This is the HP 44789A RS-232/422 Serial Interface Accessory Configuration and Programming Manual. Insert this manual and tab page into the Plug-In Accessories Configuration and Programming Manuals Binder supplied with your HP 3852A Data Acquisition/Control Unit.
HP 3852A Data Acquisition/Control Unit

HP 44789A
RS-232/422 Serial Interface Accessory
Configuration and Programming Manual

Copyright Hewlett-Packard Company, 1990
CERTIFICATION

Hewlett-Packard Company certifies that this product met its published specifications at the time of shipment from the factory. Hewlett-Packard further certifies that its calibration measurements are traceable to the United States National Institute of Standards and Technology (formerly National Bureau of Standards), to the extent allowed by that organization's calibration facility, and to the calibration facilities of other International Standards Organization members.

WARRANTY

This Hewlett-Packard product is warranted against defects in materials and workmanship for a period of one year from date of shipment. Duration and conditions of warranty for this product may be superseded when the product is integrated into (becomes a part of) other HP products. During the warranty period, Hewlett-Packard Company will, at its option, either repair or replace products which prove to be defective.

For warranty service or repair, this product must be returned to a service facility designated by Hewlett-Packard (HP). Buyer shall pay prepaid shipping charges to HP and HP shall pay shipping charges to return the product to Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for products returned to HP from another country.

HP warrants that its software and firmware designated by HP for use with a product will execute its programming instructions when properly installed on that product. HP does not warrant that the operation of the product, or software, or firmware will be uninterrupted or error free.

LIMITATION OF WARRANTY

The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by Buyer, Buyer-supplied products or interfacing, unauthorized modification or misuse, operation outside of the environmental specifications for the product, or improper site preparation or maintenance.

The design and implementation of any circuit on this product is the sole responsibility of the Buyer. HP does not warrant the Buyer’s circuits or malfunctions of HP products that result from the Buyer’s circuitry. In addition, HP does not warrant any damage that occurs as a result of the Buyer’s circuitry or any defects that result from Buyer-supplied products.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. HP SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

EXCLUSIVE REMEDIES

THE REMEDIES PROVIDED HEREIN ARE BUYER’S SOLE AND EXCLUSIVE REMEDIES. HP SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL THEORY.

NOTICE

The information contained in this document is subject to change without notice. HEWLETT-PACKARD (HP) MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. HP shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance or use of this material. This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this document may be photocopied, reproduced, or translated to another language without the prior written consent of Hewlett-Packard Company. HP assumes no responsibility for the use or reliability of its software on equipment that is not furnished by HP.

Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subdivision (b)(3)(ii) of the Rights in Technical Data and Computer Software clause at 52.227-7013. Hewlett-Packard Company; 3000 Hanover Street, Palo Alto, California 94304

Herstellerbescheinigung

Zusatzinformation für Mess- und Testgeräte:
Wenden Mess- und Testgeräte mit ungeschirmten Kabeln und/oder in offenen Messaufbauten verwendet, so ist vom Betreiber sicherzustellen, dass die Funk-Entstörbestimmungen unter Betriebsbedingungen an seiner Grundstücksgrenze eingehalten werden.

Manufacturer’s Declaration

This is to certify that the equipment HP 44789A meets the radio frequency interference requirements of Directive 92/106/EEC. The German Bundespost has been notified that this equipment was put into circulation and has been granted the right to check the product type for compliance with these requirements.

Additional Information for Test and Measurement Equipment:
If test and measurement equipment is operated with unscreened cables and/or used for measurements on open set-ups, the user has to assure that under operating conditions the Radio Interference Limits are still met at the border of the user’s premises.
Printing History

The Printing History shown below lists all Editions and Updates of this manual and the printing date(s). The first printing of the manual is Edition 1. The Edition number increments by 1 whenever the manual is revised. Updates, which are issued between Editions, contain replacement pages to correct the current Edition of the manual. Updates are numbered sequentially starting with Update 1. When a new Edition is created, it contains all the Update information for the previous Edition. Each new Edition or Update also includes a revised copy of this printing history page. Many product updates or revisions do not require manual changes and, conversely, manual corrections may be done without accompanying product changes. Therefore, do not expect a one-to-one correspondence between product updates and manual updates.

Edition 1 (Part Number 44789-90001) September 1989
Edition 2 (Part Number 44789-90002) July 1990

Trademark Information

GW-BASIC® is a U.S. registered trademark of Microsoft Corporation.
Smartmodem™ is a trademark of Hayes Microcomputer Products, Inc
Micropatch™ is a trademark of DATATRAN Corporation.

Safety Symbols

⚠ Instruction manual symbol affixed to
product. Indicates that the user must
refer to the manual for specific Warning
or Caution information to avoid personal
injury or damage to the product.

(ErrorMessage)

Indicates the field wiring terminal that
must be connected to earth ground before
operating the equipment—protects
against electrical shock in case of fault.

Frame or chassis ground terminal—typically connects to the equipment's metal
frame.

Alternating current (AC).
Direct current (DC).
Indicates hazardous voltages.

WARNING
Calls attention to a procedure, practice,
or condition that could cause bodily injury or
death.

CAUTION
Calls attention to a procedure, practice,
or condition that could possibly cause
damage to equipment or permanent loss
of data.

WARNINGS

The following general safety precautions must be observed during all phases of operation, service, and repair of this product. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and intended use of the product. Hewlett-Packard Company assumes no liability for the customer's failure to comply with these requirements.

Ground the equipment: For Safety Class I equipment (equipment having a protective earth terminal), an uninterruptible safety earth ground must be provided from the mains power source to the product input wiring terminals or supplied power cable.

DO NOT operate the product in an explosive atmosphere or in the presence of flammable gases or fumes.

For continued protection against fire, replace the line fuse(s) only with fuse(s) of the same voltage and current rating and type.

DO NOT use repaired fuses or short-circuited fuseholders.

Keep away from live circuits: Operating personnel must not remove equipment covers or shields. Procedures involving the removal of covers or shields are for use by service-trained personnel only. Under certain conditions, dangerous voltages may exist even with the equipment switched off. To avoid dangerous electrical shock, DO NOT perform procedures involving cover or shield removal unless you are qualified to do so.

DO NOT operate damaged equipment: Whenever it is possible that the safety protection features built into this product have been impaired, either through physical damage, excessive moisture, or any other reason, REMOVE POWER and do not use the product until safe operation can be verified by service-trained personnel. If necessary, return the product to a Hewlett-Packard Sales and Service Office for service and repair to ensure that safety features are maintained.

DO NOT service or adjust alone: Do not attempt internal service or adjustment unless another person, capable of rendering first aid and resuscitation, is present.

DO NOT substitute parts or modify equipment: Because of the danger of introducing additional hazards, do not install substitute parts or perform any unauthorized modification to the product. Return the product to a Hewlett-Packard Sales and Service Office for service and repair to ensure that safety features are maintained.
Contents

Introduction
- Manual Contents ... 1-1
- The RS-232C Interface Standard 1-1
- The RS-422 Standard .. 1-2
- HP 44789A Accessory Description 1-3

Installing the HP 44789A
- Introduction .. 2-1
- Installation .. 2-1
- Cables .. 2-2
- Sample Programs ... 2-4
 - HP 44789A Test Program 2-5
 - HP Vectra PC or PC/XT/AT Program 2-5
 - HP 9000 Series 200/300 using the Built-in Serial Port 2-5
 - HP 9000 Series 200/300 with the HP 98628A Datacomm Interface 2-7
- Reconfiguring the RS-232C Port 2-9
- Using the RS-422 Port ... 2-10

Using the HP 44789A
- Introduction .. 3-1
- Programming the HP 44789A 3-1
- Default Settings ... 3-1
- Setting up SERIAL, MODE and PROTOCOL 3-2
- Programming the HP 3852 through the HP 44789A 3-3
 - Using a Terminal ... 3-3
 - Using the HP Vectra PC or PC/XT/AT 3-3
 - Using a Modem ... 3-3
 - Using the HP 9000 Series 200/300 Computers 3-4
- Using the HP 44789A for Printers or other Slave Devices 3-4
- Command Summary .. 3-5
 - Common Commands .. 3-5
 - ID? .. 3-5
 - RST ... 3-5
 - TEST .. 3-5
 - USE ... 3-5
 - Configuration Commands 3-6
 - DTR ... 3-6
 - ENABLE/DISABLE RCVR 3-6
 - ENABLE/DISABLE XMIT 3-6
 - INBUF ... 3-6
 - INTR .. 3-7
 - MODE .. 3-7
 - NPER .. 3-8
 - OUTBUF ... 3-8
 - PROTOCOL ... 3-9
 - RTS .. 3-9
 - STORE CONF ... 3-10
THRESH .. 3-10
Programming Commands 3-10
CLRIN/CLROUT ... 3-10
BREAK ... 3-10
DEST IS .. 3-10
ENABLE/DISABLE SRQ BREAK 3-10
ENABLE/DISABLE DCL BREAK 3-10
ENABLE/DISABLE INTR 3-10
ENTER ... 3-11
INTR? .. 3-11
ON INTR .. 3-11
OUTPUT .. 3-11
READ .. 3-11
SERIAL .. 3-12
TIMEOUT ... 3-12
WRITE .. 3-12
XRDGS ... 3-12

Additional Programming Commands 3-13
Multi-tasking Commands 3-13
Data Flow Control Diagrams 3-13
PROTOCOL NONE .. 3-13
PROTOCOL XON/XOFF 3-14
PROTOCOL CTRL (Hardware) 3-14
PROTOCOL BOTH 3-15
Troubleshooting RS-232C Connections 3-15
Using the READ Command 3-16
Signal Levels and Logic States 3-16

Command Summary Quick Reference AI
1

Introduction
The RS-232C Interface Standard

The RS-232C interface is a standard from the Electronic Industry Association (EIA) titled “Interface Between Data Terminal Equipment (DTE) and Data Communications Equipment (DCE) Employing Serial Binary Data Interchange”. Briefly, the RS-232C provides a system whereby computers (DTEs) can communicate with other computers as well as modems, printers and other peripherals (DCEs).

