User Manual

Tektronix

VM700T Video Measurement Set
Option 01 NTSC Measurements

070-9648-00
Table of Contents

Preface ... ix

Getting Started

Measure Mode

- Bar LineTime ... 2–3
- Bar LineTime Menu 2–4
- Bounce ... 2–9
- Bounce Menu .. 2–11
- Typical Measurement Results 2–15
- Burst Frequency 2–16
- Burst Frequency Menu 2–17
- Setting the Reference Burst Frequency 2–18
- ChromLum GainDelay 2–19
- ChromLum GainDelay Menu 2–20
- Chrominance AMPM 2–24
- Chrominance AMPM Menu 2–25
- Chrominance FreqResp 2–29
- Chrominance FreqResp Menu 2–30
- Chrominance NonLinearity 2–35
- Chrominance NonLinearity Menu 2–36
- ColorBar ... 2–40
- ColorBar Menu .. 2–41
- Predefined ColorBar References 2–41
- DGDG (Differential Gain Differential Phase) 2–46
- DGDG Display .. 2–46
- DGDG Menu ... 2–47
- GroupDelay SinX_X 2–51
- GroupDelay SinX_X Menu 2–53
- H_Blank ... 2–59
- H_Blank Display 2–59
- H_Blank Menu .. 2–60
- H_Timing ... 2–61
- H_Timing Menu .. 2–61
- ICPM (Incidental Carrier Phase Modulation) 2–63
- ICPM Display .. 2–63
- ICPM Menu .. 2–65
- Jitter ... 2–69
- Jitter Menu ... 2–70
- Jitter Long_Time 2–71
- Jitter Long_Time Menu 2–72
- K_Factor ... 2–74
Table of Contents

K_Factor Menu .. 2–75
Defining Your Own Graticule 2–81
Level Meter ... 2–83
 Level Meter Display ... 2–83
 Level Meter Main Menu 2–84
 Setting Up a New Measurement Window 2–93
Line Frequency .. 2–94
 Line Frequency Menu .. 2–94
Luminance NonLinearity 2–96
 Luminance NonLinearity Menu 2–97
MultiBurst ... 2–101
 MultiBurst Menu ... 2–102
Noise Spectrum .. 2–107
 Noise Spectrum Menu .. 2–107
SCH_Phase ... 2–113
 SCH Phase Measurement 2–114
 Dual SCH Phase Measurements 2–114
 SCH Phase Menu .. 2–115
ShortTime Distortion .. 2–119
 ShortTime Distortion Main Menu 2–120
 Defining Your Own Graticule 2–124
TwoField .. 2–126
 TwoField Menu .. 2–127
VITS_ID ... 2–131
 VITS ID Menu ... 2–132
V_Blank .. 2–133
 V_Blank Menu .. 2–135
Video Standard .. 2–136

Auto Mode

Input Signals .. 3–1
Test Signal Locations .. 3–1
Measurement Methods ... 3–2
 APL ... 3–2
 Peak Carrier and Zero Carrier Pulse 3–2
 Bar Amplitude, Blanking Level, Bar Top, and Sync Amplitude 3–2
 Blanking Variation and Sync Variation 3–3
 Burst Amplitude ... 3–4
 FCC Horizontal Blanking Interval Timing Measurements 3–4
 RS-170A Horizontal Blanking Interval Timing Measurements 3–5
 V Blank 4 IRE F1 and V Blank 4 IRE F2 3–6
 V Blank 20 IRE F1 and V Blank 20 IRE F2 3–7
 FCC Equalizer and FCC Serration 3–7
 RS-170A Equalizer and RS-170A Serration 3–8

VM700T Video Measurement Set Option 01 NTSC Measurements
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2–1</td>
<td>Bar LineTime display</td>
<td>2–3</td>
</tr>
<tr>
<td>2–2</td>
<td>Bar LineTime menu tree</td>
<td>2–5</td>
</tr>
<tr>
<td>2–3</td>
<td>Bar LineTime Special Position display</td>
<td>2–7</td>
</tr>
<tr>
<td>2–4</td>
<td>Bounce Measurement display</td>
<td>2–9</td>
</tr>
<tr>
<td>2–5</td>
<td>Bounce menu tree</td>
<td>2–11</td>
</tr>
<tr>
<td>2–6</td>
<td>Burst Frequency display</td>
<td>2–16</td>
</tr>
<tr>
<td>2–7</td>
<td>Burst Frequency menu tree</td>
<td>2–17</td>
</tr>
<tr>
<td>2–8</td>
<td>ChromLum GainDelay display</td>
<td>2–19</td>
</tr>
<tr>
<td>2–9</td>
<td>ChromLum GainDelay menu tree</td>
<td>2–20</td>
</tr>
<tr>
<td>2–10</td>
<td>ChromLum GainDelay Special Position display</td>
<td>2–22</td>
</tr>
<tr>
<td>2–11</td>
<td>Chrominance AMPM display</td>
<td>2–24</td>
</tr>
<tr>
<td>2–12</td>
<td>Chrominance AMPM menu tree</td>
<td>2–26</td>
</tr>
<tr>
<td>2–13</td>
<td>Chrominance FreqResp display</td>
<td>2–29</td>
</tr>
<tr>
<td>2–14</td>
<td>Chrominance FreqResp menu tree</td>
<td>2–30</td>
</tr>
<tr>
<td>2–15</td>
<td>Chrominance FreqResp Special Position display</td>
<td>2–34</td>
</tr>
<tr>
<td>2–16</td>
<td>Chrominance NonLinearity</td>
<td>2–35</td>
</tr>
<tr>
<td>2–17</td>
<td>Chrominance NonLinearity menu tree</td>
<td>2–36</td>
</tr>
<tr>
<td>2–18</td>
<td>Chrominance NonLinearity Special Position display</td>
<td>2–38</td>
</tr>
<tr>
<td>2–19</td>
<td>ColorBar display</td>
<td>2–40</td>
</tr>
<tr>
<td>2–20</td>
<td>ColorBar menu tree</td>
<td>2–42</td>
</tr>
<tr>
<td>2–21</td>
<td>ColorBar Special Position display</td>
<td>2–45</td>
</tr>
<tr>
<td>2–22</td>
<td>DGDP display</td>
<td>2–46</td>
</tr>
<tr>
<td>2–23</td>
<td>DGDP menu tree</td>
<td>2–47</td>
</tr>
<tr>
<td>2–24</td>
<td>DGDP Special Position display</td>
<td>2–49</td>
</tr>
<tr>
<td>2–25</td>
<td>GroupDelay SinX_X Combined Pulse response display</td>
<td>2–51</td>
</tr>
<tr>
<td>2–26</td>
<td>GroupDelay SinX_X BothPulse response display</td>
<td>2–52</td>
</tr>
<tr>
<td>2–27</td>
<td>GroupDelay SinX_X menu tree</td>
<td>2–53</td>
</tr>
<tr>
<td>2–28</td>
<td>GroupDelay SinX_X Special Position display</td>
<td>2–57</td>
</tr>
<tr>
<td>2–29</td>
<td>H_Blank display</td>
<td>2–59</td>
</tr>
<tr>
<td>2–30</td>
<td>H_Blank menu tree</td>
<td>2–60</td>
</tr>
<tr>
<td>2–31</td>
<td>H_Timing display</td>
<td>2–61</td>
</tr>
<tr>
<td>2–32</td>
<td>H_Timing menu tree</td>
<td>2–61</td>
</tr>
<tr>
<td>2–33</td>
<td>ICPM display; no ICPM errors present</td>
<td>2–64</td>
</tr>
<tr>
<td>2–34</td>
<td>ICPM display; large ICPM error present</td>
<td>2–65</td>
</tr>
<tr>
<td>2–35</td>
<td>ICPM menu tree</td>
<td>2–66</td>
</tr>
<tr>
<td>2–36</td>
<td>Jitter display</td>
<td>2–69</td>
</tr>
<tr>
<td>2–37</td>
<td>Jitter menu tree</td>
<td>2–70</td>
</tr>
<tr>
<td>2–38</td>
<td>Jitter Long_Time spectrum display</td>
<td>2–71</td>
</tr>
<tr>
<td>2–39</td>
<td>Jitter Long_Time waveform display</td>
<td>2–72</td>
</tr>
<tr>
<td>2–40</td>
<td>Jitter Long_Time menu tree</td>
<td>2–72</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>2–41</td>
<td>K-Factor display with top level menu</td>
<td>2–74</td>
</tr>
<tr>
<td>2–42</td>
<td>K_Factor menu tree</td>
<td>2–75</td>
</tr>
<tr>
<td>2–43</td>
<td>K_Factor measurement right reference clamped</td>
<td>2–77</td>
</tr>
<tr>
<td>2–44</td>
<td>K-Factor Special Position display</td>
<td>2–80</td>
</tr>
<tr>
<td>2–45</td>
<td>Make Graticule display with lower graticule selected</td>
<td>2–81</td>
</tr>
<tr>
<td>2–46</td>
<td>Level Meter display</td>
<td>2–83</td>
</tr>
<tr>
<td>2–47</td>
<td>Level Meter menu tree</td>
<td>2–85</td>
</tr>
<tr>
<td>2–48</td>
<td>Display Limits menu showing undefined measurement points</td>
<td>2–86</td>
</tr>
<tr>
<td>2–49</td>
<td>Measure Position display to locate the measurement points on a signal</td>
<td>2–87</td>
</tr>
<tr>
<td>2–50</td>
<td>Display Position with measurement referenced to 100 IRE as 100%</td>
<td>2–91</td>
</tr>
<tr>
<td>2–51</td>
<td>Level Meter display as a result of the setup shown in Figure 2–50.</td>
<td>2–92</td>
</tr>
<tr>
<td>2–52</td>
<td>Line Frequency display</td>
<td>2–94</td>
</tr>
<tr>
<td>2–53</td>
<td>Line Frequency menu tree</td>
<td>2–94</td>
</tr>
<tr>
<td>2–54</td>
<td>Luminance NonLinearity display</td>
<td>2–96</td>
</tr>
<tr>
<td>2–55</td>
<td>Luminance NonLinearity menu tree</td>
<td>2–97</td>
</tr>
<tr>
<td>2–56</td>
<td>Luminance NonLinearity Special Position display</td>
<td>2–99</td>
</tr>
<tr>
<td>2–57</td>
<td>MultiBurst display</td>
<td>2–101</td>
</tr>
<tr>
<td>2–58</td>
<td>MultiBurst menu tree</td>
<td>2–102</td>
</tr>
<tr>
<td>2–59</td>
<td>MultiBurst Special Position display</td>
<td>2–105</td>
</tr>
<tr>
<td>2–60</td>
<td>Noise Spectrum display</td>
<td>2–107</td>
</tr>
<tr>
<td>2–61</td>
<td>Noise Spectrum menu tree</td>
<td>2–108</td>
</tr>
<tr>
<td>2–62</td>
<td>Noise Spectrum Input Gate display</td>
<td>2–111</td>
</tr>
<tr>
<td>2–63</td>
<td>Timing relationships for SCH_Phase measurements and Sync Relative Timing and Burst Relative Phase measurements</td>
<td>2–113</td>
</tr>
<tr>
<td>2–64</td>
<td>SCH_Phase display</td>
<td>2–114</td>
</tr>
<tr>
<td>2–65</td>
<td>Dual SCH display with Burst Relative Phase and Sync Relative Timing bar graphs</td>
<td>2–115</td>
</tr>
<tr>
<td>2–66</td>
<td>SCH_Phase menu tree</td>
<td>2–116</td>
</tr>
<tr>
<td>2–67</td>
<td>SCH_Phase full-field display</td>
<td>2–117</td>
</tr>
<tr>
<td>2–68</td>
<td>Rescaled SCH_Phase full-field display</td>
<td>2–118</td>
</tr>
<tr>
<td>2–69</td>
<td>ShortTime Distortion display</td>
<td>2–119</td>
</tr>
<tr>
<td>2–70</td>
<td>ShortTime Distortion menu tree</td>
<td>2–121</td>
</tr>
<tr>
<td>2–71</td>
<td>ShortTime Distortion Special Position display</td>
<td>2–123</td>
</tr>
<tr>
<td>2–72</td>
<td>Make Graticule display with inner graticule selected</td>
<td>2–125</td>
</tr>
<tr>
<td>2–73</td>
<td>TwoField display</td>
<td>2–126</td>
</tr>
<tr>
<td>2–74</td>
<td>TwoField menu tree</td>
<td>2–127</td>
</tr>
<tr>
<td>2–75</td>
<td>TwoField Special Position display</td>
<td>2–129</td>
</tr>
<tr>
<td>2–76</td>
<td>VITS_ID signal ID display</td>
<td>2–131</td>
</tr>
<tr>
<td>2–77</td>
<td>VITS ID full VITS waveform display</td>
<td>2–132</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>2–78</td>
<td>VITS ID menu tree</td>
<td>2–132</td>
</tr>
<tr>
<td>2–79</td>
<td>V_Blank full display</td>
<td>2–133</td>
</tr>
<tr>
<td>2–80</td>
<td>V_Blank equalizer pulse display</td>
<td>2–134</td>
</tr>
<tr>
<td>2–81</td>
<td>V_Blank serration pulse display</td>
<td>2–134</td>
</tr>
<tr>
<td>2–82</td>
<td>V_Blank V-sync display</td>
<td>2–135</td>
</tr>
<tr>
<td>2–83</td>
<td>V_Blank menu tree</td>
<td>2–135</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2–1:</td>
<td>Measure Mode Measurements</td>
<td>2–1</td>
</tr>
<tr>
<td>Table 2–2:</td>
<td>Predefined Color Bar Reference Values</td>
<td>2–41</td>
</tr>
<tr>
<td>Table 3–1:</td>
<td>Measurement Locations file defaults</td>
<td>3–1</td>
</tr>
<tr>
<td>Table A-1:</td>
<td>Bar Line Time</td>
<td>A-1</td>
</tr>
<tr>
<td>Table A-2:</td>
<td>Bounce</td>
<td>A-2</td>
</tr>
<tr>
<td>Table A-3:</td>
<td>Burst Frequency</td>
<td>A-2</td>
</tr>
<tr>
<td>Table A-4:</td>
<td>Chrominance-to-Luminance Gain and Delay</td>
<td>A-2</td>
</tr>
<tr>
<td>Table A-5:</td>
<td>Chrominance Frequency Response</td>
<td>A-2</td>
</tr>
<tr>
<td>Table A-6:</td>
<td>Chrominance Noise</td>
<td>A-2</td>
</tr>
<tr>
<td>Table A-7:</td>
<td>Chrominance Non-Linearity</td>
<td>A-3</td>
</tr>
<tr>
<td>Table A-8:</td>
<td>Color Bar</td>
<td>A-3</td>
</tr>
<tr>
<td>Table A-9:</td>
<td>SMPTE Color Bar Nominal Values</td>
<td>A-3</td>
</tr>
<tr>
<td>Table A-10:</td>
<td>Differential Gain and Phase</td>
<td>A-3</td>
</tr>
<tr>
<td>Table A-11:</td>
<td>Frequency Response and Group Delay</td>
<td>A-3</td>
</tr>
<tr>
<td>Table A-12:</td>
<td>Horizontal Blanking</td>
<td>A-4</td>
</tr>
<tr>
<td>Table A-13:</td>
<td>Horizontal Timing</td>
<td>A-4</td>
</tr>
<tr>
<td>Table A-14:</td>
<td>Incidental Carrier Phase Modulation</td>
<td>A-4</td>
</tr>
<tr>
<td>Table A-15:</td>
<td>Jitter</td>
<td>A-4</td>
</tr>
<tr>
<td>Table A-16:</td>
<td>K-Factor</td>
<td>A-5</td>
</tr>
<tr>
<td>Table A-17:</td>
<td>Level Meter</td>
<td>A-5</td>
</tr>
<tr>
<td>Table A-18:</td>
<td>Line Frequency</td>
<td>A-5</td>
</tr>
<tr>
<td>Table A-19:</td>
<td>Luminance Non-Linearity</td>
<td>A-5</td>
</tr>
<tr>
<td>Table A-20:</td>
<td>Multiburst</td>
<td>A-5</td>
</tr>
<tr>
<td>Table A-21:</td>
<td>Noise Spectrum</td>
<td>A-5</td>
</tr>
<tr>
<td>Table A-22:</td>
<td>SCH Phase</td>
<td>A-6</td>
</tr>
<tr>
<td>Table A-23:</td>
<td>Short Time Distortion</td>
<td>A-6</td>
</tr>
<tr>
<td>Table A-24:</td>
<td>TwoField</td>
<td>A-6</td>
</tr>
<tr>
<td>Table A-25:</td>
<td>VITS ID</td>
<td>A-6</td>
</tr>
<tr>
<td>Table A-26:</td>
<td>Vertical Blanking</td>
<td>A-6</td>
</tr>
<tr>
<td>Table A-27:</td>
<td>RS-170A Horizontal Blanking Interval Timing</td>
<td>A-7</td>
</tr>
<tr>
<td>Table A-28:</td>
<td>RS-170A Vertical Blanking Interval</td>
<td>A-7</td>
</tr>
<tr>
<td>Table A-29:</td>
<td>FCC Horizontal Blanking Interval Timing</td>
<td>A-7</td>
</tr>
<tr>
<td>Table A-30:</td>
<td>FCC Vertical Blanking Interval Timing</td>
<td>A-8</td>
</tr>
<tr>
<td>Table A-31:</td>
<td>Amplitude and Phase Measurements</td>
<td>A-8</td>
</tr>
<tr>
<td>Table A-32:</td>
<td>Frequency Response Measurements</td>
<td>A-9</td>
</tr>
<tr>
<td>Table A-33:</td>
<td>Incidental Carrier Phase Modulation</td>
<td>A-9</td>
</tr>
<tr>
<td>Table A-34:</td>
<td>Color Bar Measurements</td>
<td>A-9</td>
</tr>
<tr>
<td>Table A-35:</td>
<td>Out-of-Service Measurements</td>
<td>A-9</td>
</tr>
<tr>
<td>Table A-36:</td>
<td>Waveform Distortion Measurements</td>
<td>A-9</td>
</tr>
<tr>
<td>Table A-37:</td>
<td>VIRS Measurements</td>
<td>A-10</td>
</tr>
<tr>
<td>Table A-38:</td>
<td>Signal-to-Noise Ratio Measurements</td>
<td>A-10</td>
</tr>
</tbody>
</table>
Preface

The VM700T Video Measurement Set Option 01 (NTSC Measurements) gives you access to the complete set of measurements available for NTSC standard video signals.

The manual contents are arranged in the following order:

Getting Started provides a brief overview of Measure mode and Auto mode measurement operation. Refer to the *VM700T Option 01 & Option 11 User Manual* for more complete operating instructions for the VM700T Video Measurement Set.

Measure Mode provides the detailed operation of each of the Measure mode measurements in alphabetical order of the measurement's name.

Auto Mode provides a description of the Auto mode measurements and details the analysis methods for each Auto mode measurement that the VM700T Video Measurement Set is capable of making.

Appendix A: NTSC Measurement Specifications provides tables giving the measurement accuracy and range of the Measure mode and Auto mode measurements.
Getting Started

The VM700T Option 01 (NTSC) gives you access to a large variety of interactive (Measure mode) and automatic (Auto mode) measurements.

Measure mode measurements are user-selectable, interactive, graphical applications that make measurements on video signals. The Measure Mode section of this manual, describes each Measure mode measurement.

Pressing the Measure button on the VM700T front panel displays the names of available measurement groups: VM700 Diagnostics, Video Measurements, Video Options, and Audio Options (if options are available). When one of the measurement groups has been selected, the available measurements in that group are displayed.

Rotating the control knob scrolls the Measure mode display to show more measurements.

Touching the name of a measurement in the Measure mode display begins execution of that measurement.

Pressing any major mode button (for example, Waveform, Vector, Picture, Measure, or Auto) when a measurement runs ends that measurement and returns to the appropriate major mode display.

Auto mode measurements are measurements taken when the VM700T is in Auto mode, wherein it continuously repeats a set of user-selectable measurements and reports when a measurement falls outside user-defined limits. Auto mode is usually used to monitor video signals and alert someone when one or more parameters drifts out of predefined limits. The Auto Mode section describes each Auto mode measurement.

Pressing the Auto button on the VM700T front panel displays Auto mode, shows the Auto mode measurements that will be performed continuously until the VM700T is taken out of Auto mode.

Pressing any major mode button (for example, Waveform, Vector, Picture, Measure, or Auto) while a measurement is running ends that measurement and returns to the appropriate major mode display.

The VM700T may be programmed for remote operation. See the VM700T RS-232 Interface Programmer Manual for information on programming and operating the VM700T remotely.
Measure Mode
Measure Mode

Measure mode of the VM700T Video Measurement Set Option 01 gives you a large selection of interactive, graphical measurements for NTSC video signals. Available Measure mode measurements and the signal qualities they measure include those shown in Table 2–1.

<table>
<thead>
<tr>
<th>Measurements</th>
<th>Measured Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timing Measurements</td>
<td></td>
</tr>
<tr>
<td>Burst Frequency</td>
<td>Color Burst subcarrier frequency error</td>
</tr>
<tr>
<td>H_Blank</td>
<td>Horizontal blanking over field</td>
</tr>
<tr>
<td>H_Timing</td>
<td>All horizontal timing parameters</td>
</tr>
<tr>
<td>Jitter</td>
<td>H Sync jitter within a frame</td>
</tr>
<tr>
<td>Jitter Long_Time</td>
<td>Frame jitter</td>
</tr>
<tr>
<td>Line Frequency</td>
<td>Line frequency error</td>
</tr>
<tr>
<td>SCH_Phase</td>
<td>SubCarrier-to-Horizontal (SCH) Phase</td>
</tr>
<tr>
<td>V_Blank</td>
<td>Vertical interval timing and pulse positions</td>
</tr>
<tr>
<td>NonLinear Distortion Measures</td>
<td></td>
</tr>
<tr>
<td>Chrominance NonLinearity</td>
<td>Chrominance nonlinear phase & gain</td>
</tr>
<tr>
<td>DGDP</td>
<td>Differential gain & phase</td>
</tr>
<tr>
<td>Luminance NonLinearity</td>
<td>Differential luminance</td>
</tr>
<tr>
<td>Linear Distortion Measurements</td>
<td></td>
</tr>
<tr>
<td>Bar LineTime</td>
<td>Bar and sync amplitudes and line time distortion</td>
</tr>
<tr>
<td>Bounce</td>
<td>Long time (low frequency) distortion</td>
</tr>
<tr>
<td>ChromLum GainDelay</td>
<td>Chrominance-to-luminance gain ratio and delay time</td>
</tr>
<tr>
<td>GroupDelay SinX_X</td>
<td>Frequency response, group delay (both with SinX/X signal)</td>
</tr>
<tr>
<td>K_Factor</td>
<td>Short Time Distortion (K2T pulse/bar ratio)</td>
</tr>
<tr>
<td>MultiBurst</td>
<td>Frequency response (with MultiBurst signal)</td>
</tr>
<tr>
<td>ShortTime Distortion</td>
<td>Distortion in reference-to-bar level and bar-to-reference transitions of a bar signal</td>
</tr>
<tr>
<td>TwoField</td>
<td>Field time distortion</td>
</tr>
</tbody>
</table>
Table 2-1: Measure Mode Measurements (Cont.)

<table>
<thead>
<tr>
<th>Measurements</th>
<th>Measured Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise Measurements</td>
<td></td>
</tr>
<tr>
<td>Chrominance AMPM</td>
<td>Chrominance noise (amplitude-modulated and phase-modulated components)</td>
</tr>
<tr>
<td>Noise Spectrum</td>
<td>Signal-to-noise ratio (various weighting filters available)</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td></td>
</tr>
<tr>
<td>ColorBar</td>
<td>From the color bar signal: luminance level, chrominance level, chrominance phase</td>
</tr>
<tr>
<td>ICPM</td>
<td>Incidental Carrier Phase Modulation</td>
</tr>
<tr>
<td>VITS ID</td>
<td>Identify signals in vertical interval</td>
</tr>
</tbody>
</table>
Bar LineTime

The Bar LineTime measurement measures bar and sync amplitudes, as well as line time distortion.

Figure 2–1 shows the Bar LineTime display. The display plots the bar signal level on the y-axis, and time on the x-axis. The default y-axis level labeled "100%" is determined from the difference between the bar top, or level of the bar signal at the center of the bar (than is the time halfway between the 50% rising edge and 50% falling edge times of the bar) and the black-level reference position of the signal. Both the bar top position and the black-level reference position can be adjusted using soft keys on the Special Position submenu of the Acquire soft key.

![Bar & LineTime Display Diagram]

Figure 2–1: Bar LineTime display

Numerical readouts provide measurement results in mV, %, and µsec, as appropriate. The readouts provided are as follows:

- Bar Level (ref. b1) gives the bar top amplitude relative to the Black Level Reference (b1) level.
Bar Level (ref. Back Porch) gives the bar top amplitude relative to the back porch.

Sync Level gives the sync tip amplitude relative to the back porch.

Sync to Bar Top is the Bar Level (ref. Back Porch) plus Sync Level value.

LineTime Dist. gives the percentage of maximum deviation from the bar level.

Bar Tilt (Rec. 569) gives the percentage of difference at the end points, which are measured 1 μs after the 50% level of the rising edge and 1 μs before the 50% level of the falling edge. A positive number means that the point near the falling edge is higher than the point near the rising edge.

Bar Width is the width in μsec of the bar from the 50% levels of the rising and falling edges.

The Bar LineTime measurement identifies FCC Composite, NTC-7 Composite, or 1410 TSG-5 type Pulse & Bar signals. The essential signal element for the Bar LineTime measurement is a bar signal.

The Bar LineTime measurement is made on the current system line. The System Default measurement location for the Bar LineTime measurement is field 1 of line 18.

The black-level reference and bar top positions can be changed by using the Reference and Bar Pos soft keys, respectively, in the Special Position submenu of the Acquire soft key.

Bar LineTime Menu

Pressing the Menu button when the Bar LineTime measurement runs displays the Bar LineTime menu (Figure 2–2).

Main Menu

Average Num. specifies the weighting factor to use for averaging. The Average Num range is 1 to 256. The default value is 32. To change the Average Num value, touch the Average Num soft key to highlight it, rotate the knob until the desired weighting factor appears, then touch the Average Num soft key again.
Reference displays a submenu that (1) stores the currently displayed values for use as a reference; or (2) displays previously stored reference values.

Relative to Ref displays a submenu of soft keys that selects the reference to use for comparison in the measurement. When a stored reference is selected, the currently measured value is compared to the stored reference value.

Main Menu

Reference Submenu

Relative to Reference Submenu

Acquire Submenu

Special Position Submenu

Figure 2-2: Bar LineTime menu tree
Acquire

Acquire displays the Acquire submenu that controls how the signal is acquired for the specific measurement.

VITS Search

VITS Search searches the insertion test signals for a signal appropriate for the measurement. If an appropriate signal is not located, the message Not found displays briefly on the display.

Rescale

Rescale sets the expansion factor of the display to an appropriate scaling factor for the Bar Line Time measurement display graticule. The x- and y-axes adjust to accommodate the rescaled display.

Reference Submenu

Store (n) Reference

Store (1) Reference/Store (2) Reference saves the current measurement values as (1) Reference and (2) Reference, respectively. Selecting Store (1) Reference or Store (2) Reference overwrites previous (1) Reference or (2) Reference values. References are stored in nonvolatile memory and are retained when the VM700T is powered down.

Show (n) Reference

Show (1) Reference/Show (2) Reference displays the current values of (1) Reference and (2) Reference, respectively, plus the date and time the reference was stored and the channel the reference signal was on. If no reference value has been stored, touching either soft key displays a message that the reference is not defined.

Relative to Reference Submenu

Use (n) Reference

Use (1) Reference/Use (2) Reference selects the stored reference to which measured values are compared. If no reference value has been stored, touching either soft key displays a message that the reference is not defined.

Acquire SubMenu

Special Position

Special Position displays the Special Position submenu and a waveform display (Figure 2–3) used to set the location on the waveform where the measurement is made.

Block Mode

Block Mode turns on Block mode. The block starts at the system line.
Block Lines 3

Block Lines sets the number of lines to average for the measurement. The default number of Block Lines to average is 3.

Block Step 2

Block Step sets the number of lines to step in the block. The default number of lines to step is 2.

Measurement Location for the Bar & LineTime Measurement
Field = 1 Line = 100

FCC Composite

Figure 2-3: Bar LineTime Special Position display

Special Position Submenu

Set Default

Set Default reassigns the default values to the Reference and Bar Position soft keys. To reassign the default value to one of the position soft keys, select that soft key before touching Set Default.

Ref. (b1)

Ref. (b1) sets the black level, or zero, measurement location. The default measurement location varies with the signal type (for example FCC and NTC-7).
Bar Top

Bar Top sets the measurement location of the bar level. The default measurement location is the halfway point between the 50% rising edge and the 50% falling edge times of the bar.

Exit

Exit leaves the Special Position submenu and displays the Bar Linetime display.
Bounce

Bounce measures settling time and peak deviation. In addition, bounce amplitude and deviation, sync amplitude and deviation, and difference in Blank level (measured at back porch) and sync amplitude between the high and low APL areas are measured separately. A trigger mode that permits averaging is provided in addition to the Continuous Roll mode display.

In the display (refer to Figure 2-4), there are three signal levels which are selectable (all three levels are selected in Default). From the top, the traces show the Bounce signal (measurement at center of the active area), the Blank level or the Back Porch level (measurement at the center of the Burst), and the Sync Tip level (the bottom trace).

![Bounce Display Diagram](image)

<table>
<thead>
<tr>
<th>Bounce (Trigger Mode) (NTSC)</th>
<th>Bounce, Sync & Back Porch are displayed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level (mV)</td>
<td></td>
</tr>
<tr>
<td>800.0</td>
<td></td>
</tr>
<tr>
<td>700.0</td>
<td></td>
</tr>
<tr>
<td>600.0</td>
<td></td>
</tr>
<tr>
<td>500.0</td>
<td></td>
</tr>
<tr>
<td>400.0</td>
<td></td>
</tr>
<tr>
<td>300.0</td>
<td></td>
</tr>
<tr>
<td>200.0</td>
<td></td>
</tr>
<tr>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>-100.0</td>
<td></td>
</tr>
<tr>
<td>-200.0</td>
<td></td>
</tr>
<tr>
<td>-300.0</td>
<td></td>
</tr>
<tr>
<td>-400.0</td>
<td></td>
</tr>
<tr>
<td>-500.0</td>
<td></td>
</tr>
<tr>
<td>-600.0</td>
<td></td>
</tr>
<tr>
<td>-700.0</td>
<td></td>
</tr>
</tbody>
</table>

(High APL) Settle to 1.0% in 0.9 sec. Dev. = 44.7% -0.2% 45.0% p-p
Sync Ampl. = 270.4 mV Dev. = 1.1% - 8.6% 9.7% p-p
Bounce Amp. = 577.1 mV Dev. = 0.6% -1.0% 1.6% p-p

(Low APL) Settle to 1.0% in 0.9 sec. Dev. = 54.2% -0.2% 54.4% p-p
Sync Ampl. = 292.1 mV Dev. = 0.8% -2.9% 3.7% p-p

(High, Low APL) Blank Lev Diff. = 0.8 % Sync Amp. Diff. = 7.7 %

Average Off Clamp off, DC coupled

Figure 2-4: Bounce Measurement display

The numerical readouts in the Bounce Measurement display are defined as follows:

- **(High APL) Settle to** gives the time (in seconds) that the signal (Blank level) takes to settle to the reference percentage in the High APL region.
- **Dev.** gives the % of deviation on the Blank level (Back Porch level) relative to the amplitude of the bounce signal in the High APL region.
- Sync Amp. gives the average of 16 sync amplitudes right before bounce transitions high to low.

- Dev. gives the % of deviation on the sync amplitude relative to the sync amplitude in the High APL region.

- Bounce Amp. gives the average of 16 bounce amplitudes right before bounce transitions high to low.

- Dev. gives the % of deviation on the bounce amplitude relative to the bounce amplitude in the High APL region.

- (Low APL) Settle to gives the time (in seconds) that the signal (Blank level) takes to settle to the reference percentage in the Low APL region.

- Dev. gives the % of deviation on the Blank level (Back Porch level) relative to the amplitude of the bounce signal in the Low APL region.

- Sync Amp. gives the average of 16 sync amplitudes right before bounce transitions from low to high.

- Dev. gives the % of deviation on the sync amplitude relative to the sync amplitude in the Low APL region.

- (High, Low APL) Blank Lvl Diff. gives the % of difference of Blank level (Back Porch level) between High and Low APL region relative to bounce amplitude.

- Sync Amp. Diff. gives the % of difference of sync amplitude between High and Low APL region relative to the average of both sync amplitude.

