test name and pass/fail status (for example, OFFS 1 PASS).

When the calibration completes, a pass/fail message will be displayed. If the calibration failed, then the calibration factors remain unchanged.

INFORMATION ABOUT CAL:TI QUIK? AND CAL:TI FINE?

CAL:TI QUIK? and CAL:TI FINE? are two different ways to calibrate out the differences in electrical path length between Channel 1 and Channel 2. When you provide the calibration signal, the instrument measures how the difference in path length translates to an average delay between the two channels.

The Quick Time Interval Calibration requires a simple input signal. You provide on Channel 1 a clean square wave with a rapid rise time and an approximate frequency of 10 MHz. The instrument routes the calibration signal in COMMON to both channels 1 and 2, and measures the average delay between the two channels so configured. The advantage of the Quick Calibration is that it is easy, quick, and requires little special equipment. The disadvantage is that the calibration term is best fit for TI measurements configured COMMON and measured from rising to rising edge; it leaves uncorrected a small systematic error for all other configurations. The Fine Time Interval Calibration minimizes systematic error by calibrating the instrument in each configuration.
The Fine Time Interval Calibration requires a special calibrator signal source to provide input—because it produces eight calibration terms, each tailored to a different combination of input conditions. It requires the synthesizer driving the calibrator to produce a very accurate 10 MHz waveform—because it calibrates the pulse width configuration against the 50-nanosecond pulse width so provided. It minimizes systematic error by calibrating the instrument in each of the eight configurations: falling to falling edges, falling to rising edges, etc., and both SEPARATE and COMMON routing.

Notes Pertaining to CAL: TI QUIK?

Advantage: Calibration signal is simple.

Disadvantage: One correction term for all slope and routing configurations.

Input signal: clean square wave, fast rise time, approximately 10 MHz, 1 volt peak-to-peak, no dc offset (oscillating about 0.0 volts), driving 50Ω.

Timebase: Any external timebase you provide is ignored during calibration.

Procedure: From the front-panel calibration menu, one keypress invokes the calibration.

Notes Pertaining to CAL: TI FINE?

Advantage: Calibration minimizes systematic error for any supported combination of input slope and routing.

Disadvantage: Calibration signal is more complex. If you perform a calibration that you feel is erroneous and do not feel you can perform the fine calibration, perform the CAL: TI QUIK? calibration instead, or restore the calibration factors that you saved prior to starting.

Equipment: HP 8130A Pulse Generator or equivalent.

HP 59992A J06 Time Interval Calibrator or equivalent.
Equipment and Counter Setup: See Figure 2-1.

Figure 2-1. Calibration Setup for CAL: TI FINE?

Out of HP 8130A, into HP 59992A J06 Calibrator Signal:

- **PERIOD**: 100 ns
- **WIDTH**: 50 ns
- **High**: 0.50 V
- **Low**: −0.50 V
- **Input Mode**: Normal

Timebase: Any external timebase you provide is ignored during calibration.

Procedure: From the front-panel calibration menu, one keypress invokes the calibration. You are prompted to press buttons on the HP 59992A J06 Calibrator for each part of a four-part calibration.

Note that CAL: TI FINE? requires the completion of four steps in order.
To Secure Against Calibration

1. Press and hold Scale & Offset key, then cycle POWER key.

 CAL UNSECURE is displayed. If CAL SECURE is displayed, then the Counter is already secured against calibration and the remaining steps are not applicable.

2. Press Scale & Offset key until CODE: is displayed.

3. Press the appropriate arrow keys to enter the security code, then press Enter key.

 CAL SECURE is displayed.

To Change to a New Security Code

1. Press and hold Scale & Offset key, then cycle POWER key.

2. Unsecure for calibration by the using the procedure described in the section titled “To Unsecure for Calibration.”

3. Press Scale & Offset key until CODE: is displayed.

4. Press the appropriate arrow keys to enter the new or customized security code, then press Enter key.

 A scrolling message will appear, indicating what the new code is. For example, the Counter displays the NEW CODE IS 5 if you entered “5” as the new code.
To View the Calibration Count

1. Press and hold Scale & Offset key, then cycle POWER key.

2. Press Scale & Offset key until CAL COUNT? is displayed.

3. Press any one of the entry keys (arrow, +/-, Enter) to have a scrolling message appear, indicating what the calibration count is.

 Your Counter was calibrated before it left the factory. When you receive your Counter, read the calibration count to determine its initial value.

To Get Help with the Calibration Menu

1. Press and hold Scale & Offset key, then cycle POWER key.

2. Press Scale & Offset key until HELP: CAL? is displayed.

3. Press any one of the arrow keys until your help choice (that is, HELP: CAL?, HELP: SECURE?, HELP: CODE?) is displayed.

4. Press Enter key to display the help information.
First Determine the Counter Firmware Revision

Press and hold Recall (Utility) key, then cycle POWER key.

REV: n is displayed; where “n” represents the numeric firmware revision code.

If 3317, 3335, or 3402 is displayed as the firmware revision code, then perform the calibration procedures in Chapter 6, “Backdating.”

If the Counter’s firmware revision code is higher than the ones in the previous paragraph, then perform the following procedures in this section.

NOTE

After completing the instrument calibration, BE SURE to secure the calibration by performing the procedure in the section titled “To Secure Against Calibration” on page 2-13 of this chapter.

To Calibrate the Offset for Channels 1 and 2

1. To access the Calibration menu, power down, and press and hold the Scale & Offset key, then press POWER key.

 The first item in the Calibration menu is a message indicating the calibration security status: **CAL SECURE** or **CAL UNSECURE**.

 The Counter calibration must be unsecured to perform calibration. If **CAL UNSECURE** is displayed, the Counter is already unsecured for calibration; go to step 5. However, if **CAL SECURE** is displayed then perform steps 2 through 4 to unsecure calibration.

2. Press Scale & Offset key until **CODE: 0** is displayed.
3 Press the appropriate arrow keys to enter the security code “53131”, for example, if 53131 is the security code by performing the following steps:

a. Press ↘ key four times.
 The Counter should display CODE: 00000.

b. Press ↙ key five times.
 The Counter should display CODE: 50000.

c. Press ↘ key once, and then press ↙ key three times.
 The Counter should display CODE: 53000.

d. Press ↘ key once, and then press ↙ key once.
 The Counter should display CODE: 53100.

e. Press ↘ key once, and then press ↙ key three times.
 The Counter should display CODE: 53130.

f. Press ↘ key once, and then press ↙ key once.
 The Counter should display CODE: 53131.

 g. Finally, press Enter key.
 CAL UNSECURE is displayed.

 NOTE
 If “53131” is NOT the correct security code, the Counter will display BAD CODE.

4 Press Scale & Offset key until CAL: OFFS 1 ? is displayed.

5 Press Enter key.

A scrolling message on the display will ask you to remove any signals connected to Channel 1. Follow the instruction.
6 Press Enter key.

The Counter momentarily displays **CALIBRATING**, and then it should display **OFFS 1 PASS**.

If the fail message is displayed, refer to the troubleshooting section in this chapter.

7 To calibrate Channel 2, press any one of the arrow keys until **CAL: OFFS 2 ?** is displayed.

8 Press Enter key.

A scrolling message on the display will ask you to remove any signals connected to Channel 2. Follow the instruction.

9 Press Enter key.

The Counter momentarily displays **CALIBRATING**, and then it should display **OFFS 2 PASS**.

If the fail message is displayed, refer to the troubleshooting section in this chapter.

This completes the Offset Calibration procedure. Proceed to the next procedure to calibrate the gain.
To Calibrate the Gain for Channels 1 and 2

1. Press any one of the arrow keys until CAL: GAIN 1 ? is displayed.

2. Press Enter key.

 A scrolling message is displayed. Follow the instruction by performing the following steps.

3. Connect a BNC tee connector to Channel 1 of the Counter.

4. Connect the Counter, dc power supply, and digital multimeter as shown in Figure 2-2.

5. Adjust the power supply until the digital multimeter displays +5.000 V ±0.001 V.

6. Disconnect the digital multimeter from the Counter to prevent noise from being introduced into the measurement.

7. Press Enter key.

 The Counter momentarily displays CALIBRATING, and then it should display GAIN 1 PASS.

 If the fail message is displayed, refer to the troubleshooting section in this chapter.
8 To calibrate the gain for Channel 2, connect the input or the BNC Tee to Channel 2 of the Counter.

9 Press any one of the arrow keys until \textit{CAL: GAIN 2 ?} is displayed.

10 Press \textit{Enter} key.

A scrolling message is displayed. (The +5V dc supply should already be connected to Channel 2 as you were previously instructed to do this in step 8.)

11 Press \textit{Enter} key again.

The Counter momentarily displays \textit{CALIBRATING}, and then it should display \textit{GAIN 2 PASS}.

If the fail message is displayed, refer to the troubleshooting section in this chapter.

12 Disconnect the calibration setup.

This completes the Gain Calibration procedure. Proceed to the next procedure to calibrate the time interval.

\textbf{To Calibrate Time Interval}

Refer to the section titled \textit{“INFORMATION ABOUT CAL:TI QUIK? AND CAL:TI FINE?”} (page 2-10 and page 2-11) for details on the differences between the two time interval calibrations.
CAL: TI QUIK? Calibration

1 Press any one of the arrow keys until CAL: TI QUIK? is displayed.

2 Press Enter key.

A scrolling message with instructions appears. Follow the instruction by performing the following procedure

3 Connect the HP 8130A Pulse Generator output to Channel 1 of the Counter as shown in Figure 2-3.

Equipment

HP 8130A Pulse Generator (or equivalent)
HP 10503A BNC Cable

Figure 2-3. Calibration Setup for CAL: TI QUIK?

4 Set the HP 8130A as follows:

PERIOD: 100 ns
WIDTH: 50 ns
High: 0.50 V Low: −0.50 V
Input Mode: Normal

NOTE

Any external timebase connected to the Counter is ignored during this calibration.
Chapter 2 Service

The HP 53131A/132A Calibration Procedures

5 **Press Enter key.**

The Counter displays *CALIBRATING*, and then it should display *TI CAL PASS*.

If the fail message is displayed, refer to the troubleshooting section in this chapter.

6 **Disconnect the calibration setup.**

This completes the TI QUIK? calibration procedures.

Depending on which timebase the Counter contains, proceed to the procedure “To Calibrate the Standard Timebase” (page 2-23) or the “To Calibrate the High Stability Timebase Option (Medium, High, or Ultra-High)” procedure (page 2-24) to calibrate the timebase.

CAL: TI FINE? Calibration

1 **Connect the HP 8130A Pulse Generator, HP 59992A J06 Time Interval Calibrator, and HP 53131A/123A Counter as shown in Figure 2-4.**

Equipment

HP 8130A Pulse Generator (or equivalent)
HP 59992A J06 Time Interval Calibrator (or equivalent)
HP 10503A BNC Cable (3)

Figure 2-4. Calibration Setup for CAL: TI FINE?
2 Set the HP 8130A as follows:

PERIOD: 100 ns
WIDTH: 50 ns
High: 0.50 V Low: −0.50 V
Input Mode: Normal

NOTE
Any external timebase connected to the Counter is ignored during this calibration.

3 Press any one of the arrow keys until CAL: TI FINE? is displayed.

4 Press Enter key.

A scrolling message with instructions appears. Follow the instruction by performing the following procedure.

Note the Counter display message prompts you to press buttons on the HP 59992A J06 Calibrator for each part of a four-part calibration.

Note that CAL: TI FINE? requires the completion of four steps in the proper order.

5 Press Enter key after each displayed instruction.

The Counter should display CALIBRATING, and then it should display TI CAL PASS.

If the fail message is displayed, refer to the troubleshooting section in this chapter.

This completes the TI FINE? calibration procedures.

Depending on which timebase the Counter contains, proceed to the following procedure “To Calibrate the Standard Timebase” or the “To Calibrate the High Stability Timebase Option (Medium, High, or Ultra-High)” procedure (page 2-24) to calibrate the timebase.
To Calibrate the Standard Timebase

1 Connect the output of a 10 MHz house standard to Channel 1 of the Counter as shown in Figure 2-5.

2 Cycle the POWER key to preset the Counter.

 Allow the counter to warm up for approximately 30 minutes.

3 With an insulated tuning tool, turn the OSC Adjust potentiometer (located on the rear chassis of the Counter) until the frequency reading in the Counter display is 10.0000000 MHz ± 5 Hz.

 The Counter will be calibrated to the house standard.

 If you are not able to adjust the frequency correctly, refer to the troubleshooting section in this chapter.

 This completes the Standard Timebase Calibration procedure.
To Calibrate the High Stability Timebase Option (Medium, High, or Ultra-High)

NOTE
Allow the Counter to warm up for approximately 24 hours before performing this calibration. This calibration is unlikely to fail, unless the Counter is not warmed up.

1. Connect the output of a 10 MHz house standard to Channel 1 of the Counter as shown in Figure 2-5.

2. Press any one of the arrow keys until `CAL: TIMEBAS?` is displayed.

 Note that the timebase choice (CAL: TIMEBAS?) only appears when the Timebase Option is installed.

3. Press Enter key and follow the instructions in the scrolling message that appears in the Counter display.

4. Press Enter key after each instruction.

 The Counter displays `CALIBRATING`, and then it should display `TB CAL PASS`.

 If the fail message is displayed (even after the Counter has been warmed up for 24 hours), refer to the troubleshooting section in this chapter.

 This completes the High Stability Timebase Option Calibration procedure.

 If all tests passed, the Counter is now calibrated.
About the HP 53181A Calibration Menu

NOTE

If you are familiar with the information provided in this section, proceed to the section titled “The HP 53181A Calibration Procedures” (page 2-31) to calibrate your Counter. This section, “About the HP 53181A Calibration Menu,” can be used as a reference.

NOTE

With the exception of the standard timebase oscillator, no adjustments are required for the HP 53181A Counter.

Overview of the HP 53181A Calibration Menu

The Calibration menu is accessed by holding the Scale & Offset key and cycling the POWER key. All of the calibration factors and security settings are stored in non-volatile memory, and do not change when power has been off or after a remote interface reset.

A calibration security code feature allows you to enter a security code (electronic key) to prevent accidental or unauthorized calibrations of the Counter. The security code is set to 53181 when the Counter is shipped from the factory. If you forget your security code, you can reset the security code to the model-number default by resetting all of the non-volatile memory to a default state.

The Calibration menu, illustrated on page 2-27, allows you to:

• view the calibration security status of the Counter (CAL SECURE or CAL UNSECURE)
• initiate the Counter’s calibration routines, which can perform automatic calibration of the voltage offset and gain of the front-end input amplifiers (CAL: OFFS 1?, GAIN 1?), of the optional timebase (CAL: TIMEBAS?)
• secure against calibration by entering the security code while the Counter is unsecured (CODE:)
Chapter 2 Service
About the HP 53181A Calibration Menu

- unsecure for calibration by entering the security code while the Counter is secured (CODE:)
- change the security code by entering a new code while the Counter is unsecured (CODE:)
- view the calibration count, which indicates the number of times that the Counter has been calibrated (CAL COUNT?). The calibration count increments up to a maximum of 32,767 after which it wraps around to 1. A calibration count of 0 indicates that the Counter is completely uncalibrated. (The calibration count is unaffected by interpolator calibration.)
- get Help (HELP:) with any of the following:
 - how to calibrate (CAL?),
 - how to secure (SECURE?), and
 - how to change the code (CODE?)

NOTE
A good precaution is to use an HP-IB program (see the programming example titled “To Read and Store Calibration Data” in Chapter 3 of the Programming Guide) to read and store the calibration factors prior to initiating any calibration.
Chapter 2 Service

About the HP 53181A Calibration Menu

The HP 53181A Calibration Menu Tree

NOTE

Turn power off, press and hold Scale & Offset key, then press POWER key to access this menu.

3 This menu item appears and calibration is permitted only if calibration is unsecured. Enter in the correct code to change calibration to secure.

4 Timebase can be automatically calibrated only if the timebase option is installed.
To View the Calibration Menu and Security Status

The Calibration menu is accessed by holding the Scale & Offset key and cycling the POWER key. The first item in the Calibration menu is a message indicating the calibration security status: CAL SECURE or CAL UNSECURE.

To Unsecure for Calibration

1. Press and hold Scale & Offset key, then cycle POWER key.

 CAL SECURE is displayed.

 If CAL UNSECURE is displayed, then the Counter is already unsecured for calibration, and the remaining steps are not applicable.

2. Press Scale & Offset key until CODE: is displayed.

3. Press the appropriate arrow keys to enter the security code “53181”, for example, if 53181 was the security code set at the factory.

4. Press Enter key.

 CAL UNSECURE is displayed.

NOTE

If “53181” was NOT the correct security code, the Counter would have displayed BAD CODE.
To Initiate the Calibration Routines

1 Press and hold Scale & Offset key, then cycle POWER key.

2 Unsecure for calibration by performing the preceding procedure.

3 Press Scale & Offset key until CAL: OFFS1? is displayed.

4 Press any one of the arrow keys until your calibration choice (that is, CAL: GAIN 1?, or CAL: TIMEBAS?) is displayed.

Note that the timebase choice (CAL: TIMEBAS?) only appears when the Timebase Option is installed.

5 Press Enter key.

A scrolling message is displayed.

6 Follow the instructions in the scrolling message, and press Enter key to start the calibration.

The Counter momentarily displays CALIBRATING, and then displays the calibration test name and pass/fail status (for example, OFFS 1 PASS).

When the calibration completes, a pass/fail message will be displayed. If the calibration failed, then the calibration factors remain unchanged.

To Secure Against Calibration

1 Press and hold Scale & Offset key, then cycle POWER key.

CAL UNSECURE is displayed. If CAL SECURE is displayed, then the Counter is already secured against calibration and the remaining steps are not applicable.

2 Press Scale & Offset key until CODE: is displayed.

3 Press the appropriate arrow keys to enter the security code, then press Enter key.

CAL SECURE is displayed.
Chapter 2 Service
About the HP 53181A Calibration Menu

To Change to New the Security Code
1 Press and hold Scale & Offset key, then cycle POWER key.

2 Unsecure for calibration by using the procedure described in the section titled “To Unsecure for Calibration.”

3 Press Scale & Offset key until CODE: is displayed.

4 Press the appropriate arrow keys to enter the new or customized security code, then press Enter key.

A scrolling message will appear, indicating what the new code is. For example, the Counter displays the NEW CODE IS 5 if you entered “5” as the new code.

To View the Calibration Count
1 Press and hold Scale & Offset key, then cycle POWER key.

2 Press Scale & Offset key until CAL COUNT? is displayed.

3 Press any one of the entry keys (arrow, +/-, Enter) to have a scrolling message appear, indicating what the calibration count is.

Your Counter was calibrated before it left the factory. When you receive your Counter, read the calibration count to determine its initial value.

To Get Help with the Calibration Menu
1 Press and hold Scale & Offset key, then cycle POWER key.

2 Press Scale & Offset key until HELP: CAL? is displayed.

3 Press any one of the arrow keys until your help choice (that is, HELP: CAL?, HELP: SECURE?, HELP: CODE?) is displayed.

4 Press Enter key to display the help information.
The HP 53181A Calibration Procedures

First Determine the Counter Firmware Revision
Press and hold Recall (Utility) key, then cycle POWER key.

REV: n is displayed; where “n” represents the numeric firmware revision code.

NOTE
After completing the instrument calibration, BE SURE to secure the calibration by performing the procedure in the section titled “To Secure Against Calibration” on page 2-29 of this chapter.

To Calibrate the Offset for Channel 1

1. **To access the Calibration menu, power down, and press and hold the Scale & Offset key, then press POWER key.**

The first item in the Calibration menu is a message indicating the calibration security status: *CAL SECURE* or *CAL UNSECURE.*

The Counter calibration must be unsecured to perform calibration. If *CAL UNSECURE* is displayed, the Counter is already unsecured for calibration; go to step 5. However, if *CAL SECURE* is displayed then perform steps 2 through 4 to unsecure calibration.

2. **Press Scale & Offset key until CODE: 0 is displayed.**

3. **Press the appropriate arrow keys to enter the security code “53181”, for example, if 53181 is the security code by performing the following steps:**

 a. **Press ♫ key four times.**

 The Counter should display *CODE: 00000.*

 b. **Press ♫ key five times.**

 The Counter should display *CODE: 50000.*
Chapter 2 Service
The HP 53181A Calibration Procedures
c. Press ‼ key once, and then press ‼ key three times.
The Counter should display CODE: 53000.
d. Press ‼ key once, and then press ‼ key once.
The Counter should display CODE: 53100.
e. Press ‼ key once, and then press ‼ key eight times.
The Counter should display CODE: 53180.
f. Press ‼ key once, and then press ‼ key once.
The Counter should display CODE: 53181.
g. Finally, press Enter key.
CAL UNSECURE is displayed.

NOTE
If “53181” is NOT the correct security code, the Counter will display BAD CODE.

4 Press Scale & Offset key until CAL: OFFS 1 ? is displayed.
5 Press Enter key.
A scrolling message on the display will ask you to remove any signals connected to Channel 1. Follow the instruction.
6 Press Enter key.
The Counter momentarily displays CALIBRATING, and then it should display OFFS 1 PASS.
If the fail message is displayed, refer to the troubleshooting section in this chapter.
This completes the Offset Calibration procedure. Proceed to the next procedure to calibrate the gain.
To Calibrate the Gain for Channel 1

1. Press any one of the arrow keys until `CAL: GAIN 1 ?` is displayed.

2. Press Enter key.

 A scrolling message is displayed. Follow the instruction by performing the following steps.

3. Connect a BNC tee connector to Channel 1 of the HP 53181A.

4. Connect the Counter, dc power supply, and digital multimeter shown in Figure 2-6.

![Figure 2-6. Gain Calibration Setup](image)

5. Adjust the power supply until the digital multimeter $+5.000 \text{ V} \pm 0.001 \text{ V}$.

6. Disconnect the digital multimeter from the Counter to prevent noise from being introduced into the measurement.

7. Press Enter key.

 The Counter momentarily displays `CALIBRATING`, and then it should display `GAIN 1 PASS`.

 If the fail message is displayed, refer to the troubleshooting section in this chapter.
Chapter 2 Service

The HP 53181A Calibration Procedures

8 Disconnect the calibration setup.

This completes the Gain Calibration procedure.

Depending on which timebase the Counter contains, proceed to either the following procedure “To Calibrate the Standard Timebase” or the “To Calibrate the High Stability Timebase Option (Medium, High, or Ultra-High)” procedure (page 2-35) to calibrate the timebase.

