Warning
The servicing instructions are for use by qualified personal only. To avoid personal injury, do not perform any servicing unless you are qualified to do so. Refer to the Safety Summary prior to performing service.
WARRANTY

Tektronix warrants that this product will be free from defects in materials and workmanship for a period of one (1) year from the date of shipment. If any such product proves defective during this warranty period, Tektronix, at its option, either will repair the defective product without charge for parts and labor, or will provide a replacement in exchange for the defective product.

In order to obtain service under this warranty, Customer must notify Tektronix of the defect before the expiration of the warranty period and make suitable arrangements for the performance of service. Customer shall be responsible for packaging and shipping the defective product to the service center designated by Tektronix, with shipping charges prepaid. Tektronix shall pay for the return of the product to Customer if the shipment is to a location within the country in which the Tektronix service center is located. Customer shall be responsible for paying all shipping charges, duties, taxes, and any other charges for products returned to any other locations.

This warranty shall not apply to any defect, failure or damage caused by improper use or improper or inadequate maintenance and care. Tektronix shall not be obligated to furnish service under this warranty a) to repair damage resulting from attempts by personnel other than Tektronix representatives to install, repair or service the product; b) to repair damage resulting from improper use or connection to incompatible equipment; or c) to service a product that has been modified or integrated with other products when the effect of such modification or integration increases the time or difficulty of servicing the product.

THIS WARRANTY IS GIVEN BY TEKTRONIX WITH RESPECT TO THIS PRODUCT IN LIEU OF ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED. TEKTRONIX AND ITS VENDORS DISCLAIM ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. TEKTRONIX’ RESPONSIBILITY TO REPAIR OR REPLACE DEFECTIVE PRODUCTS IS THE SOLE AND EXCLUSIVE REMEDY PROVIDED TO THE CUSTOMER FOR BREACH OF THIS WARRANTY. TEKTRONIX AND ITS VENDORS WILL NOT BE LIABLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES IRRESPECTIVE OF WHETHER TEKTRONIX OR THE VENDOR HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

WARRANTY

Tektronix warrants that this product will be free from defects in materials and workmanship for a period of one (1) year from the date of shipment. If any such product proves defective during this warranty period, Tektronix, at its option, either will repair the defective product without charge for parts and labor, or will provide a replacement in exchange for the defective product.

In order to obtain service under this warranty, Customer must notify Tektronix of the defect before the expiration of the warranty period and make suitable arrangements for the performance of service. Customer shall be responsible for packaging and shipping the defective product to the service center designated by Tektronix, with shipping charges prepaid. Tektronix shall pay for the return of the product to Customer if the shipment is to a location within the country in which the Tektronix service center is located. Customer shall be responsible for paying all shipping charges, duties, taxes, and any other charges for products returned to any other locations.

This warranty shall not apply to any defect, failure or damage caused by improper use or improper or inadequate maintenance and care. Tektronix shall not be obligated to furnish service under this warranty a) to repair damage resulting from attempts by personnel other than Tektronix representatives to install, repair or service the product; b) to repair damage resulting from improper use or connection to incompatible equipment; or c) to service a product that has been modified or integrated with other products when the effect of such modification or integration increases the time or difficulty of servicing the product.

THIS WARRANTY IS GIVEN BY TEKTRONIX WITH RESPECT TO THIS PRODUCT IN LIEU OF ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED. TEKTRONIX AND ITS VENDORS DISCLAIM ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. TEKTRONIX’ RESPONSIBILITY TO REPAIR OR REPLACE DEFECTIVE PRODUCTS IS THE SOLE AND EXCLUSIVE REMEDY PROVIDED TO THE CUSTOMER FOR BREACH OF THIS WARRANTY. TEKTRONIX AND ITS VENDORS WILL NOT BE LIABLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES IRRESPECTIVE OF WHETHER TEKTRONIX OR THE VENDOR HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF ILLUSTRATIONS</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vii</td>
</tr>
<tr>
<td>OPERATORS SAFETY SUMMARY</td>
<td>viii</td>
</tr>
<tr>
<td>SERVICING SAFETY SUMMARY</td>
<td>ix</td>
</tr>
<tr>
<td>SECTION 1 SPECIFICATION</td>
<td></td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td>1-1</td>
</tr>
<tr>
<td>ACCESSORIES</td>
<td>1-1</td>
</tr>
<tr>
<td>PERFORMANCE CONDITIONS</td>
<td>1-1</td>
</tr>
<tr>
<td>SECTION 2 - OPERATING INSTRUCTIONS</td>
<td></td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>2-1</td>
</tr>
<tr>
<td>OPERATING CONSIDERATIONS</td>
<td></td>
</tr>
<tr>
<td>Probe Handling</td>
<td>2-1</td>
</tr>
<tr>
<td>Input Linear Dynamic Range</td>
<td>2-1</td>
</tr>
<tr>
<td>High Amplitude Frequency Response</td>
<td>2-1</td>
</tr>
<tr>
<td>Probe Grounding</td>
<td>2-2</td>
</tr>
<tr>
<td>CONTROLS AND CONNECTORS</td>
<td>2-6</td>
</tr>
<tr>
<td>PROBE ACCESSORIES</td>
<td>2-6</td>
</tr>
</tbody>
</table>

P6204
TABLE OF CONTENTS (cont.)

SECTION 5 - THEORY OF OPERATION

INTRODUCTION .. 5-1
CIRCUIT DESCRIPTION 5-1
COMPENSATION BOX 5-1

SECTION 6 - MAINTENANCE

INTRODUCTION .. 6-1
STATIC-SENSITIVE COMPONENTS 6-1
PREVENTIVE MAINTENANCE 6-3
 CLEANING ... 6-3
 VISUAL INSPECTION 6-4
 SEMICONDUCTOR CHECKS 6-4
TROUBLESHOOTING .. 6-5
TROUBLESHOOTING TECHNIQUES 6-9
CORRECTIVE MAINTENANCE 6-10
 MAINTENANCE PRECAUTIONS 6-10
 OBTAINING REPLACEMENT PARTS 6-10
 ASSEMBLY REPLACEMENT 6-11
 READJUSTMENT AFTER REPAIR 6-15
 INSTRUMENT REPACKING 6-16

P6204

iii

TABLE OF CONTENTS (cont.)

SECTION 5 - THEORY OF OPERATION

INTRODUCTION .. 5-1
CIRCUIT DESCRIPTION 5-1
COMPENSATION BOX 5-1

SECTION 6 - MAINTENANCE

INTRODUCTION .. 6-1
STATIC-SENSITIVE COMPONENTS 6-1
PREVENTIVE MAINTENANCE 6-3
 CLEANING ... 6-3
 VISUAL INSPECTION 6-4
 SEMICONDUCTOR CHECKS 6-4
TROUBLESHOOTING .. 6-5
TROUBLESHOOTING TECHNIQUES 6-9
CORRECTIVE MAINTENANCE 6-10
 MAINTENANCE PRECAUTIONS 6-10
 OBTAINING REPLACEMENT PARTS 6-10
 ASSEMBLY REPLACEMENT 6-11
 READJUSTMENT AFTER REPAIR 6-15
 INSTRUMENT REPACKING 6-16

P6204

iii
TABLE OF CONTENTS (cont.)

SECTION 7 - DIAGRAMS

ELECTRICAL DIAGRAMS
Main Board ... 7-3
Flex Board ... 7-4
Probe Head Hybrid ... 7-5
Main Circuit Board Component Layout 7-6

SECTION 8 - REPLACEABLE PARTS

REPLACEABLE PARTS INFORMATION 8-1
REPLACEABLE PARTS DIAGRAM 8-2
REPLACEABLE PARTS LIST ... 8-3
OPTIONAL ACCESSORIES LIST 8-4
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>The P6204 Probe</td>
<td>x</td>
</tr>
<tr>
<td>1-2</td>
<td>Typical input impedance versus frequency</td>
<td>1-6</td>
</tr>
<tr>
<td>1-3</td>
<td>Operating voltage derating</td>
<td>1-6</td>
</tr>
<tr>
<td>2-1</td>
<td>Typical linearity curve</td>
<td>1-7</td>
</tr>
<tr>
<td>2-2</td>
<td>Typical linear operating region for step inputs</td>
<td>2-2</td>
</tr>
<tr>
<td>2-3</td>
<td>Typical -3dB frequency vs amplitude</td>
<td>2-3</td>
</tr>
<tr>
<td>2-5</td>
<td>Damaging effects of ground-lead inductance</td>
<td>2-4</td>
</tr>
<tr>
<td>4-1</td>
<td>Controls, connectors and probe accessories</td>
<td>2-7</td>
</tr>
<tr>
<td>5-1</td>
<td>Compensation box adjustment locations</td>
<td>4-2</td>
</tr>
<tr>
<td>5-2</td>
<td>Functional block diagram</td>
<td>5-2</td>
</tr>
<tr>
<td>6-1</td>
<td>Compensation box disassembly</td>
<td>5-2</td>
</tr>
<tr>
<td>6-2</td>
<td>Assembly replacement</td>
<td>6-11</td>
</tr>
<tr>
<td>6-3</td>
<td>Flex circuit board replacement</td>
<td>6-13</td>
</tr>
<tr>
<td>6-14</td>
<td>Main circuit board schematic</td>
<td></td>
</tr>
<tr>
<td>7-1</td>
<td>Flex circuit board schematic</td>
<td>7-3</td>
</tr>
<tr>
<td>7-2</td>
<td>Probe head circuit board schematic</td>
<td>7-4</td>
</tr>
<tr>
<td>7-3</td>
<td>Main circuit board component layout</td>
<td>7-5</td>
</tr>
<tr>
<td>7-6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>1-2</td>
</tr>
<tr>
<td>1-2</td>
<td>1-5</td>
</tr>
<tr>
<td>1-3</td>
<td>1-5</td>
</tr>
<tr>
<td>3-1</td>
<td>3-2</td>
</tr>
<tr>
<td>6-1</td>
<td>6-1</td>
</tr>
<tr>
<td>6-2</td>
<td>6-5</td>
</tr>
<tr>
<td>6-3</td>
<td>6-6</td>
</tr>
</tbody>
</table>

Table 1-1
- **Electrical Characteristics**

Table 1-2
- **Environmental Characteristics**

Table 1-3
- **Physical Characteristics**

Table 3-1
- **Test Equipment Required**

Table 6-1
- **Relative Susceptibility to Static Discharge Damage**

Table 6-2
- **Troubleshooting Equipment**

Table 6-3
- **Fault Indication and Probable Cause**
OPERATORS SAFETY SUMMARY

The general safety information in this part of the summary is for both operating and servicing personnel. Specific warnings and cautions will be found throughout the manual where they apply, but may not appear in this summary.

Terms In This Manual

WARNING statements identify conditions or practices that could result in personal injury or loss of life.

