WARRANTY

Tektronix warrants that this product will be free from defects in materials and workmanship for a period of one (1) year from the date of shipment. If any such product proves defective during this warranty period, Tektronix, at its option, either will repair the defective product without charge for parts and labor, or will provide a replacement in exchange for the defective product.

In order to obtain service under this warranty, Customer must notify Tektronix of the defect before the expiration of the warranty period and make suitable arrangements for the performance of service. Customer shall be responsible for packaging and shipping the defective product to the service center designated by Tektronix, with shipping charges prepaid. Tektronix shall pay for the return of the product to Customer if the shipment is to a location within the country in which the Tektronix service center is located. Customer shall be responsible for paying all shipping charges, duties, taxes, and any other charges for products returned to any other locations.

This warranty shall not apply to any defect, failure or damage caused by improper use or improper or inadequate maintenance and care. Tektronix shall not be obligated to furnish service under this warranty a) to repair damage resulting from attempts by personnel other than Tektronix representatives to install, repair or service the product; b) to repair damage resulting from improper use or connection to incompatible equipment; or c) to service a product that has been modified or integrated with other products when the effect of such modification or integration increases the time or difficulty of servicing the product.

THIS WARRANTY IS GIVEN BY TEKTRONIX WITH RESPECT TO THIS PRODUCT IN LIEU OF ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED. TEKTRONIX AND ITS VENDORS DISCLAIM ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. TEKTRONIX' RESPONSIBILITY TO REPAIR OR REPLACE DEFECTIVE PRODUCTS IS THE SOLE AND EXCLUSIVE REMEDY PROVIDED TO THE CUSTOMER FOR BREACH OF THIS WARRANTY. TEKTRONIX AND ITS VENDORS WILL NOT BE LIABLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES IRRESPECTIVE OF WHETHER TEKTRONIX OR THE VENDOR HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.
TABLE OF CONTENTS

SECTION 1 INTRODUCTION TO THE RTD 710A
- Vertical Section ... 1-1
- Record Modes ... 1-1
- Timebase Section ... 1-3
- Trigger Section ... 1-4
 - Trigger Delay: Pre-trigger and Post-trigger 1-4
 - Trigger Modes ... 1-5
 - Trigger Slope .. 1-6
 - Trigger Coupling 1-7
- The Control Section 1-7
 - Non-Volatile Storage 1-7
 - Display Locations 1-8
 - Vertical and Horizontal Zoom 1-8
 - Cursor Measurements 1-8
- Table 1-1 RTD 710A CURSOR MEASUREMENTS 1-8
- Plotter Control .. 1-9

SECTION 2 COMMUNICATING WITH THE RTD 710A
- Setting the RTD 710A for GPIB Operation 2-1
 - Talk Only Option 2-1
 - Message Terminator 2-1
 - GPIB Address .. 2-1
- Determining the GPIB Address from the Front Panel .. 2-1
- Introduction to the GPIB 2-1
 - Output Statements 2-2
 - Query Commands and Responses 2-2
 - Input Statements 2-2
 - Instrument Settings Transfer 2-3
 - Sending and Receiving ASCII Settings 2-3
 - Handling Service Request (SRQ) and Event Codes 2-3
 - GPIB Plotter Output 2-4
 - Initiating a HP-GL Plot From The Controller 2-4
- Interface Messages 2-4
 - My Listen Address (MLA) and My Talk Address (MTA) 2-4
 - Local Lockout (LLO) 2-4
 - Remote Enable (REN) 2-4
 - Go To Local (GTL) 2-5
 - Unlisten (UNL) and Untalk (UNT) 2-5
 - Interface Clear (IFC) 2-5
 - Device Clear (DCL) 2-5
 - Selected Device Clear (SDC) 2-5
 - Serial Poll Enable (SPE) and Serial Poll Disable (SPD) 2-5
 - Parallel Poll ... 2-5
 - Group Execute Trigger (GET) 2-5
 - Command Handler 2-5
 - Service Request Handler 2-6
 - GPIB Commands .. 2-6
 - Headers .. 2-6
 - Arguments ... 2-6
 - Command Separator 2-6
 - Queries .. 2-6
 - Message Terminator 2-7
 - Abbreviations .. 2-7
 - Numeric Arguments 2-7
- Table 2-1 Numeric Argument Format of GPIB Commands 2-7
Table of Contents

SECTION 3 GPIB COMMAND REFERENCE
Table 3-1 VERTICAL SYSTEM CONTROL GROUP ... 3-2
Table 3-2 TIME BASE AND RECORDING GROUP ... 3-4
Table 3-3 TRIGGERING GROUP .. 3-9
Table 3-4 CURSOR AND DISPLAY CONTROL GROUP 3-13
Table 3-6 CURSOR MEASUREMENT GROUP .. 3-15
Table 3-6 WAVEFORM TRANSFER GROUP .. 3-17
Table 3-7 CALIBRATION GROUP ... 3-22
Table 3-8 SELF-TEST GROUP .. 3-23
Table 3-9 UTILITY COMMAND GROUP .. 3-25
Table 3-10 DEVICE TRIGGER GROUP ... 3-27
Table 3-11 INITIALIZATION GROUP .. 3-28
Table 3-12 SERVICE REQUEST CONTROL AND EVENT QUERY GROUP 3-29
Table 3-13 INTERNAL WAVEFORM ANALYSIS GROUP 3-30

SECTION 4 ADVANCED GPIB INFORMATION
Query Commands to Transfer Binary Waveforms .. 4-1
Binary Waveform Formats ... 4-2
 BINARY BLOCK ... 4-2
 REPEATED BINARY BLOCK FORMAT .. 4-2
 ARBITRARY LENGTH FORMAT .. 4-2
The Byte Count .. 4-2
High and Low Bytes ... 4-3
Waveform Acquisition Examples .. 4-3
The BSIZE Command .. 4-4
Using the Internal Signal Processing Commands .. 4-5
Vertical Value Scaling .. 4-5
Horizontal Value Scaling ... 4-7
Sending 16K and longer waveforms to RTD 710A without arbitrary block format 4-7
Sending settings to the RTD 710A ... 4-8
Solution #1: Initialize the front panel before sending settings 4-9
Solution #2: Turn off the error message SRQ capability during settings transfer 4-9
Solution #3: Handle the SRQ’s with an SRQ handler 4-10
Solution #4: Download various settings and store in RTD 710A’s non-volatile front panel memory 4-11
Making sure the preamble reflects the waveform data 4-12

SECTION 5 SRQ AND EVENT CODES
STATUS BYTES .. 5-1
Table 5-1 RTD 710A STATUS BYTES ... 5-1
EVENT CODES .. 5-2
Table 5-2 RTD 710A COMMAND ERROR EVENT CODES 5-2
Table 5-3 RTD 710A EXECUTION ERROR EVENT CODES 5-3
Table 5-4 RTD 710A INTERNAL ERROR EVENT CODES 5-4
Table 5-5 RTD 710A SYSTEM EVENT CODES ... 5-4
Table 5-6 RTD 710A EXECUTION WARNING EVENT CODES 5-5
Table 5-7 RTD 710A DEVICE DEPENDENT EVENT CODES 5-6

SECTION 6 RTD 710A PROGRAM EXPLANATIONS/LISTINGS
Getting the Waveform Scaling Information ... 6-1
Binary Waveform Acquisition .. 6-1
Waveform Scaling Routine ... 6-1
Read Breakpoint Information Routine ... 6-1
Serial Poll and Event Query ... 6-2
Table 6-1 EXAMPLES OF SERVICE REQUEST AND EVENT CODES 6-2
4041/RTD 710A Program Example .. 6-3
IBM PC/RTD 710A Program Example ... 6-3
HP 200/300 SERIES/RTD 710A Example Program Listing 6-6
SPS BASIC/RTD 710A Example Program Listing .. 6-10

APPENDIX A ASCII & IEEE (GPIB) CODE CHART
LIST OF ILLUSTRATIONS

Figure 1-1 Example of envelope waveform display. ... 1-2
Figure 1-2 Channel 1 memory segmented into four records. 1-2
Figure 1-3 Breakpoint waveform display. .. 1-3
Figure 1-4 Pre- and post-trigger illustration. ... 1-4
Figure 1-5 Bi-slope trigger example. ... 1-5
Figure 1-6 Positive hysteresis trigger example. ... 1-6
Figure 1-7 Negative hysteresis examples. .. 1-7
Figure 1-8 Plotter output example. .. 1-9
Figure 2-1 Settable switch option locations. ... 2-1
Figure 4-1 Waveform data structure using repeat binary block 4-2
Figure 4-2 Waveform data structure-Arbitrary length format 4-2
INTRODUCTION TO THE RTD 710A

The purpose of this document is to:

- Familiarize new users with the RTD 710A vertical, timebase, triggering, and waveform memory management capabilities.
- Provide a catalogue of commands, SRQ codes, and event codes for programmers using the RTD 710A on the General Purpose Interface Bus, or GPIB (IEEE 488 Standard Bus).
- Explain the use of the RTD 710A on the GPIB, and supply example programs for the following computers:
 - The Tektronix 4041 System Controller
 - The Tektronix SPS BASIC system
 - HP 200 Series controllers
 - The IBM PC, using BASICA and GURU II GPIB software package.

The GPIB/RTD 710A program examples show coding for:

- Acquiring a waveform and scaling it into a voltage array
- Reading and decoding breakpoint locations and sample rates
- Handling a Service Request (SRQ) and reading the Event code from the RTD 710A
- Graphing an acquired waveform onto a monitor

Vertical Section

The RTD 710A uses a 10-bit, dual-stage, flash conversion process to convert the analog signal to digital form. The converter provides 1024 levels of resolution.

Vertical accuracy is improved by making better use of the available voltage conversion range. The input range selection offers finer increments than the 1-2.5 sequence usually found on oscilloscopes and digitizers. The RTD 710A uses instead a 1 - 1.25 - 1.6 - 2 - 2.5 - 3.2 - 4 - 5 - 6.2 - 8 - 10 sequence.

An Auto-calibration feature also improves the accuracy of the digitized data. This function automatically compensates for zero-volt, gain, and phase errors in the input amplifier and A/D converter. With this compensation, the RTD 710A delivers 0.4% gain accuracy for range gain and drift. Auto-calibration is invoked when:

a. The voltage range changes,
b. The operator pushes the AUTO CAL button, or
c. The AUTocal command is received via the GPIB.

The RTD 710A vertical section lets you add dc offset to the input signal. Dc offset lets the RTD 710A use a more sensitive range to measure the top or base of a waveform (for example, overshot and undershoot). You can vary the dc offset by 199% of the selected voltage range in 1% increments. You can program the dc offset in percent of full scale or volts, from the front panel or over the GPIB.

Record Modes

The RTD 710A offers four types of Recording modes (also called 'Waveform Acquisition' modes): Normal, Average, Envelope, and Auto-advance.

Normal is the basic recording mode. In this mode, the digitizer acquires a full waveform record and, depending on the trigger mode, either freezes the memory or re-acquires a waveform on the next trigger event.

Average recording mode causes successive waveform records to be averaged from 2 to 16384 times. If the trigger mode is Auto or Normal, the RTD 710A averages continuously and updates the acquisition memory with the latest averaged data.
When the selected number of averages is reached, the RTD 710A resets the waveform record and restarts the operation.

If the digitizer is in Single trigger mode, it acquires the specified number of averages, then enters the Hold state. If the trigger mode is Compare, the RTD 710A completes the specified number of averages and then compares against a reference waveform.

When the selected number of averages is reached, the RTD 710A enters the Hold state after acquiring the specified number of envelopes. If the trigger mode is set to Compare, the number of envelopes is set to 1. Figure 1-1 shows an example envelope waveform display.

Auto-advance mode selects an acquisition mode that lets the RTD 710A automatically advance through successive waveform memory locations.

Fig. 1-1 Example of envelope waveform display.

Envelope mode continuously envelopes the waveform being digitized. Enveloping constructs a waveform from the minimum and maximum values of the sampled data points. Enveloping shows many waveform aberrations that might otherwise be missed, such as frequency and voltage drift.

If the trigger mode is Auto or Normal, the RTD 710A envelopes continuously and updates the acquisition memory with the latest envelope data. If the trigger mode is Single, the RTD 710A enters the Hold state after acquiring the specified number of envelopes. If the trigger mode is set to Compare, the number of envelopes is set to 1. Figure 1-1 shows an example envelope waveform display.

Auto-advance mode selects an acquisition mode that lets the RTD 710A automatically advance through successive waveform memory locations.

This capability allows the digitizer to quickly capture many single-shot events along with their trigger information.

In Auto or Normal trigger mode, the RTD 710A will perform the Auto-advance recording sequence until you press the HOLD key. In Auto-advance mode, this configuration captures four single-shot events.

RTD 710 CH 1 WAVEFORM MEMORY 32 K TOTAL LENGTH

![Waveform memory segments](image)

Fig. 1-2 Channel 1 memory segmented into four records.
Timebase Section

The timebase of the RTD 710A is very flexible to solve specialized needs. Some key features are:

- Up to 256, 1k-word acquisitions with short re-arm time
- External clocking from dc to 200 MHz
- Direct or divided timebase clock output for synchronizing with other equipment

You should consider the following four factors when setting up the RTD 710A timebase section:

- Record length
- Waveform locations
- Sample rate
- Sample rate switching (also called "breakpoints").

Record Length: The RTD 710A allocates 128K words for each channel. The waveform memory is very flexible; you can divide it into smaller record lengths (1K, 2K, 4K, 8K, 16K, 32K, 64K, 128K). The number of records available can vary from one record with 128K length to 128 records with 1K length each. In CH1 ONLY and High Speed modes, Channel 1 can be set to 256K word memory length.

Waveform Records and Locations: You can partition memory into smaller waveforms; up to 256 1K-word segments for CH1 ONLY vertical mode and High Speed sampling mode, or 128 1K-word segments in Dual Channel mode. Smaller records are better if the event to be captured does not require all memory available or if there are many sequential events to be captured prior to transferring waveforms.

Auto Advance. The RTD 710A has an Auto-advance mode that automatically advances through successive records of the waveform memory after each trigger. This mode allows the RTD 710A to quickly capture low (<5 ms rearm time, >200 events/sec) repetition rate events.

Sample Rate: The RTD 710A offers two Sample modes: Normal and High Speed. In Normal mode, the timebase has a maximum sample rate of 100 MHz for 10 ns resolution between points. In High Speed mode, the timebase's maximum rate is 200 MHz for 5 ns resolution between points. The sample rate can vary from the maximum rate of 5 ns down to 200 milliseconds. The RTD 710A can also be externally clocked from 200 MHz down to dc. Direct or divided timebase clock output is available on the RTD 710A. This feature is valuable for synchronizing with other equipment. The divided sample rate corresponds with the sample rate set on the front panel.

Sample Rate Switching (Breakpoints): The RTD 710A timebase can change the sample rate (the time between points) while acquiring a waveform. This feature lets you make the most efficient use of the available waveform memory by allowing the RTD 710A to switch sample rates (at breakpoints) from one speed to another. The cursors can be used to determine where to set the breakpoints.

Figure 1-3 shows one possible use of breakpoints. The objectives are to:

1) Acquire a waveform that has a 40 ns risetime, 500 ms pulse width, and a 100 ns falltime, and
2) Use a 1K word waveform location.

Figure 1-3 Breakpoint waveform display.
Without breakpoints, this waveform could not be captured with adequate resolution of the rising and falling edges. Adequate resolution requires a record of about 50M words to capture the entire waveform at 10 ns/point. With sample rate switching, the sequence would be:

1) Start the sample rate at 10 ns/point until the rising edge is captured;
2) Slow the sample rate to 100 ms/point and then increase it to 10 ns/point to capture the falling edge.

The amount of pre- and post-triggering can be set using either TIME (time notation) or waveform data points (clock point notation, labeled PT on the RTD 710A front panel). You can set the trigger delay either remotely over the bus or by pressing the TRIG DELAY button and turning the knob to the desired pre- or post-trigger setting. Pre-trigger is designated with a minus (-) before the number.

The RTD 710A can perform these steps in a 1K-word waveform location without losing timing information such as pulse width. Use breakpoints only after the trigger event - no breakpoints before the trigger occurs. In Dual Channel mode, you can set a breakpoint 16 points after the trigger. In CH1 ONLY mode, you can set a breakpoint 32 points after the trigger.

Trigger Section

The RTD 710A has a very versatile trigger section. All the triggering modes that are standard on a digitizer or oscilloscope are offered. It also offers trigger modes that allow triggering on a signal that would be difficult (or impossible) to capture using the standard modes.

Trigger Delay: Pre-Trigger and Post Trigger

The RTD 710A's A/D converter continually converts the analog signal and fills memory. When a trigger event occurs, the RTD 710A can freeze information that occurred before the trigger event (pre-trigger) or it can accurately delay far past the trigger event (post-trigger).

Fig. 1-4 Pre- and post-trigger illustration.

1) RECORDED LENGTH MINUS 16 POINTS PRETRIGGER
2) NO PRE OR POST TRIGGER, NORMAL TRIGGER
3) UP TO 65536 CLOCK POINTS PAST TRIGGER EVENT

Pre-trigger: The pre-trigger range is the record length minus 16 data points in Dual Channel (normal sampling) mode. If CH1 ONLY acquisition is used, the number of pre-trigger data points is the record length minus 32.

When setting pre-trigger remotely, express the desired amount as a negative number in increments of 8 in Dual Channel mode or increments of 16 in CH1 ONLY mode. Determine time notation by multiplying the trigger delay by the sampling clock interval. For example, entering a -2000 with a sample rate of 5 ns for a Dual Channel acquisition with a record length of 4K words yields pre-trigger of 2000 times 5E-9 or 10us of pre-trigger. You can also directly enter pre-trigger in time notation. Figure 1-4 illustrates pre-trigger in relation to the trigger point.

Post-trigger: Post-trigger has a range of 0 to 256K clock points past the trigger event. You can enter post-trigger in time or clock point notation. Post-trigger is expressed as a positive number in increments of 8 for Dual Channel mode or 16 in CH1 Only mode.
For example, entering 10us of trigger delay yields 10us of post-trigger. Figure 1-4 shows post-trigger in relation to the trigger event.

Trigger Modes

Five trigger modes are available in the RTD 710A: Auto, Normal, Single, Compare-in, and Compare-out. The RTD 710A must be armed to recognize a trigger event.

In **Auto**, the recording function free runs, recording the base line in the absence of a triggering signal. The Auto triggering mode permits triggering on signals that have a 50 Hz or higher repetition rate.

In **Normal**, recording starts with the occurrence of a valid trigger signal. The RTD 710A waits until the trigger before storing waveform data.

In **Single**, one record is made after the trigger event occurs. After the recording ends, the RTD 710A enters the Hold state. In order to acquire a new waveform, you must press the HOLD/RESET key or reset the RTD 710A with the HOLD RESet command on the GPIB.

In **Compare mode** trigger, the RTD 710A continuously records in the Normal trigger mode until an acquired signal satisfies the compare condition, either compare-in or compare-out. In compare mode, the last memory location automatically becomes the reference memory location. The reference waveform data should be enveloped data. If the operation complete (OPC ON/OFF, Table 3-12) SRQ capability is turned on, the RTD 710A will issue an SRQ (status=66, event=451) when compare mode has been satisfied.

Compare-in: All the acquired waveform data points must be in the range determined by the reference waveform data. If the acquired waveform is entirely inside the reference, the RTD 710A enters the HOLD state and an SRQ is issued (if OPC ON).

Compare-out: If any part of the acquired waveform falls outside of the reference, the RTD 710A enters the HOLD state and an SRQ is issued (if OPC ON).

Here are some important points regarding Compare-in and Compare-out modes:

- The record length must be less than 64K words for Dual Channel and less than 128K words for CH1 Only acquisition.

- The RTD 710A uses the last location as the reference memory. This location cannot be assigned as an acquisition location in the Compare modes. For example, if the record length is set to 8K words in dual channel mode, record location 1 is the comparison waveform and record location 64 is the reference.

- Both Compare modes digitize a waveform after a trigger event and make a comparison if the acquired waveform meets the requirements defined by the reference memory.

- If the waveform is acquired using the Envelope mode, the number of envelopes must be one.

- If the acquired waveform passes the comparison, the RTD 710A re-arms the timebase for another acquisition. If the acquired waveform fails the comparison, the RTD 710A enters the HOLD state and sends a service request (SRQ status 66, event code 451 "Hold has occurred in compare trigger mode"). The instrument controller can wait for this SRQ and event code to control a test program.

BI SLOPE (LEVEL 1 > 2)

![BI SLOPE (LEVEL 1 > 2)](image1)

BI SLOPE (LEVEL 2 > 1)

![BI SLOPE (LEVEL 2 > 1)](image2)

Fig. 1-5 Bi-slope trigger example.
Trigger Slope

The RTD 710A offers extensive triggering capabilities, including several trigger slope and level combinations. Not only does it have Positive (+) and Negative (-) slope triggering, it also has Bi-slope and Hysteresis trigger levels. The Bi-slope and Hysteresis trigger capabilities qualify the trigger event further than ever before. These capabilities let you reduce false triggers caused by unusual signal conditions. The following paragraphs explain the various trigger slope and level functions.

Positive slope (+): This function sets the RTD 710A to trigger on the waveform's positive slope. The trigger circuit generates a trigger pulse when a positive-going trigger signal crosses the selected trigger level determined by Trigger Level 1.

![Trigger Reset](image)

TRIGGER
RESET

TRIGGER LEVEL 2

TRIGGER POINT

LEVEL 1

Fig. 1-6 Positive hysteresis trigger example.

Negative slope (-): This function sets the RTD 710A to trigger on the negative slope of the waveform. The trigger circuit generates a trigger pulse when a negative-going trigger signal crosses the selected trigger level determined by Trigger Level 1.

Bi-slope: This function triggers on the positive or negative slope, whichever occurs first; this is a powerful feature when the polarity of the input signal is unknown. The RTD 710A recognizes the trigger when the input signal goes out of a predetermined range.

+ Hysteresis: In this mode, the trigger circuit generates the trigger pulse when the positive-going trigger signal crosses the selected trigger level determined by Trigger Level 1. After the RTD 710A recognizes the first point determined by Level 1, a negative-going trigger signal must pass through the selected Hysteresis level determined by Trigger Level 2. Figure 1-6 shows a signal on which triggering is difficult using normal triggering methods but easy using the Hysteresis trigger.

The range is set with two threshold levels, Level-positive (Trigger Level 1) and Level-negative (Trigger Level 2) using the LEVEL 1 and 2 keys and the PARAMETER ENTRY knob. Level 1 recognizes a positive-going trigger signal determined by the LEVEL 1 setting. Level 2 recognizes a negative-going trigger signal determined by the LEVEL 2 setting. Figure 1-5 illustrates how Bi-slope can trigger on either polarity of a trigger signal.

Hysteresis: The Hysteresis trigger lets you select a window where the trigger signal must first pass a selected level in the proper polarity, then pass a second level using an opposite polarity trigger signal. This capability is useful because it reduces the chances of false triggering on a noisy signal.
- **Hysteresis**: In this mode, the trigger circuit generates the trigger pulse when the negative-going trigger signal crosses the selected trigger level determined by Trigger Level 2. After the RTD 710A recognizes the first point determined by Level 1, a positive-slope trigger signal must pass through the selected Hysteresis level determined by Trigger Level 1. Figure 1-7 shows two negative-hysteresis trigger examples, one with Level 1 greater than Level 2, and one with Level 2 greater than Level 1.

TRIGGER RESET

TRIGGER RESET

LEVEL 1

LEVEL 2

TRIGGER POINT

-HYS (LEVEL 1 > 2)

-HYS (LEVEL 2 > 1)

Fig. 1-7 Negative hysteresis examples.