To Calibrate the Standard Timebase

1 Connect the output of a 10 MHz house standard to Channel 1 of the Counter as shown in Figure 2-7.

![Figure 2-7. Standard Timebase Calibration Setup](image)

2 Cycle the POWER key to preset the Counter.

Allow the counter to warm up for approximately 30 minutes.

3 With an insulated tuning tool, turn the OSC Adjust potentiometer (located on the rear chassis of the Counter) until the frequency reading in the Counter display is 10.00000000 MHz ± 5 Hz.

The Counter will be calibrated to the house standard.

If you are not able to adjust the frequency correctly, refer to the troubleshooting section in this chapter.

This completes the Standard Timebase Calibration procedure.
To Calibrate the High Stability Timebase Option (Medium, High, or Ultra-High)

NOTE
Allow the Counter to warm up for approximately 24 hours before performing this calibration. This calibration is unlikely to fail, unless the Counter is not warmed up.

1 Connect the output of a 10 MHz house standard to Channel 1 of the Counter as shown in Figure 2-7.

2 Press any one of the arrow keys until CAL: TIMEBAS? is displayed.

 Note that the timebase choice (CAL: TIMEBAS?) only appears when the Timebase Option is installed.

3 Press Enter key and follow the instructions in the scrolling message that appears in the Counter display.

4 Press Enter key after each instruction.

 The Counter displays CALIBRATING, and then it should display TB CAL PASS.

 If the fail message is displayed (even after the Counter has been warmed up for 24 hours), refer to the troubleshooting section in this chapter.

 This completes the High Stability Timebase Option Calibration procedure.

 If all tests passed, the Counter is now calibrated.

NOTE
If the counter has been disconnected from line power for over 24 hours, it may take up to 30 days for the daily aging rate to be re-attained.
Pre-Troubleshooting Information

This section contains the following pertinent troubleshooting information:

- Safety Considerations
- Recommended Test Equipment
- Repair Considerations
- After Service Considerations
- Assembly Identification and Location

Safety Considerations

Although this instrument has been designed in accordance with international safety standards, this guide contains information, cautions, and warnings which must be followed to ensure safe operation and to retain the instrument in a safe condition. Service instructions, and adjustment procedures requiring removal of the instrument cover, are for use by service-trained personnel only. To avoid dangerous electric shock, do not perform any servicing or make any adjustments with the cover removed, unless qualified to do so.
WARNING

BEFORE APPLYING AC POWER, THE INSTRUMENT AND ALL PROTECTIVE EARTH TERMINALS, EXTENSION CORDS, AUTO TRANSFORMERS, AND DEVICES CONNECTED TO THE INSTRUMENT SHOULD BE CONNECTED TO A PROTECTIVE EARTH GROUNDED SOCKET.

ANY INTERRUPTION OF THE PROTECTIVE GROUNDING CONDUCTOR INSIDE OR OUTSIDE THE INSTRUMENT OR DISCONNECTION OF THE PROTECTIVE EARTH TERMINAL WILL CAUSE A POTENTIAL SHOCK HAZARD THAT COULD RESULT IN PERSONAL INJURY. INTENTIONAL INTERRUPTION IS PROHIBITED.

Any maintenance and repair of the opened instrument under voltage should be avoided as much as possible and, if necessary, should be carried out only by a skilled person who is aware of the hazards involved (for example, fire and electric shock).

Recommended Test Equipment

Test equipment recommended for testing and troubleshooting the HP 53131A/132A/181A is listed in Chapter 1, “Performance Tests.” Substitute equipment may be used if it meets or exceeds the required characteristics listed in Table 1-1.
Chapter 2 Service
Pre-Troubleshooting Information

Repair Considerations

Electrostatic Discharge
Electronic components and assemblies in the HP 53131A/132A/181A can be permanently degraded or damaged by electrostatic discharge. Use the following precautions when servicing the instrument:

1. **ENSURE** that static-sensitive devices or assemblies are serviced at static-safe work stations providing proper grounding for service personnel.

2. **ENSURE** that static-sensitive devices or assemblies are stored in static shielding bags or containers.

3. **DO NOT** wear clothing subject to static-charge buildup, such as wool or synthetic materials.

4. **DO NOT** handle components or assemblies in carpeted areas.

5. **DO NOT** remove an assembly or component from its static shielding protection until you are ready to install it.

6. **AVOID** touching component leads. (Handle by packaging only.)

Surface Mount Repair
Surface mount components should only be removed using soldering irons or desoldering stations expressly designed for surface mount components. Use of conventional solder removal equipment will almost always result in permanent damage to the printed circuit board and will void your Hewlett-Packard factory warranty.

Disassembly and Reassembly Specifics
Refer to the Chapter 3, “Replacing Assemblies,” in this guide for complete disassembly and reassemble details, and Chapter 5, “Replaceable Parts,” for the appropriate exploded view of the instrument parts.
After Service Considerations

Product Safety Checks

The following safety checks must be performed after any troubleshooting and repair procedures have been completed to ensure the safe operation of the instrument.

WARNING

RESISTANCE CHECKS DESCRIBED IN THE FOLLOWING TEXT REQUIRE THAT THE POWER CORD BE CONNECTED TO THE INSTRUMENT AND THAT AC POWER BE DISCONNECTED. BE SURE THAT THE POWER CORD IS NOT CONNECTED TO POWER BEFORE PERFORMING ANY SAFETY CHECKS.

1 **VISUAL INSPECTION.** Visually inspect the interior of the instrument for any signs of abnormal internally generated heat, such as discolored printed circuit boards or components, damaged insulation, or evidence of arcing. Determine and remedy the cause of any such condition.

2 **GROUND CONTINUITY TEST.** Plug the power cord into the rear-panel power receptacle. (DO NOT connect the instrument to ac power at this time.) Using a suitable ohmmeter, check resistance from the instrument’s metallic connection (such as the rear panel or BNC ground collar) to the ground pin on the power cord plug. The reading must be less than 1Ω. Flex the power cord while making this measurement to determine whether intermittent discontinuities exist.

3 Check any indicated front- or rear-panel ground terminals marked, using the above procedure.

4 **INSULATION RESISTANCE TEST.** Tie the line and neutral pins of the power cord plug together. Measure the resistance from the instrument enclosure (chassis) to the line and neutral pins of the power cord plug. The minimum acceptable resistance is 2 MΩ. Replace any component which results in a failure.

Product Performance Checks

After replacement of any assembly or module, perform the operational verification test in Chapter 1, “Performance Tests,” of this guide.
Assembly Identification and Location

The assembly number, name and Hewlett-Packard part number of the HP 53131A, HP 53132A, and HP 53181A assemblies are listed in Table 2-1, Table 2-2, and Table 2-3, respectively. Figure 2-8A, Figure 2-8B, and 5-1 illustrate the replaceable assemblies and cables in the HP 53131A/132A/181A.

Table 2-1. HP 53131A Assembly Identification

<table>
<thead>
<tr>
<th>Assembly Name</th>
<th>HP Part No.</th>
<th>Exchange Part No.*</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 Motherboard (Series Prefix 3705 and above)</td>
<td>53131-60004**</td>
<td>53131-69004**</td>
</tr>
<tr>
<td>A2 Display Board</td>
<td>53131-60002</td>
<td>no exchange</td>
</tr>
<tr>
<td>A3 Channel 3 Input Board</td>
<td>n/a</td>
<td>53132-60003</td>
</tr>
<tr>
<td>Option 030, 1.5 GHz</td>
<td>n/a</td>
<td>53132-69211</td>
</tr>
<tr>
<td>Option 050, 3 GHz</td>
<td>n/a</td>
<td>53132-69212</td>
</tr>
<tr>
<td>Option 124, 12.4 GHz</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>A4 AC Power Supply</td>
<td>0950-2496</td>
<td>no exchange</td>
</tr>
<tr>
<td>Standard</td>
<td>53132-60207</td>
<td>no exchange</td>
</tr>
<tr>
<td>Option 002</td>
<td>53132-60208</td>
<td>no exchange</td>
</tr>
<tr>
<td>Option 010 and 012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A5 DC Power Supply</td>
<td>53132-60206</td>
<td>no exchange</td>
</tr>
<tr>
<td>Option 002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A6 Oven Timebase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Option 001)</td>
<td>53132-60004 or 53132-60008—Support Bd 1813-0931—Oscillator</td>
<td>no exchange</td>
</tr>
<tr>
<td>(Option 010)</td>
<td>53132-60016—Support Board 10811-60160—Oscillator</td>
<td>no exchange</td>
</tr>
<tr>
<td>(Option 012)</td>
<td>53132-60260—Oscillator</td>
<td>no exchange</td>
</tr>
</tbody>
</table>

* Exchange part availability subject to change without notice. Contact your local Hewlett-Packard Sales Office for current information.

** If the Motherboard needs to be replaced in a unit which contains Options 030, 050, or 124, it must be done at an HP Service Center.
Table 2-2. HP 53132A Assembly Identification

<table>
<thead>
<tr>
<th>Assembly Name</th>
<th>HP Part No.</th>
<th>Exchange Part No.*</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 Motherboard (Series Prefix 3705 and above)</td>
<td>53132-60014**</td>
<td>53131-69014**</td>
</tr>
<tr>
<td>A2 Display Board</td>
<td>53131-60002</td>
<td>no exchange</td>
</tr>
<tr>
<td>A3 Channel 3 Input Board</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Option 030</td>
<td>n/a</td>
<td>53132-60003</td>
</tr>
<tr>
<td>Option 050</td>
<td>n/a</td>
<td>53132-69211</td>
</tr>
<tr>
<td>Option 124</td>
<td>n/a</td>
<td>53132-69212</td>
</tr>
<tr>
<td>A4 AC Power Supply</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard</td>
<td>0950-2496</td>
<td>no exchange</td>
</tr>
<tr>
<td>Option 002</td>
<td>53132-60207</td>
<td>no exchange</td>
</tr>
<tr>
<td>Option 010 and 012</td>
<td>53132-60208</td>
<td>no exchange</td>
</tr>
<tr>
<td>A5 DC Power Supply</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Option 002</td>
<td>53132-60206</td>
<td>no exchange</td>
</tr>
<tr>
<td>A6 Oven Timebase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Option 001)</td>
<td></td>
<td>no exchange</td>
</tr>
<tr>
<td>(Option 010)</td>
<td></td>
<td>no exchange</td>
</tr>
<tr>
<td>(Option 012)</td>
<td></td>
<td>no exchange</td>
</tr>
<tr>
<td>53132-60016—Support Board</td>
<td></td>
<td>10811-60260—Oscillator</td>
</tr>
</tbody>
</table>

* Exchange part availability subject to change without notice. Contact your local Hewlett-Packard Sales Office for current information.
** If the Motherboard needs to be replaced in a unit which contains Options 030, 050, or 124, it must be done at an HP Service Center.
Table 2-3. HP 53181A Assembly Identification

<table>
<thead>
<tr>
<th>Assembly Name</th>
<th>HP Part No.</th>
<th>Exchange Part No.*</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 Motherboard (Series Prefix 3705 and above)</td>
<td>53181-60004**</td>
<td>53181-69004**</td>
</tr>
<tr>
<td>A2 Display Board</td>
<td>53131-60002</td>
<td>no exchange</td>
</tr>
<tr>
<td>A3 Channel 2 Input Board</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Option 015/030</td>
<td>n/a</td>
<td>53132-60003</td>
</tr>
<tr>
<td>Option 050</td>
<td>n/a</td>
<td>53132-69211</td>
</tr>
<tr>
<td>Option 124</td>
<td>n/a</td>
<td>53132-69212</td>
</tr>
<tr>
<td>A4 AC Power Supply</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard</td>
<td>0950-2496</td>
<td>no exchange</td>
</tr>
<tr>
<td>Option 002</td>
<td>53132-60207</td>
<td>no exchange</td>
</tr>
<tr>
<td>Option 010 and 012</td>
<td>53132-60208</td>
<td>no exchange</td>
</tr>
<tr>
<td>A5 DC Power Supply</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Option 002</td>
<td>53132-60206</td>
<td>no exchange</td>
</tr>
<tr>
<td>A6 Oven Timebase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Option 001)</td>
<td>53132-60004 or 53132-60008—Support Board 1813-0931—Oscillator</td>
<td>no exchange</td>
</tr>
<tr>
<td>(Option 010)</td>
<td>53132-60016—Support Board 10811-60160—Oscillator</td>
<td>no exchange</td>
</tr>
<tr>
<td>(Option 012)</td>
<td>53132-60016—Support Board 10811-60260—Oscillator</td>
<td>no exchange</td>
</tr>
</tbody>
</table>

* Exchange part availability subject to change without notice. Contact your local Hewlett-Packard Sales Office for current information.

** If the Motherboard needs to be replaced in a unit which contains Options 030, 050, or 124, it must be done at an HP Service Center.
Chapter 2 Service
Pre-Troubleshooting Information

Figure 2-8A. Instrument Top Internal View

A1 Motherboard Assembly
A3 Option 030/050 Channel 3 Assembly for HP 53131A/132A
OR
A3 Option 015/030/050 Channel 2 Assembly for HP 53181A
A3 Option 015/030 Channel Input Board Assembly
Coaxial Cable (W1)
Front Bezel (MP4)
A2 Display Board Assembly (Hidden)
A4 AC Power Supply Assembly
J18 Power Supply Assembly Connector
RS-232 Connector
HP-IB Connector
10 MHz Out Connector
Ref In Connector
Ext Arm Connector
A6 High Stability Timebase Assembly
A2 Display Board Assembly (P/O Display Board Assembly)
Input BNC Connectors (P/O A1 Motherboard Assembly)
A1 Motherboard Assembly
J6
J9
A3 Option 015/030/050 Channel Input Board Assembly Cable (P/O optional channel input board, Option 015/030 only)
A3 Option 015/030/050 Channel Input Board Assembly Coaxial Cable (W1)
Figure 2-8B. Instrument Top Internal View (Option 002)
Troubleshooting the Counter

Power Supply Check

WARNING

HAZARDOUS VOLTAGES ARE ON THE POWER SUPPLY ASSEMBLY. ONLY SERVICE TRAINED AND QUALIFIED PERSONNEL SHOULD PERFORM THE FOLLOWING PROCEDURE.

1 Remove the power cord from the back of the instrument to disconnect the Counter from the power source.

2 Remove the cover as described in Chapter 3.

NOTE

A4 AC Power Supply Assembly is fused for safety reasons. It is assumed that if the fuses are blown, then damage has occurred to the power supply which will make it unreliable. Do not attempt to repair the power supply.

3 Connect the Counter to the power source.

The fan should begin to operate as soon as power is supplied. If the fan does not operate, replace A4 AC Power Supply Assembly.

Refer to Chapter 3, “Replacing Assemblies,” in this service guide if you need to remove or replace an assembly.

After replacing the power supply assembly, perform the appropriate calibration procedures in this chapter.

4 Connect the negative lead of a voltmeter to the chassis and verify that the voltages in Table 2-4 match the voltages measured on connector J 18 of A1 Motherboard Assembly. See Figure 2-9 for illustration of J 18 viewing from the bottom of the Counter.

CAUTION

BE CAREFUL to NOT short the positive-side lead of the voltmeter to the chassis when probing at the testpoints shown in Figure 2-9.
Chapter 2 Service

Troubleshooting the Counter

Figure 2-9. A4 AC Power Supply Testpoint Locations on A1 Motherboard Assembly (Bottom View)
Table 2-4 lists A4 power supply voltages, the corresponding wire color, and the tolerances.

Table 2-4. A4 AC Power Supply Voltages

<table>
<thead>
<tr>
<th>Wire Color</th>
<th>Voltage</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>+5.0 V</td>
<td>±0.250 V</td>
</tr>
<tr>
<td>Red</td>
<td>+5.0 V</td>
<td>±0.250 V</td>
</tr>
<tr>
<td>Black</td>
<td>0.0 V</td>
<td>______</td>
</tr>
<tr>
<td>Black</td>
<td>0.0 V</td>
<td>______</td>
</tr>
<tr>
<td>Yellow</td>
<td>+12.0 V</td>
<td>±0.6 V</td>
</tr>
<tr>
<td>Black</td>
<td>0.0 V</td>
<td>______</td>
</tr>
<tr>
<td>Blue</td>
<td>-12.0 V</td>
<td>±1.2 V</td>
</tr>
</tbody>
</table>

5 After verifying the correct voltage and that all calibrations passed, proceed to the following section.

Overview of the Self-Test Routines

The Utility menu includes the following three self-test menu items:

• TEST LOOP:
• TST PRINT:
• TEST:

The Counter includes several self-tests. Some self tests are performed at the power-up of the Counter. Some of these self tests can also be invoked from the Utility menu. Other tests can also be invoked from the Utility menu, but a slightly different test is performed. For example, a power-up self test might work regardless of connections to the inputs while a Utility menu self test may require a specific signal to be connected. Some self tests can only be invoked from the Utility menu, for example, the keypad test.

You can specify that the tests should loop forever (TEST LOOP: ON or OFF) or until any key is pressed.
You can also specify that failure messages be sent to a printer, the RS-232, and the HP-IB—if in talk-only (*TST PRINT: ON* or *OFF*).

There are 13 choices for the **TEST:** menu item. They are listed and described in the following text.

TEST:

- **ALL?** — run all tests, except display, keypad and printer tests.

- **DISP?** — illuminate the indicators and vacuum-fluorescent display (VFD) segments. Note, this test is not available if **TEST LOOP:** is **ON**. **TEST LOOP:** must be **OFF**.

- **CPU?** — test processor(s).

- **ROM?** — checksum the ROM.

- **RAM?** — test RAM.

- **EEPROM?** — checksum the EEPROM, which is used for non-volatile memory.

- **HP-IB?** — test HP-IB chip.

- **QSPI?** — test serial hardware control loops.

- **FPGA?** — internally measure the timebase to test count circuitry.

- **FR END?** — check front end circuits, either by swinging trigger levels (during power on test and ALL test) or asking you to connect the timebase output to channels 1 and 2 using a BNC-T connector to split the signal.

- **MEAS?** — make a measurement, either by swinging trigger levels (during power on test and ALL test) or asking you to connect the timebase output to channel 1.
INTERP? — test interpolators.

KEYPAD? — request user to press all keys. Note, this test is not available if TEST LOOP: is ON. TEST LOOP: must be OFF.

PRINT? — send three test lines to a printer via the RS-232. If in talk-only, also send three test lines to a printer via the HP-IB.

NOTE

When running the TEST LOOP self-test routine, be sure to connect the Counter to a serial printer via the RS-232 using a RS-232 printer interface cable (HP 24542G or HP 24542H) to receive more specific failure information. If you run the TEST LOOP test without Counter being connected to a printer, the Counter will only display pass or fail message.

Diagnosing the Faulty Assembly by Using the Self Tests

To Run the Test-All Self Test

1. Press and hold Recall (Utility) key, then cycle POWER key.
2. Press Recall (Utility) key until TEST: ALL? is displayed.
3. Press Enter key to start the test.

The counter will display the tests as they are being performed. When the tests are completed the display should show **ALL: PASS**.

If the fail message is displayed, run the appropriate individual test as described in the following sub-section. If the individual test fail, use Table 2-5 to determine which board or assembly you should replace.
To Run the Individual Self Tests

1 Press and hold Recall (Utility) key, then cycle POWER key.

NOTE

If power does not cycle or the display does not light, go to the section titled “Power Supply Check” on page 2-45 of this chapter.

2 Press Recall (Utility) key until TEST LOOP: is displayed.

3 Ensure that TEST LOOP:OFF is displayed.

Note that the DISP? and KEYPAD? tests are not available if TEST LOOP: is ON.

If TEST LOOP: ON is displayed, press any one of the arrow keys to set TEST LOOP to OFF.

4 Press Recall (Utility) key until TEST: ALL? is displayed.

5 Press any one of the arrow keys to select the desired self test (for example, the DISP? self test).

6 Press Enter key to start the test.

After a test is completed, a pass or fail message will be displayed.

NOTE

After the DISP? (Display) test has cycled through each display segment and annunciator, press the Enter key to stop the test and to display the pass or fail message.

7 If you are asked to do something, press Enter key when you have completed the requested task.

After a test is completed, a pass or fail message will be displayed.
8 Repeat steps 2 through 5 for each of the self tests.

Note that for the TEST: FR END? test, connect Counter as shown in Figure 2-11A or Figure 2-11B (depending on which Counter you are testing) and press Enter key.

Figure 2-11A. HP 53131A/132A Self Test Troubleshooting Setup

Figure 2-11B. HP 53181A Self Test Troubleshooting Setup
9 If the *FAIL* message is displayed for a test, use Table 2-5 to determine which assembly may need replacing.

Table 2-5. Troubleshooting

<table>
<thead>
<tr>
<th>Failure Indicator</th>
<th>Assembly at Fault</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISP: FAIL</td>
<td>A2 Display Board Assembly, or A1 Motherboard Assembly</td>
</tr>
<tr>
<td>CPU: FAIL</td>
<td>A1 Motherboard Assembly</td>
</tr>
<tr>
<td>ROM: FAIL</td>
<td>A1 Motherboard Assembly</td>
</tr>
<tr>
<td>RAM: FAIL</td>
<td>A1 Motherboard Assembly</td>
</tr>
<tr>
<td>EEPROM: FAIL</td>
<td>A1 Motherboard Assembly</td>
</tr>
<tr>
<td>HP-IB: FAIL</td>
<td>A1 Motherboard Assembly</td>
</tr>
<tr>
<td>QSPI: FAIL</td>
<td>A1 Motherboard Assembly, or A2 Display Board Assembly</td>
</tr>
<tr>
<td>FPGA: FAIL</td>
<td>A1 Motherboard Assembly, or A2 Display Board Assembly</td>
</tr>
<tr>
<td>FR END: FAIL</td>
<td>A1 Motherboard Assembly, or A4 AC Power Supply Assembly</td>
</tr>
<tr>
<td>MEAS: FAIL</td>
<td>A1 Motherboard Assembly, or A4 AC Power Supply Assembly</td>
</tr>
<tr>
<td>INTERP: FAIL</td>
<td>A1 Motherboard Assembly, or A4 AC Power Supply Assembly</td>
</tr>
<tr>
<td>KEYPAD: FAIL</td>
<td>Keypad, or Front Panel Assembly, or A1 Motherboard Assembly</td>
</tr>
<tr>
<td>PRINT: FAIL</td>
<td>A1 Motherboard Assembly</td>
</tr>
</tbody>
</table>

10 Refer to Chapter 3, “Replacing Assemblies,” in this service guide for dissassembly and reassembly procedures.

NOTE

After replacing an assembly, perform the calibration procedures in this chapter.
Replacing Assemblies
Disassembly and Reassembly
Chapter 3 Replacing Assemblies

Introduction

This chapter contains the instructions for removing major assemblies in the HP 53131A/132A/181A. To install an assembly, reverse the removal instructions.

