Agilent E1446A
Summing Amplifier/DAC Module

User’s Manual and SCPI Programming Guide

Where to Find it - Online and Printed Information:

System installation (hardware/software) VXIbus Configuration Guide*
Agilent VIC (VXI installation software)*

Module configuration and wiring This Manual
SCPI programming This Manual
SCPI example programs This Manual
SCPI command reference This Manual
Register-Based Programming This Manual

VXIplug&play programming VXIplug&play Online Help
VXIplug&play example programs VXIplug&play Online Help
VXIplug&play function reference VXIplug&play Online Help
Soft Front Panel information VXIplug&play Online Help

VISA language information Agilent VISA User’s Guide

Agilent VEE programming information Agilent VEE User’s Manual

*Supplied with Agilent Command Modules, Embedded Controllers, and VXLink.

Agilent Technologies

Manual Part Number: E1446-90001
Printed in Malaysia E0506
Table of Contents

Warranty .. 5
Safety Symbols .. 6
WARNINGS .. 6
Declaration of Conformity 7

1. Getting Started

Chapter Contents .. 1-1
 General Description ... 1-1
 Features .. 1-1
 Preparation for Use ... 1-3
 Configuring the Amplifier 1-3
 Installing the Amplifier 1-4
 Addressing the Amplifier 1-5
 Downloading the Agilent E1446A SCPI Driver 1-7
 Basic Operation ... 1-8
 Amplifier Block Diagram 1-9
 Output ... 1-9

2. Programming the Agilent E1446A

Chapter Contents .. 2-1
 Instrument and Programming Languages 2-1
 SCPI Programming ... 2-1
 Command Coupling ... 2-2
 Instrument Driver and Example Programs Disks 2-4
 System Configuration 2-4
 Introductory Programs ... 2-5
 Executing the Self-Test 2-5
 Resetting and Clearing the Agilent E1446A 2-6
 Querying the Power-on/Reset Configuration 2-6
 Example Programs .. 2-8
 Generating and Amplifying Sine Waves 2-9
 Amplifying Sine Waves (Agilent E1445A Commander) 2-9
 Amplifying Sine Waves (Agilent E1405 Commander) 2-12
 Setting the Input Impedance 2-14
 Setting the Input Impedance (Agilent E1445A Commander) 2-14
 Setting Input Impedance (Agilent E1405B Commander) 2-17
 Setting DC Voltage Offsets 2-20
 Setting DC Offsets (Agilent E1445A Commander) 2-20
 Setting DC Offsets (Agilent E1405 Commander) 2-23
 Using the Differential (small signal) Outputs 2-26
 Using the Differential Outputs (Agilent E1445A Commander) 2-26
 Using the Differential Outputs (Agilent E1405 Commander) 2-29
 Summing Two Signals ... 2-31
3. Command Reference

Chapter Contents ... 3-1
Command Types ... 3-2
 Common Command Format 3-2
SCPI Command Format ... 3-2
 Command Separator 3-3
 Abbreviated Commands 3-3
 Implied (Optional) Keywords 3-3
SCPI Command Parameters 3-4
 Parameter Types, Explanations, and Examples 3-4
 Querying Parameter Settings 3-5
SCPI Command Execution 3-5
 Command Coupling 3-5
 Linking Commands 3-6
SCPI Command Reference 3-6

Agilent E1446A/E1445A

INPut[1] .. 3-7
 :ATTenuation ... 3-7
 :IMPedance .. 3-7
INPut2 .. 3-9
 :ATTenuation ... 3-9
 :IMPedance .. 3-9
OUTPut2 .. 3-11
 :ATTenuation ... 3-11
 :IMPedance .. 3-11
 :OVERload? .. 3-12
 [:STATe] .. 3-13
 [:STATe]:ACTual? .. 3-13
OUTPut3 .. 3-15
 :IMPedance .. 3-15
OUTPut4 .. 3-16
 :IMPedance .. 3-16
SOURce2:VOLTage .. 3-17
 [:LEVEL][:IMMediate]:OFFSet 3-17
STATus .. 3-18
 :OPERation|QUEStionable:CONDition? 3-18
 :OPERation|QUEStionable:ENABLE 3-19
 :OPERation|QUEStionable[:EVENt]? 3-19
 :OPERation|QUEStionable:NTRansition 3-20
 :OPERation|QUEStionable:PTRansition 3-20
 :PRESet ... 3-21
SYSTem .. 3-22
 :ERROR? .. 3-22
 :VERSion? ... 3-22

Agilent E1446A/E1405/06

DISPlay .. 3-7
 :MONitor[:STATe] 3-7
INPut[1] .. 3-8
 :ATTenuation ... 3-8
 :IMPedance .. 3-8
INPut2 ... 3-10
:ATTenuation ... 3-10
:IMPedance ... 3-10
OUTPut1 .. 3-12
:ATTenuation ... 3-12
:IMPedance ... 3-12
:OVERload? ... 3-13
[:STATe] ... 3-14
[:STATe]:ACTual? .. 3-14
OUTPut2 .. 3-15
:IMPedance ... 3-15
OUTPut3 .. 3-16
:IMPedance ... 3-16
SOURce:VOLTage ... 3-17
[:LEVEL][[:IMMediate]:OFFSet 3-17
STATus ... 3-18
:OPERation|QUESTIONable:CONDition? 3-18
:OPERation|QUESTIONable:ENABLE 3-19
:OPERation|QUESTIONable[:EVENt]? 3-19
:OPERation|QUESTIONable:NTRansition 3-20
:OPERation|QUESTIONable:PTRansition 3-20
:PRESet .. 3-21
SYStem .. 3-22
:ERRror? .. 3-22
:VERSion? .. 3-22
IEEE-488.2 Common Commands 3-25
*CLS ... 3-26
*DMC ... 3-26
*EMC and *EMC? .. 3-27
*ESE and *ESE? ... 3-27
*ESR? .. 3-28
*GMC? .. 3-28
*IDN? ... 3-29
*LMC? .. 3-29
*LRN? ... 3-30
*OPC ... 3-30
*OPC? ... 3-30
*PMC ... 3-31
*RCL ... 3-31
*RMC ... 3-31
*RST ... 3-32
*SAV ... 3-32
*SRE and *SRE? ... 3-33
*STB? ... 3-33
*TST? ... 3-34
*WAI ... 3-34
SCPI Conformance Information 3-35
A. Specifications

Appendix Contents ... A-1
Inputs ... A-1
Outputs ... A-1
Gain Characteristics ... A-2
Offset ... A-2
AC Characteristics ... A-3
General VXI Characteristics .. A-3

B. Error Messages

Table B-1. Agilent E1446A Error Messages B-2
Table B-2. Agilent E1446A Settings Conflict Errors with the Agilent E1405/06 ... B-4
Table B-3. Agilent E1446A Settings Conflict Errors with the Agilent E1445A ... B-4

C. Register-Based Programming

Appendix Contents ... C-1
Register Addressing ... C-1
The Base Address ... C-1
Computer Configurations .. C-4
Throughput Speed ... C-4
Embedded Computer Programming (C-Size Systems) C-4
IBASIC Programming .. C-4
External Computer Programming .. C-5
Register Descriptions .. C-6
The READ Registers ... C-6
The ID Register ... C-6
The Device Type Register ... C-7
The READ/WRITE Registers .. C-7
The Status Register .. C-8
The Control Register .. C-8
The DAC Control Register .. C-9
The Output Control Register .. C-9
The Input Attenuation Register .. C-10
Programming the Amplifier ... C-12
Program Sequence and Execution .. C-14
Example Programs ... C-17
System Configuration .. C-17
Amplifying a Sine Wave ... C-18
Setting the (amplifier) Input Impedance C-19
Setting a DC Voltage Offset .. C-21
Using the Differential (small signal) Outputs C-23
Summing Two Signals .. C-24
Example Subprograms .. C-26

Index
Certification

Agilent Technologies certifies that this product met its published specifications at the time of shipment from the factory. Agilent Technologies further certifies that its calibration measurements are traceable to the United States National Institute of Standards and Technology (formerly National Bureau of Standards), to the extent allowed by that organization’s calibration facility, and to the calibration facilities of other International Standards Organization members.

Warranty

This Agilent Technologies product is warranted against defects in materials and workmanship for a period of one (1) year from date of shipment. Duration and conditions of warranty for this product may be superseded when the product is integrated into (becomes a part of) other Agilent products. During the warranty period, Agilent Technologies will, at its option, either repair or replace products which prove to be defective.

For warranty service or repair, this product must be returned to a service facility designated by Agilent Technologies. Buyer shall prepay shipping charges to Agilent and Agilent shall pay shipping charges to return the product to Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for products returned to Agilent from another country.

Agilent warrants that its software and firmware designated by Agilent for use with a product will execute its programming instructions when properly installed on that product. Agilent does not warrant that the operation of the product, or software, or firmware will be uninterrupted or error free.

Limitation Of Warranty

The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by Buyer, Buyer-supplied products or interfacing, unauthorized modification or misuse, operation outside of the environmental specifications for the product, or improper site preparation or maintenance.

The design and implementation of any circuit on this product is the sole responsibility of the Buyer. Agilent does not warrant the Buyer’s circuitry or malfunctions of Agilent products that result from the Buyer’s circuitry. In addition, Agilent does not warrant any damage that occurs as a result of the Buyer’s circuit or any defects that result from Buyer-supplied products.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. Agilent SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Exclusive Remedies

THE REMEDIES PROVIDED HEREIN ARE BUYER’S SOLE AND EXCLUSIVE REMEDIES. Agilent SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL THEORY.

Notice

The information contained in this document is subject to change without notice. Agilent Technologies MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Agilent shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance or use of this material. This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this document may be photocopied, reproduced, or translated to another language without the prior written consent of Agilent Technologies, Inc. Agilent assumes no responsibility for the use or reliability of its software on equipment that is not furnished by Agilent.

U.S. Government Restricted Rights

The Software and Documentation have been developed entirely at private expense. They are delivered and licensed as "commercial computer software" as defined in DFARS 252.227-7013 (Oct 1988), DFARS 252.211-7015 (May 1991) or DFARS 252.227-7014 (Jun 1995), as a "commercial item" as defined in FAR 2.101(a), or as "Restricted computer software" as defined in FAR 52.227-19 (Jun 1987)(or any equivalent agency regulation or contract clause), whichever is applicable. You have only those rights provided for such Software and Documentation by the applicable FAR or DFARS clause or the Agilent standard software agreement for the product involved.
Printing History

The Printing History shown below lists all Editions and Updates of this manual and the printing date(s). The first printing of the manual is Edition 1. The Edition number increments by 1 whenever the manual is revised. Updates, which are issued between Editions, contain replacement pages to correct the current Edition of the manual. Updates are numbered sequentially starting with Update 1. When a new Edition is created, it contains all the Update information for the previous Edition. Each new Edition or Update also includes a revised copy of this printing history page. Many product updates or revisions do not require manual changes and, conversely, manual corrections may be done without accompanying product changes. Therefore, do not expect a one-to-one correspondence between product updates and manual updates.

Edition 1 (Part Number E1446-90001) May 1992
Edition 1 Rev 2 (Part Number E1446-90001) May 2006

Safety Symbols

- **WARNING**
 - Instruction manual symbol affixed to product. Indicates that the user must refer to the manual for specific WARNING or CAUTION information to avoid personal injury or damage to the product.
 - Alternating current (AC).
 - Direct current (DC).
 - Indicates hazardous voltages.
 - Calls attention to a procedure, practice, or condition that could cause bodily injury or death.
 - Calls attention to a procedure, practice, or condition that could possibly cause damage to equipment or permanent loss of data.

- **CAUTION**
 - Frame or chassis ground terminal—typically connects to the equipment’s metal frame.

WARNINGS

The following general safety precautions must be observed during all phases of operation, service, and repair of this product. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and intended use of the product. Agilent Technologies assumes no liability for the customer’s failure to comply with these requirements.

Ground the equipment: For Safety Class 1 equipment (equipment having a protective earth terminal), an uninterruptible safety earth ground must be provided from the mains power source to the product input wiring terminals or supplied power cable.

DO NOT operate the product in an explosive atmosphere or in the presence of flammable gases or fumes.

For continued protection against fire, replace the line fuse(s) only with fuse(s) of the same voltage and current rating and type. DO NOT use repaired fuses or short-circuited fuse holders.

Keep away from live circuits: Operating personnel must not remove equipment covers or shields. Procedures involving the removal of covers or shields are for use by service-trained personnel only. Under certain conditions, dangerous voltages may exist even with the equipment switched off. To avoid dangerous electrical shock, DO NOT perform procedures involving cover or shield removal unless you are qualified to do so.

DO NOT operate damaged equipment: Whenever it is possible that the safety protection features built into this product have been impaired, either through physical damage, excessive moisture, or any other reason, REMOVE POWER and do not use the product until safe operation can be verified by service-trained personnel. If necessary, return the product to an Agilent Technologies Sales and Service Office for service and repair to ensure that safety features are maintained.

DO NOT service or adjust alone: Do not attempt internal service or adjustment unless another person, capable of rendering first aid and resuscitation, is present.

DO NOT substitute parts or modify equipment: Because of the danger of introducing additional hazards, do not install substitute parts or perform any unauthorized modification to the product. Return the product to an Agilent Technologies Sales and Service Office for service and repair to ensure that safety features are maintained.
DECLARATION OF CONFORMITY

According to ISO/IEC Guide 22 and CEN/CENELEC EN 45014

Manufacturer's Name: Agilent Technologies, Incorporated
Manufacturer's Address: 815 – 14th St. SW
 Loveland, Colorado 80537
 USA

Declares, that the product

Product Name: Summing Amplifier/DAC
Model Number: E1446A
Product Options: This declaration covers all options of the above product(s).

Conforms with the following European Directives:

Conforms with the following product standards:

EMC Standard Limit
CISPR 11:1990 / EN 55011:1991 Group 1 Class A
IEC 801-2 :1991 / EN50082-1 : 1992 4kV CD, 8kV AD
IEC 801-3 :1984 / EN50082-1 : 1992 3 V/m
IEC 801-4 :1988 / EN50082-1 : 1992 0.5kV signal lines, 1kV power lines

The product was tested in a typical configuration with Agilent Technologies or Hewlett-Packard Company test systems

Safety

Canada: CSA C22.2 No. 1010.1:1992
UL 3111-1

3 May 2001

Ray Corson
Product Regulations Program Manager

For further information, please contact your local Agilent Technologies sales office, agent or distributor.

Authorized EU-representative: Agilent Technologies Deutschland GmbH, Herrenberger Straße 130, D 71034 Böblingen, Germany
Chapter Contents

This chapter provides a description of the Agilent E1446A Summing Amplifier/DAC module and describes how to install, configure, and program it. The main sections of this chapter are:

- General Description .. 1-1
- Preparation for Use .. 1-3
- Basic Operation ... 1-8

General Description

The Agilent E1446A Summing Amplifier/DAC is a multifunction register-based VXIbus C-size module. It is designed to work with either the Agilent E1445A Arbitrary Function Generator (AFG) or to function stand-alone with the Agilent E1405/06 Command Module as a power amplifier/DAC. The Agilent E1446A allows you to amplify or attenuate, sum, and offset signals via the main output. The differential (small signal) output allows you to invert a signal.

Features

The Agilent E1446A Summing Amplifier/DAC has the following features:

- provides two input channels that have:
 - independently controlled input impedance
 - independently controlled input attenuators of 0 to 31 dB in 1 dB steps.
- sums the two input channels.
- provides output channels that include:
 - single-ended main output (power amplifier)
 - differential (small signal) output; one inverting, one non-inverting.
- functions as stand-alone offset DAC.
- provides a DAC for offset control of the main output
- acts as a servant to the Agilent E1445A AFG.
- has SCPI language commands using the Agilent E1405/06 Command Module or using the Agilent E1445A AFG.
- uses 1 slot in the Agilent 75000 Series C mainframe.
Device Information

Device type: register-based
C-size (1 slot)
Addressing modes: A16
VXIbus Revision Compliance: 1.3
SCPI Revision: 1991.0
See side of module for power/cooling requirements

Figure 1-1. The E1446A Summing Amplifier/DAC.
Preparation for Use

This section shows you how to configure the module, install it in the Agilent 75000 Series C mainframe, address the module, and download the SCPI driver.

Note

The following VXIbus configuration information pertains to the Agilent E1446A Summing Amplifier/DAC. For more (VXIbus) system configuration information, refer to the C-Size VXIbus Systems "Installation and Getting Started Guide" (Agilent P/N E1405-90021).

Configuring the Amplifier

The Agilent E1446A Summing Amplifier/DAC can be configured as a servant of the Agilent E1445A Arbitrary Function Generator or as a stand-alone Power Amplifier/DAC.

Logical Address

The Agilent E1446A logical address is used as follows:

- to place the amplifier in the servant area of a commander such as the Agilent E1445A AFG, Agilent E1405 Command Module, or an embedded controller.

In Agilent VXIbus systems, the servant area is defined as:

Servant area = (logical address + 1) through (logical address + servant area switch setting)

For example, to place the amplifier in the servant area of the Agilent E1445A:

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Logical Address</th>
<th>Servant Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agilent E1445A Logical address:</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Agilent E1445A Servant Area setting:</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Agilent E1446A Logical address:</td>
<td>88</td>
<td></td>
</tr>
</tbody>
</table>

Servant Area = (80 + 1) through (80 + 8)

- to address the Agilent E1446A (see "Addressing the Amplifier" later in this chapter).

The logical address factory setting is 88. You can change the setting during module installation. Valid addresses are from 1 to 255. The amplifier’s logical address switch is shown in Figure 1-2.

Note

The Agilent E1446A can be set to any valid logical address (1 - 255). However, when used with the Agilent E1445A or Agilent E1405/06, the
(Agilent E1446A) logical address or the (Agilent E1445A/E1405/06) servant area must be set such that the Agilent E1446A is in the servant area of its intended commander.

Installing the Amplifier

The Agilent E1446A Amplifier/DAC can be installed in any mainframe slot, except slot 0. If the Agilent E1445A AFG is a part of your system, it is recommended that the Amplifier/DAC be installed in a slot adjacent to the AFG. Figure 1-3 shows how to install the module in the Agilent E1400 Series C mainframe.
Addressing the Amplifier

The Agilent E1446A Summing Amplifier/DAC can be addressed by an external controller or by an embedded controller. This section describes how to address the amplifier using an external controller with the Agilent E1445A AFG, with the Agilent E1405/06 Command Module, and with an embedded controller.

Using an External Controller

The Agilent E1446A can be programmed from an external controller via the Agilent E1445A AFG or the Agilent E1405/06 Command Module. In an Agilent VXIbus system using an external controller, the amplifier is located by an (GPIB) address which consists of an interface select code, a primary GPIB address, and a secondary GPIB address:

Interface Select Code: Determined by the address of the GPIB interface card in the controller. For most Agilent Technologies controllers, this card has a factory set address of 7.

Primary GPIB Address: Determined by the address of the GPIB port on the Agilent E1405 Command Module. Valid addresses for the Command Module are 0 to 30. The Command Module has a factory set address of 9.
Secondary GPIB Address: Determined by dividing the logical address of the device by 8. If the amplifier is used with the Agilent E1445A, the secondary address is the E1445A logical address/8. If the amplifier is used with the Agilent E1405/06 Command Module, the secondary address is the E1446A logical address/8.

Agilent E1445A AFG

An example of the GPIB address in an BASIC statement when the amplifier is a servant of the Agilent E1445A is:
OUTPUT 70910;"SOUR2:VOLT:OFFS 3"

Where:

Interface Select Code = 7

(Command Module) Primary GPIB Address = 09

Secondary GPIB address (Agilent E1445A logical address/8) = 10

Agilent E1405/06 Command Module

An example of the GPIB address in an BASIC statement when the amplifier is a servant of the Agilent E1405/06 is:
OUTPUT 70911;"SOUR:VOLT:OFFS 3"

Where:

Interface Select Code = 7

(Command Module) Primary GPIB Address = 09

Secondary GPIB address (Agilent E1446A logical address/8) = 11

Refer to Chapter 2, "Programming the Agilent E1446A", for more detailed information.
Using an Embedded Controller

The Agilent E1446A Summing Amplifier/DAC can be programmed across the VXIbus backplane (select code 16) from an embedded controller, such as the Agilent E1480A V/360. With this configuration, communication with the register-based amplifier module can be accomplished via four paths:

1. Embedded controller across the VXIbus backplane to the Agilent E1445A AFG (SCPI programming only).

2. Embedded controller to the Agilent E1405/06 Command Module via the GPIB interface (SCPI or register-based).

3. Embedded controller to the Agilent E1405/06 over the GPIB and via the Agilent E1445A (SCPI only).

4. Embedded controller across the VXIbus backplane to the Agilent E1446A (register-based programming only).

Examples of how the amplifier is addressed in paths 1 through 3 are given below. Refer to Appendix C for information on addressing the amplifier during register-based programming.

1. OUTPUT 1680;"INP:IMP 75"

In this addressing configuration, the E1445A must be in the servant area of the embedded controller, and the E1446A must be in the servant area of the E1445A. Select code 16 is the only select code that can be used with this configuration.

2. OUTPUT 70911;"INP:IMP 75"

In this addressing configuration, the E1446 must be in the servant area of the E1405/06. Select code 7 (GPIB) is the only select code that can be used with this configuration.

3. OUTPUT 70910;"INP:IMP 75"

In this configuration, the E1445 must be in the servant area of the E1405/06. The E1446 must be in the servant area of the E1445A. Select code 7 (GPIB) is the only select code that can be used with this configuration.

Downloading the Agilent E1446A SCPI Driver

When using the Agilent E1445A AFG, the SCPI driver is resident in ROM and ready to control the Agilent E1446A. However, to use the Agilent E1405 Command Module, the SCPI driver must be downloaded into the Command Module’s non-volatile memory from a disk. Both DOS and LIF formatted driver disks are shipped with the Agilent E1446A. The drivers can be downloaded from controllers running DOS, BASIC (workstation),
IBASIC, or BASIC/UX. Downloadable driver capability is available on the Agilent E1406 and on the E1405 with firmware revision A.06.00 or later. To verify the firmware revision of the Command Module, you can use the *IDN? Command:

```
10  DIM A$[40]
20  OUTPUT 70900;"*IDN?"
30  ENTER 70900;A$
40  PRINT A$
50  END
```

*IDN? returns identification information for the Agilent E1405 Command Module. The result of this command is:

HEWLETT-PACKARD,E1405B,0,A.06.00

Note

For information on how to download the SCPI driver, refer to the "Downloading Device Drivers Installation Note" (Agilent P/N E1400-90021), or the "Agilent E1405B Command Module User’s Manual" (Agilent P/N E1405-90004).

Basic Operation

This section provides a block diagram and description of the basic operation of the Agilent E1446A Summing Amplifier/DAC. The description is divided into three parts:

- Input
- Output
- Offset DAC

Additionally, the Output section is subdivided into two parts:

- Main Output
- Differential (small signal) Output.

Refer to Appendix A, "Agilent E1446A Specifications", for operating specifications.
Figure 1-4 shows a block diagram of the Agilent E1446A Summing Amplifier/DAC.

Amplifier Block Diagram

Input
The Agilent E1446A Summing Amplifier/DAC has two input channels that have identical input amplifiers with independently controlled input impedance and input attenuation. The input amplifier attenuators provide independent level control prior to the summing node. The attenuation can range from 0 to 31 dB in 1 dB steps. The input impedance can be set to 50Ω, 75Ω, or 1 MΩ.

Output
The output channels provide the amplifier with the capability to boost the power output of a low-power signal source, and to provide low-level differential output. The output channels are:

- single-ended **main output** or **power amplifier**.
- differential (small signal) **output**; one inverting, one non-inverting.

Main Output
The power amplifier sums the two input channels plus the output of a 16-bit offset Digital-to-Analog Converter (DAC) to obtain output levels of ±10 Vpeak into a 50Ω or 75Ω load on the single-ended output or ±20 Vpeak into high impedance. The voltage gain of the power amplifier is set at 10 (20 dB) into a matched load, and at 20 (about 26 dB) into a high impedance. To obtain the desired output, the output attenuation and the output impedance can be independently selected. The output impedance can be set...
to 50Ω or 75Ω, or to 0Ω for driving into high impedance. The output voltage can be attenuated by either 0 or 20 dB when 50Ω or 75Ω output impedance is selected. Output attenuation is unavailable with the 0Ω mode (high impedance).

The main output terminal may be enabled or disabled under user control. When disabled, the output appears as an open circuit. This output is also overload protected via an output relay. The output relay automatically opens when an overload condition is detected and disconnects the output from the load. An overload occurs if the sum of the inputs, plus the output of the offset DAC, is excessive, or if the output current limit is reached. The relay remains open until the overload condition is corrected and the output is reset by the user. Refer to Appendix A of this manual for these specifications.

Differential (Small Signal) Output

The differential (small signal) output sums the two input channels to obtain a maximum output level of ±1 Vpeak into a 50/75Ω load. One of the outputs is a non-inverting amplifier (same polarity as the input); whereas the other is an inverting amplifier (opposite polarity as the input). Into a high impedance, each input has a maximum gain of two. The output impedance of each amplifier can be independently set to either 50Ω or 75Ω.

With two low level output terminals, output signals can be taken from either of the terminals with respect to ground, or across the two terminals (in series). Output signals taken across the two terminals will result in two times the input voltage. Figure 1-5 shows the circuitry of the output signal taken across the two terminals.

![Figure 1-5. Measuring the Differential Output across both Terminals.](image)
Offset DAC

A precision (DAC) allows the Agilent E1446A to provide DC offset voltage levels. The DAC input is a complementary offset binary code. The full scale output provides approximately ±10V into 50Ω or 75Ω load, or approximately ±20V into high impedance.
Chapter 2

Programming the Agilent E1446A

Chapter Contents

This chapter shows you how to program the Agilent E1446A using SCPI Commands. The programming examples found in the chapter are written in BASIC. The main sections of the chapter are:

- Instrument and Programming Languages 2-1
- Introductory Programs 2-5
- Example Programs ... 2-8
- Generating and Amplifying Sine Waves 2-9
- Setting the Input Impedance 2-14
- Setting DC Voltage Offsets 2-20
- Using the Differential (small signal) Outputs 2-26
- Summing Two Signals 2-31

Instrument and Programming Languages

Though the E1446A amplifier is a register-based device, this module can be programmed with SCPI commands using the Agilent E1445A AFG or Agilent E1405 Command Module. This section describes the SCPI programming environment.