NOTE. Each deviation result has a max., a min., and a P-P value, in order, and max. is always positive and min. is always negative.
Bounce Menu

Pressing the Menu button when the Bounce measurement is running displays the Bounce menu (Figure 2–5).

Main Menu

- Average
 - Num ###
- Settle to 1.0%
- Display
- Acquire
- Cursors
- Rescale

Display Submenu

- Sync Tip
- BackPorch
- Bounce
- BackPorch Clamp
- Roll Mode

Acquire Submenu

- Sampling Speed
- Sync Source
 - Sync A
 - Sync B
 - Sync C
 - External Sync
 - Locked to Source
 - Twice Per Field
 - Every Field
 - Every Frame
 - Every 3 Fields
 - Every 4 Fields

Cursor Submenu

- Cursor On
- Cursor Relative
- Set 100%
- Cursor 1 Active
- Cursor 2 Active
- Cursor Track

Figure 2–5: Bounce menu tree
Measure Mode

Main Menu

Average Num ###
Average Num ### selects the number of averages to be taken for the measurement. The Average Num range is 1 to 256.

Settle to #.#
Settle to #.# permits setting the measurement reference. While this soft key is selected, turning the knob adjusts the settle % value between 0.1 and 9.9%. This threshold is used to measure how long the signal takes to settle within the assigned percentage value after a bounce (APL) transition. For accurate results, measured settling times must be much less than the bounce period.

Display
Display provides soft keys for selection of waveforms, such as sync tip, back porch or bounce signal in the active area.

Acquire
Acquire provides soft keys for acquisition sync source and sampling speed.

Cursors
Cursors provides soft keys to display and activate the cursors.

Rescale
Rescale restores the vertical display to its default scale.

Display SubMenu

Sync Tip
Sync Tip selects and deselects sync tip for the display.

BackPorch
BackPorch selects and deselects back porch for the display.

Bounce
Bounce selects and deselects Bounce waveform for the display.

BackPorch Clamp
BackPorch Clamp sets the clamp position at back porch for the display. The waveform for the measurement is not affected.

Roll Mode
Roll Mode selects continuous roll display mode. In Roll mode display, the application continues using the triggered mode waveform, so measurements are not affected.

Acquire SubMenu

Sampling Speed
Sampling Speed provides soft keys to select sampling speed. Selecting a new sampling speed from the displayed menu choices restarts the measurement.

Sync Source
Sync Source provides soft keys to set the sync source. Selecting a new sync source from the displayed menu choices restarts the measurement.
Sampling Speed Submenu

Twice Per Field

Twice Per Field sets the sample rate for Sync, Back Porch level, and Bounce level to twice per field.

In this sampling rate, the display may have double traces due to field time distortion. Although the measurement minimizes the effect in the first cycle that is used, there could be slightly different measurement results because of the distortion.

NOTE. The actual sampling line is line 40 and a half field later in NTSC and line 73 and a half field later in PAL. If the first line cannot detect a Bounce signal, the application will try to find it in the following line, up to 32 lines.

Every Field

Every Field sets the sampling rate for Sync, Back Porch level, and Bounce level to every field. This is the default sampling rate. Unless there is an application need to change the sample rate, it is suggested that this sampling rate be used. A lower sampling rate can produce aliasing, and a higher sampling rate can be affected by the field time distortion.

NOTE. The actual sampling line is line 132 in NTSC and line 160 in PAL. If the firmware can not detect the Bounce signal, it will try to find it in the following line (up to 32 lines).

Every Frame

Every Frame sets the sampling rate for Sync, Back Porch level, and Bounce level to every frame.

Every 3 Fields

Every 3 Fields sets the sampling rate for Sync, Back Porch level, and Bounce level to every 3 fields.

Every 4 Fields

Every 4 Fields sets the sampling rate for Sync, Back Porch level, and Bounce level to every 4 fields.

Sync Source SubMenu

Sync A

Sync A selects the A input for the sync source.

Sync B

Sync B selects the B input for the sync source.

Sync C

Sync C selects the C input for the sync source.
Measure Mode

<table>
<thead>
<tr>
<th>External Sync</th>
<th>External Sync selects the external input for the sync source.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locked to Source</td>
<td>Locked to Source selects the signal source for the sync source.</td>
</tr>
</tbody>
</table>

Cursor Submenu

<table>
<thead>
<tr>
<th>Cursor On</th>
<th>Cursor On displays cursors. Two horizontal cursors appear in the position they were in the last time the cursor was active.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cursor Relative</td>
<td>Cursor Relative displays the cursor delta as a percentage in relationship to the stored reference. When not selected, the cursor delta is displayed in IRE (NTSC) or mV (PAL) units.</td>
</tr>
<tr>
<td>Set 100%</td>
<td>Set 100% stores the current cursor position difference as the 100% reference with Cursor Relative active.</td>
</tr>
<tr>
<td>Cursor 1 Active</td>
<td>Cursor 1 Active displays cursors and permits the knob to position cursor 1.</td>
</tr>
<tr>
<td>Cursor 2 Active</td>
<td>Cursor 2 Active displays cursors and permits the knob to position cursor 2.</td>
</tr>
<tr>
<td>Cursor Track</td>
<td>Cursor Track displays cursors and permits the knob to position both cursors together (track).</td>
</tr>
</tbody>
</table>
Typical Measurement Results

See Figure 2-4 for the waveform display for Example 1.

Example

<table>
<thead>
<tr>
<th>Measurement Results</th>
<th>Channel A</th>
<th>Thu Jul 23 13:10:30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bounce</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Off</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* (High APL) *

- **Settling Time**: 0.4 sec
- **Blanking Dev. (+)**: 0.3 %
- **Blanking Dev. (−)**: −0.2 %
- **Blanking Dev. (P-P)**: 0.5 %
- **Sync Amplitude**: 270.5 mV
- **Sync Amp. Dev. (+)**: 1.1 %
- **Sync Amp. Dev. (−)**: −9.1 %
- **Sync Amp. Dev. (P-P)**: 10.1 %
- **Bounce Amplitude**: 679.1 mV
- **Bounce Amp. Dev. (+)**: 0.5 %
- **Bounce Amp. Dev. (−)**: −1.3 %
- **Bounce Amp. Dev. (P-P)**: 1.8 %

* (Low APL) *

- **Settling Time**: 0.5 sec
- **Blanking Dev. (+)**: 0.2 %
- **Blanking Dev. (−)**: −0.2 %
- **Blanking Dev. (P-P)**: 0.4 %
- **Sync Amplitude**: 291.8 mV
- **Sync Amp. Dev. (+)**: 0.7 %
- **Sync Amp. Dev. (−)**: −2.4 %
- **Sync Amp. Dev. (P-P)**: 3.1 %

* (High, Low APL) *

- **Blank Level Diff.**: 75.8 %
- **Sync Amp. Diff.**: 7.6 %
Burst Frequency

Burst Frequency measures the Color Burst (subcarrier) frequency. Figure 2–6 shows the Burst Frequency display. The display shows the difference between the currently measured Burst Frequency and a reference frequency. (In Figure 2–6, the Color Burst frequency of an incoming signal on Channel C was used as the reference.)

Burst Frequency (NTSC)

![Burst Frequency Error Diagram]

Burst Frequency Error 0.3 (Hz) Ref. Ch-C Burst

-15.0 -10.0 -5.0 0.0 5.0 10.0 15.0 Hz

Average 32 -> 32

Reference Internal Reference Ch B Reference Ch C

Figure 2–6: Burst Frequency display

You can use the Color Burst frequency of the signal currently on another channel as a reference frequency, or you can store a reference frequency by using the Reference Internal and Zero Set soft keys that appear as a submenu under the Reference soft key. (Refer to Setting the Reference Burst Frequency on page 2–18.)

If you use the color burst from another channel (or the internal frequency reference) as a reference frequency on a Dual-Standard VM700T, both signals should use the same standard (NTSC or PAL).
Burst Frequency Menu

Pressing the Menu button when the Burst Frequency measurement runs displays the Burst Frequency menu (Figure 2-7).

Main Menu

Average Num 32
Reference
Rescale

Reference Submenu

Reference Internal
Reference Ch. B
Reference Ch. C
Zero Set

Figure 2-7: Burst Frequency menu tree

Main Menu

Average Num

Average Num specifies the weighting factor to use for averaging. The Average Num range is 1 to 256. The default value is 32. To change the Average Num value, touch the Average Num soft key to highlight it, rotate the knob until the desired weighting factor appears, then touch the Average Num soft key again.

Reference

Reference displays the Reference submenu which selects the reference source for the burst frequency.

Rescale

Rescale sets the expansion factor of the display to an appropriate scaling factor for the Burst Frequency measurement display graticule. The x- and y-axes adjust to accommodate the rescaled display.

Reference Submenu

Reference Internal

Reference Internal sets the reference burst frequency to that of the internal crystal. A reference frequency stored with the Zero Set soft key is required for calibration.

Reference Ch. B

Reference Ch. B sets the burst frequency reference to Channel B.
Measure Mode

Reference Ch. C
Reference Ch. C sets the burst frequency reference to Channel C.

Zero Set
Zero Set stores the burst frequency of the current source as the reference.

Setting the Reference Burst Frequency
You can set the VM700T reference burst frequency when the Reference submenu displays.

- To use the burst frequency of a signal on another channel as a reference, touch the soft key corresponding to that channel.

- To store the Color Burst frequency of a signal on another channel for later use as a reference, press that channel's button on the front panel, then touch the Zero Set soft key. The Color Burst frequency of the designated signal becomes the internal reference, and remains so until the VM700T is powered down or until another reference signal is stored.

- To use the frequency of the VM700T internal crystal as a reference frequency without calibration, disconnect any signals from the current sync source, then touch the Zero Set soft key.

The VM700T displays “Zero Set,” followed by the date and time, followed by the message “No CAL.” The stored value becomes the internal reference, and remains so until the VM700T is powered down or until another reference signal is stored. (This method of measurement is not recommended, but may be accurate enough for some purposes.)
ChromLum GainDelay

ChromLum GainDelay measures the Chrominance-to-Luminance gain ratio and delay time.

The ChromLum GainDelay measurement screen provides a graphic display of chrominance-to-luminance gain and delay values. This measurement is normally made on a modulated 12.5T pulse. Figure 2–8 shows a VITS signal measured by ChromLum GainDelay.

![Diagram of ChromLum GainDelay measurement screen]

Figure 2–8: ChromLum GainDelay display

The rectangle in the center of the display represents the upper and lower limits of the Chroma Gain (%) and Chroma Delay (ns) measurements. The left and right sides of the box correspond to the lower and upper limits of the chrominance-to-luminance delay measurement (Chroma-Lum Delay (ns) in the active Measure_Limits file). The top and bottom of the box represent the upper and lower limits of the chrominance-to-luminance gain error measurement (Chroma-Lum Gain (%) in the active Measure_Limits file). The position of the + within the box indicates delay (in nanoseconds) along the horizontal scale and gain (in %, relative to luminance) on the vertical scale.
The ChromLum GainDelay measurement is made on the current system line. The System Default measurement locations file specifies that the ChromLum GainDelay measurement is made on field 1, line 18.

Pressing the Menu button when the ChromLum GainDelay measurement runs displays the ChromLum GainDelay menu (Figure 2–9).

Figure 2–9: ChromLum GainDelay menu tree
Main Menu

Average Num
Average Num specifies the weighting factor to use for averaging. The Average Num range is 1 to 256. The default value is 32. To change the Average Num value, touch the Average Num soft key to highlight it, rotate the knob until the desired weighting factor appears, then touch the Average Num soft key again.

Reference
Reference displays the Reference submenu which stores the currently displayed values for use as a reference or displays previously stored reference values.

Relative to Reference
Relative to Reference displays the Relative to Reference submenu where you can select the reference to use for comparison in the measurement. When a stored reference is selected, the currently measured value is compared to the stored reference value.

Acquire
Acquire displays the Acquire submenu that controls how the signal is acquired for the specific measurement.

VITS Search
VITS Search causes the VM700T to search the insertion test signals for a signal appropriate for the measurement. If an appropriate signal is not located, the message Not found displays briefly on the display.

Rescale
Rescale sets the expansion factor of the display to an appropriate scaling factor for the ChromLum GainDelay measurement display graticule. The x- and y-axes adjust to accommodate the rescaled display.

Reference Submenu

Store (n) Reference
Store (1) Reference/Store (2) Reference saves the current measurement values as (1) Reference and (2) Reference, respectively. Selecting Store (1) Reference or Store (2) Reference overwrites previous (1) Reference or (2) Reference values. References are stored in nonvolatile memory and are retained when the VM700T is powered down.

Show (n) Reference
Show (1) Reference/Show (2) Reference displays the current values of (1) Reference and (2) Reference, respectively, plus the date and time the reference was stored and the channel the reference signal was on. If no reference value has been stored, touching either soft key displays a message that the reference is not defined.
Relative to Reference Submenu

Use (n) Reference

Use (1) Reference/Use (2) Reference selects the stored reference to which measured values are compared. If no reference value has been stored, touching either soft key displays a message that the reference is not defined.

Acquire Submenu

Special Position

Special Position displays the Special Position submenu and a special waveform display used to set the location on the waveform where the measurement is made. Figure 2–10 shows the ChromLum GainDelay Special Position display and submenu.

Measurement Location for the Chrom/Lum Measurement
Field = 1 Line = 100
FCC Composite

Figure 2–10: ChromLum GainDelay Special Position display
Block Mode

Block Mode turns on Block mode. The block starts at the system line.

Block Lines

Block Lines sets the number of lines to average for the measurement. The default number of Block Lines to average is 3.

Block Step

Block Step sets the number of lines to step in the block. The default number of lines to step is 2.

Special Position Submenu

Set Default

Set Default reassigned the default value to the Pulse Position soft key.

Pulse Pos

Pulse Pos sets the measurement location of the pulse. The default pulse position is determined automatically by the type of signal being measured.

Exit

Exit leaves the Special Position submenu and displays the ChromLum GainDelay display.
Chrominance AMPM

Chrominance AMPM measures two types of chrominance noise: the amplitude-modulated (AM) noise component and the phase-modulated (PM) noise component of the chrominance channel as shown in Figure 2-11.

Video tape recorders (VTR) have separate chrominance and luminance channels. Most signal-to-noise measurements look only at noise in the luminance channel. Chrominance AMPM measures two types of chrominance noise: the amplitude-modulated (AM) noise component and the phase-modulated (PM) noise component of the chrominance channel. A software filter with a very sharp cut-off reduces intermodulation from the frequency-modulated fundamental of a VCR/VTR. This measurement can be made on a full field or single line of the Red Field test signal.

The default measurement bandwidth is 100 Hz to 500 kHz. High-pass 100 Hz, 10 kHz, and 100 kHz filters, as well as low-pass 100 kHz, 500 kHz, and 1.0 MHz filters are available by touching the Menu button and the Filters Selection soft key.

Chrominance AM PM (NTSC)
Full Field (Both Fields)
Band width 100Hz to 500kHz

AM Noise

\[-49.9 \text{ dB rms} \]

PM Noise

\[-49.8 \text{ dB rms} \]

(0 dB = 714 mV p-p with AGC for 100% Chrominance Level)

Average 31 -> 32

Figure 2-11: Chrominance AMPM display
When using a single line for the measurement, the 100 Hz high-pass filter becomes unavailable due to the lack of low-frequency components in a line.

When using Color Bursts for the measurement, 100 Hz high-pass and 1.0 MHz low-pass filters are automatically selected.

The values for Chrominance AM and PM are defined as follows:

\[
Chrominance \ AM = 20 \log \frac{AM \ noise_{\text{RSS}}}{V_{\text{refp-p}}}
\]

\[
Chrominance \ PM = 20 \log \frac{PM \ noise_{\text{RSS}}}{V_{\text{refp-p}}}
\]

where \(V_{\text{refp-p}}\) denotes the chrominance voltage corresponding to 100% amplitude of the non-composite video signal.

Touching the Chrominance AMPM soft key from the Measure mode directory window displays the Chrominance AMPM screen (Figure 2–11). The display has the following features:

- two graphic meter displays that show the measured values of AM and PM noise
- digital readouts of the measurements
- graphical indicators for the upper limit values for Chrominance AM and PM noise as specified in the current Measure_Limits file. The lines controlling these values in the Measure_Limit file are labeled Chrominance AM Noise (dB rms) and Chrominance PM Noise (dB rms), respectively, in the current Measure_Limits file.

Chrominance AMPM Menu

Pressing the Menu button when the Chrominance AMPM measurement runs displays the Chrominance AMPM menu (Figure 2–12).

Main Menu

| Average Num | Average Num specifies the weighting factor to use for averaging. The Average Num range is 1 to 256. The default value is 32. To change the Average Num value, touch the Average Num soft key to highlight it, rotate the knob until the desired weighting factor appears, then touch the Average Num soft key again. |
Main Menu

- Average
 - Num 32
- Reference Level
 - Reference Level
 - Acquire
 - Filters Selection
 - Rescale

Reference Level Submenu

- Reference Fixed
- Reference AGC
- AGC for Burst
- AGC for 100 % Chr
- AGC for Red Field
- AGC for 714.0 mv

Acquire Submenu

- Single Line
- Color Burst
- Field 1
- Field 2
- Both Fields

Filter Selection Submenu

- High Pass 100 Hz
- High Pass 10 kHz
- High Pass 100 KHz
- Low Pass 100 KHz
- Low Pass 500 KHz
- Low Pass 1.0 MHz

1 Displayed when Color Burst in Acquire submenu is selected.

2 Not visible when Color Burst in Acquire submenu is selected.

Figure 2–12: Chrominance AMPM menu tree

- Reference Level displays the Reference Level submenu which selects whether the measurement uses the chrominance signal amplitude as-measured, or compensates for degradation of chrominance signal amplitude (for example, by a VCR).

- Acquire displays the Acquire submenu used to select full field, burst, or single line acquisition, and to select field 1, field 2, or both fields.

- Filters Selection provides soft keys to select high-pass or low-pass filtering for the input signal.

- Rescale restores the display to its default scale, with meters reading from −60 dB to −20 dB.
Reference Level Submenu

Reference Fixed Reference Fixed measures chrominance noise using the chrominance signal amplitude as-measured.

Reference AGC Reference AGC measures chrominance noise while compensating for degradation of chrominance signal amplitude according to the AGC option selected.

AGC for Burst AGC for Burst is displayed when Reference AGC is selected and a color burst is being acquired. Touching this soft key compensates for chrominance signal amplitude degradation by an amount relative to the level of the Color Burst signal (286 mV peak-to-peak); the effective chrominance signal amplitude becomes 286 mV/measured chrominance signal amplitude.

AGC for 100% Chr AGC for 100% Chr is displayed when Reference AGC is selected and a single line is being acquired. Touching this soft key compensates for chrominance signal amplitude degradation by an amount relative to the level of the average measured chrominance level; the effective chrominance signal amplitude becomes 714 mV/measured chrominance signal amplitude.

AGC for Red Field AGC for Red Field is displayed when Reference AGC is selected and a single line is being acquired. Touching this soft key compensates for chrominance signal amplitude degradation by an amount relative to the level of the IEC 883 Red Field level (626 mV); the effective chrominance signal amplitude becomes 626 mV measured chrominance amplitude.

AGC for nnn mv AGC for nnn mv compensates for chrominance signal amplitude degradation by an amount relative to a user-specified value (which can be set with the knob); the effective chrominance signal amplitude becomes a user-specified value measured chrominance amplitude.

Acquire Submenu

Single Line Single Line specifies that the measurement is to be made on a single line. The 100 Hz high-pass filter is not available for this measurement.

Color Burst Color Burst specifies that the measurement is to be made on the Color Burst signal. The 100 Hz high-pass and 1 MHz low-pass filters are automatically selected.

Field 1 Field 1 specifies that the measurement is to be made only on field 1.
Field 2 specifies that the measurement is to be made only on field 2.

Both Fields specify that the measurement is to be made on both field 1 and field 2.

Filters Submenu

High Pass 100 Hz/10 kHz/100 kHz selects the specified high-pass filter. Signal information lower than the specified frequency is filtered out.

Low Pass 100 kHz/500 kHz/1.0 MHz selects the specified low-pass filter. Signal information higher than the specified frequency is filtered out.

Text in the Chrominance AMPM display shows the name of the measurement, the line number or color burst field number on which the measurement is being made, the bandwidth specified for the measurement, whether or not the signal is correct for the measurement, the definition of the 0 dB level for the measurement, and whether Averaging is off or on. If Averaging is on, the text also indicates the current weighting factor used for averaging, as well as the number of sampling points acquired.
Chrominance FreqResp

The Chrominance FreqResp measurement determines frequency response near the subcarrier frequency.

This measurement is essentially the same as the MultiBurst measurement, except that five packets are used instead of six, and the 3.85 MHz packet is used as the reference.

Figure 2–13 shows the Chrominance FreqResp display, which plots signal amplitude as a function of difference from the reference frequency.

The Chrominance FreqResp measurements require a special multiple-burst signal (see Figure 2–15). The Chrominance Frequency Response signal from either a Tektronix TSG130A Multiformat Signal Generator or a Tektronix 1910 Digital Generator with the special signal added is recommended.

Figure 2–13: Chrominance FreqResp display
Pressing the Menu button when the Chrominance FreqResp measurement runs brings up the Chrominance FreqResp menu (Figure 2–14).

Figure 2–14: Chrominance FreqResp menu tree

1 Displayed only when Packet # is selected.
Main Menu

Average Num specifies the weighting factor to use for averaging. The Average Num range is 1 to 256. The default value is 32. To change the Average Num value, touch the Average Num soft key to highlight it, rotate the knob until the desired weighting factor appears, then touch the Average Num soft key again.

Reference

Reference Level displays the Reference submenu which stores the currently displayed values for use as a reference or displays previously stored reference values.

Relative to Ref.

Relative to Ref. displays the Relative to Reference submenu which selects the reference to use for comparison in the measurement. When a stored reference is selected, the currently measured value is compared to the stored reference value.

dB Reference

dB Reference sets the reference position.

Acquire

Acquire displays the Acquire submenu that controls how the signal is acquired for the specific measurement.

VITS Search

VITS Search causes the VM700T to search the insertion test signals for a signal appropriate for the measurement. If an appropriate signal is not located, "Not found" displays briefly on the screen.

Rescale

Rescale sets the expansion factor of the display to an appropriate scaling factor for the Chroma FreqResp measurement display graticule. The x- and y-axes adjust to accommodate the rescaled display.
Reference Level Submenu

Store (n) Reference
Store (1) Reference/Store (2) Reference saves the current measurement values as (1) Reference and (2) Reference, respectively. Selecting Store (1) Reference or Store (2) Reference overwrites previous (1) Reference or (2) Reference values. References are stored in nonvolatile memory and are retained when the VM700T is powered down.

Show (n) Reference
Show (1) Reference/Show (2) Reference displays the current values of (1) Reference and (2) Reference, respectively, plus the date and time the reference was stored and the channel the reference signal was on. If no reference value has been stored, touching either soft key displays a message that the reference is not defined.

Relative to Reference Submenu

Use (n) Reference
Use (1) Reference/Use (2) Reference selects the stored reference to which measured values are compared. If no reference value has been stored, touching either soft key displays a message that the reference is not defined.

dB Reference Submenu

0 dB Ref Packet n
dB Ref Packet n when highlighted, allows you to set the amplitude reference level by rotating the knob. The reference position can be set to the measured amplitude of Packets 1 through 5 or to FLAG.

0 dB Ref Flag
Flag displays when the 0 dB Ref soft key is set to FLAG. When FLAG is highlighted, the amplitude reference level is set as a percentage of flag amplitude. By default, the amplitude reference level is set automatically. The default reference level percentage varies with the type of signal being measured. You can also set the percentage by rotating the knob; rotating it counterclockwise will (eventually) set the reference level back to AUTO.
Acquire Submenu

Special Position

Special Position displays the Special Position submenu and a special waveform display used to set the location on the waveform where the measurement is made. Figure 2-15 shows the Chrominance FreqResp Special Position display and submenu.

Block Mode

Block Mode turns on Block mode. The block starts at the system line.

Block Lines

Block Lines sets the number of lines to average for the measurement. The default number of Block Lines to average is 3.

Block Step

Block Step sets the number of lines to step in the block. The default number of lines to step is 2.

Special Position Submenu

Set Default

Set Default returns each measurement location to its default position as given in the Measurement Locations file. If any other soft key is highlighted, only that measurement location is changed.
Figure 2-15: Chrominance FreqResp Special Position display

Flag Start allows you to set the location of the leading edge of the amplitude reference flag by rotating the knob.

Flag Width allows you to set the width of the amplitude reference flag by rotating the knob.

Packet # allows you to select one of the six packets to set its measurement location and area. Cursors indicating the location and width and a readout of the frequency of the packet are displayed.

Center Default allows you to set the center location of the packet by rotating the knob.

Width Default allows you to set the measurement area of the packet by rotating the knob.

Exit leaves the Special Position submenu and displays the Chrominance FreqResp screen.
Chrominance NonLinearity

The Chrominance NonLinearity measurement requires a Three-Level Modulated Pedestal or NTC-7 Combination test signal. Figure 2–16 shows the Chrominance NonLinearity display.

Chrominance Nonlinearity (NTSC)
Field = 1 Lines = 100
Chrominance Amplitude Error (%) Ref = 40 IRE Packet

<table>
<thead>
<tr>
<th>1.0</th>
<th>0.5</th>
<th>0.0</th>
<th>-0.5</th>
<th>-1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>-0.5</td>
<td>-1.0</td>
</tr>
</tbody>
</table>

Chrominance Phase Error (deg) Ref = 40 IRE Packet

<table>
<thead>
<tr>
<th>0.4</th>
<th>0.2</th>
<th>0.0</th>
<th>-0.2</th>
<th>-0.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>-0.2</td>
<td>-0.4</td>
</tr>
</tbody>
</table>

Chrominance Luminance Intermodulation (% of 714 mV)

<table>
<thead>
<tr>
<th>0.1</th>
<th>0.1</th>
<th>-0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.2</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Average 32 → 32

Figure 2–16: Chrominance NonLinearity display

Chrominance NonLinearity measures nonlinear distortions of both gain and phase of the chrominance channel caused by differences in chrominance amplitudes. Intermodulation between chrominance and luminance is also displayed. Separate graphs are provided for each of the three measurements.

The Chrominance Amplitude Error (%) measurement is referenced to the center (40 IRE) packet. The Chrominance Phase Error (deg) measurement is also referenced to the center packet, and with a normal 3-Level Modulated Pedestal signal, the results should be near 0°. The Chrominance Luminance Intermodulation measurement notes the luminance level changes that are due to changes in chrominance amplitudes. The measurement is referenced to the 714 mV level, and is expressed as a percentage of 714 mV.
The Chrominance NonLinearity measurement is made on the current system line. The System Default Measurement Locations file specifies that the Chrominance NonLinearity measurement is made on field 1, line 17.

Chrominance NonLinearity Menu

Pressing the Menu button when the Chrominance NonLinearity measurement runs displays the Chrominance NonLinearity menu (Figure 2–17).

Main Menu

- Average
- Reference
- Relative to Ref.
- Acquire
- VITS Search
- Rescale

Reference Submenu

- Store (1) Reference
- Store (2) Reference
- Show (1) Reference
- Show (2) Reference

Relative to Reference Submenu

- Use (1) Reference
- Use (2) Reference

Acquire Submenu

- Special Position
- Block Mode
- Block Lines 3
- Block Step 2

Special Position Submenu

- Set Default
- Packet 1 Default
- Packet 2 Default
- Packet 3 Default
- Ref Pos Default
- Exit

Figure 2–17: Chrominance NonLinearity menu tree
Main Menu

Average Num

Average Num specifies the weighting factor to use for averaging. The Average Num range is 1 to 256. The default value is 32. To change the Average Num value, touch the Average Num soft key to highlight it, rotate the knob until the desired weighting factor appears, then touch the Average Num soft key again.

Reference

Reference displays the Reference submenu which (1) stores the currently displayed values for use as a reference; or (2) displays previously stored reference values.

Relative to Reference

Relative to Reference displays the Relative to Reference submenu that selects the reference to use for comparison in the measurement. When a stored reference is selected, the currently measured value is compared to the stored reference value.

Acquire

Acquire displays the Acquire submenu that controls how the signal is acquired for the specific measurement.

VITS Search

VITS Search causes the VM700T to search the insertion test signals for a signal appropriate for the measurement. If an appropriate signal is not located, the message “Not found” displays briefly on the display.

Rescale

Rescale sets the expansion factor of the display to an appropriate scaling factor for the Chrominance NonLinearity measurement display graticule. The x- and y-axes adjust to accommodate the rescaled display.

Reference Submenu

Store (n) Reference

Store (1) Reference/Store (2) Reference saves the current measurement values as (1) Reference and (2) Reference, respectively. Selecting Store (1) Reference or Store (2) Reference overwrites previous (1) Reference or (2) Reference values. References are stored in nonvolatile memory and are retained while the VM700T is not on.

Show (n) Reference

Show (1) Reference/Show (2) Reference displays the current values of (1) Reference and (2) Reference, respectively, plus the date and time the reference was stored and the channel the reference signal was on. If no reference value has been stored, touching either soft key displays a message that the reference is not defined.
Relative to Reference Submenu

Use (n) Reference

Use (1) Reference/Use (2) Reference selects the stored reference to which measured values are compared. If no reference value has been stored, touching either soft key displays a message that the reference is not defined.

Acquire Submenu

Special Position

Special Position displays the Special Position submenu and a special waveform display used to set the location on the waveform where the measurement is made. Figure 2-18 shows the Chrominance NonLinearity Special Position display and submenu.

Measurement Location for the Chrominance NonLinearity Measurement

Field = 1 Line = 100

Figure 2-18: Chrominance NonLinearity Special Position display

VM 700T Video Measurement Set Option 01 NTSC Measurements
Block Mode

Block Mode turns on Block mode. The block starts at the system line.

Block Lines

Block Lines sets the number of lines to average for the measurement. The default number of Block Lines to average is 3.

Block Step

Block Step sets the number of lines to step in the block. The default number of lines to step is 2.

Special Position Submenu

Set Default

Set Default reassigns the default values to the Packet 1, Packet 2, Packet 3, and Ref Pos. soft keys. To reassign the default value to one of the soft keys, select that soft key before touching Set Default.

Packet 1/2/3

Packet 1/2/3 defines the measurement locations of the chrominance packets. The default measurement locations are automatically defined, depending on the type of signal being measured.

Ref Pos

Ref Pos defines the measurement location of the reference level. The default reference measurement location is automatically defined for the type of signal being measured.

Exit

Exit leaves the Special Position submenu and displays the Chrominance NonLinearity screen.
ColorBar

ColorBar measures the luminance level, chrominance level, and chrominance phase of each chroma packet, and displays them on three separate graticules. The top graticule shows the luminance level of each chroma packet. The middle graticule shows the chrominance level of each chroma packet. The bottom graticule shows the chrominance phase (in degrees) of each chroma packet. Each graticule includes the measurement limits (as set in the active Measurement Limits file) for each color; the limits are shown as horizontal lines that extend the width of each color. The ColorBar measurement display is shown in Figure 2–19.

Figure 2–19: ColorBar display

The Chrominance Phase measurement is not made unless the chrominance amplitude is at least 35 mV (5 IRE). The message LOW CHROMA displays when chrominance amplitudes are less than this value.

The ColorBar measurement is made on the current system line. The System Default Measurement Locations file specifies that the ColorBar measurement is made on field 2, line 17.
Predefined Color Bar References

In addition to the usual user-defined measurement references, the ColorBar measurement includes three predefined reference values. The predefined references are Ref. 100/0/75/0 (0 set-up color bars), Ref. 75/7.5/75/7.5 (EIA or SMPTE color bars), and Ref. 100/7.5/75/7.5 (FCC color bars). Table 2–2 lists these color bar reference values.

Table 2–2: Predefined ColorBar Reference Values

| Reference Values for 100/0/75/0 (0% Setup) Color Bars |
|---------------------------------|-----|-----|-----|-----|-----|-----|-----|
| Parameters | White | Yellow | Cyan | Green | Magenta | Red | Blue | Black |
| Luma Level | 714.3 | 476.8 | 375.0 | 316.1 | 219.6 | 160.7 | 58.9 | 0.0 |
| Chroma Level | 0.0 | 480.2 | 681.2 | 636.2 | 681.2 | 480.2 | 0.0 |
| Chroma Phase | 0.0 | 167.1 | 283.4 | 240.8 | 60.8 | 103.4 | 347.1 | 0.0 |

| Reference Values for 75/7.5/75/7.5 (EIA or SMPTE) Color Bars |
|---------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|
| Parameters | White | Yellow | Cyan | Green | Magenta | Red | Blue | Black |
| Luma Level | 549.1 | 494.6 | 400.4 | 345.9 | 256.7 | 202.2 | 108.1 | 53.6 |
| Chroma Level | 0.0 | 444.2 | 630.1 | 588.5 | 588.5 | 630.1 | 444.2 | 0.0 |
| Chroma Phase | 0.0 | 167.1 | 283.4 | 240.8 | 60.8 | 103.4 | 347.1 | 0.0 |

| Reference Values for 100/7.5/75/7.5 (FCC) Color Bars |
|---------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|
| Parameters | White | Yellow | Cyan | Green | Magenta | Red | Blue | Black |
| Luma Level | 714.3 | 494.6 | 400.4 | 345.9 | 256.7 | 202.2 | 108.1 | 53.6 |
| Chroma Level | 0.0 | 444.2 | 630.1 | 588.5 | 588.5 | 630.1 | 444.2 | 0.0 |
| Chroma Phase | 0.0 | 167.1 | 283.4 | 240.8 | 60.8 | 103.4 | 347.1 | 0.0 |

ColorBar Menu

Pressing the Menu button when the ColorBar measurement runs displays the ColorBar menu (Figure 2–20).