Trigger Coupling

The Trigger Coupling switch lets you select the type of signal to be passed to the trigger circuits. The coupling can:

- a) Pass all frequency components,
- b) Reject either high or low frequency components, or
- c) Trigger on a line, field 1, or field 2 using the TV trigger option.

DC: Couples all frequency components of the signal to the trigger circuit.

HF Reject: Attenuates triggering components above 50 KHz.

LF Reject: Capacitively couples signals, blocking dc components of the triggering signal. It attenuates the signal components below 50 KHz.

AC: Capacitively couples signals, blocking dc components. It attenuates frequency components below 60 Hz.

The next three coupling choices are available only on the RTD 710A with the TV Trigger Option (Option 05). This option simplifies triggering and acquiring television signals. The option adds TV (back porch) clamp circuitry to the channel 1 input amplifier.

The RTD 710A provides three TV Trigger coupling modes. These modes let you select either horizontal or vertical sync pulses to get 'horizontal line sync' or 'vertical sync pulse' triggering. This option permits triggering on a specific line number within a video field. This capability is fully controllable from the front panel and over the GPIB.

FLD 1 (Field 1): In this mode, the time base triggers on the first field of the input TV signal. Use field 1 for video signals.

FLD 2 (Field 2): In this mode, the time base triggers on the second field of the input TV signal.

The Control Section

This section contains a variety of controls for display location selection, vertical and horizontal zooming, cursor measurements, plotter control, and more. Non-volatile settings storage can be used to easily recall a specific display location and zoom setups.

Non-Volatile Settings Storage

Up to 20 non-volatile instrument setups can be saved in the RTD 710A. This feature is very useful for storing commonly used settings. The user presses either the SAVE or RECALL button and uses the the PARAMETER ENTRY KNOB to select the setup number, then presses save or recall again to perform the task.

1-7
Display Locations

If the RTD 710A has an X-Y monitor attached (e.g., a Tektronix 620 monitor or a 2225 portable scope), channel 1 and channel 2 waveforms can be displayed, manipulated, and measured. Any of the possible 256 record locations can be displayed by selecting the display location. One location from each channel can be viewed. This is performed by pressing the DISPLAY LOCATION button and turning the PARAMETER ENTRY KNOB. Response time is quicker if the DOTS display mode is used instead of the LINES mode. The RTD 710A does not have to perform line interpolation before displaying the waveform in DOTS mode.

Vertical and Horizontal Zoom

Vertical and horizontal zoom expands or compresses the selected display channel’s waveform to suit viewing needs, such as precision cursor measurements or viewing a 256K word waveform. The display always shows 2K words of data. If more than 2K words are to be displayed, the RTD 710A uses a technique to reduce the number of points without losing the major points of interest. The display will show the amount of reduction by putting a one (1) minus the reduction factor. For example, if the display shows: ’1-4’, it means dividing 8K words by 4 (yielding 2K display data).

The waveform can be vertically expanded or compressed using the following multiplication factors: 0.25 - 0.5 - 1 - 2 - 4 - 8 - 16 - 32 times. The LED display shows the zooming factor used.

You can also horizontally expand or compress the waveform. The zoom factor can vary from 1/32 to 16. The LED display again shows the zooming factor used.

Cursor Measurements

The RTD 710A lets you make manual measurements using cursors. You can measure volts, delta volts, time, delta time, 1/time, and 1/delta time. Table 1-1 summarizes the measurements available.

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Cursor</th>
<th>Function</th>
<th>Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V</td>
<td>Voltage difference from GND to Cursor 1.</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>Time interval from trigger to Cursor 1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/T</td>
<td>Reciprocal of time, yields frequency information.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2</td>
<td>Delta V</td>
<td>Cursor 1 - Cursor 2, voltage or vertical points units.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Delta T</td>
<td>Cursor 1 - Cursor 2, time units or horizontal points units.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/Delta T</td>
<td>Reciprocal of delta time, yields frequency information.</td>
<td></td>
</tr>
</tbody>
</table>
Plotter Control

An HPGL compatible plotter (e.g., Tektronix HC100) can be connected to the RTD 710A for display and measurement hardcopies. Whatever is displayed will be plotted. If cursor(s) are on, voltage, time, and frequency are listed. The plots are made in 3 colors for easy viewing. Refer to section 2, "GPIB Plotter Output" for information. An example plot is shown in Figure 1-8.

Fig.1-8 Plotter output example.
COMMUNICATING WITH
THE RTD 710A

This section of the RTD 710A IIG gives an introduction to the GPIB, with descriptions of bus functions and command syntax.

Setting the RTD 710A for GPIB Operation

A group of binary switches on the back of the RTD 710A lets you configure the instrument for use on the GPIB. These switches offer three optional configuration settings:

- Talk-only (TON) mode
- Message terminator
- GPIB address

Talk Only (TON) Option

When the RTD 710A is used with an instrument controller, you must turn the TON option off (set it to logic 0), and thus make the RTD 710A a talk/listen instrument. The only time TON should be on (set to logic 1) is when you want to use an HPGL-compatible plotter connected to the GPIB without an instrument controller. Refer to the section titled "GPIB Plotter Output" later in this section for more details about the plotter output capability.

Message Terminator

You can set the message terminator for either EOI or EOI/LF. If your instrument controller supports EOI termination, set this option to logic 0. If the controller does not support "EOI Only" termination, select EOI/LF by setting the option to logic 1. The RTD 710A then sends and accepts commands using Line Feed (LF or EOI) as the terminator.

GPIB Address

You can set the RTD 710A's GPIB address at any number from 0 to 30. Five switches set the address, in binary. For example, to select address 17, set bit 16 (the 2^4 switch) and bit 1 (2^0) to logic 1, and all other address switches to logic 0. Note that only one instrument can reside at each address on the GPIB. Figure 2-1 shows a close-up of the switch and the locations of each settable option.

Determining the GPIB Address from the Front Panel

The address of the RTD 710A can be determined by pressing the RED ID button on the front panel. The address is displayed for approximately one second on the Control (rightmost) LED display.

Introduction to the GPIB

GPIB controllers use high-level languages such as BASIC, C, and Pascal to define messages and transfer them to and from the digitizer. Statements in these languages usually contain three parts:

- The input/output keyword (such as PRINT or READ)
- The GPIB logical unit designator (such as '1' or 'DIG')
- A character string or string-variable designator (such as ‘CH1 RANGE:2’) that forms a specific instrument command or response

In this Guide, all program examples are in Tek 4041 BASIC unless otherwise noted. The RTD 710A is set to GPIB address 1.

![Fig. 2-1 Settable switch option locations.](image-url)
Output Statements

The following examples show output statements in several controller languages. Any instrument command can take the place of "STRING" in the examples. Each statement assumes a prior configuration and declaration to the GPIB port and the device (the RTD 710A) on the bus.

Tek 4041 BASIC: PRINT #1:"STRING"
Tek SPS BASIC: PUT "STRING" INTO #1
IBM AT/XT/PC: WRT$="CH1 RANGE:20"
CALL IBWRT(SCOPE%,WRT$)

Note¹ with Tek GURU II GPIB Interface and Microsoft BASICA; where WRT$ is an output string buffer.

²IBM AT/XT/PC: IBWRT(scope, wrt, cnt);

Note² With National GPIB/Pascal Interface and Turbo Pascal; where wrt is an output string buffer and cnt is the number of bytes to be sent.

HP 9000 Series
200/300 BASIC: OUTPUT 701;"STRING"
Fluke 1720A
BASIC: PRINT @1%:"STRING"
³NEC PC9801: PRINT @SCOPE%;"STRING"

Note³ With NEC GPIB board and N88BASIC; where the @ character at the end of the line means "SET EOI WITH LAST BYTE."

Input Statements

The following examples show input statements in several controller languages. The instrument response occupies the SET$ or RD$ buffer in the examples. Each statement assumes a prior configuration and declaration of the GPIB port and the device (RTD 710A) on the bus. To identify the information desired, a query must precede every input:

Tek 4041 BASIC: INPUT #1: Set$
Tek SPS BASIC: GET RD$ FROM #1
IBM AT/XT/PC: IBRD(SCOPE%, RD$)

Note¹ With Tek GURU II GPIB Interface and Microsoft BASICA; where RD$ is an input string buffer.

²IBM AT/XT/PC: IBRD(scope, rd, cnt);

Note² With National GPIB/Pascal Interface and Turbo Pascal; where rd is an input string buffer and cnt is the number of bytes to be read.

HP 9000 Series
200/300 BASIC: ENTER 701; Set$
Fluke 1720A
BASIC: INPUT @1%: Set$
³NEC PC9801: INPUT @SCOPE%; A, B, CLINE
 INPUT @SCOPE%; S$

Note³ With NEC GPIB board and N86BASIC. The first input example reads in numeric variables, and the second example reads in a string variable.

If a query includes a command argument to specify a parameter, the digitizer shortens the response. For example, if the controller sends CH1? RANGE to the digitizer, the response could be:

Set$="CH1 RANGE:2.0E+0"

The returned string set$ is in the proper format to be sent back to the RTD 710A. There are however cases where the settings string conflict with current instrument settings. An example is sending channel 2 information when in high speed mode. The RTD 710A will issue an execution error SRQ when settings conflict. There are a number of ways to handle the SRQ's and are explained in section 4, titled "Sending settings to the RTD 710A". The string can be saved to a file or retained in computer memory. The controller can then send the string to the RTD 710A at a later date, to set the conditions defined in the string.
Instrument Settings Transfer
You should copy initial setups from a manually operated instrument to the controller using the SET? query. The RTD 710A settings can be modified at a later time with a few commands.

The RTD 710A can transfer the current setup to a controller in response to a SET? query. The entire setup is described in ASCII characters, as defined in the command tables. The next section includes an example 4041 program that queries and reads settings from the RTD 710A.

Sending and Receiving ASCII Settings
To save an ASCII setup for future use, request a SET? string from the digitizer and store it in a string variable. To set the instrument up with the parameters, simply send the string back to the instrument. The stored parameters can be stored in a file and read at a later time to set the digitizer to a desired state. The following example listing illustrates how to read the settings in ASCII into a string variable SET$. There are instances where instrument settings can conflict. In these cases, the RTD 710A issues an execution error SRQ. There are a number of ways to handle this condition. Refer to section 4, titled “Sending settings to the RTD 710A” for more information.

```
390 ! Dimension string variable
400 Dim set$ to 650
405 ! Read front panel setup
410 Input #1 prompt "set?": set$
    .
    .
    .
740 ! Reset settings defined by SET$
750 Print #1: set$
    .
    .
```

Handling Service Request (SRQ) and Event Codes
The most recent RQS ON or RQS OFF command determines whether the digitizer generates the Service Request (SRQ) message on the GPIB when either an error or a change in status occurs. The disabling effect of the RQS command is reset to RQS ON at power-on. The SRQ indicator located in the lower right portion of the front panel lights when the digitizer asserts SRQ on the bus.

If the controller is configured and programmed appropriately, the SRQ interrupts the normal program flow. To service an interrupt, the controller performs a Serial Poll. In response, the digitizer returns a Status Byte (STB), which reveals the type of event that occurred. The instrument whose SRQ is handled stops asserting the SRQ line.

If another SRQ is pending, either from the same or another instrument on the GPIB, the SRQ line will continue to be asserted until all SRQ’s are handled. If the controller does not respond to the SRQ message, the instrument continues to operate and communicate normally, even though the condition that caused the SRQ may invalidate an operation such as a measurement, setting, or acquisition.

After reading a status byte, the controller can seek more information about the event by sending the EVENT? query. The instrument returns a number that identifies the specific event. Section 5 defines the various status bytes, event codes, and errors. The example program location shown below shows how to:

- **Handle an SRQ**
- **Determine the instrument status**
- **Display the status byte and associated event code on the controller screen**

```
800 ! Define variables as integers
810 Integer stb,dev,event
820 ! Perform auto serial poll
830 Poll stb,dev
840 ! Status=stb, Device address= dev.
850
860 ! Get event code from dev
970 Input #dev prompt "event?": event
    ! Get event code from dev
980 !
990 print "SRQ from ": dev", status="":stb":", event= "":event
    .
    .
```

Sending the USER ON command to the RTD 710A enables the user SRQ interrupt; you can generate an SRQ from the front panel by pressing the RQS/ID button. The RTD 710A sends a status byte of 67 or 83 and an event code of 403 signifying an operator request. These numbers can be used to control program flow by waiting for the operator to press RQS/ID before taking such actions as acquiring a waveform or making a cursor measurement.
RTD 710A Instrument Interfacing Guide

GPIB Plotter Output

Whatever is displayed on the RTD 710A monitor will be can be plotted to an HPGL-compatible plotter. Plotting can be done stand-alone in Talk-Only mode or initiated by a controller on the GPIB.

Plots without controller: The plotter should be set to "listen only" and the RTD 710A to "talk only." With the plotter and RTD 710A set correctly, the digitizer sends the proper commands to the HPGL-compatible plotter to make a hardcopy when you press the front panel PLOT button. The RTD 710A is made a "talk only" by setting the Talk ONLY (TON) dip switch to logical one (1). Making the plotter a listener only requires looking the plotter owners manual. In many cases, setting all plotter address dip switches to one (1) makes it a "listener only".

Plots with controller: The instrument controller can initiate a plot over the GPIB by setting up the RTD 710A & plotter and sending the proper commands. The example program below illustrates how to make a plot:

 Initiating a HP-GL Plot from the Controller

The following is a sample program for making a copy using an HP-GL plotter.

100 !
110 ! A copy from RTD 710A to a HP-GL plotter
120 ! that's connected the GPIB
130 ! RTD 710A address 1, Plotter address 2
140 !
150 ! Init all
160 Open #1: "gpiib[pri=1, em=0]:"
170 Print #1: "DEVICESETTINGS:ON, WAVEFM:ON, GRAT:ON"
180 Print #1: "PLOT"
190 Whyte atn(unt, unl, 34, 65):Make plotter listener
200 On aol then call alldone
210 Enable end
220 Wait
230 End
1000 Sub alldone
1010 Whyte atn (unt, unl)
1020 Print "Plot is done."
1030 Resume
1040 End

Interface Messages

This section describes the effects of GPIB interface messages received by the digitizer from a controller. See ANSI/IEEE Standard 488-1978 for detailed descriptions of interface messages and resultant interface states. These interface messages may be explicitly generated by the GPIB interface software in the controller or they can be composed in hexadecimal format according to the IEEE Standard. Unlike instrument commands, they can not be sent as character strings.

My Listen Address (MLA) and My Talk Address (MTA)

MLA messages condition the instrument to receive commands. MTA messages respond to queries and serial polls. MLA is received when the Attention (ATN) line is true and the data on the GPIB is decimal 32 plus the address set on the dip switches on the back of the RTD 710A. MTA is received when attention is true and the data on the GPIB is decimal 64 plus the RTD's address. For example, if the RTD 710A is set to address 1 on the dip switch, then the listen address is 32+1=33 and the talk address is 64+1=65.

Local Lockout (LLO)

This command locks out the front panel so the operator cannot change the front panel settings while under program control.

Whether it is addressed or not, the instrument may receive the Local Lockout message (LLO) at any time. After the instrument receives the LLO message, the My Listen Address (MLA) message locks out the front panel controls and the Go To Local (GTL) message enables the front panel to local control. The LLO message disables the front panel controls immediately if the instrument is addressed as a listener when the LLO is received.

If a program sends the LLO message, it should also send the GTL message to a listener-addressed device when the front panel is active. The LOCK indicator lights when front panel operation is suspended.

If the controller sets the Remote Enable (REN) line false or if power cycles off and on, the effect of the LLO message is cancelled and the instrument controls operate normally.

Remote Enable (REN)

When the Remote Enable (REN) line is true and the instrument receives its listen address (MLA), the digitizer can receive data from the bus, and the digitizer's Remote (REM) indicator will light.
If the REN line goes false, the instrument must receive MLA again before it can receive commands. If a command is in process when REN goes false, the command continues to execute.

Messages sent to the RTD 710A when REN is false generate an SRQ (status=97, event=201) if SRQ is not disabled, indicating "Command not executable in local mode."

Go to Local (GTL)

If GTL is received, the instrument must receive MLA again before it can receive commands. If a command is in process when GTL is received, it continues to execute.

GTL and a listen address (MLA) are necessary before the front panel is operable.

Unlisten (UNL) and Untalk (UNT)

The UNL message is equivalent to talk address decimal 31, so the address sent is 31+32=63. The UNT message is equivalent to listen address decimal 31, so the address sent is 31+64=95. The UNL message cancels the MLA message. The UNT message cancels the MTA message. The Untalk and Unlisten commands are called "universal" commands. All GPIB instruments stop talking and listening when the controller sends UNT and UNL messages.

Interface Clear (IFC)

IFC is a hardware line in the GPIB interface. When this line is true, the RTD 710A responds by Untalking (UNT) and Unlistening (UNL).

Device Clear (DCL)

The DCL message initializes communication between the instrument and the controller. In response to DCL, the instrument clears input and output messages as well as unexecuted control settings. Errors and events waiting to be reported are cleared, except the power-on event. The SRQ message is cleared unless SRQ is true from a power-on condition.

Selected Device Clear (SDC)

SDC performs the same function as DCL, but requires the instrument to have been listen-addressed. (More than one instrument may have been addressed.) This function allows the controller to perform a device-clear on selected instruments.

Serial Poll Enable (SPE) and Serial Poll Disable (SPD)

The Serial Poll Enable (SPE) message causes the instrument to transmit its serial poll status byte when it is talk-addressed. The Serial Poll Disable (SPD) message returns the instrument to normal operation.

Parallel Poll

The RTD 710A does not support parallel polling commands.

Group Execute Trigger (GET)

The RTD 710A supports the Group Execute Trigger (GET) function. In the RTD 710A, the DT ON command, listed in Table 3-10, enables the RTD 710A to recognize the GET command. When the GET function is enabled, the instrument reads commands but doesn't execute them until the GET command is received. This capability allows many instruments to be synchronized by having them wait for the GET command to execute. A multiple digitizer system can use the GET command to acquire many channels at the same time.

Command Handler

A command handler performs these functions:

- Establishes communication between the controller and the digitizer
- Sends commands and queries to the RTD 710A
- Receives responses from the digitizer
- Processes the responses as required

The following outline indicates a general sequence of command handling functions. The commands used by a particular controller may vary.

1. Initialize the controller.
2. Disable the service-request handler until the program is ready to handle them.
3. Get the GPIB address of the RTD 710A.
4. Enable the service-request handler.
5. Send a command to the digitizer.
6. Check for a response from the digitizer, either an SRQ or a response to a query.
7. Process any response as desired.
8. Repeat steps 5 through 7 as desired.
Service Request Handler

A service request handler processes the interrupts generated by the SRQ message on the GPIB. For example, after placing cursors on points of interest on a waveform, you can press the RQS/ID button to assert the SRQ line and interrupt the controller. The controller can verify that the RQS/ID button was pressed (by checking to see if the status=67 or status=83 and the event code=403). After verifying the button status, the controller can read the cursor measurement from the RTD 710A.

Section 5 identifies all the SRQ and Event codes of the RTD 710A.

Some controllers can ignore service requests. Others require a programmed response to SRQ. Most controllers ignore service requests until SRQ interrupts are explicitly enabled.

An SRQ handler needs an interrupt enabling statement (for example, the ON SRQ statement) near the beginning of the program and a serial poll subroutine with that label. The ON SRQ statement directs program control to the serial poll subroutine whenever an SRQ interrupt occurs. The instrument maintains the identity of an event that generates an SRQ until the interrupt service subroutine executes a serial poll.

The following general steps handle service requests from the digitizer:
1. Perform a serial poll to determine which device on the bus is requesting service. The serial poll clears an SRQ generated by the digitizer, unless more than one event has been identified.
2. Send an EVENT? query to the digitizer requesting service.
3. If the EVENT? query response is not zero, perform the appropriate response to the event.
4. Return to the main program.

GPIB Commands

GPIB commands set instrument operating states, query the operating states, and query the results of measurements. Users specify these commands in mnemonics that are related to function names or front-panel control names. Commands follow the conventions established in the Tektronix Standard Codes and Formats guidelines.

All command messages consist of headers, arguments, separators, and messages terminators.

Headers

A command must have a header. A few commands are fully specified by a header alone. For example:

```
INIT
```

Arguments

Most commands require arguments after the headers. An argument must be separated from its header by a space. For example:

```
VMODE CH1
BWLM ON
```

Some commands also have link arguments. The primary and link arguments must be separated by a colon:

```
CH1 RANGE:2
TRIGGER MODE:AUTO
```

Header ————
Primary argument ————
Link argument ————

Some headers allow multiple arguments, which must be separated by commas. A colon still separates primary and link arguments.

```
CH1 RANGE:20,OFFSET:20
SAMPLE MODE:NORM,CLOCK:INT,
INTERVAL: 20E-9
```

Command Separator

You can combine multiple commands in one message by separating the individual commands with semicolons:

```
CH1 RANGE:2;SAMPLE MODE:NORM
```

Queries

In a query, the question mark must immediately follow the header, with no space between them:

```
CH1? RANGE
SAMPLE? INTERVAL
```
Message Terminator

Messages can be terminated with either EOI or EOI/LF, depending on the system controller. You can set the RTD 710A's GPIB interface to accept either terminator, by using the dip switch on the rear panel.

With EOI selected, a data byte received with EOI asserted is recognized as the end of an input message. The instrument also asserts EOI concurrently with the last byte of an output message.

With the LF setting, either an LF character or any data byte received with EOI asserted is recognized as the end of an input message. With the LF selection, the instrument transmits a Carriage Return character followed by Line Feed (LF) with EOI asserted to terminate an output message.

If the controller supports EOI, use EOI only as a terminator. This approach eliminates any unwanted terminations if the binary waveform data contains the Carriage Return and Line Feed characters.

Abbreviations

Defined words in headers and arguments can be entered full length, or can be shortened to reduce typing and bus traffic. The command tables show the essential characters of headers and arguments in upper-case, and non-essential characters in lower-case. The instrument accepts either upper-case or lower-case characters. For example, the following commands are acceptable:

```
VMO DUAL
VMO DUA
```  

Numeric Arguments

Table 2-1 depicts the formats for numeric arguments in the GPIB command set. Both signed and unsigned numbers are accepted but unsigned numbers are interpreted as positive.

The symbol \(<NRx>\) indicates that any of the three formats is allowed. When only one format is permitted, it is represented by \(<NR1>\), \(<NR2>\), or \(<NR3>\).

<table>
<thead>
<tr>
<th>Numeric Argument Symbol</th>
<th>Number Format</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<NR1>)</td>
<td>Integers</td>
<td>+1, 2, -1, -10</td>
</tr>
<tr>
<td>(<NRx>)</td>
<td>Explicit decimal points</td>
<td>-3.2, -5.1, 1.2</td>
</tr>
<tr>
<td>(<NR2>)</td>
<td>Floating point in scientific notation</td>
<td>-1.0 E-2, +10.3E9</td>
</tr>
</tbody>
</table>
GPIB COMMAND REFERENCE

This section of the RTD 710A Instrument Interfacing Guide lists the commands used by the RTD 710A. It does not cover possible errors caused by arguments being out of range or other causes.

Some special conventions are observed in this section:

- `<NRx>`: Denotes that either an integer number (e.g., 1, 345), a short floating point number (e.g., 2.4, 456.7), or a number expressed in scientific notation (e.g., 2E-9) can be sent to the RTD 710A.

- The vertical bar symbol `|`: Separates the exact choices available for a "multiple-choice" argument. For example, when entering the record length (in the Timebase table), many choices are available, denoted as:

 1024|2048|4096|8192|16384|32768|65536|etc

- Double equal signs `==`: Mean that the choices available must be exactly as shown in the explanation.

- Brackets `[]`: Enclose an optional argument or arguments.

- "Query only" in the function column of a table means that no corresponding settings command exists. "Query only" commands can be sent to the RTD 710A, but no setting action will occur.