SCPI Programming

SCPI (Standard Commands for Programmable Instruments) is an ASCII-based instrument command language designed for test and measurement instruments. The Agilent E1445A AFG or the Agilent E1405 Command Module (with the amplifier driver installed) interprets the ASCII command strings and sets the amplifier accordingly. The AFG and Command Module do this by writing to the amplifier registers.

SCPI Command Structure

The Agilent E1446A SCPI command set is found in Chapter 3. SCPI commands are based on a hierarchical structure, also known as a tree system. In this system, associated commands are grouped together under a common node or root, thus, forming subtrees or subsystems. An example is the amplifier's 'OUTPut2' subsystem shown on the following page:
OUTPut2
 :ATTenuation <attenuation>
 :IMPedance <impedance>
 :OVERload? [query only]
 [:STATe] <mode> [query only]
 :ACTual? [query only]

OUTPut2 is the root keyword of the command, :ATTenuation, :IMPedance, :OVERload?, and [:STATe] are second level keywords, and :ACTual? is the third level keyword. A colon (:) always separates a command keyword from a lower level keyword as shown below:

OUTP2:STAT:ACT?

A semicolon (;) is used to separate two or more commands within the same subsystem, and can also save typing. For example, sending this command message:

OUTP2:IMP 50;OUTP2:ATT 6;OUTP2:STAT ON

is the same as sending these three commands:

OUTP2:IMP 50
OUTP2:ATT 6
OUTP2:STAT ON

A semicolon (;) and a colon (:) are used to separate two or more commands from different subsystems in the same command message. For example:

INP1:IMP 50;:OUTP2:IMP 50

Command Coupling

The following amplifier commands are value coupled:

E1446 with E1405/06
OUTPut1:ATTenuation <attenuation>
OUTPut1:IMPedance <impedance>
SOURce:VOLTage[:LEVel][:IMMediate]:OFFSet <voltage>

E1446 with E1445
OUTPut2:ATTenuation <attenuation>
OUTPut2:IMPedance <impedance>
SOURce2:VOLTage[:LEVel][:IMMediate]:OFFSet <voltage>

This means that sending one of these commands can change the value set previously by another one of these commands. Often, this results in “Settings Conflict” errors when the program executes. To prevent these errors these commands must be executed in a "coupling group".
The list below identifies rules to follow when executing coupled commands:

- Coupled commands must be contiguous and executed in the same program statement. This is done by placing the commands in the same program line, or by suppressing the end-of-line terminator until the last coupled command has been sent.

To send multiple commands in a single line or in a single statement, the commands are linked (as described previously) with a semicolon (;) and a colon(:). For example:

```
OUTP2:IMP 50;OUTP2:ATT 6
```

or

```
OUTP2:IMP 50;
:OUTP2:ATT 6
```

In BASIC programs, the end-of-line (EOL) terminator is suppressed by placing a semicolon (;) following the quotation mark (") which closes the command string. For example:

```
OUTPUT 70910;"OUTP2:IMP 50;"
OUTPUT 70910;":OUTP2:ATT 6"
```

As shown, the first two lines are coupled together. The third line is not a coupled command, therefore, the EOL terminator is not suppressed on the second line.

- Commands not in the coupling group must either precede or follow commands in the coupling group.

- Un-coupled commands executed in a coupling group break the coupling.

- Error checking occurs at the end of the coupling group.

- Hardware updates occur at the end of the coupling group.
Instrument Driver and Example Programs Disks

The E1446A instrument driver and the example programs contained in this manual are located on the following disks:

- Agilent E1446A Instrument Driver and BASIC Example Programs - 3.5" 720 kbyte disk LIF Format (E1446-10031)
- Agilent E1446A Instrument Driver and BASIC Example Programs - 3.5" 1.44 Mbyte disk DOS Format (E1446-10032)

The example programs are SCPI programs written in BASIC. On the LIF formatted disk (E1446-10031), the programs are in LOAD / STORE (PROG) format. On the DOS formatted disk (E1446-10032), the programs are in GET / SAVE (ASCII) format.

System Configuration

Each program in this chapter is written in BASIC. Except where noted, the programs were developed on the following system:

Controller: HP 9000 Series 300
Mainframe: Agilent 75000 Series C
Slot 0/Resource Manager: Agilent E1405B Command Module
E1445A Logical Address: 80
E1445A Servant Area: 8
E1446A Logical Address: 88
Instrument Language: SCPI
Introductory Programs

The introductory programs in this section include:

- Executing the Agilent E1446A self-test.
- Resetting the Agilent E1446A and clearing the Error Queue.
- Querying the Agilent E1446A power-on/reset settings.

The introductory program examples in this section were written with the Agilent E1405 Command Module as the commander of the Agilent E1446A Summing Amplifier/DAC.

Executing the Self-Test

The amplifier self-test is executed with the command:

*TST?

During the self-test, communication between the command module and the on-card registers is tested. The *TST? returns one of the self-test codes listed below:

- 0 = passed.
- 1 = failed. (An error message describes the failure.)

Executing the Self-Test

1 !Agilent E1446A Self-test
10 !Send the self-test command, enter and display the result.
20 OUTPUT 70911;"*TST?"
30 ENTER 70911;Rslt
40 PRINT Rslt
50 END
Resetting and Clearing the Agilent E1446A

The commands to reset and clear the amplifier are:

*RST
*CLS

Resetting the amplifier sets it to its power-on configuration. Clearing status on the amplifier clears the error queue.

Resetting and Clearing the Agilent E1446A

<table>
<thead>
<tr>
<th>Line</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>!Resetting and clearing the Agilent E1446A</td>
</tr>
<tr>
<td>10</td>
<td>Assign an I/O Path for the computer, command module, and the</td>
</tr>
<tr>
<td>20</td>
<td>E1446A. Send the appropriate commands and wait for completion.</td>
</tr>
<tr>
<td>30</td>
<td>ASSIGN @Amp to 70911</td>
</tr>
<tr>
<td>40</td>
<td>OUTPUT @Amp;"*RST;*CLS;OPC?"</td>
</tr>
<tr>
<td>50</td>
<td>ENTER @Amp; Complete</td>
</tr>
<tr>
<td>60</td>
<td>END</td>
</tr>
</tbody>
</table>

Querying the Power-on/Reset Configuration

The command used to query each Agilent E1446A setting is:

*LRN?

The *LRN? command queries the power-on/reset configuration and returns a sequence of commands that may be re-sent to the amplifier.
LRN

1 !RE-STORE "LRN"
10 !Assign an I/O path between the computer and the amplifier.
20 ASSIGN @Amp TO 70911
30 !Call the subprogram
40 Lrn_conf(@Amp)
50 END
60 !
70 SUB Lrn_conf(@Amp)
80 Lrn_conf: !subprogram which queries the amp reset configuration
90 DIM Lm$[1000]
100 OUTPUT @Amp;"*LRN?"
110 ENTER @Amp;Lrn$
120 Lm$=Lm$&";"
130 REPEAT
140 I=POS(Lrn$,";"
150 PRINT Lm$[1;I-1]
160 Lrn$=Lrn$[I+1]
170 UNTIL Lrn$=""
180 SUBEND

Table 2-1. E1446A Power-On/Reset Configuration (as returned by *LRN?).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Command</th>
<th>Command</th>
<th>Power-on/Reset Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Agilent E1446A</td>
<td>Agilent E1445A</td>
<td></td>
</tr>
<tr>
<td>Input1 Attenuation</td>
<td>INP1:ATT</td>
<td>INP1:ATT</td>
<td>+0.00000000E+000 0 dB</td>
</tr>
<tr>
<td>Input1 Impedance</td>
<td>INP1:IMP</td>
<td>INP1:IMP</td>
<td>+5.00000000E+001 50Ω</td>
</tr>
<tr>
<td>Input2 Attenuation</td>
<td>INP2:ATT</td>
<td>INP2:ATT</td>
<td>+0.00000000E+000 0 dB</td>
</tr>
<tr>
<td>Input2 Impedance</td>
<td>INP2:IMP</td>
<td>INP2:IMP</td>
<td>+5.00000000E+001 50Ω</td>
</tr>
<tr>
<td>Main Output Attenuation</td>
<td>OUTP1:ATT</td>
<td>OUTP2:ATT</td>
<td>+0.00000000E+000 0 dB</td>
</tr>
<tr>
<td>Main Output Impedance</td>
<td>OUTP1:IMP</td>
<td>OUTP2:IMP</td>
<td>+5.00000000E+001 50Ω</td>
</tr>
<tr>
<td>Main Output State</td>
<td>OUTP1:STAT</td>
<td>OUTP2:STAT</td>
<td>1 (on)</td>
</tr>
<tr>
<td>Diff "+" Impedance</td>
<td>OUTP2:IMP</td>
<td>OUTP3:IMP</td>
<td>+5.00000000E+001 50Ω</td>
</tr>
<tr>
<td>Diff "-" Impedance</td>
<td>OUTP3:IMP</td>
<td>OUTP4:IMP</td>
<td>+5.00000000E+001 50Ω</td>
</tr>
<tr>
<td>DC offset</td>
<td>SOUR:VOLT:LEV:IMM:OFFS</td>
<td>SOUR2:VOLT:LEV:IMM:OFFS</td>
<td>+0.00000000E+000 0V</td>
</tr>
</tbody>
</table>
Example Programs

The example programs in this section include:

- Generating and amplifying sine waves
- Selecting the input impedance
- Using the differential (small signal) outputs
- Setting a DC offset voltage
- Summing two signals

These programs configure the amplifier according to the block diagram of Figure 2-1. The program descriptions will often refer to this figure. The programs were written with the amplifier configured as a servant of the Agilent E1445A AFG, and as a servant of the Agilent E1405 Command Module.

Figure 2-6. E1446A Functional Block Diagram.
Generating and Amplifying Sine Waves

The examples in this section show you how to amplify a sine wave generated by the Agilent E1445A. In the first program, the E1446A is a servant of the E1445A AFG. In the second program, the E1446A amplifies the signal from the E1445A, however; the E1446A is in the servant area of the E1405 Command Module.

Amplifying Sine Waves (Agilent E1445A Commander)

This program uses the E1446A to amplify a 2 Vpp E1445A AFG signal to 14.15 Vpp. Since the intended output amplitude and the input amplitude are known, the amount of attenuation (0 - 31 dB attenuator) is determined as:

\[
\text{attenuation (dB)} = 20 \log \left(\frac{V_o}{V_i \times 10} \right)
\]

where \(V_o\) is the output amplitude and \(V_i\) is the input signal amplitude (\(V_o\) and \(V_i\) units (Vpp, Vp) must be the same). Thus,

\[
\text{attenuation (dB)} = 20 \log \left(\frac{14}{20} \right) = -3 \text{ dB}
\]

The (main) output of the AFG is connected to ‘Input 1’ of the amplifier.

The steps of this program are:

1. **Reset the E1445A AFG and E1446A amplifier.**

 RST

2. **Set the AFG frequency, function, and amplitude.**

 \[
 \text{[SOURce:]} \text{FREQuency[1][:CW[:FIXed] <frequency>}
 \]

 \[
 \text{[SOURce:]} \text{FUNCtion[:SHAPe] <shape>}
 \]

 \[
 \text{[SOURce:]} \text{VOLTage[:LEVel][:IMMediate][:AMPLitude]} <amplitude>
 \]

3. **Couple the AFG output load value to the output impedance value.**

 \[
 \text{OUTPut[1]:LOAD:AUTO <mode>}
 \]

 \[
 \text{OUTPut[1]:IMPedance <impedance>}
 \]
4. Set the amplifier input impedance to match the AFG output load.

\text{INPut}[1]:\text{IMPedance} <\text{impedance}>

5. Set the amplifier input attenuation.

\text{INPut}[1]:\text{ATTenuation} <\text{attenuation}>

6. Set the amplifier output impedance.

\text{OUTPut2:IMPedance} <\text{impedance}>

7. Set the amplifier output attenuation.

\text{OUTPut2:ATTenuation} <\text{attenuation}>

8. Place the AFG in the wait-for-arm state.

\text{INITiate:IMMediate}

Note

Resetting the amplifier sets many of the same conditions set by subsequent (amplifier) commands in the program. These commands are included, however, to show other parts of the amplifier configuration.

Note

For more information on how to program the Agilent E1445A AFG, refer to the \textit{Agilent E1445A Arbitrary Function Generator User’s Manual}.

\textbf{AMPL45}

```
1  !RE-STORE"AMPL45"
2  !The following program uses the E1445A to generate a 1 kHz, 2Vpp
3  !sine wave. The Agilent E1446A amplifies the signal to approximately 14 Vpp.
4  !
10  !Assign I/O path between the computer and E1445A. As the commander of
20  !the Agilent E1446A, the E1445A sends the amplifier its commands.
30  ASSIGN @Afg TO 70910
40  COM @Afg
50  !
60  !Set up error checking
70  ON INTR 7 CALL Errmsg
80  ENABLE INTR 7:2
```

Continued on Next Page
90 OUTPUT @Afg;"*CLS"
100 OUTPUT @Afg;"*SRE 32"
110 OUTPUT @Afg;"*ESE 60"
120 !
130 !Call the subprograms
140 Rst
150 Sine_wave
160 !
170 WAIT .1 !allow interrupt to be serviced
180 OFF INTR 7
190 END
200 !
210 SUB Sine_wave
220 Sine_wave: !Subprogram which sets the E1445A to output a sine wave
230 COM @Afg
240 OUTPUT @Afg;"SOUR:FREQ1:FIX 1E3;" !frequency
250 OUTPUT @Afg;"SOUR:FUNC:SHAP SIN;" !function
260 OUTPUT @Afg;"SOUR:VOLT:LEV:IMM:AMPL 2VPP;" !amplitude
270 OUTPUT @Afg;"OUTP:LOAD:AUTO ON;" !couple load to impedance
280 OUTPUT @Afg;"OUTP:IMP 50" !output impedance
290 !
300 !Set up the Agilent E1446A
310 OUTPUT @Afg;"INP1:IMP 50" !input impedance
320 OUTPUT @Afg;"INP1:ATT 3" !input attenuation (dB)
330 OUTPUT @Afg;"OUTP2:IMP 50;" !main output impedance
340 OUTPUT @Afg;"OUTP2:ATT 0" !main output attenuation
350 !
360 OUTPUT @Afg;"INIT:IMM" !E1445A wait-for-arm state
370 SUBEND
380 !
390 SUB Rst
400 Rst: !Subprogram which resets the E1445A and E1446A
410 COM @Afg
420 OUTPUT @Afg;"RST;*OPC?" !reset the AFG
430 ENTER @Afg;Complete
440 SUBEND
450 !
460 SUB Errmsg
470 Errmsg: !Subprogram which displays E1445/E1446 programming errors
480 COM @Afg
490 DIM Message$[256]
500 !Read AFG status byte register and clear service request bit
510 B=SPOLL(@Afg)
520 !End of statement if error occurs among coupled commands
530 OUTPUT @Afg;"*"
540 OUTPUT @Afg;"ABORT" !abort output waveform
Continued on Next Page
Amplifying Sine Waves (Agilent E1405 Commander)

This program uses the same commands and sequence as previously described, except for the OUTPut[1] commands shown below:

6. Set the amplifier output impedance.

OUTPut[1]:IMPedance <impedance>

7. Set the amplifier output attenuation.

OUTPut[1]:ATTenuation <attenuation>

In this example, the E1446A is a servant to the E1405. As such, commands sent to the amplifier (at secondary GPIB address 11) are parsed by the Command Module rather than by the E1445A.

AMPL05

1 !RE-STORE"AMPL05"
2 !The following program uses the Agilent E1445A to generate a 1 kHz, 2Vpp sine wave. The Agilent E1446A amplifies the signal to approximately 14 Vpp.
4 !
10 !Assign I/O paths between the computer and E1445A, and between the computer and E1405. As the commander of the E1446A, the E1405 sends the amplifier its commands.
20 ASSIGN @Afg TO 70910
30 ASSIGN @Amp TO 70911
40 COM @Afg,@Amp
50 !
60 ON INTR 7 CALL Errmsg
70 ENABLE INTR 7;2
80 OUTPUT @Afg;"*CLS"
90 OUTPUT @Afg;"*SRE 32"
100 OUTPUT @Afg;"*ESE 60"
120 !

Continued on Next Page
Call the subprograms

Rst

!allow interrupt to be serviced

OFF INTR 7

END

SUB Sine_wave

Subprogram which sets the E1445A to output a sine wave

COM @Afg,@Amp

OUTPUT @Afg;"SOUR:FREQ1:FIX 1E3;"; // frequency

OUTPUT @Afg;"SOUR:FUNC:SHAP SIN;"; // function

OUTPUT @Afg;"SOUR:VOLT:LEV:IMM:AMPL 2VPP;"; // amplitude

OUTPUT @Afg;"OUTP:LOAD:AUTO ON;"; // couple load to impedance

OUTPUT @Afg;"OUTP:IMP 50" // output impedance

Set up the Agilent E1446A

OUTPUT @Amp;"INP1:IMP 50" // input impedance

OUTPUT @Amp;"INP1:ATT 3" // input attenuation (dB)

OUTPUT @Amp;"OUTP1:IMP 50;" // main output impedance

OUTPUT @Amp;"OUTP1:ATT 0" // main output attenuation

SUBEND

SUB Rst

Subprogram which resets the E1445A and E1446A

COM @Afg,@Amp

OUTPUT @Afg;"RST;"OPC?" // reset the AFG

ENTER @Afg;Complete

OUTPUT @Amp;"RST;"OPC?" // reset the AMP

ENTER @Amp;Complete

SUBEND

SUB Errmsg

Subprogram which displays E1445/E1446 programming errors

COM @Afg,@Amp

DIM Message[256]

Read AFG (at sec addr 10) status byte register, clear service

!Read bit

B=SPOLL(@Afg)

Continued on Next Page
Setting the Input Impedance

The examples in this section show you how to amplify a sine wave generated by the Agilent E1445A. In the first program, the E1446A is a servant of the E1445A AFG. In the second program, the E1446A amplifies the signal from the E1445A, however; the E1446A is in the servant area of the E1405 Command Module.

Setting the Input Impedance (Agilent E1445A Commander)

This program sets the E1446A’s input impedance to match the output impedance of the E1445A. The signal supplied by the E1445A is a 1 Vpp, 2 MHz square wave. The signal is amplified to 6.3 Vpp. Again, when the intended output amplitude and the input amplitude are known, the amount of attenuation (0 - 31 dB attenuator) is determined by:
attenuation\(\text{dB}\) = 20 \(\log\) \(\frac{V_o}{(V_i \times 10)}\)

where \(V_o\) is the output amplitude and \(V_i\) is the input signal amplitude \((V_o\) and \(V_i\) units \((V_{pp}, V_p)\) must be the same). Thus,

\[\text{attenuation\(\text{dB}\)} = 20 \log \left(\frac{6.3}{10} \right) = -4 \text{ dB}\]

Again, the (main) output of the AFG is connected to ‘Input 1’ of the amplifier.

The steps of this program are:

1. **Reset the E1445A AFG and E1446A amplifier.**

 \[*\text{RST}\]

2. **Set the AFG frequency, function, and amplitude.**

 \[[\text{SOURce:}]\text{FREQuency[1]}[:\text{CW}|:\text{FIXed}] <\text{frequency}>\]

 \[[\text{SOURce:}]\text{FUNCTION[:SHAPE]} <\text{shape}>\]

 \[[\text{SOURce:}]\text{VOLTage[:LEVEL][:IMMediate][:AMPLitude]} <\text{amplitude}>\]

3. **Set the AFG output load and output impedance values.**

 \[\text{OUTPUT[1]}:\text{LOAD} <\text{load}>\]

 \[\text{OUTPUT[1]}:\text{IMPedance} <\text{impedance}>\]

4. **Set the amplifier input impedance to match the AFG output load.**

 \[\text{INPUT[1]}:\text{IMPedance} <\text{impedance}>\]

5. **Set the amplifier input attenuation.**

 \[\text{INPUT[1]}:\text{ATTenuation} <\text{attenuation}>\]

6. **Set the amplifier output impedance.**

 \[\text{OUTPUT2}:\text{IMPedance} <\text{impedance}>\]

7. **Set the amplifier output attenuation.**

 \[\text{OUTPUT2}:\text{ATTenuation} <\text{attenuation}>\]
8. Place the AFG in the wait-for-arm state.

INITiate:IMMediate

Note
Resetting the amplifier sets many of the same conditions set by subsequent (amplifier) commands in the program. These commands are included, however, to show other parts of the amplifier configuration.

IN_IMP45

IRE-STORE"IN_IMP45"

!This program sets the AFG’s output impedance and output load to 75 ohms. The Agilent E1446A amplifier’s input impedance is set to 175 ohms to match the AFG. The 1 Vpp AFG square wave is amplified to 6.3 Vpp.

Assign I/O path between the computer and E1445A.

ASSIGN @Afg TO 70910

COM @Afg

!Set up error checking

ON INTR 7 CALL Errmsg

ENABLE INTR 7:2

OUTPUT @Afg;"*CLS"

OUTPUT @Afg;"*SRE 32"

OUTPUT @Afg;"*ESE 60"

!Call the subprograms

CALL Rst

CALL Out_load

!Call the subprograms

CALL Out_load

!Call the subprograms

COM @Afg

OUTPUT @Afg;"SOUR:FREQ1:FIX 2E6;"; !frequency

OUTPUT @Afg;"SOUR:FUNC:SHAP SQU;"; !function

OUTPUT @Afg;"SOUR:VOLT:LEV:IMM:AMPL 1VPP;"; !amplitude

OUTPUT @Afg;"OUTP:IMP 75;"; !output impedance

OUTPUT @Afg;"OUTP:LOAD 75"; !output load

Continued on Next Page
Setting Input Impedance
(Agilent E1405B Commander)

This program uses the same commands and sequence as previously described, except for the OUTPut[1] commands shown below:

6. Set the amplifier output impedance.

OUTPut[1]:IMPedance <impedance>

7. Set the amplifier output attenuation.

OUTPut[1]:ATTenuation <attenuation>
In this example, the E1446A is a servant to the E1405. As such, commands sent to the amplifier (at secondary GPIB address 11) are parsed by the Command Module rather than by the E1445A.

IN_IMP05

1 IRE-STORE"IN_IMP05"
2 !This program sets the AFG’s output impedance and output load
3 !to 75 ohms. The Agilent E1446A amplifier’s input impedance is set to
4 !75 ohms to match the AFG. The 1 Vpp AFG square wave is amplified
5 !to 6.3 Vpp.
6 !
10 !Assign I/O paths between the computer and E1445A and E1405.
20 ASSIGN @Afg TO 70910
30 ASSIGN @Amp TO 70911
40 COM @Afg,@Amp
50 !
60 !Set up error checking
70 ON INTR 7 CALL Errmsg
80 ENABLE INTR 7:2
90 OUTPUT @Afg;"*CLS"
100 OUTPUT @Afg;"*SRE 32"
110 OUTPUT @Afg;"*ESE 60"
120 !
130 OUTPUT @Amp;"*CLS"
140 OUTPUT @Amp;"*SRE 32"
150 OUTPUT @Amp;"*ESE 60"
160 !
170 !Call the subprograms
180 CALL Rst
190 CALL Out_load
200 !
210 WAIT .1 !allow interrupt to be serviced
220 OFF INTR 7
230 END
240 !
250 SUB Out_load
260 Out_load: !Subprogram which sets the output load
270 COM @Afg,@Amp
280 OUTPUT @Afg;"SOUR:FREQ1:FIX 2E6;"; !frequency
290 OUTPUT @Afg;"SOUR:FUNC:SHAP SQU;"; !function
300 OUTPUT @Afg;"SOUR:VOLT:LEV:IMM:AMPL 1VPP;"; !amplitude
310 OUTPUT @Afg;"OUTP:IMP 75;"; !output impedance
320 OUTPUT @Afg;"OUTP:LOAD 75" !output load
330 !

Continued on Next Page
340 !Set up amplifier
350 OUTPUT @Amp;"INP1:IMP 75" !input impedance
360 OUTPUT @Amp;"INP1:ATT 4" !input attenuation (dB)
370 OUTPUT @Amp;"OUTP1:IMP 50" !main output impedance
380 OUTPUT @Amp;"OUTP1:ATT 0" !main output attenuation (dB)
390 !
400 OUTPUT @Afg;"INIT:IMM" !E1445A wait-for-arm state
410 SUBEND
420 !
430 SUB Rst
440 Rst: !Subprogram which resets the E1445 and E1446
450 COM @Afg,@Amp
460 OUTPUT @Afg;"RST;*OPC?" !reset the AFG
470 ENTER @Afg;Complete
480 OUTPUT @Amp;"RST;*OPC?" !reset the AMP
490 ENTER @Amp;Complete
500 SUBEND
510 !
520 SUB Errmsg
530 Errmsg: !Subprogram which displays E1445/E1446 programming errors
540 COM @Afg,@Amp
550 DIM Message$[256]
560 !Read AFG (at sec addr 10) status byte register, clear service request bit
570 B=SPOLL(@Afg)
580 IF BIT(B,6) THEN !AFG requested service
590 !End of statement if error occurs among coupled commands
600 OUTPUT @Afg;"
610 OUTPUT @Afg;"ABORT"!abort output waveform
620 PRINT "E1445A errors"
630 PRINT
640 PRINT
650 REPEAT
660 OUTPUT @Afg;"SYST:ERR?" !read AFG error queue
670 ENTER @Afg;Code,Message$
680 PRINT Code,Message$
690 UNTIL Code=0
700 STOP
710 END IF
720 !
730 !Read AMP (at sec addr 11) status byte register, clear service request bit
740 B=SPOLL(@Amp)
750 IF BIT(B,6) THEN !amplifier requested service
760 !End of statement if error occurs among coupled commands
770 OUTPUT @Amp;"
780 PRINT "E1446A errors"
Continued on Next Page
Setting DC Voltage Offsets

These examples show you how to use the amplifier to add a DC offset to a signal supplied by the E1445A. In the first example, the E1446A is a servant to the E1445A. In the second example, the E1446A is a servant to the E1405 Command Module.

Setting DC Offsets (Agilent E1445A Commander)

This program adds an 8V DC offset to a 0.4 Vpp E1445A signal. To maintain 0.4 Vpp at the output, the signal is attenuated by 20 dB at the amplifier input (Figure 2-1). The offset supplied by the E1446A DAC is added to the input signal and is amplified. Into 50W, the 0.4 Vpp signal is centered on 8V.