Main Menu

Average Num

Average Num specifies the weighting factor to use for averaging. The Average Num range is 1 to 256. The default value is 32. To change the Average Num value, touch the Average Num soft key to highlight it, rotate the knob until the desired weighting factor appears, then touch the Average Num soft key again.

Reference

Reference displays the Reference submenu which (1) stores the currently displayed values for use as a reference; or (2) displays previously stored reference values.
Figure 2–20: ColorBar menu tree

1 Appears when Auto Scan is not selected.

Main Menu

- Average Num 32
- Reference
- Relative to Ref.
- Acquire
- VITS Search
- Rescale

Reference Submenu

- Store (1) Reference
- Store (2) Reference
- Show (1) Reference
- Show (2) Reference

Relative to Reference Submenu

- Use (1) Reference
- Use (2) Reference
- Ref 100/0.750
- Ref 87.5/75/7.5
- Ref 100/7.5/75/7.5

Acquire Submenu

- Special Position
- Block Mode
- Block Lines 3
- Block Step 2

Special Position Submenu

- Auto Scan
- White 1
- Yellow 1
- Blue 1
- Black 1
- Measure Cycles n
- Exit

Relative to Ref. Relative to Ref. displays the Relative to Reference submenu which selects the reference to use for comparison in the measurement. When a stored reference is selected, the currently measured value is compared to the stored reference value.

Acquire Acquire displays the Acquire submenu that controls how the signal is acquired for the specific measurement.

VITS Search VITS Search searches the insertion test signals for a signal appropriate for the measurement. If an appropriate signal is not located, the message Not found displays briefly.

Rescale Rescale sets the expansion factor of the display to an appropriate scaling factor for the ColorBar measurement display graticule. The x- and y-axes adjust to accommodate the rescaled display.
Reference Submenu

Store (n)
Reference

Store (1) Reference/Store (2) Reference saves the current measurement values as (1) Reference and (2) Reference, respectively. Selecting Store (1) Reference or Store (2) Reference overwrites previous (1) Reference or (2) Reference values. References are stored in nonvolatile memory and are retained when the VM700T is powered down.

Show (n)
Reference

Show (1) Reference/Show (2) Reference displays the current values of (1) Reference and (2) Reference, respectively, plus the date and time the reference was stored and the channel the reference signal was on. If no reference value has been stored, touching either soft key displays a message that the reference is not defined.

Relative to Reference Submenu

Use (n)
Reference

Use (1) Reference/Use (2) Reference selects the stored reference to which measured values are compared. If no reference value has been stored, touching either soft key displays a message that the reference is not defined.

Ref.
100/0/75/0

Ref. 100/0/75/0 selects the nominal 75% saturation, 0% setup colorbar reference for measurement comparison.

Ref.
75/7.5/75/7.5

Ref. 75/7.5/75/7.5 selects the nominal 75% saturation, 7.5% setup colorbar reference for measurement comparison.

Ref.
100/7.5/75/7.5

Ref. 100/7.5/75/7.5 selects the nominal 75% saturation, 7.5% setup colorbar with 100 IRE white flag for measurement comparison.

Acquire Submenu

Field
Toggle

Field Toggle behaves the same as the Field Toggle soft key in Select Line mode: the system line changes to the other field, an offset of ±313 lines. Field Toggle is provided in the Acquire submenu because at the submenu level, the Select Line button only activates line selection through the control knob. (The Select Line menu does not appear when a submenu is in effect.)

Special
Position

Special Position provides a group of soft keys and a waveform display used to set the locations on the waveform where the measurement is made. Figure 2–21 shows the ColorBar Special Position display.
Block Mode

Block Mode turns on Block mode. The block starts at the system line.

Block Lines

Block Lines sets the number of lines to average for the measurement. The default number of Block Lines to average is 3.

Block Step

Block Step sets the number of lines to step in the block. The default number of lines to step is 2.

Special Position Submenu

Auto Scan

Auto Scan, when selected, scans the waveform and automatically determines measurement locations. Deselecting this soft key displays the White, Yellow, Blue, Black, and Measure soft keys.

NOTE. If severe luminance nonlinear distortion is present, the VM700T may not be able to find all the color packets expected. In such cases, you must use manual positioning to set the location of each packet.

White

White, when selected, allows you to adjust the center position of the white color packet with the knob.

Yellow

Yellow, when selected, allows you to adjust the center position of the yellow color packet with the knob.

Blue

Blue, when selected, allows you to adjust the center position of the blue color packet with the knob.

Black

Black, when selected, allows you to adjust the center position of the black color packet with the knob.

Measure Cycles

Measure Cycles allows you to specify the number of chrominance subcarrier cycles measured in each chrominance packet. The width of the displayed boxes shows the entire measurement area determined by the selected number of cycles.

Exit

Exit leaves the Special Position display and returns to the ColorBar main measurement display.
Figure 2-21: ColorBar Special Position display
DGDP (Differential Gain Differential Phase)

The DGDP Measurement measures differential gain and phase.

DGDP Display

Figure 2–22 shows the DGDP display. The top half plots the differential gain for each packet. A digital readout for each packet shows the differential gain value, expressed as a percentage of the reference amplitude. Additional digital readouts show the minimum and maximum differential gain values, as well as the value of the peak-to-peak amplitude divided by the maximum packet value.

The lower half plots the differential phase for each packet, expressed in degrees of phase difference from the reference packet. Additional digital readouts show the minimum, maximum, and peak-to-peak values for differential phase.

<table>
<thead>
<tr>
<th>DG DP (NTSC)</th>
<th>Wfm --></th>
<th>FCC</th>
<th>Composite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field = 1 Line = 100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differential Gain (%)</td>
<td>min = -2.23</td>
<td>max = 0.92</td>
<td>p-p/max = 3.12</td>
</tr>
<tr>
<td>0.00</td>
<td>0.83</td>
<td>0.92</td>
<td>0.50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Differential Phase (deg)</th>
<th>min = 0.00</th>
<th>max = 1.05</th>
<th>pk-pk = 1.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.75</td>
<td>0.99</td>
<td>1.05</td>
</tr>
</tbody>
</table>

The DGDP measurement can use an FCC Composite, NTC-7 Composite, or 5- or 10-step modulated staircase signal. The essential signal element is a modulated staircase (up to 10 steps).
DGDP Menu

Pressing the Menu button when the DGDP measurement runs displays the DGDP menu (Figure 2–23).

Main Menu

- **Average Num 32**
- **Reference**
- **Relative to Ref.**
- **Acquire**
- **VITS Search**
- **Rescale**

Reference Submenu

- **Store (1) Reference**
- **Store (2) Reference**
- **Show (1) Reference**
- **Show (2) Reference**

Relative to Reference Submenu

- **Use (1) Reference**
- **Use (2) Reference**

Acquire Submenu

- **Special Position**
- **Block Mode**
- **Block Lines 3**
- **Block Step 2**

Special Position Submenu

- **Auto Scan**
- **Manual Steps**
- **Rel/Packet mn.n μSec**
- **1st Step mn.n μSec**
- **Last Step mn.n μSec**
- **Measure Cycles n**

1 Appears when Auto Scan is not selected.

Figure 2–23: DGDP menu tree

Main Menu

Average Num specifies the weighting factor to use for averaging. The Average Num range is 1 to 256. The default value is 32. To change the Average Num value, touch the Average Num soft key to highlight it, rotate the knob until the desired weighting factor appears, then touch the Average Num soft key again.
<table>
<thead>
<tr>
<th>Reference</th>
<th>Reference displays the Reference submenu with which you can store the currently displayed values for use as a reference or display previously stored reference values.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative to Reference</td>
<td>Relative to Reference displays the Reference submenu with which you can select the reference to use for comparison in the measurement. When a stored reference is selected, the currently measured value is compared to the stored reference value.</td>
</tr>
<tr>
<td>Acquire</td>
<td>Acquire displays the Acquire submenu that controls how the signal is acquired for the specific measurement.</td>
</tr>
<tr>
<td>VITS Search</td>
<td>VITS Search searches the insertion test signals for a signal appropriate for the measurement. If an appropriate signal is not located, the message “Not found” displays briefly on the display.</td>
</tr>
<tr>
<td>Rescale</td>
<td>Rescale sets the expansion factor of the display to an appropriate scaling factor for the DGDP measurement display graticule. The x- and y-axes adjust to accommodate the rescaled display.</td>
</tr>
</tbody>
</table>

Reference Submenu

<table>
<thead>
<tr>
<th>Store (n) Reference</th>
<th>Store (1) Reference/Store (2) Reference saves the current measurement values as (1) Reference and (2) Reference, respectively. Selecting Store (1) Reference or Store (2) Reference overwrites previous (1) Reference or (2) Reference values. References are stored in nonvolatile memory and are retained when the VM700T is powered down.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Show (n) Reference</td>
<td>Show (1) Reference/Show (2) Reference displays the current values of (1) Reference and (2) Reference, respectively, plus the date and time the reference was stored and the channel the reference signal was on. If no reference value has been stored, touching either soft key displays a message that the reference is not defined.</td>
</tr>
</tbody>
</table>

Relative to Reference Submenu

| Use (1) Reference | Use (1) Reference/Use (2) Reference selects the stored reference to which measured values are compared. If no reference value has been stored, touching either soft key displays a message that the reference is not defined. |
Acquire Submenu

Special Position

Special Position displays the Special Position submenu that sets the locations on the waveform where the measurement is made. Figure 2–24 shows the DGDP Special Position display.

Block Mode

Block Mode turns on Block mode. The block starts at the system line.

Block Lines

Block Lines sets the number of lines to average for the measurement. The default number of Block Lines to average is 3.

Block Step

Block Step sets the number of lines to step in the block. The default number of lines to step is 2.

Measurement Location for the DGDP Measurement

FCC Composite

Field = 1 Line = 100

Figure 2–24: DGDP Special Position display
Measure Mode

Special Position Submenu

Auto Scan

Auto Scan, when highlighted, automatically scans and determines measurement locations. When deselected, the VM700T displays soft keys to set measurement locations manually.

NOTE. If severe luminance nonlinear distortion is present, the VM700T may not be able to resolve all the steps that were present in the original signal. In such cases, you must use manual positioning to set the location of each staircase step.

Manual Steps

Manual Steps allows you to select the number of luminance steps in the signal by rotating the knob.

Ref Packet

Ref Packet allows you to select the position of the reference packet by rotating the knob. Normally, the reference packet should be the center of the first packet of the modulated staircase.

1st Step

1st Step allows you to select the position of the first luminance step edge of the staircase by rotating the knob.

Last Step

Last Step allows you to select the position of the last luminance step edge of the staircase by rotating the knob.

Measure Cycles

Measure Cycles allows you to select the number of chrominance subcarrier cycles measured in each chrominance packet. The width of the displayed box shows the entire measurement area determined by the selected number of cycles.

Exit

Exit leaves the Special Position submenu and displays the DGDP screen.
GroupDelay SinX_X

GroupDelay SinX_X measures group delay and amplitude response versus frequency. This measurement requires a sin(x)/x signal. The VM700T is set up to use a sin(x)/x signal from a 1910 signal generator by default; if the signal is generated by a different source, you may need to use the Special Position submenu of the Acquire soft key to specify the first and second pulse positions in the test signal. The time between the two pulses should always be a multiple of 1/(4f_sc).

Figure 2–25 shows the GroupDelay SinX_X Combined Pulse display. The top half of the display plots overall amplitude (in dB) versus frequency (in MHz). The bottom half of the display plots overall group delay (in nanoseconds) versus frequency (in MHz).

![Graph showing GroupDelay SinX_X Combined Pulse display]

Figure 2–25: GroupDelay SinX_X Combined Pulse response display
Figure 2–26: GroupDelay SinX_X BothPulse response display

Figure 2–26 shows the Group Delay SinX_X BothPulse display. This display is used to compare the frequency response of the upward and downward sin(x)/x pulses. Nonlinearities cause a different response gain for different input signal levels, and the two pulses show different frequency responses curves. This is demonstrated in the BothPulse Response display of Figure 2–26. The solid line is the curve for the upward pulse, and the dotted line is the curve for the downward pulse. The scale of the amplitude display has been expanded to easily show the gain difference in the two responses.
GroupDelay SinX_X Menu

Pressing the Menu button when the GroupDelay SinX_X measurement runs displays the GroupDelay SinX_X menu (Figure 2–27).

Main Menu

Reference Submenu

Relative to Reference Submenu

Graticule Submenu

Acquire Submenu

Special Position Submenu

Cursor Submenu

1 Displayed when Pul2 Offs is selected.

Figure 2–27: GroupDelay SinX_X menu tree
Measure Mode

Main Menu

Average Num

Average Num specifies the weighting factor to use for averaging. The Average Num range is 1 to 256. The default value is 32. To change the Average Num value, touch the Average Num soft key to highlight it, rotate the knob until the desired weighting factor appears, then touch the Average Num soft key again.

Reference

Reference displays the Reference submenu which (1) stores the currently displayed values for use as a reference; or (2) displays previously stored reference values.

Relative to Reference

Relative to Reference displays the Reference submenu which selects the reference to use for comparison in the measurement. When a stored reference is selected, the currently measured value is compared to the stored reference value.

Griticule

Griticule displays the Griticule submenu which selects the griticule.

Acquire

Acquire displays the Acquire submenu that controls how the signal is acquired for the specific measurement.

Cursor

Cursor displays the Cursor submenu that displays and activates the cursors. Readouts give the measurement values at the frequency location of the cursor.

Rescale

Rescale sets the expansion factor of the display to an appropriate scaling factor for the GroupDelay SinX_X measurement display griticule. The x- and y-axes adjust to accommodate the rescaled display.
Reference Submenu

Ref Freq. Ref. Freq. sets the reference value for delay and amplitude by turning the knob. Possible values are from 0.14 to 4.45 MHz. Below the 0.14 MHz level is AUTO, which sets the reference position automatically.

Store (n) Reference Store (1) Reference/Store (2) Reference saves the current measurement values as (1) Reference and (2) Reference, respectively. Selecting Store (1) Reference or Store (2) Reference overwrites previous (1) Reference or (2) Reference values. References are stored in nonvolatile memory and are retained when the VM700T is turned off.

Show (n) Reference Show (1) Reference/Show (2) Reference displays the current values of (1) Reference and (2) Reference, respectively, plus the date and time the reference was stored and the channel the reference signal was on. If no reference value has been stored, touching either soft key displays a message that the reference is not defined.

Relative to Reference Submenu

Use (n) Reference Use (1) Reference/Use (2) Reference selects the stored reference to which measured values are compared. If no reference value has been stored, touching either soft key displays a message that the reference is not defined.

Graticule Submenu

Graticule Off Graticule Off turns the graticule off.

DelayGrat Inverse DelayGrat Inverse inverts the graticule so that it matches both the pre-correction in the transmitter and the group delay curve of the receiver.

System M System M selects the System M graticule.

Limit File Limit File uses the values in the Measurement Limits file to create the graticule.
Acquire Submenu

Special Position

Special Position displays the Special Position submenu that sets the locations on the waveform where the measurement is made. Figure 2–28 shows the GroupDelay SinX_X Special Position display.

BothPulse Response

BothPulse Response displays responses for both the upward sinx/x and the downward sinx/x pulses. This display is very useful to check for nonlinearities in gain and group delay between two different levels in the signal.

Combined Response

Combined Response displays a single overall system response curve for gain and group delay. The responses of the upward and downward sinx/x pulses are combined before the overall frequency response is computed.

Special Position Submenu

Set Default

Set Default returns each measurement location to its default position as determined by the sinx/x signal generated by the Tektronix 1910 Digital Generator. If any other soft key is highlighted, only that measurement location is changed.

Double Pulse Mode

Double Pulse Mode, when highlighted, causes the VM 700T to average both upward and downward pulses, and then compute the measurement. When deselected, the VM 700T uses a single upward pulse to enable this measurement with a sine-squared pulse. This soft key should normally be highlighted to avoid errors caused by nonlinear distortion.
Figure 2–28: GroupDelay SinX_X Special Position display

Pul 1 Pos Pul 1 Pos sets the location of the left-hand upward pulse. A dotted line on the display indicates the approximate position.

Pul 2 Offs Pul 2 Offs sets the location of the right-hand downward pulse, expressed as an offset from the left-hand upward pulse location. Use the default value, or touch the Auto Adjust soft key to precisely set this offset. This offset is critical for correct measurement of the signal.

Pul 2 Offs Auto Adj Pul 2 Offs Auto Adj precisely adjusts the location of the right-hand downward pulse, expressed as an offset from the left-hand upward pulse location.

Area Area changes the measurement area to allow the measurement to use on Composite Test Signals, etc. For best results, use the largest value possible. Smaller areas may result in lost low-frequency accuracy and reduced frequency resolution.

Exit Exit leaves the Special Position submenu and displays the GroupDelay SinX_X screen.
Cursor Submenu

Cursor On Cursor On, when highlighted, displays the cursor. It appears in the same position it was in the last time it was active.

Cursor Active Cursor Active, when highlighted, allows you to move the cursor by rotating the knob.
H_Blank

The H_Blank measurement finds where horizontal blanking starts and ends within a field. The H_Blank measurement can use any NTSC video signal for input.

H_Blank Display

Figure 2–29 shows the H_Blank display. The zero point of the x-axis is the leading edge of sync. The y-axis consists of all the lines in the measured area of the field (lines 11 to 263 for field 1, lines 11 to 262 for field 2). The display plots the times at which each line crosses the H_Blank measurement slice level (threshold).

Figure 2–29: H_Blank display

The slice level, or threshold, is the voltage that defines the start or end of the horizontal blanking interval. The left side of the display shows the time at which each line crosses the slice level voltage at the beginning of its horizontal blanking interval. The right side of the display shows the time at which each line crosses the slice level voltage to end its horizontal blanking interval. Digital readouts above the display show the minimum values for horizontal blanking (that is, the rightmost start time and the leftmost end time) over the range of lines selected.
H_Blank Menu

Pressing the Menu button when the H_Blank measurement runs displays the H_Blank menu (Figure 2–30).

Main Menu

Max Hold Slice Level Field Toggle Cursor On Meas. Line Start Meas. Line End Rescale

Set FCC Set RS-170A

1 Displayed in place of the Field Toggle and Cursor On softkeys when Slice Level is selected.

Figure 2–30: H_Blank menu tree

Main Menu

Max Hold Max Hold, when highlighted, causes the measurement cursors to hold at the maximum unblanking positions. When deselected, the measurement cursors move to reflect the current unblanking positions.

Slice Level Slice Level sets the blanking search level in IRE by rotating the knob. Possible values range from 4 to 99 IRE. The 100 IRE level is computed as 250% of sync level.

Field Toggle Field Toggle displays the system line in the other field from that currently displayed.

Set FCC Set FCC displays when the Slice Level soft key is highlighted; sets the slice level to 4 IRE.

Cursor On Cursor On, when highlighted, the cursors show the minimum blanking interval over the range of lines being measured. On is the default.

Set RS-170A Set RS-170A displays when the Slice Level soft key is highlighted; sets the slice level to 20 IRE.

Meas. Line Start Meas. Line Start sets the measurement start line.

Meas. Line End Meas. Line End sets the measurement end line.

Rescale Rescale formats the display graticule to an appropriate resolution.
H_Timing

H_Timing makes various measurements around H_Sync. The H_Timing measurement can use any video signal for input.

Figure 2–31 shows the horizontal sync pulse for the H_Timing measurement. The timing measurements made and displayed are: sync to blanking start, sync to blanking end, sync to burst start (RS-170A), sync to burst end (FCC), burst width, sync width, burst level, sync rise time, sync fall time, sync level, and breezeway (FCC).

![H_Timing Measurement Diagram]

H_Timing Measurement RS-170A (NTSC)
Field = 1 Line = 100

Average 32 -> 32

Figure 2–31: H_Timing display

H_Timing Menu
Pressing the Menu button when the H_Timing measurement runs displays the H_Timing menu (Figure 2–32).

Main Menu

<table>
<thead>
<tr>
<th>Average</th>
<th>FCC</th>
<th>RS-170A</th>
<th>Rescale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Num 32</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2–32: H_Timing menu tree
Measure Mode

Main Menu

Average Num

Average Num specifies the weighting factor to use for averaging. The Average Num range is 1 to 256. The default value is 32. To change the Average Num value, touch the Average Num soft key to highlight it, rotate the knob until the desired weighting factor appears; then touch the Average Num soft key again.

FCC

FCC, when highlighted, causes measurements to be based on the FCC standard.

RS-170A

RS-170A, when highlighted, causes measurements to be based on the RS-170A standard.

Rescale

Rescale sets the expansion factor of the display to an appropriate scaling factor for the H_Timing measurement display graticule. The x- and y-axes adjust to accommodate the rescaled display.
ICPM (Incidental Carrier Phase Modulation)

The ICPM measurement measures Incidental Carrier Phase Modulation of an RF carrier, using the quadrature output of a demodulator such as the Tektronix 1450 Series Demodulator Mainframe with a TDC-10 Tunable Down Converter or a TDC Fixed-Channel Down Converter for your channel. The Incidental Carrier Phase Modulation measurement is made on the staircase portion of either the FCC or NTC-7 Composite VITS signals. The Zero Carrier Pulse is required as an amplitude reference. This measurement requires that both the video output and the quadrature output of a demodulator be connected to the VM700T.

Video may be connected to either channel A or B, but the quadrature output must always be connected to the channel C input. The Zero Carrier Pulse must be enabled at the demodulator, and must be selected for use as a reference in the appropriate Measurement Locations file. The location of both the Zero Carrier Pulse and the Composite VITS, either FCC or NTC-7, are also specified in the appropriate Measurement Locations file.

Incidental Carrier Phase Modulation (ICPM) is a distortion that occurs in the transmitter when the phase of the modulated carrier is affected by the level of the modulating video signal. The amount by which the carrier phase is shifted is the ICPM error.

ICPM error is expressed in degrees and is defined as:

\[
ICPM = \arctan\left(\frac{\text{quadrature amplitude}}{\text{video amplitude}}\right)
\]

ICPM errors produce different effects, depending on the type of demodulation used to recover the baseband signal from the transmitted signal. ICPM errors appear in synchronously demodulated signals as differential phase and many other types of distortions, but the baseband signal is generally not as seriously affected when envelope detection is used. The effects of ICPM errors are therefore rarely seen in the picture in home receivers, which typically use envelope detection.

However, ICPM errors may manifest themselves as audio buzz at the home receiver. In the intercarrier sound system, the picture carrier is mixed with the FM sound carrier to form a 4.5 MHz sound IF. Audio rate phase modulation in the picture carrier can therefore be transferred into the audio system and heard as a buzzing noise.

ICPM Display

ICPM errors are measured by examining an XY plot of the VIDEO OUT versus QUADRATURE OUT outputs from a synchronous demodulator, using as input either a staircase signal of 5 or 10 steps, or a ramp. VIDEO OUT is plotted along the y axis with negative polarity (black is at the bottom, and indicates maximum transmitter output), while QUADRATURE OUT is plotted along the x axis. The origin of the system is in the horizontal center of the top of the display.
In the resulting plot, phase errors appear as a non-zero value from the QUAD-RATURE OUT output of the demodulator. If no ICPM errors are present, the plot appears as a succession of bright dots down the video-axis of the ICPM display output (Figure 2–33). When using a staircase test signal for the ICPM measurement, the curved lines that appear on the display are due either to transitions between successive levels of the test signal, or to the transition between the top of the staircase and the back porch. These curved lines can be ignored for purposes of this measurement.

Figure 2–33: ICPM display; no ICPM errors present

If ICPM errors are present, phase errors will usually vary with amplitude, producing a tilted line of bright dots on the ICPM display (see Figure 2–34).

ICPM errors usually indicate a problem with the transmitter, or with modulator imbalance. (It is also remotely possible that a malfunctioning demodulator can give you a problem that looks like ICPM, but is not). Given that the demodulator is functioning correctly, however, ICPM errors generally indicate a linearity problem in the high-power stages of the transmitter.
Text on the left-hand side of the ICPM display shows the name of the measurement (ICPM), the line on which the measurement is being made, and the percentage of the nominal carrier amplitude being used as a data exclusion threshold for the measurement. Signal levels below the minimum or above the maximum percentage of the nominal carrier amplitude (the data exclusion threshold) are excluded from the measurement.

Text on the right-hand side of the ICPM display the minimum measured ICPM angle, the maximum measured ICPM angle, and the peak-to-peak measured ICPM angle (the difference between current maximum and minimum measured ICPM angles).

Figure 2–34: ICPM display; large ICPM error present

ICPM Menu
Pressing the Menu button when the ICPM measurement runs displays the ICPM menu (Figure 2–35).
Main Menu

Average Num

Average Num specifies the weighting factor to use for averaging. The Average Num range is 1 to 256. The default value is 32. To change the Average Num value, touch the Average Num soft key to highlight it, rotate the knob until the desired weighting factor appears; then touch the Average Num soft key again.

Relative Backporch

Relative Backporch, when highlighted, causes the result angles to be measured relative to the angle at burst center. In addition, displayed points are adjusted in the left-right direction (the quadrature axis) to maintain relevance with the cursor, tracking lines, and polar graticule.

Main Menu

Average Num 32 Relative Backporch Clamp Couple Graticule Measure Rescale Plot All

Clamp Couple Submenu

Clamp Slow Clamp Fast DC Coupling

Graticule Submenu

Polar Graticule Graticule Increments 2 Deg. Graticule Max 60 Deg. Graticule Labels Cursor 0.0 Deg. Tracking Lines Plot All

Measure Submenu

Transient Chk. Quad. Threshold 1500 μV Max % Car OFF Min % Car OFF Selected % Car OFF

Figure 2–35: ICPM menu tree

Clamp Couple

Clamp Couple displays the Clamp Couple submenu that sets the Clamping mode used by the ICPM measurement.

Graticule

Graticule displays the Graticule submenu that controls the displayed graticule and the maximum-angle tracking lines.

Measure

Measure displays the Measure submenu that determines which data points are used in the ICPM measurement.
Rescale

Rescale returns the reference point to the center of the screen, sets the left-right expansion for the quadrature axis to a comfortable value, and re-adjusts the top-bottom expansion for the video axis so that the sync level is at a predetermined point.

Plot All

Plot All, when highlighted, displays all sampled data points. When deselected, only points used in computing the ICPM measurement result display.

Clamp Couple Submenu

Clamp Slow

Clamp Slow selects slow clamp speed. This speed allows hum effects to be visible, but is useful in coping with large DC offsets on an input signal.

Clamp Fast

Clamp Fast selects fast clamp speed. This speed removes DC offset, hum, and bounce effects from the signal. This is the default clamp setting for the ICPM measurement.

DC Coupling

DC Coupling selects DC coupling (no clamping).

Gaticule Submenu

Polar Gaticule

Polar Gaticule, when highlighted, displays a polar gaticule on the screen and displays the Grat Incr, Grat Max, and Gaticule Labels soft keys.

Grat Incr 2 Deg.

Grat Incr adjusts the increment between individual lines of the polar gaticule with the knob. Possible values range from 1 degree to 30 degrees. Below the 1-degree setting is AUTO, which causes the gaticule increment to be maintained at an optimum value based on the current expansion and position.

Grat Max 60 Deg.

Grat Max adjusts the maximum angle of displayed polar gaticule lines. The maximum angle allowed is 89 degrees. Below the 1-degree setting is AUTO, which causes the maximum gaticule angle to be maintained at an optimum value based on the current expansion and position.

Gaticule Labels

Gaticule Labels when highlighted, the polar gaticule applies labeling numbers to the ends of its lines as they fit.

Cursor 0.0 Deg.

Cursor 0.0 Deg., when highlighted, lets the knob move the displayed value by tenths of a degree; a cursor that reflects this value displays on the screen.
Measure Mode

<table>
<thead>
<tr>
<th>Tracking Lines</th>
<th>Tracking Lines, when highlighted, displays lines that follow the maximum and minimum ICPM angles.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plot All</td>
<td>Plot All, when highlighted, displays all sampled data points. When deselected, only points used in computing the ICPM measurement display. The soft keys under the Measure submenu determine which points are used in the measurement.</td>
</tr>
</tbody>
</table>

Measure Submenu

<table>
<thead>
<tr>
<th>Transient Chk. Quad.1</th>
<th>Transient Chk Quad chooses which data input to check when discarding values around too-large point-to-point transients before measuring the maximum and minimum ICPM. Choices are the quadrature or the video input.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threshold 1500 µV</td>
<td>Threshold 1500 µV sets the threshold (in microvolts) for data point exclusion from the ICPM measurement. When two consecutive sample points are not within this voltage of each other, several points around them are discarded.</td>
</tr>
<tr>
<td>Max % Car OFF</td>
<td>Max % Car sets the highest percent-of-carrier used in the ICPM measurement. When highlighted, any video input sample values above this percentage are discarded. When there is no maximum exclusion value, this soft key reads OFF.</td>
</tr>
<tr>
<td>Min % Car OFF</td>
<td>Min % Car sets the lowest percent-of-carrier used in the ICPM measurement. When highlighted, any video input sample values below this percentage are discarded. When there is no minimum exclusion value, this soft key reads OFF.</td>
</tr>
<tr>
<td>Selected % Car OFF</td>
<td>Selected % Car when highlighted, causes the currently highlighted Min % Car or Max % Car soft key to be set to OFF, and the appropriate edge-value exclusion is removed.</td>
</tr>
</tbody>
</table>
Jitter measures variation in horizontal sync timing over a single frame.

Figure 2-36 shows the Jitter display. Each line of the field is plotted along the y-axis, while time is plotted along the x-axis. The zero point of the x-axis is defined by the average position of the leading edge of sync over many frames for the range of lines being measured. The display plots the variation from this zero point for the leading edge of sync of each line in the measurement. A digital readout above the display shows the maximum value of jitter for the lines being measured.

The Jitter measurement can use any video signal as input.

![Jitter Display Diagram](image)

Figure 2-36: Jitter display
Jitter Menu

Pressing the Menu button when the Jitter measurement runs displays the Jitter menu (Figure 2-37).

Main Menu

Average Num
Max Hold
Extract VCR HD.SW
Meas. Line Start
Meas. Line End
Rescale

Figure 2-37: Jitter menu tree

Main Menu

Average Num

Average Num specifies the weighting factor to use for averaging. The Average Num range is 1 to 256. The default value is 32. To change the Average Num value, touch the Average Num soft key to highlight it, rotate the knob until the desired weighting factor appears; then touch the Average Num soft key again.

Max Hold

Max Hold, when highlighted, causes the measurement cursors to hold the positions of maximum jitter.

Extract VCR.HD.SW

Extract VCR.HD.SW searches the bottom of the picture area for horizontal timing errors exceeding 100 ns. This position is assumed to be the head switching position for a VCR (video cassette recorder). The error thus found is extracted from the Jitter display, and the resulting values and locations display.

Meas. Line Start

Meas. Line Start sets the measurement start line.

Meas. Line End

Meas. Line End sets the measurement end line.

Rescale

Rescale sets the expansion factor of the display to an appropriate scaling factor for the Jitter measurement display graticule. The x- and y-axes adjust to accommodate the rescaled display.
Jitter Long_Time

Jitter Long_Time measures variations in frame period timing caused by tape transport servo wander in video tape recorders (VTR).

Figure 2–38 shows the Jitter Long_Time spectrum display, plotting the variation in frame period timing (in dB, where 0 dB = 1 Hz) on the y-axis and frequency (in Hz) on the x-axis.

Figure 2–39 shows the Jitter Long_Time waveform display, plotting frame period jitter (in μs or ns, depending on the scale of jitter) on the y-axis and time (in seconds) on the x-axis.

The Jitter Long_Time measurement can use any video signal as input.

Frame Jitter Spectrum (NTSC)

![Frame Jitter Spectrum](image)

Average Off

Figure 2–38: Jitter Long_Time spectrum display
Measure Mode

Frame Jitter Waveform (NTSC)

\[\text{u sec (Frame Period Jitter)} \quad \text{Pk to Pk} \quad 7.85 \text{ u sec} \]

![Graph showing frame jitter waveform](image)

Figure 2–39: Jitter Long_Time waveform display

Jitter Long_Time Menu

Press the Menu button when the Jitter Long_Time measurement is running to display the Jitter Long_Time menu (Figure 2–40).