The command reference tables are broken into functional groups. Here is a summary of the tables contained in Section 3:

Table 3-1: Vertical System Control Group
Table 3-2: Timebase & Recording Group
Table 3-3: Triggering Group
Table 3-4: Cursor and Display Group
Table 3-5: Cursor Measurement Group
Table 3-6: Waveform Transfer Group
Table 3-7: Calibration Group
Table 3-8: Self-Test Group
Table 3-9: Utility Command Group
Table 3-10: Device Trigger Group
Table 3-11: Initialization Group
Table 3-12: Service Request Control & Event Query Group
Table 3-13: Internal Waveform Analysis Group
<table>
<thead>
<tr>
<th>Header</th>
<th>Argument</th>
<th>Link Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMOde</td>
<td>CH1</td>
<td></td>
<td>Selects the vertical input mode. CH1 selects CH1 only.</td>
</tr>
<tr>
<td></td>
<td>DUAL</td>
<td></td>
<td>DUAL selects both CH1 and CH2. A record length of 256 K is incompatible with DUAL mode. Selecting DUAL mode limits the record length to 128 K, and a warning SRQ is issued if EXW is ON and 256 K is attempted.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DUAL mode and High-speed sample mode are incompatible. Selecting DUAL forces sample mode to NORmal, and the sample interval is set to 10 ns if 5 ns is attempted. Also, a warning SRQ is issued if EXW is on.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Record location number or auto advance location is limited to 128 K if vertical mode is set to DUAL, and a warning SRQ is issued if EXW is on.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CH1 only mode and XY display mode are mutually exclusive. Selecting CH1 only mode forces display mode to YT.</td>
</tr>
</tbody>
</table>

| VMOde? | | | Queries the vertical mode selection. Example response: VMODE DUAL |

| BWLim | ON | | Enables the 20 MHz bandwidth limiter. |
| | OFF | | |

| BWLim? | | | Queries the status of the 20 MHz bandwidth limiter. Example response: BWLIM ON |

More Vertical System Control Commands on next page
Table 3-1 (Cont)

VERTICAL SYSTEM CONTROL GROUP

<table>
<thead>
<tr>
<th>Header</th>
<th>Argument</th>
<th>Link Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH1 (or CH2)</td>
<td>RANge:</td>
<td><NRx></td>
<td>Sets the CH1 (or CH2) full-scale range to <NRx> volts. (<NRx> := 0.1-500 \text{ V}) in a 28-step sequence of (1-1.25-1.6-2-2.5-3.2-4-5-6.2-8). Range is automatically adjusted to a probe attenuation change. Unit is volts. (<NRx>) is truncated and limited to the nearest legal setting, and warning SRQ is issued if EXW is on. When queried, the value is (<NRx>).</td>
</tr>
<tr>
<td>UNit:</td>
<td>PERcent</td>
<td>PERcent</td>
<td>Selects the units of measure for the CH1 (or CH2) input offset. (<NRx> := -199% \text{ to } +199%) in 1% steps. (<NRx> := (% \text{ value}) \times \text{ (full scale range)}). The offset automatically adjusts to probe attenuation changes. (<NRx>) is truncated and limited to the nearest legal setting, and a warning SRQ is issued if EXW is on. When queried, the value is (<NRx>) for PERcent or (<NRx>) for VOLts.</td>
</tr>
<tr>
<td>OFFSET:</td>
<td><NRx></td>
<td></td>
<td>Sets the CH1 (or CH2) input offset value in % of full scale or (<\text{volts}>). (<NRx> := -199% \text{ to } +199%) in 1% steps. (<\text{volts}> := (% \text{ value}) \times \text{ (full scale range)}). The offset automatically adjusts to probe attenuation changes. (<NRx>) is truncated and limited to the nearest legal setting, and a warning SRQ is issued if EXW is on. When queried, the value is (<NRx>) for PERcent or (<NRx>) for VOLts.</td>
</tr>
<tr>
<td>COUpling:</td>
<td>AC</td>
<td>AC</td>
<td>Selects CH1 (or CH2) coupling. TVClamp cannot be selected for CH2. If TVClamp is selected and the TV Trigger option is not installed, an SRQ is issued (if EXR is on) and the command is ignored.</td>
</tr>
<tr>
<td></td>
<td>GND</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DC</td>
<td>DC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TVClamp</td>
<td>TVClamp</td>
<td></td>
</tr>
<tr>
<td>CH1? (or CH2)?</td>
<td>RANge</td>
<td>RANge</td>
<td>Queries the selected CH1 (or CH2) vertical settings. (\text{RANge}) value is in the (<\text{NRx}>) format. (\text{OFFSET}) value for % of full scale is in (<\text{NRx}>) format; for (<\text{volts}>) it is in (<\text{NRx}>) format. PRObe reports probe attenuation factor (X1 or X10).</td>
</tr>
<tr>
<td></td>
<td>UNit</td>
<td>UNit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OFFSET</td>
<td>OFFSET</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COUpling</td>
<td>COUpling</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PRObe</td>
<td>PRObe</td>
<td></td>
</tr>
<tr>
<td>CH1? (or CH2?)</td>
<td></td>
<td></td>
<td>Queries the CH1 (or CH2) vertical settings, except probe attenuation. Example response: (\text{CH1 RANGE:2.5E+0,UNIT:PERCENT, OFFSET:0,COUPLING: AC})</td>
</tr>
<tr>
<td>Header</td>
<td>Argument</td>
<td>Link Argument</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>SAMple</td>
<td>MODE</td>
<td>NORm</td>
<td>Selects the sampling mode. HISpd forces VMOde:CH1, TRlgger SOURce:CH1, DISplay MODE:YT. If RECOrd MODE:ENV, HISpd forces it to RECOrd MODE:NORm. Trigger delay value and Break Point address may be truncated; if setting or value change occurs, an SRQ is issued if EXW is on. When Normal mode is set, sample interval is limited to 10 ns or more.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HISpd</td>
<td></td>
</tr>
<tr>
<td>CLOck</td>
<td></td>
<td>INT</td>
<td>Selects the sampling clock source. EXT forces TRlgger DUNit:POInt, BREakpoint UNit:POInt, MEAsure FREquency:OFF, TIME:OFF.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EXT</td>
<td></td>
</tr>
<tr>
<td>INTerval</td>
<td></td>
<td><NRx></td>
<td>Sets the sampling rate. <NRx>:=5E-9 to 2E-1 seconds in steps of one for internal clock source. <NRx>:=1 to 4E+7 points in steps of one for external clock source in normal sample mode. <NRx>:=1 to 4E+7 points in a 1-2-4-6-8 sequence for external clock source in high-speed sample mode. <NRx> is truncated or limited to nearest legal setting, and a warning SRQ is issued if EXW is on. When queried, the value is <NR3>.</td>
</tr>
<tr>
<td>SAMple?</td>
<td>MODE</td>
<td></td>
<td>Queries the selected SAMple settings. INTerval value is in <NR3> format.</td>
</tr>
<tr>
<td></td>
<td>CLOck</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>INTerval</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

More Time Base and Recording Group Commands on next page
Table 3-2 (Cont)
TIME BASE AND RECORDING GROUP

<table>
<thead>
<tr>
<th>Header</th>
<th>Argument</th>
<th>Link Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RECORd</td>
<td>MODe:</td>
<td>NORm</td>
<td>Selects the recording mode. AVErages forces a record LENgth of 131072. ADV selects the auto-advance mode, and forces TRigger MODe:NORm if it was INComp or OUTcomp.</td>
</tr>
<tr>
<td></td>
<td>AVE</td>
<td></td>
<td>ENV selects the enveloping mode, which forces SAMple MODe:NORm, and TRigger MODe:NORm if it was INComp or OUTcomp. In ENvelope mode, Record Length value is limited to 128 K. If 256 K is selected in this mode, a warning SRQ is issued if EXW is on.</td>
</tr>
<tr>
<td></td>
<td>ADV</td>
<td></td>
<td>ENvelope: <NRx> Sets number of times to envelope. When <NRx> is 2 or more, the last waveform memory segment is used for enveloped waveform accumulation. In this case, record location is changed to the last location minus one, and a warning SRQ is issued if EXW is on. <NRx> is truncated and limited to a legal number, and a warning SRQ is issued if EXW is on. When queried, the value is <NR1>.</td>
</tr>
<tr>
<td></td>
<td></td>
<td><NRx></td>
<td>Sets the number of times to average. <NRx> := 2 to 16348 in 2^n steps. If <NRx> exceeds the range, it is truncated and limited to a legal number, and a warning SRQ is issued if EXW is on. When queried, the value is <NR1>.</td>
</tr>
<tr>
<td></td>
<td>LOCation:</td>
<td><NRx></td>
<td>Sets the waveform memory location number as the acquisition segment. <NRx> := 1 to 256 (VMOde CH1) <NRx> := 1 to 128 (VMOde DUAl)</td>
</tr>
</tbody>
</table>

If RECORd MODe:ENV and ENvelope is equal to or more than 2: <NRx> := 1 to 255 (VMOde CH1) <NRx> := 1 to 127 (VMOde DUAl) If <NRx> exceeds the range, it is truncated or limited to match a legal value, and a warning SRQ is issued if EXW is on. When queried, the value is <NR1>. |

More Time Base and Recording Group Commands on next page
<table>
<thead>
<tr>
<th>Header</th>
<th>Argument</th>
<th>Link Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RECOrd?</td>
<td>MODe</td>
<td></td>
<td>Queries the selected RECOrd settings.</td>
</tr>
<tr>
<td></td>
<td>ENvelope</td>
<td></td>
<td>ENVelope value is in <NR1> format.</td>
</tr>
<tr>
<td></td>
<td>AVERAGE</td>
<td></td>
<td>AVERAGE value is in <NR1> format.</td>
</tr>
<tr>
<td></td>
<td>LOCation</td>
<td></td>
<td>LOCation value is in <NR1> format.</td>
</tr>
<tr>
<td>RECOrd?</td>
<td></td>
<td></td>
<td>Queries for all RECOrd settings.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Example response: RECORD MODE:NORM, AVERAGE:2, ENVELOPE:1, LOCATION:1</td>
</tr>
<tr>
<td>LENgth</td>
<td>NRx</td>
<td></td>
<td>Sets the acquisition record length.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><NRx> ::= 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, or 262144. 262144 is for VMODE CH1 and SAMple MODE HISpd only.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><NRx> is truncated or limited to the nearest legal setting, and a warning SRQ is issued if EXW is on. Record Length value affects the trigger delay value and record location number.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If limitation occurs because of a record length value change, the values are limited to the nearest legal value, and a warning SRQ is issued if EXW is on. Record Length value also affects the Cursor position value, Horiz Zoom value, and Display Location number. These values are also limited to the nearest legal value or number. When queried, the value is <NR1>.</td>
</tr>
<tr>
<td>LENgth?</td>
<td></td>
<td></td>
<td>Queries for the record acquisition length.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Response is in <NR1> format. Example response: LENGTH 2048</td>
</tr>
<tr>
<td>HOLD</td>
<td>ON</td>
<td></td>
<td>Controls the acquisition (recording) start and stop for time base.</td>
</tr>
<tr>
<td></td>
<td>NEXt</td>
<td></td>
<td>ON immediately stops an acquisition operation. Some data may be invalid.</td>
</tr>
<tr>
<td></td>
<td>RESet</td>
<td></td>
<td>NEXt allows the current acquisition operation to continue through its specified record length, then enter the hold state. RESet clears the hold state and initiates the start of a new acquisition.</td>
</tr>
<tr>
<td>HOLD?</td>
<td></td>
<td></td>
<td>Reports the acquisition status for both time base channels. Example response: HOLD RESET</td>
</tr>
</tbody>
</table>

More Time Base and Recording Group Commands on next page
Table 3-2 (Cont)

<table>
<thead>
<tr>
<th>Header</th>
<th>Argument</th>
<th>Link Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breakpoint</td>
<td>CLEar:</td>
<td><NRx></td>
<td>Clears the specified breakpoint. <NRx>::=1-5. If requested number is illegal and EXR is on, an error SRQ is issued.</td>
</tr>
<tr>
<td></td>
<td>UNIT:</td>
<td>POInt, TIME</td>
<td>Selects the units of measure for the breakpoint settings. If SAMple CLOck:EXT is selected, only POInt is available.</td>
</tr>
<tr>
<td></td>
<td>SET:</td>
<td><NRx>:<NRx></td>
<td>Sets up to 5 breakpoints. First <NRx> in the argument assigns the break point location. Break point location limit is 10 to 524272 for Normal sampling mode, 10 to 524256 for High-Speed sampling mode. If limitation occurs, a warning SRQ is issued if EXW is on. Actual effective location is limited to the value shown below. First <NRx>::=<address>:<time> <address>::=+16 to (record length+trigger delay -16) in increments of 8 in NOrmal SAMple MODe. <address>::=+32 to (record length+trigger delay -32) in increments of 16 in HISpd SAMple MODe. <time> is calculated by <address> * (sample interval in seconds). If the external clock source is selected, only <address> can be set. Second <NRx> sets the sampling interval for the breakpoint defined by the first <NRx>. See SAMple INTerval for allowable <NRx> values.</td>
</tr>
</tbody>
</table>

| Breakpoint? | UNIT | SET | Reports selected BREAKpoint settings. For SET, the first <NRx> value is in <NR1> format for <points> and <NR3> format for <time>. The second <NRx> value is in <NR3> format. |
| Breakpoint? | | | Reports all BREAKpoint settings. Example response: BREAKPOINT UNIT:POINT, SET:0:10.0E-9,SET:520:100.0E-9 |

More Time Base and Recording Group Commands on next page
Table 3-2 (Cont)

TIME BASE AND RECORDING GROUP

<table>
<thead>
<tr>
<th>Header</th>
<th>Argument</th>
<th>Link Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPeat</td>
<td><NRx></td>
<td></td>
<td>Sets the number of acquisition cycles for the time base (not available via front panel). This command is the equivalent of having the instrument acquire <NRx> times and receiving the CURve? query. <NRx>:=1 to 65536 in increments of 1. Forces TRlgger MODe:SGL and RECOrd MODe:NORm.</td>
</tr>
<tr>
<td>NUMacq?</td>
<td></td>
<td></td>
<td>Reports the number of acquisitions. Response is in <NR1> format. For TRlgger MODe:INComp or :OUTcomp, the returned value indicates the number of compare operations that occurred before entering the HOLd state. For TRlgger MODe: AUTO, NORm, or SGL, the returned value indicates the number of acquisitions that occurred before entering the HOLd state. For RECOrd MODe:ADV, the response indicates the last record location that completed acquisition before entering the HOLd state. An intermediate number is returned if the HOLd state has not been entered. The controller should monitor the OPC SRQ to determine when the HOLd state is entered.</td>
</tr>
<tr>
<td>Header</td>
<td>Argument</td>
<td>Link Argument</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>TRigger</td>
<td>MODe:</td>
<td>AUTO</td>
<td>Selects the trigger operating mode. In compare mode (IN or OUT), 256 K record length is not permitted. If record length is 256 K and EXW is on, a warning SRQ is issued. More than two envelope times and compare mode are incompatible. If compare mode is set, envelope # times is set to 1.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NORm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SGL</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>INComp</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>OUTcomp</td>
<td></td>
</tr>
<tr>
<td>DUNit:</td>
<td></td>
<td>POInt</td>
<td>Selects the units of measure for the trigger delay value.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TIME</td>
<td></td>
</tr>
<tr>
<td>DELay:</td>
<td></td>
<td><NRx></td>
<td>Sets trigger delay value. A negative number indicates pretrigger. <NRx> ::= <points> or <time>.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><NRx> ::= -(LENght:<NRx>-8) to 262136 in increments of 8 for SAMple MODe:NORm.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><NRx> ::= -(LENght:<NRx>-16) to 262128 in increments of 16 for SAMple MODe:HISpd.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><time> ::= (points) * (sample interval).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If <NRx> is not legal, it is truncated and limited to a legal hardware setting, and a warning SRQ is issued if EXW is on.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>When queried, value is <NR1> for Point unit or <NR3> for Time unit.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Trigger delay value determines the trigger position where a negative number sets pretrigger and a positive number sets posttrigger. Trigger position is used as a time origin for the break point location, cursor position, PT. Off of waveform preamble, STArt of DATa command, and STArt of WIndow command. Change of trigger delay value may affect the above values, and limitation may occur for those values.</td>
</tr>
</tbody>
</table>

More Triggering Group Commands on next page
Table 3-3 (Cont)
TRIGGERING GROUP

<table>
<thead>
<tr>
<th>Header</th>
<th>Argument</th>
<th>Link Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COUpling:</td>
<td>AC</td>
<td></td>
<td>Selects trigger coupling. HFReg attenuates signals above 50 kHz. LFReg attenuates signals below 50 kHz. AC blocks dc components and attenuates signals below 60 Hz.</td>
</tr>
<tr>
<td></td>
<td>HFReg</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LFReg</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LINes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FLD1</td>
<td></td>
<td>LINes, FLD1, and FLD2 are for TV Option only. For FLD1 and FLD2, TRigger SOUrce:CH1 is forced and if TRigger SLOpe is set to BI, PHYs, or NHYs, it is forced to NEGative.</td>
</tr>
<tr>
<td></td>
<td>FLD2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOURCE:</td>
<td>CH1</td>
<td></td>
<td>Selects the trigger source. Selection defaults to CH1 for TV coupling selections and for SAMPle MODe:HIspd.</td>
</tr>
<tr>
<td></td>
<td>CH2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EXT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRigger</td>
<td>SLOpe</td>
<td>POSitive</td>
<td>Selects trigger slope. Selection defaults to NEGative if BISlope, PHYs, or NHYs is selected with TV coupling selections, and an SRQ is issued if EXR is on.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NEGative</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BISlope</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHYs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NHYs</td>
<td></td>
</tr>
<tr>
<td>LUNit:</td>
<td>PERcent</td>
<td></td>
<td>Selects the units of measure for trigger level 1 and level 2.</td>
</tr>
<tr>
<td></td>
<td>VOLts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEV1:</td>
<td><NRx></td>
<td></td>
<td>Sets trigger level 1.</td>
</tr>
<tr>
<td></td>
<td></td>
<td><NRx>:= −99% to +99% in 1% steps.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><NRx> in Volts:=(% value) * RANge.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>When external trigger source is selected, full scale is ±5v.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>If <NRx> is illegal, it is truncated or limited to a legal hardware setting, and a warning SRQ is issued if EXW is on.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><NRx> in volt value takes Range value into account. If range value is changed or probe attenuation is changed and level unit is VOLts, the level value is automatically changed (see above formula).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>When queried, the value is <NR1> for Percent unit or <NR3> for Volts unit.</td>
<td></td>
</tr>
</tbody>
</table>

More Triggering Group Commands on next page
Table 3-3 (Cont)
TRIGGERING GROUP

<table>
<thead>
<tr>
<th>Header</th>
<th>Argument</th>
<th>Link Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEV2:</td>
<td><NRx></td>
<td></td>
<td>Sets trigger level 2.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><NRx>::= −99% to +99% in 1% steps.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><NRx> in Volts.::=(% value) * RANge.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If <NRx> is illegal, it is truncated or limited to a legal hardware setting, and a warning SRQ is issued if EXW is on.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><NRx> in volt value takes Range value into account. If range value or probe attenuation factor is changed and level unit is VOLts, level value is automatically changed by formula above.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>When queried, the value is <NR1> for Percent unit or <NR3> for Volts unit.</td>
</tr>
<tr>
<td>LINE:</td>
<td><NRx></td>
<td></td>
<td>TV Option. Selects which TV line number from the selected TRigger COUpling field causes the trigger.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><NRx>::=1 to 1280</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If outside this range, a warning SRQ is issued if EXW is on.</td>
</tr>
<tr>
<td>LCNStart:</td>
<td>PREfld</td>
<td></td>
<td>TV Option. Defines where the TV line count starts. PREfld line count starts 3 lines before the field-sync pulse (System-M). ATFlld line count starts at the field-sync pulse (Nonsystem-M). This setting forces trigger coupling to FLD1. When queried, the value is <NR1>.</td>
</tr>
<tr>
<td></td>
<td>ATFlld</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

More Triggering Group Comands on next page
<table>
<thead>
<tr>
<th>Header</th>
<th>Argument</th>
<th>Link Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRigger?</td>
<td>MODe</td>
<td></td>
<td>Reports the selected trigger settings.</td>
</tr>
<tr>
<td></td>
<td>DUNit</td>
<td></td>
<td>LEV1 (or LEV2) % value is in <NR1> format; voltage value is in <NR3> format.</td>
</tr>
<tr>
<td></td>
<td>DELaYCOUpling</td>
<td></td>
<td>DELay <points> value is in <NR1> format; <time> value is in <NR3> format. LINe value is in <NR1> format.</td>
</tr>
<tr>
<td></td>
<td>SOUrce</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SLOpe</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LUNit</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LEV1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LEV2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LINe</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LCNStart</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARM</td>
<td>MODe:</td>
<td>INT</td>
<td>Selects the arming signal source.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EXT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DELay:</td>
<td><NRx></td>
<td>Sets the trigger arming delay value. <NRx>: 0, or 10ms to 10s in a 1-2-5 sequence. If <NRx> is illegal, it is truncated and limited to a legal hardware setting, and a warning SRQ is issued if EXW is on. When queried, the value is <NR3>.</td>
</tr>
<tr>
<td>ARM?</td>
<td>MODe</td>
<td></td>
<td>Reports the selected trigger ARM settings. DELay value is in <NR3> format.</td>
</tr>
<tr>
<td>ARM?</td>
<td>DELay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARM?</td>
<td></td>
<td></td>
<td>Reports all trigger ARM settings. Example response: ARM MODE:INT,DELAY:0.0E+0</td>
</tr>
<tr>
<td>Header</td>
<td>Argument</td>
<td>Link Argument</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>CURSor</td>
<td>ONE:</td>
<td>DISP1</td>
<td>Enables cursor 1 on CH1 display.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DISP2</td>
<td>Enables cursor 1 on CH2 display.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OFF</td>
<td>Disables cursor 1.</td>
</tr>
<tr>
<td></td>
<td>TWO:</td>
<td>DISP1</td>
<td>Enables cursor 2 on CH1 display.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DISP2</td>
<td>Enables cursor 2 on CH2 display.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OFF</td>
<td>Disables cursor 2.</td>
</tr>
<tr>
<td>SCROLL</td>
<td>ALIGN</td>
<td></td>
<td>Selects cursor scroll mode. ALIGN locks CH1 and CH2 displays together during scrolling using cursor 1. INDep allows scrolling on one display channel while the other remains locked.</td>
</tr>
<tr>
<td></td>
<td>INDep</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POS1:</td>
<td><NRx></td>
<td></td>
<td>Specifies the location of cursor 1 on the display.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><NRx> := (TRigger DELay) to (end of memory segment).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(end of memory segment) := (TRigger DELay) + (LENGTH<NRx>).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If <NRx> is illegal, the number is truncated or limited to nearest legal value, and a warning SRQ is issued if EXW is on.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If the Trigger Delay value is changed, the Cursor Position value may be limited.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>When queried, the value is <NR1>.</td>
</tr>
<tr>
<td>POS2:</td>
<td><NRx></td>
<td></td>
<td>Specifies the location of cursor 2 on the display.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>See POS1 above for <NRx> values and other limits.</td>
</tr>
<tr>
<td>CURSor?</td>
<td>ONE</td>
<td></td>
<td>Reports the selected CURSor setting.</td>
</tr>
<tr>
<td></td>
<td>TWO</td>
<td></td>
<td>POS1 and POS2 values are in <NR1> format.</td>
</tr>
<tr>
<td></td>
<td>SCROLL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>POS1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>POS2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CURSor?</td>
<td></td>
<td></td>
<td>Reports all CURSor settings. Example response: CURSOR ONE:OFF, TWO:OFF, SCROLL:ALIGN</td>
</tr>
</tbody>
</table>

