Errata

Title & Document Type: E1426A Users Manual

Manual Part Number: e1426-97002

Revision Date: January 1999

HP References in this Manual

This manual may contain references to HP or Hewlett-Packard. Please note that Hewlett-Packard's former test and measurement, semiconductor products and chemical analysis businesses are now part of Agilent Technologies. We have made no changes to this manual copy. The HP XXXX referred to in this document is now the Agilent XXXX. For example, model number HP8648A is now model number Agilent 8648A.

About this Manual

We’ve added this manual to the Agilent website in an effort to help you support your product. This manual provides the best information we could find. It may be incomplete or contain dated information, and the scan quality may not be ideal. If we find a better copy in the future, we will add it to the Agilent website.

Support for Your Product

Agilent no longer sells or supports this product. You will find any other available product information on the Agilent Test & Measurement website:

www.tm.agilent.com

Search for the model number of this product, and the resulting product page will guide you to any available information. Our service centers may be able to perform calibration if no repair parts are needed, but no other support from Agilent is available.
HP 75000 SERIES C

500 MHz
Digitizing Oscilloscope
HP E1426A

User's Manual

Copyright © Hewlett-Packard Company, 1990-1994, 1999

Manual Part Number E1426-97002

Printed: January 1999
Printed in U.S.A.
CERTIFICATION

Hewlett-Packard Company certifies that this product met its published specifications at the time of shipment from the factory. Hewlett-Packard further certifies that its calibration measurements are traceable to the United States National Institute of Standards and Technology (formerly National Bureau of Standards), to the extent allowed by that organization's calibration facility, and to the calibration facilities of other International Standards Organization members.

WARRANTY

This Hewlett-Packard product is warranted against defects in materials and workmanship for a period of three years from date of shipment. Duration and conditions of warranty for this product may be superseded when the product is integrated into (becomes a part of) other HP products. During the warranty period, Hewlett-Packard Company will, at its option, either repair or replace products which prove to be defective.

For warranty service or repair, this product must be returned to a service facility designated by Hewlett-Packard (HP). Buyer shall prepay shipping charges to HP and HP shall pay shipping charges to return the product to Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for products returned to HP from another country.

HP warrants that its software and firmware designated by HP for use with a product will execute its programming instructions when properly installed on that product. HP does not warrant that the operation of the product, or software, or firmware will be uninterrupted or error free.

LIMITATION OF WARRANTY

The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by Buyer, Buyer-supplied products or interfacing, unauthorized modification or misuse, operation outside of the environmental specifications for the product, or improper site preparation or maintenance.

The design and implementation of any circuit on this product is the sole responsibility of the Buyer. HP does not warrant the Buyer's circuitry or malfunctions of HP products that result from the Buyer's circuitry. In addition, HP does not warrant any damage that occurs as a result of the Buyer's circuitry or any defects that result from Buyer-supplied products.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. HP SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

EXCLUSIVE REMEDIES

THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES. HP SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL THEORY.

NOTICE

The information contained in this document is subject to change without notice. HEWLETT-PACKARD (HP) MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. HP shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance or use of this material. This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this document may be photocopied, reproduced, or translated to another language without the prior written consent of Hewlett-Packard Company. HP assumes no responsibility for the use or reliability of its software on equipment that is not furnished by HP.

Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subdivision (b)(3)(ii) of the Rights in Technical Data and Computer Software clause at 52.227-7013. Hewlett-Packard Company, 3000 Hanover Street; Palo Alto, California 94304

Herstellerbescheinigung

Zusatzinformation für Mess- und Testgeräte:
Wurden Mess- und Testgeräte mit ungeschirmten Kabeln und/oder in offenen Messaufbauten verwendet, so ist vom Betreiber sicherzustellen, dass die Funk-Entstörbestimmungen unter Betriebsbedingungen an seiner Grundstückszgrenze eingehalten werden.

Manufacturer's Declaration

This is to certify that the equipment HP E1426A/E meets the radio frequency interference requirements of Directive 1046/84. The German Bundespost has been notified that this equipment was put into circulation and has been granted the right to check the product type for compliance with these requirements.

Additional Information for Test and Measurement Equipment:
If test and measurement equipment is operated with unscreened cables and/or used for measurements on open set-ups, the user has to assure that under operating conditions the Radio Interference Limits are still met at the border of the user's premises.
DECLARATION OF CONFORMITY
according to ISO/IEC Guide 22 and EN 45014

Manufacturer's Name: Hewlett-Packard Co.
Manufacturer's Address: Colorado Springs Division
1900 Garden of the Gods Rd.
Colorado Springs, CO 80907 USA

declares that the product

Product Name: Digitizing Oscilloscope Module
Model Number(s): HP E1426A
Product Option(s): All

conforms to the following Product Specifications:

UL 3111
CSA-C22.2 No. 1010.1:1993

EMC: CISPR 11:1990 / EN 55011:1991 Group 1, Class A
IEC 801-2:1991 / EN 50082-1:1992 4 kV CD, 8 kV AD
IEC 801-3:1984 / EN 50082-1:1992 3 V/m, {1kHz 80% AM, 27-1000 MHz}
IEC 801-4:1988 / EN 50082-1:1992 0.5 kV Sig. Lines, 1 kV Power Lines

Supplementary Information:

This product was tested in a typical configuration with Hewlett-Packard test systems.

Colorado Springs, 11/17/98

Ken Wyatt / Product Regulations Manager

European Contact: Your local Hewlett-Packard Sales and Service Office or Hewlett-Packard GmbH, Department ZQ / Standards Europe, Herrenberger Strasse 130, D-71034 Boeblingen, Germany (FAX +49-7031-14-3143)
Printing History
The Printing History shown below lists all Editions and Updates of this manual and the printing date(s). The first printing of the manual is Edition 1. The Edition number increments by 1 whenever the manual is revised. Updates, which are issued between Editions, contain replacement pages to correct the current Edition of the manual. Updates are numbered sequentially starting with Update 1. When a new Edition is created, it contains all the Update information for the previous Edition. Each new Edition or Update also includes a revised copy of this printing history page. Many product updates or revisions do not require manual changes and, conversely, manual corrections may be done without accompanying product changes. Therefore, do not expect a one-to-one correspondence between product updates and manual updates.
Edition 1 (Part Number E1426-97000) January 1993
Edition 1 (Part Number E1426-97002) January 1999

Safety Symbols

Instruction manual symbol affixed to product. Indicates that the user must refer to the manual for specific Warning or Caution information to avoid personal injury or damage to the product.

Indicates the field wiring terminal that must be connected to earth ground before operating the equipment—protects against electrical shock in case of fault.

Frame or chassis ground terminal—typically connects to the equipment's metal frame.

Alternating current (AC).

Direct current (DC).

Indicates hazardous voltages.

WARNING Calls attention to a procedure, practice, or condition that could cause bodily injury or death.

CAUTION Calls attention to a procedure, practice, or condition that could possibly cause damage to equipment or permanent loss of data.

WARNINGS
The following general safety precautions must be observed during all phases of operation, service, and repair of this product. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and intended use of the product. Hewlett-Packard Company assumes no liability for the customer's failure to comply with these requirements.

Ground the equipment: For Safety Class 1 equipment (equipment having a protective earth terminal), an uninterruptible safety earth ground must be provided from the mains power source to the product input wiring terminals or supplied power cable.

DO NOT operate the product in an explosive atmosphere or in the presence of flammable gases or fumes.

For continued protection against fire, replace the line fuse(s) only with fuse(s) of the same voltage and current rating and type. DO NOT use repaired fuses or short-circuited fuseholders.

Keep away from live circuits: Operating personnel must not remove equipment covers or shields. Procedures involving the removal of covers or shields are for use by service-trained personnel only. Under certain conditions, dangerous voltages may exist even with the equipment switched off. To avoid dangerous electrical shock, DO NOT perform procedures involving cover or shield removal unless you are qualified to do so.

DO NOT operate damaged equipment: Whenever it is possible that the safety protection features built into this product have been impaired, either through physical damage, excessive moisture, or any other reason, REMOVE POWER and do not use the product until safe operation can be verified by service-trained personnel. If necessary, return the product to a Hewlett-Packard Sales and Service Office for service and repair to ensure that safety features are maintained.

DO NOT service or adjust alone: Do not attempt internal service or adjustment unless another person, capable of rendering first aid and resuscitation, is present.