CAUTION statements identify conditions or practices that could result in damage to the equipment or other property.

Do Not Operate In Explosive Atmospheres

To avoid explosion, do not operate this product in any explosive atmosphere unless it has been specifically certified for such operation.

Do Not Remove Covers

To avoid personal injury, do not remove the product covers. Do not operate the product without the covers properly installed.

SERVICE SAFETY SUMMARY

FOR QUALIFIED SERVICE PERSONNEL ONLY

Do Not Service Alone

Do not perform internal service or adjustment of this product unless another person capable of rendering first aid and resuscitation is present.

Use Care When Servicing With Power On

To avoid personal injury, do not touch exposed connections and components while power is on.

viii P6204

OPERATORS SAFETY SUMMARY

The general safety information in this part of the summary is for both operating and servicing personnel. Specific warnings and cautions will be found throughout the manual where they apply, but may not appear in this summary.

Terms In This Manual

WARNING statements identify conditions or practices that could result in personal injury or loss of life.

CAUTION statements identify conditions or practices that could result in damage to the equipment or other property.

Do Not Operate In Explosive Atmospheres

To avoid explosion, do not operate this product in any explosive atmosphere unless it has been specifically certified for such operation.

Do Not Remove Covers

To avoid personal injury, do not remove the product covers. Do not operate the product without the covers properly installed.

SERVICE SAFETY SUMMARY

FOR QUALIFIED SERVICE PERSONNEL ONLY

Do Not Service Alone

Do not perform internal service or adjustment of this product unless another person capable of rendering first aid and resuscitation is present.

Use Care When Servicing With Power On

To avoid personal injury, do not touch exposed connections and components while power is on.

viii P6204
CAUTION — Important Handling Precautions

The P6204 FET Probe is designed to provide long-term, trouble-free performance. However, because of the P6204’s hybrid-circuit technology and the miniature package design, delicate components and materials are used to construct this active probe. Therefore, the following rules must be followed to avoid probe damage:

Do not apply excessive side leverage to probe head
For example, when the probe is connected to a probe-tip adapter, pulling on the probe cable from the side will damage the internal circuitry.

Do not drop probe onto a hard surface
For example, dropping the probe from a bench top onto a hard-surface floor will damage the internal circuitry.
The P6204 Probe.

x

P6204
SPECIFICATION

DESCRIPTION

The TEKTRONIX P6204 is a high-impedance, miniature, 10X active (FET) probe with identify function. The probe is designed to provide maximum performance with the 11000 Series oscilloscopes and is equipped with the TEKPROBE™ interface which provides data communication between the probe and oscilloscopes and conveys power from the host instrument. Data contained within the probe informs the instrument of the probe's attenuation, model number, and serial number, and causes the input to automatically terminate with 50 Ω. The ID button on the probe head activates the identify function in the instrument. The ID signal can also set an SRQ (Service Request) flag on an IEEE-488 bus if the instrument is programmed to do so.

The P6204 offers a variable dc offset voltage, which is controlled through the TEKPROBE™ interface by the host instrument.

The P6204 has a 1.5-meter signal cable. No power cable is necessary, as power is drawn from the host-instrument plug-in through the TEKPROBE™ interface or through a Tektronix 1103 TEKPROBE power supply.

The miniature probe head of the P6204 is fully compatible with the Tektronix family of miniature probe accessories.

ACCESSORIES

The P6204 is shipped with the following standard accessories:

1 Instruction Manual
1 Hook Tip
1 Ground Lead with Alligator
1 Ground Lead with Receptacle
1 Klipchip™ Adapter
1 Ground Contact
1 Ground Sleeve Cover
1 Probe Tip, IC Test

Use of these accessories is described in the "Operating Instructions* section of this manual. Part numbers and optional accessories are listed in the "Replaceable Parts List" (Section 8).

PERFORMANCE CONDITIONS

The electrical characteristics listed in Table 1-1 apply when a calibrated probe is used with a calibrated oscilloscope system operating within the environmental conditions stated in Table 1-2.

Section 1 — Specification

SPECIFICATION

DESCRIPTION

The TEKTRONIX P6204 is a high-impedance, miniature, 10X active (FET) probe with identify function. The probe is designed to provide maximum performance with the 11000 Series oscilloscopes and is equipped with the TEKPROBE™ interface which provides data communication between the probe and oscilloscopes and conveys power from the host instrument. Data contained within the probe informs the instrument of the probe's attenuation, model number, and serial number, and causes the input to automatically terminate with 50 Ω. The ID button on the probe head activates the identify function in the instrument. The ID signal can also set an SRQ (Service Request) flag on an IEEE-488 bus if the instrument is programmed to do so.

The P6204 offers a variable dc offset voltage, which is controlled through the TEKPROBE™ interface by the host instrument.

The P6204 has a 1.5-meter signal cable. No power cable is necessary, as power is drawn from the host-instrument plug-in through the TEKPROBE™ interface or through a Tektronix 1103 TEKPROBE power supply.

The miniature probe head of the P6204 is fully compatible with the Tektronix family of miniature probe accessories.

ACCESSORIES

The P6204 is shipped with the following standard accessories:

1 Instruction Manual
1 Hook Tip
1 Ground Lead with Alligator
1 Ground Lead with Receptacle
1 Klipchip™ Adapter
1 Ground Contact
1 Ground Sleeve Cover
1 Probe Tip, IC Test

Use of these accessories is described in the "Operating Instructions* section of this manual. Part numbers and optional accessories are listed in the "Replaceable Parts List" (Section 8).

PERFORMANCE CONDITIONS

The electrical characteristics listed in Table 1-1 apply when a calibrated probe is used with a calibrated oscilloscope system operating within the environmental conditions stated in Table 1-2.

Section 1 — Specification
Items listed in the "Performance Requirement" column are verifiable qualitative or quantitative limits. Items listed in the "Supplemental Information" column are not verified in the "Performance Check Procedure" (Section 3); they are either explanatory notes, calibration setup descriptions, performance characteristics for which no absolute limits are specified, or characteristics that are impractical to check.

The probe's physical characteristics are listed in Table 1-3.

<table>
<thead>
<tr>
<th>Table 1-1</th>
<th>Electrical Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristic</td>
<td>Performance Requirement</td>
</tr>
<tr>
<td>Attenuation (system)</td>
<td>$10X \pm 1.5% \text{ at dc.}$</td>
</tr>
<tr>
<td>Input Resistance (system)</td>
<td>$\geq 10 , M \Omega \text{ at dc.}^a$</td>
</tr>
<tr>
<td>Input Capacitance</td>
<td>$\leq 1.9 , \text{pF (1 kHz to 1.0 GHz).}^a$</td>
</tr>
</tbody>
</table>

a Performance Requirement not checked in manual.

b Additional gain accuracy may be obtained by utilizing the probe calibrate function of the 11000 Series mainframe.

c At room temperature.

1-2

Section 1 — Specification

Items listed in the "Performance Requirement" column are verifiable qualitative or quantitative limits. Items listed in the "Supplemental Information" column are not verified in the "Performance Check Procedure" (Section 3); they are either explanatory notes, calibration setup descriptions, performance characteristics for which no absolute limits are specified, or characteristics that are impractical to check.

The probe's physical characteristics are listed in Table 1-3.

<table>
<thead>
<tr>
<th>Table 1-1</th>
<th>Electrical Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristic</td>
<td>Performance Requirement</td>
</tr>
<tr>
<td>Attenuation (system)</td>
<td>$10X \pm 1.5% \text{ at dc.}$</td>
</tr>
<tr>
<td>Input Resistance (system)</td>
<td>$\geq 10 , M \Omega \text{ at dc.}^a$</td>
</tr>
<tr>
<td>Input Capacitance</td>
<td>$\leq 1.9 , \text{pF (1 kHz to 1.0 GHz).}^a$</td>
</tr>
</tbody>
</table>

a Performance Requirement not checked in manual.

b Additional gain accuracy may be obtained by utilizing the probe calibrate function of the 11000 Series mainframe.

c At room temperature.
<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Performance Requirement</th>
<th>Supplemental Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth (Probe only)</td>
<td>DC to 1.0 GHz.</td>
<td>Typically 1.1 GHz. <sup>b</sup> Small signal bandwidth (See Figure 2-2).</td>
</tr>
<tr>
<td>Rise Time (Probe Only)</td>
<td>< 350 ps.</td>
<td>Small signal rise time (See Figure 2-1).</td>
</tr>
<tr>
<td>Rise Time (System)</td>
<td>< 490 ps. <sup>a</sup></td>
<td>When used in a system with rise time of 350 ps such as the 11A71 and 11402 (Small signal rise time. See Figure 2-1).</td>
</tr>
<tr>
<td>Aberrations (Probe Only)</td>
<td>± 6%, 10% p-p total for first 6 ns, ref point at 6 ns, ± 4%, 6 ns to 30 ns, ref point at 30 ns, ± 3%, 30 ns to 20 µs, ref point at 20 µs, ± 1.5%, 20 µs to dc.</td>
<td>When used in a system with rise time of 350 ps such as the 11A71 and 11402.</td>
</tr>
<tr>
<td>Signal Delay</td>
<td>8.4 ns ± 200 ps. <sup>a</sup></td>
<td>Probe tip to output connector, measured at 50% points.</td>
</tr>
<tr>
<td>Output Offset (Probe Only) (following 11000 Series probe calibration)</td>
<td>< 10 mV.
 < 2 mV</td>
<td>Tested at 25° C (77°F).
 Tested at 25° C (77°F).</td>
</tr>
<tr>
<td>Linearity Error</td>
<td>< 2 % at dc.</td>
<td>(Relative to output full scale with ±10V range on input.) See Input Linear Dynamic Range, Section 2.</td>
</tr>
</tbody>
</table>

^a Performance Requirement not checked in manual.
^b At room temperature.