This chapter provides the following disassembly and reassembly procedures:

• To Remove the Cover page 3-4
• To Remove the Front Bezel page 3-6
• To Remove A1 Motherboard Assembly page 3-9
• To Remove the A2 Display Board, Keypads, and Window page 3-11
• To Remove A3 1.5/3.0/5.0/12.4 GHz Channel Assembly (Option 015/030/050/124) page 3-13
• To Remove A4 AC Power Supply Assembly page 3-15
• To Remove A5 DC Power Input Assembly (Option 002) page 3-17
• To Remove A6 High Stability Timebase Assembly (Options 001, 010, and 012) page 3-19
• To Remove the Rear Terminals (Option 060) page 3-21

WARNING

HAZARDOUS VOLTAGES ARE ON THE POWER SUPPLY ASSEMBLY. UNPLUG THE INSTRUMENT, THEN WAIT AT LEAST SIX MINUTES FOR THE CAPACITORS ON THE POWER SUPPLY ASSEMBLY TO DISCHARGE BEFORE WORKING ON THIS INSTRUMENT.

CAUTION

Do not replace assemblies with the instrument turned on. Damage to components can occur.

Refer to Chapter 5, “Replaceable Parts,” for the part number of the assemblies.
Tools Required

The following tools are required for these removal and replacement procedures:

- Hand TORX® 10 screwdriver (T10)
- Hand TORX® 15 screwdriver (T15)
- 7-mm spin tight
- 14-mm deep-socket spin tight
- Soldering iron—for removing Option 060 Rear Terminals
- Small (1 point) Pozidriv screwdriver—for removing Option 010/012 oven oscillator from A6 Timebase Support Board

Do This First

Before performing any of the removal and replacement procedures, the following steps must be performed.

1. **Turn Counter off.**
2. **Remove ac line power cord from the rear ac line socket.**
To Remove the Cover

The following steps are for removing the cover. The cover is removed to access the board and cable assemblies, and all other internal parts.

WARNING
WHEN THE COVER IS REMOVED FROM THE INSTRUMENT, LINE VOLTAGES ARE EXPOSED WHICH ARE DANGEROUS AND MAY CAUSE SERIOUS INJURY IF TOUCHED. DISCONNECT POWER.

1. Turn off the Counter and remove power cord.

2. To remove the rear bezel, loosen the captive screws on the sides as shown in Figure 3-1 using the TORX 15 screwdriver.

Figure 3-1. Rear Bezel Removal
Chapter 3 Replacing Assemblies

To Remove the Cover

3 Remove the screw (H1) located at the bottom near the rear of the cover (MP3) as shown in Figure 3-2.

4 With one hand gripping the front bezel, pull the cover off with the other hand by sliding the cover backward.

Figure 3-2. Bottom View for Cover Removal
Chapter 3 Replacing Assemblies

To Remove the Front Bezel

To Remove the Front Bezel

1 Remove the cover.

See the section titled “To Remove the Cover” in this chapter.

2 Remove the bail handle (MP7) by rotating it to the vertical position and pull the ends outward as shown in Figure 3-3.

![Figure 3-3. Handle Removal](image)

3 Remove the front rubber bumper (part of MP2), stretch a corner and then slide it off as shown in Figure 3-4.

![Figure 3-4. Front Rubber Bumper Removal](image)

4 Disconnect the front bezel flat-ribbon cable (which is actually A2 Display Board’s cable) from J 6 of A1 Motherboard Assembly as shown in Figure 3-5.
Chapter 3 Replacing Assemblies

To Remove the Front Bezel

5 Remove the BNC nuts (H3), shown in Figure 3-5, from the front panel using the 14-mm deep-socket spin tight.

6 For Counters with the optional 1.5 GHz or 3.0 GHz channel (Option 015 or 030), pull cable W1 out of the front bezel as shown in Figure 3-5. For the optional 5.0 or 12.4 GHz channel, remove knurled nut.

CAUTION
When reassembling A3 (Option 015/030) Assembly, ensure that cable W1 is not placed or folded on top of the input circuits of A1 Motherboard Assembly or is tucked behind A3 as the Counter may start reading or measuring noise.

Figure 3-5. Front Bezel Removal
To Remove the Front Bezel

7 Remove the two screws (H1), located in the sides of the front bezel, using the TORX 15 screwdriver as shown in Figure 3-5.

8 Loosen the screw (H1), shown in Figure 3-5, that helps secure A1 Motherboard Assembly to the chassis to make step 9 (the following step) easier.

9 Remove front bezel by pushing inward on the sides of the chassis.
To Remove A1 Motherboard Assembly

1 **Remove the cover.**

 See the section titled “To Remove the Cover” in this chapter.

2 **Remove the Power Supply Assembly.**

 See the section titled “To Remove A4 AC Power Supply Assembly” in this chapter.

3 **Remove the front bezel.**

 See the section titled “To Remove the Front Bezel” in this chapter.

4 **If the Counter contains Option 015/030/050/124 1.5/3.0/5.0/12.4 GHz Channel, disconnect the optional channel’s flat-ribbon cable from J7 on A1 Motherboard Assembly as shown in Figure 3-6.**

5 **If the Counter contains one of the optional high stability timebase assemblies (Option 001, 010, 012), disconnect the flat-ribbon cable from J6 of A1 Motherboard as shown in Figure 2-8A (See Chapter 2, “Service.”).**

6 **If the Counter contains the Option 002 DC Power Input Assembly, remove it.**

 See the section titled “To Remove A5 DC Power Input Assembly (Option 002)” in this chapter.

7 **Remove the two hex screws (H4), shown in Figure 3-6, on the rear-panel HP-IB connector using the 7-mm spin tight.**
Figure 3-6. A1 Motherboard Assembly Removal

8 Remove the BNC nuts (H3), shown in Figure 3-6, from the rear of the chassis using the 14-mm deep-socket spin tight (Opt 015/030 only). Remove knurled nut for Option 050.

9 Remove the three screws (H1) in A1 Motherboard Assembly as shown in Figure 3-6.

10 Finally, slide the motherboard assembly forward.
To Remove the A2 Display Board, Keypads, and Window

1. **Remove the cover.**

 See the section titled “To Remove the Cover” in this chapter.

2. **Remove the front bezel.**

 See the section titled “To Remove the Front Bezel” in this chapter.

3. **Note that A2 Display Board Assembly, shown in Figure 3-7, is held in place by five tabs (two on top and three on bottom) which are part of the front bezel.**

Figure 3-7. A2 Display Board, Keypad, and Window Removal
Chapter 3 Replacing Assemblies

To Remove the A2 Display Board, Keypads, and Window

4 **Pull up on the top portion of the front bezel until the top portion of the display board is free from the top tabs.**

5 **Pull down on the bottom portion of the front bezel until the display board is free from the bottom tabs.**

 If the board is still not free, insert a small flat-blade screwdriver or object between the bottom of the display board and the bezel to gently pry the board loose from the bottom tabs.

6 **Remove A2 Display Assembly from the front bezel.**

 NOTE

 When installing A2 Display Board into the front bezel, pull up on the top portion of the front bezel and press the display board into place. Make sure that the board is positioned all the way into the bezel until the two tabs on top and three on bottom are visible.

7 **Now, remove the POWER key cap by gripping and pulling it.**

 NOTE

 The cap must be removed to make installation of the A2 Display Board Assembly easier.

8 **As shown in Figure 3-7, the rubber keypads (MP6) are now free. Just pull them out of the bezel.**

9 **Remove the window (MP5), shown in Figure 3-7, by pressing down on the two top tabs and sliding the window forward.**
To Remove A3 1.5/3.0/5.0/12.4 GHz Channel Assembly (Option 015/030/050/124)

NOTE
The 1.5 GHz Channel 2 Assembly is available only for the HP 53181A Frequency Counter.

1 Remove the cover.
 See the section titled “To Remove the Cover” in this chapter.

2 Using the 14-mm deep-socket spin tight, remove the BNC nut (H3) from the optional Channel 3 (or Channel 2 for HP 53181A) input connector (Options 015/030 only). For Option 050 or 124 remove the knurled nut using a pair of pliers.

3 Pull W1, which is the optional channel assembly cable, out of the Channel 3 (or 2) opening in the front panel assembly as shown in Figure 3-8. For the Option 050 or 124, the connector is part of the Option assembly.

CAUTION
When reassembling A3 (Option 015/030) Assembly, ensure that cable W1 is not placed or folded on top of the input circuits of A1 Motherboard Assembly or is tucked behind A3 as the Counter may start reading or measuring noise.
To Remove A3 1.5/3.0/5.0/12.4 GHz Channel Assembly (Option 015/030/050/124)

4 Disconnect flat-ribbon cable of the optional channel from connector J7 of A1 Motherboard Assembly as shown in Figure 3-8.

5 Remove the four (two or three for Option 050 or 124) screws (H2) attaching the optional channel to the chassis as shown in Figure 3-8.

6 Remove the optional channel assembly.

Figure 3-8. Optional Channel Input Assembly Removal
To Remove A4 AC Power Supply Assembly

1 **Remove the cover.**

See the section titled “To Remove the Cover” in this chapter.

2 **Remove the TORX screw (H1) located in the upper-middle of the chassis using the TORX 15 screwdriver as shown in Figure 3-9.**

![Figure 3-9. A4 AC Power Supply Assembly Removal](image-url)
To Remove A4 AC Power Supply Assembly

3 Remove the two TORX screws (H2) on the rear panel using the TORX 10 screwdriver as shown in Figure 3-9.

4 Lift up A4 AC Power Supply Assembly and disconnect its cable from J18 on A1 Motherboard Assembly to remove the power supply assembly as shown in Figure 3-9.

NOTE
When replacing the power supply, order the rubber foot (0403-0424). Figure 3-10 shows where the rubber foot is located on the defective assembly.

Figure 3-10. Location of the Rubber Foot

5 If the Counter contains the Option 002 DC Power Input Assembly, disconnect A4 AC Power Supply’s other cable from Option 002 as shown in Figure 3-11.
To Remove A5 DC Power Input Assembly (Option 002)

1. **Remove the cover.**

 See the section titled “To Remove the Cover” in this chapter.

2. **Remove the four TORX 10 screws (H2) that attach A5 DC Power Input Assembly to the side of the chassis as shown in Figure 3-11.**
Chapter 3 Replacing Assemblies

To Remove A5 DC Power Input Assembly (Option 002)

Lift out A5 DC Power Input Assembly and disconnect cable as shown in Figure 3-11.

Figure 3-11. DC Power Input Assembly (Option 002) Removal
To Remove A6 High Stability Timebase Assembly (Options 001, 010, and 012)

1 Remove the cover.

See the section titled “To Remove the Cover” in this chapter.

2 Disconnect A6 High Stability Timebase Assembly cable from the J 9 connector on A1 Motherboard Assembly as shown in Figure 3-12.
Chapter 3 Replacing Assemblies

To Remove A6 High Stability Timebase Assembly (Options 001, 010, and 012)

3 Disconnect the ac power supply's two-wire cable from A6 High Stability Timebase Assembly (if the two-wire cable exists).

4 Remove the three TORX 10 screws (H2) attaching the timebase to the chassis as shown in Figure 3-12.

5 Remove A6 High Stability Timebase Assembly.

Figure 3-12. Option 001, 010, and 012 A6 High Stability Timebase Assembly Removal
To Remove the Rear Terminals (Option 060)

1. **Remove the cover.**

 See the section titled “To Remove the Cover” in this chapter.

2. **Unsolder the lead-end of the cables from their appropriate ground and input pads on the A1 Motherboard Assembly (J 16, J 17) as shown in Figure 3-13.**

 For the HP 53131A/132A unsolder the rear chassis **INPUTS 1** cable to J 16 and **INPUTS 2** to J 17.

 For the HP 53181A unsolder the rear chassis **INPUTS 1** cable to J 17.

 NOTE

 If there are upper or lower shields installed on A1 Motherboard Assembly, cut them out and then remove Option 060 Rear Terminal cable(s).

 Replace the front bezel with the metalized version (53131-40001).
Chapter 3 Replacing Assemblies

To Remove the Rear Terminals (Option 060)

Figure 3-13. Rear Terminals (Option 060) Removal

NOTE
Options 050 and 124 (5.0 or 12.4 GHz Input) is front panel only.
3. Loosen and remove the 2940-0256 BNC nuts (H3) that secure the coaxial cable(s) to the rear chassis, using the 14-mm deep-socket spin tight.

4. Pull W2 and washers (H6) out of the rear INPUTS opening(s).

5. Pull the connector-end of W1 and washer (H6) out of the rear INPUTS opening.

6. Plug opening(s) with MP9 (6960-0159) if you are not going to re-install Option 060.
Chapter 3 Replacing Assemblies

To Remove the Rear Terminals (Option 060)
Retrofitting Options
Chapter 4 Retrofitting Options

Introduction

This chapter provides the following retrofit procedures:

- To Retrofit A3 1.5/3.0/5.0/12.4 GHz Channel Assembly (Option 015/030/050/124) page 4-3
- To Retrofit A5 DC Power Input Assembly (Option 002) page 4-4
- To Retrofit A6 High Stability Timebase Assembly (Options 001, 010, and 012) page 4-11
- To Retrofit the Rear Terminals (Option 060) page 4-14

Tools Required

The following tools are required for these retrofitting procedures:

- Hand TORX®, 10 screwdriver (T10)
- Hand TORX®, 15 screwdriver (T15)
- 7-mm spin tight
- 14-mm deep-socket spin tight
- Soldering iron—for retrofitting Option 060 Rear Terminals
- Small (1 point) Pozidriv screwdriver—for securing Option 010/012 oven oscillator to A6 Timebase Support Board
- pliers

Do This First

Before performing any of the retrofit procedures, the following steps must be performed.

1 **Turn Counter off.**
2 **Remove ac line power cord from the rear ac line socket.**
Chapter 4 Retrofitting Options

To Retrofit A3 1.5/3.0/5.0/12.4 GHz Channel Assembly (Option 015/030/050/124)

NOTE

Retrofitting to Option 015 (1.5 GHz), Option 030 (3.0 GHz), Option 050 (5.0 GHz), and Option 124 (12.4 GHz) must be performed by technicians at an HP Service Center.
To Retrofit A5 DC Power Input Assembly (Option 002)

Option 002 DC Power Input Assembly Parts

<table>
<thead>
<tr>
<th>Item</th>
<th>HP Part No.</th>
<th>Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis (MP10)</td>
<td>53131-00010</td>
<td>1</td>
</tr>
<tr>
<td>A5 DC Power Input Assembly</td>
<td>53132-60206</td>
<td>1</td>
</tr>
<tr>
<td>A4 AC Power Supply Assembly</td>
<td>53132-60207</td>
<td>1</td>
</tr>
<tr>
<td>Rear label (MP11)</td>
<td>53131-80039</td>
<td>1</td>
</tr>
<tr>
<td>TORX 10 screws (H2)</td>
<td>0515-0430</td>
<td>4</td>
</tr>
</tbody>
</table>

NOTE

Option 002 can NOT be installed or combined with Option 060 Rear Terminals.

Preliminary Procedure

1. **Remove the cover.**

 See the section titled “To Remove the Cover” in Chapter 3 of this guide.

2. **Remove the front bezel.**

 See the section titled “To Remove the Front Bezel” in Chapter 3 of this guide.

3. **Remove the existing A4 AC Power Supply Assembly.**

4. **Remove A1 Motherboard Assembly from chassis MP1.**

 See the section titled “To Remove A1 Motherboard Assembly” in Chapter 3 of this guide.
Chapter 4 Retrofitting Options

To Retrofit A5 DC Power Input Assembly (Option 002)

Retrofitting Procedure

1 Slide A1 Motherboard Assembly into the new chassis (MP10) as shown in Figure 4-1A.

![Figure 4-1A. DC Power Input Assembly Retrofitting](image)

2 Insert but do not tighten the three TORX 15 screws (H1) that attach A1 Motherboard Assembly to the new chassis (MP10) as shown in Figure 4-1A.

3 Insert and tighten the three BNC nuts (H3) onto the BNC connectors that protrude from the rear of the chassis using the 14-mm deep-socket spin tight.
4 Insert and tighten the two hex screws (H4) and the lock washers (H5) onto the HP-IB connector that protrudes from the rear of the chassis using the 7-mm spin tight.

5 Now, re-install the front bezel by performing the front bezel removal procedure, in Chapter 3 of this guide, in reverse. Be sure to insert A2 Display Board's cable into connector J 6 on A1 Motherboard Assembly.

6 Tighten the three H1 screws, shown in Figure 4-1A, to secure the motherboard to the chassis.

Figure 4-1B. DC Power Input Assembly Retrofitting
Chapter 4 Retrofitting Options

To Retrofit A5 DC Power Input Assembly (Option 002)

7 To install the new A4 AC Power Supply Assembly (53132-60207), connect the ac power supply’s shorter cable to connector J 18 on A1 Motherboard Assembly as shown in Figure 4-1B.

8 Insert and tighten the two TORX 10 screws (H2) to attach A4 Power Supply Assembly to the rear of the chassis as shown in Figure 4-1B.

9 Insert and tighten the TORX 15 screw (H1) into the upper-middle of the chassis as shown in Figure 4-1B.
10 Install A5 DC Power Input Assembly (53132-60206) into the chassis by performing the following:

a. First, connect the other ac power supply cable to the connector on A5 printed-circuit board as shown in Figure 4-1C.
Chapter 4 Retrofitting Options
To Retrofit A5 DC Power Input Assembly (Option 002)

b. Position A5 Power Input Assembly against the rear of the chassis and align it with the two appropriate holes in the rear of the chassis.

c. Using the four TORX 10 screws (H2), secure A5 DC Power Input Assembly to the side of the chassis (MP10) as shown in Figure 4-1C.

11 To install the rear label (MP11), remove the protective seal from the back of it and press into place making sure to properly align the label with the holes in the rear of chassis as shown in Figure 4-1D.

Figure 4-1D. DC Power Input Assembly Retrofitting

12 Re-install the cover by performing the cover removal procedure, in Chapter 3 of this guide, in reverse.
Chapter 4 Retrofitting Options
To Retrofit A5 DC Power Input Assembly (Option 002)

13 Note that you will have to assemble your own dc power cable using 18 AWG connecting wires and a three-pin HP E9640A XLR (female) connector plug, shown in Figure 4-1E.

![Figure 4-1E. Three-Pin XLR Plug Pinouts (Front View)](image)

14 From the rear of the XLR plug, connect the external power supply's supply-side wire to pin 2 of the XLR plug. Connect the external power supply's return (ground) wire to pin 1, and the chassis ground wire to pin 3 of the XLR plug.

15 Observing the correct polarity, attach the other ends of the wires to a dc source (+10 to +32V dc) to operate the Counter.

This completes the DC Power Input Assembly (Option 002) retrofit procedure.
To Retrofit A6 High Stability Timebase Assembly (Options 001, 010, and 012)

Option 001 Medium Stability Timebase Assembly Parts

<table>
<thead>
<tr>
<th>Item</th>
<th>HP Part No.</th>
<th>Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A6 Timebase Support Board</td>
<td>53132-60016</td>
<td>1</td>
</tr>
<tr>
<td>Oven Oscillator</td>
<td>1813-0931</td>
<td>1</td>
</tr>
<tr>
<td>TORX 10 screws (H2)</td>
<td>0515-0430</td>
<td>3</td>
</tr>
</tbody>
</table>

Option 010 High Stability Timebase Assembly Parts

<table>
<thead>
<tr>
<th>Item</th>
<th>HP Part No.</th>
<th>Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A6 Timebase Support Board</td>
<td>53132-60016</td>
<td>1</td>
</tr>
<tr>
<td>Oven Oscillator</td>
<td>10811-60160</td>
<td>1</td>
</tr>
<tr>
<td>TORX 10 screws (H2)</td>
<td>0515-0430</td>
<td>3</td>
</tr>
<tr>
<td>Pozidriv screws (H7)</td>
<td>2360-0331</td>
<td>2</td>
</tr>
</tbody>
</table>

Option 012 Ultra-High Stability Timebase Assembly Parts

<table>
<thead>
<tr>
<th>Item</th>
<th>HP Part No.</th>
<th>Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A6 Timebase Support Board</td>
<td>53132-60016</td>
<td>1</td>
</tr>
<tr>
<td>Oven Oscillator</td>
<td>10811-60260</td>
<td>1</td>
</tr>
<tr>
<td>TORX 10 screws (H2)</td>
<td>0515-0430</td>
<td>3</td>
</tr>
<tr>
<td>Pozidriv screws (H7)</td>
<td>2360-0331</td>
<td>2</td>
</tr>
</tbody>
</table>

* These options can be installed or retrofitted in Counters that have firmware revisions 3402 and greater only. Contact your local HP Service Center for more information.
Chapter 4 Retrofitting Options

To Retrofit A6 High Stability Timebase Assembly (Options 001, 010, and 012)

Procedure

1. Turn off the Counter and remove power cord.

2. Remove the cover.

 See the section titled “To Remove the Cover” in Chapter 3 of this guide.

3. If you are retrofitting the Option 001 Medium Stability Timebase Assembly, go to step 5.
 If you are retrofitting the Option 010 High Stability or Option 012 Ultra-High Stability assembly, go to step 4 (the next step).

4. Plug the oven oscillator into the socket on A6 Timebase Support Board, and secure the oven oscillator to A6 using the two Pozidriv screws (H7) as shown in Figure 4-2.

5. Plug the oven oscillator into the socket on A6 Timebase Support Board, and secure the oven oscillator to A6 using the two Pozidriv screws (H7) as shown in Figure 4-2.

6. If you are retrofitting the Option 001 Medium Stability Timebase, remove the jumper cap on P1 of A6 Timebase Support Board as shown in Figure 4-2.
 If you are retrofitting the Option 010 High Stability and Option 012 Ultra-High Stability timebases, DO NOT remove the jumper cap on P1.

7. Mount A6 High Stability Timebase Assembly on the left side using three TORX 10 screws (H1) as shown in Figure 4-2.

8. Plug the power supply assembly’s two-wire cable into the three-prong connector (J 2) on the high stability timebase assembly as shown in Figure 4-2 (if the two-wire cable exists).