DO NOT substitute parts or modify equipment: Because of the danger of introducing additional hazards, do not install substitute parts or perform any unauthorized modification to the product. Return the product to a Hewlett-Packard Sales and Service Office for service and repair to ensure that safety features are maintained.
Suggested Sequence for Using the Manuals

- **Installation and Getting Started Guide**
- **Instrument Applications**
 - **Plug-in Module User’s Manuals**
 - **Using the Mainframe front panel or pacer**
 - **Mainframe User’s Manual**

*For Scanning Voltmeter Applications, refer to the HP E1326A/E1411 5 1/2 digit Multimeter User’s Manual

Manual Descriptions

Installation and Getting Started Guide. Contains step-by-step instructions for all aspects of plug-in module and mainframe installation. This guide also contains introductory programming information and examples.

HP E1405 Command Module User’s Guide. Contains programming information for the Command Module, operation information (for the HP E1400B mainframe), and general programming information for instruments installed in the mainframe.

Plug-In Module User’s Manuals. Contains plug-in module programming and configuration information. These manuals contain examples for the most-used module functions, and a complete SCPI command reference for the plug-in module.

Related Documents

Beginner’s Guide to SCPI. Explains the fundamentals of programming instruments with the Standard Commands for Programmable Instruments (SCPI). We recommend this guide to anyone who is programming with SCPI for the first time. Hewlett-Packard part number H2325-90001.

Tutorial Description of the Hewlett-Packard Interface Bus. Describes the technical fundamentals of the Hewlett-Packard Interface Bus (HP-IB). This book also includes general information on IEEE 488.2 Common Commands. We recommend this book to anyone who is programming with IEEE 488.2 for the first time. Hewlett-Packard part number 5952-0156.

IEEE Standard 488.2-1987, IEEE Standard Codes, Formats, Protocols, and Common Commands. Describes the underlying message formats and data types used in SCPI and defines Common Commands. You may find this document useful if you need to know the precise definition of certain message formats, data types, or Common Commands. Available from: The Institute of Electrical and Electronic Engineers, Inc.; 345 East 47th Street; New York, NY 10017; USA
How to Use this Manual

Manual Overview

This manual shows how to operate, configure, and program the HP E1426A 500 MHz Digitizing Oscilloscope Module. Except where noted, the term "Oscilloscope" refers to the E1426A 500 MHz Digitizing Oscilloscope Module.

The Oscilloscope is a VXIbus C-Size message-based slave device, and can operate in a C-size VXIbus mainframe using an HP E1405 Command Module. For other manufacturers' mainframes, refer to the applicable manual supplied by the manufacturer.

Most information in this manual applies to Oscilloscope operations in an HP 75000 Series C System using an HP E1405 Command Module. The Oscilloscope can be programmed using one of the following programming languages.

- Standard Commands for Programmable Instruments (SCPI)
- Hewlett-Packard 54503A Compatible Language (COMP).

Manual Content

This manual has six chapters and three appendices. For operations using COMP, use chapters 1 through 4. For operations using SCPI, use chapters 1, 2, 5, and 6.

- Chapters 1 and 2 provide Oscilloscope descriptions and configurations.

 Chapter 3 shows several ways to use the Oscilloscope using COMP, and Chapter 4 describes COMP commands.

 Chapter 5 shows several ways to use the Oscilloscope using SCPI, and Chapter 6 describes SCPI commands.

- Appendix A lists the Oscilloscope specifications, Appendix B lists error codes and messages, and Appendix C provides information on optimizing Measurements.

Suggested Sequence to Use This Manual
1. Getting Started
 Using This Chapter ... 1-1
 Oscilloscope Description ... 1-1
 Instrument Definition ... 1-3
 Programming the Oscilloscope Module ... 1-3

2. Configuring the Oscilloscope Module
 Using This Chapter ... 2-1
 Warnings and Cautions ... 2-1
 Setting the Logical Address ... 2-2
 Selecting the Bus Request/Grant Level .. 2-3
 Setting the Servant Area Switch .. 2-4
 Connecting User Inputs .. 2-5

3. Using the Oscilloscope with HP 54503A Compatible Commands
 Using This Chapter ... 3-1
 Oscilloscope COMP Commands ... 3-1
 Reset Conditions ... 3-3
 Measurement Sequence ... 3-5
 Firmware Calibration ... 3-6
 Starting a Measurement ... 3-15
 Oscilloscope Setup ... 3-16
 Measurement Setup ... 3-21
 Digitizing Waveforms .. 3-22
 Performing a Measurement .. 3-27
 Measurement Examples ... 3-29
 Recalling and Saving States ... 3-40
 Recalling and Storing Waveforms ... 3-41
 Querying the Oscilloscope .. 3-43

4. Oscilloscope HP 54503A Compatible Language Command Reference
 Using This Chapter ... 4-1
 Command Types .. 4-1
 COMP Command Reference .. 4-4
 Command Cross Reference to SCPI Commands 4-210
 Command Cross Reference to HP 54503A Commands 4-214
 Common Command Reference ... 4-216
 Command Quick Reference ... 4-217
 IEEE 488.2 Common Commands Quick Reference 4-228
5. Using the Oscilloscope with SCPI
 Using This Chapter ... 5-1
 Oscilloscope SCPI Commands 5-1
 Reset Conditions .. 5-3
 Measurement Sequence .. 5-5
 Firmware Calibration .. 5-6
 Starting a Measurement ... 5-15
 Oscilloscope Setup ... 5-16
 Measurement Setup ... 5-21
 Digitizing Waveforms .. 5-22
 Performing a Measurement 5-27
 Measurement Examples .. 5-31
 Recalling and Saving States 5-42
 Recalling and Storing Waveforms 5-43
 Querying the Oscilloscope 5-45

6. Oscilloscope SCPI Command Reference
 Using This Chapter ... 6-1
 Command Types .. 6-1
 SCPI Command Reference .. 6-4
 Command Cross Reference to COMP Commands 6-194
 Common Command Reference 6-199
 Command Quick Reference 6-201
 IEEE 488.2 Common Commands Quick Reference 6-211

Appendices
 A. Oscilloscope Specifications and Characteristics
 Specifications .. A-1
 Characteristics .. A-2
 Operating Characteristics A-3
 General Characteristics A-9

 B. Oscilloscope Error Messages

 C. Optimizing Measurements
 Using This Appendix .. C-1
 Introduction ... C-1
 Random Repetitive Sampling C-4
 Digitizing Waveforms ... C-8
 Typical Measurement Times C-13
 Accuracy vs. Percent Completion C-16
 Throughput Comparison HP 54503 – E1426A C-19

Programming Example
 Waveform Mask Test Program Using Functions Page-1

Index
Contents

Chapter 1 — Getting Started

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using This Chapter</td>
<td>1-1</td>
</tr>
<tr>
<td>Oscilloscope Description</td>
<td>1-1</td>
</tr>
<tr>
<td>General Description</td>
<td>1-1</td>
</tr>
<tr>
<td>Basic Operation</td>
<td>1-2</td>
</tr>
<tr>
<td>Instrument Definition</td>
<td>1-3</td>
</tr>
<tr>
<td>Programming the Oscilloscope Module</td>
<td>1-3</td>
</tr>
<tr>
<td>Selecting the Language</td>
<td>1-3</td>
</tr>
<tr>
<td>Selecting COMP Commands</td>
<td>1-4</td>
</tr>
<tr>
<td>COMP Command Format Used in This Manual</td>
<td>1-5</td>
</tr>
<tr>
<td>Selecting SCPI Commands</td>
<td>1-5</td>
</tr>
<tr>
<td>SCPI Command Format Used in This Manual</td>
<td>1-5</td>
</tr>
</tbody>
</table>
Using This Chapter

This chapter describes the Oscilloscope module, and contains information on how to program it using COMP (Hewlett-Packard 54503A Compatible Language) and SCPI (Standard Commands for Programmable Instruments) commands. This chapter contains the following sections:

- Oscilloscope Description .. Page 1-1
- Instrument Definition .. Page 1-3
- Programming the Oscilloscope Module Page 1-3

Oscilloscope Description

General Description

Refer to Figure 1-1 and the following explanation for a description of the HP E1426A 500 MHz Digital Oscilloscope module.

The Oscilloscope module is a general purpose, four channel, 500 MHz (repetitive bandwidth) oscilloscope, which provides all the versatility and capability of digitizing oscilloscopes. The Oscilloscope module is a VXIbus C-Size message-based product, and can operate in a C-Size VXIbus mainframe using an HP E1405 Command Module.