The steps of this program are:

1. **Reset the E1445A AFG and E1446A amplifier.**

 `*RST`

2. **Set the AFG frequency, function, and amplitude.**

 `[SOURce:]FREQuency[1][:CW|:FIXed] <frequency>`

 `[SOURce:]FUNCtion[:SHAPe] <shape>`

 `[SOURce:]VOLTage[:LEVel][:IMMediate][:AMPLitude] <amplitude>`

3. **Couple the AFG output load value to the output impedance value.**

 `OUTPut[1]:LOAD:AUTO <mode>`

 `OUTPut[1]:IMPedance <impedance>`

4. **Set the amplifier input impedance to match the AFG output load.**

 `INPut[1]:IMPedance <impedance>`
5. Set the amplifier input attenuation.

INPut[1]:ATTenuation <attenuation>

6. Set the amplifier main output impedance.

OUTPut2:IMPedance <impedance>

7. Set the amplifier main output attenuation.

OUTPut2:ATTenuation <attenuation>

8. Set the DC offset value.

SOURce2:VOLTage[:LEVel][:IMMediate]:OFFSet <offset>

9. Place the AFG in the wait-for-arm state.

INITiate:IMMediate

Note

Resetting the amplifier sets many of the same conditions set by subsequent (amplifier) commands in the program. These commands are included, however, to show other parts of the amplifier configuration.

OFFS45

1 !RE-STORE"OFFS45"
2 !This program uses the E1446A to generate an 8V DC offset for a
3 0.4 Vpp signal supplied by the E1445A AFG. To accomplish this, the
4 AFG signal is attenuated by 20 dB at the amplifier input. The amplifier
5 offset is set to 8V, the output impedance to 50 ohms, and the output
6 attenuation to 0 dB. Into 50 ohms, the 0.4 Vpp signal is centered on
7 8 volts.
8 !
9 !Assign I/O path between the computer and E1445A. As the commander of
10 !Agilent E1446A, the E1445A sends the amplifier its commands.
11 ASSIGN @Afg TO 70910
12 COM @Afg
13 !

Continued on Next Page
Set up error checking
ON INTR 7 CALL Errmsg
ENABLE INTR 7:2
OUTPUT @Afg;"*CLS"
OUTPUT @Afg;"SRE 32"
OUTPUT @Afg;"ESE 60"

!Call the subprograms
Rst
Offset

WAIT .1 !allow interrupt to be serviced
OFF INTR 7
END

SUB Offset

Offset: !Subprogram which sets up the E1445A and E1446A
COM @Afg
OUTPUT @Afg;"SOUR:FREQ1:FIX 1E3;" ; frequency
OUTPUT @Afg;"SOUR:FUNC:SHAP SIN;" ; function
OUTPUT @Afg;"SOUR:VOLT:LEV:IMM:AMPL .4VPP;" ; amplitude
OUTPUT @Afg;"OUTP:LOAD:AUTO ON;" ; couple load to impedance
OUTPUT @Afg;"OUTP:IMP 50" ; impedance

!Set up the Agilent E1446A
OUTPUT @Afg;"INP1:IMP 50" ; input impedance
OUTPUT @Afg;"INP1:ATT 20" ; input attenuation (dB)
OUTPUT @Afg;"OUTP2:IMP 50;" ; main output impedance
OUTPUT @Afg;"OUTP2:ATT 0;" ; main output attenuation (dB)
OUTPUT @Afg;"SOUR2:VOLT:LEV:IMM:OFFS 8" ; DC offset

!E1445A wait-for-arm state
SUBEND

SUB Rst

Rst: !Subprogram which resets the E1445A and E1446A
COM @Afg
OUTPUT @Afg;"*RST;*OPC?" !reset the AFG
ENTER @Afg;Complete
SUBEND

SUB Errmsg
Errmsg: !Subprogram which displays E1445/E1446 programming errors
COM @Afg
DIM Message$[256]

Continued on Next Page
510 !Read AFG status byte register and clear service request bit
520 \text{B=SPOLL(@Afg)}
530 !End of statement if error occurs among coupled commands
540 \text{OUTPUT \@Afg:""}
550 \text{OUTPUT \@Afg:"ABORT" abort output waveform}
560 \text{REPEAT}
570 \text{OUTPUT \@Afg:"SYST:ERR?" read AFG error queue}
580 \text{ENTER \@Afg;Code,Message$}
590 \text{PRINT Code,Message$}
600 \text{UNTIL Code=0}
610 \text{STOP}
620 \text{SUBEND}

Setting DC Offsets (Agilent E1405 Commander)

This program uses the same commands and sequence as previously described, except for the OUTPUT[1] and SOURCE:VOLTage commands shown below:

6. Set the amplifier main output impedance.

\text{OUTPut[1]:IMPedance <impedance>}

7. Set the amplifier main output attenuation.

\text{OUTPut[1]:ATTenuation <attenuation>}

8. Set the DC offset value.

\text{SOURce:VOLTage[:LEVel][:IMMediate]:OFFSet <offset>}

In this example, the E1446A is a servant to the E1405. As such, commands sent to the amplifier (at secondary GPIB address 11) are parsed by the Command Module rather than by the E1445A.

OFFS05

1 !RE-STORE"OFFS05"
2 !This program uses the E1446A to generate an 8V DC offset for a
3 \text{0.4 Vpp signal supplied by the E1445A AFG. To accomplish this, the}
4 \text{AFG signal is attenuated by 20 dB at the amplifier input. The amplifier}
5 \text{offset is set to 8V, the output impedance to 50 ohms, and the output}
6 \text{attenuation to 0 dB. Into 50 ohms, the 0.4 Vpp signal is centered on}
7 \text{8 volts.}
8 !
9 !Assign I/O path between the computer and E1445A and E1446A.
20 ASSIGN @Af TO 70910
30 ASSIGN @Amp TO 70911

Continued on Next Page
40 COM @Afg,@Amp
50 !
60 !Set up error checking
70 ON INTR 7 CALL Errmsg
80 ENABLE INTR 7:2
90 OUTPUT @Afg;"*CLS"
100 OUTPUT @Afg;"*SRE 32"
110 OUTPUT @Afg;"*ESE 60"
120 !
130 OUTPUT @Amp;"*CLS"
140 OUTPUT @Amp;"*SRE 32"
150 OUTPUT @Amp;"*ESE 60"
160 !
170 !Call the subprograms
180 Rst
190 Offset
200 !
210 WAIT .1 !allow interrupt to be serviced
220 OFF INTR 7
230 END
240
250 SUB Offset
260 Offset: !Subprogram which sets up the E1445A and E1446A
270 COM @Afg,@Amp
280 OUTPUT @Afg;"SOUR:FREQ1:FIX 1E3;"; !frequency
290 OUTPUT @Afg;"SOUR:FUNC:SHAP SIN;"; !function
300 OUTPUT @Afg;"SOUR:VOLT:LEV:IMM:AMPL .4VPP;"; !amplitude
310 OUTPUT @Afg;"OUTP:LOAD:AUTO ON;"; !couple load to impedance
320 OUTPUT @Afg;"OUTP:IMP 50" !impedance
330 !
340 !Set up the Agilent E1446A
350 OUTPUT @Amp;"INP1:IMP 50" !input impedance
360 OUTPUT @Amp;"INP1:ATT 20" !input attenuation (dB)
370 OUTPUT @Amp;"OUTP1:IMP 50;"; !main output impedance
380 OUTPUT @Amp;"OUTP1:ATT 0;"; !main output attenuation (dB)
390 OUTPUT @Amp;"SOUR:VOLT:LEV:IMM:OFFS 8" !DC offset
400 !
410 OUTPUT @Afg;"INIT:IMM" !E1445A wait-for-arm state
420 SUBEND
430
440 SUB Rst
450 Rst: !Subprogram which resets the E1445A and E1446A
460 COM @Afg,@Amp
470 OUTPUT @Afg;"*RST:*OPC?" Ireset the AFG
480 ENTER @Afg;Complete
490 OUTPUT @Amp;"*RST:*OPC?" Ireset the AFG
Continued on Next Page
500 ENTER @Amp;Complete
510 SUBEND
520 !
530 SUB Errmsg
540 Errmsg: Subprogram which displays E1445/E1446 programming errors
550 COM @Afg,@Amp
560 DIM Message$[256]
570 !Read AFG (at sec addr 10) status byte register, clear service request bit
580 B=SPOLL(@Afg)
590 IF BIT(B,6) THEN !AFG requested service
600 !End of statement if error occurs among coupled commands
610 OUTPUT @Afg;""
620 OUTPUT @Afg;"ABORT" !abort output waveform
630 PRINT "E1445A errors"
640 PRINT
650 REPEAT
660 OUTPUT @Afg;"SYST:ERR?" !read AFG error queue
670 ENTER @Afg;Code,Message$
680 PRINT Code,Message$
690 UNTIL Code=0
700 STOP
710 END IF
720 !
730 !Read AMP (at sec addr 11) status byte register, clear service request bit
740 B=SPOLL(@Amp)
750 IF BIT(B,6) THEN !amplifier requested service
760 !End of statement if error occurs among coupled commands
770 OUTPUT @Amp;""
780 PRINT "E1446A errors"
790 PRINT
800 REPEAT
810 OUTPUT @Amp;"SYST:ERR?" !read AMP error queue
820 ENTER @Amp;Code,Message$
830 PRINT Code,Message$
840 UNTIL Code=0
850 END IF
860 STOP
870 SUBEND
Using the Differential (small signal) Outputs

These examples show you how to use the amplifier’s differential (small signal) outputs. Note the following when using the outputs:

- the differential (small signal) outputs are designed for high-frequency and low-power source applications.
- with no attenuation, the maximum input voltage (sum of Input1 and Input2) must not exceed 2 Vpp (Figure 2-1).

In the first example, the E1446A is a servant to the E1445A. In the second example, the E1446A is a servant to the E1405 Command Module.

Using the Differential Outputs
(Agilent E1445A Commander)

Rather than amplify the input signal, this program attenuates the signal supplied by the E1445A to obtain an output amplitude of 10 mVpp. The output can be taken at either the ‘Diff +’ or ‘Diff -’ (inverted) output.

The steps of this program are:

1. Reset the E1445A AFG and E1446B amplifier.

 *RST

2. Set the AFG frequency, function, and (minimum) amplitude.

 [SOURce: FREQuency[1]:CW:FIXed] <frequency>
 [SOURce: FUNCTION:SHAPE] <shape>
 [SOURce: VOLTage[:LEVel][:IMMediate][:AMPLitude] <amplitude>

3. Couple the AFG output load value to the output impedance value.

 OUTPut[1]: LOAD: AUTO <mode>
 OUTPut[1]: IMPedance <impedance>

4. Set the amplifier input impedance to match the AFG output load.

 INPut[1]: IMPedance <impedance>

5. Set the amplifier input attenuation.

 INPut[1]: ATTenuation <attenuation>
6. Set the amplifier ’Diff +’ and ’Diff -’ output impedances.

\[
\text{OUTPut3:IMPedance } <\text{impedance}>
\]

\[
\text{OUTPut4:IMPedance } <\text{impedance}>
\]

7. Place the AFG in the wait-for-arm state.

\[
\text{INITiate:IMMediate}
\]

Note

Resetting the amplifier sets many of the same conditions set by subsequent (amplifier) commands in the program. These commands are included, however, to show other parts of the amplifier configuration.

DIFF45

1 IRE-STORE"DIFF45"
2 !This program uses the E1446A to generate a 10 mVpp signal from a
3 !0.323738 Vpp signal supplied by the E1445A AFG. To accomplish this, the
4 !AFG signal is attenuated by 30 dB at the amplifier input. The output is
5 !taken from the ’Diff +’ and ’Diff - ’ outputs whose output impedances
6 !are set to 50 ohms.
7 !
10 !Assign I/O path between the computer and E1445A. As the commander of
20 !the Agilent E1446A, the E1445A sends the amplifier its commands.
30 ASSIGN @Afg TO 70910
40 COM @Afg
50 !
60 !Set up error checking
70 ON INTR 7 CALL Errmsg
80 ENABLE INTR 7:2
90 OUTPUT @Afg;"CLS"
100 OUTPUT @Afg;"SRE 32"
110 OUTPUT @Afg;"ESE 60"
120 !
130 !Call the subprograms
140 Rst
150 Diffout
160 !

Continued on Next Page
170 WAIT .1 !allow interrupt to be serviced
180 OFF INTR 7
190 END
200 !
210 SUB Diffout
220 Diffout: !Subprogram which sets up the E1445A and E1446A
230 COM @Afg
240 OUTPUT @Afg;"SOUR:FREQ1:FIX 1E3;"; !frequency
250 OUTPUT @Afg;"SOUR:FUNC:SHAP SQU;"; !function
260 OUTPUT @Afg;"SOUR:VOLT:LEV:IMM:AMPL MIN;"; !amplitude (.161869 Vpk)
270 OUTPUT @Afg;"OUTP:LOAD:AUTO ON;"; !couple load to impedance
280 OUTPUT @Afg;"OUTP:IMP 50" !impedance
290 !
300 !Set up the Agilent E1446A
310 OUTPUT @Afg;"INP1:IMP 50" !input impedance
320 OUTPUT @Afg;"INP1:ATT 30" !input attenuation (dB)
330 OUTPUT @Afg;"OUTP3:IMP 50" !Diff + output impedance
340 OUTPUT @Afg;"OUTP4:IMP 50" !Diff - output impedance
350 !
360 OUTPUT @Afg;"INIT:IMM" !E1445A wait-for-arm state
370 SUBEND
380 !
390 SUB Rst
400 Rst: !Subprogram which resets the E1445A and E1446A
410 COM @Afg
420 OUTPUT @Afg;"*RST;*OPC?" !reset the AFG
430 ENTER @Afg;Complete
440 SUBEND
450 !
460 SUB Errmsg
470 Errmsg: !Subprogram which displays E1445/E1446 programming errors
480 COM @Afg
490 DIM Message$[256]
500 !Read AFG status byte register and clear service request bit
510 B=SPOLL(@Afg)
520 !End of statement if error occurs among coupled commands
530 OUTPUT @Afg;""
540 OUTPUT @Afg;"ABORT" !abort output waveform
550 REPEAT
560 OUTPUT @Afg;"SYST:ERR?" !read AFG error queue
570 ENTER @Afg;Code,Message$
580 PRINT Code,Message$
590 UNTIL Code=0
600 STOP
610 SUBEND
Using the Differential Outputs
(Agilent E1405 Commander)

This program uses the same commands and sequence as previously described, except for the OUTPut2 and OUTPut3 commands shown below:

6. Set the amplifier 'Diff +' and 'Diff -' output impedances.

OUTPut2:IMPedance <impedance>

OUTPut3:IMPedance <impedance>

In this example, the E1446A is a servant to the E1405. As such, commands sent to the amplifier (at secondary GPIB address 11) are parsed by the Command Module rather than by the E1445A.

DIFF05

<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IRE-STORE“DIFF05”</td>
</tr>
<tr>
<td>2</td>
<td>This program uses the E1446A to generate a 10 mVpp signal from a</td>
</tr>
<tr>
<td>3</td>
<td>0.323738 Vpp signal supplied by the E1445A AFG. To accomplish this, the</td>
</tr>
<tr>
<td>4</td>
<td>AFG signal is attenuated by 30 dB at the amplifier input. The output is</td>
</tr>
<tr>
<td>5</td>
<td>taken from the 'Diff +' and 'Diff -' outputs whose output impedances</td>
</tr>
<tr>
<td>6</td>
<td>are set to 50 ohms.</td>
</tr>
<tr>
<td>7</td>
<td>!</td>
</tr>
<tr>
<td>10</td>
<td>Assign I/O path between the computer and E1445A, and E1446A.</td>
</tr>
<tr>
<td>20</td>
<td>ASSIGN @Afg TO 70910</td>
</tr>
<tr>
<td>30</td>
<td>ASSIGN @Amp TO 70911</td>
</tr>
<tr>
<td>40</td>
<td>COM @Afg,@Amp</td>
</tr>
<tr>
<td>50</td>
<td>!</td>
</tr>
<tr>
<td>60</td>
<td>Set up error checking</td>
</tr>
<tr>
<td>70</td>
<td>ON INTR 7 CALL Ermsg</td>
</tr>
<tr>
<td>80</td>
<td>ENABLE INTR 7:2</td>
</tr>
<tr>
<td>90</td>
<td>OUTPUT @Afg;“CLS"</td>
</tr>
<tr>
<td>100</td>
<td>OUTPUT @Afg;“SRE 32”</td>
</tr>
<tr>
<td>110</td>
<td>OUTPUT @Afg;“ESE 60”</td>
</tr>
<tr>
<td>120</td>
<td>!</td>
</tr>
<tr>
<td>130</td>
<td>OUTPUT @Amp;“CLS”</td>
</tr>
<tr>
<td>140</td>
<td>OUTPUT @Amp;“SRE 32”</td>
</tr>
<tr>
<td>150</td>
<td>OUTPUT @Amp;“ESE 60”</td>
</tr>
<tr>
<td>160</td>
<td>!</td>
</tr>
<tr>
<td>170</td>
<td>Call the subprograms</td>
</tr>
<tr>
<td>180</td>
<td>Rst</td>
</tr>
<tr>
<td>190</td>
<td>Diffout</td>
</tr>
<tr>
<td>200</td>
<td>!</td>
</tr>
<tr>
<td>210</td>
<td>WAIT .1! Allow interrupt to be serviced</td>
</tr>
<tr>
<td>220</td>
<td>OFF INTR 7</td>
</tr>
<tr>
<td>230</td>
<td>END</td>
</tr>
</tbody>
</table>

Continued on Next Page
SUB Diffout

Diffout: !Subprogram which sets up the E1445A and E1446A

```
COM @Afg, @Amp
OUTPUT @Afg;"SOUR:FREQ1:FIX 1E3;"; !frequency
OUTPUT @Afg;"SOUR:FUNC:SHAP SIN;"; !function
OUTPUT @Afg;"SOUR:VOLT:LEV:IMM:AMPL MIN;"; !amplitude (.161869 Vpk)
OUTPUT @Afg;"OUTP:LOAD:AUTO ON;"; !couple load to impedance
OUTPUT @Afg;"OUTP:IMP 50" !impedance

!Set up the Agilent E1446A
OUTPUT @Amp;"INP1:IMP 50" !input impedance
OUTPUT @Amp;"INP1:ATT 30" !input attenuation (dB)
OUTPUT @Amp;"OUTP2:IMP 50" !Diff + output impedance
OUTPUT @Amp;"OUTP3:IMP 50" !Diff - output impedance

OUTPUT @Afg;"INIT:IMM" !E1445A wait-for-arm state
SUBEND
```

SUB Rst

Rst: !Subprogram which resets the E1445A and E1446A

```
COM @Afg, @Amp
OUTPUT @Afg;"*RST;*OPC?" !reset the AFG
ENTER @Afg;Complete
OUTPUT @Amp;"*RST;*OPC?" !reset the amplifier
ENTER @Amp;Complete
SUBEND
```

SUB Errmsg

Errmsg: !Subprogram which displays E1445/E1446 programming errors

```
DIM Message$[256]
B=SPOLL(@Afg)
IF BIT(B,6) THEN !AFG requested service
  OUTPUT @Afg;"ABORT"!abort output waveform
  PRINT "E1445A errors"
  PRINT
  REPEAT 
    OUTPUT @Afg;"SYST:ERR?" !read AFG error queue
    ENTER @Afg;Code,Message$
    PRINT Code,Message$
  UNTIL Code=0
```

Continued on Next Page
Summing Two Signals

This program uses the E1446A to sum the signals from two E1445A AFGs. The AFGs at logical addresses 80 and 88 (secondary GPIB addresses 10 and 11), generate 1 Vpp, 5 kHz and 100 kHz sine waves respectively. The signal from the AFG at logical address 80 is applied to E1446A ‘Input 1’. The signal from the AFG at logical address 88 is applied to ‘Input 2’. The E1446A is in the servant area of the AFG at logical address 80.

The steps of the program are as follows:

1. **Reset the E1445A AFGs and E1446A amplifier.**

 *RST

2. Set the E1445As’ reference oscillator sources to CLK10.

 [SOURce:]ROSCillator:SOURce <source>
3. Set the AFG frequency, function, and amplitude.

[SOURce:]FREQuency[1][:CW]:FIXed <frequency>

[SOURce:]FUNCtion[:SHAPe] <shape>

[SOURce:]VOLTage[:LEVel][:IMMediate][:AMPLitude] <amplitude>

4. Couple the AFG output load value to the output impedance value.

OUTPut[1]:LOAD:AUTO <mode>

OUTPut[1]:IMPedance <impedance>

5. Set the amplifier input impedance to match the AFG output load.

INPut[1]:IMPedance <impedance>

INPut2:IMPedance <impedance>

6. Set the amplifier input attenuation.

INPut[1]:ATTenuation <attenuation>

INPut2:ATTenuation <attenuation>

7. Set the amplifier 'Diff +' output impedance.

OUTPut3:IMPedance <impedance>

8. Place the AFGs in the wait-for-arm state.

INITiate:IMMediate

SUM45

1 IRE-STORE"SUM45"
2 !The following program uses the E1446A to sum the output signals of
3 !two E1445As. The E1445A at secondary address 10 (logical address 80)
4 !outputs a 1 Vpp, 5 kHz sine wave. The E1445A at secondary address 11
5 !(logical address 88) outputs a 1 Vpp, 100 kHz sine wave. To prevent
6 !the E1445A signals from drifting, both AFG’s use CLK10 as their
7 !reference oscillator source. The E1446A sums these signals, and the
8 !output is taken at the 'Diff +' output.
10 !

Continued on Next Page
Assign I/O paths between the computer and E1445As. The E1445A at secondary address 10 is the commander for the E1446A.

ASSIGN @Afg80 TO 70910
ASSIGN @Afg88 TO 70911
COM @Afg80, @Afg88

! Set up error checking
ON INTR 7 CALL Errmsg
ENABLE INTR 7:2
OUTPUT @Afg80;"*CLS"
OUTPUT @Afg80;"*SRE 32"
OUTPUT @Afg80;"*ESE 60"

! Set up E1445A at secondary address 10
OUTPUT @Afg80;"SOUR:ROSC:SOUR CLK10;"; ! ref osc source
OUTPUT @Afg80;"SOUR:FREQ1:FIX 5E3;"; ! frequency
OUTPUT @Afg80;"SOUR:FUNC:SHAP SIN;"; ! function
OUTPUT @Afg80;"SOUR:VOLT:LEV:IMM:AMPL 1VPP;"; ! amplitude
OUTPUT @Afg80;"OUTP:LOAD:AUTO ON;"; ! couple load to impedance
OUTPUT @Afg80;"OUTP:IMP 50" ! impedance

! Setup E1445A at secondary address 11
OUTPUT @Afg88;"SOUR:ROSC:SOUR CLK10;"; ! ref osc source
OUTPUT @Afg88;"SOUR:FREQ1:FIX 100E3;"; ! frequency
OUTPUT @Afg88;"SOUR:FUNC:SHAP SIN;"; ! function
OUTPUT @Afg88;"SOUR:VOLT:LEV:IMM:AMPL 1VPP;"; ! amplitude
OUTPUT @Afg88;"OUTP:LOAD:AUTO ON;"; ! couple load to impedance
OUTPUT @Afg88;"OUTP:IMP 50" ! impedance

Call the subprograms
Rst
Afg_setup

WAIT .1 ! allow interrupt to be serviced
OFF INTR 7
END

SUB Afg_setup
Afg_setup: ! Subprogram which sets up the E1445As and E1446A
COM @Afg80, @Afg88

! Set up E1445A at secondary address 10
OUTPUT @Afg80;"SOUR:ROSC:SOUR CLK10;"; ! ref osc source
OUTPUT @Afg80;"SOUR:FREQ1:FIX 5E3;"; ! frequency
OUTPUT @Afg80;"SOUR:FUNC:SHAP SIN;"; ! function
OUTPUT @Afg80;"SOUR:VOLT:LEV:IMM:AMPL 1VPP;"; ! amplitude
OUTPUT @Afg80;"OUTP:LOAD:AUTO ON;"; ! couple load to impedance
OUTPUT @Afg80;"OUTP:IMP 50" ! impedance

! Setup E1445A at secondary address 11
OUTPUT @Afg88;"SOUR:ROSC:SOUR CLK10;"; ! ref osc source
OUTPUT @Afg88;"SOUR:FREQ1:FIX 100E3;"; ! frequency
OUTPUT @Afg88;"SOUR:FUNC:SHAP SIN;"; ! function
OUTPUT @Afg88;"SOUR:VOLT:LEV:IMM:AMPL 1VPP;"; ! amplitude
OUTPUT @Afg88;"OUTP:LOAD:AUTO ON;"; ! couple load to impedance
OUTPUT @Afg88;"OUTP:IMP 50" ! impedance

Continued on Next Page
!Set up the Agilent E1446A

OUTPUT @Afg80;"INP1:IMP 50" !input 1 impedance
OUTPUT @Afg80;"INP1:ATT 0" !input 1 attenuation (dB)
OUTPUT @Afg80;"INP2:IMP 50" !input 2 impedance
OUTPUT @Afg80;"INP2:ATT 0" !input 2 attenuation (dB)
OUTPUT @Afg80;"OUTP3:IMP 50" !Diff + output impedance

!E1445A wait-for-arm state (10)
OUTPUT @Afg88;"INIT:IMM" !E1445A wait-for-arm state (11)

SUBEND

!Subprogram which resets the E1445As and E1446A
COM @Afg80,@Afg88
OUTPUT @Afg80;"*RST;*OPC?" !reset the AFG (sec addr 10)
ENTER @Afg80;Complete

!E1445A (secondary address 10)
OUTPUT @Afg88;"*RST;*OPC?" !reset the AFG (sec addr 11)
ENTER @Afg88;Complete
SUBEND

!Subprogram which displays E1445/E1446 programming errors
COM @Afg80,@Afg88
DIM Message$[256]
B=SPOLL(@Afg80)
OUTPUT @Afg80;"
REPEAT
OUTPUT @Afg80;"SYST:ERR?" !read AFG error queue (sec addr 10)
ENTER @Afg80;Code,Message$
PRINT Code,Message$
UNTIL Code=0
PRINT
!Read AFG (at sec addr 11) status byte register, clear service
REPEAT
OUTPUT @Afg80;"INP2:IMP 50" !input 2 impedance
OUTPUT @Afg80;"INP2:ATT 0" !input 2 attenuation (dB)
SUBEND

Continued on Next Page
B=SPOLL(@Afg88)