More Cursor and Display Control Group Commands on next page
Table 3-4 (Cont)

CURSOR AND DISPLAY CONTROL GROUP

<table>
<thead>
<tr>
<th>Header</th>
<th>Argument</th>
<th>Link Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISplay</td>
<td>CHAnnel:</td>
<td>CH1</td>
<td>Selects which display channel is programmed by DISplay LOCation, VZOom, and VPOsn.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LOCation:</td>
<td><NRx></td>
<td>Selects the waveform memory record of the channel to be displayed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><NRx>: = 1 to 256 (CH1 or HISpd mode)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><NRx>: = 1 to 128 (DUA1 mode)</td>
</tr>
<tr>
<td></td>
<td>MODe:</td>
<td>YT</td>
<td>If <NRx> does not meet the other function settings or is outside range, it is truncated and limited to a legal value, and a warning SRQ is issued if EXW is on.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>XY</td>
<td>When queried, the value is <NR1>.</td>
</tr>
<tr>
<td></td>
<td>INTerpol</td>
<td>DOT</td>
<td>Selects the display mode. Both channels must be displayed for XY mode. If the Vertical Mode is set to CH1 Only, XY mode is not allowed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LINE</td>
<td>If XY is selected in CH1 Only or HISpd modes, an SRQ is issued if EXR is on, and the command ignored.</td>
</tr>
<tr>
<td>DISplay</td>
<td>INTerpol</td>
<td>DOT</td>
<td>Selects either dot or vector (line) display mode for the CRT monitor output signal. There are two algorithms for data thin-out method for horizontally compressed display, ranging X1/2 to X1/128. One is Even-Spaced thin-out and the other one is Envelope. The thin-out algorithm is automatically determined by the INTerpol setting. Dot mode uses the Even-Spaced algorithm. Line mode uses the Envelope algorithm. Dot mode offers faster display update.</td>
</tr>
<tr>
<td>DISplay?</td>
<td>CHAnnel</td>
<td>LOCa</td>
<td>Reports the selected DISplay setting. LOCation is in <NR1> format.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MODe</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>INTerpol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISplay?</td>
<td></td>
<td></td>
<td>Reports all DISplay settings. Example response:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DISPLAY CHANNEL:CH1, LOCATION:1,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MODE:YT, INTERPOL:LINE</td>
</tr>
</tbody>
</table>

More Cursor and Display Control Group Commands on next page
<table>
<thead>
<tr>
<th>Header</th>
<th>Argument</th>
<th>Link Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HZOom</td>
<td>X1/128</td>
<td></td>
<td>Selects the horizontal display scaling factor. The display memory is 2048 points. When a fraction is used in HZOom, e.g. 1/128, the data is thinned out to view a longer length waveform in 2K points. The numerator is the length of the data to be displayed. Using the example 1/128, this takes a 256 K waveform and divides it down (using the thin-out algorithm) to the 2 K display memory.</td>
</tr>
<tr>
<td></td>
<td>X1/64</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>X1/32</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>X1/16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>X1/8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>X1/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>X1/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>X1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>X2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>X4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>X8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>X16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>X16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| HZOom? | | | Reports the horizontal scaling factor of the display. Example response: HZOOM X1 |

VZOom	X1/4		Selects the vertical scaling factor for the display. A fraction compresses the display data. If an integer number (32) is used, the waveform is expanded by that number of times. The VPOsn command is useful for positioning the zoomed waveform.
	X1/2		
	X1		
	X2		
	X4		
	X8		
	X16		
	X32		

| VZOom? | | | Reports the vertical scaling factor of the display. Example response: VZOOM X1 |

| VPOsn | <NRx> | | Sets the vertical zero offset for the displayed channel. This is useful when using YZOom. <NRx>:= −2048 to 2047 in steps of 1. If <NRx> is not within the limitation determined by vertical zoom rate, <NRx> is truncated and limited to a legal value, and a warning SRQ is issued if EXW is on. When queried, the value is <NR1>. |

| VPOsn? | | | Reports the vertical zero offset value for the displayed channel, which is returned in <NR1> format. Example response: VPOSN 0 |

3-15
Table 3-5
CURSOR MEASUREMENT GROUP

<table>
<thead>
<tr>
<th>Header</th>
<th>Argument</th>
<th>Link Argument</th>
<th>Description</th>
</tr>
</thead>
</table>
| MEASure | VOLt: | ON
OFF | Enables voltage measurement mode. |
| | TIME: | ON
OFF | Enables time measurement mode. |
| | FREquency: | ON
OFF | Enables the 1/T or 1/ΔT measurement mode. 1/T, 1/ΔT and external clock are incompatible. If requested, an error SRQ is issued if EXR is on. |

If one cursor is on (using the CURsor commands listed in Table 5-5), the measurements are made relative to zero volts and the trigger point. If two cursors are on, the measurements are made relative to the difference between cursor 1 and cursor 2.

<table>
<thead>
<tr>
<th>MEASure?</th>
<th>VOLt</th>
<th>REPORTS status of the selected measurement mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TIME</td>
<td>REPORTS status of all the measurement modes. Example response:MEASURE VOLt:OFF, TIME:OFF,FREquency:OFF</td>
</tr>
<tr>
<td></td>
<td>FREquency</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Value?</th>
<th>REPORTS the measured value, which is returned in <NR3> format. If the cursor function is off or a measurement cannot be made, ###### is returned. If requested measurement can't be made because time scale is different between CH1 and CH2, an error SRQ is issued if EXR is on.</th>
</tr>
</thead>
</table>

3-16
<table>
<thead>
<tr>
<th>Header</th>
<th>Argument</th>
<th>Link Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WFMPre</td>
<td>WFId:</td>
<td>"<ascii string>"</td>
<td>Query only; ignored if sent as setting command. Responds with the waveform source and location (e.g., WFMPRE WFID: "CH1_LOCATION1").</td>
</tr>
<tr>
<td></td>
<td>ENCdgn:</td>
<td>BINary</td>
<td>Query only; ignored if sent as setting command. Responds with curve encoding, which is fixed at binary (e.g., WFMPRE ENCDG: BINARY).</td>
</tr>
<tr>
<td></td>
<td>NR.Pt:</td>
<td><NR1></td>
<td>Query only; ignored if sent as setting command. Responds with the number of data points in the source waveform, which is set by the DATA COUNT command (e.g., WFMPRE NR.PT: <NR1>).</td>
</tr>
<tr>
<td></td>
<td>PT.Fmt:</td>
<td>Y</td>
<td>Defines how to interpret the curve data. Y format means that x information is implicit and the data points set are the y value, and each point is sequential in time order. ENV format is used for enveloped waveforms. Data is sent in format y1max, y1min, y2max, y2min, ..., and when received by the RTD 710A, it is treated as enveloped data.</td>
</tr>
<tr>
<td></td>
<td>XINcr:</td>
<td><NRx></td>
<td>Sets the sample interval value for waveforms input by the CURVe command. If XUNIT is SEC, <NRx> is from 5.0E-9 to 200E-3. If XUNIT is EXT, <NRx> is from 4.0E+0 to 1.0E+7.</td>
</tr>
<tr>
<td></td>
<td>YZERO:</td>
<td><NRx></td>
<td>Sets the input Offset for waveforms input by the CURVe command. If <NRx> is illegal, it is truncated and limited to match a legal sample interval, and a warning SRQ is issued if EXW is on. When queried, the value is <NR1>. <NRx> := -199% to 199% of full scale in 1% steps.</td>
</tr>
<tr>
<td></td>
<td>PT.OFF:</td>
<td><NRx></td>
<td>Sets trigger delay value for waveforms input by CURVe command. A negative number indicates pretrigger.</td>
</tr>
<tr>
<td></td>
<td>XUNIT:</td>
<td>SEC EXT</td>
<td>Sets the unit of measure for the Sample interval value for waveforms input by the CURVe command. If XUNIT is SEC, the XINcr value is in seconds. If XUNIT is EXT, the XINcr value is the scaling multiplication factor for the external clock.</td>
</tr>
<tr>
<td></td>
<td>YOFF:</td>
<td>512</td>
<td>Query only; ignored if sent as setting command. Responds with the ground level of the input with 0% Offset, which is fixed at the center of full scale range (i.e., 512).</td>
</tr>
</tbody>
</table>

More Waveform Transfer Group Commands on next page
Table 3-6 (Cont)
WAVEFORM TRANSFER GROUP

<table>
<thead>
<tr>
<th>Header</th>
<th>Argument</th>
<th>Link Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>YMUlt:</td>
<td><NRx></td>
<td></td>
<td>Sets the input Range value for waveform input by the CURVe command. <NRx>:=1.0E-1 to 5.0E+2. When an illegal value is received, the argument is truncated and limited to a legal value, and a warning SRQ is issued if EXW is on. When queried, the value is <NR3>. Volts per point is determined by: 2 * YMULT/1024.</td>
</tr>
<tr>
<td>YUNit:</td>
<td>V</td>
<td></td>
<td>Query only; ignored if sent as setting command. Responds with the units of measure for the input Range value, which is fixed at Volts.</td>
</tr>
<tr>
<td>BYT/nr:</td>
<td>2</td>
<td></td>
<td>Query only; ignored if sent as setting command. Responds with the width of the binary data field, which is fixed at two bytes per point.</td>
</tr>
<tr>
<td>BN.Fmt:</td>
<td>RP</td>
<td></td>
<td>Query only; ignored if sent as setting command. Responds with the binary data format of the curve data, which is fixed as a right-justified, binary-positive integer.</td>
</tr>
<tr>
<td>BIT/nr:</td>
<td>10</td>
<td></td>
<td>Query only; ignored if sent as setting command. Responds with the binary data precision, which is 10 bits.</td>
</tr>
<tr>
<td>BKPt:</td>
<td><NRx>:<NRx></td>
<td></td>
<td>Sets the breakpoint location and sample interval for waveforms input by the CURVe command. The first <NRx> defines the breakpoint location with reference to the trigger point. The second <NRx> defines the sample interval associated with the breakpoint. If BKPt:0:0 is sent, it clears all previously set breakpoints. If an <NRx> is illegal, it is truncated or limited to a legal value, and a warning SRQ is issued if EXW is on.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WFMpre?</th>
<th>WFld</th>
<th>ENCdg</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR.Pt</td>
<td>ENCdg response fixed: BINary.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PT.Fmt</td>
<td>ENCdg response fixed: <NR1> format.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XINcr</td>
<td>ENCdg response fixed: <NR3> format.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PT.Off</td>
<td>ENCdg response fixed: 512</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XUNit</td>
<td>ENCdg response fixed: V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>YZErr</td>
<td>ENCdg response fixed: 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>YOFF</td>
<td>ENCdg response fixed: RP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>YMUlt</td>
<td>ENCdg response fixed: 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>YUNit</td>
<td>ENCdg response fixed: <NR3> format.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

More Waveform Transfer Group Commands on next page
<table>
<thead>
<tr>
<th>Header</th>
<th>Argument</th>
<th>Link Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WFMPrep?</td>
<td></td>
<td></td>
<td>Reports all waveform preamble items. Example response: WFMPRE WFID:"CH1_LOCATION1", ENCDG:BINARY, NR, PT: 2048, XUNIT: SEC,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>XINCR: 10.0E-9, PT, FMT: Y, PT, OFF: -400, YZERO: 0, YOFF: 512, YMULT: 2.5E+0, YUNIT: V, BYT/NR: N, FMT: RP, BIT/NR: 10,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BKPT: 10.0E-9, BKPT: 520: 100.0E-9</td>
</tr>
<tr>
<td>CURVe</td>
<td><waveform data></td>
<td></td>
<td>Sends waveform data from the controller to the RTD 710A without the preamble. The format of the argument <waveform data> is defined by the DATa BOFormat command. Target memory channel, memory segment, start address, etc., are also defined by using the DATa command.</td>
</tr>
<tr>
<td>CURVe?</td>
<td></td>
<td></td>
<td>Sends binary block waveform data from the RTD 710A to the controller without sending the preamble. The source memory channel, memory segment, start address, etc., are defined by using the DATa command. For details of <binary block data>, refer to the DATa BOFormat command description.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Repeated binary block transfer is acceptable when DATa BOFormat is set to BiNary, not acceptable with ARBitrary mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>For binary block data details, see DATa BOFormat command description.</td>
</tr>
<tr>
<td>WAVfrm?</td>
<td></td>
<td></td>
<td>Performs the same function as sending the WFMPrep? and CURVe? queries. The RTD 710A sends the waveform preamble and then the curve data for the waveform specified by the DATa command.</td>
</tr>
</tbody>
</table>

More Waveform Transfer Group Commands on next page
<table>
<thead>
<tr>
<th>Header</th>
<th>Argument</th>
<th>Link Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATa</td>
<td>CHannel:</td>
<td>CH1</td>
<td>Selects the memory channel to be transferred. If an illegal channel is requested, an error SRQ is issued, if EXR is on, and the command is ignored.</td>
</tr>
<tr>
<td></td>
<td>CH2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOCation:</td>
<td><NRx></td>
<td></td>
<td>Assigns the memory location number for the selected memory channel.</td>
</tr>
<tr>
<td>STArt:</td>
<td><NRx></td>
<td></td>
<td>Designates the starting memory address at which waveform data is sent or received.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><NRx>:=262136 to 524277. Allowable <NRx> range can be calculated as: (TRigger DELay) + (record LENgth−1)−2. If <NRx> is illegal, an error SRQ is issued if EXR is on, and the command is ignored. Use WFMpre PT.Off to determine start from first point.</td>
</tr>
<tr>
<td>COUnit:</td>
<td><NRx></td>
<td></td>
<td>Sets the number of data points to be transferred.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><NRx>:=2 to 262144. If <NRx> does not match the other setting, an error SRQ is issued if EXR is on, and the command is ignored.</td>
</tr>
<tr>
<td>BFOrmat:</td>
<td>BinNary</td>
<td></td>
<td>Designates the block format of the curve data transmission. BinNary is conventional binary block format defined in the Codes and Format standard. The format is as follows:</td>
</tr>
<tr>
<td></td>
<td>ARBiitary</td>
<td></td>
<td>Curve %cbbb...bbs [{%cbbb...bbs }..] Where c=byte-count; b=binary data, high byte first; and s=checksum.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ARBiitary is the Definite Length Arbitrary Block format defined in IEEE Std 488.2. The format is as follows:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Curve #x..cbbb.......bbs Where x=number of bytes in the byte-count number; c=byte-count; b=binary data, high byte first; and s=checksum.</td>
</tr>
</tbody>
</table>

More Waveform Transfer Group Commands on next page
<table>
<thead>
<tr>
<th>Header</th>
<th>Argument</th>
<th>Link Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSize</td>
<td><NRx></td>
<td></td>
<td>Sets the block size of the binary data (2-byte data) string when using BFormat Binary. <NRx> := 1024, 2048, 4096, 8192, or 16384. If <NRx> exceeds the value above, an error SRQ is issued if EXR is on, and the command is ignored. This argument is used for Binary format transfer. It is not used for ARbitrary format transfer.</td>
</tr>
<tr>
<td>DATA?</td>
<td>CHannel</td>
<td></td>
<td>Reports the selected DATA setting. Note: all responses except BFormat are in <NR1> format.</td>
</tr>
<tr>
<td></td>
<td>LOCation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>STArt</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>COUnt</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BSize</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DATA?</td>
<td></td>
<td></td>
<td>Reports all DATA settings. Example response: DATA CHANNEL:CH1,LOCATION:1, START:-400,COUNT:2048,BFORMAT:BINARY, BSIZE:2048</td>
</tr>
<tr>
<td>Header</td>
<td>Argument</td>
<td>Link Argument</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>AUTocal</td>
<td></td>
<td></td>
<td>Initiates the auto-calibration function. If an error SRQ occurs, any command other than TEST causes the error to be ignored and normal operation to resume.</td>
</tr>
<tr>
<td>MONcal</td>
<td>STArt</td>
<td>RESet</td>
<td>STArt connects the monitor calibration signal to the monitor output (X, Y, and Z). RESet disconnects the monitor calibration signal.</td>
</tr>
<tr>
<td>Header</td>
<td>Argument</td>
<td>Link Argument</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>TEST</td>
<td>MODE:</td>
<td>ON</td>
<td>Enables the self-test mode. All test commands, including TEST, RUN, ERROR?, STEP, HALT, DEPosit, EXEcutE, and FETch are acceptable when MODE is set to ON, but not when set to OFF. If an attempt is made to select a test command when MODE is off, an error SRQ is issued if EXR is on. TEST MODE is acceptable at any time.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>TYPe:</td>
<td>SELFDiag</td>
<td>EXTDiag</td>
<td>Selects the level of self-test diagnostics to be run. SELFDiag selects the standard power on diagnostics (Level 1). EXTDiag selects extended diagnostics (Level 2). See TEST NUMber below.</td>
</tr>
<tr>
<td>NUMber:</td>
<td><NRx></td>
<td></td>
<td><NRx>: indicates the test number within the TYPe (extended diagnostics) that is to be run. If the TYPe is SELFDiag, NUMber is reset to 0 when a RUN command is received. If <NRx> is illegal, an error SRQ is issued if EXR is on, and the command is ignored.</td>
</tr>
<tr>
<td>TEST</td>
<td>DATa</td>
<td><NRx></td>
<td>Sets data for the test defined by NUMber:<NRx>. When queried, the value is <NRx> for Range setting and <NR1> for other settings. If <NRx> is illegal, it is truncated to the nearest legal number.</td>
</tr>
<tr>
<td></td>
<td>LOOp:</td>
<td>ONE</td>
<td>Causes the selected self-test to run in a loop until the link argument condition is satisfied, or a HALT command is received.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FAIL</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PASs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CONt</td>
<td></td>
</tr>
<tr>
<td>TEST?</td>
<td>MODE</td>
<td></td>
<td>Reports the current TEST setting.</td>
</tr>
<tr>
<td></td>
<td>TYPe</td>
<td></td>
<td>Number is in <NR1> format. Data is in <NR3> format for range setting and <NR1> for other settings.</td>
</tr>
<tr>
<td></td>
<td>NUMber</td>
<td></td>
<td>More Self-Test Group Commands on next page</td>
</tr>
<tr>
<td></td>
<td>DATa</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LOOp</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3-8 (Cont)

SELF-TEST GROUP

<table>
<thead>
<tr>
<th>Header</th>
<th>Argument</th>
<th>Link Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUN</td>
<td></td>
<td></td>
<td>Starts the self-test function selected by NUMber:<NRx>. Any tests in this test hierarchy below the selected number, except those requiring operator intervention, are run. If OPC is ON, an operation completion SRQ is issued when the test is finished. If a test is unsuccessful, an SRQ is issued if INR is on. An ERRor? query may then be used to retrieve the error code.</td>
</tr>
<tr>
<td>STEP</td>
<td></td>
<td></td>
<td>Causes the current test to advance to the next step in the sequence and execute that step. If OPC is ON, an operation complete SRQ is issued when the step is finished.</td>
</tr>
<tr>
<td>ERRor?</td>
<td></td>
<td></td>
<td>Reports the string of error codes (up to 40) that occurred during the last RUN command. Zero is returned when there are no errors.</td>
</tr>
<tr>
<td>HALt</td>
<td></td>
<td></td>
<td>Stops any test being executed. Specifically used to stop a looping test.</td>
</tr>
</tbody>
</table>
Table 3-9

UTILITY COMMAND GROUP

<table>
<thead>
<tr>
<th>Header</th>
<th>Argument</th>
<th>Link Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID?</td>
<td></td>
<td></td>
<td>Queries for the RTD 710A ID message which is returned as:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ID SONY_TEK/RTD710A,V81.1,F<rom><patch></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><rom>:=1-character ROM version</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><patch>:=2-character patch version</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Example response:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ID SONY_TEK/RTD710A, V81.1, F1.00</td>
</tr>
<tr>
<td>SET?</td>
<td></td>
<td></td>
<td>Reports the current instrument control settings, which are returned in an ASCII string that can be sent to the RTD 710A for setup.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Example response:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CH1 RANGE:2.5E+0,UNIT:PERCENT,OFFSET:0,COUPLING:AC;CH2 RANGE:50.0E+0,UNIT:PERCENT,OFFSET:0,COUPLING:AC;VMODE DUAL,BWLIMIT OFF;ARM MODE:INT,DELAY:0.0E+0;SAMPLE MODE:NORM,CLOCK:INT,INTERVAL:10.0E-9;RECORD MODE:NORM,AVERAGE:2,ENVELOPE:1,LOCATION:1;BREAKPOINT UNIT:POINT,SET:0:10.0E-9,SET:520:100.0E-9,LENGTH:2048;TRIGGER MODE:AUTO,UNIT:POINT,DELAY:-400,COUPLING:DC,SOURCE:CH1,SLOPE:POSITIVE,UNIT:PERCENT,LEV1:0,LEV2:0,LCN_START:PREFLD;DISPLAY CHANNEL:CH1,LOCATION:1,MODE:YT,INTERPOL:LINE,HZOOM X1;VZOOM X1;VPOSN 0;CURSOR ONE:OFF,TWO:OFF,SCROLL:ALIGN</td>
</tr>
<tr>
<td>HELP?</td>
<td></td>
<td></td>
<td>Note: response is a list of all valid command headers available to the user.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Example response:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HELP ARM,AUTO,L,BASE,BREAKPOINT,BWLIMIT,CR,CH1,CH2,CURSOR,CURVE,DATA,DEVICE,DISPLAY,DT,ERROR,EVENT,EXR,EXW,HALT,HELP,HOLD,HZOOM,ID,INIT,INR,LIGHT,MAXIMUM,MEAN,MEASURE,MIN,MID,MINIMUM,MONCAL,NCROSS,NUMACQ,OPC,OVER,PCROSS,PEAKTOPEAK,PLOT,RECALL,RECORD,REPEAT,QCS,RUN,SAMPLE,SAVE,SET,SRQ,STEP,TEST,STOP,TRIGGER,USER,VALUE,VMODE,VPOSN,VZOOM,WAVFRM,WFMPRE,WINDOW,WRI</td>
</tr>
</tbody>
</table>

More Utility Group Commands on next page
Table 3-9 (Cont)

UTILITY COMMAND GROUP

<table>
<thead>
<tr>
<th>Header</th>
<th>Argument</th>
<th>Link Argument</th>
<th>Description</th>
</tr>
</thead>
</table>
| SAVe | <NRx> | | Stores the current instrument front panel setting into non-volatile memory at location <NRx>.
| | | | <NRx>:=1 to 20. If <NRx> is illegal, it is truncated or limited to the nearest legal number and EXW is issued if on. |
| RECall | <NRx> | | Recalls the instrument front panel settings from non-volatile memory location <NRx>.
| | | | <NRx>:=1 to 20. If <NRx> is illegal, it is truncated or limited to the nearest legal number and EXW is issued if on. If requested recall location is empty, an error SRQ is issued if EXR is on, and the command is ignored. |
| DEVece | SETtings: | ON | Determines whether instrument settings designated by the DISplay LOCation are plotted. |
| | | OFF | Determines whether graticule is plotted. |
| | GRAT: | ON | Determines whether waveforms designated by the DISplay LOCation command are plotted. |
| | | OFF | |
| PLOT | | | Command only. Causes the instrument to output a data string whose format is determined by the DEVICE command. If the instrument is in acquisition when PLOT is received and is set to talker, the plotting waits until the acquisition is completed and enters the HOLD state. If display location is 0 (display off) when PLOT command is received, an execution error SRQ is issued if EXR is on. During PLOT, all front panel keys are locked except RQS/ID key. DCL or SDC aborts the plot. |
| DEVece | SETtings | | Returns the device mode setting. Example response: DEVICE SETTINGS.OFF, GRAT:ON, WAVFRM:ON. |
| | GRAT | | |
| | WAVfrm | | |
Table 3-10
DEVICE TRIGGER GROUP