Four channels accept a wide variety of signals requiring 50Ω or 1MΩ input impedance, ac/dc coupling, bandwidth limiting, and vertical sensitivity from 8mV to 40V full scale.

High precision and advanced triggering enables repeatable and accurate measurements on simple or complex waveforms. Capture of complicated and elusive events on all four inputs is possible using edge, pattern, time qualified pattern, glitch, and state triggering. Available triggering is dependent on the programming language used.

- COMP: Edge, pattern, state, delay, and TV.
- SCPI: Edge triggering only.

Additional features include:

- Single shot bandwidth measurements to 2 MHz
- Four nonvolatile set-up memories
- Four nonvolatile waveform memories
- Pre- and post-trigger viewing capability
- Measurement limit test capability

The oscilloscope also performs an internal self test and calibration for greater confidence in measurement results. Probe compensation, AC calibrator, DC calibrator, and TTL trigger outputs are provided. Four front panel LED's indicate fail, access, error, and trigger status.
The Oscilloscope module is comprised of a CPU Printed Circuit Assembly (PCA) (HP P/N E1426-69501) and an Acquisition PCA (HP P/N E1426-69502).

The Acquisition PCA attenuates/amplifies each of the four inputs. The conditioned input signal is then routed to a track and hold circuit. The signal is then multiplexed to an A/D Converter where it is changed into a digital word. This digital information is stored for use by the CPU PCA. A replica of the conditioned input signal is also used for triggering. Additional functions include:

- Time base circuit provides the timing signals necessary for data acquisition.
- AC calibrator circuit provides signals for probe compensation, trigger event, and calibration.
- DC calibrator circuit provides a calibration signal.

The CPU PCA contains the control and interface circuits necessary to direct oscilloscope operations. Control information (COMP or SCPI) is received from the mainframe controller, and the necessary instructions are sent to the Acquisition PCA to perform the specific task. When the digital waveform information is received from the Acquisition PCA, all the user requested parameters are measured and routed to the mainframe. Additional functions include:

- TTL and ECL trigger signals from the mainframe are routed to the Acquisition PCA to perform "external trigger" functions.
- TTL and ECL trigger signals from the oscilloscope are routed to the mainframe over the backplane trigger bus lines.
- Trigger circuit provides a TTL Trigger output signal on the front panel.

![Figure 1-1. Oscilloscope Module Block Diagram](Image)
Instrument Definition

HP plug-in modules installed in an HP mainframe or used with an HP command module are treated as independent instruments each having a unique secondary HP-IB address. Each instrument is also assigned a dedicated error queue, input and output buffers, status registers and, if applicable, dedicated mainframe/command module memory space for readings or data. An instrument may be composed of a single plug-in module (such as a counter) or multiple plug-in modules (for a switchbox or scanning voltmeter instrument).

Programming the Oscilloscope Module

To program the Oscilloscope module, you must select the controller language, interface address, and the commands (SCPI or COMP) to be used. See the HP E1405 Command Module User's Guide for interface addressing and controller language information. Guidelines to select COMP commands for the Oscilloscope are provided in Chapter 3. Guidelines to select SCPI commands for the Oscilloscope are provided in Chapter 5.

```
xxxxxx  xxxx: "xxxxxx:xxxxxx  xx"
```

Note

All of the examples in this manual are written using:
- an HP-IB select code of 7, primary address of 09, and secondary address of 05 for the Oscilloscope
- an HP Series 200/300 Computer with HP BASIC

Selecting the Language

The HP E1426A is unique in that it can be operated using two different programming languages.

- The Hewlett-Packard 54503A Compatible Language (COMP) is compatible with the Hewlett-Packard 54503A Oscilloscope Language.
- The Standard Commands for Programmable Instruments (SCPI) is the programming language used in all HP 75000 series VXI products.
When selecting a programming language, it is highly recommended that only one language be used for a given program. Context is not guaranteed if you switch to the other programming language in midstream. Each language has certain advantages as follows:

The advantages of using COMP are:

- Allows use of existing HP 54503A programs.
- All the features of the instrument can be used (e.g. all five triggering modes).
- Allows the HP 54503A to be used as a test program development tool. (If a problem is encountered with a program for the HP E1426A, the HP 54503A can simplify program debugging by adding local operation capabilities and a display.)

The advantages of using SCPI are:

- Shorter learning curve for the user who will be programming numerous SCPI compatible instruments.

Language cross-reference tables are provided in Chapters 4 and 6.

- COMP to HP 54503A Oscilloscope Language – located at the end of Chapter 4.
- COMP to SCPI – located at the end of Chapter 4.
- SCPI to COMP – located at the end of Chapter 6.

Selecting COMP Commands

A COMP command (sometimes called a program message unit) contains the instructions necessary to operate the oscilloscope when the SYSTem COMPatible Language is selected. COMP commands are organized into subsystems, and each subsystem contains the lower level commands necessary to perform a specific task. COMP commands are comprised of headers, separators, and data as shown below.

```
"SYSTem:LONGform ON"
```

- **Header (subsystem)** — identifies the subsystem.
- **Header (function)** — identifies a particular function within the subsystem.
- **Separator** — one blank space that separates the header from the data.
- **Data** — used to set a function to a specific value, or a specific state (ON/OFF).
COMP Command Format Used in This Manual

You can send COMP commands in either short or long form. A long form example is:

```
SYSTem:LONGform ON
```

The same command shown without the lower case letters is the short form. The command then becomes:

```
SYST:LONG ON
```

See Chapter 3 for more explanation about COMP commands and how to send them.

Selecting SCPI Commands

A SCPI command contains the instructions necessary to operate the oscilloscope when the SYSTem SCPI Language is selected. SCPI commands are organized into subsystems, and each subsystem contains the lower level commands necessary to perform a specific task. SCPI commands are comprised of keywords, separators, and data as shown below.

```
"[SENSe]:VOLTage1:RANGE:LOWer .5"
```

- Keywords specify the subsystem and any lower level function to be performed.
- Separator is one blank space that separates the keyword/data.
- Data is used to set a keyword to a specific value, or a specific state (ON/OFF).

SCPI Command Format Used in This Manual

You can send SCPI commands in either short or long form. A long form example is:

```
[SENSe]:VOLTage1:RANGE:LOWer .5
```

The same command shown without the lower case letters is the short form. The command then becomes:

```
[SENS]:VOLT1:RANGE:LOW .5
```

Some commands in this manual are shown with brackets ([]). These are implied or optional commands that you do not have to execute. For example, the SENSe command is an implied command and is shown in this manual as:

```
[SENS]:VOLT1:RANG:LOW .5
```

Thus, to execute these commands, simply enter:

```
:VOLT1:RANG:LOW .5
```

See Chapter 5 for more explanation about SCPI commands and how to send them.
Chapter 2 — Configuring the Oscilloscope Module

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using This Chapter</td>
<td>2-1</td>
</tr>
<tr>
<td>Warnings and Cautions</td>
<td>2-1</td>
</tr>
<tr>
<td>Setting the Logical Address</td>
<td>2-2</td>
</tr>
<tr>
<td>Selecting the Bus Request/Grant Level</td>
<td>2-3</td>
</tr>
<tr>
<td>Setting the Servant Area Switch</td>
<td>2-4</td>
</tr>
<tr>
<td>Connecting User Inputs</td>
<td>2-5</td>
</tr>
<tr>
<td>Cabling Guidelines</td>
<td>2-5</td>
</tr>
</tbody>
</table>
Configuring the Oscilloscope Module

Using This Chapter

This chapter shows how to connect external signals to the Oscilloscope, and how to configure the module for operation. This chapter contains the following sections:

- Warnings and Cautions ... Page 2-1
- Setting the Logical Address Page 2-2
- Selecting the Bus Request/Grant Level Page 2-3
- Setting the Servant Area Switch Page 2-4
- Connecting User Inputs ... Page 2-5

Warnings and Cautions

Warning

SHOCK HAZARD. Only trained service personnel who are aware of the hazards involved should install, remove, or configure the Oscilloscope. Before you remove any installed module, disconnect AC power from the mainframe and from other modules that may be connected to the Oscilloscope.

SAFETY GROUND. When the Oscilloscope is installed in a mainframe, the four front panel module retaining screws must be screwed in completely.

Caution

MAXIMUM INPUT VOLTAGE. The maximum voltage that can be applied to the four input connectors is 5 Vrms at 50Ω or ±250 V (dc+peak ac<10 kHz) at 1MΩ.