!End of statement if error occurs among coupled commands

OUTPUT @Afg88;"

OUTPUT @Afg88;"ABORT" !abort output waveform

PRINT "E1445A (secondary address 11)"

PRINT

REPEAT

OUTPUT @Afg88;"SYST:ERR?" !read AFG error queue (sec addr 11)

ENTER @Afg88;Code,Message$

PRINT Code,Message$

UNTIL Code=0

STOP

SUBEND
Chapter Contents

This chapter describes the **Standard Commands for Programmable Instruments** (SCPI) command set and the **IEEE 488.2 Common Commands** for the Agilent E1446A Summing Amplifier/DAC. Included in this chapter are the following sections:

- Command Types .. 3-2
- SCPI Command Format ... 3-2
- SCPI Command Parameters 3-4
- SCPI Command Execution 3-5
- SCPI Command Reference 3-6
- IEEE-488.2 Common Commands 3-25
- SCPI Conformance Information 3-35

Agilent E1446A / Agilent E1445A Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPut[1]</td>
<td>3-7</td>
</tr>
<tr>
<td>:ATTenuation</td>
<td>3-7</td>
</tr>
<tr>
<td>:IMPedance</td>
<td>3-7</td>
</tr>
<tr>
<td>INPut2</td>
<td>3-9</td>
</tr>
<tr>
<td>:ATTenuation</td>
<td>3-9</td>
</tr>
<tr>
<td>:IMPedance</td>
<td>3-9</td>
</tr>
<tr>
<td>OUTPut2</td>
<td>3-11</td>
</tr>
<tr>
<td>:ATTenuation</td>
<td>3-11</td>
</tr>
<tr>
<td>:IMPedance</td>
<td>3-12</td>
</tr>
<tr>
<td>:OVERload?</td>
<td>3-12</td>
</tr>
<tr>
<td>[:STATe]</td>
<td>3-13</td>
</tr>
<tr>
<td>:ACTual?</td>
<td>3-13</td>
</tr>
<tr>
<td>OUTPut3</td>
<td>3-15</td>
</tr>
<tr>
<td>:IMPedance</td>
<td>3-15</td>
</tr>
<tr>
<td>OUTPut4</td>
<td>3-16</td>
</tr>
<tr>
<td>:IMPedance</td>
<td>3-16</td>
</tr>
<tr>
<td>SOURce2:VOLTage</td>
<td>3-17</td>
</tr>
<tr>
<td>[:LEVEL][:IMMediate]:OFFset</td>
<td>3-17</td>
</tr>
<tr>
<td>STATus</td>
<td>3-18</td>
</tr>
<tr>
<td>:OPERation</td>
<td>QUESTionable.</td>
</tr>
<tr>
<td>:CONDition?</td>
<td>3-18</td>
</tr>
<tr>
<td>:ENABLE</td>
<td>3-19</td>
</tr>
<tr>
<td>[:EVENt]?</td>
<td>3-19</td>
</tr>
<tr>
<td>:NTRansition</td>
<td>3-20</td>
</tr>
<tr>
<td>:PTRansition</td>
<td>3-20</td>
</tr>
<tr>
<td>:PRESet</td>
<td>3-21</td>
</tr>
<tr>
<td>SYSTem.</td>
<td>3-22</td>
</tr>
<tr>
<td>:ERRor?</td>
<td>3-22</td>
</tr>
<tr>
<td>:VERSion?</td>
<td>3-22</td>
</tr>
</tbody>
</table>
Agilent E1446A / Agilent E1405/06 Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISPlay3-7</td>
<td>3-7</td>
</tr>
<tr>
<td>:MONitor[:STATe]</td>
<td></td>
</tr>
<tr>
<td>INPut[1]</td>
<td>3-8</td>
</tr>
<tr>
<td>:ATTenuation</td>
<td>3-8</td>
</tr>
<tr>
<td>:IMPedance</td>
<td>3-8</td>
</tr>
<tr>
<td>INPut2</td>
<td>3-10</td>
</tr>
<tr>
<td>:ATTenuation</td>
<td>3-10</td>
</tr>
<tr>
<td>:IMPedance</td>
<td>3-10</td>
</tr>
<tr>
<td>OUTPut1</td>
<td>3-12</td>
</tr>
<tr>
<td>:ATTenuation</td>
<td>3-12</td>
</tr>
<tr>
<td>:IMPedance</td>
<td>3-12</td>
</tr>
<tr>
<td>:OVERload?</td>
<td>3-13</td>
</tr>
<tr>
<td>[:STATe]</td>
<td>3-14</td>
</tr>
<tr>
<td>:ACTual?</td>
<td>3-14</td>
</tr>
<tr>
<td>OUTPut2</td>
<td>3-15</td>
</tr>
<tr>
<td>:IMPedance</td>
<td>3-15</td>
</tr>
<tr>
<td>OUTPut3</td>
<td>3-16</td>
</tr>
<tr>
<td>:IMPedance</td>
<td>3-16</td>
</tr>
<tr>
<td>SOURce:VOLTage</td>
<td>3-17</td>
</tr>
<tr>
<td>[:LEVel][:IMMediate]:OFFset</td>
<td>3-17</td>
</tr>
<tr>
<td>STATus</td>
<td>3-18</td>
</tr>
<tr>
<td>:OPERation</td>
<td>QUESTionable</td>
</tr>
<tr>
<td>:CONDition?</td>
<td>3-18</td>
</tr>
<tr>
<td>:ENABle</td>
<td>3-19</td>
</tr>
<tr>
<td>[:EVENti?t]</td>
<td>3-19</td>
</tr>
<tr>
<td>:NTRansition</td>
<td>3-20</td>
</tr>
<tr>
<td>:PTRansition</td>
<td>3-20</td>
</tr>
<tr>
<td>:PRESet</td>
<td>3-21</td>
</tr>
<tr>
<td>SYSTem</td>
<td>3-22</td>
</tr>
<tr>
<td>:ERRor?</td>
<td>3-22</td>
</tr>
<tr>
<td>:VERSion?</td>
<td>3-22</td>
</tr>
</tbody>
</table>

Command Types

Commands are separated into two types: IEEE-488.2 Common Commands and SCPI Commands.

Common Command Format

The IEEE-488.2 standard defines Common Commands that perform functions like reset, self-test, status byte query, etc. Common commands are four or five characters in length, always begin with the asterisk character (*), and may include one or more parameters. The command keyword is separated from the first parameter by a space character. Some examples of Common commands are shown below:

* RST, *CLS, *ESE <unmask>, *OPC?, *STB?

SCPI Command Format

The functions of the summing amplifier/DAC are programmed using SCPI commands. SCPI commands are based on a hierarchical structure, also known as a tree system. In this system, associated commands are grouped together under a common node or root, thus, forming subtrees or subsystems. An example is the amplifier’s `OUTPut2` subsystem shown on the following page.
OUTPut2
 :ATTenuation <attenuation>
 :IMPedance <impedance>
 :OVERload? [query only]
 [:STATe] <mode> [query only]
 :ACTual?

OUTPut2 is the root keyword of the command, :ATTenuation, :IMPedance, :OVERload?, and [:STATe] are second level keywords, and :ACTual? is the third level keyword.

Command Separator

A colon (:) always separates one command keyword from a lower level command keyword as shown below:

OUTP2:STAT:ACT?

Abbreviated Commands

The command syntax shows most commands as a mixture of upper and lower case letters. The upper case letters indicate the abbreviated spelling for the command. For shorter program lines, send the abbreviated form. For better program readability, you may send the entire command. The amplifier will accept either the abbreviated form or the entire command.

For example, if a command’s syntax contains the keyword IMPedance, then IMP and IMPEDANCE are acceptable forms. Lower or upper case letters are also acceptable. Thus, IMPedance, impedance, IMP, or imp are all acceptable.

Implied (Optional) Keywords

Implied or optional keywords are those which appear in square brackets ([]) in the command syntax. The brackets are not part of the command, and are not sent to the amplifier. Suppose you send the following command:

OUTP2 ON

In this case, the amplifier responds as if the command was executed as:

OUTP2:STAT ON
SCPI Command Parameters

The following information contains explanations and examples of the parameter types found in this chapter.

Parameter Types, Explanations, and Examples

- **Numeric**
 Accepts all commonly used decimal representations of numbers including optional signs, decimal points, and scientific notation:

 123, 123E2, -123, -1.23E2, .123, 1.23E-2, 1.23000E-01.

 Special cases include MIN, MAX, and INFinity. The Comments section within the Command Reference will state whether a numeric parameter can also be specified in hex, octal, and/or binary:

 #H7B, #Q173, #B1111011

- **Boolean**
 Represents a single binary condition that is either true or false. Any non-zero value is considered true:

 ON, OFF, 1, 0

- **Discrete**
 Selects from a finite number of values. These parameters use mnemonics to represent each valid setting.

- **Arbitrary Block Program Data**
 This parameter type is used to transfer a block of data in the form of bytes. The block of data bytes is preceded by a header which indicates either 1) the number of data bytes which follow (definite length block), or 2) that the following data block will be terminated upon receipt of a New Line message with the EOI signal true (indefinite length block). The syntax for data in the blocks is as follows:

 Definite length block:

 `<non-zero digit><digit(s)><data byte(s)>`

 Where the value of `<non-zero digit>` equals the number of `<digit(s)>`. The value of `<digit(s)>` taken as a decimal integer indicates the number of `<data byte(s)>` in the block.
Indefinite length block:

#0<data byte(s)><NL^END>

Examples of sending 4 data bytes:

#14<byte><byte><byte><byte>
#3004<byte><byte><byte><byte>
#0<byte><byte><byte><byte><NL^END>

Querying Parameter Settings

Unless otherwise noted in the reference section, parameter settings can be queried by adding a question mark (?) to the command which set the parameter. For example:

INP:IMP 50

sets the impedance of the ’Input 1’ port to 50Ω. The value can be queried by executing:

INP:IMP?

The MINimum or MAXimum value of a parameter is determined as follows:

INP:IMP? MIN

INP:IMP? MAX

SCPI Command Execution

The following information should be remembered when executing SCPI commands.

Command Coupling

The following amplifier commands are value coupled:

E1446 with E1405/06

OUTPut1:ATTenuation <attenuation>
OUTPut1:IMPedance <impedance>
SOURce:VOLTage[:LEVel][:IMMediate]:OFFSet <voltage>

E1446 with E1445

OUTPut2:ATTenuation <attenuation>
OUTPut2:IMPedance <impedance>
SOURce2:VOLTage[:LEVel][:IMMediate]:OFFSet <voltage>
This means that sending one of these commands can change the value set previously by another one of these commands. Often, this results in “Settings Conflict” errors when the program executes. To prevent these errors these commands must be executed in a “Coupling Group”. Refer to Chapter 2 for information on executing coupled commands.

Linking Commands

Linking IEEE 488.2 Common Commands.

Use a semicolon between the commands. For example:

```
*RST;*CLS;*OPC?
```

Linking Multiple SCPI Commands.

Use a semicolon (;) and a colon (:) to link commands within different subsystems. For example:

```
INP:IMP 50;:OUTP2:IMP 50
```

Commands within the same subsystem are linked with a semicolon (;). For example:

```
INP:ATT 6;INP:IMP 50
```

SCPI Command Reference

This section describes the SCPI commands for the Agilent E1446A Summing Amplifier/DAC. Since the E1446A amplifier can be a servant of either the Agilent E1445A Arbitrary Function Generator or the Agilent E1405 Command Module, the section has been divided into three parts:

- **Agilent E1446A/Agilent E1445A Command Reference**
 (Agilent E1446A is a servant to the Agilent E1445A)

- **Agilent E1446A/Agilent E1405 Command Reference**
 (Agilent E1446A is a servant to the Agilent E1405)

- **IEEE-488.2 Common Commands**
 (same for either commander (Agilent E1445A or Agilent E1405)

In each part the commands are listed alphabetically by subsystem and alphabetically within each subsystem. A command guide is printed in the top margin of each page. The guide indicates the first command listed on that page.
Agilent E1446 / E1445 Commands
The INPut[1] subsystem controls the input attenuation and impedance of the Agilent E1446A’s “Input 1” BNC.

SubSystem Syntax

```
INPut[1]
  :ATTenuation <attenuation>
  :IMPedance <impedance>
```

:ATTenuation

INPut[1]:ATTenuation <attenuation> controls the input attenuator of the “Input 1” BNC. Input attenuation can range from 0 to 31 dB in 1 dB steps.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>impedance</td>
<td>numeric</td>
<td>0 through 31.0</td>
<td>dB</td>
</tr>
<tr>
<td>MINimum</td>
<td></td>
<td></td>
<td>MINimum</td>
<td>MAXimum</td>
</tr>
</tbody>
</table>

MINimum selects 0 dB attenuation; MAXimum selects 31 dB.

Comments

- Executable when initiated: Yes
- Coupling group: none
- *RST Condition: INPut1:ATTenuation 0

Example

Setting 20 dB input attenuation

```
INP:ATT 20
```

Set 20 dB input attenuation

:IMPedance

INPut[1]:IMPedance <impedance> sets the input impedance of the “Input 1” BNC to either 50Ω, 75Ω, or 1 MΩ.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>impedance</td>
<td>numeric</td>
<td>50</td>
<td>75</td>
</tr>
<tr>
<td>MINimum</td>
<td></td>
<td></td>
<td>MINimum</td>
<td>MAXimum</td>
</tr>
</tbody>
</table>

MINimum selects 50Ω input impedance; MAXimum selects 1 MΩ.
INPut[1] : IMPedance

Comments
- Executable when initiated: Yes
- Coupling group: none
- *RST Condition: INPut1:IMPedance 50

Example
Setting 75 Ω input impedance

INP:IMP 75
Set 75 Ω input impedance
The INPut2 subsystem controls the input attenuation and impedance of the Agilent E1446A’s “Input 2” BNC.

Subsystem Syntax

```
INPut2
  :ATTenuation <attenuation>
  :IMPedance <impedance>
```

:ATTenuation

INPut2:ATTenuation `<attenuation>` controls the input attenuator of the “Input 2” BNC. Input attenuation can range from 0 to 31 dB in 1 dB steps.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>impedance</td>
<td>numeric</td>
<td>0 through 31.0</td>
<td>MINimum</td>
</tr>
</tbody>
</table>

MINimum selects 0 dB attenuation; MAXimum selects 31 dB.

Comments
- Executable when initiated: Yes
- Coupling group: none
- *RST Condition: INPut2:ATTenuation 0

Example

Setting 20 dB input attenuation

```
INP2:ATT 20
```

Set 20 dB input attenuation

:IMPedance

INPut2:IMPedance `<impedance>` sets the input impedance of the “Input 2” BNC to either 50Ω, 75Ω, or 1 MΩ.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>impedance</td>
<td>numeric</td>
<td>50</td>
<td>75</td>
</tr>
</tbody>
</table>

MINimum selects 50Ω input impedance; MAXimum selects 1 MΩ.
INPut2 :IMPedance

Comments
• Executable when initiated: Yes
• Coupling group: none
• *RST Condition: INPut2:IMPedance 50

Example
Setting 75 Ω input impedance

INP2:IMP 75

Set 75 Ω input impedance
The OUTPut2 subsystem controls the characteristics of the Agilent E1446A’s “Main Output” BNC. The subsystem sets the output attenuation, sets the output source impedance, monitors overload conditions, and enables or disables the output.

Subsystem Syntax

```
OUTPut2
  :ATTenuation <attenuation>
  :IMPedance <impedance>
  :OVERload? [query only]
  [:STATe] <mode>
  :ACTual? [query only]
```

:ATTenuation

`OUTPut2:ATTenuation <attenuation>` controls the output attenuator of the “Main Output” BNC. Either no attenuation or 20 dB may be selected when `OUTPut2:IMPedance` is set to either 50Ω or 75Ω. `OUTPut2:ATTenuation` must be set to 0 dB when `OUTPut2:IMPedance` is set to 0Ω.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>impedance</td>
<td>numeric</td>
<td>0</td>
<td>20.0</td>
</tr>
</tbody>
</table>

MINimum selects 0 dB attenuation; MAXimum selects 20 dB.

Comments

- **Executable when initiated**: Yes
- **Coupling group**: Power amplifier
- ***RST Condition**: OUTPut2:ATTenuation 0

Example

Setting 20 dB output attenuation

```
OUTP2:ATT 20
```

Set 20 dB output attenuation
OUTPut2 :IMPedance

:IMPedance

OUTPut2:IMPedance <impedance> sets the output impedance of the “Main Output” BNC to either 0Ω, 50Ω, or 75Ω.

OUTPut2:IMPedance 0 should be selected when an open-circuit or high-impedance load is connected to the output of the Agilent E1446A. The matching impedance is removed from the amplifier output. Also, the offset voltage into an open-circuit is twice that into a matched load. Setting OUTPut2:IMPedance 0 compensates for this effect so that the SOURce2:VOLTage:LEVel:IMMediate:OFFSet command will output the specified voltage into an open circuit.

When OUTPut2:IMPedance is set to either 50Ω or 75Ω, either no output attenuation or 20 dB may be set. OUTPut2:ATTenuation must be set to 0 dB when OUTPut2:IMPedance is set to 0Ω.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>impedance</td>
<td>numeric</td>
<td>0</td>
<td>50</td>
</tr>
</tbody>
</table>

MINimum selects 0Ω output impedance; MAXimum selects 75Ω.

Comments

- Executable when initiated: Yes
- Coupling group: Power amplifier
- Related commands: SOURce2:VOLTage:LEVel:IMMediate:OFFSet and OUTPUT2:ATTenuation
- *RST Condition: OUTPut2:IMPedance 50

Example

Setting 75 Ω output impedance

OUTP2:IMP 75

Set 75 Ω output impedance

:OVERload?

OUTPut2:OVERload? determines if an overload condition exists by reading bit 11 of the amplifier’s Status register (Appendix C).

This command requires Agilent E1445A firmware revision A.02.00 or greater.
OUTPut2 [:STATe]

Comments

• A one (1) returned in response to the query indicates an overload condition exists. A zero (0) indicates there is not an overload condition.

• Coupling group: none

• *RST Condition: none

Example

Determining if an overload condition exists
OUTP2:OVER? determine if overload condition exists

[:STATe]

OUTPut2[:STATe] <mode> closes or opens the output relay of the “Main Output” BNC to enable or disable the analog output. When disabled, the output appears as an open circuit.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode</td>
<td>boolean</td>
<td>OFF</td>
<td>0</td>
</tr>
</tbody>
</table>

Comments

• Executable when initiated: Yes

• Coupling group: none

• *RST Condition: OUTPut2:STATe ON

• The output relay will open automatically if an output overload is detected.

Example

Disabling the output
OUTP2 OFF Disable output

[:STATe]:ACTual?

OUTPut2[:STATe]:ACTual? determines if the amplifier’s ’Main Output’ BNC is enabled or has been disabled due to an overload condition. The determination is done by reading bit 8 of the amplifier’s Status register (Appendix C).

This command requires Agilent E1445A firmware revision A.02.00 or greater.
OUTPut2 [:STATe]:ACTual?

Comments
- A one (1) returned in response to the query indicates the ’Main Output’ BNC is enabled. A zero (0) indicates the output is disabled.
- **Coupling group:** none
- **RST Condition:** none

Example
Determining if the output is enabled

OUTP2:STAT:ACT?
determine if the output is enabled
The OUTPut3 subsystem controls the output impedance of the Agilent E1446A’s “Diff Output +” output.

Subsystem Syntax
OUTPut3
:IMPedance <impedance>

:IMPedance

OUTPut3:IMPedance <impedance> sets the output impedance “Diff Output +” BNC to either 50Ω or 75Ω.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>impedance</td>
<td>numeric</td>
<td>50</td>
<td>75</td>
<td>MINimum</td>
</tr>
</tbody>
</table>

MINimum selects 50Ω output impedance; MAXimum selects 75Ω.

Comments
- Executable when initiated: Yes
- Coupling group: none
- *RST Condition: OUTPut3:IMPedance 50

Example
Setting 75 Ω output impedance

```
OUTP3:IMP 75
```

Set 75 Ω output impedance
The OUTPut4 subsystem controls the output impedance of the Agilent E1446A’s “Diff Output -” output.

Subsystem Syntax

```
OUTPut4
  :IMPedance <impedance>
```

:IMPedance

```
OUTPut4:IMPedance <impedance> set the output impedance “Diff Output -” BNC to either 50Ω or 75Ω.
```

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>impedance</td>
<td>numeric</td>
<td>50</td>
<td>75</td>
</tr>
</tbody>
</table>

MINimum selects 50Ω output impedance; MAXimum selects 75Ω.

Comments

- Executable when initiated: Yes
- Coupling group: none
- *RST Condition: OUTPut4:IMPedance 50

Example

Setting 75 Ω output impedance

```
OUTP4:IMP 75
```

Set 75 Ω output impedance
The SOURce2:VOLTage subsystem controls the output offset voltage at the Agilent E1446A’s “Main Output” BNC.

Subsystem Syntax

```
SOURce2
  :VOLTage
   [:LEVel]
     [:IMMediate]
       :OFFSet <voltage>
```

[:LEVel][:IMMediate]:OFFSet

SOURce2:VOLTage[:LEVel][:IMMediate]:OFFSet <voltage> sets the offset voltage at the “Main Output” BNC. Output offset level is programmed in volts.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>-9.999695 to +10.0</td>
<td>volts</td>
</tr>
</tbody>
</table>

MINimum selects -9.999695; MAXimum selects +10.0.

The above limits are doubled if OUTPut2:IMPedance 0 is set.

The combination of input levels and offset voltage must produce a voltage that remains within the Agilent E1446A’s output voltage specification. Significant distortion of the waveform will occur when the combination of input levels and offset voltage exceeds the specification.

Example

Setting offset voltage

Comments

- Executable when initiated: Yes
- Coupling group: Power amplifier
- Related commands: OUTPut2:IMPedance
- *RST Condition: SOURce2:VOLTage:LEVel:IMMediate:OFFSet 0 V

Example

Setting offset voltage

SOUR2:VOLT:OFFS 3
Set offset voltage to 3 volts
The STATus subsystem controls the SCPI-defined Operation and Questionable Signal status registers. Each is comprised of a condition register, an event register, an enable mask, and negative and positive transition filters.

Each status register works as follows: when a condition occurs, the appropriate bit in the condition register is set or cleared. If the corresponding transition filter is enabled for that bit, the same bit is set in the associated event register. The contents of the event register and the enable mask are logically ANDed bit-for-bit; if any bit of the result is set, the summary bit for that register is set in the status byte. The status byte summary bit for the Operation status register is bit 7; for the Questionable Signal status register, bit 3.

Operation Status Register
All bits are always 0. This register is implemented only for SCPI compatibility purposes.

Questionable Signal Status Register
All bits are always 0. This register is implemented only for SCPI compatibility purposes.

Subsystem Syntax

```
:OPERation|QUESTionable
 :CONDition? [query only]
 :ENABle <unmask> [:EVENt]? [query only]
 :NTRansition <unmask>
 :PTRansition <unmask>
 :PRESet [no query]
```

:OPERation|QUESTionable:CONDition?

`STATus:OPERation|QUESTionable:CONDition?` returns the contents of the appropriate condition register. Reading the register does not affect its contents.

Comments
- **Executable when initiated**: Yes
- **Coupling group**: none
- **Related commands**: STATus subsystem, *SRE, *STB?
- ***RST Condition**: all bits of both condition registers are cleared as a result of the state present after *RST.
Example Querying the Operation condition register

\texttt{STAT:OPER?}

\textit{Query Operation condition register}

\textbf{STATus:OPERation|QUEStionable:ENABle}

\texttt{STATus:OPERation|QUEStionable:ENABle <unmask>} specifies which bits of the associated event register are included in its summary bit. The summary bit is the bit-for-bit logical AND of the event register and the unmasked bit(s).

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>unmask</td>
<td>numeric or non-decimal numeric</td>
<td>0 through +32767</td>
<td>none</td>
</tr>
</tbody>
</table>

The non-decimal numeric forms are the \#H, \#Q, or \#B formats specified by IEEE-488.2.

Comments
- Executable when initiated: Yes
- Coupling group: none
- Related commands: STATus subsystem, *SRE, *STB?
- *RST Condition: unaffected
- Power-on Condition: STATus:OPERation|QUEStionable:ENABLE 0

\textbf{:OPERation|QUEStionable[:EVENt]?}

\texttt{STATus:OPERation|QUEStionable[:EVENt]?} returns the contents of the appropriate event register. Reading the register clears it to 0.

Comments
- Both event registers are also cleared to 0 by the *CLS common command.
- Executable when initiated: Yes
- Coupling group: none
- Related commands: STATus subsystem, *SRE, *STB?
- *RST Condition: unaffected
- Power-on Condition: Both event registers are cleared to 0.

Example Querying the Operation event register
STATus :OPERation|QUESTionable:NTRansition

STAT:EVEN?

Query Operation event register

:OPERation|QUESTionable:NTRansition

`STATus:OPERation|QUESTionable:NTRansition <unmask>` sets the negative transition mask. For each bit unmasked, a 1-to-0 transition of that bit in the associated condition register will set the same bit in the associated event register.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>unmask</td>
<td>numeric or non-decimal numeric</td>
<td>0 through +32767</td>
<td>none</td>
</tr>
</tbody>
</table>

The non-decimal numeric forms are the #H, #Q, or #B formats specified by IEEE-488.2.

Comments

- **Executable when initiated:** Yes
- **Coupling group:** none
- **Related commands:** STATus subsystem, *SRE, *STB?
- ***RST Condition:** unaffected
- **Power-on Condition:** `STATUS:OPERation|QUESTionable:NTRansition 0`

:OPERation|QUESTionable:PTRansition

`STATus:OPERation|QUESTionable:PTRansition <unmask>` sets the positive transition mask. For each bit unmasked, a 0-to-1 transition of that bit in the associated condition register will set the same bit in the associated event register.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>unmask</td>
<td>numeric or non-decimal numeric</td>
<td>0 through +32767</td>
<td>none</td>
</tr>
</tbody>
</table>

The non-decimal numeric forms are the #H, #Q, or #B formats specified by IEEE-488.2.
STATus :PRESet

Comments
• Executable when initiated: Yes
• Coupling group: none
• Related commands: STATus subsystem, *SRE, *STB?
• *RST Condition: unaffected
• Power-on Condition: STATUS:OPERation|QUESTionable:PTRansition 32767

:PRESet

STATus:PRESet initializes the enable registers and transition masks for the Operation and Questionable Signal status registers and sets STATus:OPC:INITiate ON. For both status registers, the enable registers are set to 0, the negative transition masks are set to 0, and the positive transition masks are set to 32767.