<table>
<thead>
<tr>
<th>Header</th>
<th>Argument</th>
<th>Link Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DT</td>
<td>ON</td>
<td></td>
<td>Enables the RTD 710A to respond to the GPIB GET command.</td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DT?</td>
<td></td>
<td></td>
<td>Reports the status of the DT setting. Example response: DT OFF</td>
</tr>
</tbody>
</table>

Table 3-11
INITIALIZATION GROUP

<table>
<thead>
<tr>
<th>Header</th>
<th>Argument</th>
<th>Link Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INIT</td>
<td>[ALL]</td>
<td></td>
<td>Executes all of the INIT command arguments (PANEL, WAVfso, and GPIb). The [ALL] argument is optional.</td>
</tr>
<tr>
<td>PANEL</td>
<td></td>
<td></td>
<td>Resets all front panel controls to default settings. See Section 3, in Operators Manual for default settings.</td>
</tr>
<tr>
<td>WAVfso</td>
<td></td>
<td></td>
<td>Clears the waveform memory to zero.</td>
</tr>
<tr>
<td>GPIb</td>
<td></td>
<td></td>
<td>Clears the event buffer; sets DT:OFF, sets Service Request Group commands to: ROS:ON, OVER:OFF, WR:OFF, CER:ON, EXR:ON, INR:ON, EXW:ON, OPC:OFF, USER:ON; and sets DATa, WIndow, and DEVice as shown below.</td>
</tr>
<tr>
<td></td>
<td>DATa</td>
<td>CHAnnel:CH1</td>
<td>LOCation:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>STArt:(Trigger Delay value of CH1, Location 1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>COUnt:(Record Length value)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BSizet:(Record Length value, not to exceed 16384)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BFormat:Binary</td>
</tr>
<tr>
<td></td>
<td>WIndow</td>
<td>CHAnnel:CH1</td>
<td>LOCation:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>STArt:(Trigger Delay value of CH1, Location 1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>STop:(Trigger Delay value)+(Record Length value)−1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LEVel:512</td>
</tr>
<tr>
<td></td>
<td>DEVice</td>
<td>SETting:ON</td>
<td>GRAT:ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WAVfso:ON</td>
<td></td>
</tr>
</tbody>
</table>

3-28
<table>
<thead>
<tr>
<th>Header</th>
<th>Argument</th>
<th>Link Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RQS</td>
<td>ON</td>
<td></td>
<td>Enables all SRQ functions except power on and fatal error.</td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RQS?</td>
<td></td>
<td></td>
<td>Reports the RQS status.</td>
</tr>
<tr>
<td>OVEr</td>
<td>ON</td>
<td></td>
<td>Enables the Overrange SRQ function. Issues a status 193 or 209, event codes 752 through 755, when on.</td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OVEr?</td>
<td></td>
<td></td>
<td>Reports the OVEr status.</td>
</tr>
<tr>
<td>WRI</td>
<td>ON</td>
<td></td>
<td>Enables the Acquisition Complete SRQ function. When on, the RTD 710A will issue an OPC (status 206) and event code 750.</td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WRI?</td>
<td></td>
<td></td>
<td>Reports the WRI status.</td>
</tr>
<tr>
<td>CER</td>
<td>ON</td>
<td></td>
<td>Enables the Command Error SRQ function. Issues a status 97 or 113 when on.</td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CER?</td>
<td></td>
<td></td>
<td>Reports the CER status.</td>
</tr>
<tr>
<td>EXR</td>
<td>ON</td>
<td></td>
<td>Enables the Execution Error SRQ function. Issues a status 98 or 114 when on.</td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXR?</td>
<td></td>
<td></td>
<td>Reports the EXR status.</td>
</tr>
<tr>
<td>INR</td>
<td>ON</td>
<td></td>
<td>Enables the Internal Error SRQ function. Issues a status 99 or 115 when on.</td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INR?</td>
<td></td>
<td></td>
<td>Reports the INR status.</td>
</tr>
<tr>
<td>EXW</td>
<td>ON</td>
<td></td>
<td>Enables the Execution Warning SRQ function. Issues a status 101 or 117 when on.</td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXW?</td>
<td></td>
<td></td>
<td>Reports the EXW status.</td>
</tr>
<tr>
<td>OPC</td>
<td>ON</td>
<td></td>
<td>Enables the Operation Complete SRQ function. Issues a status 68 or 82 when on.</td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPC?</td>
<td></td>
<td></td>
<td>Reports the OPC status.</td>
</tr>
<tr>
<td>USER</td>
<td>ON</td>
<td></td>
<td>Enables the front-panel generated SRQ. Issues a status 67 or 83 when on.</td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER?</td>
<td></td>
<td></td>
<td>Reports the USER status.</td>
</tr>
<tr>
<td>SRQ?</td>
<td></td>
<td></td>
<td>Reports the status of all Service Request Group commands. Example response: OVER OFF; USER ON; WRI ON; RQS ON; CER ON; EXR ON; EXW ON; INR ON; OPC OFF</td>
</tr>
<tr>
<td>EVENT?</td>
<td></td>
<td></td>
<td>Queries for the most recent event code; returns 0 if none exists. It also clears the event buffer. See Section 5, SRQ & Event Codes for specific Event Codes.</td>
</tr>
</tbody>
</table>
Table 3-13
INTERNAL WAVEFORM ANALYSIS GROUP

<table>
<thead>
<tr>
<th>Header</th>
<th>Argument</th>
<th>Link Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WINdow</td>
<td>CHAnnel:</td>
<td>CH1</td>
<td>Selects the source waveform channel for subsequent waveform analysis commands. If VMOde CH1 is selected, CH2 cannot be selected. If CH2 is requested, an error SRQ is issued if EXR is on.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH2</td>
<td></td>
</tr>
<tr>
<td>LOCation:</td>
<td><NRx></td>
<td></td>
<td>Sets the waveform memory segment for subsequent waveform analysis commands.</td>
</tr>
<tr>
<td>STArt:</td>
<td><NRx></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STOp:</td>
<td><NRx></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEVel:</td>
<td><NRx></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- <NRx> ::= 1 to 256.
- If <NRx> does not match other settings, an error SRQ is issued if EXR is on, and the command is ignored.
- <NRx> must be less than stop address. If they are not of the proper size relationship, they are swapped. If <NRx> is illegal, an error SRQ is issued if EXR is on, and the command is ignored.
- Sets the start of the memory address for the actual measurement queries.
- <NRx> ::= 262136 to 524279.
- <NRx> may be calculated as follows:

 \[
 (\text{T} \text{rigger \ DEL} \text{ay}) + (\text{record \ LEN} \text{gth} - 1) \]

- Sets the end of the address for the waveform measurement queries. Refer to STArt for <NRx> values.
- <NRx> ::= 1 to 1023.

<table>
<thead>
<tr>
<th>WINdow?</th>
<th>CHAnnel</th>
<th>LOCation</th>
<th>STArt</th>
<th>STOp</th>
<th>LEVel</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Queries for the selected window settings.
- LOCation is in <NR1> format.
- STArt is in <NR1> format.
- STOp is in <NR1> format.
- LEVel is in <NR1> format.

Example response:

`WINDOW CHANNEL:CH1, LOCATION:1,START:-400,STOP:1647, LEVEL:512`
Table 3-13
INTERNAL WAVEFORM ANALYSIS GROUP

<table>
<thead>
<tr>
<th>Header</th>
<th>Argument</th>
<th>Link Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAXimum?</td>
<td></td>
<td></td>
<td>Queries for the maximum value of the acquired waveform between the STArt and STOp addresses. The value returned (0-1023) is in <NR1> format.</td>
</tr>
<tr>
<td>MINimum?</td>
<td></td>
<td></td>
<td>Queries for the minimum value of the acquired waveform between the STArt and STOp addresses. The value returned (0-1023) is in <NR1> format.</td>
</tr>
<tr>
<td>TOP?</td>
<td></td>
<td></td>
<td>Queries for the top value of the acquired waveform between the STArt and STOp addresses. The value returned (0-1023), which is calculated by the histogram method, is in <NR1> format.</td>
</tr>
<tr>
<td>BASE?</td>
<td></td>
<td></td>
<td>Queries for the base value of the acquired waveform between the STArt and STOp addresses. The value returned (0-1023), which is calculated by the histogram method, is in <NR1> format.</td>
</tr>
</tbody>
</table>

More Internal Waveform Analysis Group Commands on next page
<table>
<thead>
<tr>
<th>Header</th>
<th>Argument</th>
<th>Link Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCRoss?</td>
<td></td>
<td></td>
<td>Queries for the waveform point within the START/STOP window where the positive-going waveform first crosses the LEVEL setting. The value returned, which is linearly interpolated, is in <NR1> or <NR2> format. If there is no positive-crossing point, the ASCII string #### is returned.</td>
</tr>
<tr>
<td>NCRoss?</td>
<td></td>
<td></td>
<td>Queries for the waveform point within the START/STOP window where the negative-going waveform first crosses the LEVEL setting. The value returned, which is linearly interpolated, is in <NR1> or <NR2> format. If there is no negative-crossing point, the ASCII string #### is returned.</td>
</tr>
<tr>
<td>MID?</td>
<td></td>
<td></td>
<td>Queries for the vertical mid level value within the START/STOP window of the acquired waveform. The returned value (0-1023) is in <NR1> format, and is calculated as follows: [\text{MID} = \frac{\text{max} + \text{min}}{2}].</td>
</tr>
<tr>
<td>MEAN?</td>
<td></td>
<td></td>
<td>Queries for the vertical algebraic mean value within the START/STOP window of the acquired waveform. The returned value is in <NR1> format and is calculated as follows: [\text{Mean} = \frac{1}{N} \sum_{i=1}^{N} W(i)] where (W) is waveform data.</td>
</tr>
<tr>
<td>PEAktopeak?</td>
<td></td>
<td></td>
<td>Reports the vertical peak-to-peak value within the START/STOP window of the acquired waveform. The returned value (0-1023) is in <NR1> format.</td>
</tr>
</tbody>
</table>

3-32
ADVANCED GPIB INFORMATION

This section contains helpful information about the following topics:

- Transferring waveforms
- Using the internal signal processing
- Transferring waveforms to the RTD 710A
- Sending settings
- Updating the waveform preamble

Query Commands to Transfer Binary Waveforms

You select from several options to read a waveform from the RTD 710A.

These include:

1) The source channel and record location
2) Is an entire waveform record or only a portion of a record to be acquired?
3) Is the waveform to be broken up into smaller portions (e.g., sending a 64K waveform in 16K portions using repeated binary block format)
4) Sending an arbitrary length waveform up to 256K in length

To ensure reliable waveform transfer, the following six commands must be sent to the RTD 710A:

CHA - Selects channel 1 or channel 2 as the waveform source.

LOC - Selects the record location to transfer from channel 1 or 2 defined above.

START - Defines the first point to be transferred. If acquiring an entire record, use the trigger delay value in the waveform preamble (PT.OFF) to define the starting point.

COUNT - Defines the number of points to be sent.

BSIZE - Defines the block size of the waveform to be transferred. If the waveform is greater than 16K words, the BSIZE is automatically set to 16K words. Most computers can read an 8K waveform into a single variable. If you want to transfer a waveform with a longer record length, set the BSIZE to the maximum length the computer can handle and read the waveform into a number of variables. The REPEATED BINARY BLOCK format is explained later in this section.

BFORMAT - Designates the block format of the curve data transmission, either binary block or arbitrary format.
Binary Waveform Formats

The RTD 710A can send binary waveform information using three formats:

BINARY BLOCK - Transfer the entire waveform in one block. The BSIZE command is the same size as the total number of points (specified by the COUNT command). Most computers can read 8K words in one block. The binary waveform data is transferred as shown in Figure 4-1.

Example: CURVE %ccbbb..............bbs

```
CURVE <space>%ccbbb......bbs[%(a%ccbbb......bbs)...]

Where: c= byte-count;
b= binary data, high byte first; and
s= checksum
<space>= ASCII character 32
```

Fig. 4-1 Waveform data structure using repeat binary block

REPEATED BINARY BLOCK FORMAT - Breaks the data into smaller blocks so a computer can read a large waveform into many arrays. The BSIZE command determines the length of the blocks...

Example: CURVE %ccbbbb......bbs, %ccbbbb....bbs, %ccbbbb....bbs

ARBITRARY LENGTH FORMAT - It is the definite length arbitrary block format defined in the IEEE-488.2 standard. This format allows transfer of any number of waveform data words from one to the waveform record length (up to 256K words). This format is selected by sending the BFOrmat command (Table 3-6). The arbitrary length format is shown in Figure 4-2.

```
CURVE <space>#x...cbbb......bbs

Where: x= number of bytes in byte-count number;
c= byte-count b= binary data, high byte first; and
s= checksum
<space>=ASCII character 32
```

Fig. 4-2 Waveform data structure - Arbitrary length format

The Byte Count

The byte count reflects the number of bytes being sent, including the checksum. For each waveform data point, the RTD 710A sends two waveform data bytes. B = High byte and b = Low byte of the byte count. The following equation determines byte count:

Byte Count = (B * 256) + b.

Number of data points = byte count - 1

For example, if the waveform has 16384 points, the byte count reflects sending the high and low waveform data bytes so the byte count equals 16384 * 2 + 1 = 32769.
High and Low Bytes

Because the RTD 710A is a 10-bit digitizer, the waveform data must be sent in two bytes. It is sent High Byte (highbyte), Low Byte (lowbyte) for each data point. Using the following formula reduces the data to a single word:

\[
\text{Waveform data point} = (\text{highbyte} \times 256) + \text{lowbyte}
\]

Waveform Acquisition Examples

Example 1: Acquiring an entire record from channel 1, record 20.

1) Specify the waveform to be acquired and query for the waveform preamble by sending the following RTD 710A commands in the program sequence listed below.

```plaintext
100 Dim wfmpr2$(300)
110 Print #RTD: "DAT CHA:CH1,LOC:20;WFMPRE?"
130 Input #RTD:wfmpr2$
```

The waveform preamble contains the number of points and the trigger delay, as well as other information used for scaling the waveform.

2) Parse out the number of points (NR,PT) and the trigger delay (PT,OFF). The example program lines below assumes a user-defined function called "ARG" that finds the search string (the second argument) and returns the value behind the search value.

```plaintext
150 numpts=arg(wfmpr2$, "NR,PT")
160 trigdely=arg(wfmpr2$, "PT,OFF")
```

There is example code for the 4041, HP 200 series, IBM PC using BASICA, and SPS BASIC in section 6 showing how to parse out the desired arguments.

3) Send the RTD 710A command string necessary for proper definition of the waveform to be transferred.

```plaintext
200 Print #RTD: "DAT CH:CH1,LOC:20,START:"&str$(trigdely)&",COUNT:"&str$(numpts)&",BSIZE:"&str$(numpts)&";CURVE?"
```

4) The RTD 710A is now ready to transfer the waveform to the controller. Use the commands specific for a particular computer to read in the waveform information. The example programs in section 6 show how to read in a waveform for supported computers.

Example 2: Acquiring a partial waveform defined by cursors 1 and 2 from channel 1, record 20.

1) Read the cursor positions from the RTD 710A using the following program sequence. This assumes the cursors are turned on and positioned.

```plaintext
100 Print #RTD: "CURS ONE:DISP1;CURS TWO:DISP1"
110 Input #RTD prompt "CURS? POS1":null,start
120 Input #RTD prompt "CURS? POS2":null,stoppt
```

The variable 'null' reads the first number sent in the response, which is the cursor number (e.g., CURSOR POS1:235; Null=1, Start=235)

2) Determine the difference between 'start' and 'stoppt' to get the number of points and store in variable 'numpts'. Numpts=stoppt-start+1

3) Send the RTD 710A command string necessary for proper definition of the waveform to be transferred.

```plaintext
Print #RTD: "DAT CHA:CH1,LOC:20,START:"&str$(start)&",COUNT:"&str$(numpts)&",BSIZE:"&str$(numpts)&";CURVE?"
```

4) The RTD 710A is now ready to transfer the waveform to the controller.
The BSIZE Command

The BSIZE command defines the number of words of waveform data sent in each block when not using arbitrary format. Let's look at transferring an 8K word waveform with both methods. With the first, BSIZE = COUNT (8K words); with the second, BSIZE = COUNT/2 (COUNT = 6K words, BSIZE = 8K words).

Example 1, Binary Block Format: BSIZE = COUNT = 8192. The following commands are sent to the RTD 710A to read in the 8K of data from channel 1, record location 2, and trigger delay of -250 points (or 250 points of pre-trigger).

Print #RTD: "DAT CHA:CH1, LOC:2, START:-250, COUNT:8192, BFOR:BIN, BSIZE:8192; CURVE?"

Because COUNT and BSIZE are equal, the entire waveform is transferred in one block.

The waveform data can be read into a string variable as shown below:

100 ! 2 times the number of points because each data point is sent as two bytes, 9 bytes for 'CURVE %Bh' and 1 byte for the checksum.
110 !
120 Dim wfm$(2 * numpts)+10)
125 PRINT #RTD: "CURVE?"
130 Input #RTD:wfm$

Example 2, Repeated Binary Block Format: BSIZE = COUNT/2, COUNT = 16384, BSIZE = 8192. The following commands are sent to the RTD 710A to read in the 8K of data from channel 1, record location 2, and trigger delay of -250 points with BSIZE equal to 8192.

Print #RTD: "DAT CHA:CH1, LOC:2, START:-250, COUNT:16384, BFOR:BIN, BSIZE:8192; CURVE?"

Because BSIZE is smaller than COUNT, the waveform data will be sent using repeated binary block format.

The waveform can be read into two string variables as follows:

100 Dim header$ to 6 ! Dimensioned to read the 'CURVE<space>'
110 !
120 !

The next dimension statement allocates 16384 bytes of waveform data (represents the first 8192 data points) plus 1 byte for the percent sign '%', 2 bytes for byte count, and 1 byte for checksum.

130 !
140 Dim wfm1$ to (16384+4)
150 Dim comma$ to 1 !
160 !
170 !

The next dimension statement allocates 16384 bytes of waveform data (represents the second 8192 data points) plus 1 byte for the percent sign '%', 2 bytes for byte count, and 1 byte for checksum.

180 !
190 Dim wfm2$ to (16384+4)
195 PRINT #RTD: "CURVE?"
200 Input #RTD:header$,wfm1$,comma$,wfm2$

The waveform strings 'wfm1$' and 'wfm2$' are now ready to be parsed into integer arrays and scaled.
Using the Internal Signal Processing Commands

There are several signal processing commands available over the GPIB. These commands can be used to segment a waveform for transfer or for getting answers without transferring a waveform to the computer. The signal processing commands are explained in Table 3-13 (Internal Waveform Analysis Group) of the command reference in Section 3. Listed below is a summary of these commands:

WINdow This command uses the arguments "channel," "record location," "start point," "stop point," and "level" to tell where to perform subsequent signal processing operations.

MAX?, MIN? Queries for the maximum and minimum inside the defined window.

TOP?, BASE? Queries for the top and base based on the histogram method. The histogram helps negate ringing on pulses to give more accurate pulse parameters.

ID? Queries for the mid point between the maximum and minimum inside the defined window.

MEAN? Queries for the vertical algebraic mean between the maximum and minimum inside the defined window.

PEAKtopeak? Queries for the vertical peak to peak inside the defined window.

PCROSS?, NCROSS? Poross and Ncross find positive and negative crossing locations defined by the level argument in the window command.

The commands listed above return unscaled values either in clock points (for PCROSS and NCROSS), and digitizer units (0 to 1023; for all vertical queries). The "Vertical Value Scaling" example program illustrates how to make voltage measurements. A timing measurement example is shown in "Horizontal Value Scaling".

Vertical Value Scaling

To scale a vertical value, two pieces of information must be obtained; the input range and the dc offset.

Assume a waveform has been captured in channel 1, record 1, with pretrigger of 400 points and a record length of 2048 points. The measurements are to be made over the entire record. The following 4041 program example shows how to make max, min and peak-to-peak voltage measurements.

NOTE: If throughput is important, voltage measurements can be made without scaling the returned value.

```
10 ! Program example showing how to specify a target waveform to make 15 measurements using the internal signal processing of the RTD 710A.
20 !
25 ! This example will make max, min, & peak-to-peak measurements and scale them into voltage values.
30 !
35 !
40 ! This program assumes; num pts=2048, trig delay= -400 pts.
45 !
50 !
55 !
60 !
65 !
70 !
75 !
90 !
95 ! Set to single sweep, turn on WRI ON sqc capability
```
100 ! Print \#rdt:"TRIG MOD:SGL;WRI ON"
110 !
115 ! Define channel, loc, etc. to read input range and offset
120 ! Print \#rdt:"DAT CHA:CH\"&str$(cha)&","LOC:"&str$(loc) &
125 ! "STA:"&str$(strt)&",CCU:"&str$(cnt)
130 !
135 ! Define cha, loc, etc. for signal processing measurements.
140 ! Print \#rdt:"WIND CHA:CH\"&str$(cha)&","LOC:"&str$(loc) &
145 ! " STA:"&str$(strt)&",STOP:"&str$(cnt+strt-1)
150 !
155 ! Read input range and dc offset for successive voltage measurements.
160 !
165 Input \#rdt prompt "WFM? YMULT":ym$
170 Ym=val(ym$)
175 Input \#rdt prompt "WFM? YZERO":yz$
180 Yz=val(yz$)
185 !
190 ! Turn ch1 and ch2 displays off to increase throughput
195 !
200 Input \#rdt prompt "DIS CHA:CH1;DIS? LOC":ch1dis$
205 Input \#rdt prompt "DIS CHA:CH2;DIS? LOC":ch2dis$
210 Print \#rdt:"DIS LOC:0;DIS CHA:CH1,LOC:0"
215 !
220 For loop=1 to 5 ! Make 5 peak-to-peak measurements
225 Print \#rdt:"HOLD RESET" ! Acquire a new waveform
230 Peak=voltmeas("PEAK?",yz,ym)
235 Maxum=voltmeas("MAX?",yz,ym)
240 Minum=voltmeas("MIN?",yz,ym)
245 Print "Pk-pk volts:";peak," volts, Max:";maxum," volts, Min:";minum;
250 ! volts"
255 Next loop
260 !
265 ! Turn displays back on
270 !
275 Print \#rdt:"DIS CHA:CH1;"&ch1dis$
280 Print \#rdt:"DIS CHA:CH2;"&ch2dis$
285 End
300 Function voltmeas(query$,yz,ym) local ivolt,vpb,vshift,measur
305 !
310 ! Function to query the RTD 710A using the voltage signal processing
315 ! command stored in 'query$' and convert it into a voltage value.
320 !
325 Integer ivolt
330 Vshift=0
335 Input \#rdt prompt query$:ivolt
340 Vpb=2*ym/1024 ! Determine volts per bit
345 If pos(query$,"PEAK",1) then goto measur
350 Vshift=512-(yz*5.12) ! Take dc offset into account
355 Measur= voltmeas(ivolt-vshift)vpb
360 Return
365 End
Horizontal Value Scaling

The complexity of scaling a horizontal measurement depends on whether or not breakpoints are used. If breakpoints are not used, the XINC value in the waveform preamble is the only value needed. If breakpoints are used, the example programs show how to parse the breakpoint information into numbers.

Sending 16K and longer waveforms to RTD 710A without arbitrary block format

When a 16K word or larger waveform is read in from the RTD 710A it is sent using Repeated Binary Block Format. The RTD 710A does not read waveforms using Repeated Binary Block Format. However, there is a way to send up to a 64K waveform. You change the starting location of the data and send up to 16K blocks of the waveform. Here is an example 4041 program illustrating how to send a waveform.