Section 1 — Specification

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Performance Requirement</th>
<th>Supplemental Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth (Probe only)</td>
<td>DC to 1.0 GHz.</td>
<td>Typically 1.1 GHz. <sup>b</sup> Small signal bandwidth (See Figure 2-2).</td>
</tr>
<tr>
<td>Rise Time (Probe Only)</td>
<td>< 350 ps.</td>
<td>Small signal rise time (See Figure 2-1).</td>
</tr>
<tr>
<td>Rise Time (System)</td>
<td>< 490 ps. <sup>a</sup></td>
<td>When used in a system with rise time of 350 ps such as the 11A71 and 11402 (Small signal rise time. See Figure 2-1).</td>
</tr>
<tr>
<td>Aberrations (Probe Only)</td>
<td>± 6%, 10% p-p total for first 6 ns, ref point at 6 ns, ± 4%, 6 ns to 30 ns, ref point at 30 ns, ± 3%, 30 ns to 20 µs, ref point at 20 µs, ± 1.5%, 20 µs to dc.</td>
<td>When used in a system with rise time of 350 ps such as the 11A71 and 11402.</td>
</tr>
<tr>
<td>Signal Delay</td>
<td>8.4 ns ± 200 ps. <sup>a</sup></td>
<td>Probe tip to output connector, measured at 50% points.</td>
</tr>
<tr>
<td>Output Offset (Probe Only) (following 11000 Series probe calibration)</td>
<td>< 10 mV.
 < 2 mV</td>
<td>Tested at 25° C (77°F).
 Tested at 25° C (77°F).</td>
</tr>
<tr>
<td>Linearity Error</td>
<td>< 2 % at dc.</td>
<td>(Relative to output full scale with ±10V range on input.) See Input Linear Dynamic Range, Section 2.</td>
</tr>
</tbody>
</table>

^a Performance Requirement not checked in manual.
^b At room temperature.
Table 1-1 (cont)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Performance Requirement</th>
<th>Supplemental Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Thermal Drift</td>
<td>< 150 μV/$^\circ$ C.a</td>
<td>Equivalent output voltage.</td>
</tr>
<tr>
<td>Output Load Requirement</td>
<td>50 $\Omega \pm 0.5%.$a</td>
<td></td>
</tr>
<tr>
<td>Maximum Nondestructive Input Voltage</td>
<td>40 Vdc continuous.a</td>
<td></td>
</tr>
<tr>
<td>Electrostatic Immunity</td>
<td>Will withstand discharge through 1 kΩ resistance to a 500 pF capacitor charged to 10kV.</td>
<td>Discharge to the probe tip and the TEKPROBETM connector pins.</td>
</tr>
<tr>
<td></td>
<td>$+$15 V \pm 2%</td>
<td>29 mA</td>
</tr>
<tr>
<td></td>
<td>$-$15 V \pm 2%</td>
<td>33 mA</td>
</tr>
<tr>
<td></td>
<td>$+$ 5 V \pm 2%</td>
<td>40 mA</td>
</tr>
<tr>
<td></td>
<td>$-$ 5 V \pm 2%</td>
<td>25 mA</td>
</tr>
<tr>
<td>Probe Coding</td>
<td>Meets TEKPROBETM standard, Level 2.</td>
<td></td>
</tr>
<tr>
<td>DC Offset Range</td>
<td>\pm 15 V accurate to \pm 2% (± 30 mV measured at probe output).</td>
<td>Referenced to the probe tip.</td>
</tr>
</tbody>
</table>

a Performance Requirement not checked in manual.

1-4 Section 1 — Specification

Table 1-1 (cont)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Performance Requirement</th>
<th>Supplemental Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Thermal Drift</td>
<td>< 150 μV/$^\circ$ C.a</td>
<td>Equivalent output voltage.</td>
</tr>
<tr>
<td>Output Load Requirement</td>
<td>50 $\Omega \pm 0.5%.$a</td>
<td></td>
</tr>
<tr>
<td>Maximum Nondestructive Input Voltage</td>
<td>40 Vdc continuous.a</td>
<td></td>
</tr>
<tr>
<td>Electrostatic Immunity</td>
<td>Will withstand discharge through 1 kΩ resistance to a 500 pF capacitor charged to 10kV.</td>
<td>Discharge to the probe tip and the TEKPROBETM connector pins.</td>
</tr>
<tr>
<td></td>
<td>$+$15 V \pm 2%</td>
<td>29 mA</td>
</tr>
<tr>
<td></td>
<td>$-$15 V \pm 2%</td>
<td>33 mA</td>
</tr>
<tr>
<td></td>
<td>$+$ 5 V \pm 2%</td>
<td>40 mA</td>
</tr>
<tr>
<td></td>
<td>$-$ 5 V \pm 2%</td>
<td>25 mA</td>
</tr>
<tr>
<td>Probe Coding</td>
<td>Meets TEKPROBETM standard, Level 2.</td>
<td></td>
</tr>
<tr>
<td>DC Offset Range</td>
<td>\pm 15 V accurate to \pm 2% (± 30 mV measured at probe output).</td>
<td>Referenced to the probe tip.</td>
</tr>
</tbody>
</table>

a Performance Requirement not checked in manual.

1-4 Section 1 — Specification
Table 1-2
Environmental Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Range (Operating)</td>
<td>O° C to + 50° C (32° F to 122° F).</td>
</tr>
<tr>
<td>Temperature Range (Nonoperating)</td>
<td>−55° C to + 75° C (−67° F to + 167° F).</td>
</tr>
<tr>
<td>Humidity</td>
<td>Five cycles (120 hr.) at 90% to 95% relative humidity.</td>
</tr>
<tr>
<td>Altitude (Operating)</td>
<td>To 4,600 m (15,000 ft).</td>
</tr>
<tr>
<td>Transportation</td>
<td>Qualifies under National Safe Transit Association's Pre-shipment Test Procedures; 1A-B-1.</td>
</tr>
</tbody>
</table>

Table 1-3
Physical Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net Weight (includes accessories)</td>
<td>680 g (1.3 lbs).</td>
</tr>
<tr>
<td>Signal Cable Length</td>
<td>1.5 m (60 in).</td>
</tr>
</tbody>
</table>

Section 1 — Specification
Figure 1-1. Typical input impedance vs frequency.

Figure 1-2. Operating voltage derating.

1-6

Section 1 — Specification
Figure 1-3. Typical Linearity Curve.

Section 1 — Specification
OPERATING INSTRUCTIONS

INTRODUCTION

This section of the manual is intended to familiarize the operator with the use of the P6204 Probe. Included are operating considerations, descriptions of the controls and connectors, and instructions for the use of the accessories.

NOTE

The P6204 is shipped in a carton along with its standard accessories. At installation, save the shipping carton and packaging materials for reuse should reshipment become necessary. Refer to "Maintenance" (Section 6) for further information.

OPERATING CONSIDERATIONS

Probe Handling

The P6204's miniature body has been designed for ease of use when probing small circuitry. Both the probe itself and its accessories should be handled carefully at all times. To prevent damage, avoid dropping the probe body, since damage to its tip may result. Exercise care to prevent crushing the cable or placing excessive strain on it by pulling.

Input Linear Dynamic Range

The input linear dynamic range (<2% error at dc) of the P6204 is limited by the ability of the internal amplifier to drive the 50 Ω termination. This limitation exists whether the input signal originates at the probe tip (test signal) or as internal offset voltage. Therefore, the limitation on the signal that can be applied to the probe tip is dependent on the amount of offset voltage being used. To maintain signal fidelity, the test signal should not exceed the limits imposed by the following formula:

\[-10.0 \, V \leq (V_{signal} - V_{offset\, voltage}) \leq +10.0 \, V\]

High Amplitude Frequency Response

The frequency response of the P6204 is a function of input signal amplitude. As the amplitude and frequency of the input signal are increased beyond certain limits, the P6204 will begin to operate non-linearly and the frequency response will be degraded. For step inputs, this translates to slower
rise times and distorted responses for high amplitude inputs. See Figure 2-1 for a plot of the linear operating region for step inputs as a function of input signal amplitude and rise time.

For sine wave inputs, the non-linearity will result in harmonic distortion and reduced peak to peak amplitude (i.e., lower -3dB bandwidth) for large amplitude, high-frequency sine wave inputs. See Figure 2-2 for a plot of -3dB bandwidth as a function of peak-to-peak sine wave input.

The high frequency performance of the probe at high amplitudes can be improved by using the offset function of the P6204. By using the offset to center the waveform of interest on the oscilloscope screen, the probe will be operating in the center of its dynamic range and the high frequency behavior of the P6204 will be improved.

Probe Grounding

A probe is a capacitive divider for high-frequency signal components. Inductance introduced by either a long signal lead or ground lead will form a series-resonant circuit that can distort the true waveform or degrade the bandwidth. The ground lead and signal-input connections should be kept as short as possible to maintain the best waveform fidelity.
Figure 2-2. Typical -3dB frequency versus amplitude.

Section 2 — Operating Instructions
Ground-lead inductance can significantly reduce the performance of a probe. As shown in the model above, the ground lead inserts a series inductance into the signal path forming a series-resonant circuit between \(C_p \) of the probe and ground lead \(L \), with only \(R_{\text{source}} \) and the series tip resistance as damping. This forms a resonating circuit with \(f_0 = 1/(2\pi \sqrt{LC}) \). A six-inch ground lead has \(150 \) nH of self inductance causing an \(f_0 \) of \(315 \) MHz, which is within the frequency response of the instrument. This greatly degrades risetime, bandwidth, and transient accuracy (see illustration). For best results, make sure that ground-lead inductance is at a minimum.

Figure 2-3. Damaging effects of ground-lead inductance.
DESCRIPTION OF CONTROLS AND CONNECTORS

The following information will familiarize the operator with the location and function of the external controls and connections of the P6204. Please refer to Figure 2-5.

TEKPROBE™ Interface - Provides connections for signal, power, and data communication between the probe and the host instrument.

BNC Locking Ring - Locks the probe onto the host instrument. To install, first check that the locking ring is fully counter-clockwise as viewed from the rear of the compensation box. Insert the probe onto the instrument so that the flipper slips into the notch provided for it on the front panel. To lock the probe onto the instrument, rotate the locking ring clockwise until the probe is secured to the instrument.

ID Button - Activates the ID function in the host instrument when pushed. If the instrument is connected to an IEEE-488 bus, an SRQ flag will be activated if the host instrument is programmed to do so.

Probe Tip - Used to acquire the signal from the circuit under test (replaceable probe tip).

Ground Lead - Can be connected to the alligator clip, the micro-hook, or directly onto a square-pin ground on a circuit board.

PROBE ACCESSORIES

Both standard and optional accessories for the P6204 are listed in the "Replaceable Parts List" near the back of this manual. Standard accessories are supplied to aid in connecting the probe to circuitry under test and to protect the probe against damage. These accessories are described in the following paragraphs and are illustrated in Figure 2-5.

Ground Leads

The P6204 Probe is supplied with two ground-lead systems: a ground collar with low-inductance contact and 6-inch ground leads with various terminations. The low-inductance ground contact fits directly over the probe ground collar to minimize lead length. The ground leads include one lead that attaches to a Klipchip™ or directly to a circuit board square-pin and another lead that terminates in an alligator clip. Refer to the information on damaging effects of ground lead inductance (provided in this section), to assist you in making the best selection of a ground-lead system.
Figure 2-5. Controls, connectors and probe accessories.

Section 2 — Operating Instructions
Hook Tip

The hook tip provides the means for making a hands-free connection to a test point or component lead. To install the hook tip, just slide the hook tip onto the probe.

Carrying Box

The carrying box (not shown) provides a convenient means to store and protect the P6204, its accessories, and this manual when they are not in use.