The EIA RS-232C standard sets guidelines for the following four elements:

- **Electrical Signal Characteristics** describes the electrical signals and levels which are allowed or required.
- **Interface Mechanical Characteristics (Connectors)** describes the physical connection. The most common used connector is the DB-25 connector.
- **Functional Description of Interchange Circuits** names and describes the electrical signal functions, as well as specifying which pin these functions will be on. There are 21 of these assigned pins, although most RS-232C implementations only use eight of them. The HP 44789A RS-232C interface uses up to 10 of these pins, depending on the application.
- **Standard Interfaces for Selected Communication System Configurations** describes some common modem-to-terminal connections.
Any two devices which are “RS-232C compatible” should connect together and operate without any modifications. Unfortunately, the standard was designed specifically to connect terminals with modems, so using RS-232C to connect any other peripheral is in itself a deviation from the original purpose. The problem is further compounded because different manufacturers interpret the functions of the handshake lines differently. Fortunately there are many de facto standards for the RS-232C. The HP 44789A implements most of these de facto standards. If you are trying to connect any device other than those specifically listed in this manual, you may have to refer to Chapter 3, Troubleshooting RS-232C Connections. The Troubleshooting section also contains information on signal levels and the corresponding logic states. Table 1-1 shows the most commonly used pins in an RS-232C connection.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Input/Output</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 TxD</td>
<td>O</td>
<td>Transmitted Data</td>
</tr>
<tr>
<td>3 RxD</td>
<td>I</td>
<td>Received Data</td>
</tr>
<tr>
<td>4 RTS</td>
<td>O</td>
<td>Request To Send</td>
</tr>
<tr>
<td>5 CTS</td>
<td>I</td>
<td>Clear To Send</td>
</tr>
<tr>
<td>6 DSR</td>
<td>I</td>
<td>Data Set Ready</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Common</td>
</tr>
<tr>
<td>8 CD</td>
<td>I</td>
<td>Data Carrier Detect</td>
</tr>
<tr>
<td>20 DTR</td>
<td>O</td>
<td>Data Terminal Ready</td>
</tr>
</tbody>
</table>

The RS-422 interface uses two separate wires for each data signal. Each bit is defined according to the voltage difference between the two lines, rather than between a single line and ground. This minimizes the problems associated with varying ground potentials. This also means that any transmission-induced voltages affect both lines equally, so that the relative difference between the two lines is unchanged. This technique is called balanced transmission.

The major advantages of RS-422 connections are higher data rates and much longer transmission distances. There are no control lines for RS-422 interfaces, so therefore there is no hardware handshaking. Table 1-2 shows the RS-422 pin assignments. Some manufacturers reverse the logic state, and + and — are reversed. For those situations, you will have to use a cable which reverses pin 1 with pin 2 and pin 3 with pin 4.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Input/Output</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>O</td>
<td>Transmitted Data —</td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td>Transmitted Data +</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>Received Data —</td>
</tr>
<tr>
<td>4</td>
<td>I</td>
<td>Received Data +</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Ground</td>
</tr>
</tbody>
</table>

The RS-422 Standard

1-2 Introduction
HP 44789A
Accessory
Description

The HP 44789A RS-232C/RS-422 Serial Interface Accessory allows the HP 3852 to communicate with a host computer, peripherals, or other instrumentation. It can be configured to operate a slave device or for full-duplex (two way data transfer) communication. The HP 44789A can also be configured to work with 9600 baud modems which use RTS as a reverse Clear To Send. The HP 44789A can serve as a programming port for the HP 3852. The HP 44789A can only be used with HP 3852 ROM set version 4.0 or later. To determine the ROM set on your HP 3852, use the IDN? command.

You can install multiple HP 44789A modules in your mainframe to allow serial communication with many devices; however, only one HP 44789A can serve as a programming port for the HP 3852. You can use the HP-IB and the HP 44789A as programming ports at the same time. This allows both a local host computer and a remote computer to send commands and receive data.

The HP 44789A allows both software and hardware handshaking to control the flow of data through the RS-232C port. Standard cables and connectors can be ordered from HP Direct Marketing (1-800-538-8787) for most applications. In addition, you can jumper the pin-outs on the RS-232C interface for non-standard connections. There is a constant high pin and a constant low pin which can be used to assert or deassert lines on a custom cable.

The 25 pin RS-232C connector and the 9 pin RS-422 connector are in logical parallel. It is not possible to communicate through both connectors at the same time. The RS-422 interface does not use hardware handshaking, so PROTOCOL must be set to NONE or XON; see Chapter 3. Table 1-3 lists the features of the HP 44789A.

<table>
<thead>
<tr>
<th>Table 1-3. HP 44789A Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>One port</td>
</tr>
<tr>
<td>Baud rate</td>
</tr>
<tr>
<td>Parity</td>
</tr>
<tr>
<td>Byte length</td>
</tr>
<tr>
<td>Handshaking</td>
</tr>
<tr>
<td>Buffering</td>
</tr>
<tr>
<td>Interrupt</td>
</tr>
<tr>
<td>EEPROM</td>
</tr>
</tbody>
</table>

Introduction 1-3
Figure 1-1 shows a typical installation of the HP 44789A. The remote computer system can be used for monitoring or programming the HP 3852.

Figure 1-1. Typical Installation
2

Installing the HP 44789A
Installing the HP 44789A

Introduction
This chapter shows how to install the HP 44789A in the cardcage, and describes the cables which connect the RS-232C interface to the peripherals. Sample programs are provided so that you can verify the handshaking and data flow are working properly. The next section shows how to reconfigure the pins on the RS-232C connector for non-standard RS-232C interfaces. The final section describes how to use the RS-422 port.

Installation
Figure 2-1 shows how to install the HP 44789A module into the HP 3852 cardcage.

Installing the Accessory
1. Line up the ridges on the top and bottom rails of the accessory with the slot guides to the left of the slot number on the mainframe.
2. Slide the accessory in to the slot and press firmly to lock the accessory in the slot. You will hear a click when the accessory locks.

Figure 2-1. Installing the HP 44789A
Cables

To connect a peripheral device to the HP 44789A, you must have the proper cable. In addition to having connectors of the proper gender (male or female) on both ends of the cable, the internal wiring of the cable must be correct. For example, when the HP 44789A is connected to a modem (DTE to DCE), pin 2 is wired to pin 2 and pin 3 is wired to pin 3, whereas when the HP 44789A is connected to a PC (DTE to DTE) then pin 2 is wired to pin 3 and pin 3 is wired to pin 2. In most cases, if the gender of the connectors is correct for the desired connection then the wiring is also correct. If you are not certain you have the proper cable and problems occur, consider the cable as a possible source of the trouble.

The RS-232C port on the HP 44789A is almost identical to the DTE RS-232C port on a PC/XT/AT. If you are connecting a printer or other slave device, the same cable which is recommended for connecting it to a PC should work with the HP 44789A. You can also connect devices which use the 9 pin (DB9) connector if you use the proper 25 pin to 9 pin cable.

Table 2-1 lists cables, adapters and a reference book on RS-232C communications. If you do not have the necessary items available, you may purchase them from HP Direct Marketing (1-800-538-8787).

<table>
<thead>
<tr>
<th>Product</th>
<th>Description</th>
<th>Order Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP 98628 Cable</td>
<td>Modem (U.S.) 50M - 25M pin</td>
<td>13222N</td>
</tr>
<tr>
<td>HP Vectra PC HP 44789A</td>
<td>Printer 25M - 25M pin</td>
<td>13242G</td>
</tr>
<tr>
<td>HP Vectra PC HP 44789A</td>
<td>9FM - 25M pin</td>
<td>24542G</td>
</tr>
<tr>
<td>HP 9000 Series 200/300</td>
<td>Printer 25M-25M pin</td>
<td>13242G</td>
</tr>
<tr>
<td>HP 44789A Cable</td>
<td>Micropatch Wiring Adapter (Male-Male)</td>
<td>92204J</td>
</tr>
<tr>
<td></td>
<td>Micropatch Wiring Adapter (Male-Female)</td>
<td>92204K</td>
</tr>
<tr>
<td></td>
<td>Micropatch Wiring Adapter (FM-FM)</td>
<td>92204L</td>
</tr>
<tr>
<td>Book</td>
<td>The RS-232C Solution</td>
<td>92234X</td>
</tr>
</tbody>
</table>

1 Joe Campbell, The RS-232C Solution (SYBEX, Inc. 1984)
Table 2-2 shows the connector pin description for connecting a HP Vectra PC to the HP 44789A using a 13242G cable or a 24542G cable. Figure 2-3 shows the connector pin description for connecting a Hayes Smartmodem™ to the HP 44789A using a 13242N cable.