STATIC ELECTRICITY. Static electricity is a major cause of component failure. To prevent damage to the electrical components in the Oscilloscope, observe anti-static techniques whenever removing a module from the mainframe or whenever working on a module.
Setting the Logical Address

The Oscilloscope module is selected by specifying its unique logical address. This value cannot be the same as any other module installed in the mainframe, or an error will occur. The logical address factory setting is decimal 40. You may have changed the setting during module installation. Valid address values are from 1 to 255. If the Oscilloscope is used with a HP E1405 Command Module in a C Size Mainframe, refer to the "E1405 Command Module User's Guide" for addressing information. Otherwise, use Figure 2-1 to change the setting.

Note

The address switch selected value must be a multiple of 8 if the Oscilloscope module is used with a VXIbus Command Module.

Figure 2-1. Address Selection

2-2 Configuring the Oscilloscope
Selecting the Bus Request/Grant Level

The Oscilloscope module sends data and addressing information to the command module using a Data Transfer Bus. However, before any information can be sent over the Data Transfer Bus, the Oscilloscope module must request its use. This request is sent over one of four bus request lines (0-3) as selected by the Bus Request/Grant Level switch.

For most applications where the Oscilloscope module is installed in an HP 75000 Series C mainframe, the bus request/grant level setting does not have to be changed from the factory setting of 0. Refer to the HP E1405 Command Module user's guide for more information.

Refer to Figure 2-2 if the bus request/grant level setting must be changed. Each of the four lines has a different priority level. Bus request line 0 has the lowest priority, and line 3 has the highest priority.

Figure 2-2. Bus Request/Grant Level Selection
Setting the Servant Area Switch

This feature is not currently used in the Oscilloscope. Set all switches to the "0" position as shown in Figure 2-3.

![Servant Area Switch Diagram]

- **Figure 2-3. Servant Area Selection**

2-4 Configuring the Oscilloscope
Connecting User Inputs

Cabling Guidelines

Figure 2-4 shows the Oscilloscope module connectors. Use the following guidelines for user connections.

- All connections to the Oscilloscope are made using BNC male connectors.

- Always use shielded coaxial cables with a characteristic impedance of 50Ω. Keep cables as short as possible, especially in high-frequency pulse circuits where a rise/fall time is critical. Long cables can add delay time which can cause timing problems.

- When using probes, make sure that they match the input specifications of the Oscilloscope module. See Appendix A for more information.

Figure 2-4. Oscilloscope Module Front Panel
Chapter 3 — Using the Oscilloscope with HP 54503A Compatible Commands

Using This Chapter .. 3-1
Oscilloscope COMP Commands .. 3-1
Reset Conditions ... 3-3
Measurement Sequence .. 3-5
Firmware Calibration ... 3-6
 Vertical Cal Procedure .. 3-6
 Delay Cal Procedure ... 3-8
 Time Null Cal Procedure ... 3-10
 Logic Trigger Cal Procedure 3-12
Starting a Measurement .. 3-15
 Unknown Input Signal .. 3-15
 Measurement Considerations 3-15
Oscilloscope Setup .. 3-16
 Vertical Setup ... 3-16
 Time Base Setup .. 3-18
 Trigger Setup ... 3-19
Measurement Setup ... 3-21
Digitizing Waveforms .. 3-22
 Acquisition ... 3-22
 Digitize .. 3-23
 Disposition ... 3-23
 Example: Digitize a Waveform and Send Data to the Controller 3-24
Performing a Measurement ... 3-27
Measurement Examples .. 3-29
 Example: Autoscale Frequency Measurement 3-30
 Example: Manual Fall Time Measurement 3-32
 Example: Manual Fall Time Measurement Using the Expanded Window 3-34
 Example: Using Delay Trigger 3-36
 Example: Limit Testing .. 3-38
Recalling and Saving States ... 3-40
 Storing States ... 3-40
 Recalling States .. 3-40
Recalling and Storing Waveforms 3-41
Querying the Oscilloscope ... 3-43
Using the Oscilloscope with HP 54503A Compatible Commands

Using This Chapter
This chapter uses typical examples to show how to use the Oscilloscope module using COMP (Hewlett-Packard 54503A Compatible Language) commands. See Chapter 5 for instructions on using SCPI (Standard Commands for Programmable Instruments) commands. This chapter contains the following sections:

- Oscilloscope COMP Commands .. Page 3-1
- Reset Conditions ... Page 3-3
- Measurement Sequence ... Page 3-5
- Firmware Calibration .. Page 3-6
- Starting a Measurement ... Page 3-15
- Oscilloscope Setup .. Page 3-16
- Measurement Setup .. Page 3-21
- Digitizing Waveforms ... Page 3-22
- Performing a Measurement ... Page 3-27
- Measurement Examples ... Page 3-29
- Recalling and Saving States Page 3-40
- Recalling and Storing Waveforms Page 3-41
- Querying the Oscilloscope .. Page 3-43

Oscilloscope COMP Commands

Table 3-1. Oscilloscope COMP Commands Used in Chapter 3

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*CLS</td>
<td>Clear status.</td>
</tr>
<tr>
<td>*RST</td>
<td>Reset the Oscilloscope to default state.</td>
</tr>
<tr>
<td>ACQquire</td>
<td>Specify the data acquisition completion criteria.</td>
</tr>
<tr>
<td>:COMPLETE</td>
<td>Select the number of averages for average mode.</td>
</tr>
<tr>
<td>:COUNT</td>
<td>Specify the number of data points for data acquisition.</td>
</tr>
<tr>
<td>:POINTS</td>
<td>Select the acquisition type.</td>
</tr>
<tr>
<td>:TYPE</td>
<td>Perform an autoscale.</td>
</tr>
<tr>
<td>AUToscale</td>
<td></td>
</tr>
<tr>
<td>CALibrate</td>
<td>Begin a configured calibration or load default data.</td>
</tr>
<tr>
<td>:SCALibration</td>
<td>Configure for a default calibration routine.</td>
</tr>
<tr>
<td>:DCALibration</td>
<td>Configure for a delay calibration routine.</td>
</tr>
<tr>
<td>:LTCalibration</td>
<td>Configure for a logic trigger calibration routine.</td>
</tr>
<tr>
<td>:TNULI</td>
<td>Configure for a time null calibration routine.</td>
</tr>
<tr>
<td>:VERTical</td>
<td>Configure for a vertical calibration routine.</td>
</tr>
<tr>
<td>CHANnel<n></td>
<td><n> is the channel number 1-4.</td>
</tr>
<tr>
<td>:PROBEc</td>
<td>Select the input probe attenuation factor.</td>
</tr>
<tr>
<td>:RANGE</td>
<td>Set the full scale vertical range.</td>
</tr>
</tbody>
</table>