Comments
• Executable when initiated: Yes
• Coupling group: none
• Related commands: STATus subsystem, *SRE, *STB?
• *RST Condition: none
The SYSTem subsystem returns error messages and the SCPI version number to which the Agilent E1446A complies.

Subsystem Syntax

```
SYSTem
:ERRor? [query only]
:VERSion? [query only]
```

:ERRor?

`SYSTem:ERROR?` returns the error messages in the error queue. See Appendix B for a listing of possible error numbers and messages.

Comments

- The Agilent E1446A places any generated errors into the error queue. The queue is first-in, first out. With several errors waiting in the queue, the `SYSTem:ERRor?` returns the oldest unread error message first.

- The error queue can hold 30 error messages. If the Agilent E1446A generates more than 30 messages that are not read, it replaces the last error message in the queue with error -350,”Too many errors”. No additional messages are placed into the queue until `SYSTem:ERRor?` reads some messages or the *CLS (clear status) command clears the queue.

- When the error queue is empty, `SYSTem:ERRor?` returns +0,”No error”.

- **Executable when initiated**: Yes

- **RST Condition**: unaffected

Example

Reading the error queue

```
SYST:ERR?  
```

Query the error queue

:VERSion?

`SYSTem:VERSion?` returns the SCPI version number to which the Agilent E1446A complies: “1991.0”.

Comment

- **Executable when initiated**: Yes

- **RST Condition**: none

3-22 E1446/E1445 Command Reference SYSTem Subsystem
Example Querying the SCPI revision

SYST:VERS?

Query SCPI revision
Table 3-1. Agilent E1446A/E1445A Command Quick Reference.

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>Commands</th>
</tr>
</thead>
</table>
| INPut[1] | INPut[1]:ATTenuation < attenuation>
| | INPut[1]:IMPedance < impedance> |
| INPut2 | INPut2:ATTenuation < attenuation>
| | INPut2:IMPedance < impedance> |
| OUTPut2 | OUTPut2:ATTenuation < attenuation>
| | OUTPut2:IMPedance < impedance>
| | OUTPut2:OVERload? | |
| | OUTPut2[:STATe] < mode> |
| | OUTPut2[:STATe]:ACTual? |
| OUTPut3 | OUTPut3:IMPedance < impedance> |
| OUTPut4 | OUTPut4:IMPedance < impedance> |
| SOURce2:VOLTage | SOURce2:VOLTage[:LEVel][:IMMediate]:OFFSet < voltage> |
| STATus | STATus:OPERation| QUESTionable:CONDition? |
| | STATus:OPERation| QUESTionable:ENABle < unmask> |
| | STATus:OPERation| QUESTionable[:EVENt]? |
| | STATus:OPERation| QUESTionable:NTRansition < unmask> |
| | STATus:OPERation| QUESTionable:PTRansition < unmask> |
| | STATus:PRESet |
| SYStem | SYStem:ERRor? |
| | SYStem:VERsion? |
Agilent E1446 / E1405/06 Commands
The DISPlay subsystem enables the amplifier’s settings (e.g. input impedance, input attenuation, output impedance, output attenuation, ...) to be monitored. When a display terminal is connected to the E1405 Command Module and monitor mode is enabled, the E1446A amplifier settings (and changes to the settings) are shown on the terminal.

Subsystem Syntax

```plaintext
DISPlay
  :MONitor
    [:STATe] <mode>
```

:MONitor[:STATe]

DISPlay:MONitor[:STATe] <state> enables/disables the monitor mode. Setting the state to ‘ON’ or ’1’ enables monitor mode. ‘OFF’ or ’0’ turns monitor mode off.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode</td>
<td>boolean</td>
<td>OFF</td>
<td>0</td>
</tr>
</tbody>
</table>

Comments

- Coupling group: none
- *RST Condition: DISPlay:MONitor:STATe OFF

Example

Enabling Monitor Mode

DISP:MON:STAT ON

enable monitor mode
The INPut[1] subsystem controls the input attenuation and impedance of the Agilent E1446A’s “Input 1” BNC.

Subsystem Syntax

```
INPut[1]
 :ATTenuation <attenuation>
 :IMPedance <impedance>
```

:ATTenuation

INPut[1]:ATTenuation <attenuation> controls the input attenuator of the “Input 1” BNC. Input attenuation can range from 0 to 31 dB in 1 dB steps.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>impedance</td>
<td>numeric</td>
<td>0 through 31.0</td>
<td>MINimum</td>
</tr>
</tbody>
</table>

MINimum selects 0 dB attenuation; MAXimum selects 31 dB.

Comments

- **Coupling group:** none
- **RST Condition:** INPut1:ATTenuation 0

Example

Setting 20 dB input attenuation

```
INP:ATT 20
```

Set 20 dB input attenuation

:IMPedance

INPut[1]:IMPedance <impedance> sets the input impedance of the “Input 1” BNC to either 50Ω, 75Ω, or 1 MΩ.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>impedance</td>
<td>numeric</td>
<td>50</td>
<td>75</td>
</tr>
</tbody>
</table>

MINimum selects 50Ω input impedance; MAXimum selects 1 MΩ.
Comments

- Coupling group: none
- *RST Condition: INPut1:IMPedance 50

Example

Setting 75 Ω input impedance

`INP:IMP 75`
Set 75 Ω input impedance
The INPut2 subsystem controls the input attenuation and impedance of the Agilent E1446A’s “Input 2” BNC.

Subsystem Syntax

```
INPut2
   :ATTenuation <attenuation>
   :IMPedance <impedance>
```

:ATTenuation

INPut2:ATTenuation <attenuation> controls the input attenuator of the “Input 2” BNC. Input attenuation can range from 0 to 31 dB in 1 dB steps.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>impedance</td>
<td>numeric</td>
<td>0 through 31.0</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MINimum</td>
<td>MAXimum</td>
</tr>
</tbody>
</table>

Minimum selects 0 dB attenuation; Maximum selects 31 dB.

Comments

- **Coupling group:** none
- **RST Condition:** INPut2:ATTenuation 0

Example Setting 20 dB input attenuation

```
INP2:ATT 20
```

Set 20 dB input attenuation

:IMPedance

INPut2:IMPedance <impedance> sets the input impedance of the “Input 2” BNC to either 50Ω, 75Ω, or 1 MΩ.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>impedance</td>
<td>numeric</td>
<td>50</td>
<td>75</td>
</tr>
</tbody>
</table>

Minimum selects 50Ω input impedance; Maximum selects 1 MΩ.
Comments

- **Coupling group**: none
- **RST Condition**: INPut2:IMPedance 50

Example

Setting 75 Ω input impedance

INP2:IMP 75

Set 75 Ω input impedance
The OUTPut1 subsystem controls the characteristics of the Agilent E1446A’s “Main Output” BNC. The subsystem sets the output attenuation, sets the output source impedance, monitors overload conditions, and enables or disables the output.

Subsystem Syntax

```
OUTPut1
  :ATTenuation <attenuation>
  :IMPedance <impedance>
  :OVERload? [query only]
  [:STATe] <mode> [query only]
  :ACTual? [query only]
```

:ATTenuation

`OUTPut1:ATTenuation <attenuation>` controls the output attenuator of the “Main Output” BNC. Either no attenuation or 20 dB may be selected when `OUTPut1:IMPedance` is set to either 50Ω or 75Ω. `OUTPut1:ATTenuation` must be set to 0 dB when `OUTPut1:IMPedance` is set to 0Ω.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>impedance</td>
<td>numeric</td>
<td>0</td>
<td>20.0</td>
</tr>
</tbody>
</table>

MINimum selects 0 dB attenuation; MAXimum selects 20 dB.

Comments
- **Coupling group:** Power amplifier
- **RST Condition:** `OUTPut1:ATTenuation 0`

Example

Setting 20 dB output attenuation

```
OUTP1:ATT 20
```

Set 20 dB output attenuation

:IMPedance

`OUTPut1:IMPedance <impedance>` sets the output impedance of the “Main Output” BNC to either 0Ω, 50Ω, or 75Ω.

`OUTPut1:IMPedance 0` should be selected when an open-circuit or high-impedance load is connected to the output of the Agilent E1446A. The matching impedance is removed from the amplifier output. Also, the `OUTPUT1` offset voltage into an open-circuit is twice that into a matched load. Setting `OUTPut1:IMPedance 0` compensates for this effect so that the `SOURce:VOLTage:LEVel:IMMediate:OFFSet` command will output the specified voltage into an open circuit.
When OUTPut1:IMPedance is set to either 50Ω or 75Ω, either no output attenuation or 20 dB may be selected. OUTPut1:ATTenuation must be set to 0dB when OUTPut1:IMPedance is set to 0Ω.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>impedance</td>
<td>numeric</td>
<td>0</td>
<td>50</td>
</tr>
</tbody>
</table>

MINimum selects 0Ω output impedance; MAXimum selects 75Ω.

Comments
- Coupling group: Power amplifier
- Related commands: SOURce:VOLTage:LEVel:IMMediate:OFFSet and OUTPut1:ATTenuation
- *RST Condition: OUTPut1:IMPedance 50

Example
Setting 75Ω output impedance
OUTP1:IMP 75

Set 75 Ω output impedance

:OVERload?

OUTPut1:OVERload? determines if an overload condition exists by reading bit 11 of the amplifier’s status register (Appendix C).

Comments
- A one (1) returned in response to the query indicates an overload condition exists. A zero (0) indicates there is not an overload condition.
- Coupling group: none
- *RST Condition: none

Example
Determining if an overload condition exists
OUTP1:OVER?

determine if overload condition exists
OUTPut1 [:STATe]

[:STATe]

OUTPut1[:STATe] <mode> closes or opens the output relay of the “Main Output” BNC to enable or disable the analog output. When disabled, the output appears as an open circuit.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode</td>
<td>boolean</td>
<td>OFF</td>
<td>0</td>
</tr>
</tbody>
</table>

Comments
- Coupling group: none
- *RST Condition: OUTPut1:STATe ON
- The output relay will be opened automatically if an output current overload occurs.

Example
Disabling the output
OUTP1 OFF

[STATe]:ACTual?

OUTPut1[:STATe]:ACTual? determines if the amplifier’s ‘Main Output’ BNC is enabled or has been disabled due to an overload condition. The determination is done by reading bit 8 of the amplifier’s Status register (Appendix C).

Comments
- A one (1) returned in response to the query indicates the ‘Main Output’ BNC is enabled. A zero (0) indicates the output is disabled.
- Coupling group: none
- *RST Condition: none

Example
Determining if the output is enabled
OUTP1:STAT:ACT? determine if the output is enabled
The OUTPut2 subsystem controls the output impedance of the Agilent E1446A’s “Diff Output +” output.

Subsystem Syntax

```
OUTPut2
 :IMPedance <impedance>
```

:IMPedance

`OUTPut2:IMPedance <impedance>` sets the output impedance “Diff Output +” BNC to either 50Ω or 75Ω.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>impedance</td>
<td>numeric</td>
<td>50</td>
<td>75</td>
</tr>
</tbody>
</table>

MINimum selects 50Ω output impedance; MAXimum selects 75Ω.

Comments

- **Coupling group:** none
- **:*RST Condition:** OUTPut2:IMPedance 50

Example

- **Setting 75 Ω output impedance**

  ```
  OUTP2:IMP 75  
  ```

 Set 75 Ω output impedance
The OUTPut3 subsystem controls the output impedance of the Agilent E1446A’s “Diff Output -” output.

Subsystem Syntax

```
OUTPut3
 :IMPedance <impedance>
```

:IMPedance

```
OUTPut3:IMPedance <impedance> sets the output impedance “Diff Output -” BNC to either 50Ω or 75Ω.
```

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>impedance</td>
<td>numeric</td>
<td>50</td>
<td>75</td>
</tr>
</tbody>
</table>

MINimum selects 50Ω output impedance; MAXimum selects 75Ω.

Comments

- **Coupling group**: none
- ***RST Condition**: OUTPut3:IMPedance 50

Example

Setting 75 Ω output impedance

```
OUTP3:IMP 75
```

Set 75 Ω output impedance
The SOURce:VOLTage subsystem controls the output offset voltage at the Agilent E1446A “Main Output” BNC.

Subsystem Syntax

```plaintext
[SOURce] :VOLTage [:LEVel][:IMMediate] :OFFSet <voltage>
```

[:LEVel][:IMMediate]:OFFSet

SOURce:VOLTage[:LEVel][:IMMediate]:OFFSet <voltage> sets the offset voltage of the “Main Output” BNC. Output offset level is programmed in volts.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>-9.999695 to +10.0</td>
<td>MINimum</td>
</tr>
</tbody>
</table>

MINimum selects -9.999695; MAXimum selects +10.0.

The above limits are doubled if OUTPut:IMPedance 0 is set.

The combination of input levels and offset voltage must produce a voltage that remains within the Agilent E1446A’s output voltage specification. Significant distortion of the waveform will occur when the combination of input levels and offset voltage exceeds the specification.

Comments

- **Coupling group:** Power amplifier
- **Related commands:** OUTPut1:IMPedance
- ***RST Condition:** SOURce:VOLTage:LEVel:IMMediate:OFFSet 0 V

Example

Setting offset voltage

SOUR:VOLT:OFFS 3
Set offset voltage to 3 volts
The STATus subsystem controls the SCPI-defined Operation and Questionable Signal status registers. Each is comprised of a condition register, an event register, an enable mask, and negative and positive transition filters.

Each status register works as follows: when a condition occurs, the appropriate bit in the condition register is set or cleared. If the corresponding transition filter is enabled for that bit, the same bit is set in the associated event register. The contents of the event register and the enable mask are logically ANDed bit-for-bit; if any bit of the result is set, the summary bit for that register is set in the status byte. The status byte summary bit for the Operation status register is bit 7; for the Questionable Signal status register, bit 3.

Operation Status Register
All bits are always 0. This register is implemented only for SCPI compatibility purposes.

Questionable Signal Status Register
All bits are always 0. This register is implemented only for SCPI compatibility purposes.

Subsystem Syntax
```
SUBSystem STATus

:OPERation|QUEStionable:CONDition?
:ENABle <unmask>
[:EVENt]?
:NTRansition <unmask>
:PTRANSition <unmask>
:PRESet
```

:OPERation|QUEStionable:CONDition?
STATus:OPERation|QUEStionable:CONDition? returns the contents of the appropriate condition register. Reading the register does not affect its contents.

Comments
- **Executable when initiated:** Yes
- **Coupling group:** none
- **Related commands:** STATus subsystem, *SRE, *STB?
- ***RST Condition:** all bits of both condition registers are cleared as a result of the state present after *RST.

Example
Querying the Operation condition register
```
STAT:OPER?
```
Query Operation condition register
:OPERation|QUESTionable:ENABLE

STATus:OPERation|QUESTionable:ENABLE

STATus:OPERation|QUESTionable:ENABLE <unmask> specifies which bits of the associated event register are included in its summary bit. The summary bit is the bit-for-bit logical AND of the event register and the unmasked bit(s).

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>unmask</td>
<td>numeric or non-decimal numeric</td>
<td>0 through +32767</td>
<td>none</td>
</tr>
</tbody>
</table>

The non-decimal numeric forms are the #H, #Q, or #B formats specified by IEEE-488.2.

Comments
- **Executable when initiated:** Yes
- **Coupling group:** none
- **Related commands:** STATus subsystem, *SRE, *STB?
- ***RST Condition:** unaffected
- **Power-on Condition:** STATUS:OPERation|QUESTionable:ENABLE 0

:OPERation|QUESTionable[:EVENt]?

STATus:OPERation|QUESTionable[:EVENt] returns the contents of the appropriate event register. Reading the register clears it to 0.

Comments
- **Both event registers are also cleared to 0 by the *CLS common command.**
- **Executable when initiated:** Yes
- **Coupling group:** none
- **Related commands:** STATus subsystem, *SRE, *STB?
- ***RST Condition:** unaffected
- **Power-on Condition:** Both event registers are cleared to 0.

Example

Querying the Operation event register

STAT:EVEN?

Query Operation event register
STATus :OPERation|QUEStionable:NTRansition

:OPERation|QUEStionable:NTRansition

STATus:OPERation|QUEStionable:NTRansition <unmask> sets the negative transition mask. For each bit unmasked, a 1-to-0 transition of that bit in the associated condition register will set the same bit in the associated event register.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>unmask</td>
<td>numeric or non-decimal numeric</td>
<td>0 through +32767</td>
<td>none</td>
</tr>
</tbody>
</table>

The non-decimal numeric forms are the #H, #Q, or #B formats specified by IEEE-488.2.

Comments

- Executable when initiated: Yes
- Coupling group: none
- Related commands: STATus subsystem, *SRE, *STB?
- *RST Condition: unaffected
- Power-on Condition: STATus:OPERation|QUEStionable:NTRansition 0

:OPERation|QUEStionable:PTRansition

STATus:OPERation|QUEStionable:PTRansition <unmask> sets the positive transition mask. For each bit unmasked, a 0-to-1 transition of that bit in the associated condition register will set the same bit in the associated event register.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>unmask</td>
<td>numeric or non-decimal numeric</td>
<td>0 through +32767</td>
<td>none</td>
</tr>
</tbody>
</table>

The non-decimal numeric forms are the #H, #Q, or #B formats specified by IEEE-488.2.

Comments

- Executable when initiated: Yes
- Coupling group: none
- Related commands: STATus subsystem, *SRE, *STB?
• **RST Condition**: unaffected

• **Power-on Condition**: STATUS:OPERation|QUESTionable:PTRansition 32767

STATus :PRESet

STATus:PRESet initializes the enable registers and transition masks for the Operation and Questionable Signal status registers and sets *STATus:OPC:INITiate* ON. For both status registers, the enable registers are set to 0, the negative transition masks are set to 0, and the positive transition masks are set to 32767.

Comments

• **Executable when initiated**: Yes

• **Coupling group**: none

• **Related commands**: STATus subsystem, *SRE, *STB?

• **RST Condition**: none
The SYSTem subsystem returns error messages and the SCPI version number to which the Agilent E1446A complies.

Subsystem Syntax

```
SYSTem
  :ERRor?       [query only]
  :VERSion?     [query only]
```

:ERRor?

`SYSTem:ERROR?` returns the error messages in the error queue. See Appendix B for a listing of possible error numbers and messages.

Comments

- The Agilent E1446A places any generated errors into the error queue. The queue is first-in, first out. With several errors waiting in the queue, the `SYSTem:ERRor?` returns the oldest unread error message first.

- The error queue can hold 30 error messages. If the Agilent E1446A generates more than 30 messages that are not read, it replaces the last error message in the queue with error -350,"Too many errors". No additional messages are placed into the queue until `SYSTem:ERRor?` reads some messages or the *CLS (clear status) command clears the queue.

- When the error queue is empty, `SYSTem:ERRor?` returns +0,"No error".

- **Executable when initiated:** Yes

- **RST Condition:** unaffected

- **Power-On Condition:** no errors are in the error queue

Example

Reading the error queue

```
SYST:ERR?
```

Query the error queue

:VERSion?

`SYSTem:VERSion?` returns the SCPI version number to which the Agilent E1446A complies: “1991.0”.

Comment

- **Executable when initiated:** Yes

- **RST Condition:** none
Example

Querying the SCPI revision

SYST:VERS?

Query SCPI revision
Table 3-1. Agilent E1446A/E1405/06 Command Quick Reference.

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISPlay</td>
<td>DISPlay:MONitor[:STATE] < mode></td>
</tr>
<tr>
<td>INPut[1]</td>
<td>INPut[1]:ATTenuation < attenuation></td>
</tr>
<tr>
<td></td>
<td>INPut[1]:IMPedance < impedance></td>
</tr>
<tr>
<td>INPut2</td>
<td>INPut2:ATTenuation < attenuation></td>
</tr>
<tr>
<td></td>
<td>INPut2:IMPedance < impedance></td>
</tr>
<tr>
<td>OUTPut1</td>
<td>OUTPut1:ATTenuation < attenuation></td>
</tr>
<tr>
<td></td>
<td>OUTPut1:IMPedance < impedance></td>
</tr>
<tr>
<td></td>
<td>OUTPut1:OVERload?</td>
</tr>
<tr>
<td></td>
<td>OUTPut1[:STATE] < mode></td>
</tr>
<tr>
<td></td>
<td>OUTPut1[:STATE]:ACTual?</td>
</tr>
<tr>
<td>OUTPut2</td>
<td>OUTPut2:IMPedance < impedance></td>
</tr>
<tr>
<td>OUTPut3</td>
<td>OUTPut3:IMPedance < impedance></td>
</tr>
<tr>
<td>SOURce:VOLTage</td>
<td>SOURce:VOLTage[:LEVEL][:IMMediate]:OFFSet < voltage></td>
</tr>
<tr>
<td>STATus</td>
<td>STATus:OPERation</td>
</tr>
<tr>
<td></td>
<td>STATus:PRESet</td>
</tr>
<tr>
<td>SYSTem</td>
<td>SYSTem:ERRor?</td>
</tr>
<tr>
<td></td>
<td>SYSTem:VERsion?</td>
</tr>
</tbody>
</table>
IEEE-488.2 Common Commands

and

SCPI Conformance Information
This section describes the IEEE-488.2 Common Commands implemented in the Agilent E1446A. The table below shows the commands listed by functional group; however, commands are listed alphabetically in the reference. Examples are shown in the reference when the command has parameters or returns a non-trivial response; otherwise, the command string is as shown in the table. For additional information, refer to IEEE Standard 488.2-1987.

<table>
<thead>
<tr>
<th>Category</th>
<th>Command</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Data</td>
<td>*IDN?</td>
<td>Identification Query</td>
</tr>
<tr>
<td>Internal Operations</td>
<td>*LRN?</td>
<td>Learn Device Setup Query</td>
</tr>
<tr>
<td></td>
<td>*RST</td>
<td>Reset Command</td>
</tr>
<tr>
<td></td>
<td>*TST?</td>
<td>Self Test Query</td>
</tr>
<tr>
<td>Synchronization</td>
<td>*OPC</td>
<td>Operation Complete Command</td>
</tr>
<tr>
<td></td>
<td>*OPC?</td>
<td>Operation Complete Command</td>
</tr>
<tr>
<td></td>
<td>*WAI</td>
<td>Wait-to-Continue Command</td>
</tr>
<tr>
<td>Macro</td>
<td>*DMC <name>,<data></td>
<td>Define Macro Command</td>
</tr>
<tr>
<td></td>
<td>*EMC <enable></td>
<td>Enable Macro Command</td>
</tr>
<tr>
<td></td>
<td>*EMC?</td>
<td>Enable Macro Query</td>
</tr>
<tr>
<td></td>
<td>*GMC? <name></td>
<td>Get Macro Contents Query</td>
</tr>
<tr>
<td></td>
<td>*LMC?</td>
<td>Learn Macro Query</td>
</tr>
<tr>
<td></td>
<td>*PMC</td>
<td>Purge Macros Command</td>
</tr>
<tr>
<td></td>
<td>*RMC <name></td>
<td>Remove Individual Macro Command</td>
</tr>
<tr>
<td>Status & Event</td>
<td>*CLS</td>
<td>Clear Status Command</td>
</tr>
<tr>
<td></td>
<td>*ESE <mask></td>
<td>Standard Event Status Enable Command</td>
</tr>
<tr>
<td></td>
<td>*ESE?</td>
<td>Standard Event Status Enable Query</td>
</tr>
<tr>
<td></td>
<td>*ESR?</td>
<td>Standard Event Status Register Query</td>
</tr>
<tr>
<td></td>
<td>*SRE</td>
<td>Service Request Enable Command</td>
</tr>
<tr>
<td></td>
<td>*SRE?</td>
<td>Service Request Enable Query</td>
</tr>
<tr>
<td></td>
<td>*STB?</td>
<td>Read Status Byte Query</td>
</tr>
<tr>
<td>Stored Settings</td>
<td>*RCL</td>
<td>Recall Command</td>
</tr>
<tr>
<td></td>
<td>*SAV</td>
<td>Save Command</td>
</tr>
</tbody>
</table>
*CLS

*CLS clears the Standard Event Status Register, the Operation Status Register, the Questionable Signal Register, and the error queue. This clears the corresponding summary bits (3, 5, & 7) in the Status Byte Register. *CLS does not affect the enable masks of any of the status registers.

Comments
- Executable when initiated: Yes
- Coupling group: none
- Related Commands: STATus:PRESet
- *RST Condition: none

*DMC

*DMC <name>,<data> creates a macro with the specified name and assigns zero, one, or a sequence of commands to the name. The sequence may be composed of SCPI and/or Common Commands. The sequence must be sent in IEEE-488.2 definite or indefinite block format.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>name</td>
<td>string data</td>
<td>1 through 12 characters</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>data</td>
<td>block data or string</td>
<td>any valid command sequence</td>
<td>none</td>
</tr>
</tbody>
</table>

Comments
- Legal macro names must start with an alphabetic character and contain only alphabetic, numeric, and underscore ("_") characters. Alphabetic character case (upper vs. lower) is ignored.

The name is allowed to be the same as a SCPI command, but may be not be the same as a Common Command. When the name is the same as a SCPI command, the macro rather than the command will be executed when the name is received if macro usage is enabled. The SCPI command will be executed if macro usage is disabled.

- Executable when initiated: Yes
- Coupling group: none
- Related Commands: *EMC, *GMC, *LMC, *RMC

3-26 Command Reference IEEE-488.2 Common Commands
RST Condition: none; macro definitions are unaffected

Power-On Condition: no macros are defined

Example
Define macro to set 'Input 1' impedance
`*DMC "RESTART","INP1:IMP 50"`
Define macro

*EMC and *EMC?

*EMC <enable> enables and disables macro usage. When `enable` is zero, macros usage is disabled. Any non-zero value enables macro usage.

The query form returns 1 if macro usage is enabled, 0 if disabled.

Comments
- Macro definitions are not affected by this command.
- Executable when initiated: Yes
- Coupling group: none
- **RST Condition:** macro usage is disabled
- **Power-On Condition:** macro usage is enabled

*ESE and *ESE?

*ESE <mask> enables one or more event bits of the Standard Event Status Register to be reported in bit 5 (the Standard Event Status Summary Bit) of the Status Byte Register. `Mask` is the sum of the decimal weights of the bits to be enabled.

The query form returns the current enable mask.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>mask</code></td>
<td>numeric</td>
<td>0 through 255</td>
<td>none</td>
</tr>
</tbody>
</table>

A 1 in a bit position enables the corresponding event; a 0 disables it.