Table 2-2. Connector Pin Description—HP Vectra PC and HP 44789A

<table>
<thead>
<tr>
<th>HP 44789A Name</th>
<th>Pin</th>
<th>Signal Description</th>
<th>PC/XT/AT Direction</th>
<th>Name</th>
<th>9 pin DB 9</th>
<th>25pin DB 25</th>
</tr>
</thead>
<tbody>
<tr>
<td>TXD</td>
<td>2</td>
<td>data from HP 3852 to PC</td>
<td>→</td>
<td>RXD</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>RXD</td>
<td>3</td>
<td>data from PC to HP 3852</td>
<td>←</td>
<td>TXD</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>DTR</td>
<td>20</td>
<td>Data Terminal Ready</td>
<td>→</td>
<td>CTS</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>CTS</td>
<td>5</td>
<td>Clear To Send</td>
<td>←</td>
<td>DTR</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>RTS</td>
<td>4</td>
<td>Request To Send</td>
<td>→</td>
<td>DCD</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>DCD</td>
<td>8</td>
<td>Data Carrier Detect</td>
<td>←</td>
<td>RTS</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>GND</td>
<td>7</td>
<td>signal ground</td>
<td>NA</td>
<td>GND</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>RI</td>
<td>22</td>
<td>Ring Indicator</td>
<td>←</td>
<td>RI</td>
<td>9</td>
<td>22</td>
</tr>
<tr>
<td>DSR</td>
<td>6</td>
<td>Data Set Ready</td>
<td>←</td>
<td>DSR</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>
Table 2-3. Connector Pin Description
Hayes Smartmodem™ and HP 44789A

<table>
<thead>
<tr>
<th>HP 44789A Name</th>
<th>Pin</th>
<th>Signal Description</th>
<th>Direction</th>
<th>Hayes Name</th>
<th>Modem Pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>GND</td>
<td>1</td>
<td>Chassis ground</td>
<td>NA</td>
<td>GND</td>
<td>1</td>
</tr>
<tr>
<td>TXD</td>
<td>2</td>
<td>data from HP 3852</td>
<td>→</td>
<td>TXD</td>
<td>2</td>
</tr>
<tr>
<td>RXD</td>
<td>3</td>
<td>data from modem to HP 3852</td>
<td>←</td>
<td>RXD</td>
<td>3</td>
</tr>
<tr>
<td>DTR</td>
<td>20</td>
<td>Data Terminal Ready</td>
<td>→</td>
<td>DTR</td>
<td>20</td>
</tr>
<tr>
<td>CTS</td>
<td>5</td>
<td>Clear To Send</td>
<td>←</td>
<td>CTS</td>
<td>5</td>
</tr>
<tr>
<td>DCD</td>
<td>8</td>
<td>Data Carrier Detect</td>
<td>←</td>
<td>DCD</td>
<td>8</td>
</tr>
<tr>
<td>GND</td>
<td>7</td>
<td>signal ground</td>
<td>NA</td>
<td>NA</td>
<td>GND</td>
</tr>
</tbody>
</table>
| RI | 22 | Ring Indicator
(can interrupt HP 3852 on edge.)| ← | RI | 22 |
| DSR | 6 | Data Set Ready | ← | DSR | 6 |
| RTS | 5 | Request To Send | → | RTS | 5 |

Sample Programs

The following sample programs verify that the HP 44789A is properly installed, and that your computer is communicating through the HP 44789A. The first program is a simple test program for the HP 44789A. The second program is for an HP Vectra PC or other PC/XT/AT equipped with a serial data communications port. The third is for an HP 9000 Series 200/300 computer using the built-in RS-232C interface. The fourth program is for an HP 9000 Series 200/300 computer equipped with an HP 98628 Datacomm interface.

Before running the sample programs, you must verify that the MODE and PROTOCOL are the same for both the HP 44789A and the computer you want to connect. MODE sets the baud rate, parity, number of data bits and number of stop bits. PROTOCOL sets the handshaking for the control lines. The factory default settings for MODE and PROTOCOL are:

MODE = 300 baud, no parity, 7 data bits, 2 stop bits

PROTOCOL = NONE (Sends whenever bytes are in the output buffer. No overflow protection on the input buffer.)

These default settings are almost identical to those on most PC/XT/AT computers. To determine the settings on your computer, refer to the RS-232C Serial Interface section in your computer manual. If you have previously stored different MODE and PROTOCOL settings in the HP 44789A EEPROM, use the MODE, PROTOCOL and STORE CONF commands in Chapter 3 to reconfigure the settings.
HP 44789A Test Program

This program tests the HP 44789A. The HP 3852 transmits the data through pin 2 (TxD) on the RS-232C port, and receives it through pin 3 (RxD). The HP 3852 monitor then displays the data.

Connect pins 2 and 3 on the HP 44789A RS-232C connector. You can use any small wire to connect these pins on the connector panel of the HP 44789A. Enter the instructions from the HP 3852 front panel.

SERIAL IS NONE
RST
PROTOCOL NONE USE 400
INTEGER I
OUTPUT 400 123
ENTER 400 I
DISP I

HP Vectra PC or PC/XT/AT Program

The following GWBASIC® program for the HP Vectra PC or a PC/XT/AT computer uses the internal HP 3852 clock to return the number of seconds past midnight. Enter the following commands on the HP 3852 front panel before running the program.

SERIAL IS USE <chan>
RST

When the HP 3852 is set up for serial communication, enter the following program in the PC:

10 OPEN "COM1:300,N,7,2" AS #1
20 PRINT #1,"TIME;"
30 INPUT #1,T
40 PRINT "HP 3852 SECONDS PAST MIDNIGHT ";T;" SECONDS"
50 END

HP 9000 Series 200/300 using the Built-in Serial Port

To use the HP 9000 Series 200/300 built-in serial port you must use the PACE option under the MODE command. PACE inserts delays between the data bytes coming from the HP 3852A so that the input buffer in the Series 200/300 does not overflow. This allows the Series 200/300 sufficient time to remove a byte of data from the serial interface and/or change handshake lines before the next byte is sent.

GWBASIC is U.S. registered trademark of Microsoft Corporation.
Enter the following commands from the front panel of the HP 3852 before running the program.

USE 400
RTS ON
DTR IN
MODE 19200 NONE 7 2 .001
PROTOCOL CTRL 10 15
STORE CONF
SERIAL IS USE 400
RST

The following program is for the HP 9000 Series 200/300. It prints seconds after midnight and the Julian date and time from the HP 3852 real time clock. If an error occurs, the program prints the type of error detected.

10
20 CONTROL 9,3;19200
30 CONTROL 9,4;32 + 0 + 4 + 2 70
40 ON ERROR GOTO Error
50 OUTPUT 9;"SET TIME 0;SUB A; TIME;TIMEDATE;SUBEND"! A subroutine to reset clock and output data
60 WHILE 1
70 OUTPUT 9;"CALL A"
80 ENTER 9:A
90 ENTER 9:B
100 PRINT A,B
110 END WHILE
120 GOTO End
130 ERROR:
140 STATUS 9,10;ERR
150 IF BIT (ERR,1) THEN PRINT "OVERRUN"
160 IF BIT (ERR,2) THEN PRINT "PARITY"
170 IF BIT (ERR,4) THEN PRINT "BREAK"
180 IF BIT (ERR,3) THEN PRINT "FRAMING"
190 END:
200 END

2-6 Installing the HP 44789A
The following program sets up the HP 9000 series 200/300 computer for communication with the HP 3852 through the HP 98628 Datacomm interface. The program first checks to see if there is data in the queue. Then it checks to see if there have been any errors since power on or reset. If there are no errors the program will print out the HP 3852 model number, the HP 3852 ROM revision number, and the HP 44789A slot number. There is more information on communications settings in the datacomm section of your HP 9000 Series 200/300 "BASIC Interfacing Techniques" manual.

Enter the following command from the front panel of the HP 3852.

```
SERIAL IS USE 400
RST
```

Enter the following program in the HP 9000 Series 200/300.

```
10 CONTROL 20,0;1
20 CONTROL 20,3;13
30 CONTROL 20,14;3
40 CONTROL 20,15;0
50 CONTROL 20,16;0
60 CONTROL 20,17;0
70 CONTROL 20,18;0
80 CONTROL 20,19;0
90 CONTROL 20,20;7
100 CONTROL 20,21;7
110 CONTROL 20,22;0
120 CONTROL 20,23;0
130 CONTROL 20,24;66
140 CONTROL 20,26;17
150 CONTROL 20,27;19
160 CONTROL 20,28;2,13,10
170 CONTROL 20,31;1,17
180 CONTROL 20,34;2
190 CONTROL 20,35;2
200 CONTROL 20,36;0
210 CONTROL 20,37;0
220 CONTROL 20,39;4
```

Installing the HP 44789A 2-7
All instructions to this point are to prepare the HP 98628 for protocol none 7 data bits no parity and 2 stop bits.

The following routine checks serial communications. Variable A is status (either 1, 2, or 3). Variable B holds the number of errors received since power on or reset. A value of 0 means no errors.

270 OUTPUT 20;"VREAD 1"
280 FOR I = 1 TO 30
290 STATUS 20,5;A
300 STATUS 20,25;B
310 PRINT I,A,B
320 WAIT .1
330 NEXT I
340 ENTER 20;A$
350 DISP A$
360 OUTPUT 20;"IDN?"