Using the Oscilloscope with COMP 3-1
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIGItize</td>
<td>Digitize waveform data.</td>
</tr>
<tr>
<td>LTER?</td>
<td>Read the limit test event register.</td>
</tr>
<tr>
<td>MEASure</td>
<td>Measure all the parameters on present signal and return the measurement</td>
</tr>
<tr>
<td>:ALL?</td>
<td>results.</td>
</tr>
<tr>
<td>:COMParate</td>
<td>Configure for a limit test.</td>
</tr>
<tr>
<td>:DESTination</td>
<td>Select the destination for limit test violations.</td>
</tr>
<tr>
<td>:DUTycycle</td>
<td>Start a continuous duty cycle measurement, but results are NOT returned.</td>
</tr>
<tr>
<td>:FALLtime?</td>
<td>Perform a fall time measurement and return the results.</td>
</tr>
<tr>
<td>:FREQuency</td>
<td>Start a continuous frequency measurement, but results are NOT returned.</td>
</tr>
<tr>
<td>:FREQuency?</td>
<td>Perform a frequency measurement and return the results.</td>
</tr>
<tr>
<td>:LIMItest</td>
<td>Start or stop a limit test.</td>
</tr>
<tr>
<td>:POSTFailure</td>
<td>Used to stop or continue the limit test after a violation has occurred.</td>
</tr>
<tr>
<td>:RESults?</td>
<td>Return current measurement results.</td>
</tr>
<tr>
<td>:SCRatch</td>
<td>Clear the measurement queue.</td>
</tr>
<tr>
<td>:SOURce</td>
<td>Select the source for all MEASure commands.</td>
</tr>
<tr>
<td>:VPP</td>
<td>Start a continuous peak-to-peak voltage measurement, but the results are</td>
</tr>
<tr>
<td></td>
<td>NOT returned.</td>
</tr>
<tr>
<td>SUMMary</td>
<td>Preset the Oscilloscope questionable enable registers.</td>
</tr>
<tr>
<td>:PRESet</td>
<td>Read the Calibration event register.</td>
</tr>
<tr>
<td>:QUEStionable</td>
<td></td>
</tr>
<tr>
<td>:CALibration?</td>
<td></td>
</tr>
<tr>
<td>SYSTem</td>
<td>Select system headers to on or off.</td>
</tr>
<tr>
<td>:HEADer</td>
<td>Set system headers to long form or short form.</td>
</tr>
<tr>
<td>:LONGform</td>
<td></td>
</tr>
<tr>
<td>TIMebase</td>
<td>Specify the full scale horizontal range for the main sweep.</td>
</tr>
<tr>
<td>:RANGE</td>
<td>Turn the expanded window on or off.</td>
</tr>
<tr>
<td>:WINDow</td>
<td>Select the expanded window delay.</td>
</tr>
<tr>
<td>:DELaY</td>
<td>Select full scale horizontal range for the expanded window.</td>
</tr>
<tr>
<td>:RANGE</td>
<td></td>
</tr>
<tr>
<td>TRIGger</td>
<td>Delay the trigger circuit for a specified time or number of events.</td>
</tr>
<tr>
<td>:DELaY</td>
<td>Specify the trigger level.</td>
</tr>
<tr>
<td>:LEVEL</td>
<td>Specify the trigger mode (edge, pattern, state, delay, TV).</td>
</tr>
<tr>
<td>:MODE</td>
<td>Set the number of trigger events that occur before a sweep is triggered.</td>
</tr>
<tr>
<td>:OCCuRrence</td>
<td>Select the source for the OCCuRrence command.</td>
</tr>
<tr>
<td>:SOURce</td>
<td>Select a rising or falling slope for the OCCuRrence command.</td>
</tr>
<tr>
<td>:SLOPe</td>
<td>Select a mode (edge, pattern, state) to qualify the trigger before a delay</td>
</tr>
<tr>
<td>:QUALify</td>
<td>is defined.</td>
</tr>
<tr>
<td>:SLOPe</td>
<td>Select the rising or falling edge for the trigger.</td>
</tr>
<tr>
<td>:SOURce</td>
<td>Select the source that will produce the trigger.</td>
</tr>
<tr>
<td>WAVeform</td>
<td>Read waveform data from the Oscilloscope.</td>
</tr>
<tr>
<td>:DATA?</td>
<td>Select the waveform data format (byte, word, or compressed).</td>
</tr>
<tr>
<td>:FORMat</td>
<td>Read preamble data from the Oscilloscope.</td>
</tr>
<tr>
<td>:PREamble?</td>
<td>Select the source for all WAVeform commands.</td>
</tr>
<tr>
<td>:SOURce</td>
<td></td>
</tr>
</tbody>
</table>
Reset Conditions

When the Oscilloscope is sent a *RST (reset), certain command parameters are set to their default values. Unless these parameters are changed prior to performing the measurement, the reset values will be used.

Table 3-2 lists the reset values for the Oscilloscope module. All parameters not listed will remain in the state last selected.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Reset</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNC</td>
<td>PROBe</td>
<td>Probe Compensation ON, Trigger Out OFF.</td>
</tr>
<tr>
<td>SYSTem:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEADer</td>
<td>OFF</td>
<td>Command Headers not returned.</td>
</tr>
<tr>
<td>LONGform</td>
<td>OFF</td>
<td>Command Headers abbreviated.</td>
</tr>
<tr>
<td>ACQuire:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPLETE</td>
<td>100</td>
<td>Acquisition complete when at 100%.</td>
</tr>
<tr>
<td>COUNT</td>
<td>8</td>
<td>8 hits per time bucket for completion (will return "1" in NORMal mode)</td>
</tr>
<tr>
<td>POINts</td>
<td>500</td>
<td>Acquisition record contains 500 pts.</td>
</tr>
<tr>
<td>TYPE</td>
<td>NORMal</td>
<td>Acquisition complete in 1 count.</td>
</tr>
<tr>
<td>CHANnel:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COUPLing</td>
<td>DC</td>
<td>Channel 1 on, channels 2-4 off.</td>
</tr>
<tr>
<td>HFRej ect</td>
<td>OFF</td>
<td>Coupling to DC on all channels.</td>
</tr>
<tr>
<td>LFR e ject</td>
<td>OFF</td>
<td>Internal low pass filter off on all channels.</td>
</tr>
<tr>
<td>OFFSET</td>
<td>0</td>
<td>Internal high pass filter off on all channels.</td>
</tr>
<tr>
<td>PROBe</td>
<td>1:1</td>
<td>Center screen is 0 V on all channels.</td>
</tr>
<tr>
<td>RANGE</td>
<td>4</td>
<td>Probe attenuation factor is 1:1 on all channels.</td>
</tr>
<tr>
<td>DISPlay:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PERS istence</td>
<td>SINGLE</td>
<td>Persistence set to minimum.</td>
</tr>
<tr>
<td>SOURc e</td>
<td>PMEMory0</td>
<td>Acquired data set to pixel memory 0.</td>
</tr>
<tr>
<td>FUNCTION:</td>
<td>OFF</td>
<td>FUNCTION 1 and 2 off.</td>
</tr>
<tr>
<td>OFFSET</td>
<td>0</td>
<td>Center screen is 0 V for selected function.</td>
</tr>
<tr>
<td>MEASURE:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DESTination</td>
<td>OFF</td>
<td>Destination function off.</td>
</tr>
<tr>
<td>LIMITtest</td>
<td>OFF</td>
<td>Limit test function off.</td>
</tr>
<tr>
<td>LOWer</td>
<td>10</td>
<td>Lower measurement threshold to 10%.</td>
</tr>
<tr>
<td>MODE</td>
<td>STANdard</td>
<td>Measurement performed using IEEE practice definitions and thresholds.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Reset</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>POSTfailure</td>
<td>STOP CHANNEL1, CHANNEL1</td>
<td>Limit test stopped after violation.</td>
</tr>
<tr>
<td>SOURce</td>
<td>OFF</td>
<td>Measurement source to channel 1.</td>
</tr>
<tr>
<td>STATistics</td>
<td>OFF</td>
<td>Current measurement is returned.</td>
</tr>
<tr>
<td>UNItS</td>
<td>PERCent</td>
<td>Threshold units to percent.</td>
</tr>
<tr>
<td>UPPer</td>
<td>90</td>
<td>Upper measurement threshold to 90%.</td>
</tr>
<tr>
<td>TIMebase:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DELay</td>
<td>0</td>
<td>Time base delay to 0 seconds.</td>
</tr>
<tr>
<td>MODe</td>
<td>AUTO</td>
<td>Time base mode set to auto-trigger.</td>
</tr>
<tr>
<td>RANGE</td>
<td>1 ms</td>
<td>Full scale horizontal time to 1 ms.</td>
</tr>
<tr>
<td>REFerence</td>
<td>CENTER</td>
<td>Delay reference set to center of sweep.</td>
</tr>
<tr>
<td>WINDow:</td>
<td>OFF</td>
<td>Second time base to off.</td>
</tr>
<tr>
<td>DELay</td>
<td>0</td>
<td>Second time base delay to 0 seconds.</td>
</tr>
<tr>
<td>RANGe</td>
<td>1 ms</td>
<td>Second time base full scale horizontal time to 1 ms.</td>
</tr>
<tr>
<td>TRIGger:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOLDoff</td>
<td>TIME, 40 ns</td>
<td>Holdoff set to 40 ns.</td>
</tr>
<tr>
<td>LEVel</td>
<td>0</td>
<td>Trigger level at 0 V.</td>
</tr>
<tr>
<td>MODe</td>
<td>EDGE</td>
<td>Edge trigger mode active.</td>
</tr>
<tr>
<td>SENSitivity</td>
<td>NORMAL</td>
<td>Noise reject off.</td>
</tr>
<tr>
<td>SLOPe</td>
<td>POSitive</td>
<td>Positive edge trigger.</td>
</tr>
<tr>
<td>SOURce</td>
<td>CHAN1</td>
<td>Channel 1 produces trigger.</td>
</tr>
<tr>
<td>WAVEform:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FORMat</td>
<td>BYTE</td>
<td>Waveform data output to BYTE.</td>
</tr>
<tr>
<td>SOURce</td>
<td>CHAN1</td>
<td>Channel 1 source for waveform commands.</td>
</tr>
<tr>
<td>OUTPUT:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TT LtTrg</td>
<td>OFF</td>
<td>Output trigger set to off.</td>
</tr>
<tr>
<td>ECLTrg</td>
<td>OFF</td>
<td>TTL trigger lines 0-7 set to off.</td>
</tr>
<tr>
<td>EXTernal</td>
<td>OFF</td>
<td>ECL trigger lines 0-1 set to off.</td>
</tr>
<tr>
<td>MEMory:VME:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADDRes</td>
<td>200000H</td>
<td>External memory address space (hex).</td>
</tr>
<tr>
<td>SIZE</td>
<td>8000H</td>
<td>External memory size in bytes (hex).</td>
</tr>
<tr>
<td>STATe</td>
<td>OFF</td>
<td>External memory is disabled.</td>
</tr>
<tr>
<td>MEASURE:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADDRes</td>
<td>200000H</td>
<td>External measurement address space.</td>
</tr>
<tr>
<td>STATe</td>
<td>OFF</td>
<td>External measurement address space is disabled.</td>
</tr>
</tbody>
</table>
Oscilloscope measurements are most successful if the following measurement sequence is followed.