Main Menu (1)

- Freq. Lock 1 Sec
- Spectrum Display
- Rescale

Main Menu (2)

- Average Num 32
- Freq. Lock 1 Sec
- Jitter Waveform
- Cursors
- Rescale

Cursor Submenu

- Cursor 1 On
- Cursor 2 On
- Cursor 1 Active
- Cursor 2 Active

Figure 2–40: Jitter Long_Time menu tree

2-72

VM700T Video Measurement Set Option 01 NTSC Measurements
Main Menu

Average Num

Average Num specifies the weighting factor to use for averaging when the Spectrum display is selected. The Average Num range is 1 to 256. The default value is 32. To change the Average Num value, touch the Average Num soft key to highlight it, rotate the knob until the desired weighting factor appears; then touch the Average Num soft key again.

Freq. Lock

Freq. Lock sets the time constant of the locking loop.

Spectrum Display

Spectrum Display shows the spectrum of the jitter waveform, using an FFT with a Hanning window. Main menu 2 becomes available with the Spectrum display.

Jitter Waveform

Jitter Waveform displays the “rolled” jitter waveform. Main menu 1 becomes available with the Jitter waveform display.

Cursors

Cursors provides soft keys to display and activate the two cursors in the Spectrum display. Readouts for the cursors give the value in decibels (peak-to-peak) at the frequency locations of the cursors.

Rescale

Rescale sets the expansion factor of the display to an appropriate scaling factor for the Jitter Long Time measurement display graticule. The x- and y-axes adjust to accommodate the rescaled display.

Cursors Submenu

Cursor 1 On

Cursor 1 On, when highlighted, turns on Cursor 1 (the solid line cursor) in the display. When not highlighted, Cursor 1 is not displayed.

Cursor 2 On

Cursor 2 On, when highlighted, turns on Cursor 2 (the dashed line cursor) in the display. When not highlighted, Cursor 2 is not displayed.

Cursor 1 Active

Cursor 1 Active, when highlighted, assigns the control knob to positioning of cursor 1. If cursor 1 is not on when Cursor 1 Active is selected, cursor 1 is turned on.

Cursor 2 Active

Cursor 2 Active, when highlighted, assigns the control knob to positioning of cursor 2. If cursor 2 is not on when Cursor 2 Active is selected, cursor 2 is turned on.
K_Factor

K_Factor measures K-2T, K-PB, and Pulse-to-Bar Ratio. The K_Factor measurement can use an FCC Composite, NTC-7 Composite, or a Tektronix generator 2T Pulse & Bar signal for input. The essential element of the input signal is a 2T pulse. A bar is also needed for measured K-PB and Pulse-to-Bar ratio.

Figure 2-41 shows a typical K_Factor measurement display with the left and right references averaged. The display shows the signal superimposed on the K-Factor graticule. Digital readouts also show the measured values of K-2T, K-PB, Pulse-to-Bar ratio, and HAD.

```
2T Pulse K Factor (NTSC)
Line = 17
CCIR-2T 5.0%
K-2T = 2.3 % KF
K-PB = -10.8 % KF
PB Ratio = 69.9 %
HAD = 211.6 n sec
```

Figure 2-41: K-Factor display with top level menu

The K_Factor measurement may produce different results if the test signal is severely distorted due to the way it aligns the 2T pulse to the measurement graticule. The firmware lets you select different references for the measurement.

The normal application uses an average level of both the left and the right graticule reference points (left end and right end of the graticule shown in the display) to align the waveform. However, if the waveform has line time distortion, both ends of the waveform may not be exactly on the center of the graticule.
A second example is if the waveform has ringing that hits the reference point with positive or negative ringing. In this case, the waveform may not look aligned to the application.

When this type of distortion occurs it may be necessary to use different references for either end of the K_Factor waveform. The Graticule Reference menu soft keys and the functions they control assist in obtaining the correct measurement results.

K_Factor Menu

Pressing the Menu button when the K_Factor measurement runs displays the K_Factor menu (see Figure 2–41). Figure 2–42 shows the menu tree.

Main Menu

- Average
- Num 32
- Graticule Reference
- Graticule
- Acquire
- VITS Search
- Rescale

Graticule Reference Submenu

- Normal
- Left
- Right
- Offset
- n.n%
- Reset

Graticule Submenu

- EIA Graticule
- CCIR-2T Graticule
- Special Graticule
- Make Graticule
- 1 Graticule
- Gain 5.0%
- Graticule Track
- Graticule Reset

Make Graticule Submenu

- Upper Graticule
- Lower Graticule
- Set to
- 0.0
- 1.0
- -1.0

Acquire Submenu

- Special Position
- Block Mode
- Block Lines
- Block Step

Special Position Submenu

- Set Default
- Bar Top Default
- Ref Pos Default
- Pulse Pos Default
- Exit

1 Make Graticule appears only when Special Graticule is selected.

2 The "Set to" choices appear only when a coefficient has been selects in one of the three editable graticule definition lines.

Figure 2–42: K_Factor menu tree
Main Menu

Average Num: Average Num specifies the weighting factor to use for averaging. The Average Num range is 1 to 256. The default value is 32. To change the Average Num value, touch the Average Num soft key to highlight it, rotate the knob until the desired weighting factor appears; then touch the Average Num soft key again.

Graticule Reference: Graticule Reference provides soft keys for Graticule Reference, such as clamp waveform at the left, right, or both reference points of the graticule.

Graticule: Graticule provides soft keys to control the graticule gain and tracking of the current graticule, and to change from a standard graticule to a user-created graticule.

Acquire: Acquire displays a submenu of soft keys that control how the signal is acquired for the K_Factor measurement.

VITS Search: VITS Search searches the insertion test signals for a signal appropriate for the measurement. If an appropriate signal is not located, the message “Not found” displays briefly on the screen.

Rescale: Rescale sets the expansion factor of the display to an appropriate scaling factor for the K_Factor measurement display graticule. The x- and y-axes adjust to accommodate the rescaled display.

Graticule Reference Submenu

Normal: Normal clamps the waveform using the average of the left and right reference points of the graticule. Normal is the default reference.

Left: Left clamps the waveform using the left reference point of the graticule.

Right: Right clamps the waveform using the right reference point of the graticule (see Figure 2-43).

Offset n.n%: Offset n.n% adjust the graticule clamp offset (from –9.9% to 9.9% of pulse height) from the reference point selected with Normal, Left, or Right soft keys.

Offset Reset: Offset Reset returns the graticule clamp offset to 0.0%.
Figure 2-43: K_Factor measurement right reference clamped

Graticule Submenu

EIA Graticule

EIA Graticule selects the standard EIA Graticule using the current values of graticule gain and graticule tracking.

CMTT-2T Graticule

CMTT-2T Graticule selects the standard CCIR graticule, using the current values of graticule gain and graticule tracking.

Special Graticule

Special Graticule selects the special (user-defined) graticule for K_Factor measurements. The Make Graticule menu choice is displayed when Special Graticule is selected.

Make Graticule

Make Graticule displays the menu choices for making a user-definable graticule.

Graticule Gain

Graticule Gain turns on the graticule variable gain mode. The range is 0.1% to 20.0%, with a resolution of 0.1%. The gain can be set by rotating the knob. The default gain is 5.0%.

Graticule Track

Graticule Track turns on graticule tracking mode. When graticule tracking is on, the size of the graticule tracks the actual waveform.
Graticule Reset

Graticule Reset turns off graticule tracking and resets the graticule gain to 5.0%.

Rescale

Rescale sets the expansion factor of the display to an appropriate scaling factor for the K_Factor measurement display graticule. The x- and y-axes adjust to accommodate the rescaled display.

Make Graticule Submenu

Upper Graticule

Upper Graticule selects the upper graticule of the special graticule to be defined by the following formula:

\[grat = A \cdot \exp(B \cdot (T^C)) \cdot (T^D) + E \]

The values for A, B, C, D, E, and T may be selected in the Area 1, Area 2, and Area 3 lines. Rotate the control knob to highlight an area line, touch the screen to select the variable in the line to adjust, and rotate the control knob to adjust the variable value (refer to Defining Your Own Graticule on page 2–81).

D is typically 1.0. E is a constant that moves the graticule vertically.

Area 1 is the center area of the graticule.

Area 2 is from the center area to the end area of the graticule.

Area 3 is the left and right end areas of the graticule.
Lower Graticule

Lower Graticule selects the lower graticule of the special graticule to be defined by the following formula:

\[\text{grat} = A \times \exp(B \times (T^D)) \times (T^D) + E \]

The values for A, B, C, D, E, and T may be selected in the Area 1, Area 2, and Area 3 lines. Rotate the control knob to highlight an area line, touch the screen to select the variable in the line to adjust, and rotate the control knob to adjust the variable value (refer to Defining Your Own Graticule on page 2–81).

D is typically 1.0. E is a constant that moves the graticule vertically.

Area 1 is the center area of the graticule.

Area 2 is from the center area to the end area of the graticule.

Area 3 is the left and right end areas of the graticule.

Set to 0.0/1.0/-1.0

Set to 0.0/1.0/-1.0 appear if one of the variable values in a graticule has been selected for editing. These soft keys provide you a way to rapidly return a value to the selected value as an aid in defining a new graticule.

Acquire Submenu

Special Position

Special Position sets the locations on the waveform where the measurement is made. Figure 2–44 shows the K-Factor Special Position display.

Block Mode

Block Mode turns on Block mode. The block starts at the system line.

Block Lines 3

Block Lines sets the number of lines to average for the measurement. The default number of Block Lines to average is 3.

Block Step 2

Block Step sets the number of lines to step in the block. The default number of lines to step is 2.
Figure 2-44: K-Factor Special Position display

Special Position Submenu

Set Default
Set Default resets each K_Factor measurement location to the default value given in the Measurement Locations file. If any other soft key is highlighted, only that measurement location is reset.

Bar Pos. Default
Bar Pos. Default allows you to choose the bar location in the signal by rotating the knob. The VM700T finds the exact center, but this location can be reset if desired by rotating the knob.

Ref. Pos. Default
Ref. Pos. Default allows you to choose the reference location of the blanking level in the signal by rotating the knob.

Pulse Pos. Default
Pulse Pos. Default displays the pulse position cursor, which can be moved by rotating the knob. The VM700T finds the exact center of the pulse, but this location can be reset if desired by rotating the knob.

Exit
Exit leaves the Special Position display and returns to the main K_Factor measurement display.
Defining Your Own Graticule

The K_Factor measurement's graticule defines the boundaries of the distortion envelope for a given graticule gain setting. The displayed graticule consists of an upper and a lower graticule.

You can define your own graticule for the K_Factor measurement by means of the Make Graticule submenu. To access the Make Graticule submenu, do the following steps:

1. Press the Menu button to bring up the K_Factor main menu.
2. Touch the Graticule soft key.
3. If it is not already highlighted, touch the Special Graticule soft key. When Special Graticule is highlighted, the Make Graticule soft key displays beside it.
4. Touch the Make Graticule soft key.

The Make Graticule submenu, consisting of the Upper Graticule and Lower Graticule soft keys, should be visible but not highlighted on the screen.

To change the shape of the upper or lower graticule, touch the corresponding soft key. This displays three editable lines of equations (Figure 2–45).

\[\text{grat} = A \times \exp(B \times (T - C)) \times (T - D) + E \]

Use Knob to Scroll; Use Touch Screen to Select or De-select the Coefficients.

Area 4 = 15.42 \times \exp(0.00 \times (0.000 \wedge 0.00)) \times (0.000 \wedge 1.00) + 9.99
Area 5 = 2.25 \times \exp(0.00 \times (0.250 \wedge 0.00)) \times (0.250 \wedge 1.00) + 5.76
Area 6 = -2.80 \times \exp(0.00 \times (0.500 \wedge 0.00)) \times (0.500 \wedge -0.99) + 1.00

Figure 2–45: Make Graticule display with lower graticule selected
Each graticule is divided into three areas. Area 1 is innermost, nearest the y-axis. Area 2 is the middle area. Area 3 is outermost, furthest away from the y-axis. The three lines of equations correspond to the three areas of the line being edited.

Editing the equations consists of changing the values of the coefficients in the following equation:

\[grat = A \times \exp(B \times (T^C)) \times (T^D) + E \]

To select a line to edit, turn the knob when no coefficient of a line is selected (that is, when an edit box is not visible around any coefficient).

To edit a coefficient in the selected line, touch the coefficient you wish to edit. For coefficients A, B, C, D, or E, this brings up three more soft keys labeled Set to 0.0, Set to 1.0, and Set to ~1.0. (When the T coefficient is selected, only the Set to 0.0 soft key is displayed.) To set the value of the coefficient, turn the knob or touch one of the soft keys. The effect of the change on the graticule is shown immediately.

To finish making changes to an equation, touch the selected coefficient. The edit box disappears, and you can then turn the knob to select a new line to edit, or press the Menu button to exit the Make Graticule submenu.

NOTE. The Make Graticule submenu defines the boundaries of the distortion envelope for 1% gain. The default gain for the main K_Factor display is 5%. You can adjust the gain value with the Graticule Gain soft key of the Graticule submenu.

To adjust the gain, highlight the soft key, turn the knob until the desired gain value is displayed; then touch the soft key again.
Level Meter

Level Meter measures the amplitude difference between two points on a television signal and displays the result in an easy-to-read bar graph. Two examples of levels that may be monitored are the sync amplitude and the peak-to-peak amplitude of a video signal.

Level Meter Display

Figure 2-46 shows the typical Level Meter display monitoring the peak-to-peak amplitude of an NTC-7 Composite waveform. You can set the measurement for delta between two points in IRE units, delta between two points referenced to a value in percentage, or absolute between one point and zero (ground) in either IRE units or percentage.

\[
\text{Level(b-a)} = 140.1 \text{ IRE}
\]

Figure 2-46: Level Meter display
NOTE. Measurement units of IRE are the default when using the System Default Measurement Location file. If you want to see units in mV, you must create editable files for Measurement Locations and Video Source. In the editable Measurement Locations file, change the amplitude units to volts; in the editable Video Source file, change the source selection to the new Measurement Locations file name. See the VM700T Operator's Manual, Configuring the VM700T, for further information on creating, editing, and selecting user-created configuration files.

The max. and min. points of the measurement window and the reference pointer for the display are easy to set up using the menu choices under the Display Limits soft key, and you can quickly select the measurement points on a waveform using the menu choices under the Measure Position soft key.

Level Meter Main Menu

Pressing the Menu button with the Level Meter running displays the Level Meter main menu. The menu tree is shown in Figure 2-47.

Main Menu

Average Num

Average Num specifies the weighting factor to use for averaging. The Average Num range is 1 to 256. The default value is 32. To change the Average Num value, touch the Average Num soft key to highlight it, rotate the control knob until the desired weighting factor appears; then touch the Average Num soft key again. The effect of increasing the number used for averaging is that more time is required to arrive at a final value, but the readings become more stable as any noise variations of signal level are averaged out.

Display Limits

Display Limits calls up a menu for setting the Level Meter reference limits seen in the Level Meter display of Figure 2-48. Provision are available for setting the minimum and maximum amplitude values for the measurement window, and for setting a measurement reference pointer. The Expand and Move feature works on the vertical axis to permit a Level Meter display to be set up to monitor a level measurement of a video signal over a wide range of resolution and amplitudes.
Figure 2-47: Level Meter menu tree
Measure Mode

Figure 2-48: Display Limits menu showing undefined measurement points

Measure Position displays a menu and waveform for positioning the measurement cursors. The amplitude measurement may be set for the cursor difference (b-a) in IRE units, cursor difference (b-a/reference) in percentage relative to a reference, or cursor position with respect to zero. The number of cycles over which the measurement is made is also selectable for each cursor. The Measure Cycles display indicates the current selection for the active cursor. The measure position display is illustrated in Figure 2-49 showing the cursors positioned to measure the nominal peak-to-peak amplitude of the NTC-7 composite test signal. The active cursor has a vertical marker attached.

Acquire displays a menu used to select block acquisition mode and control the number of lines in the block acquired and the number of lines to step in a block.
Level Meter
Field = 1 Line = 100

Wfm --> HTC-7 Composite

Level(b-a) = 140.4 IRE

5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 msec

Figure 2-49: Measure Position display to locate the measurement points on a signal

Rescale
Rescale readjusts the vertical scale position to place the measured value within the Level Meter viewing area. After adjusting the Max and Min display limits to new values, using Rescale will adjust the display for the optimum resolution using those new limits.
Display Limits Submenu

Min

$n.n$ IRE

Min selects the minimum display limit marker for adjustment. With the Min soft key selected, rotating the control knob sets the minimum display window marker to the number displayed in the soft key box. It cannot be set to a higher amplitude than the reference pointer level. The minimum limit is either -999 mV or -200%.

With the Min soft key selected another menu choice is added: Set Min to $-nn\%$. This soft key provides a means to quickly set up a minimum percentage to monitor after the measurement points have been selected. Refer to Setting Up a New Measurement Window on page 2-93 for an example of how this soft key may be used. Also, the percentage setting of the soft key may be set between 0 and -10% by rotating the control knob while holding your finger on the Set Min to $-nn\%$ menu choice. The default is -10%.

Max

$n.n$ IRE

Max selects the maximum display limit marker for adjustment. With the Max soft key selected, rotating the control knob sets the maximum display window marker to the number displayed in the soft key box. It cannot be set to a lower amplitude than the reference pointer level. The maximum limit is either 2000 mV or 200%.

With the Max soft key selected another menu choice is added: Set Max to $nn\%$. This soft key provides a means to quickly set up a maximum percentage to monitor after the measurement points have been selected. Refer to Setting Up a New Measurement Window on page 2-93 for an example of how this soft key may be used. Also, the percentage setting of the soft key may be set between 0 and 10% by rotating the control knob while holding your finger on the Set Max to $nn\%$ menu choice. The default is 10%.
Set Value
n.n IRE

Set Value selects the reference pointer for adjustment. With the Set Value soft key selected, rotating the control knob sets the reference pointer to the value displayed in the soft key box. The reference pointer may be positioned at any location within the measurement range, and may be used to mark the nominal measurement point for a quick visual reference of value changes in the amplitude being monitored. The reference pointer pushes the maximum and minimum display limit markers if the reference pointer setting is moved past the set display limits.

With the Set Value soft key selected, another menu choice is added: Set Value to Result. After the measurement points have been selected using the choices under the Measure Position soft key, using the Set Value to Result soft key quickly aligns the reference pointer to the measured value. This is near or at the value that will be monitored if the cursors positions have to be adjusted to the correct points in the waveform. Refer to Setting Up a New Measurement Window on page 2–93 for an example of how this soft key can be used.

Disp. Num *#nnn*
Disp. Num *#nnn* is a user-selectable number that provides an identification number for a screen copy of the display.

Measure Position Submenu

Place (ab)
Sync&Bar

Place (ab) Sync&Bar automatically positions the a and b cursors on valid sync and bar portions of the input signal display. Once positioned, you may move either cursor by selecting the cursor and rotating the knob.

Pos. (a) *n.n* µSec

Pos. (a) nn µSec selects cursor “a” for time positioning in the waveform display over a range of 0.7 µsec to 64.2 µsec. This choice is not present when ASB. Meas. is active. The number displayed is the time position in the waveform from the leading edge of the horizontal sync.

Pressing this soft key displays the Measure Cycles n soft key. Measure Cycles selects the number, from 1 to 50, of subcarrier frequency cycles over which the measurement is made. The default is 3 cycles. This setting is associated with the selected cursor, and the horizontal size of the cursor box changes as the number in the soft key box is changed to indicate the measurement area on the displayed waveform.
Pos. (b) n.n μSec

Pos. (b) n.n μSec selects cursor “b” for time positioning in the waveform display over a range of 0.7 μsec to 64.2 μsec. The number displayed is the time position in the waveform from the leading edge of the horizontal sync. If cursor “b” is positioned in time before cursor “a,” the sign of the measurement readout reverses.

Pressing this soft key displays the Measure Cycles n soft key. Measure Cycles selects the number, from 1 to 50, of subcarrier frequency cycles over which the measurement is made. The default is 3 cycles. This setting is associated with the selected cursor, and the horizontal size of the cursor box changes as the number in the soft key box is changed to indicate the measurement area on the displayed waveform.

Measure Cycles n

Measure Cycles n selects the number, from 1 to 50, of subcarrier frequency cycles over which the measurement is made. The default is 3 cycles. This setting is associated with the selected cursor, and the horizontal size of the cursor box changes as the number in the soft key box is changed to indicate the measurement area on the displayed waveform.

Relative No. 1

Relative No. 1 turns on the relative measurement units of percentage and displays the Set Ref (100%) soft key that sets the 100% reference. Position the “a” and “b” cursors to the minimum and maximum points that define the 100% amplitude to use as the reference amplitude; then touch the Set Ref (100%) soft key. The amplitude readout will then reflect the percentage difference between the position of cursor “b” and the 100% reference value.

In Figure 2–50, the reference is set to 100 IRE as the 100% reference, and the measurement is based on the difference between the vertical position of the cursor and zero as a result of also selecting DC Cpl. ABS. Meas.
Level Meter
Field = 2 Line = 105

Wfm --> NTSC-7 Composite

Level(b/ref) = 36.2%

Figure 2–50: Display Position with measurement referenced to 100 IRE as 100%

Set Ref (nn\%) Set Ref (nn\%) sets the 100% reference.

Dc Cpl. ABS Meas. DC Cpl. ABS. Meas. switches to dc coupling of the input signal and produces a measurement value based on the vertical position of cursor b with respect to zero volts (ground) as seen in Figure 2–50. The Level Meter display that results from setting up for a referenced and absolute amplitude is seen in Figure 2–51.
Figure 2-51: Level Meter display as a result of the setup shown in Figure 2-50

Acquire Submenu

Block Mode

Block Mode turns Block mode acquisition on and off. When block acquisition is used, all the waveforms within a defined block are averaged to make the measurement. It is left to the user to ensure that all the waveforms within the selected block are the same. If only a single line is used for monitoring, Block mode should be turned off to avoid mixing waveform types in the measurement.

Block Lines n

Block Lines determines the number of lines in a Block mode acquisition from 2 to 32 lines.

Block Step n

Block Step determines the size of the step for a Block mode acquisition from 1 to 263 lines.
Setting Up a New Measurement Window

When positioning the cursors to new measurement points on a waveform, you can quickly set up a new measurement window. Following the procedure described below produces a display limit window around the measured value. From that point you may quickly expand the display to increase the resolution of the measurement and adjust the max. and min. display limits to those needed. If you have specific percentage limits for the max. and min. display limits from 0 to 10, you may set those percentages in the Set Min to –nn% and Set Max to nn% soft keys in advance.

To set up a new measurement window:

1. From the Level Meter without a menu, press the Menu button and select Measure Position.
2. Select the a and b cursors in turn and position them to the new measurement points.

NOTE. *If a is positioned to a higher amplitude than b, the amplitude difference will be negative.*

3. Press the Menu button to return to the first level menu; then touch the Display Limits soft key.
4. Touch the Set Value soft key; then touch the Set Value to Result soft key. This sets the reference pointer to the measured difference between the cursors.
5. Touch the Min soft key and touch the Set Min to –nn% soft key that displays.
6. Select the Max soft key and touch the Set Max to nn% soft key that displays.
7. Press the Menu button to return to the first level menu and touch Rescale.

This sets the measurement window and the reference pointer in the Level Meter display. The vertical scale is adjusted to provide optimum viewing of the Level Meter for the limits just set. From this point, you access the Display Limits menu again and set the max. and min. display limits narrower or wider as needed for the value you are monitoring. After setting the limits exactly where you need them, return to the first level menu and press the Rescale soft key again to optimize the Level Meter display for the new display limits.
Line Frequency

The Line Frequency measurement measures horizontal line frequency and field frequency. The Line Frequency display can use any video signal as input.

Figure 2–52 shows the Line Frequency display. Digital readouts show the line and field frequencies, while a graphical display shows the error from the nominal frequency.

Line Frequency (NTSC)

![Line Frequency Error Graph]

-0.3 -0.1 0.1 0.3 %

<table>
<thead>
<tr>
<th>Line Frequency</th>
<th>15.733 kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Frequency</td>
<td>59.94 Hz</td>
</tr>
</tbody>
</table>

Average Off

Figure 2–52: Line Frequency display

Line Frequency Menu

Pressing the Menu button when the Line Frequency measurement runs displays the Line Frequency menu (Figure 2–53).

Main Menu

- Average
- Num 32

Figure 2–53: Line Frequency menu tree
<table>
<thead>
<tr>
<th>Main Menu</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Num</td>
<td>Average Num specifies the weighting factor to use for averaging. The Average Num range is 1 to 256. The default value is 32. To change the Average Num value, touch the Average Num soft key to highlight it, rotate the knob until the desired weighting factor appears; then touch the Average Num soft key again.</td>
</tr>
<tr>
<td>Rescale</td>
<td>Rescale sets the expansion factor of the display to an appropriate scaling factor for the Line Frequency measurement display graticule. The x- and y-axes adjust to accommodate the rescaled display.</td>
</tr>
</tbody>
</table>
Luminance NonLinearity

The Luminance NonLinearity measurement measures luminance nonlinear distortion.

Figure 2–54 shows the Luminance NonLinearity display. The display plots the step height of each packet, as a percentage of the largest step-size packet. A digital readout of each packet's step size is also provided, as well as a peak-to-peak value showing the difference between the maximum and minimum step sizes.

The Luminance NonLinearity measurement can use an FCC Composite, NTC-7 Composite, or stair-step signal for input. The essential elements in the input signal are up to ten stair steps.

Figure 2–54: Luminance NonLinearity display
Luminance NonLinearity Menu

Pressing the Menu button when the Luminance NonLinearity measurement runs displays the Luminance NonLinearity menu (Figure 2–55).

Main Menu

- Average Num 32
- Reference
- Relative to Ref.
- Acquire
- VITS Search
- Rescale

Reference Submenu

- Store (1) Reference
- Store (2) Reference
- Show (1) Reference
- Show (2) Reference

Relative to Reference Submenu

- Use (1) Reference
- Use (2) Reference

Acquire Submenu

- Special Position
- Block Mode
- Block Lines 3
- Block Step 2

Special Position Submenu

- Auto Scan
- Manual Steps
- 1st Step
- Last Step
- Exit

1 Visible when Auto Scan is not selected.

Figure 2–55: Luminance NonLinearity menu tree

Main Menu

Average Num

Average Num specifies the weighting factor to use for averaging. The Average Num range is 1 to 256. The default value is 32. To change the Average Num value, touch the Average Num soft key to highlight it, rotate the knob until the desired weighting factor appears; then touch the Average Num soft key again.

Reference

Reference displays the Reference submenu which (1) stores the currently displayed values for use as a reference; or (2) displays previously stored reference values.
Measure Mode

Relative to Reference

Relative to Reference displays the Relative to Reference submenu that selects the reference to use for comparison in the measurement. When a stored reference is selected, the currently measured value is compared to the stored reference value.

Acquire

Acquire displays the Acquire submenu that controls how the signal is acquired for the Luminance NonLinearity measurement.

VITS Search

VITS Search searches the insertion test signals for a signal appropriate for the measurement. If an appropriate signal is not located, the message Not found displays briefly on the screen.

Rescale

Rescale sets the expansion factor of the display to an appropriate scaling factor for the Luminance NonLinearity measurement display graticule. The x- and y-axes adjust to accommodate the rescaled display.

Reference Submenu

Store (n) Reference

Store (1) Reference/Store (2) Reference saves the current measurement values as (1) Reference and (2) Reference, respectively. Selecting Store (1) Reference or Store (2) Reference overwrites previous (1) Reference or (2) Reference values. References are stored in nonvolatile memory and are retained when the VM700T is powered down.

Show (n) Reference

Show (1) Reference/Show (2) Reference displays the current values of (1) Reference and (2) Reference, respectively, plus the date and time the reference was stored and the channel the reference signal was on. If no reference value has been stored, touching either soft key displays a message that the reference is not defined.

Relative to Reference Submenu

Use (n) Reference

Use (1) Reference/Use (2) Reference selects the stored reference to which measured values are compared. If no reference value has been stored, touching either soft key displays a message that the reference is not defined.
Acquire Submenu

Special Position: Special Position provides soft keys to set the locations on the waveform where the measurement is made. Figure 2-56 shows the Luminance NonLinearity Special Position display.

Block Mode: Block Mode turns on Block mode. The block starts at the system line.

Block Lines: Block Lines sets the number of lines to average for the measurement. The default number of Block Lines to average is 3.

Block Step: Block Step sets the number of lines to step in the block. The default number of lines to step is 2.

Figure 2-56: Luminance NonLinearity Special Position display
Special Position Submenu

Auto Scan

Auto Scan when highlighted, automatically scans and determines measurement locations. When deselected, other soft keys (described below) appear to allow you to set measurement locations manually.

NOTE. If severe luminance nonlinear distortion is present, the VM700T may not be able to resolve all the steps that were present in the original signal. In such cases, you must use manual positioning to set the location of each staircase step.

Manual Steps

Manual Steps allows the number of luminance steps in the signal to be adjusted by rotating the knob.

1st Step

1st Step allows you to adjust the position of the first luminance step edge of the staircase by rotating the knob.

Last Step

Last Step allows you to adjust the position of the last luminance step edge of the staircase by rotating the knob.

Exit

Exit leaves the Special Position display and returns to the Luminance NonLinearity display.
MultiBurst

The MultiBurst measurement measures frequency response.

Figure 2–57 shows the MultiBurst display, which plots signal amplitude as a function of difference from the reference frequency.

The MultiBurst measurement automatically identifies FCC MultiBurst, NTC-7 Combination, or the Tektronix signal generator MultiBurst signals. The essential element in any signal used for the MultiBurst measurement is multiple bursts.

Figure 2–57: MultiBurst display
MultiBurst Menu

Pressing the Menu button when the MultiBurst measurement runs displays the MultiBurst menu (Figure 2–58).

Main Menu

- Average Num 32
- Reference
- Relative to Ref.
- dB Reference
- Acquire
- VITS Search
- Rescale

Reference Submenu

- Store (1) Reference
- Store (2) Reference
- Show (1) Reference
- Show (2) Reference

Relative to Reference Submenu

- Use (1) Reference
- Use (2) Reference

dB Reference Submenu

- 0 dB Ref Packet n/Flag
- Flag (Auto) /0 to 100

Acquire Submenu

- Special Position
- Block Mode
- Block Line 3
- Block Step 2

Special Position Submenu

- Set Default
- FlagStart Default
- Flag Width Default
- Packet # 1
- Center Default
- Width Default
- Exit

1 Flag (Auto) is displayed only when the 0 dB Ref softkey is set to Flag.
2 Displayed only when Packet # is selected.

Figure 2–58: MultiBurst menu tree
Main Menu

Average Num

Average Num specifies the weighting factor to use for averaging. The Average Num range is 1 to 256. The default value is 32. To change the Average Num value, touch the Average Num soft key to highlight it, rotate the knob until the desired weighting factor appears; then touch the Average Num soft key again.

Reference

Reference displays the Reference submenu which (1) stores the currently displayed values for use as a reference; or (2) displays previously stored reference values.

Relative to Reference

Relative to Reference displays the Relative to Reference submenu which selects the reference to use for comparison in the measurement. When a stored reference is selected, the currently measured value is compared to the stored reference value.

dB Reference

dB Reference displays the dB Reference submenu that selects the 0dB reference position by rotating the knob and sets the 0dB reference scale for the percentage of the flag amplitude.

Acquire

Acquire displays the Acquire submenu that controls how the signal is acquired for the MultiBurst measurement.

VITS Search

VITS Search searches the insertion test signals for a signal appropriate for the measurement. If an appropriate signal is not located, the message Not found displays briefly on the screen.

Rescale

Rescale sets the expansion factor of the display to an appropriate scaling factor for the MultiBurst measurement display graticule. The x- and y-axes adjust to accommodate the rescaled display.
Reference Submenu

Store (n) Reference

Store (1) Reference/Store (2) Reference saves the current measurement values as (1) Reference and (2) Reference, respectively. Selecting Store (1) Reference or Store (2) Reference overwrites previous (1) Reference or (2) Reference values. References are stored in nonvolatile memory and are retained when the VM700T is powered down.

Show (n) Reference

Show (1) Reference/Show (2) Reference displays the current values of (1) Reference and (2) Reference, respectively, plus the date and time the reference was stored and the channel the reference signal was on. If no reference value has been stored, touching either soft key displays a message that the reference is not defined.