Comments
- Executable when initiated: Yes
- Coupling group: none
- Related Commands: *ESR?, *SRE, *STB?
- **RST Condition:** unaffected
ESR?

- **Power-On Condition:** no events are enabled

Example

Enable all error events

```
*ESE 60
```

Enable error events

ESR?

ESR? returns the value of the Standard Event Status Register. The register is then cleared (all bits 0).

Comments

- Executable when initiated: Yes
- **Coupling group:** none
- **RST Condition:** none
- **Power-On Condition:** register is cleared

GMC?

GMC? <name> returns the definition of the specified macro in IEEE-488.2 definite block format.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>string data</td>
<td>defined macro name</td>
<td>none</td>
</tr>
</tbody>
</table>

Comments

- Executable when initiated: Yes
- **Coupling group:** none
- **Related Commands:** *DMC
- **RST Condition:** none
- **Power-On Condition:** no macros are defined
Example Query macro definition

*GMC? "RESTART"

*IDN? Query macro definition

*IDN? returns identification information for the E1446A. The response consists of four fields:

HEWLETT-PACKARD,E1446A,0,A.01.00

The first two fields identify this instrument as model number E1446A manufactured by Agilent Technologies. The third field is 0 since the serial number of the E1446A is unknown to the firmware. The last field indicates the revision level of the firmware.

Note

The firmware revision field will change whenever the firmware is revised. A.01.00 is the initial revision. The first two digits indicate the major revision number, and increment when functional changes are made. The last two digits indicate bug fix level.

Comments

• Executable when initiated: Yes
• Coupling group: none
• *RST Condition: none

*LMC? Query macro definition

*LMC? returns a comma-separated list of quoted strings, each containing the name of a macro. If no macros are defined, a single null string ("") is returned.

Comments

• Executable when initiated: Yes
• Coupling group: none
• Related Commands: *DMC
• *RST Condition: none
• Power-On Condition: no macros are defined
*LRN?

*LRN? returns a sequence of commands that may be resent to the Agilent E1446A to return it to its current programming state.

Note

*LRN? should be sent singly in a program message, since the number of commands in the returned sequence is large, and may vary depending on firmware revision.

Comments

• Executable when initiated: Yes
• Coupling group: none
• Related commands: *RCL, *RST, *SAV
• *RST Condition: none

*OPC

*OPC causes the E1446A to wait for all pending commands to complete. The Operation Complete bit (bit 0) in the Standard Event Status Register is then set.

Comments

• Executable when initiated: Yes
• Coupling group: none
• Related commands: *OPC?, *WAI
• *RST Condition: none

*OPC?

*OPC? causes the E1446A to wait for all pending commands to complete. A single ASCII “1” is then placed in the output queue.

Comments

• Executable when initiated: Yes
• Coupling group: none
• Related commands: *OPC, *WAI
• *RST Condition: none
*PMC

*PMC purges all macro definitions.

Comments
- Use the *RMC command to purge an single macro definition.
- Executable when initiated: Yes
- Coupling group: none
- Related commands: *DMC, *RMC
- *RST Condition: none

*RCL

*RCL <number> restores a previously stored programming state from one of the 10 possible stored state areas. *Number indicates which of the stored state areas should be used.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>number</td>
<td>numeric</td>
<td>0 through 9</td>
<td>none</td>
</tr>
</tbody>
</table>

Comments
- Executable when initiated: No
- Coupling group: none
- Related Commands: *LRN?, *RST, *SAV
- *RST Condition: unaffected
- Power-on Condition: all saved states set to the same state as the *RST state

*RMC

*RMC <name> purges only the specified macro definition.

NOTE: At printing time, *RMC is a command proposed and accepted for a revision and re-designation of IEEE-488.2.

Comments
- Use the *PMC command to purge all macro definitions in one command.
- Executable when initiated: Yes
- Coupling group: none
• **Related commands:** *DMC, *PMC

• **RST Condition:** none

RST resets the Agilent E1446A as follows:

- Sets all commands to their *RST state.
- Aborts all pending operations including waveform generation.

RST does not affect:

- The output queue
- The Service Request Enable Register
- The Standard Event Status Enable Register
- The enable masks for the OPERation Status and Questionable Signal registers

Comments

- **Executable when initiated:** Yes
- **Coupling group:** none
- **RST Condition:** none

SAV

SAV <number> stores the current programming state into one of the 10 possible stored state areas. *Number* indicates which of the stored state areas should be used.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>number</td>
<td>numeric</td>
<td>0 through 9</td>
<td>none</td>
</tr>
</tbody>
</table>

Comments

- **Executable when initiated:** No
- **Coupling group:** none
- **Related Commands:** *LRN?, *RCL, *RST
- **RST Condition:** unaffected
- **Power-on Condition:** all saved states set to the same state as the *RST state
SRE and *SRE?

SRE <mask> specifies which bits of the Status Byte Register are enabled to generate a service request. Event and summary bits are always set and cleared in the Status Byte Register regardless of the enable mask. *Mask* is the sum of the decimal weights of the bits to be enabled.

The query form returns the current enable mask.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>mask</td>
<td>numeric</td>
<td>0 through 255</td>
<td>none</td>
</tr>
</tbody>
</table>

A 1 in a bit position enables service request generation when the corresponding Status Byte Register bit is set; a 0 disables it.

Comments
- **Executable when initiated:** Yes
- **Coupling group:** none
- ***RST Condition:** unaffected
- **Power-On Condition:** no bits are enabled

Example
Enable service request on Message Available bit

*SRE 16

Enable request on MAV

STB?

STB? returns the value of the Status Byte Register. Bit 6 (decimal weight 64) is set if a service request is pending. STB? should not be used to read the Status Byte register if a service request is generated by a message available (MAV) condition.

Comments
- ***STB?** is a query. Thus, sending the command in response to a MAV condition will generate Error -410 "Query interrupted".
- **Executable when initiated:** Yes
- **Coupling group:** none
- **Related commands:** *SRE
- ***RST Condition:** none
*TST?

*TST? causes the E1446A to execute its internal self-test and return a value indicating the results of the test. Only communication between the command module and the on-card registers is tested.

A zero (0) response indicates that the self-test passed. A one (1) response indicates that the test failed. The failure also generates an error message with additional information on why the test failed.

When the test completes, all other commands are restored to their current values when the E1446A is used with the E1405/06. When the E1446A is used with the E1445A, the commands are set to their *RST values.

Comments
- Executable when initiated: No
- Coupling group: none
- *RST Condition: none

*WAI

*WAI causes the E1446A to wait for all pending commands to complete before executing any further commands.

Comments
- Executable when initiated: Yes
- Coupling group: none
- Related commands: *OPC, *OPC?
- *RST Condition: none
SCPI Conformance Information

The Agilent E1446A Summing Amplifier/DAC conforms to the SCPI-1991.0 standard.

The following tables list all the SCPI confirmed, approved, and non-SCPI commands that the Agilent E1446A can execute.

Table 3-2. SCPI Confirmed Commands (E1446A/E1445A).

<table>
<thead>
<tr>
<th>Command</th>
<th>Command</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPut[1]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:ATTenuation</td>
<td>:ATTenuation</td>
<td>:ATTenuation</td>
</tr>
<tr>
<td><attenuation></td>
<td><attenuation></td>
<td><attenuation></td>
</tr>
<tr>
<td>:IMPedance</td>
<td>:IMPedance</td>
<td>:IMPedance</td>
</tr>
<tr>
<td><impedance></td>
<td><impedance></td>
<td><impedance></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INPut2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:ATTenuation</td>
<td>:ATTenuation</td>
<td>:ATTenuation</td>
</tr>
<tr>
<td><attenuation></td>
<td><attenuation></td>
<td><attenuation></td>
</tr>
<tr>
<td>:IMPedance</td>
<td>:IMPedance</td>
<td>:IMPedance</td>
</tr>
<tr>
<td><impedance></td>
<td><impedance></td>
<td><impedance></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OUTPut1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:ATTenuation</td>
<td>:ATTenuation</td>
<td>:ATTenuation</td>
</tr>
<tr>
<td><attenuation></td>
<td><attenuation></td>
<td><attenuation></td>
</tr>
<tr>
<td>:IMPedance</td>
<td>:IMPedance</td>
<td>:IMPedance</td>
</tr>
<tr>
<td><impedance></td>
<td><impedance></td>
<td><impedance></td>
</tr>
<tr>
<td>[:STATE] <mode></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OUTPut2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:ATTenuation</td>
<td>:ATTenuation</td>
<td>:ATTenuation</td>
</tr>
<tr>
<td><attenuation></td>
<td><attenuation></td>
<td><attenuation></td>
</tr>
<tr>
<td>:IMPedance</td>
<td>:IMPedance</td>
<td>:IMPedance</td>
</tr>
<tr>
<td><impedance></td>
<td><impedance></td>
<td><impedance></td>
</tr>
<tr>
<td>[:STATE] <mode></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OUTPut3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:IMPedance</td>
<td>:IMPedance</td>
<td>:IMPedance</td>
</tr>
<tr>
<td><impedance></td>
<td><impedance></td>
<td><impedance></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OUTPut4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:IMPedance</td>
<td>:IMPedance</td>
<td>:IMPedance</td>
</tr>
<tr>
<td><impedance></td>
<td><impedance></td>
<td><impedance></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOURce2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:VOLTage</td>
<td>:VOLTage</td>
<td>:VOLTage</td>
</tr>
<tr>
<td>[:LEVEL]</td>
<td>[:LEVEL]</td>
<td>[:LEVEL]</td>
</tr>
<tr>
<td>[:IMMediate]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:OFFSet <voltage></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STATus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:OPERation</td>
<td>:OPERation</td>
<td>:OPERation</td>
</tr>
<tr>
<td>:QUESTionable</td>
<td>:QUESTionable</td>
<td>:QUESTionable</td>
</tr>
<tr>
<td>:CONDition?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:ENABLE <unmask></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:NTRansition <unmask></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:PTRansition <unmask></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:PRESet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:ERRor?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:VERSion?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3-3. SCPI Confirmed Commands (E1446A/E1405/06).

<table>
<thead>
<tr>
<th>Command</th>
<th>Command</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPut[1]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:ATTenuation</td>
<td>:ATTenuation</td>
<td>:ATTenuation</td>
</tr>
<tr>
<td><attenuation></td>
<td><attenuation></td>
<td><attenuation></td>
</tr>
<tr>
<td>:IMPedance</td>
<td>:IMPedance</td>
<td>:IMPedance</td>
</tr>
<tr>
<td><impedance></td>
<td><impedance></td>
<td><impedance></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INPut2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:ATTenuation</td>
<td>:ATTenuation</td>
<td>:ATTenuation</td>
</tr>
<tr>
<td><attenuation></td>
<td><attenuation></td>
<td><attenuation></td>
</tr>
<tr>
<td>:IMPedance</td>
<td>:IMPedance</td>
<td>:IMPedance</td>
</tr>
<tr>
<td><impedance></td>
<td><impedance></td>
<td><impedance></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OUTPut1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:ATTenuation</td>
<td>:ATTenuation</td>
<td>:ATTenuation</td>
</tr>
<tr>
<td><attenuation></td>
<td><attenuation></td>
<td><attenuation></td>
</tr>
<tr>
<td>:IMPedance</td>
<td>:IMPedance</td>
<td>:IMPedance</td>
</tr>
<tr>
<td><impedance></td>
<td><impedance></td>
<td><impedance></td>
</tr>
<tr>
<td>[:STATE] <mode></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OUTPut2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:ATTenuation</td>
<td>:ATTenuation</td>
<td>:ATTenuation</td>
</tr>
<tr>
<td><attenuation></td>
<td><attenuation></td>
<td><attenuation></td>
</tr>
<tr>
<td>:IMPedance</td>
<td>:IMPedance</td>
<td>:IMPedance</td>
</tr>
<tr>
<td><impedance></td>
<td><impedance></td>
<td><impedance></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OUTPut3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:IMPedance</td>
<td>:IMPedance</td>
<td>:IMPedance</td>
</tr>
<tr>
<td><impedance></td>
<td><impedance></td>
<td><impedance></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOURce2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:VOLTage</td>
<td>:VOLTage</td>
<td>:VOLTage</td>
</tr>
<tr>
<td>[:LEVEL]</td>
<td>[:LEVEL]</td>
<td>[:LEVEL]</td>
</tr>
<tr>
<td>[:IMMediate]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:OFFSet <voltage></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STATus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:OPERation</td>
<td>:OPERation</td>
<td>:OPERation</td>
</tr>
<tr>
<td>:QUESTionable</td>
<td>:QUESTionable</td>
<td>:QUESTionable</td>
</tr>
<tr>
<td>:CONDition?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:ENABLE <unmask></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:NTRansition <unmask></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:PTRansition <unmask></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:PRESet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:ERRor?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:VERSion?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3-4. Non-SCPI Commands.

<table>
<thead>
<tr>
<th>Agilent E1446A/E1445A</th>
<th>Agilent E1446A/E1405/06</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTPut2</td>
<td>DISPlay</td>
</tr>
<tr>
<td>:OVERload?</td>
<td>:MONitor</td>
</tr>
<tr>
<td>[:STATe]</td>
<td>[:STATe]</td>
</tr>
<tr>
<td>ACTual?</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agilent E1446A/E1445A</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTPut1</td>
<td></td>
</tr>
<tr>
<td>:OVERload?</td>
<td></td>
</tr>
<tr>
<td>[:STATe]</td>
<td></td>
</tr>
<tr>
<td>ACTual?</td>
<td></td>
</tr>
</tbody>
</table>
Appendix Contents

This appendix contains the Agilent E1446A Summing Amplifier/DAC operating specifications. Except as noted, the specifications apply under the following conditions:

- **Period:** 1 year
- **Temperature:** 0° - 55°C
- **Relative humidity:** ≤ 65% @ 0° - 40°C
- **Warm up time:** 1 hour

“Typical”, “typ”, or “nominal” values are non-warranted supplementary information provided for applications assistance.

Inputs

Number of Inputs: 2

Function: These inputs have independently adjustable attenuators (see below), and are summed into all outputs.

Connectors: BNC (ground-referenced)

Impedance: 50Ω, 75Ω, or 1 MΩ || 20pF (nominal)

Outputs

Main Output

Connector: BNC (ground-referenced)

Impedance: 50Ω, 75Ω, or Low-Z (less than 1Ω) (nominal)

Drive Capability: ± 10 volts DC into 50 or 75 Ω (Rout = 50 or 75 respectively)
± 20 volts DC into > 100Ω (Rout = Low Z)
Output current ≥ 200 mA
Short-circuit maximum ≤ 400 mA
Protection: Relay Trip. This disconnects the main output after either a voltage or a current overload of non-transient duration. The relay's state can be queried and reset by software control.

Differential Outputs

These are two outputs nominally out-of-phase.

Connectors: The + (in-phase) and - (antiphase) outputs have separate ground-referenced BNC connectors.

Impedance: 50 or 75 Ω, each side to ground

Drive Capability: ± 1V into 50 or 75 Ω

Gain Characteristics

Maximum voltage gain from either input (with all attenuators set to 0 dB; accuracies shown are for DC):

<table>
<thead>
<tr>
<th>Output</th>
<th>50/75 Ω load</th>
<th>High-Z load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main</td>
<td>10 ± 1.0 %</td>
<td>20 ± 1.0 %</td>
</tr>
<tr>
<td>Differential +</td>
<td>+1 ± 1.0 %</td>
<td>+2 ± 1.0 %</td>
</tr>
<tr>
<td>Differential -</td>
<td>-1 ± 1.0 %</td>
<td>-2 ± 1.0 %</td>
</tr>
</tbody>
</table>

Input channel attenuators: Each input channel has an independent attenuator adjustable from 0 to 31 dB in steps of 1 dB.

Main output attenuator: Two settings, 0 or 20 dB attenuation. (20 dB setting is not applicable when Rout = Low-Z.)

Attenuator DC accuracy: 0.1 dB for each attenuator

Offset

Main Output Offset is adjustable with a DAC:

Nominal Range: + to - maximum output voltage (i.e. ±10V or ±20V)

Resolution: 16 bits

Accuracy: ±0.5% of full-scale plus ±0.7% of setting

Differential Outputs: Offset accuracy is ±1% of maximum output
AC Characteristics

Frequency Response:

- Full-Power Bandwidth: 10 MHz, all outputs
- Small-Signal Bandwidth: 30 MHz, all outputs

General VXI Characteristics

- Size: C
- Slots: 1
- Connectors: P1, P2
- Weight (kg): 1.4
- Device Type: Register, A16, D16 Servant
- VXIbus Revision Compliance: 1.3
- Register Level Documentation: Yes
- SCPI Revision: 1991.0
- Manufacturer Code: 4095 Decimal
- Model Code: 419 Decimal

Currents in Amps (typical)

<table>
<thead>
<tr>
<th>Voltage</th>
<th>I(pm)</th>
<th>I(dm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+5V</td>
<td>0.36</td>
<td>0.04</td>
</tr>
<tr>
<td>+12V</td>
<td>0.2</td>
<td>0.06</td>
</tr>
<tr>
<td>-12V</td>
<td>0.08</td>
<td>0.05</td>
</tr>
<tr>
<td>+24V</td>
<td>0.36</td>
<td>0.27</td>
</tr>
<tr>
<td>-24V</td>
<td>0.34</td>
<td>0.27</td>
</tr>
<tr>
<td>-5.2V</td>
<td>0.22</td>
<td>0.04</td>
</tr>
<tr>
<td>-2V</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>+5Vs</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Typical Watts/Slot: 16
- dPressure (mm H2O): 0.14
- AirFlow (liters/s): 1.28
Agilent E1446A Error Messages

This appendix contains a list of error messages that may be received when programming the Agilent E1446A.

- Table B-1. Agilent E1446A Error Messages B-2
- Table B-2. Agilent E1446A Settings Conflict Errors with the Agilent E1405/06 B-4
- Table B-3. Agilent E1446A Settings Conflict Errors with the Agilent E1445A B-4
Table B-1. Agilent E1446A Error Messages

<table>
<thead>
<tr>
<th>Code</th>
<th>Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-101</td>
<td>Invalid character</td>
<td>Unrecognized character in parameter.</td>
</tr>
<tr>
<td>-102</td>
<td>Syntax error</td>
<td>Command is missing a space or comma between parameters.</td>
</tr>
<tr>
<td>-103</td>
<td>Invalid separator</td>
<td>Parameter is separated by a character other than a comma.</td>
</tr>
<tr>
<td>-104</td>
<td>Data type error</td>
<td>The wrong data type (number, character, string, expression) was used when specifying the parameter.</td>
</tr>
<tr>
<td>-108</td>
<td>Parameter not allowed</td>
<td>Parameter specified in a command which does not require one.</td>
</tr>
<tr>
<td>-109</td>
<td>Missing parameter</td>
<td>Command requires a parameter(s).</td>
</tr>
<tr>
<td>-112</td>
<td>Program mnemonic too long</td>
<td>Command keyword > 12 characters</td>
</tr>
<tr>
<td>-113</td>
<td>Undefined header</td>
<td>Command header (keyword) was incorrectly specified.</td>
</tr>
<tr>
<td>-121</td>
<td>Invalid character in number</td>
<td>A character other than a comma or number is in the middle of a number.</td>
</tr>
<tr>
<td>-123</td>
<td>Numeric overflow</td>
<td>A parameter value is greater than what can be represented with the number format.</td>
</tr>
<tr>
<td>-124</td>
<td>Too many digits</td>
<td>More than 256 digits were used to specify a number.</td>
</tr>
<tr>
<td>-128</td>
<td>Numeric data not allowed</td>
<td>A number was specified when a letter was required.</td>
</tr>
<tr>
<td>-131</td>
<td>Invalid suffix</td>
<td>Parameter suffix incorrectly specified (e.g. VO rather than VP).</td>
</tr>
<tr>
<td>-138</td>
<td>Suffix not allowed</td>
<td>Parameter suffix is specified when one is not allowed.</td>
</tr>
<tr>
<td>-141</td>
<td>Invalid character data</td>
<td>Discrete parameter specified is not a valid choice.</td>
</tr>
<tr>
<td>-144</td>
<td>Character data too long</td>
<td>A segment or sequence name is too long, or a discrete parameter is > 12 characters. Segment and sequence names must be 12 characters or less.</td>
</tr>
<tr>
<td>-148</td>
<td>Character data not allowed</td>
<td>Discrete parameter was specified when another type (e.g. numeric, boolean) is required.</td>
</tr>
<tr>
<td>-158</td>
<td>String data not allowed</td>
<td>A string was specified when another parameter type (i.e. discrete, numeric, boolean) is required.</td>
</tr>
<tr>
<td>-161</td>
<td>Invalid block data</td>
<td>The number of bytes in a definite length data block does not equal the number of bytes indicated by the block header.</td>
</tr>
<tr>
<td>-168</td>
<td>Block data not allowed</td>
<td>Block data was specified when another parameter type (i.e. discrete numeric, boolean) is required.</td>
</tr>
</tbody>
</table>
Table B-1. Agilent E1446A Error Messages (Con’t.)

<table>
<thead>
<tr>
<th>Code</th>
<th>Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-178</td>
<td>Expression data not allowed</td>
<td>Expression data was specified when another parameter type is required.</td>
</tr>
<tr>
<td>-183</td>
<td>Macro execution error</td>
<td>Macro program data sequence could not be executed due to invalid data inside the macro definition.</td>
</tr>
<tr>
<td>-221</td>
<td>Settings conflict</td>
<td>See “Settings Conflict Error Messages” at the end of this table.</td>
</tr>
<tr>
<td>-222</td>
<td>Data range error</td>
<td>Data out of range.</td>
</tr>
<tr>
<td>-270</td>
<td>Macro error</td>
<td>* RMC < name> was executed and name is not defined.</td>
</tr>
<tr>
<td>-272</td>
<td>Macro execution error</td>
<td>Macro program data sequence could not be executed due to a syntax error within the macro definition.</td>
</tr>
<tr>
<td>-273</td>
<td>Illegal macro label</td>
<td>The macro label defined in the * DMC command was too long, the same as a common command keyword, or contained invalid header syntax.</td>
</tr>
<tr>
<td>-276</td>
<td>Macro recursion error</td>
<td>A macro program data sequence could not be executed because the sequence leads to the execution of a macro being defined.</td>
</tr>
<tr>
<td>-277</td>
<td>Macro redefinition not allowed</td>
<td>A macro label in the * DMC command could not be executed because the macro label was already defined.</td>
</tr>
<tr>
<td>-330</td>
<td>Self-test failed</td>
<td>Note the information associated with the message for a description of the failure.</td>
</tr>
<tr>
<td>-350</td>
<td>Too many errors</td>
<td>The Agilent E1446A error queue is full and additional errors have occurred.</td>
</tr>
<tr>
<td>-410</td>
<td>Query INTERRUPTED</td>
<td>The Agilent E1446A was sent a command before it was finished responding to a query command.</td>
</tr>
<tr>
<td>-420</td>
<td>Query UNTERMINATED</td>
<td>The controller (computer) attempts to read a query response from the Agilent E1446A without having first sent a complete query command.</td>
</tr>
<tr>
<td>-430</td>
<td>Query DEADLOCKED</td>
<td>The Agilent E1446A’s input and output buffers are full and the Amplifier cannot continue</td>
</tr>
<tr>
<td>-440</td>
<td>Query UNTERMINATED after indefinite response</td>
<td>Occurs when the * IDN? query is not the last query executed in a command string</td>
</tr>
</tbody>
</table>
Table B-2. Agilent E1446A Settings Conflict Errors with the Agilent E1405/06 Command Module

<table>
<thead>
<tr>
<th>Error Description</th>
<th>Setting 1</th>
<th>Setting 2</th>
<th>Setting 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTP:ATT 20 and OUTP:IMP 0; OUTP:IMP 50 set</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOUR:VOLT:OFFS < minimum; SOUR:VOLT:OFFS MIN set</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOUR:VOLT:OFFS > maximum; SOUR:VOLT:OFFS MAX set</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table B-3. Agilent E1446A Settings Conflict Errors with the Agilent E1445A AFG

<table>
<thead>
<tr>
<th>Error Description</th>
<th>Setting 1</th>
<th>Setting 2</th>
<th>Setting 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTP2:ATT 20 and OUTP2:IMP 0; OUTP2:IMP 50 set</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOUR2:VOLT:OFFS < minimum; SOUR2:VOLT:OFFS MIN set</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOUR2:VOLT:OFFS > maximum; SOUR2:VOLT:OFFS MAX set</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix C
Register-Based Programming

Appendix Contents

The Agilent E1446A Summing Amplifier/DAC (amplifier) is a register-based device which does not support the VXIbus word serial protocol. When a SCPI command is sent to the amplifier, the amplifier driver in the Agilent E1445A Arbitrary Function Generator (AFG) or in the Agilent E1405/06 Command Module parses the command and writes the information to the amplifier registers.

Register-based programming is a series of reads and writes directly to the amplifier registers. This increases throughput speed since command parsing is eliminated and the registers can be accessed from the VXI backplane (with an embedded controller or Instrument BASIC).

This appendix contains the information you need for register-based programming. The contents include:

- Register Addressing
- Computer Configurations
- Register Descriptions
- Programming the Amplifier
- Example Programs

Register Addressing

Register addresses for register-based devices are located in the upper 25% of VXI A16 address space. Every VXI device (up to 256 devices) is allocated a 32 word (64 byte) block of addresses. The amplifier uses six of the 32 (word) addresses allocated.

Figure C-1A shows the register address location within A16. Figure C-1B shows the location of A16 address space in the Agilent E1405/06 Command Module.

The Base Address

When you are reading or writing to an amplifier register, a hexadecimal or decimal register address is specified. This address consists of a A16 base address plus a register offset or register number.
Figure C-1A. E1446A Amplifier Registers within A16 Address Space.