Use With Other Oscilloscopes

The TEKTRONIX 1103 TEKPROBE™ Power Supply enables the P6204 to be used with TEKTRONIX 7000 Series oscilloscopes or other oscilloscopes not equipped with the TEKPROBE™ interface. The 1103 TEKPROBE™ Power Supply is an external power supply that is equipped with the TEKPROBE™ interface and has a conventional BNC output signal connector. (The cable used to connect the output of the 1103 to the oscilloscope should be kept as short as possible to insure that the high frequency response of the P6204 is not degraded). The 1103 supplies power and the DC offset function for two probes, however, the ID function, attenuation indication and data communications between the probe and scope are not operable.
PERFORMANCE CHECK PROCEDURE

PURPOSE

The "Performance Check Procedure" is used to verify the probe’s Performance Requirements as listed in “Specification” (Section 1) and to determine the need for readjustment. This procedure may also be used both as an acceptance check and as a test of the probe after repair.

TEST EQUIPMENT REQUIRED

The test equipment listed in Table 3-1 is a complete list of equipment required to accomplish the "Performance Check Procedure." Test equipment specifications described in Table 3-1 are the minimum necessary to provide accurate results; therefore, equipment used must meet or exceed the listed specifications. Detailed operating instructions for test equipment are not contained in this procedure. Should additional operating information be needed, refer to the appropriate test-equipment instruction manual.

LIMITS AND TOLERANCES

The limits and tolerances given in this procedure are for the P6204 under test only. Test-equipment error is not included except as noted.

PREPARATION

Before proceeding with this check, allow sufficient warm-up time for test equipment to stabilize (typically 20 minutes).

RECOMMENDED CALIBRATION INTERVAL

The recommended calibration interval is one year. To calibrate the probe, follow the performance procedure in this section and make any necessary readjustments using the adjustment procedure that begins on page 4-1.
Table 3-1
Test Equipment Required

<table>
<thead>
<tr>
<th>Item Number and Description</th>
<th>Minimum Specification</th>
<th>Purpose</th>
<th>Example of Suitable Test Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Oscilloscope</td>
<td>Bandwidth: dc to 1 GHz. Vertical deflection factor: 10 mV to 1 V, 1 MΩ input and full bandwidth 50 Ω input.</td>
<td>Offset range check. Attenuation check. HF checks.</td>
<td>TEKTRONIX 11402 with 11A71 and 11A32 or 11A34.</td>
</tr>
<tr>
<td>2. Digital Multimeter</td>
<td>DC volts accuracy: 0.1%</td>
<td>Offset range check.</td>
<td>TEKTRONIX DM 502A.</td>
</tr>
<tr>
<td>3. DC Voltage Source</td>
<td>Output: + and – 15 V.</td>
<td>Offset range check.</td>
<td>TEKTRONIX PS 503A.</td>
</tr>
<tr>
<td>4. Calibration Generator</td>
<td>Amplitude accuracy: ± 0.25%</td>
<td>Attenuation check.</td>
<td>TEKTRONIX PG 506.</td>
</tr>
<tr>
<td>5. Pulse Generator</td>
<td>Rise time: less than 100 ps.</td>
<td>HF checks.</td>
<td>TEKTRONIX 284, or S-52 in a 7512.</td>
</tr>
<tr>
<td>9. BNC-T</td>
<td></td>
<td>Attenuation Checks.</td>
<td>Tektronix Part Number 103-0030-00.</td>
</tr>
<tr>
<td>10. Adapter: Female BNC-to-GR</td>
<td>Connectors: BNC-to-GR</td>
<td>HF Checks.</td>
<td>Tektronix Part Number 017-0063-00.</td>
</tr>
<tr>
<td>11. Adjustment tool</td>
<td>Offset and attenuation.</td>
<td></td>
<td>Tektronix Part Number 003-1416-00.</td>
</tr>
</tbody>
</table>

3-2
Section 3 — Performance Check Procedure
PROCEDURE STEPS

1. Output Zero Check

 Equipment Required (see Table 3-1):

 Oscilloscope (Item 1)

 a. Connect the probe to an 11A71 plug-in on an 11402 Oscilloscope mainframe.

 b. Set the oscilloscope controls as follows:

<table>
<thead>
<tr>
<th>Volts/Division</th>
<th>Input Coupling</th>
<th>Time/Division</th>
<th>Trigger Source</th>
<th>Trigger Mode</th>
<th>Coupling</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 mV</td>
<td>DC</td>
<td>1 ms</td>
<td>Channel Used</td>
<td>Auto Level</td>
<td>DC</td>
</tr>
</tbody>
</table>

 c. Set the oscilloscope vertical offset to 0.0 volts.

 d. Touch the probe input to a convenient ground point on the test oscilloscope.

 e. CHECK — That the trace is within 1.0 divisions (0.2 divisions after probe calibration function of 11000 Series plugin/mainframe) of the center horizontal graticule line. If it is not, refer to the “Output Zero” adjustment procedure.

2. DC Offset Range Check

 Equipment Required (see Table 3-1):

 Oscilloscope (Item 1)
 Digital Multimeter (Item 2)
 DC Voltage source (Item 3)

 a. Connect the probe to an 11A71 plug-in on an 11402 Oscilloscope mainframe.

 b. Set the oscilloscope controls as follows:

<table>
<thead>
<tr>
<th>Volts/Division</th>
<th>Input Coupling</th>
<th>Time/Division</th>
<th>Trigger Source</th>
<th>Trigger Mode</th>
<th>Coupling</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Volts</td>
<td>DC</td>
<td>1 ms</td>
<td>Channel Used</td>
<td>Auto Level</td>
<td>DC</td>
</tr>
</tbody>
</table>

 c. Set the oscilloscope vertical offset to 0.0 Volts.

Section 3 — Performance Check Procedure
d. Touch the probe input to a convenient ground point on the test oscilloscope.

e. CHECK — That the VERTICAL OFFSET control on the oscilloscope is able to vertically position the trace over a +15 V to −15 V range. If it is not refer to the "Offset Range" Adjustment Procedure.

f. Set vertical sensitivity to 100 mV/div.

g. Record the offset with probe tip grounded.

h. Using multimeter to confirm, adjust the variable DC voltage source (PS 503) to +15 V.

i. Connect the probe ground (through a probe ground lead) to the voltage source ground output, and the probe input to the + voltage source.

j. Adjust the oscilloscope offset to +5 V.

k. Check that the trace is within ± 300 mV of the center horizontal graticule line (less the offset recorded in step g.)

3. Attenuation Accuracy

Equipment Required (see Table 3-1):

Oscilloscope with 11A32 or 11A34 (Item 1)

Section 3 — Performance Check Procedure

d. Touch the probe input to a convenient ground point on the test oscilloscope.

e. CHECK — That the VERTICAL OFFSET control on the oscilloscope is able to vertically position the trace over a +15 V to −15 V range. If it is not refer to the "Offset Range" Adjustment Procedure.

f. Set vertical sensitivity to 100 mV/div.

g. Record the offset with probe tip grounded.

h. Using multimeter to confirm, adjust the variable DC voltage source (PS 503) to +15 V.

i. Connect the probe ground (through a probe ground lead) to the voltage source ground output, and the probe input to the + voltage source.

j. Adjust the oscilloscope offset to +5 V.

k. Check that the trace is within ± 300 mV of the center horizontal graticule line (less the offset recorded in step g.)

3. Attenuation Accuracy

Equipment Required (see Table 3-1):

Oscilloscope with 11A32 or 11A34 (Item 1)
g. Insert probe tip into termination adapter.

h. Set vertical sensitivity to 100 mV/division.

i. CHECK that the first 20 μs are 10 vertical divisions ±0.3 divisions.

NOTE
Additional accuracy may be obtained by multiplying the waveform in the Vertical Description Mode and averaging.

j. CHECK for 10 vertical divisions ±0.15 divisions after 20 μs.

4. Bandwidth, Risetime and HF Aberrations Check

Equipment Required (see Table 3-1):

- Oscilloscope with 11A71 (Item 1)
- Pulse Generator (Item 5)
- Termination Adapter (Item 6)
- Coaxial Cable (Item 8)

a. Connect pulse generator to the 11A71 using the coaxial cable.

b. Set oscilloscope controls as follows:

<table>
<thead>
<tr>
<th>Volts/Division</th>
<th>50 mV/division</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Coupling</td>
<td>DC</td>
</tr>
<tr>
<td>Time/Division</td>
<td>1 ns</td>
</tr>
<tr>
<td>Trigger Source</td>
<td>Channel Used</td>
</tr>
<tr>
<td>Trigger Mode</td>
<td>Auto Level</td>
</tr>
<tr>
<td>Trigger Select</td>
<td>Main</td>
</tr>
<tr>
<td>Slope</td>
<td>Positive</td>
</tr>
</tbody>
</table>

c. Adjust the oscilloscope horizontal position control to place the 90% point of the pulse on the first division mark.

d. Average, store and recall waveform.

e. Measure risetime and note system aberrations.

f. Remove the coaxial cable from the 11A71.

g. Connect termination adapter to coaxial cable.

h. Connect probe to 11A71 and insert probe tip into the termination adapter.

i. Adjust the oscilloscope horizontal position control to place the 90% point of the pulse on the first division mark.

j. Average, store and recall waveform.

Section 3 — Performance Check Procedure
k. Touch vertical description icon then:

l. Touch to magnify the vertical sensitivity by a factor of two.

m. Measure risetime and aberrations of both stored waveforms.

n. Calculate probe risetime using the following formula:

\[
\text{Probe risetime} = \sqrt{(\text{measured risetime})^2 - (\text{oscilloscope system risetime})^2}
\]

NOTE

This calculation is only an approximation. The accuracy of the approximation is better on faster oscilloscope systems. For optimum results use a fast sampling system such as a TEKTRONIX 7000 Series oscilloscope with 7S12 plug-in, S-6 sampling head, and S-52 pulse generator in conjunction with the 1103 probe power supply.

o. CHECK that the probe only risetime is less than 350 ps.

p. Measure combined probe and system aberrations.

q. Measure the system aberrations.

r. Probe aberrations will be approximately the difference of the preceding two measurements. CHECK that these probe aberrations do not exceed ±6%, 10% p-p.
ADJUSTMENT PROCEDURE

PURPOSE

This section contains the information necessary to perform the output zero, offset range, and attenuation accuracy adjustments for the P6204 Probe. The adjustment procedures are not intended to be troubleshooting guides, however, any deficiency found during performance of each adjustment step should be corrected before continuing. Tektronix Field Service Centers and the Factory Service Center provide instrument repair and adjustment service. Refer to “Maintenance” (Section 6) for further repair information.