9. Connect A6 High Stability Timebase Assembly cable to connector J 9 on A1 Motherboard Assembly as shown in Figure 4-2.
Chapter 4 Retrofitting Options

To Retrofit A6 High Stability Timebase Assembly (Options 001, 010, and 012)

Figure 4-2. High Stability Timebase Retrofitting (Option 001, 010, 012)

10 Re-install the cover by performing the cover removal procedure, in Chapter 3 of this guide, in reverse.

This completes A6 High Stability Timebase Assembly retrofit procedure.

11 Perform the appropriate timebase calibration procedure as found on page 2-23 and page 2-24.
To Retrofit the Rear Terminals (Option 060)

Option 060 Rear Terminals Parts

<table>
<thead>
<tr>
<th>Item</th>
<th>HP Part No.</th>
<th>Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coaxial cable assembly (W2)</td>
<td>8120-6150</td>
<td>2</td>
</tr>
<tr>
<td>BNC washer (H6)</td>
<td>2190-0068</td>
<td>2</td>
</tr>
<tr>
<td>BNC nut (H3)</td>
<td>2940-0256</td>
<td>2</td>
</tr>
</tbody>
</table>

1 Remove the cover.

See the section titled “To Remove the Cover” in Chapter 3 of this guide.

2 For retrofitting the HP 53131A or HP 53132A that do NOT contain the Optional Channel 3 (Option 030), push out INPUTS plugs 1 and 2 (located on rear of chassis) as shown in Figure 4-3A.

For retrofitting the HP 53131A or HP 53132A that contain the Optional Channel 3 (Option 030), push out INPUTS plugs 1, 2, and 3 (located on rear of chassis) as shown in Figure 4-3A.

For retrofitting HP 53181As that do NOT contain the optional Channel 2 (Option 015/030), push out INPUTS plug 1 (located on rear of chassis) as shown in Figure 4-3A.

For retrofitting the HP 53181As that contain the optional Channel 2, push out INPUTS plugs 1 and 2 (located on rear of chassis) as shown in Figure 4-3A. See the following NOTE.

NOTE

The HP 53131A and 53132A front and rear terminals can be in parallel for inputs 1 and 2. However, the optional Channel 3 input (Option 030) can be configured as rear terminals only or front terminals only. The optional Channel 3 inputs (Option 050 or 124) can be front terminal only (53131A, 53132A, 53181A).
Chapter 4 Retrofitting Options

To Retrofit the Rear Terminals (Option 060)

NOTE

For the HP 53181A, the front and rear terminals can exist for Channel 1. However, HP 53181A’s optional Channel 2 input (Option 015/030) can be configured as **rear terminals only** or **front terminals only**.

NOTE

If there are upper or lower shields installed on A1 Motherboard Assembly, cut them out and replace the front bezel with the metallized version (53131-40001).

![Figure 4-3A. Plug Removal for Rear Terminals Retrofitting](image)

3 Remove the end of the optional channel (Option 015/030) coaxial cable (W1) that is connected to the front-panel and insert it through the appropriate rear INPUTS opening (3 for HP 53131A/132A; 2 for HP 53181A) as shown in Figure 4-3B.
Chapter 4 Retrofitting Options

To Retrofit the Rear Terminals (Option 060)

Figure 4-3B. Rear Terminals Retrofitting
To Retrofit the Rear Terminals (Option 060)

4 Insert the connector-end of the W1, with the washers (H6) in place on the connector, through the appropriate rear INPUTS opening.

5 Insert and tighten the BNC nuts (H3) to secure the coaxial cables to the rear of the chassis.

6 Solder the lead-end of the cables to their appropriate ground and input pads on A1 Motherboard Assembly (J16, J17)

 For the HP 53131A/132A solder the rear chassis INPUTS 1 cable to J16 and INPUTS 2 to J17. (See Figure 4-3B.)

 For the HP 53181A solder the rear chassis INPUTS 1 cable to J17. (See Figure 4-3B.)

7 Re-install the cover by performing the cover removal procedure, in Chapter 3 of this guide, in reverse.

 This completes the Rear Terminals (Option 060) retrofit procedures.

NOTE

When using the front terminals of Inputs 1 and 2, the rear terminals should be terminated with a 50-ohm load (such as part number 1250-0207). When using the rear terminals, these loads should be placed on the front terminals, or the 50-ohm input button selected (but not both).
Chapter 4 Retrofitting Options

To Retrofit the Rear Terminals (Option 060)
Replaceable Parts
Introduction

This chapter contains information for ordering parts. Table 5-1 lists the exchange assemblies. Table 5-2 lists reference designations used in the parts list and throughout the guide, and Table 5-3 lists all replaceable assemblies and parts for the HP 53131A/132A/181A Counter. Table 5-4 is a list of manufacturer’s code numbers given in the parts list (Table 5-3). It contains the names and addresses corresponding to the code number of the manufacturer. Figure 5-1 is an exploded view of the HP 53131A/132A/181A.

Exchange Assemblies

Table 5-1 lists assemblies within the HP 53131A/132A/181A that may be replaced on an exchange basis. Factory repaired and tested exchange assemblies are available only on a trade-in basis. Defective assemblies must be returned for credit. (Note that the part numbers for the new and exchange assemblies are also listed in Table 5-3.)

Table 5-1. Exchange Assemblies

<table>
<thead>
<tr>
<th>Assembly Name</th>
<th>HP Part No.</th>
<th>Exchange Part No.*</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 Motherboard (HP 53131A)</td>
<td>53131-60004</td>
<td>53131-69004</td>
</tr>
<tr>
<td>A1 Motherboard (HP 53132A)</td>
<td>53132-60014</td>
<td>53132-69014</td>
</tr>
<tr>
<td>A1 Motherboard (HP 53181A)</td>
<td>53181-60004</td>
<td>53181-69004</td>
</tr>
<tr>
<td>A3 Channel 3 Input Board</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Option 015, 1.5 GHz</td>
<td>n/a</td>
<td>53132-60003</td>
</tr>
<tr>
<td>Option 030, 3 GHz</td>
<td>n/a</td>
<td>53132-60003</td>
</tr>
<tr>
<td>Option 050, 5 GHz</td>
<td>n/a</td>
<td>53132-69211</td>
</tr>
<tr>
<td>Option 124, 12.4 GHz</td>
<td>n/a</td>
<td>53132-69212</td>
</tr>
<tr>
<td>A6 High Stability Oven Timebase (Option 010)</td>
<td>10811-60160</td>
<td>10811-69160</td>
</tr>
<tr>
<td>A6 Ultra-High Stability Oven Timebase (Option 012)</td>
<td>10811-60260</td>
<td>10811-69260</td>
</tr>
</tbody>
</table>

* Exchange part availability subject to change without notice. Contact your local Hewlett-Packard Sales Office for current information.
Chapter 5 Replaceable Parts

Reference Designations

Reference Designations

Table 5-2 lists the reference designations used in the parts lists, block diagrams, and throughout the guide.

Replaceable Parts

Table 5-3 is a list of replaceable parts and is organized as follows:

1. Electrical assemblies in alphanumerical order by reference designation.
2. Chassis-mounted electrical parts in alphanumerical order by reference designation.

The information given for each part consists of the following:

1. Reference designation.
2. Hewlett-Packard part number.
3. Part number check digit (CD).
4. Total quantity (QTY) in instrument. The total quantity is given once and at the first appearance of the part number in the list.
5. Description of the part.
6. Typical manufacturer’s part number for the part.
How To Order A Part

Hewlett-Packard wants to keep your parts ordering process as simple and efficient as possible. To order parts perform the following steps:

1. Identify the part and the quantity you want.
2. Determine the ordering method to be used and contact Hewlett-Packard.

Parts Identification

To identify the part(s) you want, first refer to the exploded view in Figure 5-1 at the back of this chapter or Figure 2-8A and Figure 2-8B in Chapter 2, “Service.”

When ordering from Hewlett-Packard, the important numbers to note from the Parts List are the HP Part Number and part-number check digit (in the “CD” column), and the quantity of the part you want.

If the part you want is NOT identified in the guide, you can call on Hewlett-Packard for help (see the following section titled “Contacting Hewlett-Packard”). Please have the following information at hand when you contact HP for help:

- Instrument Model Number (example, “HP 53131A”).
- Complete instrument Serial Number (example, “1234A56789”). Information about where to find the serial number is given in the preface of this guide in the section titled “How to Use This Guide.”
- Description of the part and its use.
- Quantity of the part required.
Chapter 5 Replaceable Parts

How To Order A Part

Contacting Hewlett-Packard

Depending on where you are in the world, there are one or more ways in which you can get parts or parts information from Hewlett-Packard.

- Outside the United States, contact your local HP sales office.
- Within the United States, we encourage you to order replacement parts or request parts information directly by telephone or mail from the HP Support Materials Organization, using the telephone numbers or address listed on the next page. (You can also contact your local HP sales office. HP sales offices are listed at the back of this package.)

By telephone:

- For Parts Ordering use our toll-free number, (800) 227-8164, Monday through Friday (except Holidays), 6 a.m. to 5 p.m. (Pacific Time).
 If you need a part in a hurry, an extra-cost Hotline phone ordering service is available 24 hours a day. Use the toll-free number above at the times indicated; at other times, use (916) 785-8460.
- For Parts Identification Assistance, call us at (916) 783-0804
 Our Parts Identification hours are from Monday through Friday, 6 a.m. to 5 p.m. (Pacific Time).

For mail correspondence, use the address below:

Hewlett-Packard
Support Materials Roseville
P. O. Box 1145
Roseville, CA 95661-1145
Cabinet Parts and Hardware

To locate and identify miscellaneous cabinet and chassis parts and instrument hardware, refer to Figure 2-8A, Figure 2-8B, and Figure 5-1. These figures provide different views of the instrument, with the parts identified by reference designations; the reference designations correspond with the ones in Table 5-3.

Table 5-2. Reference Designation

<table>
<thead>
<tr>
<th>A</th>
<th>= assembly</th>
<th>P/O= part of</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>= hardware</td>
<td>S = switch</td>
</tr>
<tr>
<td>J</td>
<td>= electrical connector</td>
<td>T = transformer</td>
</tr>
<tr>
<td></td>
<td>(stationary portion); jack</td>
<td>TP = test point</td>
</tr>
<tr>
<td>MP</td>
<td>= miscellaneous mechanical part</td>
<td>U = integrated circuit; microcircuit</td>
</tr>
<tr>
<td>P</td>
<td>= electrical connector</td>
<td>W = cable; transmission path; wire</td>
</tr>
<tr>
<td></td>
<td>(movable portion); plug</td>
<td></td>
</tr>
</tbody>
</table>
Table 5-3. HP 53131A/132A/181A Replaceable Parts

<table>
<thead>
<tr>
<th>Reference Designation</th>
<th>HP Part Number</th>
<th>C D</th>
<th>Qty</th>
<th>Description</th>
<th>Mfr Code</th>
<th>Mfr Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 (HP 53131A)</td>
<td>53131-60004</td>
<td>2</td>
<td>1</td>
<td>EXCHANGE ELECTRONIC ASSEMBLIES</td>
<td>28480</td>
<td>53131-60004</td>
</tr>
<tr>
<td>A1 (HP 53131A)</td>
<td>53131-69004</td>
<td>0</td>
<td>1</td>
<td>MOTHERBOARD (EXCHANGE RESTORED)</td>
<td>28480</td>
<td>53131-69004</td>
</tr>
<tr>
<td>A1 (HP 53132A)</td>
<td>53132-60014</td>
<td>8</td>
<td>1</td>
<td>MOTHERBOARD</td>
<td>28480</td>
<td>53132-60014</td>
</tr>
<tr>
<td>A1 (HP 53132A)</td>
<td>53132-69014</td>
<td>6</td>
<td>1</td>
<td>MOTHERBOARD (EXCHANGE RESTORED)</td>
<td>28480</td>
<td>53132-69014</td>
</tr>
<tr>
<td>A1 (HP 53181A)</td>
<td>53181-60004</td>
<td>2</td>
<td>1</td>
<td>MOTHERBOARD</td>
<td>28480</td>
<td>53181-60004</td>
</tr>
<tr>
<td>A1 (HP 53181A)</td>
<td>53181-69004</td>
<td>0</td>
<td>1</td>
<td>MOTHERBOARD (EXCHANGE RESTORED)</td>
<td>28480</td>
<td>53181-69004</td>
</tr>
<tr>
<td>A1 (HP 53181A)</td>
<td>53181-60004</td>
<td>2</td>
<td>1</td>
<td>MOTHERBOARD</td>
<td>28480</td>
<td>53181-60004</td>
</tr>
<tr>
<td>A2</td>
<td>53131-60002</td>
<td>3</td>
<td>1</td>
<td>DISPLAY BOARD</td>
<td>28480</td>
<td>53131-60002</td>
</tr>
<tr>
<td>A4 (Standard)</td>
<td>0950-2496</td>
<td>7</td>
<td>1</td>
<td>AC POWER SUPPLY (STANDARD)</td>
<td>28480</td>
<td>0950-2496</td>
</tr>
<tr>
<td>A4 (Option 002)</td>
<td>53132-60003</td>
<td>5</td>
<td>1</td>
<td>OPTION 015, 1.5 GHz INPUT BOARD (RESTORED)</td>
<td>28480</td>
<td>53132-60003</td>
</tr>
<tr>
<td>A4 (Option 010/012)</td>
<td>53132-60003</td>
<td>3</td>
<td>1</td>
<td>OPTION 030, 3 GHz INPUT BOARD (RESTORED)</td>
<td>28480</td>
<td>53132-60003</td>
</tr>
<tr>
<td>A4 (Option 010/012)</td>
<td>53132-60011</td>
<td>1</td>
<td>1</td>
<td>OPTION 050, 5 GHz INPUT BOARD (RESTORED)</td>
<td>28480</td>
<td>53132-60011</td>
</tr>
<tr>
<td>A4 (Option 010/012)</td>
<td>53132-60012</td>
<td>1</td>
<td>1</td>
<td>OPTION 124, 12.4 GHz INPUT BOARD (RESTORED)</td>
<td>28480</td>
<td>53132-60012</td>
</tr>
<tr>
<td>A5 (Option 002)</td>
<td>53132-60026</td>
<td>0</td>
<td>1</td>
<td>OPTIONAL DC POWER SUPPLY (002)</td>
<td>28480</td>
<td>53132-60206</td>
</tr>
<tr>
<td>H1</td>
<td>0515-0433</td>
<td>6</td>
<td>6</td>
<td>SCREW-MACH TORX 15</td>
<td>00000</td>
<td>ORDER BY DESCRIPTION</td>
</tr>
<tr>
<td>H2</td>
<td>0515-0430</td>
<td>3</td>
<td>3</td>
<td>SCREW-MACH TORX 10</td>
<td>00000</td>
<td>ORDER BY DESCRIPTION</td>
</tr>
<tr>
<td>H3</td>
<td>2940-0256</td>
<td>4</td>
<td>2</td>
<td>NUT-BNC</td>
<td>00000</td>
<td>ORDER BY DESCRIPTION</td>
</tr>
<tr>
<td>H4</td>
<td>0380-1332</td>
<td>7</td>
<td>2</td>
<td>SCREW-STDF, HP-IB CONN HEX</td>
<td>00000</td>
<td>ORDER BY DESCRIPTION</td>
</tr>
<tr>
<td>H5</td>
<td>2190-0577</td>
<td>1</td>
<td>2</td>
<td>WASKER-LOCK</td>
<td>00000</td>
<td>ORDER BY DESCRIPTION</td>
</tr>
<tr>
<td>H6</td>
<td>0590-0005</td>
<td>1</td>
<td>1</td>
<td>NUT-KNURLED</td>
<td>00000</td>
<td>ORDER BY DESCRIPTION</td>
</tr>
<tr>
<td>MP1</td>
<td>53131-00001</td>
<td>6</td>
<td>1</td>
<td>CHASSIS</td>
<td>28480</td>
<td>53131-00001</td>
</tr>
<tr>
<td>MP1 (Option 002)</td>
<td>53131-00010</td>
<td>6</td>
<td>1</td>
<td>CHASSIS, OPTION 002</td>
<td>28480</td>
<td>53131-00010</td>
</tr>
<tr>
<td>MP2</td>
<td>34401-86010</td>
<td>1</td>
<td>1</td>
<td>FRONT/REAR RUBBER BUMPER KIT</td>
<td>28480</td>
<td>34401-86010</td>
</tr>
<tr>
<td>MP3</td>
<td>2190-0577</td>
<td>1</td>
<td>2</td>
<td>WASKER-LOCK</td>
<td>00000</td>
<td>ORDER BY DESCRIPTION</td>
</tr>
<tr>
<td>MP4</td>
<td>53131-00012</td>
<td>9</td>
<td>1</td>
<td>COVER</td>
<td>28480</td>
<td>53131-00012</td>
</tr>
<tr>
<td>MP5</td>
<td>53131-40009</td>
<td>8</td>
<td>1</td>
<td>FRONT BEZEL</td>
<td>28480</td>
<td>53131-40009</td>
</tr>
<tr>
<td>MP5 (HP 53131A)</td>
<td>53131-40015</td>
<td>6</td>
<td>1</td>
<td>WINDOW FOR HP 53131A</td>
<td>28480</td>
<td>53131-40015</td>
</tr>
<tr>
<td>MP6 (HP 53181A)</td>
<td>53181-40003</td>
<td>3</td>
<td>1</td>
<td>WINDOW FOR HP 53132A</td>
<td>28480</td>
<td>53132-40003</td>
</tr>
<tr>
<td>MP6 (HP 53181A)</td>
<td>53181-40003</td>
<td>4</td>
<td>1</td>
<td>WINDOW FOR HP 53181A</td>
<td>28480</td>
<td>53181-40013</td>
</tr>
<tr>
<td>MP6 (HP 53181A)</td>
<td>53131-40010</td>
<td>1</td>
<td>1</td>
<td>KEYPADS FOR HP 53131/132A</td>
<td>28480</td>
<td>53131-40010</td>
</tr>
<tr>
<td>MP7</td>
<td>34401-45011</td>
<td>1</td>
<td>1</td>
<td>HANDLE</td>
<td>28480</td>
<td>34401-45011</td>
</tr>
<tr>
<td>MP8</td>
<td>53131-80038</td>
<td>7</td>
<td>1</td>
<td>REAR LABEL</td>
<td>28480</td>
<td>53131-80038</td>
</tr>
<tr>
<td>MP9</td>
<td>6960-0167</td>
<td>2</td>
<td>3</td>
<td>PLUG, HOLE 0.5-IN DIA</td>
<td>28480</td>
<td>6960-0167</td>
</tr>
<tr>
<td>MP9</td>
<td>0403-0424</td>
<td>8</td>
<td>1</td>
<td>RUBBER FOOT, BLACK</td>
<td>76381</td>
<td>SJ-5023</td>
</tr>
<tr>
<td>MP9</td>
<td>5041-0564</td>
<td>4</td>
<td>1</td>
<td>CAP</td>
<td>28480</td>
<td>5041-0564</td>
</tr>
</tbody>
</table>
Table 5-3. HP 53131A/132A/181A Replaceable Parts (continued)

<table>
<thead>
<tr>
<th>Reference Designation</th>
<th>HP Part Number</th>
<th>C</th>
<th>D</th>
<th>Qty</th>
<th>Description</th>
<th>Mfr Code</th>
<th>Mfr Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPTION 001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A6</td>
<td>53132-60008</td>
<td>0</td>
<td>1</td>
<td>MEDIUM STABILITY TIMEBASE ASSY</td>
<td>28480</td>
<td>53131-00008</td>
<td></td>
</tr>
<tr>
<td>H2</td>
<td>0515-0430</td>
<td>3</td>
<td>3</td>
<td>TIMEBASE SUPPORT BOARD</td>
<td>28480</td>
<td>1813-0931</td>
<td></td>
</tr>
<tr>
<td>OPTION 002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td>53132-60206</td>
<td>0</td>
<td>1</td>
<td>DC POWER INPUT ASSY</td>
<td>28480</td>
<td>53131-00009</td>
<td></td>
</tr>
<tr>
<td>MP10</td>
<td>53131-00010</td>
<td>7</td>
<td>1</td>
<td>CHASSIS FOR OPT 002</td>
<td>28480</td>
<td>53131-00011</td>
<td></td>
</tr>
<tr>
<td>MP11</td>
<td>53131-80039</td>
<td>8</td>
<td>1</td>
<td>REAR LABEL</td>
<td>28480</td>
<td>53131-80039</td>
<td></td>
</tr>
<tr>
<td>E9640A</td>
<td>0515-0372</td>
<td>3</td>
<td>4</td>
<td>SCREW-MACH TORX 10 8MM LG</td>
<td>00000</td>
<td>ORDER BY DESCRIPTION</td>
<td></td>
</tr>
<tr>
<td>OPTION 010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A6</td>
<td>53132-60016</td>
<td>3</td>
<td>AC POWER SUPPLY ASSY FOR OPT 010</td>
<td>28480</td>
<td>53132-60016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53132-60208</td>
<td>1</td>
<td>AC POWER SUPPLY ASSEMBLY</td>
<td>28480</td>
<td>53132-62008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10811-60160</td>
<td>1</td>
<td>OSCILLATOR-OVEN</td>
<td>28480</td>
<td>10811-60160</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2</td>
<td>0515-0430</td>
<td>3</td>
<td>3</td>
<td>SCREW-MACH TORX 10</td>
<td>00000</td>
<td>ORDER BY DESCRIPTION</td>
<td></td>
</tr>
<tr>
<td>H7</td>
<td>2360-0331</td>
<td>6</td>
<td>1</td>
<td>SCREW-MACH POZIDR 6-32 0.25-IN-LG</td>
<td>00000</td>
<td>ORDER BY DESCRIPTION</td>
<td></td>
</tr>
<tr>
<td>OPTION 012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A6</td>
<td>53132-60008</td>
<td>3</td>
<td>AC POWER SUPPLY ASSY FOR OPT 010</td>
<td>28480</td>
<td>53132-60008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53132-60208</td>
<td>1</td>
<td>AC POWER SUPPLY ASSEMBLY</td>
<td>28480</td>
<td>53132-62008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10811-60211</td>
<td>1</td>
<td>OSCILLATOR-OVEN</td>
<td>28480</td>
<td>10811-60211</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2</td>
<td>0515-0430</td>
<td>3</td>
<td>4</td>
<td>SCREW-MACH TORX 10</td>
<td>00000</td>
<td>ORDER BY DESCRIPTION</td>
<td></td>
</tr>
<tr>
<td>H7</td>
<td>2360-0331</td>
<td>6</td>
<td>1</td>
<td>SCREW-MACH POZIDR 6-32 0.25-IN-LG</td>
<td>00000</td>
<td>ORDER BY DESCRIPTION</td>
<td></td>
</tr>
<tr>
<td>OPTION 015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>Exchange only</td>
<td>1</td>
<td>1.5 GHz CHANNEL ASSY</td>
<td>28480</td>
<td>8120-6142</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPS (HP 53181A only)</td>
<td>53181-40015</td>
<td>6</td>
<td>1</td>
<td>WINDOW, 1.5 GHz, FOR HP 53181A ONLY</td>
<td>28480</td>
<td>53181-40015</td>
<td></td>
</tr>
<tr>
<td>H2</td>
<td>0515-0430</td>
<td>3</td>
<td>4</td>
<td>SCREW-MACH TORX 10</td>
<td>00000</td>
<td>ORDER BY DESCRIPTION</td>
<td></td>
</tr>
<tr>
<td>OPTION 030</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>Exchange only</td>
<td>1</td>
<td>3.0 GHz CHANNEL ASSY</td>
<td>28480</td>
<td>8120-6142</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPS (HP 53181A only)</td>
<td>53181-40014</td>
<td>5</td>
<td>1</td>
<td>WINDOW, 3.0 GHz, FOR HP 53181A ONLY</td>
<td>28480</td>
<td>53181-40014</td>
<td></td>
</tr>
<tr>
<td>H2</td>
<td>0515-0430</td>
<td>3</td>
<td>4</td>
<td>SCREW-MACH TORX 10</td>
<td>00000</td>
<td>ORDER BY DESCRIPTION</td>
<td></td>
</tr>
<tr>
<td>OPTION 050</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>Exchange only</td>
<td>1</td>
<td>5.0 GHz CHANNEL ASSY</td>
<td>28480</td>
<td>53181-40016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MP4</td>
<td>53131-40016</td>
<td>1</td>
<td>1</td>
<td>FRONT PANEL, OPT 050</td>
<td>28480</td>
<td>53131-40016</td>
<td></td>
</tr>
<tr>
<td>MP5 (HP 53181A only)</td>
<td>53181-40017</td>
<td>8</td>
<td>1</td>
<td>FRONT PANEL, OPT 050 (53181 only)</td>
<td>28480</td>
<td>53131-40017</td>
<td></td>
</tr>
<tr>
<td>MP5 (HP 53181A only)</td>
<td>53181-40017</td>
<td>8</td>
<td>1</td>
<td>WINDOW, 5 GHz, FOR HP 53181A ONLY</td>
<td>28480</td>
<td>53181-40017</td>
<td></td>
</tr>
<tr>
<td>MP2</td>
<td>53131-40014</td>
<td>5</td>
<td>1</td>
<td>BEZEL</td>
<td>28480</td>
<td>53131-40014</td>
<td></td>
</tr>
</tbody>
</table>
Figure 5-1. HP 53131A/132A/181A Exploded View (Chassis Parts and Assemblies)
Table 5-3. HP 53131A/132A/181A Replaceable Parts (Continued)