Relative to Reference Submenu

Use (n) Reference

Use (1) Reference/Use (2) Reference selects the stored reference to which measured values are compared. If no reference value has been stored, touching either soft key displays a message that the reference is not defined.

dB Reference Submenu

Ref Packet/Flag

Ref Packet/Flag allows you to select the 0 dB reference position by rotating the knob. Displays either a packet number or “Flag” as selected by rotating the knob. The Flag (Auto) soft key appears only when the selection is Flag.

Flag (Auto) /0 - 100

Flag (Auto) automatically sets the 0 dB reference scale for the percentage of the flag amplitude. You may make a manual percentage selection from 0 to 100 by rotating the knob while this soft key is highlighted.

Acquire Submenu

Special Position

Special Position displays the Special Position submenu that sets the locations on the waveform where the measurement is made. Figure 2–59 shows the MultiBurst Special Position display.

Block Mode

Block Mode turns on Block mode. The block starts at the system line.
Block Lines

Sets the number of lines to average for the measurement. The default number of Block Lines to average is 3.

Block Step

Sets the number of lines to step in the block. The default number of lines to step is 2.

Figure 2–59: MultiBurst Special Position display

Special Position Submenu

- **Set Default**
 - Sets Default resets each measurement location to its default position from the Measurement Location file. If another soft key is highlighted, only the location given by the soft key is changed.

- **Flag Start Default**
 - Flag Start Default sets the location of the leading edge of the MultiBurst flag.

- **Flag Width Default**
 - Flag Width Default sets the width of the MultiBurst flag.
<table>
<thead>
<tr>
<th>Packet #</th>
<th>Packet # selects one of the six packets and sets its location and measurement area with two additional soft keys, Center Default and Width Default.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center Default</td>
<td>Center Default sets the center location of the packet.</td>
</tr>
<tr>
<td>Width Default</td>
<td>Width Default sets the measurement area of the packet.</td>
</tr>
<tr>
<td>Exit</td>
<td>Exit leaves the Special Position submenu and displays the MultiBurst screen.</td>
</tr>
</tbody>
</table>
Noise Spectrum

Noise Spectrum measures noise level and performs spectrum analysis.

Figure 2–60 shows the Noise Spectrum display. The display plots noise level in decibels (where 0 dB = 714 mV) versus frequency (in MHz). A digital readout also displays the rms noise level of the entire bandwidth.

Figure 2–60: Noise Spectrum display

Noise Spectrum Menu

Pressing the Menu button when the Noise Spectrum measurement runs displays the Noise Spectrum menu (Figure 2–61).

Main Menu

Average Num

Average Num specifies the weighting factor to use for averaging. The Average Num range is 1 to 256. The default value is 32. To change the Average Num value, touch the Average Num soft key to highlight it, rotate the knob until the desired weighting factor appears; then touch the Average Num soft key again.
Measure Mode

Main Menu
- Average
- Num 32
- Reference
- Relative to Ref.
- Cursors
- Acquire
- Filters Selection
- Rescale

Reference Submenu
- Store (1) Reference
- Store (2) Reference
- Show (1) Reference
- Show (2) Reference

Relative to Reference Submenu
- Use (1) Reference
- Use (2) Reference

Cursors Submenu
- Cursor 1
 - On
- Cursor 2
 - On
- Cursor 1
 - Active
- Cursor 2
 - Active

Acquire Submenu
- Input Gate
- Block Mode
- Block Line 3
- Block Step 2

Input Gate Submenu
- Normal
- Area Width
 - 35.8 µsec
- Area Pos
 - 35.8 µsec
- Exit

Filters Selection Submenu
- High Pass
 - 100 KHz
- Low Pass
 - 4.2 MHz
- Low Pass
 - 5.0 MHz
- Unified Weighing
- NTC-7 Weighing
- FSC Trap Filter
- Tilt Null

Figure 2-61: Noise Spectrum menu tree

Reference displays the Reference submenu which (1) stores the currently displayed values for use as a reference; or (2) displays previously stored reference values.

Relative to Reference displays the Relative to Reference submenu which selects the reference to use for compensation in the measurement. When a stored reference is selected, the currently measured value is compared to the stored reference value.
Measure Mode

Cursors

Cursors provides soft keys to display and activate the two Noise Spectrum cursors. Readouts for the cursors give the peak-to-peak decibel value at the frequency location of the cursor(s) and the noise level in dB (rms) between the cursors.

Acquire

Acquire displays the Acquire submenu that controls how the signal is acquired for the Noise Spectrum measurement.

Filters Selection

Filters Selection provides soft keys to select one or more noise filters or the Tilt Null feature.

Rescale

Rescale sets the expansion factor of the display to an appropriate scaling factor for the Noise Spectrum measurement display graticule. The x- and y-axes adjust to accommodate the rescaled display.

Reference Submenu

Store (n) Reference

Store (1) Reference/Store (2) Reference saves the current measurement values as (1) Reference and (2) Reference, respectively. Selecting Store (1) Reference or Store (2) Reference overwrites previous (1) Reference or (2) Reference values. References are stored in nonvolatile memory and are retained when the VM 700T is powered down.

Show (n) Reference

Show (1) Reference/Show (2) Reference displays the current values of (1) Reference and (2) Reference, respectively, plus the date and time the reference was stored and the channel the reference signal was on. If no reference value has been stored, touching either soft key displays a message that the reference is not defined.

Relative to Reference Submenu

Use (n) Reference

Use (1) Reference/Use (2) Reference selects the stored reference to which measured values are compared. If no reference value has been stored, touching either soft key displays a message that the reference is not defined.
Cursors Submenu

Cursor 1/2 On:
Cursor 1/2 On displays Noise Cursor 1 or 2. The cursor appears in the position it was in the last time the cursor was active.

Cursor 1/2 Active:
Cursor 1/2 Active enables the knob to move Noise Cursor 1 or 2, and displays the Nearest Peak soft key.

Nearest Peak:
Nearest Peak positions the active cursor on the nearest peak of the Noise Spectrum display.

Acquire Submenu

Input Gate:
Input Gate displays the Input Gate submenu and display used to set up the width and position of the signal area used for the Noise Spectrum measurement. Figure 2–62 shows the Noise Spectrum InputGate display.

Block Mode:
Block Mode turns on Block mode. The block starts at the system line.

Block Lines:
Block Lines sets the number of lines to average for the measurement. The default number of Block Lines to average is 3.

Block Step:
Block Step sets the number of lines to step in the block. The default number of lines to step is 2.
Measure Mode

Figure 2-62: Noise Spectrum Input Gate display

Input Gate Submenu

- **Normal**: Normal restores the Area Width and Area Pos. soft keys to their default values.
- **Area Width**: Area Width assigns the control knob to setting the width of the signal area (from 3.6 μSec to 35.8 μSec) used for the Noise Spectrum measurement.

NOTE: Low-frequency characteristics and frequency resolution may be changed, depending on the width selected.

- **Area Pos**: Area Pos assigns to control knob to positioning the signal area used for the Noise Spectrum measurement.
- **Exit**: Exit leaves the Input Gate menu and returns to the Noise Spectrum display.
Filters Selection Submenu

<table>
<thead>
<tr>
<th>Filter Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Pass 100 kHz</td>
<td>High Pass 100 kHz selects the 100 kHz high-pass filter. Signal information below 100 kHz is filtered out.</td>
</tr>
<tr>
<td>Low Pass 4.2 MHz</td>
<td>Low Pass 4.2 MHz selects the 4.2 MHz low-pass filter. Signal information above 4.2 MHz is filtered out.</td>
</tr>
<tr>
<td>Low Pass 5.0/6.0 MHz</td>
<td>Low Pass 5.0/6.0 MHz normally selects the 5.0 MHz low-pass filter. Signal information above 5.0 MHz is filtered out. Software version 2.05 and later also has a Low Pass 6.0 MHz filter selection. To select the Low Pass 6.0 MHz filter, touch the Low Pass 5.0 MHz soft key and turn the knob clockwise. The Low Pass 6.0 MHz filter remains selected until you touch the Low Pass 5.0 MHz soft key again and turn the knob counterclockwise, or until the VM700T is powered off.</td>
</tr>
<tr>
<td>Unified Weighting</td>
<td>Unified Weighting selects the standard CCIR unified weighting filter.</td>
</tr>
<tr>
<td>NTC-7 Weighting</td>
<td>NTC-7 Weighting selects the standard CCIR Rec. 421 weighting filter.</td>
</tr>
<tr>
<td>Fsc. Trap Filter</td>
<td>Fsc Trap Filter selects the subcarrier trap filter.</td>
</tr>
<tr>
<td>Tilt Null</td>
<td>Tilt Null automatically compensates for tilt (horizontal sag) to enable the Noise Spectrum measurement to be taken on a ramp signal. (Note: the noise floor might be slightly higher because the auto gain increase is limited by the larger peak-to-peak amplitude of the signal.)</td>
</tr>
</tbody>
</table>
SCH_Phase

SCH_Phase measures subcarrier-to-horizontal phase shift. The SCH_Phase measurement can be made on any composite video signal containing sync and color burst. Version 2.07 firmware added an additional display to the Dual SCH Phase Measurement: two bar graphs showing the Burst Relative Phase in degrees and the Sync Relative Timing in nanoseconds.

SCH_Phase refers to the phase relationship between the 50% point of the leading edge of sync and the zero crossings of the reference subcarrier (see Figure 2–63). Errors are expressed in degrees of subcarrier phase. The phase relationship is important when combining video sources or sequentially switching. Unless the sync edges of the two signals are properly timed to each other and the phases of the color bursts are matched, color shifts or horizontal jumps can occur when a switch is made. It is possible to achieve both timing relationships only if the two signals have the same SCH phase.

![Diagram of SCH_Phase measurement](image)

Figure 2–63: Timing relationships for SCH_Phase measurements and Sync Relative Timing and Burst Relative Phase measurements
SCH Phase Measurement

Figure 2–64 shows the main SCH Phase Measurement display that is presented when the measurement is first executed. The single solid arrow indicates the SCH Phase of the selected source channel as selected by the A/B/C SOURCE buttons. The numerical readout in the upper right corner of the display assists in determining the exact number being indicated by the arrow. Use the Menu button from this display to modify the measurement’s operation.

Dual SCH Phase Measurements

In a Dual SCH display, the SCH Phase measurements for the selected source channel and a reference channel are both shown. The solid arrow seen in Figure 2–65 shows the SCH phase measurement of the source channel selected by the A/B/C SOURCE buttons. A dashed arrow shows the SCH Phase measurement for the reference channel selection.

When the selected source and reference channel are different (for example, the source is Channel A and reference is Channel B) two additional measurements are displayed in both bar graph and numerical readout displays (see Figure 2–65). The bar graphs give a quick visual indication of closeness of channel match.
Numerical readouts give the numbers to assist in determining the exact channel-to-channel sync timing and color burst phase relationships. These two readouts show the phase difference between the source and reference channel burst and the sync timing difference between the source and reference channel sync.

Figure 2–65: Dual SCH display with Burst Relative Phase and Sync Relative Timing bar graphs

The sync timing between the two channels must be within a ±1 μs window around the 50% point of the source channel sync leading edge before the measurement can be made. If the sync timing of the reference is skewed out of that window, the error message “Cannot find reference H Blanking” will be displayed.

SCH_Phase Menu

Pressing the Menu button displays the SCH_Phase menu (Figure 2–66) used to make operational choices for the type of display and reference channel selections. In each case, the source channel remains the one that is selected by the A/B/C SOURCE buttons.
Main Menu

Average Num 32
Full Field
Dual SCH Display

Full Field Submenu

Rescale

Dual SCH Display Submenu

Source Only
Source and Chan. A
Source and Chan. B
Source and Chan. C

Figure 2-66: SCH_Phase menu tree

Main Menu

Average Num
Average Num specifies the weighting factor to use for averaging. The Average Num range is 1 to 256. The default value is 32. To change the Average Num value, touch the Average Num soft key to highlight it, rotate the knob until the desired weighting factor appears; then touch the Average Num soft key again.

Full Field
Full Field puts up a display of the SCH values for each line in the frame.

Dual SCH Display
Dual SCH Display selects the reference channel for color framing. The dual SCH display shows two arrows: a solid one for the source, a dashed one for the reference channel used for color framing. If the two arrows appear on the same side of the vertical center line of the display, the source and reference channel have the same color frame timing. If they appear on different sides, the source and reference channel have different color frame timing.

Dual SCH Display Submenu

Source Only
Source Only sets the color framing reference to the current signal source as selected by the front-panel A/B/C buttons.
Source and Channel

Source and Channel A/B/C sets the color framing reference to Channel A, B, or C, as appropriate. In dual-standard instruments, only sources programmed for the same format that is being used to make measurements will be presented to the user for selection. For example, if Channel A and Channel C are set for PAL format and Channel B (set for NTSC) is selected as the measurement source, Channel A and Channel C will not be presented on the menu.

Full Field Submenu

Rescale

Rescale sets the expansion factor of the display to an appropriate scaling factor for the SCH_Phase measurement display graticule. The x- and y-axes adjust to accommodate the rescaled display. The x-axis will scale to produce a signal display that will fill about 50% of the display area.

Figure 2–67 shows the SCH_Phase full-field display and Figure 2–68 shows the expanded display obtained with the Rescale soft key.
Figure 2-68: Rescaled SCH Phase full-field display
ShortTime Distortion

ShortTime Distortion measures the amount of distortion in the reference-to-bar level and bar-to-reference level transitions of a bar signal.

The ShortTime Distortion display (Figure 2–69) plots signal level as a percentage of the voltage difference between the reference level (0%) and the bar level (100%). When the ShortTime Distortion measurement is first invoked, a set of graticules appears on the display, indicating the 5% ShortTime Distortion limits for the IEEE-511 standard. The gain on the graticule can be modified by using the Graticule Gain soft key in the Graticule submenu. You can also define your own graticule with the soft keys in the Make Graticule submenu of the Graticule submenu. (Refer to *Defining Your Own Graticule* later on page 2–124 for more information.)

![Diagram showing ShortTime Distortion](image)

Figure 2–69: ShortTime Distortion display
Text readouts on the display show the following information:

- measurement name (ShortTime Distortion)
- signal standard being measured (NTSC)
- waveform type
- type (IEEE-511 or Special) and distortion percentage of graticule being used for the measurement
- amount of distortion in the rising or falling edge of the signal, referenced to the graticule being used
- rise and/or fall time of the signal in nanoseconds

The ShortTime Distortion measurement requires a T Bar signal to return a valid ShortTime Distortion measurement. The location of a T Bar signal can be specified in the “T Bar (SD)” line of the Measurement Locations file.

ShortTime Distortion
Main Menu

Figure 2–70 shows the ShortTime Distortion menu tree structure. Pressing the Menu button when the ShortTime Distortion measurement runs displays the ShortTime Distortion main menu.

Main Menu

Average Num

Average Num specifies the weighting factor to use for averaging. The Average Num range is 1 to 256. The default value is 32. To change the Average Num value, touch the Average Num soft key to highlight it, rotate the knob until the desired weighting factor appears; then touch the Average Num soft key again.

Change Display

Change Display toggles the display between Rising Edge only, Falling Edge only, and both Rising Edge and Falling Edge. The text readout on the display follows the graph selected.

Acquire

Acquire displays the Acquire submenu, which controls signal acquisition for ShortTime Distortion.
VITS Search

VITS Search searches insertion test signals for a T Bar signal. If an appropriate signal is not located, the message Not found displays briefly on the screen.

Rescale

Rescale sets the expansion factor of the display to an appropriate scaling factor for the measurement display graticule. The x- and y-axes adjust to accommodate the rescaled display.

Main Menu

Graticule Submenu

Make Graticule Submenu

Acquire Submenu

Special Position Submenu

Figure 2–70: ShortTime Distortion menu tree

Graticule Submenu

IEEE-511 Graticule

Special Graticule

Special Graticule selects the Special (user-defined) graticule for ShortTime Distortion measurements.
Make Graticule

Make Graticule displays the Make Graticule submenu, which provides soft keys to define the inner and outer graticules of the Special (user-defined) graticule. This soft key only appears when the Special Graticule soft key is highlighted.

Graticule

Graticule displays the Graticule submenu, controls the graticule gain and tracking of the current graticule, and to create a user-defined graticule.

Graticule Gain

Graticule Gain adjusts the graticule variable gain. The range is from 0.1% to 20.0%, with a resolution of 0.1%. To adjust the gain, highlight the soft key, turn the knob; then touch the soft key again.

Graticule Track

Graticule Track toggles to turn graticule tracking on or off. When the soft key is highlighted (graticule tracking on), the size of the graticule tracks the actual waveform.

Graticule Reset

Graticule Reset turns off graticule tracking and resets the graticule gain to 5.0%.

Make Graticule Submenu

Outer Graticule

Outer Graticule selects the outer pair of user-defined graticules for editing.

Inner Graticule

Inner Graticule selects the inner pair of user-defined graticules for editing.

Set to 0.0

Set to 0.0 sets the selected variable value to 0. This soft key is only displayed when a coefficient has been selected from one of the three editing lines.

Set to 1.0

Set to 1.0 sets the selected variable value to 1. This soft key is only displayed when a coefficient other than T has been selected from one of the three editing lines.

Set to −1.0

Set to −1.0 sets the selected variable value to −1. This soft key is only displayed when a coefficient other than T has been selected from one of the three editing lines.

Acquire Submenu

Special Position

Special Position displays the Special Position submenu and display (Figure 2–71) which sets the measurement locations for the ShortTime Distortion measurement.

Block Mode

Block Mode turns on Block mode. The block starts at the system line.
Block Lines
Block Lines sets the number of lines to average for the measurement. The default number of Block Lines to average is 3.

Block Step
Block Step sets the number of lines to step in the block. The default number of lines to step is 2.

Special Position Submenu

Set Default
Set Default resets the selected soft key (Bar Left or Bar Right) to its default location. If none are selected, all are reset. Default locations are specified in the current Measurement Locations file.

Measurement Location for the Short Time Distortion Measurement
Field = 1 Line = 16

Figure 2-71: Short Time Distortion Special Position display
Bar Left defines the location of the leading edge of Bar, represented by an arrow in the graph. When this soft key is highlighted, use the knob to move the Bar Left position.

Bar Right defines the location of the trailing edge of Bar, represented by an arrow in the graph. When this soft key is highlighted, use the knob to move the Bar Right position.

Exit leaves the Measurement Locations display and returns to the ShortTime Distortion display.

Defining Your Own Graticule

The ShortTime Distortion measurement’s graticule defines the boundaries of the distortion envelope for a given graticule gain setting. The displayed graticule consists of an outer graticule and an inner graticule, mirrored around the 50% level.

You can define your own graticule for the ShortTime Distortion measurement by means of the Make Graticule submenu. Do the following steps to access the Make Graticule submenu.

1. Press the Menu button to display the ShortTime Distortion main menu.
2. Touch the Graticule soft key.
3. Touch the Special Graticule soft key if it is not already highlighted. When Special Graticule is highlighted, the Make Graticule soft key displays beside it.
4. Touch the Make Graticule soft key. The Make Graticule submenu, consisting of the Outer Graticule and Inner Graticule soft keys, should be visible on the display and not highlighted. The top half of the inner and outer graticule pair (that is the graticule surrounding the bar-level region) should also display. Any changes made to the top half of the graticules are mirrored in the bottom half.

To change the shape of the outer or inner graticule, touch the corresponding soft key. This displays three editable lines of equations (see Figure 2–72).

Each graticule is divided into three areas. Area 1 is innermost, nearest the y-axis. Area 2 is the middle area. Area 3 is outermost, furthest away from the y-axis. The three lines of equations correspond to the three areas of the line being edited.

Editing the equations consist of changing the values of the coefficients in the following equation:

\[grat = A \times \exp(B \times (T^C))^\ast(T^D) + E \]

To select a line to edit, turn the knob when no coefficient of a line is selected (that is when an edit box is visible around any coefficient in the selected line).
To edit a coefficient in the selected line, touch the coefficient you wish to edit. For coefficients A, B, C, D, or E, this brings up three more soft keys labeled “Set to 0.0”, “Set to 1.0”, and “Set to −1.0”. (When the T coefficient is selected, only the “Set to 0.0” soft key is displayed.) To set the value of the coefficient, turn the knob or touch one of the soft keys. The effect of the change on the graticule is shown immediately.

To finish making changes to an equation, touch the selected coefficient. The edit box disappears, and you can then turn the knob to select a new line to edit, or press the Menu button to exit the Make Graticule submenu.

\[
gat = A \times \exp(B \times (T \wedge C)) \times (T \wedge D) + E
\]

Use Knob to Scroll; Use Touch Screen to Select or De-select the Coefficients.

Area 4 = -1.00 \times \exp(0.38 \times (0.125 \wedge 0.00)) \times (0.125 \wedge -1.00) + -2.00
Area 5 = -1.49 \times \exp(0.00 \times (0.269 \wedge 0.00)) \times (0.269 \wedge -1.00) + -0.50
Area 5 = -0.93 \times \exp(0.00 \times (0.800 \wedge 0.00)) \times (0.800 \wedge -1.00) + -1.00

Figure 2-72: Make Graticule display with inner graticule selected

NOTE. The Make Graticule submenu defines the boundaries of the distortion envelope for 1% gain. The default gain for the main ShortTime Distortion display is 5%. You can adjust the gain value with the Graticule Gain soft key of the Graticule submenu.

To adjust the gain, highlight the soft key, turn the knob until the desired gain value is displayed; then touch the soft key again.
TwoField

TwoField measures field time distortion. It is also useful for quick viewing of certain waveform characteristics.

Figure 2-73 shows the TwoField display. The display plots the amplitude of any combination of sync tip, back porch, luminance, or peak-to-peak chrominance, showing 525 points for each. The items displayed are selected by means of the TwoField Menu soft keys; the default is to display sync tip, back porch, and luminance.

The TwoField measurement requires a field square wave as input.

![TwoField Display](image)

Luminance at (35.0 usec), Sync & Back Porch are displayed
Average Off Slow Clamp at Back Porch APL = 51.5%

Figure 2-73: TwoField display
TwoField Menu

Pressing the Menu button when the TwoField measurement runs displays the TwoField menu (Figure 2–74).

Main Menu

Display Submenu

Acquire Submenu

Special Position Submenu

Sync Submenu

Clamp Couple Submenu

Cursors Submenu

Figure 2–74: TwoField menu tree

Main Menu

Average Num

Average Num specifies the weighting factor to use for averaging. The Average Num range is 1 to 256. The default value is 32. To change the Average Num value, touch the Average Num soft key to highlight it, rotate the knob until the desired weighting factor appears; then touch the Average Num soft key again.

Display

Display calls up the Display submenu for selection of waveforms.
Measure Mode

Acquire
Acquire calls up the Acquire submenu that provides acquisition control.

Cursors
Cursors provides soft keys to display and activate the cursors.

Rescale
Rescale sets the expansion factor of the display to an appropriate scaling factor for the TwoField measurement display graticule. The x- and y-axes adjust to accommodate the rescaled display.

Display Submenu
Sync Tip
Sync Tip selects sync tip for the display.

BackPorch
BackPorch selects back porch for the display.

Meas.Luma
Meas. Luma selects averaged luminance level at the measurement position for the display.

Meas.Chro P-P
Meas. Chro P-P selects averaged chrominance level at the measurement position for the display.

Peak Luma
Peak Luma selects peak luminance level in the active area for the display.

Acquire Submenu
Special Position
Special Position displays the Special Position submenu (see Figure 2–75) that sets the locations on the waveform where the measurement is made.

Sync
Sync provides soft keys to set the sync source.

Clamp Couple
Clamp Couple displays a submenu that allows you to set the Clamping mode used by the TwoField measurement.

Special Position Submenu
Set Default
Set Default resets the selected soft key to its default value, or resets all of the soft keys, if no soft key is currently selected at this level. Deselects peak luminance mode.

Meas. Pos
Meas. Pos chooses where the measurement is made. The center tick of the displayed box shows the measurement position. Select and turn the knob to change the location from the horizontal sync.
Measure Cycles

Measure Cycles chooses how many chrominance subcarrier cycles are averaged for the measurement. The width of the displayed box shows the measurement area determined by the selected number of cycles. Select and turn the knob to change the number of cycles.

Peak Luma

Peak Luma selects peak luminance level in the active area for the display.

Exit

Exit leaves the Special Position display and returns to the Two Field measurement display.

Figure 2-75: TwoField Special Position display

Sync Submenu

Sync A/B/C

Sync A/B/C selects the A, B, or C input for the sync source.

External Sync

External Sync selects the external sync input for the sync source.

Peak Luma

Peak Luma selects peak luminance level in the active area for the display.
 Clamp Couple Submenu

Position Sync Tip selects sync tip for the display.
Sync Tip

Position Position BackPorch selects back porch for the display.
BackPorch

Clamp Clamp Slow selects slow clamp speed. This speed allows hum
Slow effects to be visible, but is useful in coping with large DC
offsets on an input signal.

Clamp Clamp Fast selects fast clamp speed. This speed removes DC
Fast offset, hum, and bounce effects from the signal. This is the
default clamp setting for the TwoField measurement.

DC DC Coupling selects DC coupling (no clamping).
Coupling

 Cursors Submenu

Cursor Cursor On displays cursors. Two horizontal cursors appear in
On the position they were in the last time the cursor was active.

Cursor Cursor Relative selects relative cursor mode. The cursor
Relative delta displays relative to the reference.

Set Set 100% stores the current cursor delta as the reference.
100%

Cursor Cursor 1/2 Active displays cursors and causes the knob to
1/2 move cursor 1 or 2.
Active

Cursor Cursor Track displays cursors and causes the knob to move
Track both cursors.
VITS_ID

VITS_ID identifies and lists test signals in the vertical interval.

Figure 2-76 shows the VITS_ID signal ID display. It shows the name of any recognized signal in the vertical interval, and displays the waveform of the current system line. To select a new system line, touch the name of any signal in the upper portion of the display.

Figure 2-77 shows the VITS_ID VITS waveform display. It shows the waveform of all signals in the vertical interval for both fields. You can select a new system line by touching the position of any line shown on the display.

VITS Identification (NTSC)

<table>
<thead>
<tr>
<th>Field 1</th>
<th>Field 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line 15 --> GCR 8 Fields Seq.</td>
<td>Line 15 --> GCR 8 Fields Seq.</td>
</tr>
<tr>
<td>Line 16 --> VIRS</td>
<td>Line 16 --> Sin X/X</td>
</tr>
<tr>
<td>Line 17 --> FCC Multi Burst</td>
<td>Line 17 --> NTSC-7 Combination</td>
</tr>
<tr>
<td>Line 18 --> Pedestal</td>
<td>Line 18 --> Pedestal</td>
</tr>
<tr>
<td>Line 19 --> Pedestal</td>
<td>Line 19 --> VIRS</td>
</tr>
<tr>
<td>Line 20 --> Luminance Bar</td>
<td>Line 20 --> Pedestal</td>
</tr>
</tbody>
</table>

Field = 1 Line = 17

FCC Multi Burst

Figure 2-76: VITS_ID signal ID display
Measure Mode

VITS Identification (NTSC)
Field = 1 Line = 17

Figure 2-77: VITS ID full VITS waveform display

VITS ID Menu
Pressing the Menu button when the VITS ID measurement runs displays the VITS ID menu (see Figure 2-78).

Main Menu

| Signal ID | Full VITS Waveform |

Figure 2-78: VITS ID menu tree

Main Menu

Signal ID

Signal ID shows VITS names. The waveform of the system line is also displayed when menus are deselected.

Full VITS Waveform

Full VITS Waveform shows waveform lines 10 to 22 for both fields.
V_Blank

V_Blank shows vertical blanking waveforms and measures pulse widths and rise and fall times for the equalizer and serration pulses.

Figure 2–79 shows the full V_Blank display, which diagrams the vertical blanking intervals of 32 lines from each of four color fields. The current system line is indicated by a bracket beneath it. You can select a new system line by touching any line on the display.

Figure 2–80 shows the V_Blank equalizer pulse display, showing the width, rise time, and fall time of the equalizer pulse in field 2, line 2.

Figure 2–81 shows the V_Blank serration pulse display, showing the width, rise time, and fall time of the serration pulse in field 2, line 5.

Figure 2–82 shows the V_Blank V-sync display. This is essentially the same as the full V_Blank display, except that the vertical sync area is shown.

Vertical Blanking (NTSC)

Field - 1 Line - 12

Figure 2–79: V_Blank full display
Vertical Blanking (NTSC)

Average 32 -> 32 Timing Display

Average 32 Equalizer Pulse Serration Display Blanking Display V Sync Display Rescale

Figure 2-80: V_Blank equalizer pulse display

Vertical Blanking (NTSC)

Average 32 -> 32 Timing Display

Average 32 Equalizer Pulse Serration Display Blanking Display V Sync Display Rescale

Figure 2-81: V_Blank serration pulse display
Figure 2–82: V_Blank V-sync display

V_Blank Menu

Pressing the Menu button when the V_Blank measurement runs displays the V_Blank menu (Figure 2–83).

Main Menu

<table>
<thead>
<tr>
<th>Average Num 32</th>
<th>Equalizer Pulse</th>
<th>Serration Pulse</th>
<th>Blanking Display</th>
<th>V Sync Display</th>
<th>Rescale</th>
</tr>
</thead>
</table>

Figure 2–83: V_Blank menu tree

Main Menu

Average Num

Average Num specifies the weighting factor to use for averaging. The Average Num range is 1 to 256. The default value is 32. To change the Average Num value, touch the Average Num soft key to highlight it, rotate the knob until the desired weighting factor appears; then touch the Average Num soft key again.

Equalizer Pulse

Equalizer Pulse displays an equalizer pulse and measures it.
Measure Mode

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serration Pulse</td>
<td>Serration Pulse displays a serration pulse and measures it.</td>
</tr>
<tr>
<td>Blanking Display</td>
<td>Blanking Display shows the vertical blanking sections of four fields. Each field has 32 lines in the display area.</td>
</tr>
<tr>
<td>V Sync Display</td>
<td>V Sync Display displays the vertical sync sections of four fields. Each field has 11 lines in the display area.</td>
</tr>
<tr>
<td>Rescale</td>
<td>Rescale sets the expansion factor of the display to an appropriate scaling factor for the V_Blank measurement display graticule. The x- and y-axes adjust to accommodate the rescaled display.</td>
</tr>
</tbody>
</table>

Video Standard

Video Standard recognizes the standard of the current input source (NTSC or PAL).

When running a dual-standard VM 700T (that is, an instrument equipped with both Option 01, NTSC, and Option 11, PAL), it is possible to connect a signal of one standard to a channel that is expecting another. The Video Standard measurement guards against this error.

When you press the Measure button and touch the Video Standard soft key, the VM 700T recognizes the standard of the incoming signal on the current channel, and uses the correct Video_Source file for that standard.

NOTE. When Video Standard changes the standard for a source, the change is NOT reflected in the display shown when you touch the Video Source soft key. Also, executing a function that includes a RestoreConfig command may restore incorrect values into the Video Source file.

Video Standard stores its measurement results in the “Measurement Results” directory in /nvram0/ConfigFiles. To view Video Standard measurement results, press the Configure button, then touch Configure Files, Measurement Results, and Video Standard. The file shows the time that Video Standard was last executed and lists the standard recognized for each input channel. If no standard was recognized for a channel, “——” displays as the measurement result.
Auto Mode
Auto Mode

Auto mode of the VM700T performs many industry-standard measurements with great speed and accuracy. To do so, the VM700T selects portions of the video input signal, converts them from analog to digital representation, then analyzes the digitized values to produce numeric measurement results.

This section details the analysis methods for each Auto mode measurement that the VM700T is capable of making. In general, the analysis methods are similar to those currently used throughout the television industry.

Input Signals

Auto mode makes most of its measurements on the Vertical Interval Test Signals (VITS). The VITS that Auto mode can use include NTC-7 Composite and Combination VITS, FCC Composite and Multiburst VITS, FCC Color Bars, VIRS (Vertical Interval Reference Signal), and the Zero Carrier pulse. Several measurements do not use any special test signals. For example, the Horizontal Blanking Width measurements use active video lines.

Test Signal Locations

Test signal locations for Auto mode measurements are given by the Measurement Locations file. The system default Measurement Locations file uses the signal locations shown in Table 3-1.

<table>
<thead>
<tr>
<th>Signal Name</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero Carrier Pulse</td>
<td>Field 1, Line 16</td>
</tr>
<tr>
<td>FCC Composite VITS</td>
<td>Field 1, Line 18</td>
</tr>
<tr>
<td>FCC Multiburst VITS</td>
<td>Field 1, Line 17</td>
</tr>
<tr>
<td>VIRS</td>
<td>Field 1, Line 19</td>
</tr>
<tr>
<td>FCC Color Bars</td>
<td>Field 2, Line 17</td>
</tr>
<tr>
<td>Noise Line (Quiet)</td>
<td>Field 1, Line 12</td>
</tr>
</tbody>
</table>

Note that the default setting in the system default file in the Measurement Locations directory does not select Zero Carrier as the amplitude reference.