TEST EQUIPMENT REQUIRED

The test equipment listed in Table 3-1 is a complete list of equipment required to accomplish the “Adjustment Procedures.” Test equipment specifications described in Table 3-1 are the minimum necessary to provide accurate results; therefore, equipment used must meet or exceed the listed specifications. Detailed operating instructions for test equipment are not contained in this procedure. Should additional operating information be needed, refer to the appropriate test-equipment instruction manual.

ADJUSTMENT SEQUENCE

Because of adjustment interaction, the adjustment steps must be performed in the order given.

ADJUSTMENT LOCATIONS

Adjustable component locations are shown in Figure 4-1. Only the adjustable components are illustrated in this figure.

PREPARATION

Before proceeding with each adjustment step, allow sufficient warm-up time for test equipment to stabilize (typically 20 minutes).

It is necessary to remove the top half of the Control Box cover to perform the Adjustment Procedure. Refer to the removal instructions in “Maintenance” (Section 6).
PROCEDURE STEPS

1. Adjust Output Zero

Equipment Required (see Table 3-1):

Oscilloscope (Item 1)
Adjustment Tool (Item 9)

a. Connect the probe to an 11A71 plug-in in an 11402 mainframe.

b. Set test oscilloscope controls as follows:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volts/Division</td>
<td>100 mV</td>
</tr>
<tr>
<td>Input Coupling</td>
<td>DC</td>
</tr>
<tr>
<td>Time/Division</td>
<td>1 ms</td>
</tr>
<tr>
<td>Trigger Source</td>
<td>Channel Used</td>
</tr>
<tr>
<td>Trigger Mode</td>
<td>Auto Level</td>
</tr>
<tr>
<td>Coupling</td>
<td>DC</td>
</tr>
</tbody>
</table>

c. Set the oscilloscope vertical offset to 0.0 Volts.

d. Touch the probe tip to a convenient ground point on the test oscilloscope.

e. ADJUST — R1013 to move the trace to the center horizontal graticule line.

2. Adjust Offset Range

Equipment Required (see Table 3-1):

Oscilloscope (Item 1)
DC Voltage Source (Item 3)
DC Multimeter (Item 2)
Adjustment Tool (Item 11)

Figure 4-1. Compensation box adjustment locations.

a. Connect the probe to an 11A71 plug-in in an 11402 Oscilloscope mainframe.

e. ADJUST — R1013 to move the trace to the center horizontal graticule line.

Section 4 — Adjustment Procedure
b. Set test oscilloscope controls as follows:

Volts/Division 100 mV
Input Coupling DC
Time/Division 1 ms
Trigger Source Channel Used
Trigger Mode Auto Level
Coupling DC

Offset Range Adjustments. Repeat step 1 (Adjust Output Zero) to achieve optimum adjustment of the output zero.

4. Adjust Attenuation Accuracy

Equipment Required (see Table 3-1):

- Oscilloscope with 11A32 or 11A34 (Item 1)
- Calibration Generator (Item 4)
- Termination Adapter (Item 6)
- BNC-to-GR Adapter (Item 7)
- BNC-T (Item 9)
- Precision Coaxial Cable (Item 8)

a. Connect cable to Fast Rise output of calibration generator. Connect BNC-T to opposite end of cable. Connect termination adapter and BNC-to-GR adapter to BNC-T. Connect BNC T to 11A32 channel.

b. Set the oscilloscope controls as follows:

Volts/Division 100 mV
Time/Division 20 ms
Trigger Select Main
Trigger Source Channel Used
Trigger Mode Auto Level
Coupling DC

3. Adjust Output Zero

Some interaction exists between the Output Zero and

Section 4 — Adjustment Procedure 4-3
c. Set calibration generator frequency to 10 kHz.

NOTE

The two adjustments directly above interact, thus an optimum response may require repeating related steps until the best trade-off is achieved.

d. Adjust variable amplitude for 10 divisions on screen.

e. Remove BNC-T from 11A32.

f. Connect Probe to 11A32 channel used.

g. Insert probe tip into termination adapter.

h. Set vertical sensitivity to 100 mV/division.
THEORY OF OPERATION

INTRODUCTION

This section contains a functional description of the circuitry used in the P6204 Probe. The schematic diagram in “Replaceable Parts” (Section 8 of this manual), may be useful when reading the detailed circuit description. A functional block diagram is also provided (Figure 5-1).

CIRCUIT DESCRIPTION

PROBE HEAD

The hybrid assembly in the probe contains a high impedance attenuator and a high frequency unity gain FET buffer. The active buffer circuit consists of a bootstrapped FET input stage and a complementary bipolar (nnp/pnp) transistor output stage.

The input FET Q1A is a source follower of which the drain bias voltage accurately tracks the changes in input gate voltage so that the drain-to-source voltage is constant with input signal changes. The bias current for Q1A FET is set by the matching FET Q1B through a common base transistor U1(X2). By maintaining the same relative bias voltages and using Q1B to set the current in Q1A, good temperature tracking and high linearity is achieved in the FET input state.

The output stage achieves good linearity by using a complementary bipolar emitter follower transistor pair U1(X5) (nnp) and Q2 (pnp).

The schematic shown for the integrated circuit is a simplified version of the actual IC. The actual IC contains 51 transistors, 39 resistors and 2 capacitors.

COMPENSATION BOX

MAIN CIRCUIT BOARD

U1010 is configured as a non-inverting amplifier used to increase the signal range of the offset voltage available from the TEKPROBETM interface for use by the probe head. The variable resistor R1010 is the fine adjustment to calibrate the offset voltage scale factor.

R1013 is the offset zero potentiometer which sets a relatively small bias current level into U1010’s inverting input through a high value resistor.

Section 5 — Theory of Operation 5-1
The U1020 circuit is set up to feed back a small amount of the output signal to the probe head attenuator. R1028 allows the feedback to be adjusted either slightly positive or slightly negative, thus adding to or subtracting a small low-frequency error signal from the probe's input signal. R1026 is adjusted to match the probe's DC and low-frequency gain to the inherent high-frequency gain of the probe head; thus giving an overall flat response to a step voltage input to the probe.

R2023 is to provide a fine gain adjustment for the probe's DC-to-high-frequency response.

5-2

Section 5 — Theory of Operation

The U1020 circuit is set up to feed back a small amount of the output signal to the probe head attenuator. R1028 allows the feedback to be adjusted either slightly positive or slightly negative, thus adding to or subtracting a small low-frequency error signal from the probe's input signal. R1026 is adjusted to match the probe's DC and low-frequency gain to the inherent high-frequency gain of the probe head; thus giving an overall flat response to a step voltage input to the probe.

R2023 is to provide a fine gain adjustment for the probe's DC-to-high-frequency response.
INTRODUCTION

This section contains information for performing preventive maintenance, troubleshooting, and corrective maintenance on the P6204 Probe.

STATIC-SENSITIVE COMPONENTS

CAUTION

Static discharge can damage any semiconductor component in this probe.

This probe contains electrical components that are susceptible to damage from static discharge. See Table 6-1 for relative susceptibility of various classes of semiconductors. Static voltages of 1 kV to 30 kV are common in unprotected environments. The P6204 will withstand discharge through 1kΩ resistance of a 500pF capacitor charged to 10kV.

Table 6-1

<table>
<thead>
<tr>
<th>Semiconductor Classes</th>
<th>Approximate Susceptibility Levela</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOS or CMOS (most sensitive)</td>
<td>100-500 V.</td>
</tr>
<tr>
<td>ECL</td>
<td>200-500 V.</td>
</tr>
<tr>
<td>Schottky signal diodes</td>
<td>250 V.</td>
</tr>
<tr>
<td>Schottky TTL</td>
<td>500 V.</td>
</tr>
<tr>
<td>High-Frequency bipolar transistors</td>
<td>400-600 V.</td>
</tr>
<tr>
<td>JFET</td>
<td>600-800 V.</td>
</tr>
<tr>
<td>Linear microcircuits</td>
<td>400-1,000 V.</td>
</tr>
<tr>
<td>Low-power Schottky TTL</td>
<td>900 V.</td>
</tr>
<tr>
<td>TTL (least sensitive)</td>
<td>1,200 V.</td>
</tr>
</tbody>
</table>

a Voltage discharged from a 100 pF capacitor through a 100 Ω resistor.
Observe the following standard precautions to avoid damage:

1. Minimize handling of static-sensitive components.

2. Transport and store static-sensitive components or assemblies in their original containers, on a metal rail, or on conductive foam. Label any package that contains static-sensitive assemblies or components.

3. Discharge the static electricity from your body by wearing a wrist strap while handling these components. Servicing static-sensitive assemblies or components should be performed only at a static-free work station by qualified service personnel.

4. Nothing capable of generating or holding a static charge should be allowed on the work station surface.

5. Keep the component leads shorted together, whenever possible, with a shorting wire or conductive foam.

6. Pick up components by the body, never by the leads.

7. Do not slide the components over any surface.

8. Avoid handling components in areas that have a floor or work-surface covering capable of generating a static charge.

9. Use a soldering iron that is connected to earth ground.

10. Use only special antistatic suction-type or antistatic wick-type desoldering tools.
Preventive maintenance consists primarily of cleaning and visual inspection. When performed on a regular basis, preventive maintenance can prevent instrument breakdown and may improve instrument reliability. The frequency of maintenance depends on the severity of the environment to which the probe is subjected. A convenient time to perform preventive maintenance is just before performing an Adjustment Procedure.

CLEANING

CAUTION

Avoid the use of chemical cleaning agents which may damage the plastics and circuit board used in the probe. In particular, avoid chemicals which contain benzene, toluene, xylene, acetone, or similar solvents. For additional information on recommended cleaning agents, consult your Tektronix Service Center or representative.

Exterior

Loose dust accumulated on the outside of the probe can be removed with a soft cloth or a small brush. Dirt which remains can be removed with a soft cloth dampened in a mild detergent and water solution. Do not use abrasive cleaners.

Interior

Cleaning the interior of the probe should not be necessary. Normally, the probe circuit boards will not require cleaning unless a cover has been removed for an extended period of time. The best way to clean the interior is to blow off the accumulated dust with dry, low-velocity air (about 9 lb/sq in). Remove any dirt which remains with a soft brush or a cloth dampened with a nonresidue-type cleaner, preferably isopropyl alcohol. A cotton-tipped applicator is useful for cleaning in narrow spaces or for cleaning more delicate circuit components.

Section 6 — Maintenance

Preventive maintenance consists primarily of cleaning and visual inspection. When performed on a regular basis, preventive maintenance can prevent instrument breakdown and may improve instrument reliability. The frequency of maintenance depends on the severity of the environment to which the probe is subjected. A convenient time to perform preventive maintenance is just before performing an Adjustment Procedure.