1. **Determine if a firmware calibration is required** (due to time, operating temperature differences, or measurement accuracy requirements). See Firmware Calibration in this chapter for more information.

2. **Know the signal and type of measurement.** Remember, in most cases you will not have a displayed waveform to view. Have an understanding of the type of signal you want to measure; its amplitude and frequency; is it repetitive? An understanding of the signal you want to measure, and the type of measurement being performed, will help you select the correct oscilloscope and measurement setups. See Measurement Considerations in this chapter for more information.

3. **Set the Oscilloscope controls** (vertical, time base, and trigger). See Oscilloscope Setup in this chapter for more information.

4. **Set the measurement controls** (mode and source). See Measurement Setup in this chapter for more information.

5. **Digitize the Waveform.** Digitizing the waveform ensures that all measurements are performed using the same data, and that the data obtained is valid. The user defines the acquisition and completion criteria for the waveform data. Although this step is not required for some "one time measurements", it's use is highly recommended for all measurements. See Digitizing Waveforms in this chapter for more information.

6. **Perform the measurement.** See Performing a Measurement in this chapter for more information.

7. **Read the results.** See Performing a Measurement in this chapter for more information.

Notes

It is critical that the oscilloscope controls are setup for the specific measurement being performed. Just because measurement results are obtained does not guarantee that they are correct. It is highly recommended that all measurement results be analyzed to verify authenticity. A returned +9.9999E+37 indicates an invalid measurement.

See Appendix C, Optimizing Measurements, for additional information on measurement techniques.
Firmware Calibration

There are two levels of calibration for the Oscilloscope module. The first level, called vertical, delay, time null, and logic trigger calibrations, can be performed by the operator. Procedures are provided in this section. The second level of calibration should be performed only by qualified service personnel using the service manual.

First level calibration should ONLY be performed under the following conditions:

- at six month intervals or every 1000 hours of use,
- if the ambient temperature changes more than 10°C from the temperature at full calibration,
- or to optimize measurement accuracy.

Caution

Do not remove the module with power applied to the mainframe.

The firmware calibration procedures should only be performed after the instrument has run for one hour at ambient temperature installed in the mainframe.

Notes

It is NOT necessary to perform first level calibration procedures prior to every operation.

When performing a first level calibration, all procedures should be done in the order given.

After calibrating, you MUST perform an AUToscale or *RST (reset) to return to normal operation.

Vertical Cal Procedure

Vertical calibration is performed on channels one through four (simultaneously) using the following procedure:

1. Set the CAL FACTOR PROTECT switch to UNPROTECTED.
2. Connect the Oscilloscope DC Calibrator Output connector to the Input 1-4 connectors.

Note

Verify that the BNC cables are not longer than 1 meter and as close in length as possible.

3. Load the "default" calibration data.
4. Perform clear status, reset, then preset the Oscilloscope.
5. Select and start the vertical calibration routine. Calibration will last for approximately 15 minutes. During calibration, the access and error LED's will be on.

Note

If the calibration time exceeds 15 minutes, the calibration is invalid. Recycle power then repeat procedure. If the condition repeats, the instrument is malfunctioning. Refer to the Service Manual for information on correcting the malfunction before proceeding.

6. After calibration is complete (LED's off), read the calibration event register to verify that no errors were generated during the procedure.

- If "0" is returned, the calibration was successful.
- If "0" is not returned, the calibration attempt was unsuccessful. See Chapter 4, CALibrate Subsystem for more information.

7. Disconnect cables and perform Delay Calibration Procedure.

![Diagram showing vertical calibration setup](image)

Figure 3-1. Example: Vertical Calibration Setup
Example

The following example shows how to perform a vertical calibration. The example is written using:

- an HP-IB select code of 7, primary address of 09, and secondary address of 05 for the Oscilloscope
- an HP Series 200/300 Computer with HP BASIC

Execute:

```
10 OUTPUT 70905;"CAL:SCAL:DCAL"
20 OUTPUT 70905;"CAL:SCAL:BCAL"
30 OUTPUT 70905;"*CLS"
40 OUTPUT 70905;"*RST"
50 OUTPUT 70905;"SUMM:FRES"
60 OUTPUT 70905;"CAL:SCAL:VERT"
70 OUTPUT 70905;"CAL:SCAL:BCAL"
80 OUTPUT 70905;"SUMM:QUE:CAL?"
90 ENTER 70905;A
100 PRINT A
110 END
```

Selects default calibration routine.
Load default calibration data.
Clear status.
Resets the Oscilloscope to its default state.
Presets the Oscilloscope.
Selects vertical calibration routine.
Starts vertical calibration routine.
Read calibration event register.
Enter calibration event register results.
Print calibration event register results.
Terminate program.

Delay Cal Procedure

Delay calibration is performed on channels one through four (one at a time) using the following procedure:

1. Verify the CAL FACTOR PROTECT switch is set to UNPROTECTED.
2. Connect the Oscilloscope AC Calibrator Output connector to the Input 1 connector using a BNC cable.

Note

Verify that the BNC cable is not longer than 1 meter.

3. Perform clear status, reset, then preset the Oscilloscope.
4. Select and start the delay calibration routine. During calibration, the access and error LED's will be on.

Note

If the calibration time exceeds 1 minute, the calibration is invalid. Recycle power then repeat procedure. If the condition repeats the instrument is malfunctioning. Refer to the Service Manual for information on correcting the malfunction before proceeding.
5. After calibration is complete (LEDs to off), read the calibration event register to verify that no errors were generated during the procedure.
 - If "0" is returned, the calibration was successful.
 - If "0" is not returned, the calibration attempt was unsuccessful. See Chapter 4, CALibrate Subsystem for more information.

6. Disconnect cable from input 1 and reconnect to input 2. Repeat steps 4 and 5 for input 2.

7. Disconnect cable from input 2 and reconnect to input 3. Repeat steps 4 and 5 for input 3.

8. Disconnect cable from input 3 and reconnect to input 4. Repeat steps 4 and 5 for input 4.

Figure 3-2. Example: Delay Calibration Setup
Example

The following example shows how to perform a delay calibration. The example is written using:

- an HP-IB select code of 7, primary address of 09, and secondary address of 05 for the Oscilloscope
- an HP Series 200/300 Computer with HP BASIC

Execute:

```
10 OUTPUT 70905;"CLS"
20 OUTPUT 70905;"RST"
30 OUTPUT 70905;"SUMM:PRES"
40 FOR I=1 TO 4
50 OUTPUT 70905;"CAL:SCAL:DEL CHAN"&VALS(I)
60 OUTPUT 70905;"CAL:SCAL:BCAL"
70 OUTPUT 70905;"SUMM:QUEST:CAL?"
80 ENTER 70905;B
90 PRINT B
100 PAUSE
110 NEXT I
120 END
```

Clear status.
 Resets the Oscilloscope to its default state.
 Presets the Oscilloscope.
 Input testing loop.
 Selects input n delay calibration routine (n=input 1-4).
 Starts delay calibration routine.
 Read calibration event register.
 Enter calibration event register results.
 Print calibration event register results.
 Pause to connect next input.
 Repeat for inputs 2-4.
 Terminate program.

Time Null Cal Procedure

Time Null calibration is performed on channels one-two, one-three, and one-four (one at a time) using the following procedure:

1. Verify the CAL FACTOR PROTECT switch is set to UNPROTECTED.
2. Connect the Oscilloscope AC Calibrator Output connector to both the Input 1 and Input 2 connectors.