370 ENTER 20;A$
380 ENTER 20;X$
390 ENTER 20;Y$
400 ENTER 20;Z$
410 DISP A$,X$,Y$,Z$
420 END

! Returns HP 3852 model number, ROM revision, and slot number
Reconfiguring the RS-232C Port

You can change the pin out on the RS-232C port to work with any peripheral which uses an unusual or non-standard implementation of the RS-232C standard. Signals from the HP 44789A (RTS, CTS, etc.) can be routed to another pin. A pin can be connected to a pin, which effectively jumpers the RS-232C port on the peripheral. You can connect a constant high or a constant low to a pin to assert or deassert a line on a custom cable. Table 2-4 lists the HP 44789A RS-232C pin assignments.

Table 2-4. RS-232C Pin Assignments

<table>
<thead>
<tr>
<th>Pin</th>
<th>I/O</th>
<th>Circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NA</td>
<td>Protective Ground</td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td>Transmitted Data</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>Received Data</td>
</tr>
<tr>
<td>4</td>
<td>O</td>
<td>Request To Send</td>
</tr>
<tr>
<td>5</td>
<td>I</td>
<td>Clear To Send</td>
</tr>
<tr>
<td>6</td>
<td>I</td>
<td>Data Set Ready</td>
</tr>
<tr>
<td>7</td>
<td>NA</td>
<td>Logic Ground</td>
</tr>
<tr>
<td>8</td>
<td>I</td>
<td>Carrier Detect</td>
</tr>
<tr>
<td>18</td>
<td>NA</td>
<td>RS-232C low (−12 V)</td>
</tr>
<tr>
<td>20</td>
<td>O</td>
<td>Data Terminal Ready</td>
</tr>
<tr>
<td>22</td>
<td>I</td>
<td>Ring Indicator</td>
</tr>
<tr>
<td>25</td>
<td>NA</td>
<td>RS-232C high (+12 V)</td>
</tr>
</tbody>
</table>

To change the pin out, first cut the jumper, bend the end up, and then wire-wrap to the desired pin. See Figure 2-2. It may be simpler to use a Micropatch™ wiring adapter, listed in Table 2-1.

Figure 2-2. RS-232C Jumpers

Installing the HP 44789A 2-9
Using the RS-422 Port

The 9 pin connector on the HP 44789A is for RS-422 communication. The data lines on the RS-422 port and the RS-232C port are in logical parallel, so you can not use both ports at the same time. Also, RS-422 communication does not use control lines, so you must set PROTOCOL to NONE or XON. Enter the following commands through the front panel of the HP 3852.

USE 400 1 HP 44789A is in slot 4
MODE <baud>, <parity>, <data bits>, <stop bits> ! Ensure these values are the same as the peripheral’s RS-422 values
PROTOCOL NONE or XON ! See Chapter 3
STORE CONF ! Store configuration in EEPROM
SERIAL IS USE 400 ! Identify the channel that is the serial port
RST ! Resets the HP 3852 with stored values

The HP 3852 is now ready to communicate through the RS-422 port on the HP 44789A. Table 2-5 shows the RS-422 pin assignment.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Input/Output</th>
<th>Circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>O</td>
<td>Transmitted Data −</td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td>Transmitted Data +</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>Received Data −</td>
</tr>
<tr>
<td>4</td>
<td>I</td>
<td>Received Data +</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Ground</td>
</tr>
</tbody>
</table>

A common error in RS-422 cables is reversed + and − leads. If the peripheral you are connecting uses reverse polarity logic states, or the cable is for reverse logic but the peripheral is normal logic, you will have to reverse the leads. Change the lead for pin 1 with pin 2, and the lead for pin 3 with pin 4.
3

Using the HP 44789A
Using the HP 44789A

Introduction

This chapter begins with a description on how to program the HP 44789A. The default settings are listed next, followed by a section on setting SERIAL, MODE and PROTOCOL for the desired application. Next are sample programs which show how to use various types of computers to program the HP 3852 through the HP 44789A interface. The following section describes the commands, and the last section is a troubleshooting guide for RS-232C interfaces.

Programming the HP 44789A

There are four types of commands for the HP 44789A: Common Commands, Configuration Commands, Programming Commands and Multitasking Commands. Common Commands are not card specific. They can reset, test, select, or identify any card in the system. Configuration Commands set the data rate, data format, pacing protocol, and buffer size. Programming Commands concern data handling by the sender or receiver. Multitasking Commands are HP 3852 commands which can be used if the HP 44789A is used as a programming port for the HP 3852.

Program the HP 44789A the same as you would any other card in the HP 3852. Specify the slot number, then enter the commands. When you initially set up any of the Configuration Commands, use the STORE CONF to save the configuration in EEPROM. That way, if the HP 3852 should lose power or be reset the HP 44789A will be properly configured.

You can program the HP 44789A directly from a computer which is communicating through the HP 44789A with one exception. To change MODE and PROTOCOL you must first put the commands in a subroutine, then call the subroutine. Otherwise, as soon as the HP 44789A receives the MODE command it changes the settings and breaks the communication link. After you call the subroutine you must then change the settings on the computer to match the new settings before you can reestablish the communication link.

Default Settings

Table 3-1 shows the factory-set default settings for the HP 44789A. Once you use the STORE CONF command, the settings stored in EEPROM will be used at power on or reset. If you should lose the contents of EEPROM the HP 44789A will revert to the default settings at power on or reset.
Table 3-1. Default Settings

<table>
<thead>
<tr>
<th>MODE</th>
<th>300 Baud, NO Parity, 7 Data Bits, 2 Stop Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROTOCOL</td>
<td>NONE</td>
</tr>
<tr>
<td>INBUF</td>
<td>1024 Bytes</td>
</tr>
<tr>
<td>OUTBUF</td>
<td>1024 Bytes</td>
</tr>
<tr>
<td>RTS</td>
<td>ON</td>
</tr>
<tr>
<td>DTR</td>
<td>ON</td>
</tr>
<tr>
<td>THRESH IN</td>
<td>512 Bytes</td>
</tr>
<tr>
<td>THRESH OUT</td>
<td>512 Bytes</td>
</tr>
<tr>
<td>NPER</td>
<td>4 Character periods</td>
</tr>
<tr>
<td>ENABLE</td>
<td>XMIT</td>
</tr>
<tr>
<td>ENABLE</td>
<td>RCVR</td>
</tr>
<tr>
<td>INTR</td>
<td>0</td>
</tr>
</tbody>
</table>

Setting up SERIAL, MODE and PROTOCOL

To establish a communication link between the HP 3852 and a peripheral, you must designate where the link is located (SERIAL), what the data frames will look like (MODE), and how the data flow will be controlled (PROTOCOL). SERIAL is stored in non-volatile RAM in the mainframe and will be used at all subsequent resets or power-ons. MODE and PROTOCOL are stored in the HP 44789A EEPROM with the STORE CONF command.

MODE and PROTOCOL are set up at reset or power-on with the values stored in EEPROM. If there are no values in EEPROM, the default settings in Table 3-1 are used. These values must be the same as those used by the peripheral.
Programming the HP 3852 through the HP 44789A

You can use any terminal or computer with an RS-232C or an RS-422 interface to program the HP 3852 through the HP 44789A. Once you have established the communication link and designated a specific HP 44789A as a programming port, any programs or commands entered through that port go directly to the HP 3852.

Using a Terminal

A terminal or computer running terminal-emulation software acts as a remote extension of the keyboard for the HP 3852. Characters which are typed on the keyboard are accepted by the HP 3852. If those characters form programs or commands, those programs or commands are executed. BACKSPACE and RECALL are not implemented. Also, error messages are not automatically returned to the terminal. If you do not get a response from the HP 3852, then enter the error query command, ERRSTR?. The HP 3852 will send the contents of the error storage to the terminal.

Using the HP Vectra PC or PC/XT/AT

You can use the HP Vectra PC or any PC/XT/AT compatible to program the HP 3852 through the HP 44789A. The sample program in Chapter 2 shows how to establish the communication link. Use any BASIC that runs on a PC/XT/AT. The following program is written in GWBASIC®.

```
10 OPEN "COM1:300,N,7,2" AS #1  ! Sets the MODE for PC
20 PRINT #1,"ID? 400;:"  ! Queries slot 4 for ID
30 INPUT #1,A$  ! Returns slot ID
40 PRINT "HP";A$  ! Displays HP 44789A ID on CRT
50 END
```

Using a Modem

A modem allows you to communicate over long distances, generally with a telephone connection. Using a modem with a terminal or a computer with communication software is very similar to operating with a direct connection. The only difference is dialing and hanging up. Your modem manual will have information on how this is done.

The following program for the HP Vectra PC demonstrates the overhead required for a modem. Ensure that the MODE and PROTOCOL settings are equivalent for the computer, modem and HP 44789A. The print statement in line 50 is not required for operation, it is there for information only.

```
10 OPEN "COM2:1200,N,7,2" AS #1  ! Set COM parameters and open buffer
20 PRINT #1, "ATDT 123-4567"  ! Dial phone number
30 WHILE EOF (1):WEND  ! Wait till something is in the buffer
40 SOUND 32565,30:SOUND 32565,1  ! Insert delay approx 1.5 seconds
50 PRINT LOC(1):ON ERROR GOTO 30  ! Print bytes in buffer: clear error
60 A$ = INPUT$(LOC(1),#1)  ! Define A$ and set pointer
70 IF INSTR (A$, "CONNECT") = 0 THEN 30  ! Identify feedback from modem
```

Using the HP 44789A 3-3
Using the HP 9000 Series 200/300 Computers

The HP 9000 Series 200/300 built-in serial interface requires the use of the PACE option under MODE. The HP 98628A Datacomm interface provides full handshaking and communication without the need for the PACE option. The built-in serial interface requires eight lines of code to set up the HP 3852 and two lines of code to set up the Series 200/300. The HP 98628A Datacomm interface requires approximately 20 lines of code for the Series 200/300. The factory default settings for the HP 44789A are correct for communicating with the HP 98628A. You must specify SERIAL IS USE <chan> on the HP 3852.