CLEANING

CAUTION

Avoid the use of chemical cleaning agents which may damage the plastics and circuit board used in the probe. In particular, avoid chemicals which contain benzene, toluene, xylene, acetone, or similar solvents. For additional information on recommended cleaning agents, consult your Tektronix Service Center or representative.

Exterior

Loose dust accumulated on the outside of the probe can be removed with a soft cloth or a small brush. Dirt which remains can be removed with a soft cloth dampened in a mild detergent and water solution. Do not use abrasive cleaners.

Interior

Cleaning the interior of the probe should not be necessary. Normally, the probe circuit boards will not require cleaning unless a cover has been removed for an extended period of time. The best way to clean the interior is to blow off the accumulated dust with dry, low-velocity air (about 9 lb/sq in). Remove any dirt which remains with a soft brush or a cloth dampened with a nonresidue-type cleaner, preferably isopropyl alcohol. A cotton-tipped applicator is useful for cleaning in narrow spaces or for cleaning more delicate circuit components.
VISUAL INSPECTION

Occasionally inspect the P6204 for such defects as broken connections, damaged parts, bent leads, and heat-damaged components. Overheating usually indicates other trouble in the probe, therefore, the cause of overheating must be corrected to prevent recurrence of the damage.

SEMICONDUCTOR CHECKS

Periodic checking of semiconductors is not recommended. The best check of semiconductor performance is proper operation of the probe.
TROUBLESHOOTING

The following information is provided to facilitate troubleshooting the P6204. An understanding of circuit operation is often helpful in locating troubles. Refer to "Theory of Operation" (Section 5) for this information.

If the particular items listed are not available, substitutions may be made with similar test equipment which meet or exceed the listed specifications.

Table 6-2 lists the equipment useful for troubleshooting the P6204.

Table 6-3 is a listing of possible fault indications and their probable causes.

Table 6-2

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum Specification</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Real Time Oscilloscope</td>
<td>Bandwidth: dc to about 1 GHz. Vertical deflection factor: 10 mV to 1 V.</td>
<td>TEKTRONIX 11402 with 11A71 plug-in.</td>
</tr>
<tr>
<td>2. Digital Multimeter</td>
<td>Voltmeter: 0 to 20 V dc range, 0.15% accuracy. Ohmmeter: 0 to 2 MΩ range.</td>
<td>TEKTRONIX DM 502A.</td>
</tr>
</tbody>
</table>

Section 6 — Maintenance

TROUBLESHOOTING

The following information is provided to facilitate troubleshooting the P6204. An understanding of circuit operation is often helpful in locating troubles. Refer to "Theory of Operation" (Section 5) for this information.

If the particular items listed are not available, substitutions may be made with similar test equipment which meet or exceed the listed specifications.

Table 6-2 lists the equipment useful for troubleshooting the P6204.

Table 6-3 is a listing of possible fault indications and their probable causes.

Table 6-2

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum Specification</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Real Time Oscilloscope</td>
<td>Bandwidth: dc to about 1 GHz. Vertical deflection factor: 10 mV to 1 V.</td>
<td>TEKTRONIX 11402 with 11A71 plug-in.</td>
</tr>
<tr>
<td>2. Digital Multimeter</td>
<td>Voltmeter: 0 to 20 V dc range, 0.15% accuracy. Ohmmeter: 0 to 2 MΩ range.</td>
<td>TEKTRONIX DM 502A.</td>
</tr>
</tbody>
</table>
Table 6-3
Fault Indication and Probable Cause

<table>
<thead>
<tr>
<th>Fault Indication</th>
<th>Probable Cause</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wrong Attenuation Ratio.</td>
<td>1. Defective probe head assembly.</td>
<td>Replace probe head assembly.</td>
</tr>
<tr>
<td></td>
<td>2. Input signal exceeds probe dynamic range.</td>
<td>Reduce signal amplitude to specification limits.</td>
</tr>
<tr>
<td>Low-Frequency Compensation or HF Attenuation (First 30 ns of Transition Response) Error.</td>
<td>1. Defective probe head assembly.</td>
<td>Replace probe head assembly.</td>
</tr>
<tr>
<td>Risetime out of Specification or Excessive HF Aberrations.</td>
<td>1. Defective probe head assembly.</td>
<td>Replace probe head assembly.</td>
</tr>
<tr>
<td>DC Output Zero out of specification.</td>
<td>1. R1013 misadjusted.</td>
<td>See "Adjustment Procedure."</td>
</tr>
<tr>
<td></td>
<td>2. Defective power supply.</td>
<td>Check-power supply fuses in oscilloscope plug-in.</td>
</tr>
<tr>
<td></td>
<td>3. Broken or unsoldered wire, connection, or component.</td>
<td>Visually check for damage and repair any found.</td>
</tr>
</tbody>
</table>

Section 6 — Maintenance

Table 6-3
Fault Indication and Probable Cause

<table>
<thead>
<tr>
<th>Fault Indication</th>
<th>Probable Cause</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wrong Attenuation Ratio.</td>
<td>1. Defective probe head assembly.</td>
<td>Replace probe head assembly.</td>
</tr>
<tr>
<td></td>
<td>2. Input signal exceeds probe dynamic range.</td>
<td>Reduce signal amplitude to specification limits.</td>
</tr>
<tr>
<td>Low-Frequency Compensation or HF Attenuation (First 30 ns of Transition Response) Error.</td>
<td>1. Defective probe head assembly.</td>
<td>Replace probe head assembly.</td>
</tr>
<tr>
<td>Risetime out of Specification or Excessive HF Aberrations.</td>
<td>1. Defective probe head assembly.</td>
<td>Replace probe head assembly.</td>
</tr>
<tr>
<td>DC Output Zero out of specification.</td>
<td>1. R1013 misadjusted.</td>
<td>See "Adjustment Procedure."</td>
</tr>
<tr>
<td></td>
<td>2. Defective power supply.</td>
<td>Check-power supply fuses in oscilloscope plug-in.</td>
</tr>
<tr>
<td></td>
<td>3. Broken or unsoldered wire, connection, or component.</td>
<td>Visually check for damage and repair any found.</td>
</tr>
<tr>
<td>Fault Indication</td>
<td>Probable Cause</td>
<td>Corrective Action</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>No Signal or Intermittent.</td>
<td>1. Broken or unsoldered wire, connection, or component.</td>
<td>Visually check for damage and repair any found.</td>
</tr>
<tr>
<td></td>
<td>2. Defective cable assembly.</td>
<td>Check for shorts or opens and replace if necessary.</td>
</tr>
<tr>
<td></td>
<td>3. Signal path shorted to ground.</td>
<td>Visually check all probe cable connectors and circuit board connectors. Repair or replace if necessary.</td>
</tr>
<tr>
<td>Instrument Does Not Respond to ID Switch.</td>
<td>1. Defective ID button.</td>
<td>Replace probe head assembly.</td>
</tr>
<tr>
<td></td>
<td>2. Open cable.</td>
<td>Replace Cable.</td>
</tr>
<tr>
<td></td>
<td>3. Broken TEKPROBE™ Interface pin.</td>
<td>Replace pin.</td>
</tr>
</tbody>
</table>

Section 6 — Maintenance
<table>
<thead>
<tr>
<th>Fault Indication</th>
<th>Probable Cause</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offset Voltage Feature Does Not Work or is Out of Specification.</td>
<td>1. R1010 misadjusted.</td>
<td>See adjustment procedure.</td>
</tr>
<tr>
<td></td>
<td>2. U1 defective.</td>
<td>Replace main circuit board.</td>
</tr>
<tr>
<td></td>
<td>3. Open cable.</td>
<td>Replace cable.</td>
</tr>
<tr>
<td></td>
<td>4. Broken TEKPROBE™ Interface pin.</td>
<td>Replace pin.</td>
</tr>
<tr>
<td>Oscilloscope Does Not Respond to Installed Probe.</td>
<td>1. Broken TEKPROBE™ Interface pin.</td>
<td>Replace pin.</td>
</tr>
<tr>
<td></td>
<td>2. ROM damaged.</td>
<td>Replace flexible circuit board assembly.</td>
</tr>
</tbody>
</table>

Section 6 — Maintenance

<table>
<thead>
<tr>
<th>Fault Indication</th>
<th>Probable Cause</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offset Voltage Feature Does Not Work or is Out of Specification.</td>
<td>1. R1010 misadjusted.</td>
<td>See adjustment procedure.</td>
</tr>
<tr>
<td></td>
<td>2. U1 defective.</td>
<td>Replace main circuit board.</td>
</tr>
<tr>
<td></td>
<td>3. Open cable.</td>
<td>Replace cable.</td>
</tr>
<tr>
<td></td>
<td>4. Broken TEKPROBE™ Interface pin.</td>
<td>Replace pin.</td>
</tr>
<tr>
<td>Oscilloscope Does Not Respond to Installed Probe.</td>
<td>1. Broken TEKPROBE™ Interface pin.</td>
<td>Replace pin.</td>
</tr>
<tr>
<td></td>
<td>2. ROM damaged.</td>
<td>Replace flexible circuit board assembly.</td>
</tr>
</tbody>
</table>

TROUBLESHOOTING TECHNIQUES

The following techniques are arranged in an order that checks the simple possibilities before proceeding with extensive troubleshooting. The first few checks ensure proper connection, operation and calibration. If the trouble is not located by these checks, the remaining steps should aid in isolating a defective component. Replace defective components using the "Corrective Maintenance" procedures in this section.

1. Check Control Settings

Incorrect control settings can indicate a trouble that does not exist. If there is any question about the correct function or operation of any control, refer to Section 2, "Operating Instructions."

2. Check Associated Equipment

Associated equipment at either input or output of the probe may be defective. A signal you expect to see might not exist or might be distorted at the point you are testing. If you are using the probe with an oscilloscope, the vertical amplifier may be defective or the vertical controls may be misadjusted.

3. Check Calibration

An out-of-calibration condition of either oscilloscope or probe can cause an apparent error in a measurement.

4. Make Visual Checks

Many problems can be located visually. Check for broken wires, damaged connections, or damaged circuit boards. If you discover a heat-damaged component, find the cause of overheating to prevent recurrence of the problem.

5. Refer to Troubleshooting Chart

Table 6-3 lists possible malfunctions and their probable causes.

6. Check Waveforms and Voltages.

Schematic and component layout diagrams are provided in Section 7.
CORRECTIVE MAINTENANCE

Corrective maintenance consists of replacing a defective component or assembly. Special techniques required to do so are given here.

MAINTENANCE PRECAUTIONS

To reduce the possibility of personal injury or probe damage, observe the following precautions:

WARNING

To prevent electrical shock or shorting components, do not perform probe maintenance while the probe is connected to a power source.

NOTE

Because the P6204 is constructed with a hybrid and surface mounted components which are not easily removed or resoldered, replacement of individual components is not recommended. For assured performance, replace circuit boards as a completely pretested unit.