<table>
<thead>
<tr>
<th>Reference Designation</th>
<th>HP Part Number</th>
<th>C</th>
<th>D</th>
<th>Qty</th>
<th>Description</th>
<th>Mfr Code</th>
<th>Mfr Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPTION 060</td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>REAR TERMINALS (Only one is needed for the HP 53131A)</td>
<td>28480</td>
<td>8120-06150</td>
</tr>
<tr>
<td>W2</td>
<td>8120-6150</td>
<td>7</td>
<td>2</td>
<td>2</td>
<td>CABLE-COAXIAL ASSY (Only one is needed for the HP 53131A)</td>
<td>28480</td>
<td>8120-06150</td>
</tr>
<tr>
<td>H6</td>
<td>2190-0068</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>WASHER-BNC</td>
<td>00000</td>
<td>ORDER BY DESCRIPTION</td>
</tr>
<tr>
<td>H3</td>
<td>2940-0256</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>NUT-BNC (Only one is needed for 53181A)</td>
<td>00000</td>
<td>ORDER BY DESCRIPTION</td>
</tr>
<tr>
<td>OPTION 124</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>12.4 GHz CHANNEL ASSY</td>
<td>28480</td>
<td>OPTION 124</td>
</tr>
<tr>
<td>A3</td>
<td>Exchange only</td>
<td>1</td>
<td></td>
<td>1</td>
<td>12.4 GHz CHANNEL 3 ASSY</td>
<td>28480</td>
<td></td>
</tr>
<tr>
<td>H2</td>
<td>0515-0430</td>
<td>2</td>
<td></td>
<td>1</td>
<td>SCREW-MACH TORX 10</td>
<td>28480</td>
<td>ORDER BY DESCRIPTION</td>
</tr>
<tr>
<td>MP4</td>
<td>53131-40008</td>
<td>1</td>
<td></td>
<td>1</td>
<td>FRONT PANEL, OPT 124</td>
<td>28480</td>
<td>53131-40008</td>
</tr>
<tr>
<td>MP5 (HP 53181A only)</td>
<td>53181-40009</td>
<td>1</td>
<td></td>
<td>1</td>
<td>WINDOW, 12.4 GHz, FOR HP 53181A ONLY)</td>
<td>28480</td>
<td>53181-40009</td>
</tr>
<tr>
<td>H6</td>
<td>0590-0505</td>
<td>1</td>
<td></td>
<td>1</td>
<td>NUT-KNURLED</td>
<td>28480</td>
<td>0590-0505</td>
</tr>
<tr>
<td>MP2</td>
<td>53131-40014</td>
<td>1</td>
<td></td>
<td>1</td>
<td>BEZEL</td>
<td>28480</td>
<td>53131-40014</td>
</tr>
</tbody>
</table>

Table 5-4. Manufacturer’s Code List.

<table>
<thead>
<tr>
<th>Mfr Code</th>
<th>Manufacturer Name</th>
<th>Address</th>
<th>Zip Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000</td>
<td>ANY SATISFACTORY SUPPLIER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28480</td>
<td>HEWLETT-PACKARD CO CORPORATE HQ</td>
<td>PALO ALTO CA</td>
<td>94304</td>
</tr>
<tr>
<td>76381</td>
<td>3M CO</td>
<td>ST PAUL MN</td>
<td>55144</td>
</tr>
<tr>
<td>05276</td>
<td>ITT POMONA ELECTRONICS DIV</td>
<td>POMONA CA</td>
<td>91766</td>
</tr>
</tbody>
</table>
Backdating
Manual Changes
Chapter 6 Backdating

Introduction

This chapter contains information necessary to adapt this guide to apply to older instruments.

The backdating information includes the following:

- Backdating Hardware page 6-3
- Backdating Firmware page 6-8
- Backdating Specifications page 6-16

Manual Changes

This guide applies directly to Counters with the following serial prefixes listed in Table 6-1.

Table 6-1. Instrument this Guide Directly Applies To

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Serial Prefix Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP 53131A Universal Counter</td>
<td>3711</td>
</tr>
<tr>
<td>HP 53132A Universal Counter</td>
<td>3710</td>
</tr>
<tr>
<td>HP 53181A Frequency Counter</td>
<td>3711</td>
</tr>
</tbody>
</table>

As engineering changes are made, newer instruments may have higher serial prefix numbers than the one shown on the title page of this guide. The guides for these instruments will be supplied with “Manual Updating Changes” package containing the required information. Replace the affected pages or modify existing guide information as directed in the pages of the Manual Updating Changes package. Contact the nearest Hewlett-Packard Sales and Support Office.

Older Instruments

To adapt this guide to older HP 53131A/132A/181A Counters having a serial prefix lower than 3711, perform the backdating provided in the following sections.
Backdating Hardware

CHANGE 1 (Below Series Prefix 3711A)

Page 2-40, Table 2-1. HP 53131A Assembly Identification:

Change A1 Motherboard part number from 53131-60004 to 53131-60001.

Page 2-42, Table 2-3. HP 53181A Assembly Identification:

Change A1 Motherboard part number from 53181-60004 to 53181-60001.

Page 5-7, Table 5-3. HP 53131A/132A/181A Replaceable Parts:

53131A—Change A1 Motherboard part number from 53131-60004 to 53131-60001.

53181A—Change A1 Motherboard part number from 53181-60004 to 53181-60001.

CHANGE 2 (New A3 5/12.4 GHz Prescaler Assembly)

Page 2-40/Page 2-42, Table 2-1/Table 2-3. HP 53131A/132A/181A Assembly Identification:

Change A3 Channel 3 Input Board (Option 050) part number from 53132-60212 to 53132-60211; exchange part numbers change from 53132-69212 to 53132-69211.

Page 5-7, Table 5-3. HP 53131A/132A/181A Replaceable Parts:

Change A3 Channel 3 Input Board (Option 050) part number from 53132-60212 to 53132-60211; exchange part numbers change from 53132-69212 to 53132-69211.
CHANGE 3 (New TCXO boards)

Page 2-47. Troubleshooting the Counter

Add the following as step 4a:

4a If the Counter under test contains Option 010 or 012 High Stability Timebase, perform the following:

a. Disconnect the power supply's two-wire cable from J2 of A6 High Stability Timebase Assembly as shown in Figure 2-10.

Figure 2-10. A4 AC Power Supply -9V Output Check (Option 010/012 Only)
b. Connect the negative lead of a voltmeter to the white wire connection (GND) on the connector of the two-wire cable, and connect the positive lead to the gray wire connection (−9V) as shown in Figure 2-10.

Verify a reading of −9.0 ± 0.45 V.

Page 5-7, Table 5-3. HP 53131A/132A/181A Replaceable Parts:

- Change A6 Options 001, 010, and 012 Timebase Support Board from 53132-60016 to 53132-60008.
- Change A6 Option 010 Oscillator-Oven from 10811-60160 to 10811-60111.
- Change A6 Option 012 Oscillator-Oven from 10811-60260 to 10811-60211.

CHANGE 4 (Series 3710A to 3705A)

53132A Only (Firmware Revision 3646A to 3546A)

Page 2-41, Table 2-2. HP 53132A Assembly Identification:

- Change A1 Motherboard part number from 53132-60014 to 53132-60001.

Page 5-7, Table 5-3. HP 53131A/132A/181A Replaceable Parts:

- Change A1 Motherboard (53132A) part number from 53132-60014 to 53132-60001.
Chapter 6 Backdating
Backdating Hardware

CHANGE 5 (Series 3705A to 3546A, 3548A)
Chassis color change only.

Page 5-7/Page 5-10, Table 5-3. HP 53131A/132A/181A Replaceable Parts:

<table>
<thead>
<tr>
<th>Reference Designator/ Description</th>
<th>Series 3705A</th>
<th>Series 3546A (53131A/132A)</th>
<th>Series 3548A (53181A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP2 Bumper/Cover Kit</td>
<td>34401-86010</td>
<td>34401-86000</td>
<td></td>
</tr>
<tr>
<td>MP3 Cover</td>
<td>53131-00012</td>
<td>53131-00002</td>
<td></td>
</tr>
<tr>
<td>MP4 Front Bezel (53131/132A)</td>
<td>53131-00009</td>
<td>53131-00001</td>
<td></td>
</tr>
<tr>
<td>MP4 Front Bezel (53181A)</td>
<td>53181-00011</td>
<td>53181-00001</td>
<td></td>
</tr>
<tr>
<td>MP5 Window (53131A)</td>
<td>53131-00015</td>
<td>53131-00002</td>
<td></td>
</tr>
<tr>
<td>MP5 Window (53132A)</td>
<td>53132-00003</td>
<td>53132-00001</td>
<td></td>
</tr>
<tr>
<td>MP5 Window (53181A)</td>
<td>53181-00013</td>
<td>53181-00003</td>
<td></td>
</tr>
<tr>
<td>MP6 Keypad</td>
<td>53131-00010</td>
<td>53131-00003</td>
<td></td>
</tr>
<tr>
<td>MP7 Handle</td>
<td>34401-45011</td>
<td>34401-45001</td>
<td></td>
</tr>
<tr>
<td>MP8 Rear Label</td>
<td>53131-80038</td>
<td>53131-80002</td>
<td></td>
</tr>
<tr>
<td>Kit-Rack Mount</td>
<td>5063-9240</td>
<td>5062-3972</td>
<td></td>
</tr>
</tbody>
</table>

Option 002

| MP10 Option 002 Rear Label | 53131-80039 | 53131-80013 |

Option 015

| MP5 Window, 1.5 GHz (53181A) | 53181-40015 | 53181-40005 |

Option 030

| MP5 Window, 3.0 GHz (53181A) | 53181-40014 | 53181-40004 |

Option 050

Front Panel, 5 GHz (53131/132A)	53131-40012	53131-40006
Front Panel, 5 GHz (53181A)	53181-40016	53181-40006
MP5 Window, 5 GHz (53181A)	53181-40017	53181-40007

CHANGE 6 (Below Series Prefix 3416A)
This change deleted three unnecessary connectors from the A1 (53131-60001) board.
Chapter 6 Backdating

Backdating Hardware

CHANGE 7 (Below Serial Number 3349A01906)

Page 5-7, Table 5-3. Replaceable Parts, under A1 (for the HP 53131A):

1. Add 53131-00004; 9; 1; SHIELD UPPER; 28480; 53131-00004
2. Add 53131-00005; 0; 1; SHIELD LOWER; 28480; 53131-00005
3. Add 53131-00008; 3; 1; SHIELD CHASSIS; 28480; 53131-00008
4. Add 53131-00009; 4; 1; GROUND CONNECTION 28480; 53131-00009

Change A4 (Standard) HP Part Number from 0950-2496 to 0950-2139.

Note: A4 AC Power Supply Assembly 0950-2496 allows 400 Hz operation from 100-120V.

1. These shields were needed to reduce susceptibility to EMI. However, the shields are not needed on A1 Motherboard Assembly if the metalized front bezel is used in the Counter. Thus, when you order a new A1 Motherboard Assembly (53131-60001, same part number as the old A1) for your HP 53131A Counter, you need to order a new metalized front bezel (53131-40003, same part number of the old non-metalized front bezel).

CHANGE 8 (Below Serial Prefix 3404A)

Page 5-7, Table 5-3. Replaceable Parts:

Change, under OPTION 001, A6 HP Part Number from 53132-60008 to 53132-60004.

Change, under OPTION 001, 1812-0931; OSCILLATOR-OVEN; to 1812-0932; OSCILLATOR-OVEN.

Change, under OPTION 010, A6 HP Part Number from 53132-60008 to 53132-60005.

Change, under OPTION 011, 10811-60111; OSCILLATOR-OVEN; to BLILEY OSCILLATOR-OVEN.
Backdating Firmware

CHANGE 1 (Firmware Revisions 3317, 3335, 3402, 3427)

(Note: firmware revision 3413 added the new security menu item and the new Calibration Menu to the HP 53131A Counter.)

(Note: firmware revision 3427 was set up to work with the new FPGA [Xilinx 3042A]; and shortens TI delay from 1 ms to 100ms. This revision is backward compatible.

Replace with the following calibration information and procedures:

About the HP 53131A Calibration Menu

The Utility menu is accessed by holding the **Recall** key and cycling **POWER** key.

The Utility menu's calibration items, illustrated on the following page, provide you with the functions to:

- initiate the Counter’s calibration routines, which can perform automatic calibration of the voltage offset and gain of the front-end input amplifiers, and optional timebase
 (CAL: OFFS 1/2 ?, GAIN 1/2 ?, TIMEBAS ?, and TI 1→?)

6-8 Assembly-Level Service Guide
Chapter 6 Backdating
About the HP 53131A Calibration Menu

CHANGE 1 (Firmware Revisions 3317, 3335, 3402, 3427) (Continued)

The HP 53131A Utility/Calibration Menu Tree

NOTE

Turn power off, press and hold Recall (Utility) key, then press POWER key to access this menu.

*Timebase can be automatically calibrated only if the timebase option is installed.
The HP 53131A Calibration Procedures

To Calibrate the Offset for Channels 1 and 2

1. To access the Utility menu, power down, and press and hold the Recall (Utility) key, then press POWER key.

2. Press Recall (Utility) key until CAL: OFFS 1 ? is displayed.

3. Press Enter key.

 The display will ask you to remove any signals connected to Channel 1. Follow the instruction.

4. Press Enter key.

 The Counter momentarily displays CALIBRATING, and then it should display OFFS 1 PASS.

 If the fail message is displayed, refer to the troubleshooting section in this chapter.

5. To calibrate Channel 2, press any one of the arrow keys until CAL: OFFS 2 ? is displayed.

6. Press Enter key.

 The display will ask you to remove any signals connected to Channel 2. Follow the instruction.

7. Press Enter key.

 The Counter momentarily displays CALIBRATING, and then it should display OFFS 2 PASS.

 If the fail message is displayed, refer to the troubleshooting section in this chapter.
This completes the Offset Calibration procedure. Proceed to the next procedure to calibrate the gain.

CHANGE 1 (Firmware Revisions 3317, 3335, 3402, 3427) (Continued)

To Calibrate the Gain for Channels 1 and 2

1. Press any one of the arrow keys until `CAL: GAIN 1 ?` is displayed.
2. Press Enter key.

 A scrolling message is displayed. Follow the instruction by performing the following steps.
3. Connect a BNC tee connector to Channel 1 of the Counter.
4. Connect the Counter, dc power supply, and multimeter as shown in Figure 2-1.

![Figure 2-1. Gain Calibration Setup](image)

5. Adjust the power supply until the multimeter displays $+5.000 \text{ V} \pm 0.001 \text{ V}$.
6. Disconnect the digital multimeter from the Counter to prevent noise from being introduced into the measurement.
7. Press Enter key.

 The Counter momentarily displays `CALIBRATING`, and then it should display `GAIN 1 PASS`.
If the fail message is displayed, refer to the troubleshooting section in this chapter.

CHANGE 1 (Firmware Revisions 3317, 3335, 3402, 3427) (Continued)

8 To calibrate the gain for Channel 2, connect the input or the BNC Tee to Channel 2 of the Counter.

9 Press any one of the arrow keys until \(\text{CAL: GAIN 2 ?} \) is displayed.

10 Press Enter key.

A scrolling message is displayed. (The +5V dc supply should already be connected to Channel 2 as you were previously instructed to do this in step 8.)

11 Press Enter key again.

The Counter momentarily displays \(\text{CALIBRATING} \), and then it should display \(\text{GAIN 2 PASS} \).

If the fail message is displayed, refer to the troubleshooting section in this chapter.

12 Disconnect the calibration setup.

This completes the Gain Calibration procedure. Proceed to the next procedure to calibrate the time interval.

To Calibrate Time Interval

1 Press any one of the arrow keys until \(\text{CAL: TI \rightarrow 2?} \) is displayed.

2 Press Enter key.

A scrolling message with instructions appears. Follow the instruction by performing the following procedure.
3 Connect the HP 8130A Pulse Generator output to Channel 1 of the Counter as shown in Figure 2-3.

CHANGE 1 (Firmware Revisions 3317, 3335, 3402, 3427) (Continued)

Equipment
HP 8130A Pulse Generator (or equivalent)
HP 10503A BNC Cable

Figure 2-3. TI Calibration Setup

4 Set the HP 8130A as follows:

PERIOD: 100 ns
WIDTH: 50 ns
High: 0.50 V
Low: −0.50 V
Input Mode: Normal

NOTE
Any external timebase connected to the Counter is ignored during this calibration.

5 Press Enter key.

The Counter displays CALIBRATING, and then it should display TI CAL PASS.

If the fail message is displayed, refer to the troubleshooting section in this chapter.
CHANGE 1 (Firmware Revisions 3317, 3335, 3402, 3427) (Continued)

6 Disconnect the calibration setup.

This completes the TI QUIK calibration procedures.

Depending on which timebase the Counter contains, proceed to the following procedure “To Calibrate the Standard Timebase” or the “To Calibrate the High Stability Timebase Option (Medium or High)” procedure to calibrate the timebase.

To Calibrate the Standard Timebase

1 Connect the output of a 10 MHz house standard to Channel 1 of the Counter as shown in Figure 2-4.

![Figure 2-4. Standard Timebase Calibration Setup](image)

2 Cycle the POWER key to preset the Counter.

3 With an insulated tuning tool, turn the OSC Adjust potentiometer (located on the rear chassis of the Counter) until the frequency reading in the Counter display is 10.00000000 MHz ±5 Hz.

The Counter will be calibrated to the house standard.

If you are not able to adjust the frequency correctly, refer to the troubleshooting section in this chapter.

This completes the Standard Timebase Calibration procedure.
CHANGE 1 (Firmware Revisions 3317, 3335, 3402, 3427) (Continued)

To Calibrate the High Stability Timebase Option (Medium or High)

NOTE

Allow the Counter to warm up for approximately 30 minutes before performing this calibration. This calibration is unlikely to fail, unless the Counter is not warmed up.

1. Connect the output of a 10 MHz house standard to Channel 1 of the Counter as shown in Figure 2-4.

2. Press any one of the arrow keys until CAL: TIMEBAS? is displayed.

 Note that the timebase choice (CAL: TIMEBAS?) only appears when the Timebase Option is installed.

3. Press Enter key and follow the instructions in the scrolling message that appears in the Counter display.

4. Press Enter key after each instruction.

 The Counter displays CALIBRATING, and then it should display TB CAL PASS.

 If the fail message is displayed (even after the Counter has been warmed up for 30 minutes), refer to the troubleshooting section in this chapter.

 This completes the High Stability Timebase Option Calibration procedure.

 If all tests passed, the Counter is now calibrated.
Backdating Specifications

CHANGE 1 (53131A, Serial Prefix 3710A and Below)
Page 7-3, External Arm Input Specifications:

 Change the Signal Input Range specification
 from:
 TTL Compatible
 to:
 High-Level Input: >3.0 V
 Low-Level Input: <1.5 V

CHANGE 2 (53132A, Serial Prefix 3546A and Below)
Page 7-3, External Arm Input Specifications:

 Change the Signal Input Range specification
 from:
 TTL Compatible
 to:
 High-Level Input: >3.0 V
 Low-Level Input: <1.5 V
Chapter 6 Backdating
Backdating Specifications

CHANGE 3 (53181A, Serial Prefix 3711A02841 and Below)
Page 8-3, External Arm Input Specifications:

Change the Signal Input Range specification from:
TTL Compatible
to:
High-Level Input: >3.0 V
Low-Level Input: <1.5 V
Chapter 7 HP 53131A/132A Specifications

Introduction

The specifications of the HP 53131A/132A Universal Counter are provided in this chapter.