HP-IB programs will work with the HP 98628A if you change the interface select code and address from 7XX (HP-IB) to 20 (Datacomm card). For more information see the datacomm section in the HP 9000 Series 200/300 “Basic Interfacing Techniques” manual.

The set-up codes for the built-in serial interface and the HP 98628A Datacomm card are listed in Chapter 2. The following program shows how to send commands using the HP 98628A Datacomm card.

```
80 PRINT "CARRIER DETECTED"
90 PRINT #1,"RST;" ; Reset HP 3852
100 SOUND 32565,30:SOUND 32565,1 ; Insert delay approx 1.5 seconds
110 PRINT #1,"ID? 400;" ; Request ID of card in slot 4 of HP 3852
120 INPUT #1,A$ ; Return response from line 110
130 PRINT " HP ";A$ ; Print ID appended to HP
140 PRINT #1,"~ ~ ~ + + + ~ ~ ~ ATH0" ! Get modems' attention and hang up phone
150 END
```

Using the HP 44789A for Printers or other Slave Devices

You can use the HP 44789A to operate any device which has an RS-232C or RS-422 interface. The RS-232C interface on the HP 44789A is almost identical to that on a PC/XT/AT. You can use the same cable for the HP 44789A that is recommended for a PC. If the printer uses a non-standard implementation of the RS-232C interface, you may have to jumper the pins and/or use software handshaking. Refer to the Control Lines section in the printer manual.

3-4 Using the HP 44789A
Command Summary

The following is a summary description of the HP 44789A commands. The list is organized alphabetically in four functional groups: COMMON COMMANDS, CONFIGURATION COMMANDS, PROGRAMMING COMMANDS, and MULTITASKING COMMANDS.

Common Commands

Common Commands refer to the physical HP 44789A card and its location in the HP 3852 cardcage.

ID?

Returns the accessory number (44789A).

Syntax: **ID? <slot>**

RST

Resets the HP 44789A to its power-on state. All configuration settings are restored from EEPROM (MODE, PROTOCOL, INBUF, OUTBUF, RTS, DTR, THRESH, NPER, ENABLE/DISABLE XMIT/RCVR, and INTR), interrupts are disabled, and input and output buffers are cleared. When the HP 44789A is reset the HP 3852 waits until the card has passed its self-test or 2 seconds, whichever occurs first. If a timeout occurs then a self-test error is declared. In some cases the HP 44789A may still be used, but with risk. When the HP 44789A is an HP 3852 controller I/O, the RST <slot> command is not allowed if <slot> is the location of the HP 44789A.

If an EEPROM checksum error occurs, code E will be written to the HP 3852 display and the error buffer. Error messages stored in the error buffer may be recalled with the ERRSTR? command. If code E is detected it means the default values will be used. Set up the configuration and store it with the STORE CONF command.

Syntax: **RST <slot>**

TEST

Initiates a pass/fail self-test of the accessory. It tests the backplane, interface registers, and microprocessor ROM/RAM/EEPROM, but not the RS-232C and RS-422 transceivers. Programmed state is preserved, but data received over the serial interface during the test is lost and/or causes an overrun error. If an error is noted then a failed self-test error is logged in the error buffer and on the HP 3852 display. You may view error messages from a remote location with the ERRSTR? command.

Syntax: **TEST <slot>**

USE

Specifies the default USE channel for subsequent commands. The valid channel format is Extender, Slot number, Channel number, (ESCC). Refer to your HP 3852 "Configuration and Programming Manual" for more information.

Syntax: **USE <chan>**

Using the HP 44789A 3-5
Configuration Commands

DTR

DTR state stored in the EEPROM is used at reset or power-on. If the EEPROM contents are lost, DTR ON is the default.

Syntax: DTR [[OFF|ON|OUT|IN]] [USE <chan>]

ENABLE/DISABLE RCVR

Enables or disables the reception of data. Upon execution of ENABLE RCVR the input UART is cleared and prepared to receive serial data.

At reset or power-on, the state stored in the EEPROM is used. If the EEPROM contents are lost, ENABLE RCVR is the default.

Syntax: ENABLE RCVR [USE <chan>]
DISABLE RCVR [USE <chan>]

ENABLE/DISABLE XMIT

Enables or disables the transmission of data from the output buffer. Up to four bytes may be sent after the DISABLE XMIT command is issued. This number depends on the baud rate and the current state of the bytes being output.

ENABLE/DISABLE XMIT state stored in the EEPROM is used at reset or power-on. If the EEPROM contents are lost, ENABLE XMIT is the default.

Syntax: ENABLE XMIT [USE <chan>]
DISABLE XMIT [USE <chan>]

INBUF

INBUF <bytes> with SERIAL or USE <chan> sets the size of the input buffer. Changing the input buffer size clears the input buffer and any pending interrupts. If the currently set PROTOCOL THRESH thresholds are greater than the new input buffer size, the lower and upper limits are set to 25% and 75% of the new buffer size. If the currently set input buffer THRESH threshold is greater than the new input buffer size, the threshold is set to 50% of the new buffer size. INBUF <bytes> with no USE <chan> defaults to the HP-IB input buffer size command.

The maximum INBUF size is eight Kbytes. The available sizes are 256, 512, 1024, 2048, 4096 and 80192. Input buffer size stored in the EEPROM is used at reset or power-on. If the EEPROM contents are lost, default INBUF 1024 is set.

Syntax: INBUF <bytes> [[HPIB|SERIAL|USE <chan>]]
INTR

Sets the mask for the ENABLE/DISABLE INTR command. The `<mask>` is the sum of all the decimal values for the selected mask. A "1" in a bit enables that bit; a "0" disables it. All of the bits in the selected mask must be enabled before ENABLE INTR will generate an interrupt. You may also set a character to test all input bytes against.

Syntax:`INTR <mask> [<character>] [USE <chan>]`

Table 3-1. Bit Definition

<table>
<thead>
<tr>
<th>Decimal Value</th>
<th>Bit</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>Input buffer not empty</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Input buffer (THRESH IN) threshold reached</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>Input buffer full</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>Break received</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>Input NPER expired</td>
</tr>
<tr>
<td>32</td>
<td>5</td>
<td>Output buffer empty</td>
</tr>
<tr>
<td>64</td>
<td>6</td>
<td>Output buffer (THRESH OUT) threshold reached</td>
</tr>
<tr>
<td>128</td>
<td>7</td>
<td>Output buffer full</td>
</tr>
<tr>
<td>256</td>
<td>8</td>
<td>Input buffer overflow</td>
</tr>
<tr>
<td>512</td>
<td>9</td>
<td>Parity error detected</td>
</tr>
<tr>
<td>1024</td>
<td>10</td>
<td>Framing error</td>
</tr>
<tr>
<td>2048</td>
<td>11</td>
<td>Receiver overrun</td>
</tr>
<tr>
<td>4096</td>
<td>12</td>
<td>Carrier detect changed state</td>
</tr>
<tr>
<td>8192</td>
<td>13</td>
<td>Ring indicator changed state</td>
</tr>
<tr>
<td>16384</td>
<td>14</td>
<td>Character match detect</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>-undefined-</td>
</tr>
</tbody>
</table>

MODE

Selects the baud rate, parity, number of bits/character and stop bits.

Available baud rates: 300, 600, 1200, 4800, 9600, 19200

Note that 110 baud is not supported. Baud rate values within the range but not listed are rounded up to the next higher rate. Changing the MODE of the HP 44789A during transmission may cause an error.

Available data lengths are either 7 or 8 bits. The number of stop bits may be either 1 or 2. The UART (universal asynchronous receiver transmitter) limitations prevent the use of some combinations of parity, character bits and stop bits. Table 3-2 shows allowable parity and stop bit combinations.
Available parity types are:

- **NONE** no parity
- **IGNORE** parity bit is one for output, ignored on input
- **ZERO** parity bit is always zero
- **ONE** parity bit is always one
- **EVEN** even parity
- **ODD** odd parity

<table>
<thead>
<tr>
<th>Parity</th>
<th>Data Bits</th>
<th>Stop Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>7</td>
<td>ok</td>
</tr>
<tr>
<td>NONE</td>
<td>8</td>
<td>ok</td>
</tr>
<tr>
<td>Parity</td>
<td>8</td>
<td>ok</td>
</tr>
<tr>
<td>other</td>
<td>7</td>
<td>ok</td>
</tr>
</tbody>
</table>

The PACE option inserts delay between the data frames in the sender. Use PACE when the input buffer of a serial port is small and can easily overflow. The `<period>` is from .001 to 60 seconds. See Figure 3-1.

![Figure 3-1. PACE](RS-232_DATA_FRAME_PACE_0_to_60_SECONDS)

Syntax: MODE `<baud>`, `<parity>`, `<data bits>`, `<stop bits>` | | [PACE `<period>`] | [USE `<chan>`]

NPER

Sets the Number of input character PERiods that must pass with no input received before an Input Buffer Timer interrupt will be generated. The valid range of `<periods>` is 1 to 65535. At reset or power-on, the value stored in the EEPROM is used. If the EEPROM contents are lost, NPER 4 is the default.