Figure C-1B. E1446A Amplifier Registers within E1405 A16 Address Space.
The A16 base address used in register-based programming depends on whether the A16 address space is located inside the E1405/06 Command Module or elsewhere (e.g. embedded computer). Figures C-1A, C-1B, and Table C-1 enable you to determine the base address for the following computer configurations:

- Embedded Controller (V/360)
- Agilent E1405/06 Command Module Instrument BASIC (IBASIC)
- External Computer over GPIB to Command Module (E1405/06)

<table>
<thead>
<tr>
<th>Computer</th>
<th>Programming Method</th>
<th>Base Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agilent E1480 V/360 Embedded Computer</td>
<td>READIO (-16,Base_addr + offset) WRITEIO -16,Base_addr + offset;data</td>
<td>Base_addr = C000₁₆ + (LADDR * 64)₁₆ or = 49,152 + (LADDR * 64) offset = register offset (Figure C-1B)</td>
</tr>
<tr>
<td>E1405/06 IBASIC (Absolute Addressing) (Select Code 8)</td>
<td>READIO (-9826,Base_addr + offset) WRITEIO -9826,Base_addr + offset;data</td>
<td>Base_addr = 1FC000₁₆ + (LADDR * 64)₁₆ or = 2,080,768 + (LADDR * 64) offset = register offset (Figure C-1A)</td>
</tr>
<tr>
<td>External Computer (over GPIB to E1405/06 Command Module)</td>
<td>VXI:READ? logical_address,offset VXI:WRITE logical_address,offset,data DIAG:PEEK? Base_addr + offset,width DIAG:POKE Base_addr + offset,width,data</td>
<td>Amplifier logical address setting (LADDR) offset = register offset (Figure C-1A) Base_addr = 1FC000₁₆ + (LADDR * 64)₁₆ or = 2,080,768 + (LADDR * 64) offset = register offset (Figure C-1A)</td>
</tr>
</tbody>
</table>

LADDR : Amplifier logical address.
(LADDR * 64)₁₆ : multiply quantity, then convert to a hexadecimal number (e.g. 88 * 64)₁₆ = 1600₁₆.
When using DIAG:PEEK? and DIAG:POKE, the width (number of bits) is 8 or 16.
Computer Configurations

This section contains performance and functional information on the computer configurations that can be used with register-based programming.

Throughput Speed

Throughput speed is based on the amount of command parsing and whether the registers are accessed from the VXI backplane or from the GPIB. The computer configurations which allow faster throughput relative to each other are summarized below:

1. Agilent E1480A V/360 Controller with READIO and WRITEIO (register access is from VXI backplane).
2. E1405/06 IBASIC absolute addressing with READIO and WRITEIO (register access is from VXI backplane).
3. E1405/06 IBASIC select code 8 with READIO and WRITEIO (register access is from VXI backplane).
5. External Computer using VXI:READ? and VXI:WRITE (register access is over GPIB).

Embedded Computer Programming (C-Size Systems)

The fastest throughput is achieved using an embedded computer such as the Agilent E1480 V/360. The embedded computer allows you to access the amplifier registers from the VXI bus backplane, and since READIO and WRITEIO are used, there is no parsing of SCPI command headers.

IBASIC Programming

When the E1446A amplifier is programmed using the E1405/06 Command Module’s Instrument BASIC (IBASIC), two methods of accessing the registers are through absolute addressing or using select code 8.

Absolute Addressing and Select Code 8

Absolute addressing is faster than select code 8 since the complete register address (including the A16 starting location 1FC000₁₆) is specified. When select code 8 is used, the IBASIC processor must calculate the complete register address based on the logical address specified (Table C-1).
The Register Offset and Register Number

Depending on whether absolute addressing or select code 8 is used, either a register offset or register number is specified as part of the register address. Absolute addressing specifies a register offset, which is the register’s location in the block of 64 address bytes. For example, the amplifier’s DAC Control Register has an offset of 0816. When you write to this register, the offset is added to the base address to form the register address (assuming a logical address of 88):

\[
\text{register address} = \text{base address} + \text{register offset} \\
= 1\text{FC000}_{16} + (88 \times 64)_{16} + 08_{16} \\
= 1\text{FC000}_{16} + 1600_{16} + 08_{16} = 1\text{FD608}_{16}
\]

or

\[
= 2,080,768 + (88 \times 64) + 8 \\
= 2,080,768 + 5632 + 8 = 2,086,408
\]

Using select code 8 requires that you specify a register number. The register number is the register offset/2. Referring to Figure C-1A, the DAC Control register with an offset of 08 is register number 4.

Declaring IBASIC Variables in COM (common) Memory

When writing or modifying IBASIC programs, array variables can be declared in COM (common) memory. Variables not in COM memory reside in the IBASIC stack. The 'stack' is a 32 kByte (default) segment of memory which contains components such as pointers and local variables for subprograms and declarations. When too many variables (or too large an array) are in the stack, Error 2 - Memory Overflow will occur. If a memory overflow occurs, the stack size can be changed with the command PROGram:MALLocate < nbytes> (see the Instrument BASIC user's manual for more information).

External Computer Programming

When the amplifier is programmed by an external computer through the E1405/06 Command Module, the registers are accessed using DIAG:PEEK? and DIAG:POKE, or VXI:READ? and VXI:WRITE.

DIAG:PEEK/?/DIAG:POKE and VXI:READ/?/VXI:WRITE

Throughput speed using DIAG:PEEK? and DIAG:POKE is faster than VXI:READ? and VXI:WRITE because the complete register address (including the A16 starting location 1FC00016) is specified. VXI:READ? and VXI:WRITE specify the device logical address and register offset only. Thus, the E1405/06 processor must calculate the complete register address which decreases throughput speed.
IBASIC programming using absolute addressing or select code 8 is faster than either DIAG:PEEK? and DIAG:POKE or VXI:READ? and VXI:WRITE because the registers are accessed from the VXIbus backplane rather than from the GPIB. Also, READIO and WRITEIO do not need to be repetitively parsed at runtime.

Register Descriptions

There are two READ and four READ/WRITE registers on the amplifier. This section contains a description and a bit map of each register.

The READ Registers

The following READ registers are located on the amplifier.

- ID Register (base + 00\text{16})
- Device Type Register (base + 02\text{16})

Examples and program statements in this appendix use 16-bit reads. In most cases, however, only the lower eight bits are used.

The ID Register

The amplifier’s ID register indicates the classification, addressing mode, and the manufacturer of the device.

<table>
<thead>
<tr>
<th>Address</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11 - 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>base + 00\text{16}</td>
<td>Device Class</td>
<td>Address Mode</td>
<td>Manufacturer ID</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Device Classification. Bits 15 and 14 classify a device as one of the following:

- 0 0 memory device
- 0 1 extended device
- 1 0 message-based device
- 1 1 register-based device

The Agilent E1446 Summing Amplifier/DAC is a register-based device.
Addressing Mode. Bits 13 and 12 indicate the addressing mode used by the device:

- 0 0: A16/A24 address mode
- 0 1: A16/A32 address mode
- 1 0: RESERVED
- 1 1: A16 address mode

The Agilent E1446 amplifier uses the A16 address mode.

Manufacturer ID. Bits 11 through 0 identify the manufacturer of the device. Agilent Technology’s ID number is 4095, which corresponds to bits 11 - 0 being set to “1”.

Given the device classification, addressing space, and manufacturer of the Agilent E1446, reading the ID register returns FFFF16.

The Device Type Register

The Device Type register contains a model code which identifies the device.

<table>
<thead>
<tr>
<th>Address</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>base + 0216</td>
<td>Model Code</td>
<td></td>
</tr>
</tbody>
</table>

Model Code. The model code of the Agilent E1446 amplifier is 01A316.

The READ/WRITE Registers

The following READ/WRITE registers are located on the amplifier.

- Status/Control Register (base + 0416)
- DAC Control Register (base + 0816)
- Output Control Register (base + 0A16)
- Input Attenuation Register (base + 0C16)

Examples and program statements in this appendix use 16-bit reads and writes.
The Status Register

Reading the register at base + 0416 reads the amplifier’s Status register. The Status register monitors the amplifier’s input/output enable conditions and overload conditions.

<table>
<thead>
<tr>
<th>Address</th>
<th>15</th>
<th>14</th>
<th>13 - 12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7 - 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>base + 0416</td>
<td>not used</td>
<td>MODID*</td>
<td>not used</td>
<td>Main Output Ovld</td>
<td>Input 1 Enable</td>
<td>Input 2 Enable</td>
<td>Main Output State</td>
<td>FF16</td>
</tr>
</tbody>
</table>

MODID. A zero (0) in bit 14 indicates that the amplifier is selected by a high state on the P2 MODID line. A one (1) indicates the amplifier is not selected via the P2 MODID line.

Main Output Ovld. A one (1) in bit 11 indicates an output signal (Main Output BNC) can not be produced with the current input conditions.

Input 1 Enable. A one (1) in bit 10 indicates the 'Input 1’ BNC port is enabled. A zero (0) indicates the input port is disabled.

Input 2 Enable. A one (1) in bit 9 indicates the 'Input 2’ BNC port is enabled. A zero (0) indicates the input port is disabled.

Main Output State. A one (1) in bit 8 indicates the 'Main Output’ BNC port is enabled. A zero (0) indicates the output port is disabled.

At power-on, the inputs and output are disabled.

The Control Register

Writing to the register at base + 0416 writes to the amplifier’s Control register. The Control register is used to perform a hardware reset of the amplifier.

<table>
<thead>
<tr>
<th>Address</th>
<th>15 - 1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>base + 0416</td>
<td>not used</td>
<td>Reset</td>
</tr>
</tbody>
</table>

Resetting the Amplifier. Writing a one (1) to bit 0 (hardware) resets the amplifier. Writing a zero (0) turns the reset function off. Bit 0 must be a '1’ for at least 2 µs for the reset to occur. Bit 0 must be set to 0 for normal operation.
The DAC Control Register

The DAC control register sets the output level of the amplifier/DAC.

<table>
<thead>
<tr>
<th>Address</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>base + 0816</td>
<td></td>
</tr>
<tr>
<td>DAC Control Code</td>
<td>DAC Output</td>
<td>Amplifier Output</td>
<td></td>
</tr>
<tr>
<td>000016</td>
<td>+ full scale</td>
<td>- full scale: -19.9992V</td>
<td></td>
</tr>
<tr>
<td>7FFE16</td>
<td>+ 1 LSB</td>
<td>- 1 LSB: -.610 µV (open circuit)</td>
<td></td>
</tr>
<tr>
<td>7FFF16</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>800016</td>
<td>- 1 LSB</td>
<td>+ 1 LSB: +.610 µV (open circuit)</td>
<td></td>
</tr>
<tr>
<td>FFFF16</td>
<td>- full scale</td>
<td>+ full scale: +20.0000V</td>
<td></td>
</tr>
</tbody>
</table>

At power-on the DAC control code is set to 0, which is - full scale.

The Output Control Register

The Output Control register controls the output attenuation and impedance of the amplifier’s 'Main' and 'differential' outputs.

<table>
<thead>
<tr>
<th>Address</th>
<th>15 - 8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>base + 0A16</td>
<td>FF16</td>
<td>0dB output path</td>
<td>20dB output path</td>
<td>50-75Ω output imped.</td>
<td>'Main' output enable / disable</td>
<td>50-75Ω output of non-inv amp</td>
<td>50-75Ω output of inv amp</td>
<td>0Ω output imped.</td>
<td>reserved (must be set to ‘1’)</td>
</tr>
</tbody>
</table>

Bits 7 - 6. Bits 7 and 6 set the attenuation at the amplifiers’s main output. Setting bit 7 to one (1) specifies the 0dB output path. Setting bit 7 to zero (0) opens the 0dB output path. Setting bit 6 to one (1) specifies the 20dB output path. Setting bit 6 to zero (0) opens the 20dB output path. At power-on, the output attenuation is undefined.

Bit 5. Setting bit 5 to one (1) sets the 'Main' output impedance to 50Ω. Setting bit 5 to zero (0) sets the 'Main' output impedance to 75Ω. At power-on, the output impedance is undefined.

Bit 4. Setting bit 4 to one (1) enables the amplifier’s 'Main' output. Setting bit 4 to zero (0) disables the amplifier’s 'Main' output. At power-on the bit value is undefined, but the output is disabled.

Bits 3 - 2. Bits 3 and 2 set the output impedance of the amplifier’s non-inverting and inverting 'differential' outputs. Setting bit 3 to one (1) sets the impedance of the non-inverting output to 50Ω. Setting bit 3 to
zero (0) sets the impedance to 75Ω. Setting bit 2 to one (1) sets the impedance of the inverting output to 50Ω. Setting bit 2 to zero (0) sets the impedance to 75Ω. At power-on, the impedance of both outputs is undefined.

Bit 1. Setting bit 1 to one (1) sets the 'Main' output impedance to 0Ω. Setting bit 1 to zero (0) opens the 0Ω path. The output attenuation must be set to 0 dB (bit 7) if the impedance is set to 0Ω. Bit 5 must also be set to one (1) to get 0Ω output impedance. At power-on, the 'Main' output impedance is undefined.

Bit 0. Bit 0 is a reserved bit and must remain set to one (1). At power-on, the bit setting is undefined.

The Input Attenuation Register
The Input Attenuation register controls the attenuation and impedance of the amplifier’s inputs ('Input 1' and 'Input 2').

<table>
<thead>
<tr>
<th>Address</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Input 1 attenuation and impedance</td>
<td>16dB atten</td>
<td>8dB atten</td>
<td>4dB atten</td>
<td>2dB atten</td>
<td>1dB atten</td>
<td>75Ω in imp</td>
<td>50Ω in imp</td>
<td>not used</td>
<td>16dB atten</td>
<td>8dB atten</td>
<td>4dB atten</td>
<td>2dB atten</td>
<td>1dB atten</td>
<td>75Ω in imp</td>
<td>50Ω in imp</td>
<td>relay act.</td>
</tr>
<tr>
<td>Input 2 attenuation and impedance</td>
<td>base + 0C16</td>
<td></td>
</tr>
</tbody>
</table>

Bits 15 - 11. Bits 15 - 11 set the 'Input 1' attenuation from 0dB to 31dB. Zeros (0) in bits 15 - 11 set 0dB attenuation. Ones (1) in bits 15 - 11 set up to 31dB of attenuation. At power-on, the input attenuation is undefined.

Bits 10 - 9. Bits 10 - 9 set the input impedance of 'Input 1'. Setting bit 10 to one (1) sets the impedance to 75Ω. Setting bit 9 to one (1) sets the impedance to 50Ω. If both bits are set to one (1), the impedance is 50Ω. Setting both bits to zero (0) sets the input impedance to 1 MΩ. At power-on, the input impedance is undefined.

Bits 7 - 3. Bits 7 - 3 set the 'Input 2' attenuation from 0dB to 31dB. Zeros (0) in bits 7 - 3 set 0dB attenuation. Ones (1) in bits 7 - 3 set up to 31dB of attenuation. At power-on, the input attenuation is undefined.

Bits 2 - 1. Bits 2 - 1 set the input impedance of 'Input 2'. Setting bit 2 to one (1) sets the impedance to 75Ω. Setting bit 1 to one (1) sets the impedance to 50Ω. If both bits are set to one (1), the impedance is 50Ω. Setting both bits to zero (0) sets the input impedance to 1 MΩ. At power-on, the input impedance is undefined.
Bit 0. The attenuation relays (bits 15 - 11 and bits 7 - 3) are latching relays. When energized, these relays will "latch" to an open (bit = 0) or closed (bit = 1) state and remain in that state after the energizing power is removed.

Bit 0 is used to energize the latching relays. Setting bit 0 to zero (0) when setting the input attenuation energizes the relays. Setting bit 0 to one (1) after the attenuation has been set, removes the energizing source, thus, conserving power. Note that bits 15 - 11 and 7 - 3 should all be set to 0 as bit 0 is set to 1.

The relays associated with bits 10 - 9 and bits 2 - 1 are not latching relays. Therefore, when removing the energizing source (setting bit 0 to '1'), these bits must be written to again to preserve their intended setting.
Figure C-2 is a block diagram of the Agilent E1446A Summing Amplifier/DAC. The diagram shows the portions of the summing amplifier/DAC configured with register-based programming. The following information covers the sequence used to program the amplifier.

Figure C-2. Register Programming the Summing Amplifier/DAC.
Table C-2. E1446A Register Bit Weights.

<table>
<thead>
<tr>
<th>Address</th>
<th>15</th>
<th>14</th>
<th>13 - 12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7 - 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit Weight</td>
<td>32768</td>
<td>16384</td>
<td>2048</td>
<td>1024</td>
<td>512</td>
<td>256</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>base + 04₁₆ (status)</td>
<td>not used (0)</td>
<td>MODID* (0)</td>
<td>not used (0)</td>
<td>Main Output Ovid</td>
<td>Input 1 Enable</td>
<td>Input 2 Enable</td>
<td>Main Output State</td>
<td>FF₁₆</td>
</tr>
</tbody>
</table>

* active low

Table C-1. DAC Control Code.

<table>
<thead>
<tr>
<th>Address</th>
<th>15 - 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit Weight</td>
<td>0</td>
</tr>
<tr>
<td>base + 04₁₆</td>
<td>not used</td>
</tr>
</tbody>
</table>

Table C-3. Amplifier Register Bit Weights.

<table>
<thead>
<tr>
<th>Address</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit Weight</td>
<td>32768</td>
<td>16384</td>
<td>8192</td>
<td>4096</td>
<td>2048</td>
<td>1024</td>
<td>512</td>
<td>256</td>
<td>128</td>
<td>64</td>
<td>32</td>
<td>16</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>base + 08₁₆</td>
<td>DAC Control Code</td>
<td></td>
</tr>
</tbody>
</table>

Table C-4. Input Attenuation and Impedance.

<table>
<thead>
<tr>
<th>Address</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input 1 attenuation and impedance</td>
<td>X</td>
<td>Input 2 attenuation and impedance</td>
<td></td>
</tr>
<tr>
<td>Bit Weight</td>
<td>32768</td>
<td>16384</td>
<td>8192</td>
<td>4096</td>
<td>2048</td>
<td>1024</td>
<td>512</td>
<td>256</td>
<td>128</td>
<td>64</td>
<td>32</td>
<td>16</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>base + 0C₁₆</td>
<td>16dB atten</td>
<td>8dB atten</td>
<td>4dB atten</td>
<td>2dB atten</td>
<td>1dB atten</td>
<td>75Ω in imp</td>
<td>50Ω in imp</td>
<td>not used</td>
<td>16dB atten</td>
<td>8dB atten</td>
<td>4dB atten</td>
<td>2dB atten</td>
<td>1dB atten</td>
<td>75Ω in imp</td>
<td>50Ω in imp</td>
<td>relay act.</td>
</tr>
</tbody>
</table>
The recommended sequence of an E1446A register-based program is shown in Figure C-3.

Programming begins with the amplifier in its previous (current) configuration. This may be the reset configuration or some other preset condition. The register-based program sets the new configuration while maintaining the previous configuration. This prevents a possible momentary all (relay) open situation which could output a high-voltage glitch. Once the relays (especially the attenuation and impedance relays) of the new configuration are closed, the relays corresponding to the previous configuration are opened.

Figure C-3. Recommended Amplifier Configuration Sequence.
Program Execution
The (new) amplifier configuration is set as shown in Figure C-4. The execution sequence shown configures the amplifier from right-to-left relative to Figure C-2.

Note
Unlike other register-based devices, there is not a status bit which can be monitored to determine when the amplifier registers can be written to (WRITEIO). To allow the relays to close (or open), a 5 mS ‘wait’ period (BASIC has 10 mS resolution) should be included following each WRITEIO.
Figure C-4. Amplifier Register-based Programming Flowchart.
Example Programs

The program listings in this section are BASIC programs in LOAD/STORE format and are contained on the example programs disk Agilent P/N E1446-10031. GET/SAVE versions of these programs are on example programs disk Agilent P/N E1446-10032.

The examples in this section include:

- Amplifying a Sine Wave
- Setting the (amplifier) Input Impedance
- Setting a DC Voltage Offset
- Using the Differential (small signal) Outputs
- Summing Two Signals

The programs in this section are the same as those in Chapter 2. However, the amplifier is programmed at the register level using the flowchart of Figure C-4. Note also that the amplifier is in the servant area of the E1480A V/360 controller, and not in the servant area of the E1445A (see below).

System Configuration

The register-based programs in this section were developed using the following system configuration:

Controller: Agilent E1480A V/360 Embedded Controller (select code 16)

Mainframe: Agilent 75000 Series C

Slot 0/Resource Manager: Agilent E1480A V/360

E1446A Logical Address: 88

E1445A Logical Address: 80

E1445A Servant Area: 0

Communication between the controller and E1445A/E1446A is through paths 1 and 4 mentioned under "Using an Embedded Controller" in Chapter 1.
BASIC Subprograms The subprograms used by each register-based program are stored/saved in a separate file (file name 'E46SUBS'). These subprograms are listed after the last example (Summing Two Signals).

Amplifying a Sine Wave This program uses the E1446A to amplify a 2 Vpp E1445A AFG signal to 14.15 Vpp. Since the intended output amplitude and the input amplitude are known, the amount of attenuation (0 - 31 dB attenuator) is determined as:

\[
\text{attenuation (dB)} = 20 \log \frac{V_o}{V_i} \times 10
\]

where \(V_o \) is the output amplitude and \(V_i \) is the input signal amplitude (\(V_o \) and \(V_i \) units (Vpp, Vp) must be the same). Thus,

\[
\text{attenuation (dB)} = 20 \log \frac{14.15}{20} = -3 \text{ dB}
\]

BASIC (RGBAMPL)

Continued on Next Page
240 WAIT .1
250 OFF INTR 16
260 !
270 ! BEGIN E1446A CONFIGURATION
280 !
290 !Declare and initialize program variables
300 !
310 REAL In1_atten,In1_imped,In2_atten,In2_imped !input variables
320 REAL Out1_atten,Out1_imped,Out1_state !main output variables
330 REAL Out2_imped,Out3_imped !diff out variables
340 REAL Offset !DC offset variable
350 !
360 DATA 3.,50.,0.,50.
370 READ In1_atten,In1_imped,In2_atten,In2_imped !input atten and imp
380 !
390 DATA 0.,50.,1 !main output attenuation, impedance, and state
400 READ Out1_atten,Out1_imped,Out1_state
410 !
420 DATA 50.,50. !differential output impedances
430 READ Out2_imped,Out3_imped
440 !
450 Offset= 0. !DC offset
460 !
470 !Set E1446A base address and initialize COM variables
480 Set_addr(88)
490 !
500 !Set up E1446A
510 Setup_e1446(In1_atten,In1_imped,In2_atten,In2_imped,Out1_atten,Out1_imped,
Out1_state,Out2_imped,Out3_imped,Offset)
520 !
530 OUTPUT @Afg;"INIT:IMM" !E1445A wait-for-arm state
540 END
550 !

Setting the (amplifier) Input Impedance

This program sets the E1446A’s input impedance to match the output impedance of the E1445A. The signal supplied by the E1445A is a 1 Vpp, 2 MHz square wave. The signal is amplified to 6.3 Vpp. Again, when the intended output amplitude and the input amplitude are known, the amount of attenuation (0 - 31 dB attenuator) is determined by:

\[
\text{attenuation (dB)} = 20 \log \frac{V_o}{(V_i \times 10)}
\]
where V_o is the output amplitude and V_i is the input signal amplitude (V_o and V_i units (Vpp, Vp) must be the same). Thus,

\[
\text{attenuation} (\text{dB}) = 20 \log \frac{6.3}{10} = -4 \text{ dB}
\]

BASIC (RGBIMP)

<table>
<thead>
<tr>
<th>Line</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>!RE-STORE "RGBIMP"</td>
</tr>
<tr>
<td>2</td>
<td>LOADSUB ALL FROM "E46SUBS"</td>
</tr>
<tr>
<td>3</td>
<td>!</td>
</tr>
<tr>
<td>10</td>
<td>COM /E1446/ Base_addr,INTEGER In_ctrl,Out_imped</td>
</tr>
<tr>
<td>20</td>
<td>!</td>
</tr>
<tr>
<td>30</td>
<td>! SET UP E1445A</td>
</tr>
<tr>
<td>40</td>
<td>!</td>
</tr>
<tr>
<td>50</td>
<td>ASSIGN @Afg TO 1680 !E1445A and V/360 I/O path</td>
</tr>
<tr>
<td>60</td>
<td>!</td>
</tr>
<tr>
<td>70</td>
<td>!E1445A error checking</td>
</tr>
<tr>
<td>80</td>
<td>ON INTR 16 CALL Errmsg</td>
</tr>
<tr>
<td>90</td>
<td>ENABLE INTR 16;32</td>
</tr>
</tbody>
</table>
| 100 | OUTPUT @Afg;"* CLS"
| 110 | OUTPUT @Afg;"* SRE 32"
| 120 | OUTPUT @Afg;"* ESE 60"
| 130 | ! |
| 140 | !Reset E1445A and clear status |
| 150 | OUTPUT @Afg;"* RST;* CLS;* OPC?"
| 160 | ENTER @Afg;Ready |
| 170 | ! |
| 180 | OUTPUT @Afg;"SOUR:FREQ1:FIX 2E6;"; !frequency |
| 190 | OUTPUT @Afg;"SOUR:FUNC:SHAP SQU;"; !function |
| 200 | OUTPUT @Afg;"SOUR:VOLT:LEV:IMM:AMPL 1VPP;"; !amplitude |
| 210 | OUTPUT @Afg;"OUTP:IMP 75;"; !output impedance |
| 220 | OUTPUT @Afg;"OUTP:LOAD 75" !output load |
| 230 | ! |
| 240 | WAIT .1 |
| 250 | OFF INTR 16 |
| 260 | ! |
| 270 | ! BEGIN E1446A CONFIGURATION |
| 280 | ! |
| 290 | !Declare and initialize program variables |
| 300 | ! |
| 310 | REAL In1_atten,In1_imped,In2_atten,In2_imped !input variables |
| 320 | REAL Out1_atten,Out1_imped,Out1_state !main output variables |
| 330 | REAL Out2_imped,Out3_imped !diff out variables |
| 340 | REAL Offset !DC offset variable |
| 350 | !

Continued on Next Page
Setting a DC Voltage Offset

This program adds an 8V DC offset to a 0.4 Vpp E1445A signal. To maintain 0.4 Vpp at the output, the signal is attenuated by 20 dB at the amplifier input (Figure 2-1). The offset supplied by the E1446A DAC is added to the input signal and is amplified. Into 50Ω, the 0.4 Vpp signal is centered on 8V.