Note

Verify that the BNC cables are not longer than 1 meter and equal in length.

3. Perform clear status, reset, then preset the Oscilloscope.
4. Select and start the time null calibration routine. During calibration, the access and error LED's will be on.

Note

If the calibration time exceeds 1 minute, the calibration is invalid. Recycle power then repeat procedure. If the condition repeats the instrument is malfunctioning. Refer to the Service Manual for information on correcting the malfunction before proceeding.
5. After calibration is complete (LED's to off), read the calibration event register to verify that no errors were generated during the procedure.
 - If "0" is returned, the calibration was successful.
 - If "0" is not returned, the calibration attempt was unsuccessful. See Chapter 4, CALibrate Subsystem for more information.

6. Disconnect cable from input 2 and reconnect to input 3. Repeat steps 4 and 5 for input 3.

7. Disconnect cable from input 3 and reconnect to input 4. Repeat steps 4 and 5 for input 4.

8. When complete, disconnect BNC cable and perform the Logic Trigger Calibration Procedure (if necessary).

Figure 3-3. Example: Time Null Calibration Setup
Example

The following example shows how to perform a time null calibration. The example is written using:

- an HP-IB select code of 7, primary address of 09, and secondary address of 05 for the Oscilloscope
- an HP Series 200/300 Computer with HP BASIC

Execute:

10 OUTPUT 70905;"CLS" Clear status.
20 OUTPUT 70905;"RST" Resets the Oscilloscope to its default state.
30 OUTPUT 70905;"SUMM:PRES" Presets the Oscilloscope.
40 FOR I=2 TO 4 Input testing loop.
50 OUTPUT 70905;"CAL:SCAL:TNUL CH1"EVALS(I) Selects channel 1 to n time null calibration routine (n=input 2-4).
60 OUTPUT 70905;"CAL:SCAL:BCAL" Starts time null calibration routine.
70 OUTPUT 70905;"SUMM:QUES:CAL?" Read calibration event register.
80 ENTER 70905;C Enter calibration event register results.
90 PRINT C Print calibration event register results.
100 PAUSE Pause to connect next input.
110 NEXT I Repeat for inputs 3-4.
120 END Terminate program.

Logic Trigger Cal Procedure

Logic trigger calibration is performed on channel one using the following procedure:

Note

It is NOT necessary to perform this procedure unless very accurate delay by time triggering is required during measurements.

If this procedure is not performed, set the CAL FACTOR PROTECT switch to PROTECTED.

1. Verify the CAL FACTOR PROTECT switch is set to UNPROTECTED.

2. Connect the Oscilloscope AC Calibrator Output connector to the Input 1 connector using a BNC cable.

Note

Verify that the BNC cable is not longer than 1 meter.

3. Read the calibration register to verify that no errors are present.

- If "0" is returned, proceed with step 5.
- If "0" is not returned, the Logic Trigger calibration must be terminated, and the cause of the error corrected. See Chapter 4, CALibrate Subsystem for more information.

4. Perform clear status, reset, then preset the Oscilloscope.
5. Locate the logic trigger adjustment on the right side of the Oscilloscope module, and the error and access LED's on the front panel.

6. Select and start the logic trigger calibration routine. Verify that the triggered LED flashes.

 Observe the access and error LED's.
 - If both are on, no adjustment is required.
 - If only one is ON, rotate the logic trigger adjustment until both LED's remain ON.

 Approximately 15 seconds after no further rotation of the adjustment, the triggered LED will flash faster, then all LED's will go out.

7. After calibration is complete (LED's to off), read the calibration register to verify that no errors were generated during the procedure.
 - If "0" is returned, the calibration was successful.
 - If "0" is not returned, the calibration attempt was unsuccessful. See Chapter 4, CALibrate Subsystem for more information.

8. Disconnect BNC cable and set the CAL FACTOR PROTECT switch to PROTECTED.
Example

The following example shows how to perform a logic trigger calibration. The example is written using:

- an HP-IB select code of 7, primary address of 09, and secondary address of 05 for the Oscilloscope
- an HP Series 200/300 Computer with HP BASIC

Execute:

```plaintext
10 OUTPUT 70905;"*CLS"
20 OUTPUT 70905;"*RST"

30 OUTPUT 70905;"SUMM:PRES"
40 OUTPUT 70905;"SUMM:QUES:CAL?"
50 ENTER 70905;D
60 PRINT D
70 IF D<>0 THEN 130
80 OUTPUT 70905;"CAL:SCAL:LTIC"

90 OUTPUT 70905;"CAL:SCAL:BCAL"
100 OUTPUT 70905;"SUMM:QUES:CAL?"
110 ENTER 70905;E
120 PRINT E
130 END
```

Clear status.
 Resets the Oscilloscope to its default state.

Presets the Oscilloscope.

Read calibration event register.

Enter calibration event register results.

Print calibration event register results.

Terminate if results not 0.

Selects logic trigger calibration routine.

Starts logic trigger calibration routine.

Read calibration event register.

Enter calibration event register results.

Print calibration event register results.

Terminate program.
Starting a Measurement

Unknown Input Signal

Before configuring the Oscilloscope to perform a specific measurement, it is very beneficial to know both the signal being measured, and the type of measurement being performed.

If the input signal is unknown, AUToscale can be used with MEASURE:ALL? to quickly determine some of the critical input signal parameters.

The following example shows how to perform a measure all on a signal connected to Input 1. The example is written using:

- an HP-IB select code of 7, primary address of 09, and secondary address of 05 for the Oscilloscope
- an HP Series 200/300 Computer with HP BASIC

Execute:

```
5 DIM AS[500]
10 OUTPUT 70905;"CLS"
20 OUTPUT 70905;"RST"
30 OUTPUT 70905;"SYST:HEAD ON"
40 OUTPUT 70905;"AUT"
50 OUTPUT 70905;"MEAS:ALL?"
60 ENTER 70905;A$  
70 PRINT A$  
80 END
```

Note

Some of the measured data returned will be invalid (+9.99999E+37) because the proper portion of the waveform was not present during measurement.

See Appendix C, Optimizing Measurements, for additional information on measurement techniques.

Measurement Considerations

In order to make a specific measurement, the portion of the waveform required for that measurement must be setup and present on the oscilloscope. For example, to measure:

- Period or frequency - a minimum of one complete cycle must be present.
- Pulse width - the entire pulse must be present.
- Rise time - the leading (positive-going) edge of the waveform must be present.
- Fall time - the trailing (negative-going) edge of the waveform must be present.

Performing this function on an oscilloscope with a display is a comparatively simple task. However, when the display is removed, certain steps must be taken to assure the correct Oscilloscope and measurement set-ups are performed prior to the actual measurement.
Oscilloscope Setup

Before a specific measurement can be performed, it is necessary to setup the Oscilloscope vertical, time base, and triggering controls. The settings are dependent on the input signal and the desired measurement being performed. There are two ways to set these controls:

- Automatic (using AUToscale).
- Manual - User enters desired values.

Automatic

When selected, the Oscilloscope automatically evaluates the input signals present at inputs 1-4, and then sets the vertical, time base, and triggering controls to present the signal. You setup the Oscilloscope with the following command:

\[\text{AUToscale} \]

Note

Autoscale should only be used with relatively stable input signals having a duty cycle of greater than 0.5% and a frequency greater than 50 Hz.

Manual

Instructions for manual selection of the Vertical, Time base, and Triggering controls are provided in this section.

Vertical Setup

This section discusses the vertical or channel controls you can program with the CHANnel<n> command. These controls allow the selection of:

- Input Coupling and Impedance
- Input Filter State
- Input Probe Attenuation
- Input Offset
- Input Range

Note

The following discussion is intended to provide only a brief overview of the necessary commands required for basic operation. For a complete list and description of ALL channel commands available, see Chapter 4, CHANnel subsystem.
Input Coupling/Impedance

Coupling and impedance for each channel can be set to AC/1MΩ, DC/1MΩ, or DC/50Ω. DC/1MΩ is selected at reset. You select coupling with the following command:

CHANn:COUP xxx \((n=\text{channel number and } xxx = \text{AC, DC, or DCF}) \)

Input Filter State

Two input filters are selectable to provide low-pass (BW=30 MHz) or high-pass (BW=450 Hz) filtering. Both filters are disabled at reset.