4041 Example program:

100 !
110 ! Get a waveform from CH1, location 1, start -400, count 16384, block size 8192
120 ! Then send the waveform back to the RTD 710A location 2.
130 !
140 ! RTD 710A settings: Record length 16384, Trigger delay -400, GPIB address 1
150 !
160 Open #1:"GPIB(pri=1,eom<0>=):"
170 !
180 ! Get a waveform using Repeated Binary Block Format
190 !
200 Dim header$ to 6 ! Dimension a string variable to read 'CURVE <space>'
210 !
220 ! Dimension two strings to read two 8K Word blocks of waveform data
230 ! 2 bytes/word, 16K bytes total plus 3 bytes for
240 ! '%<bytecount><bytecount>' plus 1 byte for checksum
250 !
260 Dim blk1$ to 16388, blk2$ to 16388
270 Dim comma$ to 1 ! Dimension a string to read the comma between the two blocks of waveform data
280 Print #1:"DAT CHA:CH1,LOC:1,STA:-400,COU:16384,BSI:8192"
290 Dim wtmpre$ to 256 ! Dimension string for waveform preamble
300 Input #1 prompt "WTMPRE?":wtmpre$! Read waveform preamble
310 Input #1 prompt "CURVE?":header$,blk1$,comma$,blk2$
320 !
330 ! Send the waveform back to the RTD 710A NOT using Repeated Binary Block Format
340 !
350 Print #1:"DISPLAY CHA:CH1,LOC:0;DISPLAY CHA:CH2,LOC:0" ! Turn off both channels displays
360 Print #1:wtmpre$
370 Print #1:"DAT CHA:CH1,LOC:2,STA:-400,COU:8192,BSI:8192"
380 Whyte atn(mta,33) ! Make RTD 710A a listener
390 Whyte header$,blk1$,eoi ! Send first 8K block of waveform data, then terminate using EOI
400 Whyte atn(unt,unl) ! Untalk & Unlisten the RTD 710A
410 Print #1:"DAT STA:7792" ! Define the start to be (8192-400)
420 Whyte atn(mta,33) ! Make RTD 710A a listener
430 Whyte header$,blk2$,eoi ! Send 2nd 8K block of waveform data, then terminate using EOI
440 Whyte atn(unt,unl) ! Untalk & Unlisten the RTD 710A
450 Print #1:"DISPLAY CHA:CH1,LOC:2" ! Display channel 1, location 2
460 End
A couple of suggestions for reliable waveform transfer and display.

1. When you set the record length, have the RTD 710A trigger (AUTO trig) and fill the memory with garbage data (HOLD RESET works well). This allocates the memory so when you transfer a waveform, it fits perfectly. The reason for this is that the RTD 710A doesn't update waveform memory using the front panel settings until it acquires new data.

2. Turn all displays off until the entire waveform(s) are transferred. Sometimes the display memory is not updated correctly if the waveform is sent with the target location(s) turned on.

Sending settings to the RTD 710A

When settings are sent to the RTD 710A, it checks to see if any commands conflict with the present settings. If it “sees” a conflict, it tells the computer by issuing an execution error SRQ (status 98). Some common conflicts in settings come from being in CH1-ONLY or HIGH-SPEED mode and information concerning channel 2 are received.

Let's look at an example. Let's assume that the RTD 710A is in single channel mode (CH1-ONLY or High-speed mode). When a settings string is sent, the channel 2 vertical information (e.g., RANGE, OFFSET, etc.) comes before the command that sets DUAL or CH1-ONLY mode. When the RTD 710A sees the channel 2 information when in CH1-ONLY mode, it issues a EXECUTION ERROR SRQ (status 98) and specific EVENT code (EVENT 250, CH2 input can't be used in the high-speed sampling mode) stating that this information is in conflict with the present settings.

Four solutions are outlined here:

- Initialize the front panel before sending settings
- Turn off the error message SRQ capability during settings transfer
- Handle the SRQ's with an SRQ handler
- Download various settings and store in RTD 710A's non-volatile front panel memory.
Solution #1: Initialize the front panel before sending settings

100 !
110 ! Example program showing how to send settings without SRQ errors by initializing
120 ! front panel before sending settings.
130 !
140 ! RTD 710A address 1
150 !
160 Dim setting$ to 550 ! Dimension variable setting$ for 550 characters
170 Print "Set RTD 710A for DUAL CHANNEL mode, Press <return> when ready: ";
180 Input null$
190 Print #1:"SET?" ! Query for settings from RTD 710A
200 Input #1: Setting$! Read settings into variable 'Setting$'
210 Print "Now set the RTD 710A for CH1-ONLY mode, Press <return> when ready: ";
220 Input null$
230 !
240 ! Send settings to RTD 710A
250 !
260 Print #1:"INIT PANEL" ! Initialize front panel settings to factory default
270 Wait .3 ! Wait short amount of time (300 ms)
280 Print #1:Setting$! Send entire front panel settings stored in string 'Setting$'
290
390
900 End

Solution #2: Turn off the error message SRQ capability during settings transfer

100 !
110 ! Example program showing how send settings without SRQ errors by turning off the
120 ! Execution error SRQ (status 98) capability during the settings transfer.
130 !
140 ! RTD 710A address 1
150 !
160 Dim setting$ to 550 ! Dimension variable setting$ for 550 characters
170 Print "Set RTD 710A for DUAL CHANNEL mode, Press <return> when ready: ";
180 Input null$
190 Print #1:"SET?" ! Query for settings from RTD710A
200 Input #1: Setting$! Read settings into variable 'Setting$'
210 Print "Now set the RTD 710A for CH1-ONLY mode, Press <return> when ready: ";
220 Input null$
230 Print #1:"EXR OFF" ! Turn off EXECUTION ERROR SRQ capability
240 Print #1:Setting$! Send entire front panel settings stored in string 'Setting$'
250 Print #1:"EXR ON" ! Turn EXECUTION ERROR SRQ capability back on
260
270 890
900 End
Solution #3: Handle the SRQ's with an SRQ handler

100!
110! Example program showing how to handle any EXECUTION ERROR SRQ's
120! by handling them.
130!
140! RTD 710A address 1
150!
160 On SRQ then call Srqhnd1 ! Set up SRQ handler
170 Enable SRQ ! In 4041 BASIC, SRQ must be enabled
180 Dim Setting$ to 550 ! Dimension variable setting$ for 550 characters
190 Print "Set RTD 710A for DUAL CHANNEL mode, Press <return> when ready:
"
200 Input null$
210 Print #1:"SET?" ! Query for settings from RTD 710A
220 Input #1: Setting$! Read settings into variable 'Setting$'
230 Print "Now set the RTD 710A for CH1-ONLY mode, Press <return> when
ready: ";
240 Input null$
250 Print #1:Setting$! Send settings to RTD 710A, an SRQ should occur
260
270
280 End ! End of main program
500 Sub Srqhnd1 ! Start of subprogram SRQHNDL
510!
520! Sub to handle service requests (SRQ's) and read the associated EVENT
code from the
530! RTD 710A, Report either an execution warning or error and event code
onto console device.
540!
550 Poll status,address;1 ! Perform a serial poll on the RTD 710A
(address 1). Status byte in variable 'Status'
560 Print #address:"EVENT?" ! Query for the EVENT code
570 Input #address: Event ! Read in EVENT code and store in variable
'Event'
580!
590! If the either an execution error occurs, print message and ignore
600!
610 If status=98 or status=114 then Print "Execution Error, Event ":Event
620 Resume
630 End ! SRQ handler end
Solution #4: Download various settings and store in RTD 710A's non-volatile front panel memory.

100 ! Example program showing how send settings without SRQ errors by
turning off the
120 ! SRQ capability during the settings transfer, storing the settings in
non-volatile storage, and then
130 ! recalling them later (without any SRQ's).
140 !
150 ! RTD 710A address 1
160 !
170 ! Assume 5 settings are stored in string variables 'setting$(i) thru
setting$(10)'
180 !
190 Integer i ! The numeric index must be an integer
200 Dim setting$(5) to 550 ! Dimension variable setting$ as a 5
dimensional string array with 550 characters in each element
210 !
220 ! Lines 250 to 310 learn 5 setups from the RTD 710A. Different
languages may not support a 5
230 ! dimensional string array. In this case, use 5 different string
variables and forget the FOR/NEXT loop.
240 !
250 For i=1 to 5 ! Learn 5 different setups
260 Print "Step ";i
270 Print "Set RTD 710A for different settings. Alternate between DUAL,
CH1-ONLY, & HI-SPEED modes. Press <return> when ready: ";
280 Input null$
290 Print ":"! "SET?" ! Query for settings from RTD 710A
300 Input ":"! Setting$(i) ! Read settings into variable 'Setting$(i)'
310 Next i
320 Print "Press <Return> when ready to send the 5 different setups: ";
330 Input null$
340 !
350 ! Lines 380 to 450 show how to send 5 setups to the RTD 710A
non-volatile setup memory.
360 ! The EXECUTION ERROR SRQ is turned off during the settings transfer.
Note: up to 10 setups
365 ! can be saved this way.
370 !
380 Print ":"! "EXR OFF" ! Turn off EXECUTION ERROR SRQ capability
390 For i=1 to 5
400 Print "Sending setup ";i:" to RTD 710A non-volatile setup storage
410 Print ":"! Setting$(i) ! Send entire front panel settings stored in
string 'Setting$(i)'
420 Print ":"! "SAVE ";i ! Store settings in non-volatile location
defined by 'I'
430 Next i
440 Print ":"! "EXR ON" ! Turn EXECUTION ERROR SRQ capability back on
450 . . .
600 Print ":"! "RECALL 2" ! Recall settings stored in location #2, no SRQ
when recalled internally
610 . . .
720 Print ":"! "RECALL 5" ! Recall settings stored in location #5, no SRQ
when recalled internally
730 . . .
900 End
Making sure the preamble reflects the waveform data

When front panel settings are changed and new waveform data is acquired, the RTD 710A does not automatically update the waveform preamble. The preamble is updated by sending the INIT GPIB command before asking for the preamble, as shown below:

100 !
110 ! Example program showing how to have waveform preamble updated using
120 ! INIT GPIB command
140 ! RTD 710A address 1
150 !
160 Dim wfmpre$ to 300
170 Print #1:"INIT GPIB" ! Send INIT GPIB. This will cause the preamble
to be updated
180 Print #1:"DAT CHA:CH2,LOC:15;WFMPRE?" ! Ask for waveform preamble
190 Input #1:wfmpre$! Read correct waveform preamble for ch1, loc1
200
210
890
900 End
Section 5
SRQ AND EVENT CODES

Status bytes and event codes are used to report operating status to the controller. They are helpful in program development and troubleshooting.

Responses to the controller divide into two classes: status bytes and event codes. Status bytes indicate instrument condition in general; event codes give a more specific indication of instrument condition. For example, if the RTD 710A asserts a command error SRQ (status 97), the EVENT? query can be sent to find out what exactly is wrong with the command. If the message "MODE CH11" (there is no channel 11) is sent, the RTD 710A responds with a command error SRQ and when queried for the event, it sends an EVENT 103; command argument error.

STATUS BYTES

There are two classes of status bytes: device-dependent and system status. Device-dependent bytes report status bytes unique to the RTD 710A. System status bytes report conditions common to other instruments on the GPIB that conform with the Tektronix Standard Codes and Formats. Table 5-1 lists the RTD 710A status bytes.

<table>
<thead>
<tr>
<th>System Status</th>
<th>Bit</th>
<th>7654</th>
<th>3210</th>
<th>RQS ON</th>
<th>RQS OFF</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command Error</td>
<td>0R1X</td>
<td>0001</td>
<td></td>
<td>97</td>
<td>113</td>
<td>33</td>
</tr>
<tr>
<td>Execution Error</td>
<td>0R1X</td>
<td>0010</td>
<td></td>
<td>98</td>
<td>114</td>
<td>34</td>
</tr>
<tr>
<td>Internal Error</td>
<td>0R1X</td>
<td>0011</td>
<td></td>
<td>99</td>
<td>115</td>
<td>35</td>
</tr>
<tr>
<td>Power Fail</td>
<td>0R1X</td>
<td>0100</td>
<td></td>
<td>100</td>
<td>116</td>
<td>36</td>
</tr>
<tr>
<td>Execution Warning</td>
<td>0R1X</td>
<td>0101</td>
<td></td>
<td>101</td>
<td>117</td>
<td>37</td>
</tr>
<tr>
<td>Power ON</td>
<td>0R0X</td>
<td>0001</td>
<td></td>
<td>65</td>
<td>81</td>
<td>65</td>
</tr>
<tr>
<td>Operation Complete</td>
<td>0R0X</td>
<td>0010</td>
<td></td>
<td>66</td>
<td>82</td>
<td>2</td>
</tr>
<tr>
<td>User Request</td>
<td>010X</td>
<td>0011</td>
<td></td>
<td>67</td>
<td>83</td>
<td>67</td>
</tr>
<tr>
<td>No Status To Report</td>
<td>000x</td>
<td>0000</td>
<td></td>
<td>0</td>
<td>16</td>
<td>0</td>
</tr>
</tbody>
</table>

Device Dependent Status

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Device Dependent Bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 6</td>
<td>RQS Bit</td>
</tr>
<tr>
<td>Bit 5</td>
<td>Error Bit</td>
</tr>
<tr>
<td>Bit 4</td>
<td>Busy Bit</td>
</tr>
</tbody>
</table>

R is set to 1 when the GPIB RQS mode is set to RQS:ON. If the RTD 710A is in the RQS:OFF mode and polled, the status byte is sent without D106 asserted.

X is the busy bit and is set to 1 if the RTD 710A is busy when the status byte is read.
EVENT CODES

An event code is sent to the controller upon request, usually following the receipt of a status byte. Event codes identify instrument status more specifically than status bytes, thus further aiding the user in determining instrument status. To receive an event code, the controller must first send an event query to the RTD 710A.

This event is in the form: EVENT <NR1>

The response is: EVENT <NR1>

The value <NR1> is an event code corresponding to instrument status. The event code is cleared when it is reported.

Events fall into the following classes:

Command Error: A command error results when a message cannot be completely parsed. Typically wrong command syntax.

Execution Error: An execution error exists when a message is parsed but cannot be executed. For example, out-of-range value or conflicting settings.

Internal Error: This error results from a malfunction or fault condition within the RTD 710A.

System Event: This class includes all events that are not errors or warnings.

Execution Warning: The command received is being executed, but a potential problem may exist.

Table 5-2 through 5-6 list the RTD 710A event codes.

Table 5-2
RTD 710A COMMAND ERROR EVENT CODES

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Instrument Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command Error Events—CER ON; SRQ Status 97 or 113</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>Command header error.</td>
</tr>
<tr>
<td>102</td>
<td>Header delimiter error.</td>
</tr>
<tr>
<td>103</td>
<td>Command argument error.</td>
</tr>
<tr>
<td>104</td>
<td>Argument delimiter error.</td>
</tr>
<tr>
<td>105</td>
<td>Non-numeric argument.</td>
</tr>
<tr>
<td>106</td>
<td>Missing argument.</td>
</tr>
<tr>
<td>107</td>
<td>Invalid message unit delimiter.</td>
</tr>
<tr>
<td>108</td>
<td>Checksum error.</td>
</tr>
<tr>
<td>109</td>
<td>Bytecount error.</td>
</tr>
<tr>
<td>151</td>
<td>Symbol or number too long. Command ignored.</td>
</tr>
<tr>
<td>Event Code</td>
<td>Instrument Status</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>201</td>
<td>Command not executable in LOCAL</td>
</tr>
<tr>
<td>206</td>
<td>Group Execute Trigger ignored</td>
</tr>
<tr>
<td>250</td>
<td>CH2 input can't be used in the high-speed sampling mode</td>
</tr>
<tr>
<td>251</td>
<td>No TV trigger option is installed</td>
</tr>
<tr>
<td>252</td>
<td>Trigger source CH2, Bslope, +HYS, and -HYS, are not usable when TV trigger coupling (Lines, FLD1, or FLD2) is selected</td>
</tr>
<tr>
<td>254</td>
<td>Trigger source CH2 is not usable in high-speed sampling mode</td>
</tr>
<tr>
<td>255</td>
<td>Selected recall memory is empty</td>
</tr>
<tr>
<td>256</td>
<td>XY display mode is not allowed because two waveforms are not displayed on the monitor or because the vertical mode is set to CH1 only</td>
</tr>
<tr>
<td>258</td>
<td>Target cursor waveform channel is not displayed</td>
</tr>
<tr>
<td>260</td>
<td>Delta time (ΔdT) or 1/ΔdT measurement is not allowed when using the an external clock source</td>
</tr>
<tr>
<td>262</td>
<td>Requested break point to be cleared does not exist</td>
</tr>
<tr>
<td>263</td>
<td>More than five breakpoints requested. Last breakpoint request was ignored</td>
</tr>
<tr>
<td>266</td>
<td>Illegal DATA CHAnnel request in this setting - CH2 is not allowed in the CH1 only mode</td>
</tr>
<tr>
<td>267</td>
<td>DATA LOCation number requested is outside valid range</td>
</tr>
<tr>
<td>268</td>
<td>Requested DATA STArt number is not valid</td>
</tr>
<tr>
<td>269</td>
<td>Requested Data Count size number is not valid</td>
</tr>
<tr>
<td>270</td>
<td>Requested DATA BSize number is not valid</td>
</tr>
<tr>
<td>271</td>
<td>Requested Window Channel is not valid - CH2 is not allowed when using the CH1 Only mode</td>
</tr>
<tr>
<td>272</td>
<td>Requested Window Location number is outside the valid range</td>
</tr>
<tr>
<td>273</td>
<td>Requested Window Start or Stop number is outside the valid range</td>
</tr>
<tr>
<td>274</td>
<td>Requested Window Level value for queries is not valid</td>
</tr>
<tr>
<td>275</td>
<td>Requested Waveform is not valid or not available</td>
</tr>
<tr>
<td>276</td>
<td>Illegal test number</td>
</tr>
<tr>
<td>277</td>
<td>Self Test group commands are not acceptable in TEST MODOe: OFF</td>
</tr>
<tr>
<td>278</td>
<td>Command is not acceptable in TEST MODOe: ON, need to turn TEST MODOe: OFF</td>
</tr>
<tr>
<td>279</td>
<td>Plot is not allowed because no waveform is being displayed (both set to location zero).</td>
</tr>
</tbody>
</table>
Table 5-4
RTD 710A INTERNAL ERROR EVENT CODES

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Instrument Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal Errors - INR ON; SRQ Status 99 or 115</td>
<td></td>
</tr>
<tr>
<td>302</td>
<td>System error or DMA controller error</td>
</tr>
<tr>
<td>350</td>
<td>Auto-Calibration failed - Use ERR? query to determine failure code</td>
</tr>
<tr>
<td>351</td>
<td>NVM save or recall error (checksum error)</td>
</tr>
<tr>
<td>352</td>
<td>Current Level 2 test or Power-On Self Test error - Must use ERR? query to determine failure code</td>
</tr>
</tbody>
</table>

Table 5-5
RTD 710A SYSTEM EVENT CODES

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Instrument Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>System</td>
<td></td>
</tr>
<tr>
<td>401</td>
<td>Power on</td>
</tr>
<tr>
<td>403 (USER ON)</td>
<td>User request</td>
</tr>
<tr>
<td>450 (OPC ON)</td>
<td>Hold has occurred after N times Average or Envelope operation</td>
</tr>
<tr>
<td>451 (OPC ON)</td>
<td>Hold has occurred in Compare Trigger mode</td>
</tr>
<tr>
<td>452 (OPC ON)</td>
<td>Current Level 2 test or Power-On Self Test has finished</td>
</tr>
<tr>
<td>453</td>
<td>Plot completed.</td>
</tr>
<tr>
<td>Event Code</td>
<td>Instrument Status</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Execution Warning -</td>
<td>EXW ON; SRQ Status 101 or 117</td>
</tr>
<tr>
<td>550</td>
<td>Requested Input Range value was rounded or limited</td>
</tr>
<tr>
<td>551</td>
<td>Requested Input Offset value was rounded or limited</td>
</tr>
<tr>
<td>552</td>
<td>Selecting the High-Speed sampling mode forced the vertical mode to CH1 only</td>
</tr>
<tr>
<td>553</td>
<td>Requested Trigger Level value was rounded or limited</td>
</tr>
<tr>
<td>554</td>
<td>Requested Record Length value was rounded or limited</td>
</tr>
<tr>
<td>555</td>
<td>Selecting the Envelope mode forced the record length to 128K or the Record Location number was modified to an allowable number or the sample rate was changed to Normal</td>
</tr>
<tr>
<td>556</td>
<td>Selecting the Dual vertical mode forced one of the following:</td>
</tr>
<tr>
<td></td>
<td>* The Record Length to 128K</td>
</tr>
<tr>
<td></td>
<td>* The Record Location number was modified to an allowable maximum number</td>
</tr>
<tr>
<td></td>
<td>* The sample rate was decreased from 5 nS to 10 nS</td>
</tr>
<tr>
<td></td>
<td>* The Sample mode was changed to normal</td>
</tr>
<tr>
<td>557</td>
<td>Selecting the Compare Trigger mode forced the Record Length to 128K or the Record Location number was modified to the maximum allowable value</td>
</tr>
<tr>
<td>558</td>
<td>Selecting LINES, FLD1, or FLD2 forced the Trigger Source to CH1 or the Trigger slope was set to minus</td>
</tr>
<tr>
<td>559</td>
<td>Requested Arm Delay value was limited</td>
</tr>
<tr>
<td>560</td>
<td>Requested TV Line number was limited</td>
</tr>
<tr>
<td>561</td>
<td>Requested Record Location number or Auto-Advance Location was limited</td>
</tr>
<tr>
<td>562</td>
<td>Record Length change forced Record Location number to a maximum allowable number or the Trigger Delay value to a maximum allowable value</td>
</tr>
<tr>
<td>563</td>
<td>Requested Trigger Delay value was truncated or limited</td>
</tr>
<tr>
<td>564</td>
<td>Requested Sample Interval Value was limited-This event code is also used when the sampling speed is changed from High-Speed mode (5 nS) to Normal mode (10 nS)</td>
</tr>
<tr>
<td>565</td>
<td>Requested Break Point address value was truncated or limited</td>
</tr>
<tr>
<td>566</td>
<td>Requested Average number of times was truncated or limited</td>
</tr>
<tr>
<td>567</td>
<td>Requested Envelope number of times was truncated or limited</td>
</tr>
<tr>
<td>568</td>
<td>Requested Cursor 1 Position value was limited</td>
</tr>
<tr>
<td>569</td>
<td>Requested Cursor 2 Position value was limited</td>
</tr>
<tr>
<td>570</td>
<td>Requested Horizontal Zoom value was limited</td>
</tr>
<tr>
<td>571</td>
<td>Requested Vertical Zoom value was limited</td>
</tr>
<tr>
<td>572</td>
<td>Requested Vertical Position value was limited</td>
</tr>
<tr>
<td>573</td>
<td>Requested Display Location number was limited</td>
</tr>
<tr>
<td>574</td>
<td>Requested Save or Recall location number was rounded or limited</td>
</tr>
<tr>
<td>575</td>
<td>More than five Break Points were requested.</td>
</tr>
<tr>
<td>576</td>
<td>Target display channel for Cursor 1 was changed.</td>
</tr>
<tr>
<td>577</td>
<td>Target display channel for Cursor 2 was changed.</td>
</tr>
<tr>
<td>578</td>
<td>XINCR value for WFMPRE was limited.</td>
</tr>
<tr>
<td>579</td>
<td>PT.OFF value for WFMPRE was limited.</td>
</tr>
<tr>
<td>580</td>
<td>YZErO value for WFMPRE was limited.</td>
</tr>
<tr>
<td>581</td>
<td>YMULt value for WFMPRE was limited.</td>
</tr>
<tr>
<td>582</td>
<td>Break Point value for WFMPRE was limited.</td>
</tr>
<tr>
<td>583</td>
<td>Requested REPEAT count number was limited.</td>
</tr>
<tr>
<td>584</td>
<td>Waveform data STArt or STOp requested number for data queries was swapped because requested start position is larger than stop position or request stop position is smaller than the start position.</td>
</tr>
<tr>
<td>Event Code</td>
<td>Instrument Status</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>750 (WRI ON)</td>
<td>Single acquisition sequence is completed and the waveform in memory is ready to be read.</td>
</tr>
<tr>
<td>752 (OVER ON)</td>
<td>CH1 input overrange has occurred.</td>
</tr>
<tr>
<td>753 (OVER ON)</td>
<td>CH1 input underrange has occurred.</td>
</tr>
<tr>
<td>754 (OVER ON)</td>
<td>CH2 input overrange has occurred.</td>
</tr>
<tr>
<td>755 (OVER ON)</td>
<td>CH2 input underrange has occurred.</td>
</tr>
</tbody>
</table>
RTD 710A PROGRAM EXPLANATIONS/LISTINGS

These program routines enhance the RTD 710A's capabilities and ease its implementation into an ATE or research system. Specifically, this section covers the following areas:

- Read and decode scaling information from the RTD 710A
- Acquiring and scaling a waveform into a voltage array.
- Performing a serial POLL on the RTD 710A and query for the EVENT code.
- Graphing the waveform onto a monitor.