Syntax: NPER `<periods>` | [USE `<chan>`]

OUTBUF

OUTBUF `<bytes>` with no USE `<chan>` defaults to the HP-IB output buffer size command. OUTBUF `<bytes>` with SERIAL or USE `<chan>` sets the size of the output buffer. Changing the output buffer size will clear the output buffer. If the currently set output buffer THRESH threshold is greater than the new output buffer size, the threshold is set to 50% of the new buffer size.

Eight Kbytes is the maximum OUTBUF size. The available sizes are 256, 512, 1024, 2048, 4096 and 8192. Output buffer size stored in the EEPROM is used at reset and power-on. OUTBUF default size is 1024 bytes.

Syntax: OUTBUF `<bytes>` | | (HP|SERIAL|USE `<chan>`)
PROTOCOL

Selects the protocol used to prevent buffer overflows, on both input and output of the serial interface. Available protocols are:

NONE
No protocol used. Sends whenever bytes are in the output buffer. Too much input will overflow the input buffer.

CTRL
DSR and CTS must be ON to send a character. If RTS IN is set then RTS is set OFF if the input buffer exceeds the upper threshold. RTS is set ON when the lower threshold is reached. If DTR IN is set then DTR is set OFF if the input buffer exceeds the upper threshold and ON when the lower threshold is reached.

XON/XOFF
XOFF received will halt output until XON is received. XOFF is sent if the input buffer upper threshold is exceeded. XON is sent when the lower threshold is reached.

BOTH
Combines CTRL and XON/XOFF modes.

Note

To use the RS-422 interface or an RS-232C three-wire connection (Common, TXD, RXD), set PROTOCOL to NONE or XON/XOFF. Otherwise, no output will occur since the unconnected state of DSR and CTS is off.

When PROTOCOL CTRL, XON/XOFF, or BOTH is selected, the lower and upper input buffer thresholds must be specified. These thresholds determine when the control lines are enabled or disabled. When the input buffer upper threshold is reached, THRESH turns RTS OFF (RTS IN), DTR OFF (DTR IN), and/or sends XOFF. This tells the sending device to stop sending data. As the HP 3852 removes bytes from the input buffer the lower threshold limit is reached. This turns RTS ON (RTS IN), DTR ON (DTR IN) and/or sends XON, enabling the sending device to start transmitting data again.

The lower limit must be greater than or equal to zero and less than or equal to the upper limit. The upper limit must be greater than or equal to the lower limit and less than or equal to the input buffer size. Values stored in the EEPROM are used at reset or power-on. PROTOCOL NONE is the default value.

Syntax: PROTOCOL {NONE | {CTRL | XON/XOFF | BOTH}, <lower limit>, <upper limit>} [USE <chan>]

RTS
Determines the function or state of the RTS line. RTS may be set to either OFF or ON. It may be configured as the standard Request To Send (RTS OUT). It is also used as an input-buffer-available flag for use with many 9600 baud modems (RTS IN). RTS mode stored in the EEPROM is used at reset or power-on. If the EEPROM contents are lost, RTS OUT is the default.

Syntax: RTS [{OFF | ON | OUT | IN}] [USE <chan>]
STORE CONF
Stores the currently programmed state into the EEPROM. At power-on or reset the conditions stored in the EEPROM will be set. STORE CONF requires about 1.5 seconds to run.

Syntax: STORE CONF [USE <chan>]

THRESH
Controls when bits 1 and 6 in the interrupt status are set (see INTR <mask> command). For input, the interrupt is asserted whenever the number of bytes in the input buffer is greater than or equal to the threshold. For output, the interrupt is asserted whenever the number of bytes in the output buffer is less than or equal to the threshold.

Thresholds stored in the EEPROM are used at reset or power-on. If the EEPROM contents are lost, THRESH IN 512 and THRESH OUT 512 are the defaults.

Syntax: THRESH {IN|OUT} <bytes> [USE <chan>]

Programming Commands
Programming commands concern what the sender or receiver do with the data. They also allow you to control the flow of data with other programs.

CLRIN/CLROUT
Clears the input or output buffer of the specified destination. HP-IB is the default destination (for backward compatibility). SERIAL specifies the currently selected SERIAL IS slot.

Syntax: CLRIN [{HPIB|SERIAL|USE <chan>}]
CLRROUT [{HPIB|SERIAL|USE <chan>}]

BREAK
BREAK ON sends a continuous break until BREAK OFF. BREAK ONCE sends a single break character immediately after any byte already being transmitted is sent. This break is sent regardless of the protocol state, the associated lines, and XOFFs.

Syntax: BREAK {OFF|ON|ONCE} [USE <chan>]

DEST IS
Enables the output of a command to be directed to a desired destination.

Syntax: DEST IS {SERIAL|HPIB} [USE <chan>]

ENABLE/DISABLE SRQ BREAK
Enables/disables the sending of a break to the host computer to indicate SRQ. This command affects only the serial programming port.

Syntax: ENABLE SRQ BREAK
DISABLE SRQ BREAK

ENABLE/DISABLE DCL BREAK
Enables/disables the reception of a break from the host computer to indicate Device CLear. This command affects only the serial programming port.

Syntax: ENABLE DCL BREAK
DISABLE DCL BREAK

3-10 Using the HP 44789A
ENABLE/DISABLE INTR Enables/disables the interrupts selected by the INTR command. All interrupt conditions except input/output buffer full/empty and thresholds reached are cleared.

Syntax: ENABLE INTR [USE <chan>]
DISABLE INTR [USE <chan>]

ENTER Takes input data from a device or file and assigns the values to variables. Numeric characters, decimal point, +, -, e and E are valid characters for ENTER. For further information on ENTER, see your HP 3852 Mainframe "Command Reference Manual".

Syntax: ENTER <path or chan> <list>

INTR? If <chan> is present, returns a 16-bit word indicating the state of all 15 of the interrupting conditions for the channel. This word is bit mapped the same as the INTR mask. INTR? clears the interrupt status for the serial card. Level-sensitive conditions will be set again when the card polls its internal status. Edge conditions (break received, character matched, error detected) will not be set unless the condition occurs again. If <chan> is omitted, the mainframe INTR? command is executed, returning the last channel to interrupt.

The HP 3852 BINAND and BINOR commands can be used with INTR? to check the state the state of individual bits.

Syntax: INTR? [<chan>]

ON INTR Specifies a subroutine to be executed or run upon an interrupt from the specified channel (for information on subroutines see the HP 3852 Mainframe "Command Reference Manual").

Syntax: ON INTR [USE <chan>] [CALL <sub> | RUN <sub>,<task>]

OUTPUT Outputs data to a specified destination. Destination can be an I/O path name or a device selector. For further information on OUTPUT, see your HP 3852 Mainframe "Command Reference Manual".

Syntax: OUTPUT <path or chan> <list>

Using the HP 44789A 3-11
READ

All of the connector lines are read and returned as a bit-mapped integer (the decimal sum of the bits set to “1”; a “1” means “set” or “on”, a “0” means “off”). Table 3-3 shows the decimal bit values.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Decimal Value</th>
<th>Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>DSR</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>DTR</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>CTS</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>RTS</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>DCD</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>RI</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>TXD</td>
</tr>
<tr>
<td>7</td>
<td>128</td>
<td>RXD</td>
</tr>
</tbody>
</table>

Syntax: READ <chan>

SERIAL

SERIAL OFF/ON eliminates wait time for certain commands sent to some multiplexer and switching accessories (see SERIAL command in the HP 3852 Mainframe “Command Reference Manual”). SERIAL IS USE <chan> selects the serial channel that will be used as a programming port after the next reset or power-on. SERIAL IS NONE deselects any serial channel. Only one serial channel may be selected at any time. Channel selected is stored in mainframe non-volatile RAM. It will be used for all succeeding resets or power-on.

Selecting a serial channel will leave the mainframe with approximately 1250 fewer bytes of available memory.

Syntax: SERIAL [OFF|ON|IS {NONE|USE <chan> }]

TIMEOUT

Timeout is the amount of time the HP 44789A will wait between receiving characters before declaring a timeout error. The HP 3852 timeout period is used. The allowable timeout periods are .001 sec to infinity. A 0 represents infinity. For further information see your HP 3852 Mainframe “Command Reference Manual”.

Syntax: TIMEOUT <time>

WRITE

Allows you to send decimal equivalent of a desired ASCII bit pattern. The allowable range is 0 to 255. You can send the characters as a data list or an array. The WRITE command does not affect the index of an array. WRITE requires 300 µsec overhead plus 80 µsec per byte. Timeout used is the present overall system timeout. Timeouts which are an integer number allow the fastest WRITE. The following two examples WRITE decimal 75 (ASCII K).

WRITE 2300 75

! "K" sent to slot 23
INTEGER I(8)
MAT I = (75)
WRITE 2300 I

"KKKKKKKKK" sent to slot 23

Syntax: WRITE <slot> [data list | array]

XRDGS

Allows you to transfer bytes from the HP 44789A into an array. The index of the array is automatically increased by the number of elements transferred.

The <number of bytes> determines how many bytes are sent. You can choose a positive integer, a negative integer or 0. A positive integer transfers that number of bytes. A negative integer transfers as many bytes as are found in the HP 44789A, up to the absolute value of the integer. A 0 transfers all the bytes in the HP 44789A. The default value is 1.

If the array is not large enough for all of the bytes, an error is declared and no bytes are transferred. The best way to transfer an unknown number of bytes is to use a negative integer whose absolute value is less than the number of empty spaces in the array. XRDGS requires 700 μsec overhead plus 180 μsec per bytes. Timeout used is the present overall system timeout. Timeouts which are integer numbers allow the fastest XRDGS. The following examples show how to use XRDGS.