Instrument Inputs

Channel 1 & 2 Input Specifications

<table>
<thead>
<tr>
<th>Frequency Range</th>
<th>Voltage Range and Sensitivity (Sinusoid)²</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Coupled: DC to 225 MHz</td>
<td>DC to 100 MHz: 20 mVrms to ±5 V ac + dc (75 mVrms with optional rear connectors)³</td>
</tr>
<tr>
<td>AC Coupled: 1 MHz to 225 MHz (50 Ω)</td>
<td>100 MHz to 200 MHz: 30 mVrms to ±5 V ac + dc (75 mVrms with optional rear connectors)³</td>
</tr>
<tr>
<td></td>
<td>200 MHz to 225 MHz: 40 mVrms to ±5 V ac + dc (75 mVrms with optional rear connectors)³</td>
</tr>
</tbody>
</table>

| Voltage Range and Sensitivity (Single-Shot Pulse)² | 4.5 ns to 10 ns Pulse Width: 100 mVpp to 10 Vpp (150 mVpp with optional rear connectors)³ |
|---| >10 ns Pulse Width: 50 mVpp to 10 Vpp (100 mVpp with optional rear connectors)³ |

<table>
<thead>
<tr>
<th>Trigger Level²</th>
<th>Range: ±5.125 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy: ±(15 mV + 1% of trigger level)</td>
<td></td>
</tr>
<tr>
<td>Resolution: 5 mV</td>
<td></td>
</tr>
</tbody>
</table>

Damage Level

<table>
<thead>
<tr>
<th>Impedance: 50 Ω</th>
<th>0 to 3.5 kHz, 1 MΩ: 350 V dc + ac pk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.5 kHz to 100 kHz, 1 MΩ: 350 V dc + ac pk linearly derated to 5 Vrms</td>
</tr>
<tr>
<td></td>
<td>>100 kHz, 1 MΩ: 5 Vrms</td>
</tr>
</tbody>
</table>

Trigger Slope:

Positive or Negative

Auto Trigger Level

Range: 0 to 100% in 10% steps
Frequency: > 100 Hz
Input Amplitude: > 100 mVpp (No amplitude modulation)

Attenuator

Voltage Range: x10
Trigger Range: x10

1 Specifications and Characteristics for Channels 1 and 2 are identical for both Common and Separate configurations.

2 Values shown are for X1 attenuator setting. Multiply all values by 10 (nominal) when using the X10 attenuator setting. Note that it may be necessary to recalibrate the input offset in the application environment (especially at high temperature) to achieve maximum sensitivity.

3 When ordered with optional rear terminals, the Channel 1 and 2 inputs are active on both the front and rear of the universal counter though the specifications provided only apply to the rear terminals. Performance for the front terminals is degraded, but may be improved by terminating the rear terminals into 50 Ω.
Instrument Inputs (Continued)

Channel 3 Input Specifications

<table>
<thead>
<tr>
<th>Frequency Range</th>
<th>Option 030</th>
<th>100 MHz to 3 GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option 050</td>
<td>200 MHz to 5 GHz</td>
<td></td>
</tr>
<tr>
<td>Option 124</td>
<td>200 MHz to 12.4 GHz</td>
<td></td>
</tr>
</tbody>
</table>

Power Range and Sensitivity (Sinusoid)

- **Option 030**
 - 100 MHz to 2.7 GHz: -27 dBm to +19 dBm
 - 2.7 GHz to 3 GHz: -21 dBm to +13 dBm
- **Option 050**
 - 200 MHz to 5 GHz: -23 dBm to +13 dBm
- **Option 124**
 - 200 MHz to 12.4 GHz: -23 dBm to +13 dBm

Damage Level:

- **Option 030**: 5 Vrms
- **Option 050**: +25 dBm
- **Option 124**: +25 Vrms

Channel 3 Input Characteristics

<table>
<thead>
<tr>
<th>Impedance:</th>
<th>50 Ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coupling:</td>
<td>AC</td>
</tr>
<tr>
<td>VSWR:</td>
<td>< 2.5:1</td>
</tr>
</tbody>
</table>

External Arm Input Specifications

Signal Input Range:

- TTL compatible

Timing Restrictions:

- Pulse Width: > 50 ns
- Transition Time: < 250 ns
- Start-to-Stop Time: > 50 ns

Damage Level: 10 Vrms

External Arm Input Characteristics

<table>
<thead>
<tr>
<th>Impedance:</th>
<th>1 kΩ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Capacitance:</td>
<td>17 pF</td>
</tr>
<tr>
<td>Start Slope:</td>
<td>Positive or Negative</td>
</tr>
<tr>
<td>Stop Slope:</td>
<td>Positive or Negative</td>
</tr>
</tbody>
</table>

Notes:

- External Arm is available for all measurements except Peak Volts.
- External Arm is referred to as External Gate for some measurements.

4 Channel 3 is available as an option.

5 When ordered with optional rear terminals, the Channel 3 connector on the front panel for Option 030 will be routed to the rear panel (rear panel only). There is no degradation in specifications for this input. Option 050 and Option 124 input connectors are available on the front panel only.
Time Base

Internal Time Base Stability

<table>
<thead>
<tr>
<th></th>
<th>Standard (0° to 50°C)</th>
<th>Medium Stability Oven (Option 001)</th>
<th>High Stability Oven (Option 010)</th>
<th>Ultra High Stability Oven (Option 012)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Stability:</td>
<td>< 5 x 10^{-6}</td>
<td>< 2 x 10^{-7}</td>
<td>< 2.5 x 10^{-9}</td>
<td>< 2.5 x 10^{-9}</td>
</tr>
<tr>
<td>(referenced to 25°C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aging Rate</td>
<td>< 3 x 10^{-7}</td>
<td>< 4 x 10^{-8}</td>
<td>< 5 x 10^{-10}</td>
<td>< 1 x 10^{-10}</td>
</tr>
<tr>
<td>(after 30 days)</td>
<td></td>
<td>< 2 x 10^{-7}</td>
<td>< 1.5 x 10^{-8}</td>
<td>< 3 x 10^{-9}</td>
</tr>
<tr>
<td>Per Day:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per Month:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per Year:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-on stability vs.</td>
<td>< 2 x 10^{-7} (referenced to 2 hours)</td>
<td>< 5 x 10^{-9} (referenced to 24 hours)</td>
<td>< 5 x 10^{-9} (referenced to 24 hours)</td>
<td></td>
</tr>
<tr>
<td>time:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(in 30 minutes)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calibration:</td>
<td>Manual Adjust</td>
<td>Electronic</td>
<td>Electronic</td>
<td>Electronic</td>
</tr>
</tbody>
</table>

Note that power to the time base is maintained when the counter is placed in standby via the front panel switch. The internal fan will continue to operate under this condition, to maintain long-term instrument reliability.

External Time Base Input Specifications

- **Voltage Range:** 200 mVrms to 10 Vrms
- **Damage Level:** 10 Vrms

External Time Base Input Characteristics

- **Threshold:** 0 V
- **Impedance:** 1 kΩ
- **Input Capacitance:** 23 pF
- **Frequency (53131A):**
 - 1 MHz, 5 MHz or 10 MHz (automatic selection)
- **Frequency (53132A):** 10 MHz

Internal vs. External Time Base Selection:

- **Manual:** Select Internal or External
- **Automatic:** Internal used when External not present (default)

Time Base Output Specifications

- **Output Frequency:** 10 MHz
- **Voltage:** > 1 Vpp into 50 Ω (centered around 0 V)
The following graphs may also be used to compute errors for Period Measurements. To find the Period error (\(\Delta P \)), calculate the frequency of the input signal (\(F = \frac{1}{P} \)) and find the frequency error (\(\Delta F \)) from the chart. Then, calculate the period error as:
\[
\Delta P = \left(\frac{\Delta F}{F} \right) \times P
\]
Measurement Specifications (Continued)

HP 53131A—Worst Case RMS Resolution

Automatic or External Arming:

The preceding graphs do not reflect the effects of trigger error. To place an upper bound on the added effect of this error term, determine the frequency error from the appropriate graph and add a trigger error term as follows:

Automatic or External Arming

\[
\text{Frequency Error} + \left(\frac{2 \times \text{Trigger Error}}{\text{Gate Time}} \right) \times \frac{\text{Frequency or Period}}{} = \text{Frequency Error} + \left(\frac{2 \times \text{Trigger Error}}{\text{Gate Time}} \right) \times \frac{\text{Frequency or Period}}{}
\]

Time or Digit Arming

\[
\text{Frequency Error} + \left(\frac{4 \times \sqrt{2} \times \text{Trigger Error}}{\text{Gate Time} \times \text{Number of Samples}} \right) \times \frac{\text{Frequency or Period}}{} = \text{Frequency Error} + \left(\frac{4 \times \sqrt{2} \times \text{Trigger Error}}{\text{Gate Time} \times \text{Number of Samples}} \right) \times \frac{\text{Frequency or Period}}{}
\]
HP 53132A—Worst Case RMS Resolution

Automatic or External Arming:

Time or Digit Arming:

The preceding graphs do not reflect the effects of trigger error. To place an upper bound on the added effect of this error term, determine the frequency error from the appropriate graph and add a trigger error term as follows:

For Time or Digit Arming:

\[
\text{Frequency Error} = \frac{4 \times \sqrt{2} \times \text{Trigger Error} \times \text{Gate Time} \times \text{Number of Samples}}{\text{Frequency or Period}}
\]

For Automatic or External Arming:

\[
\text{Frequency Error} = \frac{2 \times \text{Trigger Error} \times \text{Gate Time}}{\text{Frequency or Period}}
\]
Measurement Specifications (Continued)

Frequency Measurement Example:

Given an HP 53132A with a High Stability Oven that was calibrated 3 days ago, measure a 15 MHz square wave signal (which has negligible trigger error) with a 1 second gate time. Compute the measurement error to within 2-sigma confidence.

\[
\text{Measurement Error} = \text{Systematic Uncertainty} \pm 2 \times \text{RMS Resolution}
\]

\[
= \left(\pm \text{Time Base Error} \pm \frac{t_{acc}}{\text{Gate Time}} \right) \pm 2 \times \left(\frac{4 \times \sqrt{t_{acc} + (2 \times \text{Trigger Error})^2}}{\text{Gate Time} \times \sqrt{\text{Number of Samples}}} + \frac{t_{jitter}}{\text{Gate Time}} \right) \times \text{Frequency}
\]

Number of Samples = 200,000 since Frequency is greater than 200kHz and gate time equals 1 second
Time Base Error = Temperature Stability + 3 Days × Daily Aging Rate
= \(2.5 \times 10^{-6} + 3 \times (5 \times 10^{-10})\)
= \(4.0 \times 10^{-9}\)

Measurement Error = \(\left(\pm 4.0 \times 10^{-9} \pm \frac{1 \times 10^{-11}s}{1s} \right) \pm 2 \times \left(\frac{4 \times \sqrt{225 \times 10^{-12} s^2 + (2 \times 0) + 3 \times 10^{-12} s^2}}{1s \times \sqrt{200,000}} + \frac{3 \times 10^{-12} s^2}{1s} \right) \times 15MHz\)

= \(\pm 4.0 \times 10^{-9} \pm 2 \times (0.01 \times 10^{-12} + 3 \times 10^{-12}) \times 15MHz\)
= \(\pm 4.0 \times 10^{-9} \pm 10^{-11} \times 15MHz\)
= \(\pm 60.2 \text{ mHz}\)

Which is to say that the HP 53132A would display results in the range 15 MHz ±60.2 mHz. Note however that the dominant error is the Time Base Error. If an even higher stability time base is available or if the instrument can be source locked to the 15 MHz signal, then this error term can be substantially reduced. The measurement resolution under these conditions is ±75 µHz (1 sigma) which determines the number of digits displayed.
Chapter 7 HP 53131A/132A Specifications
Measurement Specifications (Continued)

Measurement Specifications (Continued)

Time Interval
Measurement is specified over the full signal ranges of Channels 1 and 2.

Results Range: \(-1 \text{ ns to } 10^5 \text{ s}\)

LSD: \begin{align*}
53131A & \quad 53132A \\
500 \text{ ps} & \quad 150 \text{ ps}
\end{align*}

RMS Resolution:
\[
\sqrt{t_{\text{res}}^2 + \text{Start Trigger Error}^2 + \text{Stop Trigger Error}^2}
\]

Systematic Uncertainty: \(\pm (\text{Time Base Error} \times T_I) \pm \text{Trigger Level Timing Error} \pm 1.5 \text{ ns Differential Channel Error (HP 53131A)} \pm 900 \text{ ps Differential Channel Error (HP 53132A)}\)

Time Interval Delay
After a Time Interval Measurement has begun by satisfying the trigger conditions on Channel 1, the instrument will wait for the user-entered delay time to elapse before the end-of-measurement trigger will be accepted on Channel 2. Please refer to Measurement Arming for additional information.

Frequency Ratio:
Measurement is specified over the full signal range of each input.

Results Range: \(10^{-10} \text{ to } 10^{11}\)

‘Auto’ Gate Time: 100 ms (or sufficient cycles on Channel 2 or 3 to make a valid measurement, whichever is longer)

LSD:

\[
\begin{align*}
\text{Ratio } \frac{1}{2} & : \frac{f_{\text{Ch2 Freq}}}{\text{Gate Time}} \\
\text{Ratio } \frac{2}{1} & : \frac{f_{\text{Ch2 Freq}}}{(\text{Ch1 Freq})^2 \times \text{Gate Time}} \\
\text{Ratio } \frac{3}{1} & : \frac{f_{\text{Ch3 Freq}}}{(\text{Ch1 Freq})^2 \times \text{Gate Time}}
\end{align*}
\]

RMS Resolution:

\[
\begin{align*}
\text{Ratio } \frac{1}{2} & : \frac{2 \times \sqrt{1 + (\text{Ch1 Freq} \times \text{Ch2 Trigger Error})^2}}{\text{Ch2 Freq} \times \text{Gate Time}} \\
\text{Ratio } \frac{2}{1} & : \frac{2 \times \sqrt{1 + (\text{Ch1 Freq} \times \text{Ch2 Trigger Error})^2}}{(\text{Ch1 Freq})^2 \times \text{Gate Time}} \\
\text{Ratio } \frac{3}{1} & : \frac{2 \times \sqrt{1 + (\text{Ch1 Freq} \times \text{Ch2 Trigger Error})^2}}{(\text{Ch1 Freq})^2 \times \text{Gate Time}}
\end{align*}
\]

To minimize relative phase measurement error, connect the higher frequency signal to Channel 1 when possible.

7 See Specifications for Pulse Width and Rise/Fall Time measurements for additional restrictions on signal timing characteristics.
Measurement Specifications (Continued)

Pulse Width

Measurement is specified over the full signal range of Channel 1. The width of the opposing pulse must be greater than 4 ns (e.g., when measuring the positive pulse width, the negative pulse width must be greater than 4 ns).

Pulse Selection: Positive or Negative
Trigger: Default setting is Auto Trigger\(^8\) at 50%
Results Range: 5 ns to \(10^5\) s

<table>
<thead>
<tr>
<th></th>
<th>53131A</th>
<th>53132A</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSD</td>
<td>500 ps</td>
<td>150 ps</td>
</tr>
</tbody>
</table>

RMS Resolution: \(\sqrt{t_{\text{res}}^2 + \text{Start Trigger Error}^2 + \text{Stop Trigger Error}^2}\)

<table>
<thead>
<tr>
<th></th>
<th>53131A</th>
<th>53132A</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{\text{res}})</td>
<td>750 ps</td>
<td>300 ps</td>
</tr>
</tbody>
</table>

Systematic Uncertainty:
\[\pm (\text{Time Base Error} \times \text{Pulse Width}) \pm \text{Trigger Level Timing Error} \pm 1.5 \text{ ns Differential Channel Error (HP 53131A)} \]
\[\pm 900 \text{ ps Differential Channel Error (HP 53132A)} \]

Rise/Fall Time

Measurement is specified over the full signal ranges of Channel 1. The interval between the end of one edge and start of a similar edge must be greater than 4 ns (e.g., when measuring a rising edge, 4 ns must elapse between the 90% point of one rising edge and the 10% point of the next rising edge).

Edge Selection: Positive or Negative
Trigger: Default setting is Auto Trigger\(^8\) at 10% and 90%
Results Range: 5 ns to \(10^5\) s

<table>
<thead>
<tr>
<th></th>
<th>53131A</th>
<th>53132A</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSD</td>
<td>500 ps</td>
<td>150 ps</td>
</tr>
</tbody>
</table>

RMS Resolution: \(\sqrt{t_{\text{res}}^2 + \text{Start Trigger Error}^2 + \text{Stop Trigger Error}^2}\)

<table>
<thead>
<tr>
<th></th>
<th>53131A</th>
<th>53132A</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{\text{res}})</td>
<td>750 ps</td>
<td>300 ps</td>
</tr>
</tbody>
</table>

Systematic Uncertainty:
\[\pm (\text{Time Base Error} \times \text{Transition Time}) \pm \text{Trigger Level Timing Error} \pm 1.5 \text{ ns Differential Channel Error (HP 53131A)} \]
\[\pm 900 \text{ ps Differential Channel Error (HP 53132A)} \]

Phase

Measurement is specified over the full signal range of Channels 1 and 2.

Results Range: \(-180^\circ\) to \(+360^\circ\)

RMS Resolution: \(t_{\text{res}} \left(\left(\frac{t_{\text{res}}}{4} + 2 \times \text{Trigger Error}^2\right) \times \left(1 + \frac{\text{Phase}^2}{360^2}\right)\right) \times \text{Frequency} \times 360^\circ\)

<table>
<thead>
<tr>
<th></th>
<th>53131A</th>
<th>53132A</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{\text{res}})</td>
<td>750 ps</td>
<td>300 ps</td>
</tr>
</tbody>
</table>

Systematic Uncertainty:
\[\pm \text{Trigger Level Timing Error} \pm 1.5 \text{ ns Differential Channel Error} \times \text{Frequency (HP 53131A)} \]
\[\pm 900 \text{ ps Differential Channel Error} \times \text{Frequency (HP 53132A)} \]

\(^8\) Restrictions noted on page 7-2 for Auto Trigger apply to the proper operation of these measurements. The Peak Volts measurement is used to determine the signal amplitude and inaccuracies from this, noted on page 7-11, should be included in calculating the Trigger Level Timing Error.
Duty Cycle

Measurement is specified over the full signal range of Channel 1. However, both the positive and negative pulse widths must be greater than 4 ns.

Results Range: 0 to 1 (e.g. 50% duty cycle would be displayed as .5)

RMS Resolution: \(\sqrt{(f_{\text{res}} + (2 \times \text{Trigger Error})^2) \times (1 + \text{Duty Cycle}^2)} \times \text{Frequency} \)

<table>
<thead>
<tr>
<th></th>
<th>53131A</th>
<th>53132A</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{\text{res}})</td>
<td>750 ps</td>
<td>300 ps</td>
</tr>
</tbody>
</table>

Totalize

Measurement is specified over the full signal range of Channel 1.

Results Range: 0 to \(10^{15} \)

Resolution: \(\pm 1 \) count

Peak Volts

Measurement is specified on Channels 1 and 2 for DC signals; or for AC signals of frequencies between 100 Hz and 30 MHz with peak-to-peak amplitude greater than 100 mV. (The measurement will continue to operate up to 225 MHz, though results are for indication only.)

Results Range: \(-5.1 \) V to \(+5.1 \) V

Resolution: 10 mV

Systematic Uncertainty for AC signals: 25 mV + 10% of V

for DC signals: 25 mV + 2% of V

Use of the input attenuator multiplies all voltage specifications (input range, results range, resolution and systematic uncertainty) by a nominal factor of 10. For example with AC signals, the Systematic Uncertainty becomes: 250 mV + 10% of V.
Chapter 7 HP 53131A/132A Specifications
Measurement Definitions

Definitions of Systematic Uncertainty Terms

- **Trigger Error**

 External source and input amplifier noise may advance or delay the trigger points that define the beginning and end of a measurement. The resulting timing uncertainty is a function of the slew rate of the signal and the amplitude of spurious noise spikes (relative to the input hysteresis band).

 The (rms) trigger error associated with a single trigger point is:

 \[
 \text{Trigger Error} = \sqrt{\left(\frac{E_{\text{input}}}{\text{Input Signal Slew Rate at Trigger Point}}\right)^2 + \left(\frac{E_{\text{signal}}}{\text{Input Signal Slew Rate at Trigger Point}}\right)^2} \quad \text{(in seconds)}
 \]

 where

 - \(E_{\text{input}} = \) RMS noise of the input amplifier: 1 mVrms (350 µVrms typical). Note that the internal measurement algorithms significantly reduce the contribution of this term.

 - \(E_{\text{signal}} = \) RMS noise of the input signal over a 225 MHz bandwidth (100 kHz bandwidth when the low-pass filter is enabled). Note that the filter may substantially degrade the signal’s slew rate at the input of the trigger comparator.

 For two-trigger-point measurements (e.g. Rise Time, Pulse Width), the Trigger Errors will be referred to independently as Start Trigger Error and Stop Trigger Error.

- **Trigger Level Timing Error**

 Trigger level timing error results from a deviation of the actual trigger level from the specified (indicated) level. The magnitude of the measurement timing error depends on several factors, primarily: resolution and accuracy of the trigger level circuit, fidelity of the input amplifier, slew rate of the input signal at the trigger point, and width of the input hysteresis band (see illustration).

 \[
 \text{Trigger Level Timing Error} = \frac{0.5 \times \text{Hysteresis Band} \times \text{Input Signal Slew Rate at Start Trigger Point} \pm \text{15 mV} \pm (1\% \times \text{Start Trigger Level Setting})}{0.5 \times \text{Hysteresis Band} \times \text{Input Signal Slew Rate at Stop Trigger Point} \pm \text{15 mV} \pm (1\% \times \text{Stop Trigger Level Setting})}
 \]

 Trigger level timing error is associated with Time Interval, Pulse Width, Rise Time, Fall Time, Phase, and Duty Cycle measurements. The following equations define the general interpretation of its component error terms for a measurement. These should be summed together to obtain the overall Trigger Level Timing Error.
Measurement Definitions (Continued)

- **Fractional Time Base Error**
 Time base error is the maximum fractional frequency variation of the time base due to aging or fluctuations in ambient temperature or line voltage:
 \[\text{Time Base Error} = \left(\frac{\Delta f}{f} \right)_{\text{aging rate}} + \left(\frac{\Delta f}{f} \right)_{\text{temperature}} + \left(\frac{\Delta f}{f} \right)_{\text{line voltage}} \]
 Multiply this quantity by the measurement result to yield the absolute error for that measurement. Averaging measurements will not reduce (fractional) time base error. The HP 53131A/132A universal counters exhibit negligible sensitivity to line voltage; consequently this term may be ignored.