6-10 Section 6 — Maintenance

CORRECTIVE MAINTENANCE

Corrective maintenance consists of replacing a defective component or assembly. Special techniques required to do so are given here.

MAINTENANCE PRECAUTIONS

To reduce the possibility of personal injury or probe damage, observe the following precautions:

WARNING

To prevent electrical shock or shorting components, do not perform probe maintenance while the probe is connected to a power source.

NOTE

Because the P6204 is constructed with a hybrid and surface mounted components which are not easily removed or resoldered, replacement of individual components is not recommended. For assured performance, replace circuit boards as a completely pretested unit.

6-10 Section 6 — Maintenance

OBTAINING REPLACEMENT PARTS

Special Part

Most of the parts and assemblies in this probe are specifically made or selected by Tektronix, Inc. to meet specific performance requirements. Order all parts directly from your local Tektronix Field Office or representative.

Ordering Parts

When ordering and to insure receiving the proper parts or assemblies, include all of the following information with your order:

1. Instrument type (including modification or option numbers).
2. Description of the part (if electrical, include the circuit or assembly number).
3. The Tektronix part number.

6-10 Section 6 — Maintenance
ASSEMBLY REPLACEMENT

Probe Tip Replacement

To replace the probe tip, simply unscrew the old tip and replace it with a new tip.

Probe Head Replacement

NOTE

A schematic on the probe head hybrid and IC is provided in section 7 for your information. This hybrid is not accessible and individual parts cannot be replaced.

To replace the probe head assembly (which includes the probe tip hybrid assembly), grasp the cable in one hand and the probe head assembly in the other, and pull straight apart. To install the new probe head assembly, align the slot on the probe head with the key on the cable assembly boot, and push the two together using a slight back-and-forth movement to seat the connectors together, without using excessive force.

TEKPROBE™ Contact Pin Replacement

To replace a contact pin, carefully grasp the end of the pin to be replaced with a pair of needle-nosed pliers and pull it straight out of the BNC assembly (refer to Figure 6-2).

To install a new pin, carefully hold the pin with needle nosed pliers and push the pin into the BNC assembly. Be careful not to bend or crush the pin.

Compensation Box Disassembly

WARNING

To prevent electric shock or shorting of components, disconnect the power connector from the power source before removing the covers from the compensation box.

Figure 6-1. Compensation box disassembly.
The following procedure should be used when replacing assemblies in the compensation box (refer to Figure 6-1).

a. Insert tool 003-1383-00 (optional) into the slots near the top of the compensation box, pressing firmly on both tabs while prying upwards on the box half parting line to separate the halves.

b. Hold the halves apart while repeating the procedure on the other side. Gently work the top half off the compensation box while holding the cable-boot assembly and the BNC assembly firmly in the bottom box half.

CAUTION

Failure to hold the cable boot and BNC assemblies in the bottom box-half while disassembling may result in damage to the flexible circuit board which resides below the main-board and connects it to the BNC assembly.

Cable Assembly Replacement

The cable is replaceable as a complete assembly. To replace the cable assembly, first follow the steps given to remove the probe head and to disassemble the compensation box. Then proceed as follows:

a. Unsolder and identify for later installation the four power cable wires from the main circuit board (refer to Figure 7-4).

b. Remove the cable, main/flex circuit-board assembly, and BNC assembly as as one unit from the lower compensation-box half.

CAUTION

When unsoldering the center conductor of the cable from the main circuit board, apply only enough heat to pull the center conductor from the connector. Using excessive or prolonged heat will irreparably damage the multi-layer main circuit board.

c. Unsolder the cable center conductor and remove the connector from the socket on the main circuit board.

d. Resolder the new cable assembly center conductor in place, using care not to subject the circuit board to excessive or prolonged heat.

e. Reinstall the cable, main/flex circuit-board assembly, and BNC assembly into the lower compensation-box half (insert the assembly into the box half at an angle), exerting pressure toward the BNC end and against the ground spring.

f. Resolder the four power cable wires. Make sure that the proper color wire is inserted in the proper connection point (refer to Figure 7-4).

The following procedure should be used when replacing assemblies in the compensation box (refer to Figure 6-1).

a. Insert tool 003-1383-00 (optional) into the slots near the top of the compensation box, pressing firmly on both tabs while prying upwards on the box half parting line to separate the halves.

b. Hold the halves apart while repeating the procedure on the other side. Gently work the top half off the compensation box while holding the cable-boot assembly and the BNC assembly firmly in the bottom box half.

CAUTION

Failure to hold the cable boot and BNC assemblies in the bottom box-half while disassembling may result in damage to the flexible circuit board which resides below the main-board and connects it to the BNC assembly.

Cable Assembly Replacement

The cable is replaceable as a complete assembly. To replace the cable assembly, first follow the steps given to remove the probe head and to disassemble the compensation box. Then proceed as follows:

a. Unsolder and identify for later installation the four power cable wires from the main circuit board (refer to Figure 7-4).
Figure 6-2. Assembly replacement.

Section 6 — Maintenance 6-13
BNC Assembly Replacement

a. Remove the top cover.

b. Remove the cable, main/flex circuit-board assembly, and BNC assembly as one unit.

c. Pull the BNC assembly from the main circuit board and unsolder the flex circuit board connections.

d. Carefully solder the flex circuit board to the new BNC assembly and reconnect the BNC assembly to the main circuit board.

e. Reinsert the cable, main/flex circuit-board assembly, and BNC into the lower compensation box half (refer to step e under “Cable Assembly Replacement”).

Main or Flex Circuit Board Replacement

Please refer to Figure 6-2 and Figure 6-3.

To replace either board:

a. Remove the compensation box cover.

6-14

Section 6 — Maintenance

BNC Assembly Replacement

a. Remove the top cover.

b. Remove the cable, main/flex circuit-board assembly, and BNC assembly as one unit.

c. Pull the BNC assembly from the main circuit board and unsolder the flex circuit board connections.

d. Carefully solder the flex circuit board to the new BNC assembly and reconnect the BNC assembly to the main circuit board.

e. Reinsert the cable, main/flex circuit-board assembly, and BNC into the lower compensation box half (refer to step e under “Cable Assembly Replacement”).

Main or Flex Circuit Board Replacement

Please refer to Figure 6-2 and Figure 6-3.

To replace either board:

a. Remove the compensation box cover.

Figure 6-3. Flex Circuit board replacement.

b. Remove the cable, main/flex circuit board, and BNC assembly as one unit from the lower compensation box half.

If replacing the main circuit board:

a. Remove the cable assembly (refer to “Cable Assembly Replacement”).

b. Pull the BNC assembly from the connector on the main circuit board.
The flex and main circuit boards are easily damaged by excessive heat, and the connections from the flex circuit board to the main circuit board are close together.

To ensure proper operation of the P6204:

1. Use only silver solder and a temperature-controlled soldering iron with a maximum tip temperature of 600°F.
2. Keep the soldering iron contact as brief as possible.
3. Observe and note the position of all connections. Check that there are no shorts or opens before reassembling the probe.

If replacing the flex circuit board:

a. Remove the BNC assembly from the main circuit board.

b. Unsolder the flex board connections to the BNC assembly.

c. Unsolder the flex board connections to the main circuit board.

d. Solder the new flex board to the main circuit board.

e. Solder the new flex board to the BNC assembly.

f. Reassemble the probe.

readjustment after repair

After any electrical component has been replaced, complete the "Performance Check Procedure" (Section 3) to verify that the probe is within specification limits. If adjustment is necessary, perform the appropriate "Adjustment Procedure" (Section 4).
INSTRUMENT REPACKING

Required Reshipment Information

If the probe is to be shipped to a Tektronix Service Center for service or repair, attach a tag that contains the following information to the probe.

1. Owner's name and address, with the name of an individual at your firm that can be contacted.

2. Description of the service required.

To repack the probe, use the original carton in which your probe was shipped. If the original packing is unfit for use or is not available, repack the probe as follows.

1. Obtain a corrugated cardboard carton having inside dimensions of no less than 2 inches more than probe dimensions to allow cushioning. Use a carton having a test strength of at least 175 pounds.

2. Surround the probe with protective polyethylene sheeting.

3. Cushion the probe on all sides by tightly packing dunnage or urethane foam between carton and probe, allowing 2 inches on all sides.

4. Seal carton with shipping tape or industrial stapler.
DIAGRAMS AND CIRCUIT BOARD ILLUSTRATIONS

Symbols and Reference Designators

Electrical components shown on the diagrams are in the following units unless noted otherwise:

Capacitors = Values one or greater are in picofarads (pF).
Values less than one are in microfarads (µF).

Resistors = Ohms (Ω).

Symbols used on the diagrams are based on USA Standard Y32.2-1967.

Logic symbology is based on MIL-STD-806B in terms of positive logic. Logic symbols depict the logic function performed and may differ from the manufacturer’s data.

The following prefix letters are used as reference designators to identify components or assemblies on the diagrams.

Section 7—Diagrams
7-2

Section 7—Diagrams
Figure 7-1. The P6204 Main board schematic

Section 7 — Diagrams
Figure 7-2. The P6204 Flex board schematic.

Section 7 — Diagrams

Figure 7-2. The P6204 Flex board schematic.
Figure 7-3. The P6204 Probe Head board schematic.

Section 7 — Diagrams

7-5
Figure 7-4. The Main Circuit board component layout.

Section 7 — Diagrams
REPLACEABLE PARTS

PARTS ORDERING INFORMATION

Replacement parts are available from or through your local Tektronix, Inc. Field Office or representative.

Changes to Tektronix instruments are sometimes made to accommodate improved components as they become available, and to give you the benefit of the latest circuit improvements developed in our engineering department. It is therefore important, when ordering parts, to include the following information in your order: Part number, instrument type or number, serial number, and modification number (if applicable).

If a part you have ordered has been replaced with a new or improved part, your local Tektronix, Inc. Field Office or representative will contact you concerning any change in part number.

FIGURE AND INDEX NUMBERS

Items in this section are referenced by figure and index numbers to the illustrations.

ITEM NAME

In the Parts List, an Item Name is separated from the description by a colon (:). Because of space limitations, an Item Name may sometimes appear as incomplete. For further Item Name identification, the U.S. Federal Cataloging Handbook H6-1 can be utilized where possible.

INDENTATION SYSTEM

This parts list is indented to indicate item relationships. Following is an example of the indentation system used in the description column.

1 2 3 4 5 Name & Description

Assembly and/or Component
Attaching parts for Assembly and/or Component

---*---

Detail Part of Assembly and/or Component
Attaching parts for Detail Part

---*---

Attaching Parts always appear in the same indentation as the item it mounts, while the detail parts are indented to the right. Indented parts are part of and included with the next higher indentation. The separation symbol---*---indicates the end of attaching parts.