INTEGER I(199)
XRDGS 2300 0 INTO I

! Transfers all bytes into I. If there are more than 200, an error is declared.

INTEGER I(8)
XRDGS 2300 -9 INTO I

! Transfers up to 9 bytes into I

Syntax: XRDGS <slot> [number of bytes] INTO

Additional Programming Commands

There are six HP 3852 programming commands which affect the HP 44789A. These are: ASSIGN, ENTER, OUTPUT, PRINTER IS, PRINT and TIMEOUT. For a complete description of these commands, see your HP 3852 Mainframe “Command Reference Manual”.

Multi-tasking Commands

There are four HP 3852 multi-tasking commands which affect the HP 44789A. These commands are ABORT SERIAL, PAUSE SERIAL, PROBE and SIGNAL SERIAL. For a complete description of these commands, see your HP 3852 Mainframe “Command Reference Manual”.

Using the HP 44789A 3-13
Data Flow Control
Diagrams

PROTOCOL commands determine which series of events will enable or disable data transmission. These sequences are called data flow control loops. Each PROTOCOL parameter has a different data flow control loop. These loops monitor input buffers, output buffers and control lines. Some PROTOCOL commands override control lines to enable or disable transmission.

There are four data flow control diagrams, one for each PROTOCOL parameter. The diagrams describe the continuous decision process which takes place every 0.5 milliseconds.

This is the simplest control loop. There are no thresholds to compare the input data buffer count to and likewise there are no responses. SERIAL IS USE <chan> establishes a continuous communication link.

Figure 3-2. PROTOCOL NONE Flow Diagram
PROTOCOL XON/XOFF

The input data flow is controlled by sending XON or XOFF to the sender over the RS-232C interface. Likewise, outgoing data is controlled by receiving XON or XOFF from the other unit.

Figure 3-4. PROTOCOL XON/XOFF Flow Diagram

PROTOCOL CTRL (Hardware)

There are several ways the hardware handshake may be used. The hardware protocol is altered by how RTS and DTR are used. RTS and/or DTR may be controlled by the input buffer data count or look like a standard RTS and DTR.

Figure 3-3. PROTOCOL CTRL (Hardware) Flow Diagram

Using the HP 44789A 3-15
PROTOCOL BOTH

When both XON/XOFF and CTRL protocols are used together, the two protocols are combined. When XON or XOFF needs to be sent to the other unit, the hardware protocol must be completed before XON or XOFF is sent. It is easiest to think of the XON or XOFF as being pushed into the front of the output buffer and, when allowed by the hardware handshake, they are sent out. DISABLE XMIT cannot stop an XON or XOFF from being sent.

Figure 3-5. PROTOCOL BOTH Flow Diagram

Troubleshooting
RS-232C Connections

There are four components of an RS-232C communication link through the HP 44789A Serial Interface Accessory. An error in any one of them will break the communication link. These four components, and the associated critical parameters, are:

HP 3852 (SERIAL ISUSE <chan>)
HP 44789A (MODE, PROTOCOL)
Cable (Pins wired to proper pins)
Peripheral (<baud> <parity> <data bits> <stop bits > <protocol>)

If you are using one of the peripherals mentioned in this manual, and have verified the above four components, the communication link should work. If it does not, then one of the components is most likely defective. Change the components one at a time until you get the system to work. This will help you isolate the defective component. If you are using a peripheral other than those listed in this manual, see the following section.

3-16 Using the HP 44789A
Using the READ Command

The READ command returns a bit-mapped decimal value which reflects the state of the pins. You can use this command to determine which pins are asserted or deasserted. If you are trying to connect a terminal or computer, set PROTOCOL to NONE and transmit the command BEEP; from the terminal to the HP 3852. You should hear a beep. If you do not hear a beep, then one by one set the control lines to ON and transmit BEEP. There are four control lines, so there are 16 possible combinations. Use the READ command between each change of settings to determine if the new settings cause the terminal to assert or deassert a line. You can also use the INTR? command to determine changes.

When you get a character to transmit, you know which control lines the terminal needs to transmit. You then need to find out which control lines it uses to receive and to signal that the buffer is full. One by one set the control lines to ON and transmit a character from the HP 3852. Use the READ command to find the state of the bits when the peripheral is receiving data. Then use the WRITE command to send a large array which should overflow the input buffer on the peripheral. Use the READ command again to determine which line the peripheral sets for input buffer full. The WRITE command will also verify full handshaking capability.

Once you have determined the necessary handshake for the peripheral, you can jumper the RS-232C port, use a Micropatch wiring adapter (see table 1-1), make a custom cable or use software handshaking.

If you still cannot get your peripheral to work, check to see if TxD and RxD are on the proper pins. The peripheral may also be using pins other than those supported by the HP 44789A. In that case you will need a breakout box. The book listed in Table 1-1 is an excellent reference for troubleshooting non-standard RS-232C interfaces.

Signal Levels and Logic States

Signal level refers to the magnitude and polarity of a signal on a line. Logic state refers to whether a given signal represents a 0 or 1 for data lines and asserted/enabled or deasserted/disabled for control lines. Data lines and control lines do not use the same convention.

For an RS-232C data line, a logic 0 is represented by a voltage between +5 and +15 volts for output and between +3 and +15 volts on input. A logic 1 is represented by a voltage between -5 and -15 volts for output and between -3 and -15 volts for input. Voltages outside of those limits represent undefined logic states.

For RS-232C control lines, an assert/enable is represented by a voltage between +5 and +15 volts for output and between +3 and +15 volts on input. A deassert/disable is represented by a voltage between -5 and -15 volts for output and between -3 and -15 volts for input. Voltages outside of those limits represent undefined logic states.
Appendix A
Command Summary Quick Reference

Common Commands:
- ID? <slot>
- RST <slot>
- TEST <slot>
- USE <chan>

Configuration Commands:
- DTR [{OFF|ON|OUT|IN}] [USE <chan>]
- DISABLE RCVR [USE <chan>]
- DISABLE XMIT [USE <chan>]
- ENABLE RCVR [USE <chan>]
- ENABLE XMIT [USE <chan>]
- INBUF <bytes> [{HPIB|SERIAL|USE <chan>}
- INTR <mask> [{HPIB|SERIAL|USE <chan>}
- MODE <baud>, <parity>, <data bits>, <stop bits>, [FACE
 <Period> [USE <chan>]
- NPER <periods> [USE <chan>]
- OUTBUF <bytes> [{HPIB|SERIAL|USE <chan>}
- PROTOCOL [NONE|{CTRL|XON|BOTH}], <ulimit>, <ulimit> [USE <chan>]
- RTS [{OFF|ON|OUT|IN}] [USE <chan>]
- STORE CONF [USE <chan>]
- THRESH [IN|OUT] <bytes> [USE <chan>]

Programming Commands:
- BREAK {OFF|ON|ONCE} [USE <chan>]
- CLRIN/CLROUT [{HPIB|SERIAL|USE <chan>}
- DEST IS {SERIAL|HP-IB} [USE <chan>]
- DISABLE DCL BREAK
- DISABLE INTR [USE <chan>]
- DISABLE SRQ BREAK
- ENABLE DCL BREAK
- ENABLE INTR [USE <chan>]
- ENABLE SRQ BREAK
- INTR? [<chan>]
- ON INTR [USE <chan>] {CALL <sub> | RUN <sub>, <task>}
- READ <chan>
- SERIAL [{OFF|ON} | IS {NONE|USE <chan>}
- WRITE <slot> [data list | array]
- XRDGS <slot> [number of bytes] INTO

Information on the following commands is in the HP 3852 mainframe programing Command Reference manual.

- ASSIGN <path> TO {<chan> | *}
- ENTER <path or chan> <list>
- OUTPUT <path or chan> <list>
- PRINTER IS <chan>
PRINT <list>
TIMEOUT <time>

Multitasking Commands:

Multi-tasking Commands are HP 3852 mainframe commands which also apply to the HP 44789A. For further information, see your HP 3852 manual.

ABORT SERIAL
PAUSE SERIAL
PROBE
SIGNAL SERIAL

A-2 Command Summary
Index
Index

A
Accessory Description, 1-3

B
BINAND, 3-11
BINOR, 3-11
Bit Definitions
 Interrupt Mask, 3-7
Bit Values
 Control Lines, 3-11
BOTH
 Protocol, 3-9, 3-15
BREAK, 3-10
Buffers, 3-9

C
Cables, 2-2, 3-15
CLRIN/CLROUT, 3-10
Command Summary, 3-5
Commands
 Common, A-1
 Configuration, A-1
 Multi任务ing, A-2
 Programming, A-1
Common Commands, A-1
 ID?, 3-5
 RST, 3-5
 TEST, 3-5
 USE, 3-5
Communication Link, 3-2, 3-15
Configuration Commands, A-1
 DTR, 3-6
 ENABLE/DISABLE XMIT, 3-6
 ENABLE/DISABLE RCVR, 3-6
 INBUF, 3-6
 INTR, 3-7
 MODE, 3-7
 NPER, 3-8
 OUTBUF, 3-8
 PROTOCOL, 3-9
 RTS, 3-9
 STORE CONF, 3-10
 THRESH, 3-10
Connectors, 2-2
CTRL
 Protocol, 3-9

D
Data Flow Control Diagrams, 3-13
Datacomm Interface, 2-7
DCL BREAK, 3-10
Default Values, 3-1-3-2
DEST IS, 3-10
DTR, 3-6

E
EEPROM, 2-4
ENABLE/DISABLE DCL BREAK, 3-10
ENABLE/DISABLE INTR, 3-10
ENABLE/DISABLE RCVR, 3-6
ENABLE/DISABLE SRO BREAK, 3-10
ENABLE/DISABLE XMIT, 3-6
ENTER, 3-11

F
Features, 1-3

H
Handshaking, 3-13
HARDWARE
 Protocol, 3-14
HP 3852 Multi-tasking Commands, 3-13
HP 3852 Programming Command, 3-13
HP 44789A
 Programming, 3-1
 Test Program, 2-5
HP 9000 Series 200/300 Built-in Serial Port, 2-5
HP 9000 Series 200/300 Computers, 3-4
HP 9000 Series 200/300 HP 98628A Datacomm
 Interface, 2-7
HP Vectra PC, 3-3
HP Vectra PC PC/XT/AT Program, 2-5

I
ID?, 3-5
INBUF, 3-6
Installation, 2-1
Interrupts, 3-11
INTR, 3-7, 3-11
HEADQUARTERS OFFICES
If there is no sales office listed for your area, contact one of these headquarters offices.