If the test signal is not located on the specified line when a measurement is performed that needs that test signal, then an error message is reported, such as No Multiburst or No Composite VITS.
Measurement Methods

This section describes how each Auto mode measurement is made. Where applicable, a timing standard is also listed for each measurement.

APL

The Average Picture Level is determined by measuring the active video area of the analog input signal with an internal digital voltmeter. APL is measured on a single field of video at the beginning of each measurement cycle (each pass through the list of selected measurements).

Peak Carrier and Zero Carrier Pulse

The peak carrier and Zero Carrier Pulse amplitudes are not displayed by the VM700T, but are measured and used as a reference for the Bar Top, Blanking Level, Blanking Variation, Sync Variation, FCC Multiburst Flag, and NTC7 Multiburst Flag measurements. These measurements are reported as % Carr.

Zero Carrier Pulse. Zero Carrier pulse amplitude and Peak Carrier amplitude are measured on the vertical interval line that includes the Zero Carrier pulse.

Eight occurrences of the vertical interval line carrying the Zero Carrier pulse are acquired, one frame apart.

Zero Carrier pulse amplitude is measured from back porch blanking level to the top of the Zero Carrier pulse. The blanking level is the average of 28 consecutive samples (2 μs), beginning at the sample that is 6.0 μs after the sync pulse leading edge 50% point. The Zero Carrier pulse top level is the average of 32 consecutive samples (2.25 μs), centered around the sample that is at the estimated center of the Zero Carrier pulse as defined in the appropriate Measurement Locations file in Configure (the default location is 25.5 μs after the 50% point of the leading edge of sync).

Peak Carrier Pulse. Peak Carrier amplitude is measured from the sync tip level to the level at the top of the Zero Carrier pulse. The sync tip level is the average of 28 consecutive sample values (2 μs), starting 1.5 μs after the sync pulse leading edge 50% point. The Zero Carrier pulse top level is the same as in the Zero Carrier pulse amplitude measurement, described in the previous paragraph.

(FCC Rules and Regulations Part 73.682 and NTC Report Number 7)

Bar Amplitude, Blanking Level, Bar Top, and Sync Amplitude

Thirty-two occurrences, one frame apart, are acquired of the vertical interval line carrying the FCC or NTC-7 Composite test signal. Acquiring samples from one line per frame over 32 frames, summing, and then averaging, reduces the effects of noise on the measurement. This also filters out the chrominance component of the signal, which is not needed to make these measurements.
Bar Top. The Bar Top level is the average of 12 consecutive sample values, centered midway between the approximate 50% points of the leading and trailing edges of the bar. This measurement is always expressed as % Carr and is not made unless Zero Carrier is selected as an amplitude reference in the appropriate Measurement Location file, and it is found on the designated line. Note that the default setting does not use Zero Carrier as a reference.

Blanking Level. Blanking level is calculated as a function of the Peak Carrier and Zero Carrier pulse amplitudes, which are determined with the method discussed previously under Peak Carrier and Zero Carrier Pulse topic. Then,

\[
\% \text{ Blanking Level} = \frac{\text{Zero Carrier pulse amplitude}}{\text{Peak Carrier amplitude}} \times 100
\]

This measurement is always expressed as % Carr and is not made unless Zero Carrier is selected as an amplitude reference in the appropriate Measurement Location file, and it is found on the designated line. Note that the default setting does not use Zero Carrier as a reference.

Bar Amplitude. Bar amplitude is measured from blanking level to the center of the Bar Top level (NTC-7, Section 3.2). The blanking level is the average of 12 consecutive samples. If FCC Composite VITS, then these samples are centered around the point that is 2.1 μs before the measured 50% point of the bar leading edge. If NTC-7 Composite VITS, then these samples are centered around the point that is 10.9 μs after the measured 50% point of the bar trailing edge. Bar amplitude is reported in IRE.

Sync Amplitude. Sync amplitude is measured from blanking level to the center of the horizontal sync tip pulse. The blanking level is the average of 16 consecutive sample values, centered around the sample that is 6.55 μs after the 50% point of the leading edge of the sync pulse (nominal center of burst). The sync tip level is the average of eight consecutive sample values, centered midway between the 50% points of the leading and trailing edges of the sync pulse. Sync amplitude is reported in % Bar (when bar is present on this line) or as IRE (when bar is not present).

Blanking Variation and Sync Variation (FCC Rules and Regulations Part 73.682)

Blanking Variation and Sync Variation measurement results are expressed as both % Carr and IRE.

Parts of the sync tip and the back porch are acquired from 85 different active video lines in field 1. The samples are acquired from every third line, starting at field 1, line 10, and ending with field 1, line 262. The hardware low-pass filter is used.
Blanking Variation. Blanking variation is measured as the peak-to-peak variation of the blanking level within a field [FCC 73.682(a)(16)]. A blanking level is calculated for each of the acquired back porch as the arithmetic mean of 16 consecutive sample values, starting 6.7 µs after the assumed position of the sync pulse leading edge 50% point. Within the resulting set of 85 blanking levels, the maximum blanking level and the minimum blanking level are found. The blanking variation measurement result is the difference between the two extreme levels, reported as % Bar (when bar is present on the composite VITS line) or as IRE (when bar is not present).

Sync Variation. Sync variation is measured as the peak-to-peak variation of the horizontal sync pulse amplitude within a field [FCC 73.682(a)(16)]. A sync tip level is calculated for each of the acquired sync tips as the arithmetic mean of 16 consecutive sample values, starting 1.8 µs after the assumed position of the sync pulse leading edge 50% point. Within the resulting set of 85 sync tip levels, the maximum and the minimum sync tip levels are found. The difference between the two extreme levels, reported as % Bar (when bar is present) or as IRE (when bar is not present).

Burst Amplitude

(FCC Rules and Regulations Part 73.699)

The Burst Amplitude measurement is made on the line where the Composite VITS is expected. Thirty-two occurrences of the line are acquired, one line per frame over 32 successive frames.

Burst amplitude is measured as the peak-to-peak amplitude of the color burst at burst center. For each of the acquired lines, the average peak-to-peak amplitude is determined over four subcarrier cycles at the center of burst. (The center of burst is located midway between the 50% points on the leading and trailing edges of the sampled burst chrominance envelope.)

The 32 results are summed and averaged, and the average is the measurement result. The measurement result is reported twice, first as % Sync and secondly as % Bar (when bar is present) or as IRE (when bar is not present).

FCC Horizontal Blanking Interval Timing Measurements

(FCC Rules and Regulations Part 73.699)

Thirty-two occurrences of the horizontal blanking interval are acquired from the active picture area, starting at field 1, line 50, and acquiring 32 lines separated by one frame and six lines. Therefore, the second acquisition is in field 2 at line 56).

FCC H Blanking. FCC Horizontal Blanking is measured between the points on the leading and trailing edges of horizontal blanking that are equivalent to 10% of sync (nominally +4 IRE).
FCC Sync Width. FCC Sync Width is measured between the 10% points on the leading and trailing edges of horizontal sync (nominally +4 IRE).

FCC Sync-Setup. FCC Sync-Setup is measured from the 10% point on the leading edge of sync (nominally +4 IRE) to the point on the trailing edge of blanking that is equivalent to 10% of sync (nominally +4 IRE).

FCC Front Porch. FCC Front Porch is measured from the 10% point on the trailing edge of setup (+4 IRE nominally) to the 10% point on the leading edge of sync (nominally –4 IRE).

Sync to Burst End. Sync to Burst End is measured from the 10% point on the leading edge of horizontal sync (nominally –4 IRE) to the half-amplitude point on the trailing edge of the burst envelope.

Breezeway Width. Breezeway Width is measured from the 10% point on the trailing edge of horizontal sync (nominally –4 IRE) to the leading half-amplitude point of the burst envelope.

FCC Burst Width. FCC Burst Width is measured from the leading half-amplitude point on the chrominance envelope of burst to the trailing half-amplitude point on the chrominance envelope.

Sync Rise Time and Sync Fall time. The Sync Rise time and Sync Fall times are measured between the 10% and 90% points on the leading and trailing edges of horizontal sync (nominally –4 IRE and –36 IRE).

Note that the RS170-A and FCC specifications for these two measurements are identical, so the measurements are displayed only once by Auto mode.

(RS-170A)

Thirty-two occurrences of the horizontal blanking interval are acquired from the active picture area, starting at field 1, line 50 and acquiring 32 lines separated by one frame and six lines. Therefore, the second acquisition is in field 2 at line 56.

RS-170A H Blanking. RS-170A H Blanking is measured between the points on the leading and trailing edges of horizontal blanking that are equivalent to 50% of sync (nominally 20 IRE).

RS-170A Sync Width. RS-170A Sync Width is measured between the 50% points on the leading and trailing edges of horizontal sync (nominally –20 IRE).
RS-170A Sync-Setup. RS-170A Sync-Setup is measured from the 50% point on the leading edge of sync (nominally –20 IRE) to the point on the trailing edge of blanking that is equivalent to 10% of sync (nominally +4 IRE).

RS-170A Front Porch. RS-170A Front Porch is measured from the 10% point on the trailing edge of setup (+4 IRE nominally) to the 50% point on the leading edge of sync (nominally –20 IRE).

Sync to Burst Start. The time from Sync to Burst Start is measured from the 50% point on the leading edge of horizontal sync (nominally –20 IRE) to the leading zero crossing of the first half-cycle of burst that exceeds 50% of burst amplitude to the trailing zero crossing of the last half-cycle of burst that exceeds 50% of burst amplitude.

RS-170A Burst Width. RS-170A Burst Width is measured from the leading zero crossing of the first half-cycle of burst that exceeds 50% of burst amplitude to the trailing zero crossing of the last half-cycle of burst that exceeds 50% of burst amplitude. (RS-170A Notes 11, 12.) If burst is not locked to sync, then the envelope width is measured instead, and results are displayed in cycles along with the message, “Envelope Measured.”

V Blank 4 IRE F1 and V Blank 4 IRE F2

(FCC Rules and Regulations Part 73.699)

Vertical blanking width is measured between the points on setup at a level equal to 10% of sync amplitude above blanking level (nominally +4 IRE), where setup immediately precedes and follows the vertical blanking interval. Two measurements are made, one for field 1 blanking (F1) and the other for field 2 blanking (F2).

Four successive occurrences of all the lines in the frame that may contain the beginning or end of field blanking, plus one “extra” line, are acquired. The acquisitions are as follows:

- field 2, line 258 through and including field 2, line 263 (start of field 1 blanking)
- field 1, line 20 through and including field 1, line 25 (end of field 1 blanking)
- field 1, line 259 through and including field 1, line 264 (start of field 2 blanking)
- field 2, line 20 through and including field 2, line 25 (end of field 2 blanking)

Tilt on a blanked line could be erroneously identified as the beginning of video (end of blanking). If sync is present, each line has any tilt removed using the back porch of one line (line A for this example) and the front porch of the next
line (line B). The tilt is removed from Line A by pivoting line A around its back porch level to bring the front porch of Line B to the same level. The “extra” line is acquired in this measurement only so its front porch can be used for tilt correction.

The lines in the vertical blanking interval which never contain active video are not acquired and are always counted in the measurement result.

Only the active video area of the lines possibly containing the beginning or end of blanking is examined (from 10.4 µs to 52.66 µs after the start of sampling). The search level (amplitude considered to be blanking) is set as 10% of sync amplitude. If sync is not present, a default value is used.

On the line where blanking start or stop is found, the portion of the active video area of that line that is blanked is reported (in tenths of the possible active video area).

The measurement result is a summation of the following areas:
- the lines in the vertical blanking interval which never contain active video and are not acquired
- the lines acquired where a blanking transition is not found
- the portion (in tenths) of the active video area found to be blanked on lines containing a blanking transition

V Blank 20 IRE F1 and V Blank 20 IRE F2

(RS-170A)

The measurement method is identical to V Blank 4 IRE F1 and V Blank 4 IRE F2, except the vertical blanking width is measured between the points on setup at a level equal to 50% (versus 10%) of sync amplitude above blanking level, nominally +20 IRE (versus +4 IRE), where setup immediately precedes and follows the vertical blanking interval.

FCC Equalizer and FCC Serration

(FCC Rules and Regulations Part 73.699)

Timing measurements made within the vertical interval are Equalizing Pulse Width and Serration Width. The middle half of two different lines within field 2 of the vertical interval are acquired from 32 successive frames: field 2, line 2 (which contains an equalizing pulse) and field 2, line 5 (which contains a serration).

FCC Equalizer. FCC Equalizer is measured between the 10% points on the equalizing pulse (nominally −4 IRE). The sample values acquired from the middle pulse of field 2, line 2 are used. The result is expressed as a % of sync width, which is determined from 32 occurrences of sync taken one frame, six lines apart (the same sampling pattern as the Horizontal Timing measurements).
FCC Serration. FCC Serration is measured between the 90% points of serration (nominally –36 IRE). The sample values acquired from the serration on field 2, line 5 are used. The result is expressed in microseconds.

RS-170A Equalizer and RS-170A Serration

(RS-170A)

The timing measurements made within the vertical interval are Equalizing Pulse Width and Serration Width. The middle half of two different lines within field 2 of the vertical interval are acquired from 32 successive frames: field 2, line 2 (which contains an equalizing pulse) and field 2, line 5 (which contains a serration).

RS-170A Equalizer. The RS-170A Equalizer measurement is done at the 50% points on the equalizing pulse (nominally –20 IRE). The sample values acquired from the middle pulse of field 2, line 2 are used. The result is expressed in microseconds.

RS-170A Serration. RS-170A Serration is measured between the 50% points of serration (nominally –20 IRE). The sample values acquired from the serration on field 2, line 5 are used. The result is expressed in microseconds.

VIRS Measurements

(FCC 73.699)

Four measurements are made on VIRS: VIRS Setup, VIRS Luminance Ref, VIRS Chroma Ampl, and VIRS Chroma Phase. VIRS Chroma Ampl is reported as % Burst and % Bar (when Bar is present on the composite VITS line), or in IRE. Samples are acquired from 32 consecutive occurrences of the VIRS, each separated by a frame.

VIRS Setup. Reference Black is measured from blanking level to setup level. Blanking level is the average of 16 consecutive sample values, centered around the sample located 2 μs before the 50% point of the pedestal leading edge. Setup level is the average of 16 consecutive sample values, centered around the sample 42 μs after the 50% point of the pedestal leading edge.

VIRS Luminance Reference. Luminance Reference is measured from blanking level to the VIRS luminance reference level. Blanking level is the same as in the Setup measurement description above. The VIRS luminance reference level is the average of 16 sample values, centered around the sample located 30 μs after the 50% point on the pedestal leading edge.
VIRS Chroma Ampl (Chrominance Amplitude), VIRS Chroma Amplitude is measured as the peak-to-peak amplitude of the VIRS chrominance packet. Peak-to-peak amplitude is the peak-to-peak amplitude of the four subcarrier cycles which are centered around the sample 12 μs after the 50% point on the pedestal leading edge. The measurement result is reported as % Burst and % Bar (when Bar is present on the composite VITS line), or in IRE.

VIRS Chroma Phase (Chrominance Phase), Chrominance phase is measured as the difference between the VIRS chrominance packet phase and color burst phase. VIRS chrominance packet is measured over four subcarrier cycles centered around the sample 12 μs after the 50% point of the pedestal leading edge. Burst phase is measured over four subcarrier cycles centered around the sample at the center of burst (which is midway between the 50% points on the leading- and trailing edges of the sampled burst envelope).

Line Time Distortion and Pulse-to-Bar Ratio

(NTC Report Number 7 and CCIR Recommendation Number 569)

Line time distortion and pulse-to-bar ratio are measurements of linear waveform distortion. Samples are acquired from 32 occurrences of the NTC-7 or FCC Composite VITS, one frame apart.

Line Time Distortion, Line time distortion is measured as the peak-to-peak amplitude change along the bar top, excluding the first microsecond and the last microsecond (*NTC-7, Section 3.4*). Noise is reduced and any chrominance component eliminated from the signal by averaging 32 lines of video.

The line time distortion measurement is made along the average luminance signal bar top. A set of arithmetic means is calculated across the bar top, excluding one microsecond following the bar leading edge 50% point and one microsecond before the bar trailing edge 50% point. Each mean value summarizes the values of 12 consecutive samples (0.84 μs). The 12 samples used for each mean are overlapping, in that the last six samples of the first mean are also used as the first six samples of the second mean. For a typical bar top width, there will be 35 to 40 mean values calculated.

From the entire set of calculated means, the minimum and the maximum mean values are found. The peak-to-peak amplitude change along the bar top is the absolute difference between these two extreme mean values. Then,

\[
\% \text{ Line time distortion} = \frac{\text{peak-peak amplitude difference}}{\text{bar amplitude}} \times 100
\]

where bar amplitude is measured using the method previously explained.

Pulse-to-Bar Ratio, Pulse-to-bar ratio is measured as the peak amplitude of the 2T pulse, expressed as a % of the bar amplitude.
The peak amplitude of each of the 32 acquired 2T pulses is determined relative to blanking level. Blanking level is measured using the method previously explained. For FCC Composite VITS, the blanking level measurement is centered 2.1 μs before the bar leading edge 50% point. For NTC-7 Composite VITS, the blanking level measurement is centered 10.9 μs after the bar trailing edge 50% point.

Given the narrowness of the 2T pulse and the sampling frequency of the VM700 (four times subcarrier), only six to eight samples will be acquired from a 2T pulse. Also, in general, there will be no sample acquired exactly at the peak of the 2T pulse. An interpolation of the peak area is performed for each pulse, and the result is used as the peak pulse amplitude. The 32 peak amplitude results are summed and averaged. Then,

\[
\text{Pulse-to-bar ratio} = \frac{\text{average 2T pulse peak amplitude}}{\text{bar amplitude}} \times 100
\]

where bar amplitude is measured using the method previously explained.

2T Pulse K-factor and IEEE-511 ST Dist

(1T Leading-edge Short-time Distortion)

Thirty-two occurrences of the NTC-7 Composite VITS are acquired, each one frame apart.

2T Pulse K-factor. Measured as the greatest weighted amplitude of a positive-going or negative-going ringing half-wave, which either precedes or follows the 2T pulse and is within one microsecond of the center of the pulse.

The weighting graticule used is the CMTT International 2T Pulse Ringing graticule. The central vertical axis of the graticule is placed on the center line of the 2T pulse and extends one microsecond on either side of the 2T pulse. The central horizontal axis of the graticule (which separates positive ringing from negative ringing) is placed along a blanking level calculated as the arithmetic mean of four consecutive sample values centered at each point 1 ms to the left and to the right of the 2T pulse center.

IEEE-511 Short-Time Distortion. Measured as a weighted function of time, the results are the weighted peak deviation from flatness within 1 microsecond of the center of a 1T bar transition (ANSI/IEEE Std 511-1979, Section 4.4, Appendix B). The measurements are made on the leading edge of the NTC-7 Composite VITS bar. Measurement results are reported in units of %SD.

S/N Measurements

(NTC Report Number 7 or CCIR Recommendation Number 567)

Five different signal-to-noise measurements are made by the VM700T using the CCIR Recommendations 567 Unified Filter Set: S/N NTC7 Unweighted, S/N NTC7 Lum-Weighted, S/N Unif Unweighted, S/N Unif Lum-Weighted, and S/N Periodic.
Acquisition and Analysis. The measurement routine acquires 32 full quiet lines from the vertical interval, the same line from each successive frame. The quiet line location is specified in the Measurement Locations file (the default location is field 1, line 12).

The data is analyzed for noise over all the data points in a 512 sample segment on each of the acquired lines. Each segment starts 20 μs past the 50% point on the leading edge of line sync, which excludes sync from the analysis and uses only the data in the center of the quiet lines.

This provides 32 x 512, or 16,384 sample values for the noise analysis. This time-domain data is prepared and transformed by a Fast Fourier Transform (FFT) algorithm into the frequency domain. Values represented in the 1025 point frequency-domain array output by the FFT algorithm range from DC to 7.16 MHz.

Data “preparation” on the 16,384 samples prior to FFT transformation is performed differently on the S/N Periodic measurement than on the (random) S/N Unweighted and S/N Lum-Weighted measurements.

S/N Unweighted and S/N Lum-Weighted (Random Noise) Data Preparation. To significantly reduce periodic components from the S/N Unweighted and S/N Lum-Weighted measurements, the following processing technique is employed.

The 512 sample arrays from the first four lines acquired are summed, which results in a 512 sample array with chrominance removed. The samples from the second four lines (acquired lines 5 through 8) are summed, the result is inverted, and then subtracted from the first four-line sum. This removes the luminance component and yields a resultant 512 sample array with virtually no chrominance or luminance components.

This sequence is repeated for the remaining three sets of eight lines. These four resultant 512 sample arrays are then set end to end to form the 2048 sample array on which an FFT is performed.

S/N Periodic Data Preparation. To enhance the periodic noise components of the signal for the S/N Periodic measurement, the following processing technique is employed.

The 512 sample arrays from the first eight lines acquired are summed, which results in an intermediate 512 sample array with luminance component increased, but with the chrominance component removed.

The 512 sample arrays from the first eight lines acquired are summed again in the pattern “array#1 - array#2 + array#3 - array#4 ...” Because chrominance phase alternates 180° each frame, this increases the chrominance component to form a second intermediate 512 sample array.
The two intermediate arrays are summed to form a resultant 512 sample array with periodic noise components increased significantly more than the random noise component. This sequence is repeated for the remaining three sets of eight lines. The four resultant 512 sample arrays are then set end to end to form the 2048 sample array on which an FFT is performed.

Frequency Domain Array Filtering – Unweighted SNR. The frequency domain amplitude array for the Unweighted SNR measurement is multiplied by an unweighted noise filter, which is a software implementation of an industry-accepted hardware filter.

Frequency Domain Array Filtering – Luminance Weighted SNR. The frequency domain amplitude array for the Luminance Weighted SNR measurement is multiplied by a luminance weighted filter, which is also a software implementation of an industry-accepted hardware filter.

Frequency Domain Array Filtering – Periodic SNR. The frequency domain amplitude array for the Periodic SNR measurement is multiplied by an unweighted noise filter.

Frequency Domain Array Filtering – Unified Filter Set. The unweighted noise and luminance filters in this set comply with **CCIR Recommendation 567**.

The unweighted noise filter has a cutoff frequency of 5.0 MHz and is of the lumped-constant design. The filter is described in **CCIR Rec. 567**.

The Luminance Weighting filter has a much lower cutoff frequency than the Unweighted filter, and is derived directly from **CCIR Rec. 567**.

Measurement Results. Unweighted SNR and Periodic SNR are measured as the ratio, in dB, of bar amplitude to the unweighted rms amplitude of the noise on a quiet line. Luminance-Weighted SNR is measured as the ratio, in dB, of bar amplitude to the luminance-weighted rms amplitude of the noise on a quiet line. The results of the noise measurements are reported in dB, relative to bar amplitude, which is nominally 100 IRE. If the bar is not present on the composite VITS line, the results are scaled to 100 IRE, (100 IRE = 714 mV).

Chroma-Lum Delay and Chroma-Lum Gain (NTC-7)

Samples are acquired from 32 occurrences of the Composite VITS, one frame apart. The location of Composite VITS, either FCC or NTC-7, is specified in the appropriate Measurement Locations file.

Chroma-Lum Delay. Measured as the time difference between the luminance component and chrominance component of the modulated 12.5T pulse.(NTC-7, Section 3.7).
The VM700T measures the time delay as the difference between the locations of the centers of the modulated 12.5T pulse luminance and chrominance components. The measurement result is positive if the chrominance pulse center location follows (lags) the luminance pulse center location.

To locate the center of the 12.5T pulse luminance component, the 32 acquired lines are averaged to eliminate the chrominance component and to reduce noise. The average luminance pulse is corrected for baseline tilt and is (software) low-pass filtered to ensure the chrominance component is eliminated before the center of the luminance component is determined.

To locate the center of the 12.5T pulse chrominance component, the chrominance is summed over all 32 lines, band-pass filtered, and low-pass filtered (both software filters) to reduce noise and produce a chrominance envelope from which the center of the pulse chrominance component is determined.

Then, the chrominance/luminance delay inequality is computed as the difference between the chrominance envelope center location and the luminance pulse center location.

Chroma-Lum Gain. Measured as the peak-to-peak amplitude of the chrominance component of the modulated 12.5T pulse (NTC-7, Section 3.6).

The peak-to-peak chrominance amplitude is measured on one subcarrier cycle at the center of the modulated 12.5T pulse after the luminance component has been removed. Then,

\[
\frac{C/L \text{ gain inequality}}{\text{peak-peak chrominance amplitude}} \times \frac{\text{luminance amplitude}}{100}
\]

NTC Report Number 7

Video is routed through the hardware high-pass filter and then samples are acquired from 32 occurrences of the Composite VITS, one frame apart. The location of Composite VITS, either FCC or NTC-7, is specified in the appropriate Measurement Locations file.

The measurements are made at different locations on the linearity staircase part of the VITS. The measurement locations are determined by averaging eight of the 32 lines and locating the approximate centers of the six chrominance packets.

The actual measurements are made on 32 acquired lines, with each measurement window consisting of 16 consecutive samples (which represent four subcarrier cycles) centered in the chrominance packet.
Differential Gain. Differential Gain is measured as the difference between two peak-to-peak chrominance amplitudes: the amplitude of the modulated staircase chrominance packet with the largest such amplitude and the amplitude of the modulated staircase packet with the smallest such amplitude (*NTC-7, Section 3.13*). The measurement result is expressed as a % of the largest packet amplitude.

Differential Phase. Differential phase is measured as the largest difference in phase between any two staircase chrominance packets (*NTC-7, Section 3.14*).

(*NTC-7, Section 3.9*)

Lum Nonlinearity. Video is routed through the hardware differential step filter, then samples are acquired from 32 occurrences of the Composite VITS one frame apart. The location of Composite VITS, either FCC or NTC-7, is specified in the appropriate Measurement Locations file.

Luminance nonlinearity is measured as the difference between the largest and smallest peaks. The peaks are created from the risers on the staircase by the differential step filter. The result is expressed as a % of the largest peak amplitude.

Relative Burst Gain. Relative burst gain is measured as the difference between the peak-to-peak chrominance amplitude of burst and the peak-to-peak chrominance amplitude of the chrominance packet that precedes the first riser of the staircase. (*NTC-7, Section 5.2.*) The result is expressed as a % of the packet amplitude.

The burst amplitude on a line is the peak-to-peak amplitude averaged over four subcarrier cycles in the center of burst. Then,

\[
\text{% Relative burst gain} = \left(\frac{\text{burst amplitude} - \text{packet amplitude}}{\text{packet amplitude}} \right) \times 100
\]

Relative Burst Phase. Relative burst phase is measured as the difference in phase between the color burst and the packet that precedes the first riser of the staircase (*NTC-7, Section 5.3*).

Burst phase is measured over four subcarrier cycles in the center of burst, and is simply the difference in the phase angle of burst and the packet that precedes the first riser of the staircase.

Multiburst Measurements

Eight Multiburst measurement results are reported on either the FCC Multiburst or NTC-7 Combination test signals: multiburst flag amplitude (as % Carr and % Bar) and the peak-to-peak amplitude of each of the six multiburst packets.

Samples are acquired from 32 occurrences of either the FCC Multiburst VITS or the NTC-7 Combination VITS, one frame apart.
The location of the multiburst test signal, either FCC or NTC-7, is specified by the multiburst entry in the appropriate Measurement Locations file. Note that while the Auto mode display lists both groups of measurements (FCC and NTC-7), multiburst measurements can be made on only one of the two test signals at a time.

Multiburst Flag. The Multiburst flag measurements measure amplitude from back porch blanking level to the center point of the flag top (NTC-7, Section 3-8).

The back porch blanking level is the average of 16 consecutive sample values starting 1.5 μs before the 50% point of the flag leading edge. The flag top level is the average of 16 consecutive sample values starting with the sample midway between the 50% points of the flag leading and trailing edge. Flag amplitude is the difference between flag top level and blanking level.

Multiburst Packet. The multiburst packet amplitudes are measured as the peak-to-peak amplitude of each of the multiburst packets (NTC-7, Section 3-8). The packet amplitudes are measured at fixed time offsets from the 50% point on the flag leading edge.

These four measurements are, respectively: chrominance nonlinear gain distortion (20 IRE chroma and 80 IRE chroma with respect to the 40 IRE chroma), chrominance nonlinear phase distortion, and chrominance-luminance intermodulation.

Samples are acquired from 32 occurrences of the NTC-7 Combination VITS, one frame apart. These measurements can only be made on the NTC-7 Combination VITS.

The measurements are made on the 20 IRE, 40 IRE, and 80 IRE chrominance packets. The location of the NTC-7 Combination VITS signal is specified by the NTC-7 Combination entry in the appropriate Measurement Locations file.

NTC-7 20 IRE Chroma, NTC-7 80 IRE Chroma. Measured as the peak-to-peak amplitude of the first (nominally 20 IRE) and third (nominally 80 IRE) chrominance packets in the 3-level chrominance test signal, referenced to the peak-to-peak amplitude of the middle packet (nominally 40 IRE) (NTC-7, Section 3-10).

The peak-to-peak amplitudes of each of the three packets is determined over eight subcarrier cycles on 32 lines.

NTC-7 Chr NL Phase. Measured as the difference between the largest and the smallest phase values (measured relative to the phase of the 20 IRE packet) among the 3-level chrominance test signal subcarrier packets (NTC-7, Section 3-11).
The phase of each of the three packets is determined over eight subcarrier cycles on 32 lines.

NTC-7 Chr Lum Intmd. NTC-7 Chrominance-Luminance Intermodulation is measured as the maximum amplitude deviation of the 3-level chrominance test signal luminance pedestal from the part of the pedestal immediately preceding the 3-step chrominance packet (NTC-7, Section 3-15).

The luminance amplitudes of the filtered part of the pedestal is the average of 32 sample values centered around the sample at the center of each chrominance packet, after the chrominance component is removed. The luminance amplitude immediately preceding the 3-step chrominance packet is the average of 32 consecutive samples centered around the sample 1.5 µs before the 50% point of the 20-IRE chrominance packet leading edge.

ICPM

The Incidental Carrier Phase Modulation measurement is made on the staircase portion of either the FCC or NTC-7 Composite VITS signals. The Zero Carrier Pulse is required as an amplitude reference. This measurement requires that both the video output and the quadrature output of a demodulator be connected to the VM700T. Video may be connected to either channel A or B, but the quadrature output must always be connected to the channel C input. The Zero Carrier Pulse must be enabled at the demodulator, and must be selected for use as a reference in the appropriate Measurement Locations file. The location of both the Zero Carrier Pulse and the Composite VITS, either FCC or NTC-7, are also specified in the appropriate Measurement Locations file.

Traditionally, ICPM has been an out-of-service measurement, made on a full field luminance staircase signal with no aural carrier present. The Auto mode ICPM measurement is an in-service measurement. To allow the ICPM measurement to be made in service, it is performed on an inserted Composite VITS signal with the demodulator’s sound notch (sound trap) in, which eliminates the 4.5 MHz aural carrier.

Both the video and quadrature signals are routed through the hardware low-pass filter. The lines containing the Zero Carrier Pulse and the Composite VITS are acquired from 64 consecutive frames, for both the video input and the quadrature input. The pattern with which the lines are acquired is as follows.

The Zero Carrier Pulse and Composite VITS lines of the video input are acquired from the first frame. Next, the Zero Carrier Pulse and Composite VITS lines of the quadrature input are acquired from the second frame. This pattern repeats for 64 frames, resulting in the acquisition is four arrays, each containing 32 lines of data. Each set of 32 lines is then averaged.

Amplitudes of the sync tip, blanking at back porch, and each of the staircase steps are then determined by averaging 16 samples at the center of each of these areas. Amplitudes for the video signal’s sync tip, blanking, and staircase steps are measured using video Zero Carrier level as the zero volts reference.
Amplitudes for the quadrature signal's sync tip, blanking, and staircase steps are measured using quadrature Zero Carrier level as the zero volts reference.

The amount of ICPM (in degrees) for sync tip is the angle resulting from the vector sum of the quadrature sync tip amplitude and the video sync tip amplitude. Then,

\[ICPM = \arctan \frac{\text{quadrature amplitude}}{\text{video amplitude}} \]

ICPM for blanking and each of the staircase steps is determined using the same method. Because the quadrature amplitude may be either positive or negative, the resultant angle may be either positive or negative.

Once the ICPM is determined for each point, the back porch ICPM value is subtracted from the ICPM value for each point, referencing the measurement to blanking. The ICPM value with the largest absolute value is then reported, in degrees, by Auto mode.

SCH Phase

Subcarrier to horizontal sync phase is measured as the phase at the middle of burst relative to the 50% point on the leading edge of sync.

Thirty-two full lines of active video are acquired, one line each from 32 successive frames. The first line acquired is field 1, line 50, and each successive acquisition occurs one frame plus 6 lines later. Sampling starts 160 samples earlier than normal (normal being 14 samples before the leading edge of sync).