- **Differential Channel Error**
 The Differential Channel Error term included in many of the Systematic Uncertainty equations accounts for channel-to-channel mismatch and internal noise. This error can be substantially reduced by performing the TI Calibration in the temperature environment in which future measurements are to be made and by careful measurement technique. Calibration is accessible via the Calibration Menu during power-up.

Typical Versus Worst Case Specifications
Specifications identified as “Typical” represent performance of the instrument that the majority of users will perceive under a wide variety of conditions and signals. The specifications identified as “Worst Case” should be used when the instrument is under extreme environmental conditions or when the accuracy of the measurement results are critically important.

Time Interval Measurement LSD Definition
For the Time Interval, Pulse Width, and Rise/Fall Time measurements, the LSD is the measurement quantization error. \(t_{\text{res}} \) is the LSD plus the effects of certain internal error producing sources.

Additional Considerations for Digits and Time Arming Modes
For sample rates defined below, resolution will be reduced by up to 1 decade. The instruments display detects this condition and displays a reduced-resolution result. Resolution is reduced in a band about \(f_s \) such that

\[
xy = \frac{10\text{MHz}}{f_s}
\]

where \(x \) is any integer, and \(y \) is any fraction in the set:
\[
\left\{ 0, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{5}{4}, \frac{1}{5}, \frac{2}{5}, \frac{1}{6}, \frac{2}{6}, \frac{5}{6}, \frac{1}{7}, \frac{2}{7}, \frac{3}{7}, \frac{4}{7}, \frac{5}{7}, \frac{6}{7}, \ldots \right\}
\]

The width of the band is at most:
\[
\pm 6 \times 10^{-7} \times f_{\text{input}}
\]

\[
\pm \frac{\text{Gate Time}}{10^{-7}}
\]

The value of \(f_s \) is not available to the user, but the instrument can be queried over HP-IB to determine if this condition exists. After the measurement completes, use the query :DIAGnostic:MEASURE:PRESolution? The response is an ASCII text formatted string “0” for normal resolution and “1” for reduced resolution. This command is valid only when making frequency measurements in time or digits arming and the input frequency is greater than 100 Hz.
Measurement Arming and Processing

Gate Time
Auto Mode, or 1 ms to 1000 s

Measurement Throughput
HP-IB ASCII: 200 Measurements/s (maximum)
(See examples in the Programming Guide for ways to optimize measurement throughput)

Measurement Arming

Start Measurement: Free Run, Manual, or External
Stop Measurement: Continuous, Single, External, or Timed

Arming Modes: (Note that not all arming modes are available for every measurement function.)

- **Auto Arming:** Measurements are initiated immediately and acquired as fast as possible, using a minimum number of signal edges. Auto arming offers the highest measurement throughput, though measurement resolution may be reduced.
- **Timed Arming:** The duration of the measurement is internally timed to a user-specified value (also known as the “gate time”). This mode should be used when the length of the measurement time must be controlled.
- **Digits Arming:** Measurements are performed to the requested resolution (number of digits) through automatic selection of the acquisition time. This is the most convenient mode for when a specific measurement resolution is desired.
- **External Arming:** An edge on the External Arm Input enables the start of each measurement. Depending on the measurement function, Auto Arming, Timed arming modes or another edge on the External Arm Input may be used to complete the measurement.

Time Interval Arming Modes: HP 53131A

Time Interval Stop Delay Arming: The Stop Measurement condition on Channel 2 is inhibited (trigger hold-off) for a user-specified time following the Start Measurement on Channel 1.
- **Time Interval Delay Range:** 100 µs to 10 s*
- **Time Interval Delay Resolution:**
 - 10 µs from 100 µs to 100 ms
 - 1 ms from 100 ms to 10 s

HP 53132A

Time Interval Start Delay Arming: The start of a Time Interval measurement is delayed for a user-specified amount of time, or number of Channel 2 events, from the Start External Arming edge.
- **Start Delay Time Range:** 100 ns to 999.9999 ms
- **Start Delay Time Resolution:** 100 ns
- **Start Delay Event Range:** 1 to 99,999,999 Channel 2 events
- **Start Delay Event Rate:** 5 MHz maximum
- **Start Delay Event Setup Time:** 30 ns minimum

Time Interval Stop Delay Arming: The Stop Measurement condition on Channel 2 is inhibited (trigger hold-off) for a user-specified amount of time, or number of Channel 2 stop events, following the Start Measurement on Channel 1, or, if enabled, the Stop External Arming edge.
- **Stop Delay Time Range:** 100 ns to 10 s**
- **Stop Delay Time Resolution:** 100 ns from 100 ns to 1 s
 - 1 ms from 1 s to 10 s
- **Stop Delay Event Range:** 1 to 99,999,999 Channel 2 events
- **Stop Delay Event Rate:** 5 MHz maximum
- **Stop Delay Event Setup Time:** 30 ns minimum

* For firmware revisions below 3427 the valid range of delay is 1 ms to 10 s.
** For firmware revisions below 3646 the valid range of delay is 1 ms to 10 s.
Measurement Arming and Processing (Continued)

Measurement Statistics

Available Statistics: Mean, Minimum, Maximum, Standard Deviation

Number of Measurements: 2 to 1,000,000. Statistics may be collected on all measurements or on only those which are between the limit bands. When the Limits function is used in conjunction with Statistics, N (number of measurements) refers to the number of in-limit measurements. In general, measurement resolution will improve in proportion to \(\sqrt{N} \), up to the numerical processing limits of the instrument.

Measurements: Statistics may be collected for all measurements except Peak Volts and Totalize.

Measurement Limits

Limit Checking: The measurement value is checked against user-specified limits at the end of each measurement.

Display Modes: The measurement result may be displayed as either the traditional numeric value or graphically as an asterisk moving between two vertical bars. These bars define the upper and lower limits, and the asterisk represents the current measurement result relative to these limits.

Out-of-Limits Indication: The out-of-limits condition can be indicated by any of the following methods:

- The limits annunciator will light on the front panel display.
- The instrument will generate an SRQ if enabled via HP-IB.
- The limits hardware signal provided via the RS-232 connector will go low for the duration of the out-of-limit condition (see the description of this connector under the General Information section of this specifications table).
- If the Analog Display mode is enabled, the asterisk appears outside the vertical bars, which define the upper and lower limits.
General Information

Save and Recall: Up to 20 complete instrument setups may be saved and recalled later. These setups are retained when power is removed from the universal counter.

Rack Dimensions (HxWxD): 88.5 mm x 212.6 mm x 348.3 mm

Weight: 3.5 kg maximum

Power Supply Voltage:
- 100 to 120 VAC ±10% - 50, 60 or 400 Hz ±10%
- 220 to 240 VAC ±10% - 50 or 60 Hz ±10%

AC Line Voltage Selection: Automatic

Power Requirements:
- 170 VA maximum (30 W typical) 4A initial inrush at 10 VDC
- 3A max, once stabilized

Operating Environment: 0° C to 55° C

Storage Environment: −40° C to 71° C

HP-IB Interface Capabilities: SH1, AH1, T5, TE0, L4, LE0, SR1, RL1, PP0, DC1, DT1, C0, E2

Remote Programming Language: SCPI-1992.0 (Standard Commands for Programmable Instruments)

Safety: Designed in compliance with IEC 1010-1, UL 3111-1 (draft), CAN/CSA 1010.1

EMC: CISPR-11, EN50082-1, IEC 801-2, -3, -4

Electrostatic Discharge and Fast Transient/Burst Immunity Testing: When the product is operated at maximum sensitivity (20 mVrms) and tested with 8kV AD according to IEC801-2 or with 1kV power line transients according to IEC 801-4, frequency miscounts may occur that will affect measurement data made during these disturbances.

Radiated Immunity Testing: When the product is operated at maximum sensitivity (20 mVrms) and tested at 3 V/m according to IEC 801-3, external 100 to 200 MHz electric fields may cause frequency miscounts.

RS-232C: The rear-panel RS-232 connector is a 9-pin connector (DB-9, male). You can connect the universal counter to any terminal or printer with a properly configured DTE connector (DB-25). You can use a standard interface cable (HP part number 24542G or 24542H). Data is “output only”, the instrument cannot be programmed via the RS-232 interface.

Note on Pin 4: May be used as either a DTR signal or an indication of measurement in-limit as configured by the Utility menu. When used as an in-limit indicator, the signal will be high for every measurement within the user set limits.

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Input</td>
<td>Receive Data (RxD) (for Xon/Xoff only)</td>
</tr>
<tr>
<td>3</td>
<td>Output</td>
<td>Transmit Data (TxD)</td>
</tr>
<tr>
<td>4</td>
<td>Output</td>
<td>Data Terminal Ready (DTR), Measurement In-Limit Signal</td>
</tr>
<tr>
<td>5</td>
<td>—</td>
<td>Signal Ground</td>
</tr>
<tr>
<td>6</td>
<td>Input</td>
<td>Data Set Ready (DSR)</td>
</tr>
<tr>
<td>*</td>
<td>All other pins: no connection</td>
<td></td>
</tr>
</tbody>
</table>
HP 53181A Specifications
Chapter 8 HP 53181A Specifications

Introduction

The specifications of the HP 53181A Frequency Counter are provided in this chapter.

Instrument Inputs

Channel 1 Input Specifications

<table>
<thead>
<tr>
<th>Frequency Range</th>
<th>DC Coupled: DC to 225 MHz</th>
<th>AC Coupled: 1 MHz to 225 MHz (50 Ω)</th>
<th>30 Hz to 225 MHz (1 MΩ)</th>
</tr>
</thead>
</table>

Voltage Range and Sensitivity (Sinusoid)

1. DC to 100 MHz: 20 mVrms to ±5 V ac + dc (75 mVrms with optional rear connectors)
2. 100 MHz to 200 MHz: 30 mVrms to ±5 V ac + dc (75 mVrms with optional rear connectors)
3. 200 MHz to 225 MHz: 40 mVrms to ±5 V ac + dc (75 mVrms with optional rear connectors)

Input Sensitivity

1. DC to 100 MHz: 20 mVrms to ±5 V ac + dc (75 mVrms with optional rear connectors)
2. 100 MHz to 200 MHz: 30 mVrms to ±5 V ac + dc (75 mVrms with optional rear connectors)
3. 200 MHz to 225 MHz: 40 mVrms to ±5 V ac + dc (75 mVrms with optional rear connectors)

Trigger Level

1. 4.5 ns to 10 ns Pulse Width: 100 mVpp to 10 Vpp (150 mVpp with optional rear connectors)
2. >10 ns Pulse Width: 50 mVpp to 10 Vpp (100 mVpp with optional rear connectors)

Auto Trigger Level

1. Range: 0 to 100% in 10% steps
2. Frequency: > 100 Hz
3. Input Amplitude: > 100 mVpp (No amplitude modulation)

Attenuator

1. Voltage Range: x10
2. Trigger Range: x10

1. Values shown are for X1 attenuator setting. Multiply all values by 10 (nominal) when using the X10 attenuator setting. Note that it may be necessary to recalibrate the input offset in the application environment (especially at high temperature) to achieve maximum sensitivity.
2. When ordered with optional rear terminals, the Channel 1 input is active on both the front and rear of the counter though the specifications provided only apply to the rear terminal. Performance for the front terminal is degraded, but may be improved by terminating the rear terminal into 50 Ω.
Instrument Inputs (Continued)

Channel 2 Input Specifications

<table>
<thead>
<tr>
<th>Frequency Range</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Opt. 015</td>
<td>100 MHz to 1.5 GHz</td>
</tr>
<tr>
<td>Opt. 030</td>
<td>100 MHz to 3 GHz</td>
</tr>
<tr>
<td>Opt. 050</td>
<td>200 MHz to 5 GHz</td>
</tr>
<tr>
<td>Opt. 124</td>
<td>200 MHz to 12.4 GHz</td>
</tr>
</tbody>
</table>

Power Range and Sensitivity (Sinusoid)

<table>
<thead>
<tr>
<th>Option</th>
<th>Frequency Range</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option 015</td>
<td>100 MHz to 1.5 GHz</td>
<td>–27 dBm to +19 dBm</td>
</tr>
<tr>
<td>Option 030</td>
<td>100 MHz to 2.7 GHz</td>
<td>–27 dBm to +19 dBm</td>
</tr>
<tr>
<td></td>
<td>2.7 GHz to 3 GHz</td>
<td>–21 dBm to +13 dBm</td>
</tr>
<tr>
<td>Option 050</td>
<td>200 MHz to 5 GHz</td>
<td>–23 dBm to +13 dBm</td>
</tr>
<tr>
<td>Option 124</td>
<td>200 MHz to 12.4 GHz</td>
<td>–23 dBm to +13 dBm</td>
</tr>
</tbody>
</table>

Damage Level:
- Option 015, 030: 5 Vrms
- Option 050, 124: +25 dBm

External Arm Input Specifications

Signal Input Range:
- TTL compatible

Timing Restrictions:
- Pulse Width: > 50 ns
- Transition Time: < 250 ns
- Start-to-Stop Time: > 50 ns

Damage Level:
- 10 Vrms

Channel 2 Input Characteristics

- Impedance: 50 Ω
- Coupling: AC
- VSWR: < 2.5:1

External Arm Input Characteristics

- Impedance: 1 kΩ
- Input Capacitance: 17 pF
- Start Slope: Positive or Negative
- Stop Slope: Positive or Negative

Notes:
- External Arm available for all measurements except Peak Volts.
- External Arm is referred to as External Gate for some measurements.

3 Channel 2 is available as an option.

4 When ordered with optional rear terminals, the Channel 2 connector on the front panel for Options 015 or 030 will be removed. There is no degradation in specifications for this input. Option 050 and Option 124 input connectors are available on the front panel only.
Time Base

Internal Time Base Stability

<table>
<thead>
<tr>
<th></th>
<th>Standard (0° to 50°C)</th>
<th>Medium Stability Oven (Option 001)</th>
<th>High Stability Oven (Option 010)</th>
<th>Ultra High Stability Oven (Option 012)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Stability:</td>
<td>< 5 x 10⁻⁶</td>
<td>< 2 x 10⁻⁷</td>
<td>< 2.5 x 10⁻⁹</td>
<td>< 2.5 x 10⁻⁹</td>
</tr>
<tr>
<td>(referenced to 25°C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aging Rate</td>
<td>< 3 x 10⁻⁷</td>
<td>< 4 x 10⁻⁸</td>
<td>< 5 x 10⁻¹⁰</td>
<td>< 1 x 10⁻¹⁰</td>
</tr>
<tr>
<td>(after 30 days)</td>
<td></td>
<td>< 2 x 10⁻⁷</td>
<td>< 1.5 x 10⁻⁸</td>
<td>< 3 x 10⁻⁹</td>
</tr>
<tr>
<td>Turn-on stability vs. time:</td>
<td>< 2 x 10⁻⁷</td>
<td>< 5 x 10⁻⁹</td>
<td>< 5 x 10⁻⁹</td>
<td>< 5 x 10⁻⁹</td>
</tr>
<tr>
<td>(in 30 minutes)</td>
<td>(referenced to 2 hours)</td>
<td>(referenced to 24 hours)</td>
<td>(referenced to 24 hours)</td>
<td></td>
</tr>
<tr>
<td>Calibration:</td>
<td>Manual Adjust</td>
<td>Electronic</td>
<td>Electronic</td>
<td>Electronic</td>
</tr>
</tbody>
</table>

Note that power to the time base is maintained when the counter is placed in standby via the front panel switch. The internal fan will continue to operate under this condition, to maintain long-term instrument reliability.

External Time Base Input Specifications

Voltage Range: 200 mVrms to 10 Vrms
Damage Level: 10 Vrms

External Time Base Input Characteristics

- Threshold: 0 V
- Impedance: 1 kΩ
- Input Capacitance: 23 pF
- Frequency: 1 MHz, 5 MHz or 10 MHz (automatic selection)

Internal vs. External Time Base Selection:
- Manual: Select Internal or External
- Automatic: Internal used when External not present (default)

Time Base Output Specifications

Output Frequency: 10 MHz
Voltage: > 1 Vpp into 50 Ω (centered around 0 V)
Measurement Specifications

Frequency, Period

Channel 1 Range: 0.1 Hz to 225 MHz 4.44 ns to 10 s

Channel 2 Range:
- Option 015 100 MHz to 1.5 GHz 0.67 ns to 10 ns
- Option 030 100 MHz to 3 GHz 0.33 ns to 10 ns
- Option 050 200 MHz to 5 GHz 0.2 ns to 5 ns
- Option 124 200 MHz to 12.4 GHz 80 ps to 5 ns

(Period 2 selectable only via the HP-IB interface)

For Automatic or External Arming:

LSD Displayed:

\[
\left(\frac{t_{res}}{Gate \ Time} \right) \times Frequency \ or \ Period
\]

RMS Resolution:

\[
\left(\frac{\sqrt{t_{res}^2 + (2 \times Trigger \ Error)^2}}{Gate \ Time} \right) \times Frequency \ or \ Period
\]

\[t_{res}: 650 \text{ ps typical}^5\]

For Automatic Arming:

\[Gate \ Time = \frac{N}{Frequency}\]

where \[N = \begin{cases} 1 & \text{for Ch1 Frequency < 1 MHz} \\ 4 & \text{for Ch1 Frequency > 1 MHz} \\ 128 & \text{for Ch2} \end{cases}\]

Systematic Uncertainty:

\[
\left(\pm \frac{t_{acc}}{Gate \ Time} \right) \times Frequency \ or \ Period
\]

\[t_{acc}: 350 \text{ ps typical}^5 \]

\[1.25 \text{ ns worst case} \]

Trigger: Default setting is Auto Trigger at 50%

For Time or Digits Arming:

LSD Displayed:

\[
\left(\frac{2 \sqrt{t_{res}^2 \times \Delta P}}{Gate \ Time \times \ Number \ of \ Samples} + \frac{t_{jitter}}{Gate \ Time} \right) \times Frequency \ or \ Period
\]

RMS Resolution:

\[
\left(\frac{4 \sqrt{t_{res}^2 + (2 \times Trigger \ Error)^2}}{Gate \ Time \times \ Number \ of \ Samples} + \frac{t_{jitter}}{Gate \ Time} \right) \times Frequency \ or \ Period
\]

\[t_{res}: 500 \text{ ps typical}^5 \]

\[t_{jitter}: 50 \text{ ps typical}^5 \]

Number of Samples:

\[\begin{align*}
\text{Gate \ Time} \times Frequency \ & \text{ (Frequency < 200 kHz)} \\
\text{Gate \ Time} \times 200,000 \ & \text{ (Frequency > 200 kHz)}
\end{align*}\]

Systematic Uncertainty:

\[
\left(\pm \frac{t_{acc}}{Gate \ Time} \right) \times Frequency \ or \ Period
\]

\[t_{acc}: 100 \text{ ps typical} \]

\[300 \text{ ps worst case} \]

Trigger: Default setting is Auto Trigger at 50%

The following graphs may also be used to compute errors for Period Measurements. To find the Period error (\(\Delta P\)), calculate the frequency of the input signal (\(F = \frac{1}{P}\)) and find the frequency error (\(\Delta F\)) from the chart. Then, calculate the period error as:

\[\Delta P = \left(\frac{\Delta F}{F} \right) \times P\]
The preceding graphs do not reflect the effects of trigger error. To place an upper bound on the added effect of this error term, determine the frequency error from the appropriate graph and add a trigger error term as follows:

Automatic or External Arming

\[
\text{Frequency Error} + \left(\frac{2 \times \text{Trigger Error}}{\text{Gate Time}} \right) \times \frac{\text{Frequency or Period}}{\text{Gate Time}}
\]

Time or Digit Arming

\[
\text{Frequency Error} + \left(\frac{4 \times \text{Trigger Error}}{\text{Gate Time} \times \sqrt{\text{Number of Samples}}} \right) \times \frac{\text{Frequency or Period}}{\text{Gate Time}}
\]
Chapter 8 HP 53181A Specifications
Measurement Specifications (Continued)

Measurement Specifications (Continued)

Frequency Measurement Example:

Given an HP 53181A with a High Stability Oven that was calibrated 3 days ago, measure a 15 MHz square wave signal (which has negligible trigger error) with a 1 second gate time. Compute the measurement error to within 2-sigma confidence.

\[
\text{Measurement Error} = \text{Systematic Uncertainty} \pm 2 \times \text{RMS Resolution}
\]

\[
= \left(\pm \frac{\text{Time Base Error}}{\text{Gate Time}} \right) \pm 2 \times \left(\frac{4 \times (500 \times 10^{-12})^2 + (2 \times \text{Trigger Error})^2}{\text{Gate Time} \times \text{Number of Samples}} + \frac{\text{t_{offset}}}{\text{Gate Time}} \right) \times \text{Frequency}
\]

Number of Samples = 200,000 since Frequency is greater than 200kHz and gate time equals 1 second

Time Base Error = Temperature Stability + 3 Days x Daily Aging Rate

\[
= 2.5 \times 10^{-9} + 3 \times (5 \times 10^{-15})
\]

\[
= 4.0 \times 10^{-9}
\]

Measurement Error = \left(\pm 4.0 \times 10^{-9} \pm \frac{1 \times 10^{-10}}{1 \text{s}} \right) \pm 2 \times \left(\frac{4 \times \sqrt{(500 \times 10^{-12})^2 + (2 \times 0)} + 50 \times 10^{-12}}{1 \text{s} \times 200,000} \right) \times 15 \text{MHz}
\]

\[
= (\pm 4.1 \times 10^{-9} \pm 2 \times (4.47 \times 10^{-12} + 50 \times 10^{-12})) \times 15 \text{MHz}
\]

\[
= (\pm 4.1 \times 10^{-9} \pm 1.09 \times 10^{-10}) \times 15 \text{MHz}
\]

\[
= \pm 63.1 \text{ mHz}
\]

Which is to say that the HP 53181A would display results in the range 15 MHz ±63.1 mHz. Note however that the dominant error is the Time Base Error. If an even higher stability time base is available to the instrument or if the instrument can be source locked to the 15 MHz signal, then this error term can be substantially reduced. The measurement resolution under these conditions is ±0.8 MHz (1 sigma) which determines the number of digits displayed.
Measurement Specifications (Continued)

Frequency Ratio: \[\frac{Ch1}{Ch2} \]

Measurement is specified over the full signal range of each input.