NORTH/CENTRAL AFRICA
Heiwett-Packard S.A.
7, rue de Bos-du-Lain
Ch-1217 MEYRIEUX, Switzerland
Tel: (022) 65 15 12
Telex: 27325 hmea
Cable: HEWPACKSA Geneve

EASTERN EUROPE
Heiwett-Packard Gas m.b.H.
Leibisgrasse 1
P.O. Box 72
A-1222 VIENNA, Austria
Tel: (222) 2500-0
Telex: 1 3 4425 HEPA A

NORTHERN EUROPE
Heiwett-Packard S.A.
V.D. Hoogplassen 241
P.O. Box 299
NL-1182 AG AMSTELVEEN
The Netherlands
Tel: 20 547899
Telex: 18 919 hper

SOUTH EAST EUROPE
Heiwett-Packard S.A.
World Trade Center
115 Avenue Louise, Brussels
1215 Courtine, GENEVA, Switzerland
Tel: (022) 93 95 51
Telex: 37225 1ysper

EASTERN USA
Heiwett-Packard Co.
4 Choke Cherry Road
ROCKVILLE, MD 20850
Tel: (301) 946-5272

MEDITERRANEAN AND MIDDLE EAST
Heiwett-Packard S.A.
Mediterranean and Middle East Operations
Atina Centre
32 Kilisia Ave.
Peristeria-Armenous, ATHENS Greece
Tel: 922 86 11
Telex: 21-6358 HPAT GR
Cable: HEWPACKSA Athens

OTHER INTERNATIONAL AREAS
Heiwett-Packard Co.
Intercontinental Headquarters
3495 Deer Creek Road
PALO ALTO, CA 94304
Tel: (415) 857-1531
Telex: 034-8300
Cable: HEWPACK

ARGENTINA
Heiwett-Packard Argentina S.A.
Montevideo 2140/50
1425 BUENOS AIRES
Tel: 781-4050/92
Cable: HEWPACKARG

AUSTRALIA
Heiwett-Packard Australia Ltd.
31-41 Joseph Street
P.O. Box 221
BLACKBURN, Victoria 3130
Tel: 695-2865
Telex: 31-024
Cable: HEWPARO Melbourne
Heiwett-Packard Australia Ltd.
17-23 Talbot Road
P.O. Box 308
NORTH RYDE, NSW 2113
Tel: 888-4444
Telex: 21566
Cable: HEWPARO Sydney

AUSTRIA
Heiwett-Packard Ges.m.b.h
Leibisgrasse 1
P.O. Box 72
A-1222 VIENNA
Tel: (0222) 2500-0
Telex: 134425 HEPA A

BELGIUM
Heiwett-Packard Belgium S.A./N.V.
Bld de la Woluwe, 100
Woluwe-Saint-Lambert
B-1200 BRUSSELS
Tel: (02) 762-32-00
Telex: 23-494 palbon bru

BRAZIL
Heiwett-Packard do Brasil e C. Ltda.
Alameda Rio Negro, 750
ALPHAVILLE
54000 Barueri SP
Tel: (011) 421-1211
Telex: 011 33872 HPBR-9R
Cable: HEWPACK Sao Paulo

CANADA
Heiwett-Packard (Canada) Ltd.
11120-178th Street
EDMONTON, Alberta T5J 1P2
Tel: (403) 486-8866
Heiwett-Packard (Canada) Ltd.
17500 Trans Canada Highway
South Service Road
KIRKLAND, Quebec H9J 2K6
Tel: (514) 957-4222
Telex: 058-12512
Heiwett-Packard (Canada) Ltd.
6877 Goreway Drive
MISSISSAUGA, Ontario L4V 1M5
Tel: (416) 879-5450
Telex: 059-8644
Heiwett-Packard (Canada) Ltd.
2670 Queenston Dr.
OTTAWA, Ontario K2B 8K1
Tel: (613) 920-6483

CHINA, PEOPLE’S REPUBLIC
China Hewlett-Packard Co., Ltd.
P.O. Box 9810, Beijing, Shuang Shu Shou, Bei San Huan Road
Hai Dian District
BEIJING
Tel: 26-2567
Telex: 226010 CTSPH CN
Cable: 1920 Beijing

DENMARK
Heiwett-Packard A/S
Kongensvej 25
DK-3400 KERKEROD
Tel: (20) 81-66-40
Telex: 37499 inpa ok

FINLAND
Heiwett-Packard Oy
Pirkanmalontie 17
22020 ESPOO
Tel: 00358-8-6821
Telex: 121863 HEWPA SF

FRANCE
Heiwett-Packard France
Chemini de Moulins
80131 ECOLCY Cedex (Lyons)
Tel: (78) 33-21-25
Telex: 3106177

GERMANY
Heiwett-Packard GmbH
Parc d’activite du Bois Briard
Avenue du Lac
91484 ENY Cedex
Tel: (98) 77-83-33
Telex: 629152F
Heiwett-Packard France
Zone industrielle de Courtatououl
Avenues des Trigolines
91487 LEUSIL Cedex (Orsay)
Tel: (0) 07-78-25
Telex: 60004GF

HONG KONG
Heiwett-Packard Hong Kong, Ltd.
P.O. Box 975
5th Floor, Sun Hung Kai Centre
30 Harbour Road
HONG KONG
Tel: 5-322211
Telex: 66675 HEWPA HK
Cable: HEWPACK HONG KONG

ICELAND
Heiwett-Packard Iceland
Hverfisgata 8
110 REYKJAVIK
Tel: (1) 671 1000

INDIA
Blue Star Ltd.
13 Community Center
New Friends Colony
NEW DELHI 110 065
Tel: 632143, 630674
Telex: 031-12125
Cable: BLUEFOGST

INDONESIA
BERCA Indonesia P T
P.O. Box 24677
Antara Bldg., 16th Floor
Jl. Medan Merdeka Selat 17
JAKARTA-PUSAT
Tel: 34356
Telex: 46744 BERSAL IA

IRELAND
Heiwett-Packard Ireland Ltd.
82/83 Lower Lczną Street
DUBLIN 2
Tel: 001 608800
Telex: 30435

ISRAEL
Computation and Measurement Systems (CMS) Ltd.
11 Masacc Street
67050
TEL-AVIV
Tel: 388 288
Telex: 33559 MORT IL

ITALY
Heiwett-Packard Italiana S.p.A.
Via G. di Vittorio 9
1-20053 CUSECCO SUL NAVALIGIO
(Milan)
Tel: (02) 935931
Telex: 33462

JAPAN
Yokogawa-Heiwett-Packard Ltd.
Chuo Bldg.
4-20 Nishinakajima, 5 Chome
Yokohama-ku
OSAKA, 552
Tel: (06) 204-5021
Telex: HYPOSA 523-3624

GREECE
Heiwett-Packard A.E.
176, Kifissia Avenue
Athens, Greece
Tel: 647-1543, 647-1673, 647-2197
Telex: 059-8644
Cable: HEWPACK Greece

JAPAN
Yokogawa-Heiwett-Packard Ltd.
Chuo Bldg.
4-20 Nishinakajima, 5 Chome
Yokohama-ku
OSAKA, 552
Tel: (06) 204-5021
Telex: HYPOSA 523-3624

SPAIN
Heiwett-Packard S.A.
Calle C. Vives 4
Barcelona
Tel: 26-1710
Telex: 22681 HECAT SP
Cable: HEWPACK SPAIN

SWITZERLAND
Heiwett-Packard S.A.
7, rue de Bos-du-Lain
Ch-1217 MEYRIEUX, Switzerland
Tel: (022) 65 15 12
Telex: 27325 hmea
Cable: HEWPACKSA Geneve

UNITED STATES
Heiwett-Packard Co.
4 Choke Cherry Road
ROCKVILLE, MD 20850
Tel: (301) 946-5272

UNITED KINGDOM
Heiwett-Packard Ltd.
28-21 Takadoki-Higashi, 3 Chome
Sugimoto-ku
TOYOTA 186
Tel: (02) 331-5111
Telex: 330-2024 YHP7OK
Yokogawa-Heiwett-Packard Ltd.
Yasuda Sawa Higashi Bldg.
34-3 Tsunaya-cho, 3 Chome
Katagawa-ku
YOKOHAMA 221
Tel: (045) 312-1252