There are complete program listings for the 4041, IBM PCs using the Tek GURU II GPIB PACKAGE, HP 200/300 Series computers, and SPS BASIC. Each program contains routines that accomplish the areas above.

Getting the Waveform Scaling Information

The RTD 710A waveform preamble contains all the information needed to convert the binary waveform sent by the digitizer (range 0 to 1023) into actual vertical and horizontal data. The preamble information includes:

- The number of points in the waveform (with NR,PT)
- The vertical and horizontal scaling per bit (with YMULT and XINCR)
- The DC offset (with YOFF)
- The trigger location (with PT.OFF)

The binary waveform array associated with this preamble can be scaled into a voltage array where pretrigger and DC offset are included in the calculation. A typical waveform preamble follows:

```
WFMPRE WFID:"CH1_LOCATION1",ENCODG:
BINARY,NR,PT:8192,PT.FMT:Y,XINCR:5.0E-9,PT.OFF:0,XUNIT:SEC,YZERO:0,
YOFF:512,YMULT:100.0E-3,YUNIT:
V,BYT/NR:2,EN.FMT:RP,BIT/NR:
10,BKPT:0:5.0E-9
```

Refer to Table 3-6 (Waveform Transfer Group commands) for a complete definition of each element in the waveform preamble.

Binary Waveform Acquisition

The RTD 710A sends waveform data via the GPIB in binary. The RTD 710A is a 10 bit digitizer, so each data point must be sent using two bytes, high byte first. The GPIB controller must know how many data points are going to be sent so it can dimension the proper variable to accept data. The waveform acquisition routine inputs the number of points to be acquired. The number of points can be retrieved from the WAVEFORM SCALING routine below. Refer to this section for an explanation of determining the number of points.

Waveform Scaling Routine

This section explains how the binary waveform data is scaled into a voltage array.

Three pieces of information are needed to scale a binary waveform into a voltage array:

- The ymultiplier (variable ym)
- The yoffset (variable yo)
- The yzero (variable yz)

These items are defined in the waveform preamble and have been segmented into numeric variables.

An equation determines the total offset on the signal from either the RTD 710A dc offset function or the offset on the input signal. The dc offset added by the RTD 710A is defined in the variable 'Yzero'. A relationship called the 'vertical shift' (in this example, variable 'Vshift' is used) determines the total offset of the input signal. The following equation determines the total offset on the signal so the voltage waveform is properly scaled.
Equation:

\[V_{\text{shift}} = \text{yoffset} - (yzero \times 0.01 \times \text{ymult} \times 1024) / (2 \times \text{ymult}) \]

Canceling the input range "ymult" out of the numerator and denominator and multiplying (.01*1024) and dividing by 2 yields the quantity 5.12.

Therefore: \(V_{\text{shift}} = y - (yz \times 5.12) \)

The volts per bit must be determined to scale the waveform. The volts per bit (Vpb) is found by multiplying the ymultiplier (ymult) times 2 (because the input range is plus and minus the ymult) and dividing by 1024 (for a 10 bit digitizer). The equation below shows how volts per bit is determined.

Equation: \(V_{\text{pb}} = 2 \times \text{ymult} / 1024 \)

The binary waveform can now be scaled into a voltage waveform using the volts per bit "Vpb" and the vertical shift "Vshift." The scaling equation is shown below (assuming the use of a for-next loop to scale each element in the array):

For \(i = 1 \) to \(np \)
\[\text{Wfm}(i) = (\text{Wfm}(i) - V_{\text{shift}}) \times V_{\text{pb}} \]
Next \(i \)

Some controllers, for example the 4041 and HP 200 series (using the MAT command) have commands that support implied array operations. The same scaling done in the for-next loop above can be accomplished in one statement.

Read Breakpoint Information Routine

The RTD 710A allows the sample rate to be switched (called breakpoints) to make better use of the available waveform memory. For example, the user can speed up the sample rate for the rising and falling edges of a pulse and slow the sample rate down for the slower portions (that is, the top and base) of a waveform.

This routine reads the breakpoints from the waveform preamble and decodes them for timing measurements across breakpoints.

Serial Poll and Event Query

The service request (SRQ) and event query capability of the RTD 710A is a powerful way to determine its status of normal and abnormal conditions. Some examples of helpful service requests/event codes are shown in table 6-1.

<table>
<thead>
<tr>
<th>SRQ Code</th>
<th>Event Code</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>97</td>
<td>103</td>
<td>Command error; Command argument is wrong</td>
</tr>
<tr>
<td>98</td>
<td>261</td>
<td>Execution error; selected non-volatile settings location is empty</td>
</tr>
<tr>
<td>67</td>
<td>403</td>
<td>Device dependent status byte; the operator has pressed the RQS button (USER button) on the RTD 710A front panel</td>
</tr>
<tr>
<td>66</td>
<td>450</td>
<td>Hold has occurred after N times average or envelope operations</td>
</tr>
</tbody>
</table>

This table is not a complete listing of the SRQ and event capability of the RTD 710A, but a sample of some of the information that can be obtained while developing and executing programs. The RTD 710A can:

- Tell you when a command cannot be understood or executed
- Inform that a setting has been limited because of conflicts with other settings
- Signal when a waveform is ready to transfer
- Allow an operator to signal the controller from the front panel of the RTD 710A
- Signal that the input signal is over or under range
4041/RTD 710A Program Example

Assumptions:
1. The RTD 710A is at address 1
2. The waveform to be acquired is from channel 1, location 1
3. The waveform length is less than 16384 points
 - If the waveform is greater than 16K, refer to the example in the RTD 710A manual using REPEATED BLOCK TRANSFER or ARBITRARY FORMAT

* 4041 program listing *

```
100 !
110  ! RTD 710/ 4041 program to acquire waveform, scale into a voltage
120  ! array, read and decode breakpoint information, and graph
130  ! waveform on 4000 series terminal
140  !
150  ! 4041 requires: 4041R01 & 4041R02
160  ! RTD 710 is set to GPIB address 1 connected to GPIBO:
170  !
180  Init all
190  On sqr then call srqhandl
200  Call initprog(rnd,glu,cha,loc)
210  Call getscale(rnd,cha,loc,np,xi,pt,yz,yo,ym,wfmpre$)
220  If np<=16384 then goto go_on
230  Print "Channel ";cha","; Location ";loc;" has ";np;" points"
240  Print "This program can read a length up to 16384"
250  Print "Ending program...."
260  Goto fini
270  Go_on:call getwfm(rnd,cha,loc,pt,np,iwfm)
280  Call scalewfm(iwfm,np,ym,yo,yz,wfm)
290  Call getbkpt(wfmpre$,nbkpt,bkpt)
300  If nbkpt<2 then goto grphwfm
310  For i=1 to nbkpt
320  Print "BREAKPOINT AT POINT:",bkpt(i,1),","; SAMPLE RATE:",bkpt(i,2)
330  Next i
340  Input prompt "Press <Return> to plot waveform ":a$
350  Grphwfm:call drawwfm(glu,cha,loc,xi,pt,wfm)
360  Fini:end
400  Sub initprog(var rnd,glu,cha,loc)
410  Integer rnd,glu,cha,loc
420  Cha=1 ! Acquire channel 1 info
430  Loc=1 ! Acquire location 1 info
440  Rnd=1
450  Glu=100
460  Open #rnd:"GPIBO(FRI="&str$(rnd)&",EOM=<0>,TRA=FAST):"
470  Open #glu:"COMMO:".
480  Print #rnd:"INIT GPIB" ! Initialize RTD 710's GPIB port
490  Return
500  End
560  Sub getscale(rnd,cha,loc var np,xi,pt,yz,yo,ym,wfmpre$)local fmt$
510  !
520  ! Get scale factors for waveform in channel CHA
530  !
540  Dim wfmpre$ to 400
550  Print "READING SCALE FACTORS"
560  Print #rnd:"DAT CHA:CHA"&str$(cha)&",LOC:"&str$(loc)
570  Input #rnd prompt "WFM?:wfmpre$
580  Np=arg("NR.P",wfmpre$)
```

6-3
** 4041 program listing (Cont.) **

690 Xi=arg("XIN", wfmpre$)
700 Pt=arg("PT.O", wfmpre$)
710 YZ=arg("YZE", wfmpre$)
720 YO=arg("YOF", wfmpre$)
730 YM=arg("YMU", wfmpre$)
740 Return
750 End
800 Function arg(header$, string$)
810 ! Return the numeric argument associated with HEADER$ in STRING$
820 !
830 Arg=calc(string$, pos(string$, "":", pos(string$, header$, 1)))+1)
840 Return
850 End
900 Sub getwfmrtd,cha,loc,start,count var iwfmrtd
910 ! Get a waveform from specified channel, segment, start & count
920 ! and return it in the integer array, IWFM
930 !
940 Print "READING WAVEFORM"
950 Print #rtd:"DAT"
960 CHA:"&str$(cha)&", LOC:"&str$(loc)&", STA:"&str$(start)&","
970 COU:"&str$(count)&", BSI:"&str$(count) ; select proper RTD710 channel &
980 location
990 Integer iwfmrtd(np)
1000 Print #rtd:"CURVE?"
1010 GETARR rtid,iwfmrtd,16
1020 Return
1030 End
1100 Sub scalewfmr(iwfmrtd, np, ym, yo, yz var wfm) local bpb, vshift
1110 ! Sub to scale the binary waveform 'iwfmr' into a voltage array
1120 !
1130 !'wfm'
1140 !
1150 Print "SCALING WAVEFORM"
1160 Dim wfm(np)
1170 Vpb=2*ym/1024 ! 2 * Full Scale Range Divided by 1024 Levels
1180 Vshift=yo-yz*5.12 ! Take offset voltage into account
1190 ARRSCAL iwfmr, Vpb, vshift, wfm
1200 Return
1210 End
1300 Sub getbkpt(wfmpre$ var nbkpt,bkpt) local-
1310 fini, parelt, bkpt$, a, b, strt, tmp, tmp1
1320 ! Label the breakpoints on a waveform plot
1330 !
1340 Integer a,b,strt,nbkpt
1350 A=pos(wfmpre$,"BKPT:",&l)
1360 Bkpt$=seg$(wfmpre$,a,len(wfmpre$)-a+1)
1370 Nbkpt=0
1380 Delete var bkpt
1390 Dim bkpt(5,2)
1400 For i=1 to 5
1410 Gosub parseit
1420 If i=6 then exit to fini
1430 Bkpt(i,1)=tmp

6-4
** 4041 program listing (Cont.) **

1440 Bkpt(i,2)=tmp1
1450 Nbkpt=nbkpt+1
1460 Next i
1470 Goto fini
1480 Parseit:=pos(bkpt$,"BKPT: ",strt)+5
1490 If a<6 then i=6 else goto readval
1500 Goto subdone
1510 Readval:tmp=valc(bkpt$,a)
1520 B=pos(bkpt$," ":",a)
1530 Tmpl=valc(bkpt$,b+1)
1540 Strt=b
1550 Subdone:return
1560 Fini:dim bkpt(nbkpt,2)
1570 Return
1580 End
1590 Sub drawwfm(glu,cha,seg,xi,pt,wfm)
1600 !
1610 !Draw a waveform
1620 !
1630 Ec$=chr$(27)
1640 Print ec$"%10"&ec$"NF3 ",set 4105 to tex codes, use flagging
1650 Print ec$&chr$(12)&ec$"LZ ", ERASE GRAPHICS AND DIALOG AREA
1660 GinIt glu,4105,1
1670 COLOR 1
1680 Offset pt*xi,xi
1690 Yplot wfm
1700 TITLE "CHANNEL ", LOCATION "", NUM PTS:
1710 &str$(np)
1720 XTITLE "Volts"
1730 XTITLE "Seconds"
1740 Input prompt "Press <Return> to continue ":a$
1750 Print ec$"LLA> ", SET DIALOG LINES TO 30
1760 Return
1770 End
1780 Sub srqhandl
1790 !
1800 !Poll the RTD710A in response to SRQ
1810 !
1820 Integer status,add
1830 Poll status,add
1840 Input #add prompt "EVE?":event
1850 !Display the status & event codes
1860 Print "SRQ Asserted, Status = ":status;
1870 Print "Event Code = ":event
1880 Print "path= ":ask$("path",all)
1890 Resume
1900 End
IBM PC/RTD 710A Program Example

This IBM BASICA example program:
- Reads and decodes the scale factors
- Acquires a waveform (up to 8K long)
- Graphs the acquired waveform on the monitor
- Scales the acquired waveform into a voltage array

(Note: This routine is skipped using a 'GOTO' statement in this example because it is not necessary to run the program. It is included for individual needs of the user.)
- Reads and decodes breakpoint information

The IBM main program listing can be used if the following conditions are satisfied:

The user has Tek GURU II Ver 2.0 and the program 'DIGPULSE.BAS' will run properly.
- The initialization and the subroutines from 'DIGPULSE.BAS' are
- used by the main program provided. The procedure to put the main
- program together with the 'DIGPULSE' routines is as follows:

1. Load BASICA.

2. Enter the main program listing, lines 100 to 2820.

3. Type: Save 'RTD.MAIN',A ! Save as an ASCII file.

4. Type: Load 'digpulse.bas'.

5. Type: Delete 1-9850 ! This removes everything but the 'DIGPULSE' utility subroutines.

6. Type: Save 'RTD.SUBS',A ! Save as an ASCII file.

7. Type: Load 'digpulse.bas'.

8. Type: Delete 40-13220 ! This removes everything but the initialization code for the National GPIB card.

9. Type: Merge 'rtd.main' ! This will append the main program to the initialization code.

10. Type: Merge 'rtd.subs' ! This loads the DIGPULSE subroutines.

11. Type: Save 'rtd710.bas' ! Save the whole program away. The program should now be able to acquire and graph a waveform from CH1, LOCATION 1.

** IBM Main Program Listing **

Lines 1 thru 10: Insert first ten lines from your Digpulse program here

11 ' for compiled version, remove lines 1-9 and
12 ' remove remark ('') from the following line
13 ' COMMON IBSTA%,IBERR%,IBCNT%
14 COMPILE%=0 ' set to 0 for interpreted BASIC or -1 for compiled BASIC
15 '---
16 HELP%=0 ' ask for NO help on all routines
17 SCREEN 2 ' hi resolution screen for both IBM and Hercules graphics cards
18 CLS:PRINT "RTD710A WAVEFORM ACQUIRE AND GRAPH"
19 PRINT
20 CHA%=1 'SELECT CHANNEL 1 OF RTD710, CHANGE AS NEEDED
21 LOCAT%=1 'SELECT LOCATION 1 OF THE RTD710, CHANGE AS NEEDED
22 CHA$=MID$(STR$(CHA%),2,1)
23 LOCAT$=MID$(STR$(LOCAT%),2,LEN(STR$(LOCAT%)))-1
24 ' IT'S ASSUMED HERE THAT THE RTD710 IS SET TO ADDRESS 1. THIS CODE
25 ' SELECTS THE RTD710 AS THE ACTIVE DEVICE BY SELECTING 'TEKDEV1'.
26 ' DEVICE$="TEKDEV1"
** IBM Main Program Listing (Cont.) **

230 FUNC%=1:GOSUB 10000 'SELECT RTD710 AT ADDRESS 1
240 GOSUB 1410 'SERIAL POLL
250
260 ' START OF GET SCALING INFORMATION SUBROUTINE
270
275 PRINT "PRESS <ENTER> TO ACQUIRE WAVEFORM FROM CHANNEL "+CHA$", LOCATION "+LOCAT$; INPUT A$"
280 PRINT "READING AND DECODING WAVEFORM PREAMBLE"
290 WRT$="INIT GPIB;DAT CHA:CH"+CHA$",LOC:"+LOCAT$+";WFMPRE?"
300 FUNC%=3:GOSUB 10000 'SEND MESSAGE
310 FUNC%=4:GOSUB 10000 'READ WAVEFORM PREAMBLE INTO RD$
320 WFMPRE$=RD$
330
340 SRCH$="NR.PT";GOSUB 1320:NP=TEMP 'SET NUMPTS INTO VAR NP
350 IF NP<8192 GOTO 400
360 PRINT "The waveform length to acquire is"+STR$(NP)+" points."
370 PRINT "This program can only handle a 8192 point waveform"
380 PRINT "Ending program....."
390 GOTO 1310
400 SRCH$="XINCR";GOSUB 1320:XI=TEMP 'SET XINCREMENT TO VAR XI
410 SRCH$="PT.OFF";GOSUB 1320:PT=TEMP 'SET TRIG DELAY TO VAR PT
420 SRCH$="YZERO";GOSUB 1320:YZ=TEMP 'SET YZERO TO VAR YZ
430 SRCH$="YOFF";GOSUB 1320:YO=TEMP 'SET YOFFSET TO VAR YO
440 SRCH$="YMULT";GOSUB 1320:YM=TEMP 'SET YMULTIPLIER TO VAR YM
450 NP$=MIDS$(STR$(NP),2,LEN(STR$(NP))-1)
460 480 'GOSUB 1400 'SERIAL POLL
470
490 ' END OF GET SCALING INFORMATION SUBROUTINE
500
510 ' START OF GET BINARY WAVEFORM SUBROUTINE
520
530 PRINT "READING BINARY WAVEFORM FROM RTD710"
540 WRT$="DAT CHA:CH"+CHA$
550 WRT$=WRT$+",LOC:"+LOCAT$+",START:"+STR$(PT)
560 WRT$=WRT$+",COUNT:"+NP$+",BSIZE:"+NP$+",CURVE?"
580
590 ' INITIALIZE ALL VARIABLES NEEDED TO ACQUIRE AND GRAPH WAVEFORM
600
610 LE%=NP
620 VS=128
630 VZ=511
640 EOI%=1
650 PRI%=1
660 SEC%=0
670 CONV%=0
680 MODE%=4
690 CP%(0)=2:CP%(1)=LE%-2
700 VU=YM/4
710 NAS="RTD 710 WFM, CHA "+CHA$", LOC "+LOCAT$
720 QFS=VU*(VZ/VS+YZ)
730 DSI=XI
740 CUR1%=0
750 CUR2%=NP-1
760 FUNC%=3:GOSUB 10000 'SELECT CHANNEL, LOCATION, ETC & SEND 'CURVE?' QUERY
770 DIM WFMP$(LE%)
"IBM Main Program Listing (Cont.)"

780 FUNC%=11:GOSUB 10000 'GET BINARY WAVEFORM
790 GOTO 950 'SKIP SCALING ROUTINE UNLESS NEEDED
800 ,
810 ' END OF GET BINARY WAVEFORM ROUTINE
820 '---
830 ' START OF SCALE BINARY WAVEFORM INTO VOLTAGE WAVEFORM SUBROUTINE
840 ' RAW BINARY WAVEFORM DATA IS RETURNED IN ARRAY 'RDD%'.
850 ,
860 PRINT "SCALING INTO VOLTAGE WAVEFORM"
870 VSHIFT=Y0-(Y*5.12)
880 VPB=(YM*2)/1024
890 FOR I=1 TO NP
900 WFM(I)=(WFM(I)-VSHIFT)*VPB
910 NEXT I
920 ,
930 ' END OF SCALE BINARY WAVEFORM ROUTINE
940 '---
950 ' GRAPH WAVEFORM
960 KEYF=4
970 FUNC%=14:GOSUB 10000 'GRAPH WAVEFORM
980 ,
990 ' END OF GRAPH WAVEFORM
1000 '---
1010 ' READ AND DECODE BREAKPOINT INFORMATION ROUTINE
1020 ,
1030 POSIT%=INSTR(WFMPRE$,"BKPT:")
1040 RDS=MID$(WFMPRE$,POSIT%,LEN(WFMPRE$)-POSIT%+1)
1050 NBKPT%=0 'SET NUMBER OF BREAKPOINTS TO ZERO
1060 DIM BKPT%(5,2)
1070 BKPT(1,1)=0
1080 FOR I=1 TO 5
1090 FUNC%=18
1100 GOSUB 10000 'PARSE OUT LOCATION OF BREAKPOINT
1110 IF I=1 THEN GOTO 1150
1120 BKPT(I,1)=RESULT
1130 FUNC%=18
1140 GOSUB 10000 'PARSE OUT SAMPLE RATE
1150 BKPT(I,2)=RESULT
1160 NBKPT%=NBKPT%+1
1170 POSIT%=INSTR(RD$,"BKPT:")
1180 IF POSIT%<1 THEN I=6
1190 IF I=6 THEN GOTO 1210
1200 RD$=MID$(RD$,POSIT%)
1210 NEXT I
1220 ,
1230 ' This next section displays the breakpoint locations and sample rates
1240 ' It is not necessary when using the breakpoint information
1250 ,
1260 IF NBKPT%<2 THEN GOTO 1310
1270 PRINT "NUMBER OF BREAKPOINTS:"+STR$(NBKPT%)
1280 FOR I=1 TO NBKPT%
1290 PRINT "BREAKPOINT LOCATION:"+STR$(BKPT(I,1))+", SAMPLE RATE:"+STR$(BKPT(I,2))
1300 NEXT I
1310 END
** IBM Main Program Listing (Cont.) **

1320 '---
1330 'PARSE DESIRED INFORMATION FROM WFMPRES$ AND PUT NUMBER IN
1340 'VARIABLE 'TEMP'.
1350 '
1360 POSIT%=INSTR(WFMPRES$,SRCH$)+LEN(SRCH$)+1
1370 TMP$=MID$(WFMPRES$,POSIT%,15)
1380 TEMP=VAL(TMP$)
1390 RETURN
1400 '---
1410 'START OF SERIAL POLL SUBROUTINE
1420 FUNC%=2:GOSUB 10000
1430 WRT$="EVENT?"
1440 FUNC%=3:GOSUB 10000
1450 FUNC%=4:GOSUB 10000
1460 EVT%=VAL(RD$)
1470 PRINT "SERIAL POLL, STATUS:"+STR$(SPR%)+",EVENT:"+STR$(EVT%)
1480 IF SPR%>16 THEN 1420
1490 RETURN
1500 'END OF SERIAL POLL SUBROUTINE
1510 '---
** HP 200/300 Series/RTD 710A Example Program Listing **