- Results Range: \(10^{-10} \text{ to } 10^{11}\)
- ‘Auto’ Gate Time: 100 ms (or sufficient cycles on Channel 1 to make a valid measurement, whichever is longer)
- LSD:
 - \[\text{Ratio} \frac{1}{2} = \frac{1}{Ch2 \text{ Freq} \times \text{Gate Time}} \]
 - \[\text{Ratio} \frac{2}{1} = \frac{Ch2 \text{ Freq}}{(Ch1 \text{ Freq})^2 \times \text{Gate Time}} \]

RMS Resolution:

- \[\text{Ratio} \frac{1}{2} = \frac{2 \times \sqrt{1 + (Ch1 \text{ Freq} \times Ch2 \text{ Trigger Error})^2}}{Ch2 \text{ Freq} \times \text{Gate Time}} \]
- \[\text{Ratio} \frac{2}{1} = \frac{2 \times Ch2 \text{ Freq} \times \sqrt{1 + (Ch1 \text{ Freq} \times Ch2 \text{ Trigger Error})^2}}{(Ch1 \text{ Freq})^2 \times \text{Gate Time}} \]

To minimize relative phase measurement error, connect the higher frequency signal to Channel 1 when possible.

Peak Volts

Measurement is specified on Channels 1 for DC signals; or for AC signals of frequencies between 100 Hz and 30 MHz with peak-to-peak amplitude greater than 100 mV. (The measurement will continue to operate up to 225 MHz, though results are for indication only.)

- Results Range: \(-5.1 \text{ V to } +5.1 \text{ V}\)
- Resolution: 10 mV
- Systematic Uncertainty for AC signals: \(25 \text{ mV } + 10\% \text{ of V}\)
 - for DC signals: \(25 \text{ mV } + 2\% \text{ of V}\)

Use of the input attenuator multiplies all voltage specifications (input range, results range, resolution and systematic uncertainty) by a nominal factor of 10. For example with AC signals, the Systematic Uncertainty becomes: 250 mV + 10% of V.
Measurement Definitions

Definitions of Systematic Uncertainty Terms

• Trigger Error

External source and input amplifier noise may advance or delay the trigger points that define the beginning and end of a measurement. The resulting timing uncertainty is a function of the slew rate of the signal and the amplitude of spurious noise spikes (relative to the input hysteresis band).

The (rms) trigger error associated with a single trigger point is:

\[
\text{Trigger Error} = \sqrt{\left(\frac{E_{\text{input}}}{\text{Input Signal Slew Rate at Trigger Point}}\right)^2 + \left(\frac{E_{\text{signal}}}{\text{Input Signal Slew Rate at Trigger Point}}\right)^2}
\]

where

- \(E_{\text{input}}\) = RMS noise of the input amplifier: 1 mVrms (350 μVrms typical). Note that the internal measurement algorithms significantly reduce the contribution of this term.
- \(E_{\text{signal}}\) = RMS noise of the input signal over a 225 MHz bandwidth (100 kHz bandwidth when the low-pass filter is enabled). Note that the filter may substantially degrade the signal’s slew rate at the input of the trigger comparator.

• Fractional Time Base Error

Time base error is the maximum fractional frequency variation of the time base due to aging or fluctuations in ambient temperature or line voltage:

\[
\text{Time Base Error} = \left(\frac{\Delta f}{f} \left| \text{aging rate} \right| + \frac{\Delta f}{f} \left| \text{temperature} \right| + \frac{\Delta f}{f} \left| \text{line voltage} \right| \right)
\]

Multiply this quantity by the measurement result to yield the absolute error for that measurement. Averaging measurements will not reduce (fractional) time base error. The HP 53181A counter exhibits negligible sensitivity to line voltage; consequently this term may be ignored.

Typical Versus Worst Case Specifications

Specifications identified as "Typical" represent performance of the instrument that the majority of users will perceive under a wide variety of conditions and signals. The specifications identified as "Worst Case" should be used when the instrument is under extreme environmental conditions or when the accuracy of the measurement results are critically important.
Chapter 8 HP 53181A Specifications
Measurement Arming and Processing

Gate Time
Auto Mode, or 1 ms to 1000 s

Measurement Throughput
HP-IB ASCII: 200 Measurements/s (maximum)
(See examples in the Programming Guide for ways to optimize measurement throughput)

Measurement Arming

- **Start Measurement:** Free Run, Manual, or External
- **Stop Measurement:** Continuous, Single, External, or Timed

Note: auto arming is the only mode available for the Peak Volts function.

- **Auto Arming:** Measurements are initiated immediately and acquired as fast as possible, using a minimum number of signal edges. Auto arming offers the highest measurement throughput, though measurement resolution may be reduced.
- **Timed Arming:** The duration of the measurement is internally timed to a user-specified value (also known as the “gate time”). This mode should be used when the length of the measurement time must be controlled.
- **Digits Arming:** Measurements are performed to the requested resolution (number of digits) through automatic selection of the acquisition time. This is the most convenient mode when a specific measurement resolution is desired.
- **External Arming:** An edge on the External Arm Input enables the start of each measurement. Auto Arming, Timed arming modes or another edge on the External Arm Input may be used to complete the measurement.

Measurement Statistics

*available statistics:
- Mean, Minimum, Maximum, Standard Deviation

*number of measurements:
2 to 1,000,000. Statistics may be collected on all measurements or only those which are between the limit bands. When the Limits function is used in conjunction with Statistics, N (number of measurements) refers to the number of in-limit measurements. In general, measurement resolution will improve in proportion to \(1/N\), up to the numerical processing limits of the instrument.

*measurements:
Statistics may be collected for all measurements except Peak Volts.

Measurement Limits

- **Limit Checking:** The measurement value is checked against user-specified limits at the end of each measurement.
- **Display Modes:** The measurement result may be displayed as either the traditional numeric value or graphically as an asterisk moving between two vertical bars. These bars define the upper and lower limits, and the asterisk represents the current measurement result relative to these limits.
- **Out-of-Limits Indication:** The out-of-limits condition can be indicated by any of the following methods:
 - The limits annunciator will light on the front panel display.
 - The instrument will generate an SRQ if enabled via HP-IB.
 - The limits hardware signal provided via the RS-232 connector will go low for the duration of the out-of-limit condition (see the description of this connector under the General Information section of this specifications table).
 - If the Analog Display mode is enabled, the asterisk appears outside the vertical bars, which define the upper and lower limits.
Chapter 8 HP 53181A Specifications

General Information

Save and Recall: Up to 20 complete instrument setups may be saved and recalled later. These setups are retained when power is removed from the counter.

Rack Dimensions (HxWxD): 88.5 mm x 212.6 mm x 348.3 mm

Weight: 3.5 kg maximum

Power Supply Voltage:
- 100 to 120 VAC ±10% - 50, 60 or 400 Hz ±10%
- 220 to 240 VAC ±10% - 50 or 60 Hz ±10%

Power Requirements:
- 170 VA maximum (30 W typical)
- 4A initial inrush at 10 VDC
- 3A max, once stabilized

Operating Environment: 0° C to 55° C

Storage Environment: –40° C to 71° C

Remote Programming Language: SCPI-1992.0 (Standard Commands for Programmable Instruments)

Safety: Designed in compliance with IEC 1010-1, UL 3111-1 (draft), CAN/CSA 1010.1

EMC: CISPR-11, EN50082-1, IEC 801-2, -3, -4

Electrostatic Discharge and Fast Transient/Burst Immunity Testing: When the product is operated at maximum sensitivity (20 mVrms) and tested with 8kV AD according to IEC801-2 or with 1kV power line transients according to IEC 801-4, frequency miscounts may occur that will affect measurement data made during these disturbances.

Radiated Immunity Testing: When the product is operated at maximum sensitivity (20 mVrms) and tested at 3 V/m according to IEC 801-3, external 100 to 200 MHz electric fields may cause frequency miscounts.

RS-232C: The rear-panel RS-232 connector is a 9-pin connector (DB-9, male). You can connect the universal counter to any terminal or printer with a properly configured DTE connector (DB-25). You can use a standard interface cable (HP part number 24542G or 24542H). Data is “output only”; the instrument cannot be programmed via the RS-232 interface.

Note on Pin 4: May be used as either a DTR signal or an indication of measurement in-limit as configured by the Utility menu. When used as an in-limit indicator, the signal will be high for every measurement within the user set limits.

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Input</td>
<td>Receive Data (RxD) (for Xon/Xoff only)</td>
</tr>
<tr>
<td>3</td>
<td>Output</td>
<td>Transmit Data (TxD)</td>
</tr>
<tr>
<td>4</td>
<td>Output</td>
<td>Data Terminal Ready (DTR)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Measurement In-Limit Signal</td>
</tr>
<tr>
<td>5</td>
<td>—</td>
<td>Signal Ground</td>
</tr>
<tr>
<td>6</td>
<td>Input</td>
<td>Data Set Ready (DSR)</td>
</tr>
<tr>
<td>*</td>
<td>All other pins: no connection</td>
<td></td>
</tr>
</tbody>
</table>
Index

NUMERICS
1.5/3.0/5.0/12.4 GHz Channel (Option 015/030/050/124), 3-13

A
A4 AC Power Supply, 3-15
A5 DC Power Input (Option 002), 3-17
A6 High Stability Timebase (Options 001, 010, 012), 3-19
accessories available, xix
supplied, xix
accessories available, xix
accessories supplied, xix
arming modes
auto, 8-10
digits, 8-10
external, 8-10
time, 8-10
assemblies, exchange, 5-2
assembly identification, 2-43, 2-44
assembly identification and location, 2-40
assembly procedures, 3-2
auto arming, 8-10
available options, xviii

B
backdating, 6-3
backdating firmware, 6-8, 6-16
backdating hardware, 6-3
bezel, 3-6

C
Cabinet parts and hardware, 5-6
CAL SECURE, 2-9, 2-15, 2-28, 2-31
CAL UNSECURE, 2-9, 2-15, 2-28, 2-31
calibration, 2-6, 2-25
count, 2-14, 2-30
Help menu, 2-14, 2-30
initiate, 2-9, 2-29
new security code, 2-13, 2-30
procedures, 2-15
secure against calibration, 2-29
security status, 2-9, 2-28
unsecure, 2-9, 2-28
calibration cycle, 1-3
Calibration Menu
HP 53131A/132A, 2-6
HP 53181A, 2-25
Calibration menu, 2-25
HP 53131A/132A, 2-8
Calibration Menu tree
HP 53181A, 2-27
calibration procedures
HP 53131A/132A, 2-15
HP 53181A, 2-31
changes, 6-2
cabinet parts, 5-9
Check digit, 5-3
complete performance tests, 1-3
HP 53131A/132A, 1-16
HP 53181A, 1-47
contacting Hewlett-Packard, 5-5
Corrective maintenance, 2-2
cover, 3-4

D
description of
self-test routines, 2-47
description of counter, xvi
diagnosing the faulty assembly, 2-49
digits arming, 8-10
disable
1.5/3.0/5.0/12.4 GHz Channel (Option 015/030/050/124), 3-13
A4 AC Power Supply, 3-15
A5 DC Power Input (Option 002), 3-17
A6 High Stability Timebase (Options 001, 010, 012), 3-19
Index

cover, 3-4
display board, 3-11
front bezel, 3-6
keypads, 3-11
motherboard, 3-9
Rear Terminals (Option 060), 3-21
window, 3-11
disk
 HP 53131A/132A, 1-40
 HP 53181A, 1-70
disks program, 1-3
display board, 3-11

E
Electrostatic discharge, 2-38
entering a new security code, 2-30
equipment required, 1-4
example procedure for
 running the self test, 2-49
exchange assemblies, 2-40, 2-41, 2-42, 5-2
exploded view, 5-9
Express Repair/Performance Calibration Service, xiii
external arming, 8-10

F
fan, 1-5
fine time interval calibration, 2-11
front bezel, 3-6
front rubber bumper removal, 3-6

G
Ground continuity test, 2-39

H
handle removal, 3-6
HP 5071A assembly identification, 2-40, 2-41, 2-42
HP-1B program, 1-3
HP-1B verification, 1-3
 HP 53131A/132A, 1-40
 HP 53181A, 1-70
HP-1B verification (optional), 1-3
HP-1B verification program, 1-70
HP 53131A/132A, 1-40

I
initiating calibration, 2-9, 2-29
installing options
 A3 1.5 GHz Channel 2 (Option 015), 4-3
 A3 3 GHz Channel 3 (Option 030), 4-3
 A3 5 GHz Channel 3 (Option 050), 4-3
 DC Power Input (Option 002), 4-4
 High Stability Timebase (Option 001), 4-11
 High Stability Timebase (Option 010), 4-11
 High Stability Timebase (Option 012), 4-11
 Rear Terminals (Option 060), 4-14
Instrument
 cabinet parts and hardware, 5-6
defective assemblies, 5-2
identification, xiii
packing for shipment, 2-4
parts identification, 5-4
pre-troubleshooting information, 2-36
recommended test equipment, 2-37
replaceable parts, 5-2
safety considerations, 2-36
serial and model number, 5-4
serial number prefix, xiv
Instrument identification, xiii
Instrument model number, 2-3
Insulation resistance test, 2-39
IPB, 5-9

K
keypads, 3-11

L
list of options, xviii
list, replaceable parts, 5-7, 5-10
Index

M
Maintenance, corrective, 2-2
manual changes, 6-2
model number, 5-4
motherboard, 3-9

N
new security code entry, 2-13

O
older instruments, 6-2
operational verification, 1-2, 1-5
Option 001, 4-11
Option 002, 4-4
Option 010, 4-11
Option 012, 4-11
Option 015, 4-3
Option 030, 4-3
Option 050, 4-3
Option 060, 4-14
options, xviii
 hardware, xviii
 support, xix
ordering parts, 5-4
organization of guide, xiv

P
Packing the instrument, 2-4
Part numbers, 5-2
parts identification, 5-4
parts, chassis, 5-9
parts, ordering, 5-4
performance test record
 HP 53131A/132A, 1-41
 HP 53181A, 1-71
performance tests, 1-3, 1-16
 HP 53131A/132A, 1-16
 HP 53181A, 1-47
plug removal, 4-15
plug, XLR, 4-10
power supply check, 2-45
power supply voltages, 2-47
power-on self tests, 1-5
Pre-troubleshooting information, 2-2, 2-36
Product performance checks, 2-39

Q
quick time interval calibration, 2-10

R
Rear Terminals (Option 060), 3-21
reassembly procedures, 3-2
Recommended test equipment, 2-37
reference designations, 5-3
removal
 1.5/3.0/5.0/12.4 GHz Channel
 (Option 015/030/050/124), 3-13
A4 AC Power Supply, 3-15
A5 DC Power Input (Option 002), 3-17
A6 High Stability Timebase (Options 001, 010, 012), 3-19
cover, 3-4
display board, 3-11
front bezel, 3-6
front rubber bumper, 3-6
handle, 3-6
keypads, 3-11
motherboard, 3-9
Rear Terminals (Option 060), 3-21
window, 3-11
repair information, 2-3
repair strategy, xiii
Replaceable assemblies, 5-2
Replaceable parts, 5-2
replaceable parts list, 5-7, 5-10
retrofitting options
 A3 1.5 GHz Channel 2 (Option 015), 4-3
 A3 3 GHz Channel 3 (Option 030), 4-3
 A3 5 GHz Channel 3 (Option 050), 4-3
DC Power Input (Option 002), 4-4
High Stability Timebase (Option 001), 4-11
Index

High Stability Timebase (Option 010), 4-11
High Stability Timebase (Option 012), 4-11
Rear Terminals (Option 060), 4-14
returning instrument for repair, 2-3
Returning the instrument to Hewlett-Packard, 2-3
Returning the instrument to HP, 2-2

S
Safety considerations, 2-36
Securing against calibration, 2-13, 2-29
security status, 2-9, 2-28
self-test routines, 2-47
serial number, 2-3, 5-4
Serial number prefix, xiv
serial prefix, xiv
Service manual
organization, xiv
specifications, 7-2, 8-2
dimensions, 7-16
frequency range, 7-2, 8-2
HP 53131A/132A, 7-2
HP 53181A, 8-2
measurement throughput, 7-14
power supply voltage, 7-16, 8-11
RS-232C connector pin assignments, 7-16
time base stability, 7-4, 8-4
temperature range and sensitivity, 7-2
Surface Mount repair, 2-38
top Internal view, 2-44
top internal view, 2-43
Troubleshooting
assembly identification and location, 2-40
disassembly and reassembly, 2-38
electrostatic discharge, 2-38
ground continuity test, 2-39
insulation resistance test, 2-39
product performance checks, 2-39
product safety checks, 2-39
self test, 2-50
visual inspection, 2-39
troubleshooting table, 2-52
troubleshooting the Counter, 2-45

V
Visual inspection, 2-39

W
window, 3-11

X
XLR plug, 4-10
Contacting Hewlett-Packard:

For more information about Hewlett-Packard test and measurement products, applications, and services, visit our web site at: http://www.hp.com/go/tmdir

HP’s Test and Measurement Fax Service for United States and Canada:

Technical information for test and measurement products and services is available 24 hours a day, 7 days a week, by calling 1-800-800-5281.

Technical Support:

If you need technical assistance with a Hewlett-Packard test and measurement product or application, you can contact one of the following centers and ask for a test and measurement sales representative. For a complete list of worldwide Hewlett-Packard sales offices, refer to the web site listed above.

Africa and Middle East:
Hewlett-Packard S.A.
International Sales Branch
Middle East/Africa
Geneva, Switzerland
Tel: (41/22) 780-4111
Fax: (41/22) 780-4770

Asia Pacific:
Hewlett-Packard Asia Pacific Ltd.
Hong Kong, SAR
Tel: (852) 2506-9284
Fax: (852) 2506-9284

Australia/New Zealand:
Hewlett-Packard Australia Ltd.
Blackburn, Victoria, Australia
Tel: 1-800-629-485 (Australia)
Tel: 0-800-738-378 (New Zealand)
Fax: (61-3) 9272-0749

Canada:
Hewlett-Packard (Canada) Ltd.
HP DIRECT
Mississauga, ON, Canada
Tel: 877-894-4414
Fax: (905) 206-4700

Europe:
Hewlett-Packard Nederland B.V.
Test & Measurement
European Marketing Organisation
The Netherlands
Tel: +31 20 547 9999
Fax: +31 20 547 7799

J apan:
Hewlett-Packard J apan Ltd.
Measurement Assistance Center
Tokyo, J apan
Tel: 81-426-56-7832
Fax: 81-426-56-7843

Latin America:
Hewlett-Packard Co.
Latin America Region Headquarters
Miami, FL, U.S.A.
Tel: (305) 267-4245
Fax: (305) 267-4268

United States:
Hewlett-Packard Co.
Test & Measurement Call Center
Englewood, CO, U.S.A.
Tel: (800) 452-4844
Fax: (303) 662-3726
Warranty (contd)

HP does not warrant that the operation of HP products will be uninterrupted or error-free. If HP is unable, within a reasonable time, to repair or replace any product to a condition as warranted, customer will be entitled to a refund of the purchase price upon prompt return of the product.

HP products may contain remanufactured parts equivalent to new in performance or may have been subjected to incidental use.

The warranty period begins on the date of delivery or on the date of installation if installed by HP. If customer schedules or delays HP installation more than 30 days after delivery, warranty begins on the 31st day from delivery.

Warranty does not apply to defects resulting from (a) improper or inadequate maintenance or calibration, (b) software, interfacing, parts or supplies not supplied by HP, (c) unauthorized modification or misuse, (d) operation outside of the published environmental specifications for the product, or (e) improper site preparation or maintenance.

TO THE EXTENT ALLOWED BY LOCAL LAW, THE ABOVE WARRANTIES ARE EXCLUSIVE AND NO OTHER WARRANTY OR CONDITION, WHETHER WRITTEN OR ORAL, IS EXPRESSED OR IMPLIED AND HP SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OR CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, AND FITNESS FOR A PARTICULAR PURPOSE.

HP will be liable for damage to tangible property per incident up to the greater of $300,000 or the actual amount paid for the product that is the subject of the claim, and for damages for bodily injury or death, to the extent that all such damages are determined by a court of competent jurisdiction to have been directly caused by a defective HP product.

TO THE EXTENT ALLOWED BY LOCAL LAW, THE REMEDIES IN THIS WARRANTY STATEMENT ARE CUSTOMER’S SOLE AND EXCLUSIVE REMEDIES. EXCEPT AS INDICATED ABOVE, IN NO EVENT WILL HP OR ITS SUPPLIERS BE LIABLE FOR LOSS OF DATA OR FOR DIRECT, SPECIAL, INCIDENTAL, CONSEQUENTIAL (INCLUDING LOST PROFIT OR DATA), OR OTHER DAMAGE, WHETHER BASED IN CONTRACT, TORT, OR OTHERWISE.

For consumer transactions in Australia and New Zealand: the warranty terms contained in this statement, except to the extent lawfully permitted, do not exclude, restrict or modify and are in addition to the mandatory statutory rights applicable to the sale of this product to you.

Safety Considerations (contd)

WARNING

INSTRUCTIONS FOR ADJUSTMENTS WHILE COVERS ARE REMOVED AND FOR SERVICING ARE FOR USE BY SERVICE-TRAINED PERSONNEL ONLY. TO AVOID DANGEROUS ELECTRIC SHOCK, DO NOT PERFORM SUCH ADJUSTMENTS OR SERVICING UNLESS QUALIFIED TO DO SO.

For any assistance, contact your nearest Hewlett-Packard Sales and Service Office.

Whenever it is likely that the protection has been impaired, the instrument must be made inoperative and be secured against any unintended operation.

If this instrument is to be energized via an autotransformer (for voltage reduction) make sure the common terminal is connected to the earthed pole terminal (neutral) of the power source.

Information for adjustments while covers are removed and for servicing are for use by trained-personnel only. To avoid dangerous electric shock, do not perform such adjustments or servicing unless qualified to do so.

For continued protection against fire, replace the line fuses of the same current rating and type (for example, normal blow, time delay). Do not use repaired fuses or short circuited fuseholders.

Acoustic Noise Emissions

LpA<47 dB at operator position, at normal operation, tested per EN 27779. All data are the results from type test.

Geräuschemission

LpA<47 dB am Arbeitsplatz, normaler Betrieb, geprüft nach EN 27779. Die Angaben berufen auf Ergebnissen von Typenprüfungen.