BASIC (RGBOFFS)

1 !RE-STORE "RGBOFFS"
2 LOADSUB ALL FROM "E46SUBS"
3 !COM /E1446/ Base_addr,INTEGER In_ctrl,Out_imped
4 !SET UP E1445A
5 !ASSIGN @Afg TO 1680 !E1445A and V/360 I/O path
6 !E1445A error checking
7 ON INTR 16 CALL Errmsg
8 ENABLE INTR 16;32
9 OUTPUT @Afg;"CLS"
10 OUTPUT @Afg;"SRE 32"
11 OUTPUT @Afg;"ESE 60"
12 !Continued on Next Page
!Reset E1445A and clear status
OUTPUT @Afg;"* RST;* CLS;* OPC?"
ENTER @Afg;Ready

OUTPUT @Afg;"SOUR:FREQ1:FIX 1E3;"; frequency
OUTPUT @Afg;"SOUR:FUNC:SHAP SIN;"; function
OUTPUT @Afg;"SOUR:VOLT:LEV:IMM:AMPL .4VPP;"; amplitude
OUTPUT @Afg;"OUTP:LOAD:AUTO ON;"; couple load to impedance
OUTPUT @Afg;"OUTP:IMP 50"; output impedance

! Wait .1
OFF INTR 16
!

! BEGIN E1446A CONFIGURATION
!
! Declare and initialize program variables
!
REAL In1_atten,In1_imped,In2_atten,In2_imped; input variables
REAL Out1_atten,Out1_imped,Out1_state; main output variables
REAL Out2_imped,Out3_imped; diff out variables
REAL Offset; DC offset variable

DATA 20.,50.,0.,50.
READ In1_atten,In1_imped,In2_atten,In2_imped; input attenu and imp

DATA 0.,50.,1; main output attenuation, impedance, and state
READ Out1_atten,Out1_imped,Out1_state

DATA 50.,50.; differential output impedances
READ Out2_imped,Out3_imped

Offset= 8.; DC offset

! Set E1446A base address and initialize COM variables
Set_addr(88)
!
! Set up E1446A
Setup_e1446(In1_atten,In1_imped,In2_atten,In2_imped,Out1_atten,Out1_imped,Out1_state,Out2_imped,Out3_imped,Offset)

OUTPUT @Afg;"INIT:IMM"; E1445A wair-for-arm state
END
Using the Differential (small signal) Outputs

Rather than amplify the input signal, this program attenuates the signal supplied by the E1445A to obtain an output amplitude of 10 mVpp. The output can be taken at either the 'Diff + ' or 'Diff - ' (inverted) output.

BASIC (RGBDIFF)

```basic
1 !RE-STORE "RGBDIFF"
2 LOADSUB ALL FROM "E46SUBS"
3 !
10 COM /E1446/ Base_addr,INTEGER ln_ctrl,Out_imped
20 !
30 ! SET UP E1445A
40 !
50 ASSIGN @Afg TO 1680 !E1445A and V/360 I/O path
60 !
70 !E1445A error checking
80 ON INTR 16 CALL Errmsg
90 ENABLE INTR 16;32
100 OUTPUT @Afg;"* CLS"
110 OUTPUT @Afg;"* SRE 32"
120 OUTPUT @Afg;"* ESE 60"
130 !
140 !Reset E1445A and clear status
150 OUTPUT @Afg;"* RST;* CLS;* OPC?"
160 ENTER @Afg;Ready
170 !
180 OUTPUT @Afg;"SOUR:FREQ1:FIX 1E3;" !frequency
190 OUTPUT @Afg;"SOUR:FUNC:SHAP SQU;" !function
200 OUTPUT @Afg;"SOUR:VOLT:LEV:IMM:AMPL MIN;" !amplitude
210 OUTPUT @Afg;"OUTP:LOAD:AUTO ON;" !couple load to impedance
220 OUTPUT @Afg;"OUTP:IMP 50" !output impedance
230 !
240 WAIT .1
250 OFF INTR 16
260 !
270 ! BEGIN E1446A CONFIGURATION
280 !
290 !Declare and initialize program variables
300 !
310 REAL In1_atten,In1_imped,In2_atten,In2_imped !input variables
320 REAL Out1_atten,Out1_imped,Out1_state !main output variables
330 REAL Out2_imped,Out3_imped !diff out variables
340 REAL Offset !DC offset variable
350 !
360 DATA 30.,50.,0.,50.
370 READ In1_atten,In1_imped,In2_atten,In2_imped !input atten and imp
```

Continued on Next Page
DATA 0.,50.,1 ! main output attenuation, impedance, and state
READ Out1_atten,Out1_imped,Out1_state
!
DATA 50.,50. ! differential output impedances
READ Out2_imped,Out3_imped
!
Offset = 0. ! DC offset
!
! Set E1446A base address and initialize COM variables
Set_addr(88)
!
! Set up E1446A
Setup_e1446(In1_atten,In1_imped,In2_atten,In2_imped,Out1_atten,Out1_imped,
Out1_state,Out2_imped,Out3_imped,Offset)
!
OUTPUT @Afg;"INIT:IMM" ! E1445A wair-for-arm state
END

Summing Two Signals

This program uses the E1446A to sum the signals from two E1445A AFGs. The AFGs at logical addresses 72 and 80 generate 1 Vpp, 5 kHz and 100 kHz sine waves respectively. The signal from the AFG at logical address 72 is applied to E1446A 'Input 1'. The signal from the AFG at logical address 80 is applied to 'Input 2'. All three devices are in the servant area of the V/360 embedded controller.

Note that this program uses the subprograms contained in the file 'SUMSUBS'. A description of 'SUMSUBS' follows the listing of the example subprograms.

BASIC (RGBSUM)

1 ! RE-STORE "RGBSUM"
2 LOADSUB ALL FROM "SUMSUBS"
3 !
10 COM /E1446/ Base_addr,INTEGER In_ctrl,Out_imped
20 !
30 ! SET UP E1445As
40!
50 ASSIGN @Afg72 TO 1672 ! E1445A and V/360 I/O paths
60 ASSIGN @Afg80 TO 1680
70 !

Continued on Next Page
80 !E1445A error checking
90 ON INTR 16 CALL Errmsg
100 ENABLE INTR 16;32
110 OUTPUT @Afg72;"* CLS"
120 OUTPUT @Afg72;"* SRE 32"
130 OUTPUT @Afg72;"* ESE 60"
140 !
150 OUTPUT @Afg80;"* CLS"
160 OUTPUT @Afg80;"* SRE 32"
170 OUTPUT @Afg80;"* ESE 60"
180 !
190 !Reset and clear the E1445As
200 OUTPUT @Afg72;"RST;* CLS;* OPC?"
210 ENTER @Afg72;Ready
220 !
230 OUTPUT @Afg80;"RST;* CLS;* OPC?"
240 ENTER @Afg80;Ready
250 !
260 !Set up E1445A at logical address 72
270 OUTPUT @Afg72;"SOUR:ROSC:SOUR CLK10;" ; ref osc source
280 OUTPUT @Afg72;"SOUR:FREQ1:FIX 5E3;" ; frequency
290 OUTPUT @Afg72;"SOUR:FUNC:SHAP SIN;" ; function
300 OUTPUT @Afg72;"SOUR:VOLT:LEV:IMM:AMPL 1VPP;" ; amplitude
310 OUTPUT @Afg72;"OUTP:LOAD:AUTO ON;" ; couple load to impedance
320 OUTPUT @Afg72;"OUTP:IMP 50" ; output impedance
330 !
340 !Set up E1445A at logical address 80
350 OUTPUT @Afg80;"SOUR:ROSC:SOUR CLK10;" ; ref osc source
360 OUTPUT @Afg80;"SOUR:FREQ1:FIX 100E3;" ; frequency
370 OUTPUT @Afg80;"SOUR:FUNC:SHAP SIN;" ; function
380 OUTPUT @Afg80;"SOUR:VOLT:LEV:IMM:AMPL 1VPP;" ; amplitude
390 OUTPUT @Afg80;"OUTP:LOAD:AUTO ON;" ; couple load to impedance
400 OUTPUT @Afg80;"OUTP:IMP 50" ; output impedance
410 WAIT .1
420 OFF INTR 16
430 !
440 ! BEGIN E1446A CONFIGURATION
450 !
460 !Declare and initialize program variables
470 !
480 REAL In1_atten,In1_imped,In2_atten,In2_imped ; input variables
490 REAL Out1_atten,Out1_imped,Out1_state ; main output variables
500 REAL Out2_imped,Out3_imped ; diff out variables
510 REAL Offset ; DC offset variable
520 !

Continued on Next Page
Example Subprograms

The following file contains the subprograms used by the preceding example programs.

```
1     !Subprograms used for register-based programming (file name 'E46SUBS')
2     !
10    SUB Set_addr(Log_addr)
20 Set_addr:   !Subprogram which sets E1446A base address and initializes
30     !the COM variables.
40     COM /E1446/ Base_addr,INTEGER In_ctrl,Out_imped
50     !Access A16 address space with READIO and WRITEIO
60     CONTROL 16,25;2
70     !
80     !Set base address and initialize COM variables
90     Base_addr= (DVAL("C000",16)+ Log_addr* 64)
100    In_ctrl= 0
110    Out_imped= 50.
120    SUBEND
130     !
140    SUB Setup_e1446(ln1_atten,ln1_imped,ln2_atten,ln2_imped,Out1_atten,
150     Out1_imped,Out1_state,Out2_imped,Out3_imped,Offset)
160     !
170     !Continued on Next Page
```
Look for illegal values and settings conflicts

IF In1_atten< 0 OR In1_atten> = 31.5 THEN
 DISP "Invalid INP1:ATT value"
 STOP
END IF

IF In1_imped< 50. AND In1_imped< > 75. AND In1_imped< > 1.E+6 THEN
 DISP "Invalid INP1:IMP value"
 STOP
END IF

IF In2_atten< 0 OR In2_atten> = 31.5 THEN
 DISP "Invalid INP2:ATT value"
 STOP
END IF

IF In2_imped< 50. AND In2_imped< > 75. AND In2_imped< > 1.E+6 THEN
 DISP "Invalid INP2:IMP value"
 STOP
END IF

IF Out1_atten< > 0. AND Out1_atten< > 20. THEN
 DISP "Invalid OUTP1:ATT value"
 STOP
END IF

IF Out1_imped< 0. AND Out1_imped< > 50. AND Out1_imped< > 75. THEN
 DISP "Invalid OUTP1:IMP value"
 STOP
END IF

IF Out1_imped= 0 AND Out1_atten= 20 THEN
 DISP "OUTP1:ATT 20 not allowed with OUTP1:IMP 0"
 STOP
END IF

IF Out2_imped< > 50. AND Out2_imped< > 75. THEN
 DISP "Invalid OUTP2:IMP value"
 STOP
END IF

IF Out3_imped< > 50. AND Out3_imped< > 75. THEN
 DISP "Invalid OUTP2:IMP value"
 STOP
END IF

Out_imped= Out1_imped
Set_e46_offset(Offset)

Continued on Next Page
! If output relay open (disabled) but should be closed, clear main output enable bit.

IF Out1_state AND NOT BINAND(READIO(-16,Base_addr + 4), 256) THEN
 WRITEIO -16, Base_addr + 10; BINAND(READIO(-16, Base_addr + 10), -17)
END IF

! Set up output and input relays. Close new relays, particularly the attenuation and impedance relays, before opening old relays to prevent a possible momentary all-open situation which could output a high-voltage glitch.

! Do output side first

SELECT Out1_atten ! Set main output attenuation
CASE 0.
 Out_ctrl= 128 ! Close 0 dB path relay
CASE 20.
 Out_ctrl= 64 ! Close 20 dB path relay
END SELECT

SELECT Out1_imped ! Set main output impedance
CASE 0.
 Out_ctrl= BINIOR(Out_ctrl, 34) ! Close 0 Ohm relay
CASE 50.
 Out_ctrl= BINIOR(Out_ctrl, 32) ! Close 50 Ohm relay
CASE 75.
 Out_ctrl= BINIOR(Out_ctrl, 0) ! 75 Ohm - no action
END SELECT

! If output relay was closed (enabled), set new state here. If it was open, close it before previous configuration is removed.

IF BINAND(READIO(-16, Base_addr + 4), 256) THEN
 IF Out1_state THEN
 Out_ctrl= BINIOR(Out_ctrl, 16) ! Relay close
 ELSE
 Out_ctrl= BINAND(Out_ctrl, -17) ! Relay open
 END IF
END IF

Continued on Next Page
1050 SELECT Out2_imped ! Set Diff+ output impedance
1060 CASE 50.
1070 Out_ctrl= BINIOR(Out_ctrl,8) ! Close 50 Ohm relay
1080 CASE 75.
1090 Out_ctrl= BINIOR(Out_ctrl,0) ! 75 Ohm - no action
1100 END SELECT
1110 !
1120 SELECT Out3_imped ! Set Diff- output impedance
1130 CASE 50.
1140 Out_ctrl= BINIOR(Out_ctrl,4) ! Close 50 Ohm relay
1150 CASE 75.
1160 Out_ctrl= BINIOR(Out_ctrl,0) ! 75 Ohm - no action
1170 END SELECT
1180 !
1190 WRITEIO -16,Base_addr+ 10;Out_ctrl ! Start output relay closings
1200 !
1210 ! Now do input side
1220 !
1230 In_ctrl= BINIOR(In_ctrl,BINOR(SHIFT(In1_atten,-11))) ! Set Input 1 attenuation
1240 !
1250 SELECT In1_imped ! Set Input 1 impedance
1260 CASE 50.
1270 In_ctrl= BINIOR(In_ctrl,512) ! Close 50 Ohm relay
1280 CASE 75.
1290 In_ctrl= BINIOR(In_ctrl,1024) ! Close 75 Ohm relay
1300 CASE 1.E+ 6
1310 In_ctrl= BINIOR(In_ctrl,0) ! 1 MOhm - no action
1320 END SELECT
1330 !
1340 In_ctrl= BINIOR(In_ctrl,SHIFT(In2_atten,-3)) ! Set Input 2 attenuation
1350 !
1360 SELECT In2_imped ! Set Input 2 impedance
1370 CASE 50.
1380 In_ctrl= BINIOR(In_ctrl,2) ! Close 50 Ohm relay
1390 CASE 75.
1400 In_ctrl= BINIOR(In_ctrl,4) ! Close 75 Ohm relay
1410 CASE 1.E+ 6
1420 In_ctrl= BINIOR(In_ctrl,0) ! 1 MOhm - no action
1430 END SELECT
1440 !
1450 In_ctrl= BINAND(In_ctrl,-2) ! Enable inverter
1460 WRITEIO -16,Base_addr+ 12;In_ctrl ! Start input relay closings
1470 WAIT .01 ! Wait for relay closings to finish
1480 !
1490 ! Remove previous configuration
1500 !
Continued on Next Page
IF Out1_state THEN ! Remove previous output relay state
 Out_ctrl= BINOR(Out_ctrl,16) ! Close output relay
ELSE
 Out_ctrl= BINAND(Out_ctrl,-17) ! Open output relay
END IF

! Relay opens start here
!
! Do output relays first
!
SELECT Out1_atten ! Remove previous output attenuation
CASE 0.
 Out_ctrl= BINAND(Out_ctrl,-65) ! Open 20 dB relay
CASE 20
 Out_ctrl= BINAND(Out_ctrl,127) ! Open 0 dB relay
END SELECT
!
WRITEIO -16,Base_addr+ 10;Out_ctrl ! Start output relay openings
!
! Now do input side
!
! Remove previous input 1 attenuation and impedance
In_ctrl= BINOR(BINAND(In_ctrl,2047),SHIFT(In1_atten,-11))
SELECT In1_imped
CASE 50.
 In_ctrl= BINAND(In_ctrl,-1025) ! Open 75 Ohm relay
CASE 75.
 In_ctrl= BINAND(In_ctrl,-513) ! Open 50 Ohm relay
CASE 1.E+ 6
 In_ctrl= BINAND(In_ctrl,-1537) ! Open both relays
END SELECT
!
WRITEIO -16,Base_addr+ 12;In_ctrl ! Start input relay closings
!
! Remove previous input 2 attenuation and impedance
In_ctrl= BINOR(BINAND(In_ctrl,-249),SHIFT(In2_atten,-3))
SELECT In2_imped
CASE 50.
 In_ctrl= BINAND(In_ctrl,-5) ! Open 75 Ohm relay
CASE 75.
 In_ctrl= BINAND(In_ctrl,-3) ! Open 50 Ohm relay
CASE 1.E+ 6
 In_ctrl= BINAND(In_ctrl,-7) ! Open both relays
END SELECT
!
WRITEIO -16,Base_addr+ 12;In_ctrl ! Start input relay closings
WAIT .01 ! Wait for relay closings to finish
!
Continued on Next Page
1970 ! Set inactive state by turning off input attenuator control bits
1980 ! and disabling inverter
1990 !
2000 WRITEIO -16,Base_addr+ 12;BINIOR(BINAND(In_ctrl,1542),1)
2010 SUBEND
2020 SUB Set_e46_offset(Offset)
2030 COM /E1446/ Base_addr,INTEGER In_ctrl,Out_imped
2040 REAL Offset_dac
2050 !
2060 ! Look for settings conflict
2070 !
2080 IF Out_imped= 0 THEN
2090 Offset_dac= -Offset/.0006103515625
2100 ELSE
2110 Offset_dac= -Offset/.00030517578125
2120 END IF
2130 IF Offset_dac< -32768.5 OR Offset_dac> = 32767.5 THEN
2140 DISP "Invalid SOUR:VOLT:LEV:IMM:OFFS value"
2150 STOP
2160 END IF
2170 !
2180 IF Offset_dac< -32768.5 OR Offset_dac> = 32767.5 THEN
2190 WRITEIO -16,Base_addr+ 8;BINEOR(Offset_dac,32767)
2200 SUBEND
2210 !
2220 SUB Errmsg
2230 DIM Message$[256]
2240 !Read AFG status byte register and clear service request bit
2250 B= SPOLL(1680)
2260 !End of statement if error occurs among coupled commands
2270 OUTPUT 1680;"
2280 OUTPUT 1680;"ABORT" !abort output waveform
2290 REPEAT
2300 OUTPUT 1680;"SYST:ERR?" !read AFG error queue
2310 ENTER 1680;Code,Message$
2320 PRINT Code,Message$
2330 UNTIL Code= 0
2340 STOP
2350 SUBEND
Errmsg Subprogram
Used with 'SUMSUBS'

Program 'RGBSUM' loads/gets its subprograms from the file 'SUMSUBS', rather than from the file 'E46SUBS'. The only difference between these subprogram files is the subprogram 'Errmsg'. 'Errmsg' in the file 'SUMSUBS' reports errors from two E1445As rather than from one. Its listing is shown below.

2230 SUB Errmsg
2240 Errmsg: !Subprogram which displays E1445 programming errors
2250 DIM Message$[256]
2260 !Read AFG (at logical addr 72) status byte register, clear service request bit
2270 B= SPOLL(1672)
2280 !End of statement if error occurs among coupled commands
2290 OUTPUT 1672;""
2300 OUTPUT 1672;"ABORT" !abort output waveform
2310 PRINT "E1445A (logical address 72)"
2320 PRINT
2330 PRINT
2340 REPEAT
2350 OUTPUT 1672;"SYST:ERR?" !read AFG error queue
2360 ENTER 1672;Code,Message$
2370 PRINT Code,Message$
2380 UNTIL Code= 0
2390 PRINT
2400 !
2410 !Read AFG (at logical addr 80) status byte register, clear service request bit
2420 B= SPOLL(1680)
2430 !End of statement if error occurs among coupled commands
2440 OUTPUT 1680;""
2450 OUTPUT 1680;"ABORT" !abort output waveform
2460 PRINT "E1445A (logical address 80)"
2470 PRINT
2480 PRINT
2490 REPEAT
2500 OUTPUT 1680;"SYST:ERR?" !read AFG error queue
2510 ENTER 1680;Code,Message$
2520 PRINT Code,Message$
2530 UNTIL Code= 0
2540 STOP
2550 SUBEND
Index

A
Abbreviated Commands, 3-3
Address
 External controllers, 1-5
 Interface select code, 1-5
 Logical, 1-3
 Primary GPIB, 1-5
 Secondary GPIB, 1-6
 Servant area of Agilent E1446A, 1-3
Addressing
 register, C-1 - C-3
 Using an Embedded Controller, 1-5
 Using an External Controller, 1-7
Amplifier block diagram, 1-9
Amplifying Sine Waves
 with Agilent E1405B as commander, 2-12
 with Agilent E1445A as commander, 2-9
Attenuation, Input
 Range, 1-9
Attenuation, Output
 Executing, Coupling Commands, 2-3
 Range, 1-10

B
Base address, C-1
Block diagram, amplifier, 1-9

C
COM memory
 IBASIC, C-5
Command
 Abbreviated, 3-3
 Linking, 3-6
 Separator, 3-3
 Types, 3-2
Command coupling, 3-5
Command parameters, SCPI, 3-4
Common Command Format, 3-2
Computer configurations, register-based programming, C-4 - C-5
Configuration

D
DAC
 Block diagram of amplifier, 1-8
 Offset, 1-1, 1-9
 Offset binary code, 1-11
 Operation, Basic description, 1-11
 DAC control register, C-9
Description, General, 1-1 - 1-2
Device Type register, C-7
Differential Output
 Block diagram of amplifier, 1-8
 Circuitry, across two terminals, 1-10
 Features of amplifier, 1-1
 Impedance, 1-10
 Inverting amplifier, 1-10
 Maximum output, 1-10
 Non-inverting amplifier, 1-10
 Operation, Basic description, 1-10
 Small signal, 1-10
Disks
 Instrument driver and example programs, 2-4
 Downloading, 1-7
SCPI Driver, 1-7 - 1-8

E
Embedded computer programming, C-4
Errmsg subprogram, C-32
Example programs
 summing two signals, 2-31 - 2-35
 disks, 2-4
generating a sine wave,C-18
Generating/amplifying Sine Waves,2-9 - 2-13
setting a DC voltage offset,C-21
Setting DC Offsets,2-20 - 2-25
Setting Input Impedance,2-14 - 2-19
setting the input impedance,C-19
summing two signals,C-24
using the differential outputs,C-23
Example programs subprograms,C-26
Example Programs, register-based,C-16 - C-32
External computer programming,C-5

F
Format
Common Command,3-2
SCPI Command,3-2 - 3-3

G
Gain
Voltage,1-9
General Description
Block diagram,1-9
Device information,1-2
Features,1-1 - 1-2

I
IBASIC programming,C-4
absolute addressing,C-4
select code 8,C-4
IBASIC variables,C-5
ID register,C-6
Impedance, Input
Values,1-9
Impedance, Output
Differential (Small signal), values,1-10
Main (Power),1-9
Main (Power), values,1-10
Implied keywords,3-3
Input attenuation register,C-10
Input signals, summing two,2-31 - 2-35
Interface Select Code,1-5
Introductory Programs
Executing Self-Test,2-5
Querying the Power-on/Reset,2-6
Resetting/Clearing status registers,2-6

K
Keywords
optional,3-3
implied,3-3

L
Linking Commands,3-6
Logical Address
Setting,1-3
System configuration,2-4
Valid ,1-3

M
Main output,1-9
Attenuation,1-10
Block diagram of amplifier,1-9
Features of amplifier,1-1
Impedance,1-10
Operation, Basic description,1-9

O
Offset DAC,1-11
Block diagram of amplifier,1-8
Digital-to-Analog Converter,1-11
Features of amplifier,1-1
Offset binary code,1-11
Operation, Basic description,1-11
Open circuit,1-10
Operation
Basic description of,1-8
Block diagram,1-8
Input,1-9
Output,1-9
Optional keywords,3-3
Output channels
Differential,1-1, 1-8 - 1-10
Main,1-1, 1-8 - 1-9
Power,1-9
Small signal,1-9 - 1-10
Output control register,C-9

P
Parameter types, SCPI,3-4
Parameters, querying settings,3-5
Preparation
 Addressing, 1-5
 Configuring, 1-2 - 1-3
 Installing, 1-4
 Logical Address, 1-3
 Logical Address, setting, 1-3
Primary GPIB, 1-5
Program execution
 register-based, C-15
Program sequence and execution, C-14
Programming the amplifier
 register-based programming, C-12 - C-15
Programs, Application
 Selecting Input Impedance, 2-17
Programs, Example
 Amplifying Sine Waves, 2-9
Programs, Introductory
 Executing Self-Test, 2-5
 Resetting/Clearing the status registers, 2-6
Programs, register-based examples, C-16 - C-32

Q
Querying parameter settings, 3-5
Querying the Power-on/Reset
 *LRN?, 2-6

R
READ registers, C-6
READ/WRITE registers, C-7
Register addressing, C-1 - C-3
Register descriptions, C-6 - C-11
 Control, C-8
 DAC control, C-9
 Device Type, C-7
 ID, C-6
 Input attenuation, C-10
 Output control, C-9
 Status, C-8
Register number, C-5
Register offset, C-5
Register-based program execution, C-15
Register-based program sequence and execution, C-14
Register-based programming
 base address, C-1
 computer configurations, C-4 - C-5
 DIAG:PEEK?,/DIAG:POKE, C-5
 embedded computers, C-4
 external computers, C-5
IBASIC, C-4
 programming the amplifier, C-12 - C-15
 register offset and register number, C-5
 throughput speed, C-4
 VXI:READ?/VXI:WRITE, C-5
Register-based programs
 BASIC subprograms used, C-18
 generating a sine wave, C-18
 setting a DC voltage offset, C-21
 setting the input impedance, C-19
 summing two signals, C-24
 system configuration, C-17
 using the differential outputs, C-23
Registers
 Control, C-8
 DAC control, C-9
 Device Type, C-7
 ID, C-6
 Input attenuation, C-10
 Output control, C-9
 READ, C-6
 READ/WRITE, C-7
 Status, C-8
Resetting/Clearing status registers
 *CLS, 2-6
 *RST, 2-6
 Example, program, 2-6

S
SCPI
 Conformance Information, 3-35
 Coupling, Command, 2-2
 Driver, 1-7 - 1-8
 Features of amplifier, 1-1
 Programming, 2-1
 Structure, 2-1
 SCPI command coupling, 3-5
 SCPI command execution, 3-5
 SCPI command parameters, 3-4
 SCPI Commands, 3-1
 Format, 3-2 - 3-3
 Reference, 3-6
 SCPI Conformance Information, 3-35
 SCPI parameter types, 3-4
 Selecting Input Impedance
 with Agilent E1445A as commander, 2-14
 Self-Test
 *TST, 2-5
 Codes, 2-5
 Example, program, 2-5
Separator
 Command, 3-3
Setting DC Offsets
 with Agilent E1445A as commander, 2-20
Setting Logical Address, 1-3
Standard Commands for Programmable Instruments, SCPI, 3-6
Status register, C-8
Subprograms, used by example programs (register-based), C-26
System
 Configuration, 2-4

T

Throughput speed, C-4

V

Voltage
 Gain, 1-9