101 !
103 ! Waveform acquire, scale, read
104 ! breakpoints and decode, and graph
105 ! scaled waveform program
106 !
107 ! Written on 9826 w/ Ver 4.0 BASIC
108 ! using GPIB port 8
109 !
111 ! Requires loading the following binary
112 ! files before executing:
113 ! LOAD BIN <FILENAME> where <filename> =
114 ! o-<IO>Opt 4
115 ! o-<GRAPH>Opt 2
116 ! o-<MAT>Opt 7
117 !
119 GOSUB Initialise
124 ON INTR 8 CALL Srqhandl
125 ENAB INTR 8,2
130 CALL Getscale(@Rtd,Cha,Loc,Np,Xi,Pt,Yz,Yo,Ym,Wfmpre$)
131 IF Np<=8192 THEN 137
132 PRINT "The number of points:";Np;"is too long"
133 PRINT "This program can only handle a 8192 wfm"
134 PRINT "Ending program"
135 GOTO Fini
137 ALLOCATE INTEGER Iwfm(1:Np)
138 ALLOCATE Wfm(1:Np)
140 CALL Getwfm(@Rtd,Cha,Loc,Pt,Np,Iwfm(*))
150 CALL Scalewfm(Np,Ym,Yo,Yz,Wfmp(*),Iwfm(*))
160 CALL Getbkpt(@Rtd,Nbkpt,Bkpt(*))
161 PRINT "Num breakpoints:";Nbkpt
163 FOR I=1 TO Nbkpt
164 PRINT "Breakpoint loc:";Bkpt(I,1);"", Sample rate:";Bkpt(I,2)
165 NEXT I
170 CALL Graphwfm(Wfmp(*),Xi,Np)
171 GOTO Fini
180 Initialise:
181 OPTION BASE 1
190 Addr=1 !RTD ADDRESS
202 DIM Wfmpre$(600),Wrt$(200)
203 Cha=1 !SELECT CHANNEL (1 or 2)
205 Loc=1 !SELECT LOCATION (1 to 256)
206 DIM Bkpt(5,2)
210 ABORT 8
220 REMOTE 800+Addr
230 CLEAR 800+Addr
240 ASSIGN @Rtd TO 800+Addr;EOL CHR$(13) END
250 RETURN
260 Fini:END
1000 SUB Getscale(@Rtd,Cha,Loc,Np,Xi,Pt,Yz,Yo,Ym,Wfmpre$)
1010 REM
1020 REM GET SCALE FACTORS FOR WAVEFORM IN CHANNEL CHA, LOCATION LOC
1030 REM
1040 Wrt$="INIT GPIB;DAT CHA:"&VAL$(Cha)&",LOC:"&VAL$(Loc)
1041 PRINT "READING SCALE FACTORS"
1043 OUTPUT @Rtd;Wrt$&";WFM?"
** HP 200/300 Series/RTD 710A Example Program Listing (Cont) **

1050 ENTER @Rtd;Wfmpre$
1060 Np=FNarg("NR.PT:",Wfmpre$) ! NUMBER OF POINTS IN WAVEFORM
1070 Xi=FNarg("XINC:" ,Wfmpre$) ! TIME PER POINT
1080 Pt=FNarg("PT.OFF:",Wfmpre$) ! AMOUNT OF PRETRIGGER
1090 Yz=FNarg("YZERO:",Wfmre$) ! GROUND REFERENCE
1100 Yo=FNarg("YOFF:" ,Wfmre$) ! DC OFFSET
1110 Ym=FNarg("YMUL":,Wfmre$) ! VOLTS PER BIT
1130 SUBEND
1120 SUB Getwfm(@Rtd,Cha,Loc,Start,Np,INTEGER Iwfm(*))
1130 REM
1140 REM GET A WAVEFORM FROM SPECIFIED CHANNEL, LOCATION, START & COUNT
1150 REM AND RETURN IT IN THE INTEGER ARRAY, IWFM
1151 DIM Wrt$[200]
1160 Wrt$="DAT CHA:"&VALS(Cha)&",LOC:"&VALS(Loc)&",STA:"&VALS(Start)
1170 Wrt$=Wrt$&",COU:"&VALS(Np)&",BSI:"&VALS(Np)
1171 PRINT "READING";Np;"POINT BINARY WAVEFORM"
1180 OUTPUT @Rtd;Wrt$";";CURVE?"
1190 ENTER @Rtd USING ";9A";Cur$;
1191 ENTER @Rtd USING ";W";Iwfm(*)
1192 ENTER @Rtd USING "B";Chk!CHECKSUM
1210 SEND 8;UNL UNT
1220 CLEAR 8
1230 SUBEND
1230 SUB Scalewfm(Np,Ym,Yo,Yz,Wfm(*),INTEGER Iwfm(*))
1240 REM
1240 REM SCALE BINARY WAVEFORM STORED IN IWFM INTO A VOLTAGE WAVEFORM
1250 STORE IN
1270 Vpb=2*Ym/1024 ! 2*FULLSCALE RANGE DIVIDED BY 1024 EQUALS THE VOLTS PER BIT
1280 REM
1290 REM THE NEXT SECTION DETERMINES THE DC OFFSET
1300 REM 'VSHIFT' USING YOFFSET,YZERO (ALWAYS 512)
1310 REM , AND YMULT. VSHIFT EQUALS:
1320 REM VSHIFT=VOFFSET-(YZERO*.01*YMULT*1024)/(2*YMULT)
1330 REM VARIABLE YO YZ YM YM
1340 REM
1350 REM CANCELLING THE YMULT OUT OF THE NUMERATOR
1360 REM AND DENOMINATOR AND MULTIPLYING .01*1024
1370 REM AND DIVIDING BY 2 YIELDS 5.12
1380 REM
1390 REM THEREFORE: VSHIFT=YO- (YZ*512)
1400 REM
1410 PRINT "SCALING INTO VOLTAGE WAVEFORM"
1420 Vshift=Yo-(Yz*5.12)
1430 Vpb=(Ym*2)/1024
1440 MAT Wfm= Iwfm-(Vshift)
1450 MAT Wfm= Wfm*(Vpb)
1470 SUBEND
1480 SUB Graphwfm(Wfm(*),Xi,Np)
1490 GINIT
1500 GCLEAR
1510 GRAPHICS ON
1520 Amax=MAX(Wfm(*))
1530 Amin=MIN(Wfm(*))
1540 Voffset=(Amax-Amin)/20
** HP 200/300 Series/RTD 710A Example Program Listing (Cont) **

1954 Hoffset=(Np)/20
1955 OUTPUT 2:""; ! Clears dialog area
1956 ! Message between quotes is as follows:
1957 "<CTRL-BACKSPACE> K"
1958 MOVE 35,90
1959 LABEL "RTD 710A WAVEFORM"
1960 VIEWPORT 20,110,20,80
1961 WINDOW 0,(Np)+Hoffset,Amin-Voffset,Amax+Voffset
1962 MOVE 0,Amin-Voffset
1963 DRAW Np+Hoffset,Amin-Voffset
1964 DRAW Np+Hoffset,Amax+Voffset
1965 DRAW 0,Amax+Voffset
1966 DRAW 0,Amin-Voffset
1967 MOVE 0+Hoffset/2,Wfm(1)+Voffset/2
1970 FOR I=2 TO Np
1980 DRAW I+Hoffset/2,Wfm(I)+Voffset/2
1990 NEXT I
2000 DISP "<ENTER> TO CONTINUE:"
2010 INPUT A$
2020 GCLEAR
2510 SUBEND
2520 DEF FNArg(Header$,String$)
2530 REM
2540 REM RETURN THE NUMERIC ARGUMENT ASSOCIATED WITH HEADERS IN STRINGS
2550 REM
2560 Ps=POS(String$,Header$)+LEN(Header$)
2570 Tp$=String$[Ps:15]
2580 RETURN VAL(Tp$)
2590 FNEND
2970 SUB Getbkpt (@Rtd,Nbkpt,Bkpt(*))
2980 REM
2990 REM READ AND DECODE BREAKPOINT INFORMATION
3000 REM RETURNING THE NUMBER OF BREAKPOINTS IN
3010 REM VARIABLE 'NBKPT' AND THE BREAKPOINT
3020 REM INFORMATION IN VARIABLE 'BKPT'
3030 REM
3060 Nbktop=0
3070 DIM Bkpt$[100],Tmp$[200]
3080 OUTPUT @Rtd:"BRE UNI:POINT;BRE? SET",END
3090 ENTER @Rtd:Bkpt$
3100 FOR I=1 TO 5
3110 GOSUB Parseit
3113 IF I=6 THEN GOTO 3120
3114 Bkpt(I,1)=Tmp
3115 Bkpt(I,2)=Tmpl
3117 Nbkpt=Nbkpt+1
3120 NEXT I
3121 GOTO 3290
3130 Parseit: A=POS(Bkpt$,"SET:"
3140 IF A<1 THEN Nomore
3152 Tmp$=Bkpt$[A+4;LEN(Bkpt$)]
3170 Tmp$=VAL(Tmp$)
3180 A=POS(Tmp$,:"
3185 Tmp$=Tmp$[A+1;LEN(Tmp$)]
3200 Tmpl=VAL(Tmp$)
3240 Bkpt$=Tmp$
** HP 200/300 Series/RTD 710A Example Program Listing (Cont) **

3250 GOTO Done
3260 Nonore: I=6
3270 Done: RETURN
3290 SUBEND
3300 SUB Srqhand1
3310 Sb=SPOLL(801)
3313 IF Sb<16 THEN 3351
3320 BEEP
3330 OUTPUT 801;"EVENT?"
3340 ENTER 801;Event$
3350 PRINT "SRQ...Status=";Sb;",";Event$
3351 ENABLE INTR 8;2
3360 SUBEND
** SPS BASIC/RTD 710A Example Program Listing **

10 REM --- RTD 710A / SPS BASIC VER 3.0 WAVEFORM ACQUIRE, SCALE,
20 REM AND GRAPH. THIS ROUTINE ALSO READS AND DECODES
30 REM BREAKPOINT INFORMATION.
40 REM
50 PA=1\REM -- RTD 710 ADDRESS SET TO 1
60 IB=0\REM -- INTERFACE BUS 0
70 CH=1\REM -- CHANNEL 1
80 LO=1\REM -- LOCATION 1
90 LOAD "GPI"
100 SIFTO @IB,2000
110 SIFCOM @IB,"DCL"
120 WHEN @IB HAS "SRQ" GOSUB 1720
130 GOSUB 320\REM -- GET SCALING INFORMATION
140 IF NP<=8192 THEN 200
150 PRINT "THE NUMBER OF POINTS:";NP:" IS TOO LONG"
160 PRINT "THIS PROGRAM CAN ONLY HANDLE A 8192 WAVEFORM"
170 PRINT "ENDING PROGRAM"
180 GOTO 310
190 GOSUB 670\REM -- ACQUIRE WAVEFORM
200 GOSUB 1080\REM -- SCALE WAVEFORM INTO VOLTAGE ARRAY
210 GOSUB 1290\REM -- READ AND DECODE BREAKPOINT INFO
220 WAVEFORM CW IS XI,HA$,VA$
230 HA$="SEC";VA$="VOLTS"
240 ECS=CHR$(27)\REM ESCAPE CHARACTER
250 PRINT ECS$"LI100";ECS$"LZ";ECS$"KA0"\REM SET UP TERMINAL FOR GRAPH
260 GRAPH GW\REM -- GRAPH ACQUIRED WAVEFORM
270 SMOVE 200,750
280 PRINT "RTD 710A WAVEFORM, CH:";CH;", LOCATION:";LO;", NUMPTS:";NP
290 PRINT ECS$"KA1"\REM DAENABLE YES
300 END
310 REM --- SUBROUTINE TO ACQUIRE RTD 710 SCALE FACTOR DATA
320 REM
330 REM --- VARIABLE DEFINITIONS:
340 REM
350 REM IB -- INTERFACE BUS NUMBER (0,1,2, OR 3)
360 REM PA -- PRIMARY ADDRESS OF THE RTD 710 (0 - 30)
370 REM CH -- CHANNEL TO ACQUIRE WAVEFORM DATA FROM (1 OR 2)
380 REM LO -- SELECT LOCATION OF WAVEFORM CHANNEL (1 TO 256)
390 REM P,P1 -- TEMPORARY POINTERS AND VALUE HOLDER
400 REM AS -- TEMPORARY STRING FOR OUTPUT TO DIGITIZER
410 REM WP$ -- STRING CONTAINING THE WAVEFORM PREAMBLE
420 REM SS$ -- CONTAINS STRING TO BE LOCATED IN BS$
430 REM
440 REM
450 REM --- SUBROUTINE STARTS HERE
460 REM
470 AS="INIT BPIB;DAT CHA:";STR$(CH)"&",LOC:";STR$(LO)
480 PRINT "READING WAVEFORM PREAMBLE FOR CH:";CH;", LOCATION:";LO
490 PUT AS INTO @IB,PA+32
500 REM --- GET WAVEFORM SCALING INFORMATION
510 PUT "WFM?" INTO @IB,PA+32
520 GET WP$ FROM @IB,PA+64
530 SS="NR.PT";GOSUB 620\NP=P\REM NP = NUMBER OF POINTS
540 SS="XINC";GOSUB 620\XI=P\REM XI = TIME PER POINT
550 SS="PT.OFF";GOSUB 620\PT=P\REM PT = AMOUNT OF PRETRIGGER
560 SS="YZERO";GOSUB 620\YZ=P\REM YZ = GROUND REFERENCE
** SPS BASIC/RTD 710A Example Program Listing **

570 \texttt{SS="YOFF"}\gosub 620\texttt{YO=P}\texttt{REM YO = Y OR VERTICAL OFFSET (ALWAYS 512)}
580 \texttt{SS="YMULT"}\gosub 620\texttt{YM=P}\texttt{REM YM = Y OR VERTICAL MULTIPLIER}
590 \texttt{DELETE A$,$S}
600 \texttt{RETURN}
610 \texttt{REM --- SUBROUTINE TO EXTRACT NUMERIC VALUE FROM PREAMBLE STRING}
620 \texttt{P=POS(WP$,S$,1)}\texttt{REM FIND KEY STRING}
630 \texttt{P=POS(WP$,";",P)+1}\texttt{REM FIND BEGINNING OF VALUE TO CONVERT}
640 \texttt{P1=POS(WP$,";",P)-1}\texttt{REM FIND END OF VALUE TO CONVERT}
650 \texttt{P=VAL(SEG(WP$,P,P1))}\texttt{REM CONVERT VALUE}
660 \texttt{RETURN}
670 \texttt{REM --- SUBROUTINE TO ACQUIRE RTD 710 BINARY WAVEFORM DATA}
680 \texttt{REM}
690 \texttt{REM NOTE: THIS ROUTINE WILL READ AN 8K WORD WAVEFORM OR LESS}
700 \texttt{REM}
710 \texttt{REM --- VARIABLE DEFINITIONS:}
720 \texttt{REM}
730 \texttt{REM IB - INTERFACE BUS NUMBER (0,1,2, OR 3)}
740 \texttt{REM PA - PRIMARY ADDRESS OF THE RTD 710 (0 TO 30)}
750 \texttt{REM CH - CHANNEL TO ACQUIRE WAVEFORM DATA FROM (1 OR 2)}
760 \texttt{REM LO - SELECT LOCATION OF WAVEFORM CHANNEL (1 TO 256)}
770 \texttt{REM ST - STARTING LOCATION OF THE WAVEFORM DATA TO SEND}
780 \texttt{REM RANGE: -65535 TO 131069}
790 \texttt{REM NP - NUMBER OF DATA POINTS TO BE SENT AND RECEIVED}
800 \texttt{REM MAXIMUM OF 8192 ELEMENTS (8K WORD WAVEFORM)}
810 \texttt{REM WF - WAVEFORM ARRAY TO RECEIVE WAVEFORM DATA}
820 \texttt{REM AS - TEMPORARY STRING TO HOLD SETUP COMMANDS}
830 \texttt{REM TP - TEMPORARY ARRAY TO HOLD "CURVE" PART OF WAVEFORM}
840 \texttt{REM DATA STREAM}
850 \texttt{REM BC - BYTE COUNT}
860 \texttt{REM TM - TERMINATION CHARACTER}
870 \texttt{REM}
880 \texttt{REM --- SUBROUTINE BEGINS HERE}
890 \texttt{REM --- BUILD SETUP STRING}
900 \texttt{A$="DAT CHA:CH"&STR(CH)&",LOC:"&STR(LO)&",STA:"&STR(PT) 910 A$=A$",COU:"&STR(NP)&",BSIZ:"&STR(NP)}
920 \texttt{PRINT "READ"ING;NP:" POINT WAVEFORM}
930 \texttt{REM --- SEND SETUP STRING}
940 \texttt{PUT A$ INTO @IB,PA+32}
950 \texttt{PUT "CURVE?" INTO @IB,PA+32}
960 \texttt{REM --- GET DATA}
970 \texttt{DELETE TP\textbackslash INTEGER TP(6)}
980 \texttt{IFDTM @IB,"UNP"}
990 \texttt{GET TP FROM @IB,PA+64\REM GET "CURVE" FROM DIGITIZER}
1000 \texttt{IFDTM @IB,"PAK","HBF"}
1010 \texttt{DELETE WF,A$,TP}
1020 \texttt{GET BC FROM @IB,PA+64}
1030 \texttt{INTEGER WF((BC-1)/2-1)\REM SIZE ARRAY TO RECEIVE WAVEFORM DATA}
1040 \texttt{GET WF FROM @IB,PA+64}
1050 \texttt{GET TM FROM @IB,PA+64}
1060 \texttt{IFDTM @IB,"UNP"}
1070 \texttt{RETURN}
1080 \texttt{REM --- SUBROUTINE TO SCALE RTD 710 WAVEFORM DATA INTO A}
1090 \texttt{REM VOLTAGE ARRAY}
1100 \texttt{REM}
1110 \texttt{REM --- VARIABLE DEFINITIONS:}
1120 \texttt{REM}
RTD 710A Instrument Interfacing Guide

** SPS BASIC/RTD 710A Example Program Listing **

```
1130 REM NP - NUMBER OF POINTS IN WAVEFORM
1140 REM YZ - GROUND REFERENCE OR DC OFFSET
1150 REM YO - VERTICAL OFFSET (ALWAYS 512)
1160 REM YM - VERTICAL MULTIPLIER
1170 REM
1180 REM --- SUBROUTINE STARTS HERE
1190 DELETE W1
1200 PRINT "SCALING WAVEFORM"
1210 DIM W1(NP-1)REM MAKE A FLOATING POINT ARRAY TO HOLD SCALED DATA
1220 REM CALCULATE THE SCALE OF VOLTS PER VERTICAL BIT
1230 VB=2*YM/1024
1240 REM CALCULATE THE VERTICAL SHIFT TO BE SUBTRACTED
1250 VS=YO-(YZ+1024/2)
1260 REM SUBTRACT OFFSET FROM ARRAY AND MULTIPLY BY VERTICAL SCALE
1270 W1=(WF-VS)*VB
1280 RETURN
1290 REM --- SUBROUTINE TO READ AND DECODE BREAKPOINTS
1300 REM
1310 REM --- VARIABLE DEFINITIONS:
1320 REM
1330 REM IB - INTERFACE BUS NUMBER (0,1,2, OR 30
1340 REM FA - PRIMARY ADDRESS OF THE RTD 710 (0 - 30)
1350 REM P,P1 - TEMPORARY POINTERS FOR SEGMENTING B$
1360 REM B$ - TEMPORARY STRING FOR INPUT FROM DIGITIZER
1370 REM NB - NUMBER OF BREAKPOINTS
1380 REM BP - BREAKPOINT DATA ARRAY (5 X 2 ARRAY)
1390 REM (X,1) = CONTAINS BREAKPOINT LOCATION
1400 REM (X,2) = CONTAINS BREAKPOINT SAMPLE RATE
1410 REM X RANGE: 1 TO 5
1420 REM
1430 DELETE B$,BP,NB
1440 DIM BP(5,2)
1450 BP=0
1460 NB=0
1470 P1=POS(WPS,"BKPT:",1)
1480 B$=SEG(WPS,P1,LEN(WPS))
1490 P=I\REM STARTING LOCATION OF SEARCH
1500 FOR I=1 TO 5\REM I = BREAKPOINT NUMBER
1510 GOSUB 1620
1520 IF P1=LEN(B$) THEN I=6\REM FORCE LOOP TO END
1530 NB=NB+1
1540 NEXT I
1550 PRINT CHR(13)
1560 FOR I=1 TO NB
1570 PRINT "BREAKPOINT AT POINT: ";BP(I,1);"," SAMPLE RATE: ";BP(I,2)
1580 NEXT I
1590 WAIT 2000
1600 RETURN
1610 REM --- SUBROUTINE TO FIND AND EXTRACT BREAKPOINT INFO
1620 P=POS(B$,"BKPT",P)+5\REM FIND "BKPT" AND LOCATION INFO
1630 IF P=0 THEN 1700REM NO MORE DATA
1640 P1=POS(B$,":",P)-1\REM GET END OF BREAKPOINT LOCATION
1650 BP1=VAL(SEG(B$,P,P1))
1660 P=P1+2\REM START POSITION OF BREAKPOINT DATA VALUE
1670 P=POS(B$,":",P)-1\REM END OF BREAKPOINT DATA VALUE
1680 IF P1=-1 THEN P1=LEN(B$)
```

** SPS BASIC/RTD 710A Example Program Listing **

1690 BE(I,2)=VAL(SEG(B$,P,P1))
1700 RETURN
1710 REM POLL ROUTINE
1720 POLL @IB,SB,AD,SA;PA+64
1730 AD=AD-64
1740 PUT "EVENT?" INTO @IB,AD+32
1750 GET EV$ FROM @IB,AD+64
1760 PRINT "SRQ AT ADDRESS ";STR(AD)"", STATUS="&STR(SB)"", "&EV$
1770 RETURN
ASCII & GPIB CODE CHART

B7 B6 B5	B4 B3 B2 B1	B8 B7 B6 B5	B4 B3 B2 B1	B8 B7 B6 B5	B4 B3 B2 B1	B8 B7 B6 B5	B4 B3 B2 B1	B8 B7 B6 B5	B4 B3 B2 B1	B8 B7 B6 B5	B4 B3 B2 B1	B8 B7 B6 B5								
	CONTROL	NUMBERS	SYMBOLS	UPPER CASE	LOWER CASE															
B4B3B2B1																				
0	NUL	DLE	SP	0	@	0	P	16	0	120	0	120	0	120	0	120	0	120	0	120
1	SOH	DC1	!	1	A	Q	a	17	1	121	1	121	1	121	1	121	1	121	1	121
2	STX	DC2	"	2	B	R	b	18	2	122	2	122	2	122	2	122	2	122	2	122
3	ETX	DC3	#	3	C	S	c	19	3	123	3	123	3	123	3	123	3	123	3	123
4	EOT	DC4	$	4	D	T	d	20	4	124	4	124	4	124	4	124	4	124	4	124
5	ENQ	NAK	%	5	E	U	e	21	5	125	5	125	5	125	5	125	5	125	5	125
6	ACK	SYN	&	6	F	V	f	22	6	126	6	126	6	126	6	126	6	126	6	126
7	BEL	ETB	'	7	G	W	g	23	7	127	7	127	7	127	7	127	7	127	7	127
8	BS	CAN	(8	H	X	h	24	8	128	8	128	8	128	8	128	8	128	8	128
9	FS)	9	I	Y	i	25	9	129	9	129	9	129	9	129	9	129	9	129
10	SUB		*	10	J	Z	j	26	10	130	10	130	10	130	10	130	10	130	10	130
11	VT		+	11	K	I	k	27	11	131	11	131	11	131	11	131	11	131	11	131
12			,	12	L	\	l	28	12	132	12	132	12	132	12	132	12	132	12	132
13			<	13	M	J	m	29	13	133	13	133	13	133	13	133	13	133	13	133
14			\	14	N	O	n	30	14	134	14	134	14	134	14	134	14	134	14	134
15			\	15	O	P	o	31	15	135	15	135	15	135	15	135	15	135	15	135
16			\	16	P	Q	p	32	16	136	16	136	16	136	16	136	16	136	16	136
17			\	17	Q	R	q	33	17	137	17	137	17	137	17	137	17	137	17	137

KEY

- **octal**: 25 PPU
- **hex**: 15 21

GPIB code

- **ASCII character**

Tektronix

REF: ANSI STD X3.4-1977

IEEE STD 488-1978

ISO STD 544-1973

Fig. A-1. ASCII and IEEE (GPIB) Code Chart.