Attaching parts must be purchased separately, unless otherwise specified.

MFR. CODE

Indicates the code number of the actual manufacturer of the part. (Code to name and address cross reference can be found immediately after this page.)

Section 8 — Replaceable Parts 8-1

REPLACEABLE PARTS

PARTS ORDERING INFORMATION

Replacement parts are available from or through your local Tektronix, Inc. Field Office or representative.

Changes to Tektronix instruments are sometimes made to accommodate improved components as they become available, and to give you the benefit of the latest circuit improvements developed in our engineering department. It is therefore important, when ordering parts, to include the following information in your order: Part number, instrument type or number, serial number, and modification number (if applicable).

If a part you have ordered has been replaced with a new or improved part, your local Tektronix, Inc. Field Office or representative will contact you concerning any change in part number.

FIGURE AND INDEX NUMBERS

Items in this section are referenced by figure and index numbers to the illustrations.

ITEM NAME

In the Parts List, an Item Name is separated from the description by a colon (:). Because of space limitations, an Item Name may sometimes appear as incomplete. For further Item Name identification, the U.S. Federal Cataloging Handbook H6-1 can be utilized where possible.

INDENTATION SYSTEM

This parts list is indented to indicate item relationships. Following is an example of the indentation system used in the description column.

1 2 3 4 5 Name & Description

Assembly and/or Component
Attaching parts for Assembly and/or Component

---*---

Detail Part of Assembly and/or Component
Attaching parts for Detail Part

---*---

Attaching Parts always appear in the same indentation as the item it mounts, while the detail parts are indented to the right. Indented parts are part of and included with, the next higher indentation. The separation symbol---*---indicates the end of attaching parts.

Attaching parts must be purchased separately, unless otherwise specified.

MFR. CODE

Indicates the code number of the actual manufacturer of the part. (Code to name and address cross reference can be found immediately after this page.)

Section 8 — Replaceable Parts 8-1
Section 8 — Replaceable Parts
Section 8 — Replaceable Parts

<table>
<thead>
<tr>
<th>Fig. & Index</th>
<th>Tektro Micro</th>
<th>Serial/Assembly No.</th>
<th>Effective</th>
<th>Discount</th>
<th>Qty</th>
<th>12345</th>
<th>Name & Description</th>
<th>Mfr. Code</th>
<th>Mfr. Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>013-0107-06</td>
<td>1</td>
<td>TIP, PROBE; MINIATURE/COMPACT SIZE, RETRACTABLE E HOOK ASSY</td>
<td>12345</td>
<td>013-0107-06</td>
<td>80009</td>
<td>013-0107-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>131-4280-00</td>
<td>1</td>
<td>CONTACT, ELECT: PROBE TIP</td>
<td>12345</td>
<td>131-4280-00</td>
<td>80009</td>
<td>131-4280-00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>206-0390-00</td>
<td>1</td>
<td>PROBE HEAD: P6204</td>
<td>12345</td>
<td>206-0390-00</td>
<td>80009</td>
<td>206-0390-00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>174-1144-00</td>
<td>1</td>
<td>CABLE ASSY, RF 50 OHM, 8 CONDUCTOR, 1.5 METER</td>
<td>12345</td>
<td>174-1144-00</td>
<td>80009</td>
<td>174-1144-00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>——— ———</td>
<td>1</td>
<td>COVER COMP BOX: TOP & BOTTOM, W/ LABEL</td>
<td>12345</td>
<td>——— ———</td>
<td>80009</td>
<td>——— ———</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>131-3733-00</td>
<td>8849</td>
<td>CONNECTOR ASSY: BNC, 7 PIN ID</td>
<td>12345</td>
<td>131-3733-00</td>
<td>80009</td>
<td>131-3733-00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>131-3627-01</td>
<td>1</td>
<td>CONNECT, ELECT: GOLD PLATED TIP</td>
<td>12345</td>
<td>131-3627-01</td>
<td>18359</td>
<td>ORDER BY DESC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>671-0634-00</td>
<td>1</td>
<td>CIRCUIT BD ASSY: MAIN COMP BOX</td>
<td>12345</td>
<td>671-0634-00</td>
<td>80009</td>
<td>671-0634-00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>670-9726-14</td>
<td>B012172</td>
<td>CIRCUIT BD ASSY: FLEX, TESTED</td>
<td>12345</td>
<td>670-9726-14</td>
<td>80009</td>
<td>670-9726-14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>020-1629-00</td>
<td>1</td>
<td>ACCESSORY KIT: P6203/P6204</td>
<td>12345</td>
<td>020-1629-00</td>
<td>80009</td>
<td>020-1629-00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>344-0398-00</td>
<td>1</td>
<td>.CLIP, ELECTRICAL: ALLIGATOR, 0.155 L, STL CS PL</td>
<td>12345</td>
<td>344-0398-00</td>
<td>80009</td>
<td>344-0398-00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>196-3120-00</td>
<td>1</td>
<td>.LEAD, ELECTRICAL: 23 AWG, 6.0 L, GROUND</td>
<td>12345</td>
<td>196-3120-00</td>
<td>80009</td>
<td>196-3120-00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>013-0217-00</td>
<td>8820</td>
<td>.KLIPCHIP™: BLACK, 2.047 L X 0.137 DIA</td>
<td>12345</td>
<td>013-0217-00</td>
<td>TK1473</td>
<td>573 592 500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>166-0404-01</td>
<td>1</td>
<td>COVER, GROUND</td>
<td>12345</td>
<td>166-0404-01</td>
<td>80009</td>
<td>166-0404-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>196-3198-00</td>
<td>1</td>
<td>.LEAD, ELECTRICAL: 26 AWG, 6.0 L</td>
<td>12345</td>
<td>196-3198-00</td>
<td>80009</td>
<td>196-3198-00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>214-4125-00</td>
<td>1</td>
<td>.CONTACT, ELECT: TIP, GROUND</td>
<td>12345</td>
<td>214-4125-00</td>
<td>80009</td>
<td>214-4125-00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>——— ———</td>
<td>1</td>
<td>.CONN, PROBE: PROBE TO OKT BOARD ADAPTER</td>
<td>12345</td>
<td>——— ———</td>
<td>(SEE OPTIONAL ACCESSORIES)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>670-9649-XX</td>
<td>1</td>
<td>.TIP, PROBE: IC TEST</td>
<td>12345</td>
<td>670-9649-XX</td>
<td>070-9649-XX</td>
<td>070-9649-XX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>070-9649-00</td>
<td>1</td>
<td>MANUAL, TECH: INSTRUCTION, P6204</td>
<td>12345</td>
<td>070-9649-00</td>
<td>80009</td>
<td>070-9649-00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Optional Accessories

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>303-1383-00</td>
<td>003-1417-00</td>
<td>8844</td>
<td>1</td>
<td>RLSE TOOL,COVER:COMP BOX, POLYCARBONATE</td>
<td>003-1383-00</td>
<td>80009</td>
<td>303-1417-00</td>
</tr>
<tr>
<td>003-1433-00</td>
<td>003-1433-00</td>
<td>8845</td>
<td>1</td>
<td>SCREWDRIVER: ADJUSTMENT TOOL, METAL TIP</td>
<td>003-1433-00</td>
<td>80009</td>
<td>003-1433-00</td>
</tr>
<tr>
<td>015-0201-07</td>
<td>015-0201-07</td>
<td>8845</td>
<td>1</td>
<td>TIP, PROBE: IC TEST, PKG OF 10</td>
<td>015-0201-07</td>
<td>80009</td>
<td>015-0201-07</td>
</tr>
<tr>
<td>003-1433-01</td>
<td>003-1433-01</td>
<td>8845</td>
<td>1</td>
<td>SCREWDRIVER: ADJUSTMENT TOOL, PKG OF 5</td>
<td>003-1433-01</td>
<td>80009</td>
<td>003-1433-01</td>
</tr>
<tr>
<td>200-3672-00</td>
<td>200-3672-00</td>
<td>8845</td>
<td>1</td>
<td>COVER, COMP BOX: TOP & BOTTOM, W/ LABEL RLSE TO OL & SCREWDRIVER</td>
<td>200-3672-00</td>
<td>80009</td>
<td>200-3672-00</td>
</tr>
<tr>
<td>131-4353-00</td>
<td>131-4353-00</td>
<td>8845</td>
<td>1</td>
<td>CONNECTOR, PROBE: PACK OF 25</td>
<td>131-4353-00</td>
<td>80009</td>
<td>131-4353-00</td>
</tr>
</tbody>
</table>

Section 8 — Replaceable Parts
CROSS INDEX - MFR. CODE NUMBER TO MANUFACTURER

<table>
<thead>
<tr>
<th>Mfr. Code</th>
<th>Manufacturer</th>
<th>Address</th>
<th>City, State, Zip Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>18359</td>
<td>PYLON CO INC</td>
<td>51 NEWCOMB ST</td>
<td>ATTLEBORO MA 02703-1403</td>
</tr>
<tr>
<td>52769</td>
<td>SPRAGUE-GOODMAN ELECTRONICS INC</td>
<td>134 FULTON AVE</td>
<td>GARDEN CITY PARK NY 11040-5352</td>
</tr>
<tr>
<td>80009</td>
<td>TEKTRONIX INC</td>
<td>14150 SW KARL BRAUN DR</td>
<td>BEAVERTON OR 97077-0001</td>
</tr>
<tr>
<td>TK1473</td>
<td>RICHARD HIRSCOMANN OF AMERICA</td>
<td>PO BOX 229/INDUSTRIAL ROW</td>
<td>RIVERDALE NJ 07457</td>
</tr>
</tbody>
</table>

Section 8 — Replaceable Parts

8-5

CROSS INDEX - MFR. CODE NUMBER TO MANUFACTURER

<table>
<thead>
<tr>
<th>Mfr. Code</th>
<th>Manufacturer</th>
<th>Address</th>
<th>City, State, Zip Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>18359</td>
<td>PYLON CO INC</td>
<td>51 NEWCOMB ST</td>
<td>ATTLEBORO MA 02703-1403</td>
</tr>
<tr>
<td>52769</td>
<td>SPRAGUE-GOODMAN ELECTRONICS INC</td>
<td>134 FULTON AVE</td>
<td>GARDEN CITY PARK NY 11040-5352</td>
</tr>
<tr>
<td>80009</td>
<td>TEKTRONIX INC</td>
<td>14150 SW KARL BRAUN DR</td>
<td>BEAVERTON OR 97077-0001</td>
</tr>
<tr>
<td>TK1473</td>
<td>RICHARD HIRSCOMANN OF AMERICA</td>
<td>PO BOX 229/INDUSTRIAL ROW</td>
<td>RIVERDALE NJ 07457</td>
</tr>
</tbody>
</table>

Section 8 — Replaceable Parts

8-5