To locate the 50% point on the leading edge of sync, noise is reduced and any chrominance component eliminated by averaging the 32 acquired lines. The 50% point is located midway between blanking and sync tip levels on the average luminance signal. Blanking level is the arithmetic mean of eight consecutive sample values (0.56 μs), starting 3.6 μs after the approximate 50% point on the trailing edge of sync. Sync tip level is the mean of 12 consecutive samples (0.84 μs) centered around the sample located midway between the approximate 50% points on the leading and trailing edges of sync.

To locate the subcarrier zero-crossing closest to the center of burst, the luminance component is filtered from one cycle of subcarrier (four sample values) at the center of burst. These four sample values are averaged over all 32 acquired lines, and are used to calculate the location of an average zero-crossing. Note that the reported result will always be between ±90°, and does not provide NTSC color field identification.
Field Time Distortion

Field Time Distortion is the only out-of-service measurement performed in Auto mode. Either the Field Square Wave or Window full field test signal is required.

Field Time Distortion is measured as the peak-to-peak deviation of the Field Square Wave or Window test signal pulse tops, excluding the first and last four lines of pulses, expressed as a per cent of the amplitude of the square wave located in the center of the field.

First, eight samples (at the approximate line center) of 128 lines per frame (every other line starting with field 1, line 25) are acquired over 32 frames. The 32 frames are summed and then the eight samples are averaged. This data is used to determine the start and stop lines of the square wave and the peak-to-peak deviation of the square-wave amplitudes. The center line containing a square wave is determined from the start and stop lines.

Next, the center line containing a square wave is acquired over 32 frames. The 32 lines are summed and software low-pass filtered. Then the four samples at back porch are averaged to determine the back porch location. The four samples at the approximate square wave center are then averaged to determine the center square wave amplitude relative to back porch. This value is used as the 100% square-wave amplitude reference. Then,

\[
\text{Field Time Distortion} = \frac{\text{square-wave \ p-p deviation}}{\text{center square-wave Amplitude}} \times 100
\]

FCC Color Bars

(FCC Rules and Regulations Part 73.682)

Eighteen measurements are made on the FCC Color Bar VITS. All six color bars are measured for chrominance Amplitude Error, chrominance Phase Error, and Chr/Lum Ratio Error. Default limits for the FCC Color Bar measurement are contained in the End to End Auto limit file.

Thirty-two occurrences of the FCC Color Bar VITS are acquired, each one frame apart. Eight of these are used to determined the approximate locations of waveform features such as the center of burst, the center of the white bar, and the centers of the six color bars.

The approximate center locations of the color bars and the white bar are determined using one-sixth of the width of the color bar chrominance area as the width of each bar.

The white bar amplitude is measured as the difference between the arithmetic mean of sixteen consecutive sample values centered around the approximate center of the white bar and the arithmetic mean of sixteen consecutive sample values centered around the approximate center of the black step (7.5 IRE setup level).
Color Bar Amplitude Error. Each color bar amplitude error is measured as the deviation from nominal of the peak-to-peak chrominance amplitude of the color bar (expressed as a % of white bar amplitude). Each reported result is expressed as a % of the nominal value.

The peak-to-peak chrominance amplitude of each color bar is the average amplitude over the four cycles centered around the sample located at the approximate center of the color bar.

Color Bar Phase Error. Each color bar phase error is measured as the deviation from nominal of the sampled phase of the color bar (measured relative to burst phase). The reported result is expressed as degrees of deviation from the nominal phase. Burst phase and the phase of each color bar are measured over four cycles, centered around the approximate centers of burst and the color bar.

Chr/Lum Ratio Error. Each gain ratio error is measured as the deviation from nominal of the ratio of the peak-to-peak chrominance amplitude to the luminance level of each color bar relative to the black step. The reported result is expressed as a % of the nominal value.

The peak-to-peak chrominance amplitude of each color bar is determined as described in the color bar amplitude error measurement.

The luminance level of each color bar is the arithmetic mean of 16 consecutive sample values centered around the approximate center of the color bar luminance level relative to the black step.
Auto Mode
Appendix A: NTSC Measurement Specifications

This section lists the specifications for each NTSC measurement. The accuracies shown for measurements with averaging capabilities assume the default averaging factor of 32. Test signals of known parameters are provided by characterized and traceable television signal generators to test the accuracy of these derived measurements. Due to the statistical nature of digitizing measurement methods, reported results will meet these specifications 97% of the time. Range specifies the extremes between which a measurement can be made.

All measurement accuracies specified are valid only with nominal inputs signals with an unweighted signal-to-noise ratio of at least 60 dB on the incoming signal and a termination accuracy of ±0.025%. Accuracies shown for measurements with “relative mode accuracy” assume that an averaging factor of 256 was used to create the reference.

The performance limits in this specification are valid with the following conditions:

- This instrument must have been calibrated/adjusted at an ambient temperature between +20° C and +30° C.

- The instrument must be in an environment with temperature, altitude, humidity, and vibration within the operating limits described in Appendix A: Specification of the VM700T Video Measurement Set Option 01 (NTSC) and Option 11 (PAL) User Manual.

- The instrument must have had a warm-up period of at least 20 minutes.

- The instrument must have had its signal-path-compensation routine last executed after at least a 20 minute warm-up period at an ambient temperature within ±5° C of the current ambient temperature.

Any conditions that are unique to a particular characteristic are expressly stated as part of that characteristic.

Measure Mode

Table A-1: Bar Line Time

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Range</th>
<th>Absolute Mode Accuracy</th>
<th>Relative Mode Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bar Level</td>
<td>50 IRE to 200 IRE</td>
<td>±0.5%</td>
<td>±0.2%</td>
</tr>
<tr>
<td>Sync Level</td>
<td>20 IRE to 80 IRE</td>
<td>±0.5%</td>
<td>±0.2%</td>
</tr>
<tr>
<td>Sync to Bar Top</td>
<td>70 IRE to 280 IRE</td>
<td>±0.5%</td>
<td>±0.2%</td>
</tr>
</tbody>
</table>
Table A-1: Bar Line Time (Cont.)

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Range</th>
<th>Absolute Mode Accuracy</th>
<th>Relative Mode Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sync/Bar Ratio</td>
<td>10% to 125%</td>
<td>±0.5%</td>
<td>±0.2%</td>
</tr>
<tr>
<td></td>
<td>(100% nominal)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bar Tilt (Rec 569)</td>
<td>0 to 20%</td>
<td>±0.2%</td>
<td>±0.1%</td>
</tr>
<tr>
<td>Line Time Distortion (Rec 567)</td>
<td>0 to 20%</td>
<td>±0.2%</td>
<td>±0.1%</td>
</tr>
<tr>
<td>Bar Width</td>
<td>10 µs to 30 µs</td>
<td>±100 ns</td>
<td>NA</td>
</tr>
</tbody>
</table>

Table A-2: Bounce

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Range</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Deviation</td>
<td>0 to 50%</td>
<td>±1%</td>
</tr>
<tr>
<td>Settling Time</td>
<td>0 to 10 sec</td>
<td>±100 msec</td>
</tr>
</tbody>
</table>

Table A-3: Burst Frequency

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Range</th>
<th>Relative Mode Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burst Frequency Error</td>
<td>±100 Hz</td>
<td>±0.5 Hz</td>
</tr>
</tbody>
</table>

Table A-4: Chrominance-to-Luminance Gain and Delay

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Range</th>
<th>Absolute Mode Accuracy</th>
<th>Relative Mode Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chrominance to Luminance Delay</td>
<td>±300 ns</td>
<td>±5 ns</td>
<td>±1.0 ns</td>
</tr>
<tr>
<td>Chrominance to Luminance Gain Ratio</td>
<td>0 to 160%</td>
<td>±1.0%</td>
<td>±0.1%</td>
</tr>
</tbody>
</table>

Table A-5: Chrominance Frequency Response

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Range</th>
<th>Absolute Mode Accuracy</th>
<th>Relative Mode Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Amplitude</td>
<td>0 to 100 IRE</td>
<td>±1%</td>
<td>±0.5%</td>
</tr>
<tr>
<td>Frequency Response</td>
<td>0 to 100 IRE</td>
<td>±1%</td>
<td>±0.5%</td>
</tr>
</tbody>
</table>

Table A-6: Chrominance Noise

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Range</th>
<th>Absolute Mode Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM Noise</td>
<td>-20 dB to -80 dB</td>
<td>±1 dB (−20 dB to −60 dB)</td>
</tr>
<tr>
<td>PM Noise</td>
<td>-20 dB to -70 dB</td>
<td>±1 dB (−20 dB to −60 dB)</td>
</tr>
</tbody>
</table>
Table A-7: Chrominance Non-Linearity

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Range</th>
<th>Absolute Mode Accuracy</th>
<th>Relative Mode Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chrominance Amplitude</td>
<td>0 to 100%</td>
<td>1.0%</td>
<td>0.5%</td>
</tr>
<tr>
<td>Chrominance Phase</td>
<td>0 to 360°</td>
<td>1°</td>
<td>0.2°</td>
</tr>
<tr>
<td>Chrominance to Luminance Intermodu-</td>
<td>-50% to +50%</td>
<td>0.2%</td>
<td>0.2%</td>
</tr>
</tbody>
</table>

Table A-8: ColorBar

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Range</th>
<th>Absolute Mode Accuracy</th>
<th>Relative Mode Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luminance Level</td>
<td>0 to 100 IRE (0 to 714.3 mV)</td>
<td>±0.5 IRE</td>
<td>±0.2%</td>
</tr>
<tr>
<td>Chrominance Level (excluding gray and black)</td>
<td>0 to 100 IRE (0 to 714.3 mV)</td>
<td>±1.0% of nominal (see Table A-9)</td>
<td>±0.2%</td>
</tr>
<tr>
<td>Chrominance Phase</td>
<td>±180° of nominal</td>
<td>±0.5° of nominal</td>
<td>±0.1°</td>
</tr>
</tbody>
</table>

Table A-9: SMPTE Color Bar Nominal Values

<table>
<thead>
<tr>
<th>Color</th>
<th>LUM (mV)</th>
<th>Chroma P–P (mV)</th>
<th>Phase (degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yellow</td>
<td>494.8</td>
<td>444.2</td>
<td>167.1</td>
</tr>
<tr>
<td>Cyan</td>
<td>400.4</td>
<td>630.1</td>
<td>283.4</td>
</tr>
<tr>
<td>Green</td>
<td>345.9</td>
<td>588.5</td>
<td>240.8</td>
</tr>
<tr>
<td>Magenta</td>
<td>256.7</td>
<td>588.5</td>
<td>60.8</td>
</tr>
<tr>
<td>Red</td>
<td>202.2</td>
<td>630.1</td>
<td>103.4</td>
</tr>
<tr>
<td>Blue</td>
<td>108.1</td>
<td>444.2</td>
<td>347.1</td>
</tr>
</tbody>
</table>

Table A-10: Differential Gain and Phase

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Range</th>
<th>Absolute Mode Accuracy</th>
<th>Relative Mode Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential Gain</td>
<td>0 to 100%</td>
<td>±0.3%</td>
<td>±0.03%</td>
</tr>
<tr>
<td>Differential Phase</td>
<td>0 to 360°</td>
<td>±0.3°</td>
<td>±0.03°</td>
</tr>
</tbody>
</table>

Table A-11: Frequency Response and Group Delay

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Range</th>
<th>Absolute Mode Accuracy</th>
<th>Relative Mode Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Response</td>
<td>±40 dB</td>
<td>±1.0 dB</td>
<td>±0.3 dB</td>
</tr>
<tr>
<td>Group Delay</td>
<td>±1.0 μs</td>
<td>±20 ns</td>
<td>±5 ns</td>
</tr>
</tbody>
</table>
Table A-12: Horizontal Blanking

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Range</th>
<th>Absolute Mode Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blanking Start</td>
<td>0.1 µs to 4.2 µs</td>
<td>±50 ns</td>
</tr>
<tr>
<td>Blanking End</td>
<td>6.8 µs to 12.2 µs</td>
<td>±50 ns</td>
</tr>
<tr>
<td>Blanking Width</td>
<td>6.9 µs to 16.4 µs</td>
<td>±50 ns</td>
</tr>
</tbody>
</table>

Table A-13: Horizontal Timing

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Range</th>
<th>Absolute Mode Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burst Level</td>
<td>10 to 80 IRE</td>
<td>±0.5%</td>
</tr>
<tr>
<td>Horizontal Sync Rise and Fall Time</td>
<td>80 ns to 1 µs</td>
<td>±10 ns</td>
</tr>
<tr>
<td>Horizontal Sync Width</td>
<td>3 µs to 7 µs</td>
<td>±10 ns</td>
</tr>
<tr>
<td>Burst Width</td>
<td>6 cycles to 13 cycles</td>
<td>±0.1 cycle (FCC)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±0.5 cycle (RS-170A)</td>
</tr>
<tr>
<td>Sync to Burst Start (RS-170A)</td>
<td>4 µs to 10 µs</td>
<td>±150 ns</td>
</tr>
<tr>
<td>Sync to Burst End (FCC)</td>
<td>4 µs to 10 µs</td>
<td>±26 ns</td>
</tr>
<tr>
<td>Front Porch</td>
<td>0.1 µs to 3.5 µs</td>
<td>±10 ns (FCC)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±10 ns (RS-170A)</td>
</tr>
<tr>
<td>Sync to Setup</td>
<td>8.8 µs to 13.0 µs</td>
<td>±10 ns</td>
</tr>
<tr>
<td>Breezeway (FCC)</td>
<td>0.1 µs to 5 µs</td>
<td>±25 ns</td>
</tr>
<tr>
<td>Sync Level</td>
<td>20 IRE to 80 IRE</td>
<td>±0.5%</td>
</tr>
</tbody>
</table>

Table A-14: Incidental Carrier Phase Modulation

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Range</th>
<th>Absolute Mode Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICPM (requires zero Carrier Pulse and the</td>
<td>0 to 90°</td>
<td>±1.0°</td>
</tr>
<tr>
<td>quadrature output of the demodulator on Channel C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table A-15: Jitter

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Range</th>
<th>Absolute Mode Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jitter (2 Field)</td>
<td>±20 µs</td>
<td>±10 ns</td>
</tr>
<tr>
<td>Jitter Long Time</td>
<td>±20 µs</td>
<td>±10 ns</td>
</tr>
</tbody>
</table>
Appendix A: NTSC Measurement Specifications

Table A-16: K-Factor

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Range</th>
<th>Absolute Mode Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>2T Pulse K-Factor</td>
<td>0 to 10% Kf</td>
<td>±0.3%</td>
</tr>
<tr>
<td>K<sub>pg</sub></td>
<td>-10% to +5% K<sub>pg</sub></td>
<td>±0.3%</td>
</tr>
<tr>
<td>Pulse to Bar Ratio</td>
<td>10% to 125%</td>
<td>±0.7%</td>
</tr>
<tr>
<td>Pulse Half Amplitude Duration (HAD)</td>
<td>100 ns to 500 ns</td>
<td>±5 ns</td>
</tr>
</tbody>
</table>

Table A-17: Level Meter

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Range</th>
<th>Absolute Mode Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level Meter</td>
<td>0 to 1.4 V</td>
<td>±3.5 mV</td>
</tr>
</tbody>
</table>

Table A-18: Line Frequency

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Range</th>
<th>Absolute Mode Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line Frequency</td>
<td>±3%</td>
<td>±0.1%</td>
</tr>
<tr>
<td>Field Frequency</td>
<td>±3%</td>
<td>±0.1%</td>
</tr>
</tbody>
</table>

Table A-19: Luminance Non-Linearity

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Range</th>
<th>Absolute Mode Accuracy</th>
<th>Relative Mode Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luminance Non-Linearity</td>
<td>0 to 100%</td>
<td>±0.4%</td>
<td>±0.2%</td>
</tr>
</tbody>
</table>

Table A-20: Multiburst

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Range</th>
<th>Absolute Mode Accuracy</th>
<th>Relative Mode Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Flag or Packet Amplitude</td>
<td>30 IRE to 130 IRE</td>
<td>±1%</td>
<td>NA</td>
</tr>
<tr>
<td>Other Packets (0.5, 1.25, 2.0, 3.0, 3.58, 4.1 MHz)</td>
<td>-40 dB to +6 dB</td>
<td>±0.1 dB</td>
<td>±0.03 dB</td>
</tr>
</tbody>
</table>

Table A-21: Noise Spectrum

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Range</th>
<th>Absolute Mode Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unweighted Signal-to-Noise Ratio (5 MHz Low Pass)</td>
<td>-20 dB to -80 dB</td>
<td>±0.4 dB (~20 dB to -60 dB)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±1.0 dB (~20 dB to -70 dB)</td>
</tr>
<tr>
<td>Weighted Signal-to-Noise Ratio (5 MHz Low Pass and Unified Weighting)</td>
<td>-20 dB to -80 dB</td>
<td>±1.0 dB (~20 dB to -60 dB)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±2.0 dB (~60 dB to -70 dB)</td>
</tr>
</tbody>
</table>
Table A-22: SCH Phase

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Range</th>
<th>Absolute Mode Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCH Phase</td>
<td>±90°</td>
<td>±5°</td>
</tr>
<tr>
<td>Sync Relative Timing</td>
<td>±1 μs</td>
<td>±10 ns</td>
</tr>
<tr>
<td>Burst Relative Phase</td>
<td>180°</td>
<td>±5°</td>
</tr>
</tbody>
</table>

Table A-23: Short Time Distortion

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Range</th>
<th>Absolute Mode Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-Time Distortion</td>
<td>0 to 25% SD</td>
<td>±5% SD</td>
</tr>
</tbody>
</table>

Table A-24: TwoField

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Range</th>
<th>Absolute Mode Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Time Distortion</td>
<td>0 to 40%</td>
<td>±0.5%</td>
</tr>
</tbody>
</table>

Table A-25: VITS ID

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Performance Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>VITS Recognition</td>
<td>Recognizes and displays the name of recognized signals in the vertical interval of both Field 1 and Field 2, lines 15 through 20. VITS test signals recognized are: GCR 8 Fields Seq. VIRS FCC Multi Burst Pedestal Luminance Bar NTC-7 Combination Sin X/X</td>
</tr>
</tbody>
</table>

Table A-26: Vertical Blanking

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Range</th>
<th>Absolute Mode Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equalizing Pulse Width</td>
<td>80 ns to 1 μs</td>
<td>±10 ns</td>
</tr>
<tr>
<td>Serration Pulse Width</td>
<td>80 ns to 1 μs</td>
<td>±10 ns</td>
</tr>
</tbody>
</table>
Auto Mode

Table A-27: RS-170A Horizontal Blanking Interval Timing

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Range</th>
<th>Accuracy</th>
<th>Test Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color Burst Width</td>
<td>6 cycles to 13 cycles</td>
<td>±0.1 cycles</td>
<td>Horizontal Blanking</td>
</tr>
<tr>
<td>Front Porch Duration</td>
<td>0.5 µs to 2 µs</td>
<td>±20 ns</td>
<td>Horizontal Blanking</td>
</tr>
<tr>
<td>Horizontal Blanking Width</td>
<td>6 µs to 30 µs</td>
<td>±50 ns</td>
<td>Horizontal Blanking</td>
</tr>
<tr>
<td>Horizontal Sync Rise and Fall Time</td>
<td>80 ns to 120 ns</td>
<td>-10 to +30 ns</td>
<td>Horizontal Blanking</td>
</tr>
<tr>
<td></td>
<td>120 ns to 300 ns</td>
<td>±20 ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>300 ns to 1.0 µs</td>
<td>±30 ns</td>
<td></td>
</tr>
<tr>
<td>Horizontal Sync Width</td>
<td>1 µs to 8 µs</td>
<td>±10 ns</td>
<td>Horizontal Blanking</td>
</tr>
<tr>
<td>SCH Phase</td>
<td>±90°</td>
<td>±5°</td>
<td>Horizontal Blanking</td>
</tr>
<tr>
<td>Sync to Setup</td>
<td>5 µs to 18 µs</td>
<td>±20 ns</td>
<td>Horizontal Blanking</td>
</tr>
<tr>
<td>Sync to Start of Burst</td>
<td>4 µs to 8 µs</td>
<td>±140 ns (0.5 cycles)</td>
<td>±20 ns</td>
</tr>
</tbody>
</table>

Table A-28: RS-170A Vertical Blanking Interval

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Range</th>
<th>Accuracy</th>
<th>Test Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equalizing Pulse Width</td>
<td>1 µs to 20 µs</td>
<td>±10 ns</td>
<td>Vertical Blanking</td>
</tr>
<tr>
<td>Serration Width</td>
<td>1 µs to 20 µs</td>
<td>±10 ns</td>
<td>Vertical Blanking</td>
</tr>
<tr>
<td>Vertical Blanking Width</td>
<td>19 lines to 29 lines</td>
<td>-0.1 to +0.2 lines</td>
<td>Vertical Blanking</td>
</tr>
</tbody>
</table>

Table A-29: FCC Horizontal Blanking Interval Timing

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Range</th>
<th>Accuracy</th>
<th>Test Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breezeway Width</td>
<td>0.2 µs to 3.5 µs</td>
<td>±25 ns</td>
<td>Horizontal Blanking</td>
</tr>
<tr>
<td>Color Burst Width</td>
<td>6 cycles to 13 cycles</td>
<td>±0.1 cycles</td>
<td>Horizontal Blanking</td>
</tr>
<tr>
<td>Front Porch Duration</td>
<td>0.5 µs to 2 µs</td>
<td>±10 ns</td>
<td>Horizontal Blanking</td>
</tr>
<tr>
<td>Horizontal Blanking Width</td>
<td>6 µs to 30 µs</td>
<td>±10 ns</td>
<td>Horizontal Blanking</td>
</tr>
<tr>
<td>Horizontal Sync Rise and Fall Time</td>
<td>80 ns to 120 ns</td>
<td>-10 ns to +30 ns</td>
<td>Horizontal Blanking</td>
</tr>
<tr>
<td></td>
<td>120 ns to 300 ns</td>
<td>±20 ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>300 ns to 1.0 µs</td>
<td>±30 ns</td>
<td></td>
</tr>
<tr>
<td>Horizontal Sync Width</td>
<td>1 µs to 8 µs</td>
<td>±10 ns</td>
<td>Horizontal Blanking</td>
</tr>
<tr>
<td>Sync to Setup</td>
<td>5 µs to 18 µs</td>
<td>±20 ns</td>
<td>Horizontal Blanking</td>
</tr>
<tr>
<td>Sync to End of Burst</td>
<td>6 µs to 15 µs</td>
<td>±20 ns</td>
<td>Horizontal Blanking</td>
</tr>
</tbody>
</table>
Table A-30: FCC Vertical Blanking Interval Timing

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Range</th>
<th>Accuracy</th>
<th>Test Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equalizing Pulse Width</td>
<td>25% to 100% of nominal hori-</td>
<td>±0.3%</td>
<td>Vertical Blanking</td>
</tr>
<tr>
<td>zontal sync pulse width</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serration Width</td>
<td>1 μs to 20 μs</td>
<td>±10 ns</td>
<td>Vertical Blanking</td>
</tr>
<tr>
<td>Vertical Blanking Width</td>
<td>19 lines to 29 lines</td>
<td>−0.1 lines to +0.2 lines</td>
<td>Vertical Blanking</td>
</tr>
</tbody>
</table>

Table A-31: Amplitude and Phase Measurements

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Range</th>
<th>Accuracy</th>
<th>Test Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Picture Level (APL)</td>
<td>0 to 200%</td>
<td>±3.0%</td>
<td>Full Field</td>
</tr>
<tr>
<td>Bar Top</td>
<td>0 to 90% of Maximum Carrier</td>
<td>±0.1%</td>
<td>FCC/NTC–7 Composite</td>
</tr>
<tr>
<td>Bar Amplitude</td>
<td>0 to 200 IRE</td>
<td>±0.3 IRE</td>
<td>FCC/NTC–7 Composite</td>
</tr>
<tr>
<td>Chrominance to Luminance Delay (Relative</td>
<td>±300 ns</td>
<td>±5 ns</td>
<td>FCC/NTC–7 Composite</td>
</tr>
<tr>
<td>Chroma Level)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chrominance to Luminance Gain (Relative</td>
<td>0 to 160%</td>
<td>±1%</td>
<td>FCC/NTC–7 Composite</td>
</tr>
<tr>
<td>Chroma Level)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differential Gain</td>
<td>0 to 100%</td>
<td>±0.3%</td>
<td>FCC/NTC–7 Composite</td>
</tr>
<tr>
<td>Differential Phase</td>
<td>0 to 360°</td>
<td>±0.3°</td>
<td>FCC/NTC–7 Composite</td>
</tr>
<tr>
<td>Luminance Non-linear Distortion</td>
<td>0 to 50%</td>
<td>±0.4%</td>
<td>FCC/NTC–7 Composite</td>
</tr>
<tr>
<td>Relative Burst Gain</td>
<td>±100%</td>
<td>±0.3%</td>
<td>FCC/NTC–7 Composite</td>
</tr>
<tr>
<td>Relative Burst Phase</td>
<td>±180°</td>
<td>±0.3°</td>
<td>FCC/NTC–7 Composite</td>
</tr>
<tr>
<td>Burst Amplitude (% of sync)</td>
<td>25% to 200% of sync</td>
<td>±1.0%</td>
<td>Horizontal Blanking</td>
</tr>
<tr>
<td>Burst Amplitude (% of Bar)</td>
<td>10% to 80% of Bar (10 IRE to 80 IRE when Bar</td>
<td>±0.4% (±0.4 IRE)</td>
<td>Horizontal Blanking</td>
</tr>
<tr>
<td></td>
<td>is not used)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sync Amplitude (% of Bar)</td>
<td>20% to 80% of Bar (20 IRE to 80 IRE when Bar</td>
<td>±0.3% (±0.3 IRE)</td>
<td>Horizontal Blanking</td>
</tr>
<tr>
<td></td>
<td>is not used)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blanking Level</td>
<td>0 to 90% of Maximum Carrier</td>
<td>±0.2%</td>
<td>Horizontal Blanking</td>
</tr>
<tr>
<td>Sync Variation</td>
<td>0 to 50% of Maximum Carrier (0 to 50% of Bar</td>
<td>±0.3% for Zero Carrier (±0.3% for Bar and ±0.3 IRE for no Zero Carrier and no Bar)</td>
<td>Horizontal Blanking</td>
</tr>
<tr>
<td></td>
<td>when Zero Carrier is not used and 0 to 50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IRE when Zero Carrier and Bar are not used)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blanking Variation</td>
<td>0 to 50% of Maximum Carrier (0 to 50% of Bar</td>
<td>±0.3% for Zero Carrier (±0.3% for Bar and ±0.3 IRE for no Zero Carrier and no Bar)</td>
<td>Horizontal Blanking</td>
</tr>
<tr>
<td></td>
<td>when Zero Carrier is not used and 0 to 50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IRE when Zero Carrier and Bar are not used)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A-32: Frequency Response Measurements

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Range</th>
<th>Accuracy</th>
<th>Test Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiburst Flag Amplitude</td>
<td>0 to 90% of Maximum Carrier (20 to 130% of Bar when Zero Carrier is not used and 20 to 130 IRE when Zero Carrier and Bar are not used)</td>
<td>±0.5% for Zero Carrier (±0.5% for Bar and ±0.5 IRE for no Zero Carrier and no Bar)</td>
<td>FCC Multiburst or NTC–7 Combination</td>
</tr>
<tr>
<td>Multiburst Packet Amplitudes</td>
<td>0 to 100% of Flag</td>
<td>±1% of Flag</td>
<td>FCC Multiburst or NTC–7 Combination</td>
</tr>
</tbody>
</table>

Table A-33: Incidental Carrier Phase Modulation

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Range</th>
<th>Accuracy</th>
<th>Test Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICPM (requires Zero Carrier Pulse and the quadrature output of the demodulator on channel C)</td>
<td>0 to 30°</td>
<td>±1.0°</td>
<td>FCC or NTC–7 Composite</td>
</tr>
</tbody>
</table>

Table A-34: Color Bar Measurements

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Range</th>
<th>Accuracy</th>
<th>Test Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color Bar Amplitude Errors</td>
<td>±100% of nominal</td>
<td>±1.0%</td>
<td>FCC Color Bars</td>
</tr>
<tr>
<td>Color Bar Phase Errors</td>
<td>±180° from nominal</td>
<td>±0.5°</td>
<td>FCC Color Bars</td>
</tr>
<tr>
<td>Color Bar Chrominance to Luminance Gain Ratio</td>
<td>0 to 200% of nominal</td>
<td>±2%</td>
<td>FCC Color Bars</td>
</tr>
</tbody>
</table>

Table A-35: Out-of-Service Measurements

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Range</th>
<th>Accuracy</th>
<th>Test Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Time Distortion</td>
<td>0 to 40%</td>
<td>±0.5%</td>
<td>Field Square Wave</td>
</tr>
</tbody>
</table>

Table A-36: Waveform Distortion Measurements

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Range</th>
<th>Accuracy</th>
<th>Test Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line Time Distortion</td>
<td>0 to 40% of Bar</td>
<td>±0.2%</td>
<td>FCC or NTC–7 Composite</td>
</tr>
<tr>
<td>Pulse to Bar Ratio</td>
<td>10% to 125%</td>
<td>±0.7%</td>
<td>FCC or NTC–7 Composite</td>
</tr>
<tr>
<td>Short Time Waveform Distortion (IEEE 511)</td>
<td>0 to 25% SD</td>
<td>±0.5% SD</td>
<td>NTC–7 Composite</td>
</tr>
<tr>
<td>Chrominance Nonlinear Gain Distortion</td>
<td>5 IRE to 35 IRE (20 IRE chroma)</td>
<td>±0.4 IRE</td>
<td>NTC–7 Combination</td>
</tr>
</tbody>
</table>
Table A-36: Waveform Distortion Measurements (Cont.)

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Range</th>
<th>Accuracy</th>
<th>Test Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chrominance Nonlinear Phase Distortion</td>
<td>0 to 360°</td>
<td>±1.0°</td>
<td>NTC-7 Combination</td>
</tr>
<tr>
<td>Chrominance to Luminance Intermodulation</td>
<td>±50 IRE</td>
<td>±0.2 IRE</td>
<td>NTC-7 Combination</td>
</tr>
<tr>
<td>2T K-Factor</td>
<td>0 to 10% Kf</td>
<td>±0.3% Kf</td>
<td>FCC or NTC-7 Composite</td>
</tr>
</tbody>
</table>

Table A-37: VIRS Measurements

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Range</th>
<th>Accuracy</th>
<th>Test Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIRS Setup (Reference Black)</td>
<td>–20% to +130% of Bar (–20 IRE to +130 IRE when Bar is not used)</td>
<td>±0.2% (±0.5 IRE when Bar is not used)</td>
<td>VIRS</td>
</tr>
<tr>
<td>VIRS Chrominance Reference Amplitude</td>
<td>0 to 200% of burst amplitude (0 to 80% of Bar when burst is not used and 0 IRE to 80 IRE when burst and bar are not used)</td>
<td>±1% (±0.1% when burst is not used and ±1 IRE when burst and bar are not used)</td>
<td>VIRS</td>
</tr>
<tr>
<td>VIRS Chrominance Phase Relative to Burst</td>
<td>±180°</td>
<td>±0.5°</td>
<td>VIRS</td>
</tr>
<tr>
<td>VIRS Luminance Reference</td>
<td>30% to 100% of Bar (30 IRE to 100 IRE when bar is not used)</td>
<td>±0.2% (±0.2 IRE)</td>
<td>VIRS</td>
</tr>
</tbody>
</table>

Table A-38: Signal-to-Noise Ratio Measurements

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Range</th>
<th>Accuracy</th>
<th>Test Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unified Unweighted SNR</td>
<td>26 dB to 60 dB</td>
<td>±1.0 dB</td>
<td>Quiet Line</td>
</tr>
<tr>
<td></td>
<td>61 dB to 70 dB</td>
<td>±2.0 dB</td>
<td></td>
</tr>
<tr>
<td>Unified Luminance Weighted SNR</td>
<td>26 dB to 60 dB</td>
<td>±1.0 dB</td>
<td>Quiet Line</td>
</tr>
<tr>
<td></td>
<td>61 dB to 70 dB</td>
<td>±2.0 dB</td>
<td></td>
</tr>
<tr>
<td>NTC 7 Unweighted SNR</td>
<td>26 dB to 60 dB</td>
<td>±1.0 dB</td>
<td>Quiet Line</td>
</tr>
<tr>
<td></td>
<td>61 dB to 70 dB</td>
<td>±2.0 dB</td>
<td></td>
</tr>
<tr>
<td>NTC 7 Luminance Weighted SNR</td>
<td>26 dB to 60 dB</td>
<td>±1.0 dB</td>
<td>Quiet Line</td>
</tr>
<tr>
<td></td>
<td>61 dB to 70 dB</td>
<td>±2.0 dB</td>
<td></td>
</tr>
<tr>
<td>Periodic SNR</td>
<td>26 dB to 60 dB</td>
<td>±1.0 dB</td>
<td>Quiet Line</td>
</tr>
<tr>
<td></td>
<td>61 dB to 70 dB</td>
<td>±2.0 dB</td>
<td></td>
</tr>
</tbody>
</table>
Index

Numbers
1st Step softkey, 2–50
2T Pulse K–factor, 3–10

A

Acquire
Clamp Couple, 2–128
Special Position, 2–122, 2–128
Sync, 2–128
Acquire soft key, 2–6

Acquire Submenu
Field Toggle, 2–43
Input Gate, 2–110
Area Pos softkey, 2–111
Area softkey, 2–57
Area Widthsoftkey, 2–111
Auto Scan softkey, 2–44, 2–50, 2–100
Average Num soft key, 2–4
Average Picture Level (APL), 3–2

B

Back Porch softkey, 2–128, 2–130
Bar Amplitude, 3–3
Bar Left softkey, 2–124
Bar LineTime

Acquire submenu
Block Lines, 2–7
Block Mode, 2–6
Block Step, 2–7
Special Position, 2–6

Main menu
Acquire, 2–6
Average Num, 2–4
ITS Search, 2–6
Reference, 2–5
Relative to Reference, 2–5
Rescale, 2–6
Reference submenu
Show (1) Reference/Show (2) Reference, 2–6
Store (1) Reference/Store (2) Reference, 2–6
Relative to Reference submenu, Use (1) Reference/Use (2) Reference, 2–6

Special Position submenu
Exit, 2–8
Ref. (b1), 2–7
Set Default, 2–7
Bar Right softkey, 2–124
Bar Top, 3–3
Black softkey, 2–44
Blanking Display softkey, 2–136
Blanking level, 3–3
Blanking variation, 3–4
Blue softkey, 2–44
Bounce
back porch level, 2–9
Blank level, 2–9
measurement results, 2–15
menu, 2–11
numerical readouts, 2–9
settling time, 2–9
Breezeway Width, 3–5
Burst Amplitude, 3–4
Burst Frequency

Main menu
Average Num, 2–17
Reference, 2–17
Rescale, 2–17
Reference submenu
Reference Ch. B, 2–17
Reference Ch. C, 2–18
Reference Internal, 2–17
Zero Set, 2–18
Index

C

CCIR–2T Graticule, 2–77
Center Default softkey, 2–34, 2–106
Change Display softkey, 2–120, 2–122
Chr/Lum ratio error, 3–19
Chroma–Luminance Delay, 3–12
Chroma–Luminance Gain, 3–13
Chrominance AMPM, Main menu, Average Num, 2–25
Chrominance FreqResp, Main menu
 Average Num, 2–31
 Rescale, 2–31
Chrominance FreqResp menu, Special Position
 Center Default, 2–34
 Exit, 2–34
 Flag Start, 2–34
 Flag Width, 2–34
 Packet, 2–34
 Set Default, 2–33
 Width Default, 2–34
Chrominance nonlinear gain distortion, 3–15
Chrominance nonlinear phase distortion, 3–15
Chrominance NonLinearity
 Acquire submenu
 Block Lines, 2–39
 Block Mode, 2–39
 Block Step, 2–39
 Special Position, 2–38
 Main menu
 Acquire, 2–37
 Average Num, 2–37
 ITS Search, 2–37
 Reference, 2–37
 Relative to Reference, 2–37
 Rescale, 2–37
 Reference submenu
 Show (1) Reference/Show (2) Reference, 2–37
 Store (1) Reference/Store (2) Reference, 2–37
 Relative to Reference submenu, Use (1) Reference/Use (2) Reference, 2–38
 Special Position submenu
 Exit, 2–39
 Packet 1/2/3, 2–39
 Ref Pos, 2–39
 Set Default, 2–39
Chrominance–Luminance intermodulation, 3–16
ChromLum GainDelay
 Acquire submenu
 Block Lines, 2–23, 2–33
 Block Mode, 2–23, 2–33
 Block Step, 2–23, 2–33
 Special Position, 2–22, 2–33
 Main menu
 Acquire, 2–21, 2–26
 Average Num, 2–21
 ITS Search, 2–21
 Relative to Reference, 2–21, 2–26, 2–31
 Rescale, 2–21, 2–26, 2–28
 Reference submenu
 Show (1) Reference/Show (2) Reference, 2–21
 Store (1) Reference/Store (2) Reference, 2–21, 2–28
 Relative to Reference submenu, Use (1) Reference/Use (2) Reference, 2–22
 Special Position submenu
 Exit, 2–23
 Pulse Pos, 2–23
 Set Default, 2–23
Clamp Couple
 Clamp Fast, 2–130
 Clamp Slow, 2–130
 DC Coupling, 2–130
 Clamp Couple softkey, 2–66, 2–128
Clamp Couple Submenu
 Clamp Fast, 2–67
 Clamp Slow, 2–67
 DC Coupling, 2–67
 Clamp Fast softkey, 2–67, 2–130
 Clamp Slow softkey, 2–67, 2–130
Color Bar
 Acquire submenu
 Block Lines, 2–44
 Block Mode, 2–44
 Block Step, 2–44
 Field Toggle, 2–43
 Special Position, 2–43
 Main menu
 Acquire, 2–42
 Average Num, 2–41
 ITS Search, 2–42
 Reference, 2–41
 Relative to Reference, 2–42
 Rescale, 2–42
 Reference submenu
 Show (1) Reference/Show (2) Reference, 2–43
 Store (1) Reference/Store (2) Reference, 2–43
 Relative to Reference submenu
 Ref. 100/0/75/0 I Ref. 100/0/100/0 I Ref.
 100/0/100/25, 2–43
 Ref. 100/7.5/75/7.5 I Ref. 100/7.5/75/7.5 I Ref.
 100/7.5/75/7.5, 2–43
 Ref. 75/7.5/75/7.5 I Ref. 75/7.5/75/7.5 I Ref.
 75/7.5/75/7.5, 2–43
 Use (1) Reference/Use (2) Reference, 2–43

VM700T Video Measurement Set Option 01 NTSC Measurements
D

dB Reference softkey, 2–103

dB Reference Submenu

Flag (Auto), 2–104
Ref Packet/Flag, 2–104
DC Coupling softkey, 2–67, 2–130
DelayGrat Inverse, 2–55
DGDP

Acquire submenu
Block Lines, 2–49
Block Step, 2–49
Special Position, 2–49
Main menu
Acquire, 2–48
Average Num, 2–47
ITS Search, 2–48
Reference, 2–48
Relative to Reference, 2–48
Rescale, 2–48

Reference submenu
Show (1) Reference/Show (2) Reference, 2–48
Store (1) Reference/Store (2) Reference, 2–48
Relative to Reference submenu, Use (1) Reference/Use (2) Reference, 2–48

Special Position submenu
1st Step, 2–50
Auto Scan, 2–50

E

Equalizer Pulse softkey, 2–135
External Sync softkey, 2–129

F

FCC

Equalizer, 3–7
Serration, 3–8
FCC Burst Width, 3–5
FCC Color Bar, 3–18
FCC Front Porch, 3–5
FCC H Blanking, 3–4
FCC softkey, 2–62
FCC Sync Setup, 3–5
FCC Sync Width, 3–5
Field Time Distortion, 3–18
Field Toggle softkey, 2–43, 2–60
Filters Selection softkey, 2–109
Flag (Auto) softkey, 2–104
Flag Start Default softkey, 2–105
Flag Start softkey, 2–34
Flag Width Default softkey, 2–105
Flag Width softkey, 2–34
Freq. Lock softkey, 2–73
FS–170A, Sync Setup, 2–6
Fsc. Trap Filter softkey, 2–112
Full Field softkey, 2–116
Full Field Submenu, Rescale, 2–117
Full VITS Waveform softkey, 2–132

G
Grat Incr, 2–67
Grat Max, 2–67
Graticule
Grat Incr Gain, 2–122
Grat Incr Reset, 2–122
Graticule Track, 2–122
IEEE–511 Graticule, 2–121
Inner Graticule, 2–122
Make Graticule, 2–122
Outer Graticule, 2–122
Set to 0.0, 2–122
Set to 1.0, 2–122
Special Graticule, 2–121
Graticule Change Submenu
CCIR–21T Graticule, 2–77
Make Graticule, 2–77
Graticule Gain, 2–77
Graticule Gain softkey, 2–122
Graticule Labels, 2–67
Graticule Off, 2–55
Graticule Reference menu, K_Factor, 2–75
Graticule Reference softkey, 2–76
Graticule Reset, 2–78
Graticule Reset softkey, 2–122
Graticule softkey, 2–54, 2–66, 2–76
Graticule Submenu
Cursor, 2–67
Delay Grat Inverse, 2–55
Grat Incr, 2–67
Grat Max, 2–67
Graticule Gain, 2–77
Graticule Labels, 2–67
Graticule Off, 2–55
Graticule Reset, 2–78
Graticule Track, 2–77
Limit File, 2–55
Plot All, 2–68
Polar Graticule, 2–67
Rescale, 2–78
System I, 2–55
Tracking Lines, 2–68
Graticule Track, 2–77
Graticule Track softkey, 2–122
Group Delay Sin_X_X
Acquire submenu, Special Position, 2–56
Cursor submenu
Cursor Active, 2–58
Cursor On, 2–58

Graticule submenu
Delay Grat Inverse, 2–55
Graticule Off, 2–55
Limit File, 2–55
System I, 2–55
Main menu
Acquire, 2–54
Average Num, 2–54
Cursor, 2–54
Graticule, 2–54
Reference, 2–54
Relative to Reference, 2–54
Rescale, 2–54
Reference submenu
Ref Freq., 2–55
Show (1) Reference/Show (2) Reference, 2–55
Store (1) Reference/Store (2) Reference, 2–55
Relative to Reference submenu, Use (1) Reference/Use (2) Reference, 2–55
Special Position submenu
Area, 2–57
Double Pulse Mode, 2–56
Exit, 2–57
Pul 2 Offs, 2–57
Pul 2 Offs Auto Adj, 2–57
Pulse 1 Pos, 2–57
Set Default, 2–56

H
H_Blank. Main menu
Cursor On, 2–60
Field Toggle, 2–60
Max Hold, 2–60
Meas. Line End, 2–60
Meas. Line Start, 2–60
Rescale, 2–60
Set FCC, 2–60
Set RS–170–A, 2–60
Threshold, 2–60
H_Timing. Main menu
Average Num, 2–62
FCC, 2–62
Rescale, 2–62
RS–170A, 2–62
High Pass 100 kHz softkey, 2–112
ICPM
 Clamp Couple submenu
 Clamp Fast, 2–67
 Clamp Slow, 2–67
 DC Coupling, 2–67
 Graticule submenu
 Cursor, 2–67
 Grat Incr, 2–67
 Grat Max, 2–67
 Graticule Labels, 2–67
 Plot All, 2–68
 Polar Graticule, 2–67
 Tracking Lines, 2–68
 Main menu
 Average Num, 2–66
 Clamp Couple, 2–66
 Graticule, 2–66
 Measure, 2–66
 Plot All, 2–67
 Relative Backporch, 2–66
 Rescale, 2–67
 Measure submenu
 Max % Car, 2–68
 Min % Car, 2–68
 Selected % Car, 2–68
 Threshold, 2–68
 Transient Chk Quad, 2–68
 ICPM errors, 2–63
 IEEE-511 Graticule softkey, 2–121
 IEEE-511 Short–Time Distortion, 3–10
 Incidental Carrier Phase Modulation (ICPM), 3–16
 Incidental Carrier Phase Modulation (ICPM), 3–2, 2–63
 Inner Graticule softkey, 2–122
 Input Gate softkey, 2–110
 ITS Search softkey, 2–6, 2–21, 2–37, 2–42, 2–48, 2–76, 2–98, 2–103, 2–121

J
 Jitter, Main menu
 Average Num, 2–70
 Max Hold, 2–70
 Meas. Line End, 2–70
 Meas. Line Start, 2–70
 Rescale, 2–70
 Threshold, 2–70
 Jitter Long_Time, Main menu
 Cursors, 2–73
 Freq. Lock, 2–73
 Jitter Waveform, 2–73
 Rescale, 2–73
 Spectrum Display, 2–73
 Jitter Long_Time, Main menu, Average
 Num, 2–73
 Jitter measurement, 2–69
 Jitter Waveform softkey, 2–73

K
 K_Factor
 Acquire submenu
 Block Lines, 2–79
 Block Mode, 2–79
 Block Step, 2–79
 Special Position, 2–79
 Graticule Change submenu
 CCIR–2T Graticule, 2–77
 Make Graticule, 2–77
 Graticule submenu
 Graticule Gain, 2–77
 Graticule Reset, 2–78
 Graticule Track, 2–77
 Rescale, 2–78
 Main menu
 Acquire, 2–76
 Average Num, 2–76
 Graticule, 2–76
 Graticule Reference, 2–76
 ITS Search, 2–76
 Rescale, 2–76, 2–89
 Make Graticule submenu
 Lower Region 1, 2–79
 Upper Region 1, 2–78
 Special Position submenu
 Double Pulse Mode, 2–80
 Exit, 2–80
 Pul 2 Offs, 2–80
 Pulse 1 Pos, 2–80
 Set Default, 2–80
 Upper Region/Lower Region submenu, Variable AE, 2–78, 2–79

L
 Last Step softkey, 2–50
 Left, 2–76
 Level Meter
 Acquire submenu
 Block Lines, 2–92
 Block Mode, 2–92
 Block Step, 2–92
Main menu
 Acquire, 2–86
 Average Num, 2–84
 Display Limits, 2–84
 Max, 2–88
 Measure Position, 2–86
 Min, 2–88
 Rescale, 2–87
Limit File, 2–55
Line Frequency, Main menu
 Average Num, 2–95
 Rescale, 2–95
Line time distortion, 3–9
Low Pass 5.0 MHz softkey, 2–112
Lower Region 1, 2–79
Luminance Non-Linearity, 3–14
Luminance NonLinearity
 Acquire submenu
 Block Lines, 2–99
 Block Mode, 2–99
 Block Step, 2–99
 Special Position, 2–99
Main menu
 Acquire, 2–98
 Average Num, 2–97
 ITS Search, 2–98
 Reference, 2–97
 Relative to Reference, 2–98
 Rescale, 2–98, 2–109
Reference submenu
 Show (1) Reference/Show (2) Reference, 2–98
 Store (1) Reference/Store (2) Reference, 2–98
 Relative to Reference submenu, Use (1) Reference/Use (2) Reference, 2–98
Special Position submenu
 Auto Scan, 2–100
 Exit, 2–100

M
Make Gaticule, 2–77
Make Gaticule softkey, 2–122
Make Gaticule submenu
 Lower Region 1, 2–79
 Upper Region 1, 2–78
Manual Steps softkey, 2–50
Max % Car softkey, 2–68
Max Hold softkey, 2–60, 2–70
Max softkey, 2–88
Meas. Line End softkey, 2–60, 2–70
Meas. Line Start softkey, 2–60, 2–70
Meas. Luma softkey, 2–128
Meas. Pos softkey, 2–128
Meas. Chro P–P softkey, 2–128
Measure Cycles softkey, 2–50, 2–106, 2–129
Measure Position softkey, 2–86
Measure softkey, 2–66
Measure Submenu
 Max % Car, 2–68
 Min % Car, 2–68
 Selected % Car, 2–68
 Threshold, 2–68
 Transient Chk Quad, 2–68
measurements
 Brecezway Width, 3–5
 FCC Burst Width, 3–5
 FCC Equalizer and Serration, 3–7
 FCC Front Porch, 3–5
 FCC H Blanking, 3–4
 FCC H Blanking Interval Timing, 3–4
 FCC Sync Width, 3–5
 FCC Sync-Setp, 3–5
 RS-170 H Blanking Interval Timing, 3–5
 RS-170A Equalizer and Serration, 3–8
 Sync Rise and Fall Time, 3–5
 Sync to Burst End, 3–5
 V Blank 20 IRE F1 and F2, 3–7
 V Blank 4 IRE F1 and F2, 3–6
 VIRS, 3–8
menus
 Bar Line Time
 Main, 2–4
 Reference, 2–6
 Relative to Reference, 2–6
 Special Position, 2–7
 Burst Frequency
 Main, 2–17
 Reference, 2–17
 Chrominance AMPM
 Filters, 2–28
 Main, 2–25
 Reference Level, 2–27
 Chrominance FreqResp
dB Reference Level, 2–32
 Main, 2–31
 Reference Level, 2–32
 Relative to Reference Level, 2–32
 Special Position, 2–33
 Chrominance NonLinearity
 Acquire, 2–38
 Main, 2–37
 Reference, 2–37
 Relative to Reference, 2–38
 Special Position, 2–39
ChromLum Gain Delay
Acquire, 2–27, 2–33
Main, 2–21
Reference, 2–21
Relative to Reference, 2–22
Special Position, 2–23, 2–44, 2–100
ChromLum Gain Delay Acquire, 2–22
Color Bar
Main, 2–41
Reference, 2–43
Relative to Reference, 2–43
Color Bar Acquire, 2–43
DGDP
Main, 2–47
Reference, 2–48
Relative to Reference, 2–48
Special Position, 2–50
DGDP Acquire, 2–49
Group Delay SinX_X
Cursor, 2–58
Graticule, 2–55
Main, 2–54
Reference, 2–55
Relative to Reference, 2–55
Special Position, 2–56
Group Delay SinX_X Acquire, 2–56
H_Blank, Main, 2–60
H Timing, Main, 2–62
ICPM
Graticule, 2–67
Main, 2–66
Measure, 2–68
Relative to Reference, 2–67
Jitter, Main, 2–70
Jitter Long Time Long Time, Main, 2–73
K Factor, Graticule Reference, 2–76
K Factor
Graticule, 2–77, 2–78
Main, 2–76
Special Position, 2–80
K Factor Acquire, 2–79
Level Meter
Acquire, 2–92
Display Limits, 2–88
Main, 2–84
Measure Position, 2–89
Line Frequency, Main, 2–95
Luminance NonLinearity
Main, 2–97
Reference, 2–98
Luminance NonLinearity Acquire, 2–99
Multi Burst
Main, 2–103
Reference, 2–104
Relative to Reference, 2–104
Special Position, 2–105
Multi Burst Acquire, 2–104
Noise Spectrum
Cursors, 2–110
Filters, 2–112
Input Gate, 2–111
Main, 2–107
Reference, 2–109
Relative to Reference, 2–109
Noise Spectrum Acquire, 2–110
SCH Phase
Dual SCH Display, 2–116
Full Field, 2–117
Main, 2–116
Short Time
Acquire, 2–122
Graticule, 2–121
Main, 2–120
Make Graticule, 2–122
Special Position, 2–123
Two Field, Special Position, 2–128
Two Field
Acquire, 2–128
Clamp Couple, 2–130
Cursors, 2–130
Display, 2–128
Main, 2–127
Sync, 2–129
V Blank, Main, 2–135
VITSS ID, Main, 2–132
Min % Car softkey, 2–68
Min softkey, 2–88
Multi Burst
Acquire submenu
Block Lines, 2–105
Block Mode, 2–104
Block Step, 2–105
Special Position, 2–104
dB Reference submenu
Flag (Auto), 2–104
Ref Packet/Flag, 2–104
Main menu
Acquire, 2–103
Average Num, 2–103
dB Reference, 2–103
ITS Search, 2–103
Reference, 2–103
Relative to Reference, 2–103
Rescale, 2–103
Reference submenu
Show (1) Reference/Show (2) Reference, 2–104
Index

Store (1) Reference/Store (2) Reference, 2–104
Relative to Reference submenu, Use (1) Reference/Use (2) Reference, 2–104
Special Position submenu
Center Default, 2–106
Exit, 2–106
Flag Start Default, 2–105
Flag Width Default, 2–105
Measure Cycles, 2–106
Packet, 2–106
Set Default, 2–105
Multiburst
Flag, 3–15
Packet, 3–15

N
Noise Spectrum
Acquire submenu
Block Lines, 2–110, 2–123
Block Mode, 2–110, 2–122
Block Step, 2–110, 2–123
Input Gate, 2–110
Main menu
Acquire, 2–109
Area Pos, 2–111
Area Width, 2–111
Cursor 1/2 Active, 2–110
Cursor 1/2 On, 2–110
Cursors, 2–109
Exit, 2–111
Filters Selection, 2–109
Nearest Peak, 2–110
Normal, 2–111
Reference, 2–108
Relative to Reference, 2–108
Reference submenu
Show (1) Reference/Show (2) Reference, 2–109
Store (1) Reference/Store (2) Reference, 2–109
Relative to Reference submenu, Use (1) Reference/Use (2) Reference, 2–109
Special Position submenu
Fsc. Trap Filter, 2–112
High Pass 100 kHz, 2–112
Low Pass 5.0 MHz, 2–112
NTC-7 Weighting, 2–112
Tilt Null, 2–112
Unified Weighting, 2–112
Normal, 2–76
Normal softkey, 2–111
NTC-7 Weighting softkey, 2–112
NTSC Measurement Specifications, A-1

O
Offset n.n%, 2–76
Offset Reset, 2–76
Outer Graticule softkey, 2–122

P
Packet. See softkey
Packet 1/2/3 softkey, 2–39
Peak Carrier amplitude, 3–2
Peak Luma softkey, 2–128, 2–129
Plot All, 2–68
Plot All softkey, 2–67
Polar Graticule, 2–67
Pull 2 Offs Auto Adj softkey, 2–57
Pull 2 Offs softkey, 2–57, 2–80
Pulse 1 Pos softkey, 2–57, 2–80
Pulse Pos softkey, 2–23
Pulse-to-Bar Ratip, 3–9

R
Ref. Freq. softkey, 2–55
Ref Packet softkey, 2–50
Ref Packet/Flag softkey, 2–104
Ref Pos softkey, 2–39
Ref. (b1) softkey, 2–7
Ref. 100/0/75/0 I Ref. 100/0/100/0 I Ref. 100/0/100/25 softkey, 2–43
Ref. 100/7.5/75/7.5 I Ref. 100/7.5/75/7.5 I Ref. 100/7.5/75/7.5 softkey, 2–43
Ref. 75/7.5/75/7.5 I Ref. 100/0/100/0 I Ref. 75/7.5/75/7.5 softkey, 2–43
Reference Ch. B softkey, 2–17
Reference Ch. C softkey, 2–18
Reference Internal softkey, 2–17
Reference soft key, 2–5
Reference Submenu
Ref. Freq., 2–55
Reference Ch. B, 2–17
Reference Ch. C, 2–18
Reference Internal, 2–17
Zero Set, 2–18

Index-8

VM 700T Video Measurement Set Option 01 NTSC Measurements
Relative Backporch softkey, 2–66
Relative Burst Gain, 3–14
Relative Burst Phase, 3–14
Relative to Reference soft key, 2–5
Relative to Reference Submenu
Ref. 100/0/75/0 I Ref. 100/0/100/0 I Ref. 100/0/100/25, 2–43
Ref. 100/7.5/75/7.5 I Ref. 100/7.5/75/7.5 I Ref. 100/7.5/75/7.5, 2–43
Ref. 75/7.5/75/7.5 I Ref. 75/7.5/75/7.5 I Ref. 75/7.5/75/7.5, 2–43
Rescale, 2–37, 2–78, 2–95, 2–98, 2–109
Right, 2–76
RS–170A
Burst Width, 3–6
Front Porch, 3–6
H Blanking, 3–5
Sync Width, 3–5
RS–170A softkey, 2–62
RS–170A
Equalizer, 3–8
Serration, 3–8
S
SCH Phase Measurement, 2–114
SCH_Phase, 2–113
Full Field submenu, Rescale, 2–117
Main menu
Average Num, 2–116
Dual SCH Display, 2–116
Full Field, 2–116
SCH_Phase Menu, 2–115
Selected % Car softkey, 2–68
serration
FCC, 3–8
RS–170A, 3–8
Serration Pulse softkey, 2–136
Set 100%, 2–130
Set 100% softkey, 2–130
Set FCC softkey, 2–60
Set RS–170–A softkey, 2–60
Set to 0.0 softkey, 2–122
Set to 1.0 softkey, 2–122
ShortTime
Acquire submenu, Special Position, 2–122
Graticule Gain submenu, Graticule Gain, 2–122
Graticule Reset submenu, Graticule Reset, 2–122
Graticule submenu
IEEE–511 Graticule, 2–121
Make Graticule, 2–122
Special Graticule, 2–121
Graticule Track submenu, Graticule Track, 2–122
Main menu
Average Num, 2–120
Change Display, 2–120, 2–122
ITS Search, 2–121
Rescale, 2–121
Make Graticule submenu
Inner Graticule, 2–122
Outer Graticule, 2–122
Set to 0.0, 2–122
Set to 1.0, 2–122
Special Position submenu
Bar Left, 2–124
Bar Right, 2–124
Exit, 2–124
Set Default, 2–123
Signal ID softkey, 2–132
soft keys
Acquire, 2–6
Average Num, 2–4
Reference, 2–5
Relative to Reference, 2–5
softkeys
.i.Noise Spectrum, Main menu, Cursor 1/2 Active, 2–110
1st Step, 2–50
Area, 2–57
Area Pos, 2–111
Area Width, 2–111
Auto Scan, 2–44, 2–50, 2–100
Back Porch, 2–128, 2–130
Bar Left, 2–124
Bar Right, 2–124
Black, 2–44
Blanking Display, 2–136
Blue, 2–44
CCIR–2T Graticule, 2–77
Center Default, 2–34, 2–106
Change Display, 2–120, 2–122
Clamp Couple, 2–66, 2–128
Clamp Fast, 2–67, 2–130
Clamp Slow, 2–67, 2–130
Cursor, 2–54, 2–67
Cursor 1/2 Active, 2–110, 2–130
Cursor 1/2 On, 2–110
Cursor Active, 2–58
Cursor On, 2–58, 2–60, 2–130
Cursor Relative, 2–130
Cursor Track, 2–130
Cursors, 2–73, 2–109, 2–128
dB Reference, 2–103
DC Coupling, 2–67, 2–130
DelayGrat Inverse, 2–55
Display, 2–127
Display Limits, 2–84
Double Pulse Mode, 2–56, 2–80
Dual SCH Display, 2–116
Equalizer Pulse, 2–135
External Sync, 2–129
FCC, 2–62
Field Toggle, 2–43, 2–60
Filters Selection, 2–109
Flag (Auto), 2–104
Flag Start, 2–34
Flag Start Default, 2–105
Flag Width, 2–34
Flag Width Default, 2–105
Freq. Lock, 2–73
Fsc. Trap Filter, 2–112
Full Field, 2–116
Full VTTS Waveform, 2–132
Grat Incr, 2–67
Grat Max, 2–67
Graticule, 2–54, 2–66, 2–76
Graticule Gain, 2–77, 2–122
Graticule Labels, 2–67
Graticule Off, 2–55
Graticule Reference, 2–76
Graticule Reset, 2–78, 2–122
Graticule Track, 2–77, 2–122
High Pass 100 kHz, 2–112
IEEE–511 Graticule, 2–121
Inner Graticule, 2–122
Input Gate, 2–110
ITS Search, 2–6, 2–21, 2–37, 2–42, 2–48, 2–76, 2–98, 2–103, 2–121
Jitter Waveform, 2–73
Last Step, 2–50
Limit File, 2–55
Low Pass 5 MHz, 2–112
Lower Region 1, 2–79
Make Graticule, 2–77, 2–122
Manual Steps, 2–50
Max, 2–88
Max % Car, 2–68
Max Hold, 2–60, 2–70
Meas. Line End, 2–60, 2–70
Meas. Line Start, 2–60, 2–70
Meas. Luma, 2–128
Meas. Pos, 2–128
Meas.Chro P–P, 2–128
Measure, 2–66
Measure Cycles, 2–50, 2–106, 2–129
Measure Position, 2–86
Min, 2–88
Min % Car, 2–68
Normal, 2–111
NTC–7 Weighting, 2–112
Outer Graticule, 2–122
Packet, 2–34, 2–106
Packet 1/2/3, 2–39
Peak Luma, 2–128, 2–129
Plot All, 2–67, 2–68
Polar Graticule, 2–67
Pul 2 Offs, 2–57, 2–80
Pul 2 Offs Auto Adj, 2–57
Pulse 1 Pos, 2–57, 2–80
Pulse Pos, 2–23
Ref Freq., 2–55
Ref Packet, 2–50
Ref Packet/Flag, 2–104
Ref Pos., 2–39
Ref. (b1), 2–7
Ref. 100/0/75/0 I Ref. 100/0/100/0 I Ref. 100/0/100/25, 2–43
Ref. 100/7.5/75/7.5 I Ref. 100/7.5/75/7.50 I Ref. 100/7.5/75/7.5, 2–43
Ref. 75/7.5/75/7.5 I Ref. 100/0/100/0 I Ref. 75/7.5/75/7.5, 2–43
Reference Ch. B, 2–17
Reference Ch. C, 2–18
Reference Internal, 2–17
Relative Back porch, 2–66
RS–170A, 2–62
Selected % Car, 2–68
Serration Pulse, 2–136
Set 100%, 2–130
Set FCC, 2–60
Set RS–170–A, 2–60
Set to 0.0, 2–122
Set to 1.0, 2–122
Signal ID, 2–132
Special Graticule, 2–121
Spectrum Display, 2–73
Sync, 2–128
Sync A/B/C, 2–129
Sync Tip, 2–128, 2–130
System I, 2–55
Threshold, 2–60, 2–68, 2–70
Tilt Null, 2–112
Tracking Lines, 2–68
Transient Chk Quad, 2–68
Unified Weighting, 2–112
Upper Region 1, 2–78
V Sync Display, 2–136
Variable AE, 2–78, 2–79
White, 2–44
Width Default, 2–34
Yellow, 2–44
Zero Set, 2–18
Special Graticule softkey, 2–121
Special Position
Bar Left, 2–124
Bar Right, 2–124
Exit, 2–124, 2–129
Meas. Pos, 2–128
Measure Cycles, 2–129
Peak Luma, 2–129
Set Default, 2–123, 2–128
Special Position Submenu
1st Step, 2–50
Area, 2–57
Auto Scan, 2–44, 2–50, 2–100
Black, 2–44
Blue, 2–44
Center Default, 2–34, 2–106
Cursor On, 2–58
Double Pulse Mode, 2–56, 2–80
Flag Start, 2–34
Flag Start Default, 2–105
Flag Width, 2–34
Flag Width Default, 2–105
Fsc, Trap Filter, 2–112
High Pass 100 kHz, 2–112
Last Step, 2–50
Low Pass 5.0 MHz, 2–112
Manual Steps, 2–50
Measure Cycles, 2–50, 2–106
NTC–7 Weighting, 2–112
Packet, 2–34, 2–106
Packet 1/2/3, 2–39
Pul 2 Offs, 2–57, 2–80
Pul 2 Offs Auto Adj, 2–57
Pulse 1 Pos, 2–57, 2–80
Pulse Pos, 2–23
Ref Packet, 2–50
Ref Pos, 2–39
Ref. (b1), 2–7
Tilt Null, 2–112
Unified Weighting, 2–112
White, 2–44
Width Default, 2–34
Yellow, 2–44
specifications, A–1
Auto Mode, A–7
Measure Mode, A–1
Spectrum Display softkey, 2–73
Subcarrier to horizontal sync phase, 3–17
Sync
 External Sync, 2–129
 Falltime, 3–5
 Risetime, 3–5
 Sync A/B/C, 2–129
Sync A/B/C softkey, 2–129
Sync Amplitude, 3–3
Sync softkey, 2–128
Sync Tip softkey, 2–128, 2–130
Sync to Burst End, 3–5
Sync to Burst Start, 3–6
Sync variation, 3–4
System I, 2–55

Average Num, 2–127
Cursors, 2–128
Display, 2–127
Rescale, 2–128

U
Unified Weighting softkey, 2–112
Upper Region 1, 2–78
Upper Region/Lower Region Submenu, Variable AE, 2–78, 2–79

V
V Sync Display sofkey, 2–136
V.Blank, Main menu
 Average Num, 2–135
 Blanking Display, 2–136
 Equalizer Pulse, 2–135
 Rescale, 2–136
 Serration Pulse, 2–136
 V Sync Display, 2–136
Variable AE, 2–78, 2–79
Vertical Interval Test Signals (VITS), 3–1
VIRS
 Chrominance Amplitude, 3–9
 Chrominance Phase, 3–9
 Luminance Ref., 3–8
 measurements, 3–8
 Setup, 3–8
VITS ID, Main menu
 Full VITS Waveform, 2–132
 Signal ID, 2–132

W
White sofkey, 2–44
Width Default sofkey, 2–34

Y
Yellow sofkey, 2–44

Z
Zero Carrier Pulse, 2–63
Zero Carrier pulse, 3–2
Zero Set sofkey, 2–18