You enable the low-pass filter (high frequency reject) with the following command:

CHANn:HFR xxx \((n=\text{channel number and } xxx = \text{ON or OFF}) \)

You enable the high-pass filter (low frequency reject) with the following command:

CHANn:LFR xxx \((n=\text{channel number and } xxx = \text{ON or OFF}) \)

Input Probe Attenuation

Probe attenuation factor for each channel can be entered from 0.9:1 to 1000.0:1 to match the probe currently connected at the input. 1:1 is selected at reset. You enter probe attenuation factor with the following command:

CHANn:PROB xxx \((n=\text{channel number and } xxx = \text{value :1}) \)

Changing probe attenuation from 1:1 will affect current settings of input range and offset.

Input Offset

Offset voltage for each channel can be entered to a level depending on the current RANGE selection. 0 volts is selected at reset. You enter offset with the following command:

CHANn:OFFS xxx \((n=\text{channel number and } xxx = \text{value in volts}) \)

Input Range

Full scale (not per division) vertical axis for each channel can be entered from 8 mV to 40 V. 4 volts is selected at reset. You enter vertical full scale range with the following command:

CHANn:RANG xxx \((n=\text{channel number and } xxx = \text{value in volts}) \)
Time Base Setup

This section discusses the time base or horizontal controls you can program with the TIMebase command. These controls allow the selection of:

- Delay
- Mode
- Range
- Reference

Note

The following discussion is intended to provide only a brief overview of the necessary commands required for basic operation. For a complete list and description of ALL available time base commands, see Chapter 4, TIMebase subsystem.

Delay

The time base delay (time interval between trigger event and sweep delay reference point) can be set to a value depending on the current RANGE selection. 0 seconds is selected at reset. See Reference in this section for more information. You select time base delay with the following command:

```
TIM:DEL xxx  (xxx = value in seconds + or -)
```

Mode

Three different sweep modes are available. TRIGgered requires a trigger event for a new sweep. SINGle requires a RUN command for a sweep. AUTOs sweeps with or without a signal present. AUTO is selected at reset. You select time base mode with the following command:

```
TIM:MOD xxx  (xxx = TRIG, SING, or AUT)
```

Range

Full scale (not per division) horizontal axis can be entered from 2 ns to 50 seconds. 1 ms is selected at reset. You enter horizontal full scale range with the following command:

```
TIM:RANG xxx  (xxx = value in seconds)
```

Reference

Three different settings are available that control the sweep reference point. LEFT, CENTER, or RIGHT sets the reference to the left, center, or right of the sweep, respectively. CENTER is selected at reset. Refer to Delay above for more information. You enter reference with the following command:

```
TIM:REF xxx  (xxx = LEFT, CENT, or RIGH)
```
Trigger Setup

This section discusses the trigger controls you can program with the TRIGger command. These controls allow the selection of:

- Mode
- Holdoff
- Level
- Sensitivity
- Slope
- Source

Note

The following discussion is intended to provide only a brief overview of the necessary commands required for basic operation. For a complete list and description of ALL available triggering commands, see Chapter 4, TRIGger subsystem.

Mode

Five different trigger modes are available. See Chapter 4, TRIGger:MODE, for information on EDGE, PATTern, STATE, DELay, and TV trigger modes. EDGE is selected at reset. You select trigger mode with the following command:

TRIG:MOD xxx (xxx = EDG, PATT, STAT, DEL, or TV)

Holdoff

Holdoff (disabling of trigger circuit for specific duration) can be set to either a time (40 ns to 320 ms) or event (2 to 16 million), and is valid in all modes except DELay. 40 ns is selected at reset. You select holdoff with the following command:

TRIG:HOLD xxx,yyy (xxx = TIME or EVENT and yyy = value in seconds or events)

Level

Active trigger level voltage can be entered to a value dependent on CHANnel<n>:RANGe and OFFSet settings as follows:

±0.75 of selected range from current offset

0 volts is selected at reset. You enter trigger level with the following command:

TRIG:LEV xxx (xxx = value in volts)

Sensitivity

Trigger sensitivity or noise rejection can be turned on or off for the selected SOURce. Aids in eliminating false triggering. NORMal is noise reject off and LOW is noise reject on. NORMal is selected at reset. You enter trigger sensitivity with the following command:

TRIG:SENS xxx (xxx = NORM or LOW)
Slope

The POSitive (rising) or NEGative (falling) edge of the input signal can be selected as the trigger event for the selected source. POSitive is selected at reset. You select trigger slope with the following command:

\[
\text{TRIG:SLOP } \text{xxx} \quad (\text{xxx = POS or NEG})
\]

Source

The trigger source can be selected from one of the input signals (CHANnel 1-4), or from one of 10 bus lines (TTLTrg0-7 or ECLTrg 0-1). Only one trigger source can be specified at a time. CHANnel 1 is selected at reset. You select trigger source with the following command:

\[
\text{TRIG:SOUR } \text{xxx} \quad (\text{xxx = CHAN1, CHAN2, CHAN3, CHAN4, TTL0, TTL1, TTL2, TTL3, TTL4, TTL5, TTL6, TTL7, ECL0 or ECL1})
\]
Measurement Setup

After the vertical, time base, and triggering controls are setup, it is necessary to set any unique measurement parameters prior to performing the actual measurement. These controls allow the selection of:

- Mode
- Source

Note

The following discussion is intended to provide only a brief overview of the necessary commands required for basic operation. For a complete list and description of ALL available measurement commands, see Chapter 4, MEASure subsystem.

Mode

Allows the user to specify the measurement definitions and thresholds. STANdard selects IEEE measurement practice definitions and thresholds. USER allows the user to specify the definition and thresholds using the DEFine, LOWer, UPPer, and UNITs commands.

User definitions (MEASure:DEFine) are dependent on measurement type as follows (underlined parameter is the STANdard or default):

- Delay edge polarity (positive or negative)
- Delay number (1 to 100) 1 for start, 2 for stop
- Delay edge level (lower, mid, upper)
- + Pulse width threshold (lower, mid, upper)
- - Pulse width threshold (lower, mid, upper)

User thresholds (MEASure:LOWer, UPPer, and UNITs) are as follows (underlined parameter is the STANdard or default):

- Units % or volts
- Upper threshold ±250.0 kv/25.00% to +125.0% (+90%)
- Lower threshold ±250.0 kv/25.00% to +125.0% (+10%)

See Chapter 4, MEASure:DEFine, LOWer, UPPer, and UNITs for additional information on user defined definitions and thresholds. STANdard is selected at reset. You setup the measurement mode with the following command:

`MEAS:MODE xxx (xxx = STAN or USER)`

Source

Used to select the source(s) for measurement. Two sources can be specified, however, all measurements except DELay are made on the first source. Source can be CHANnels (inputs1-4), FUNCTIONs, or WMEMorys (waveform memories 1-4). CHAN1,CHAN1 is selected at turn-on or reset. You set up the measurement source(s) with the following command:

`MEAS:SOUR xxx,xxx (xxx = CHAN1-4, FUNC 1-2, or WMEM 1-4)`
Digitizing Waveforms

Waveforms can be digitized to provide a waveform that fulfills user defined acquisition and completion criteria. The resulting waveform can be measured by the Oscilloscope or passed to the controller as a numerical representation. In addition, preamble data is passed to the controller so the digitized data can be interpreted. The user can specify exactly what the digitized information will contain, how the waveform is acquired, when the waveform is completed, and the format of the digitized information. Use the following sequence to assist in digitizing waveforms:

1. **Waveform Acquisition**: Defines the data type, completion criteria, number of averages, and number of data points for data acquisition. See Acquisition in this section for more information.

2. **Digitize the Waveform**: Acquires data on the specified channel, stores the data in the channel buffer, then stops the acquisition. See Digitize in this chapter for more information.

3. **Measure the Waveform**: All measurements made by the Oscilloscope are now performed on the same data. See Performing a Measurement in this chapter for more information.

4. **Waveform Disposition**: When the data is going to/from the bus, it defines where to get the data, the format the data is to be in, reads the digitized waveform data, and reads the preamble data. See Disposition in this section for more information.

Acquisition

This section discusses the acquisition controls you can program with the ACQuire command. These controls allow the selection of:

- Type
- Completion Criteria
- Count
- Points

Note

The following discussion is intended to provide only a brief overview of the necessary commands required for basic operation. For a complete list and description of ALL available acquisition commands, see Chapter 4, ACQuire subsystem.

Type

Three different modes define the type of acquisition that will take place when a DIGitize command is executed. See Chapter 4, ACQuire.TYPe, for information on NORMal, AVERage, and ENVelope modes. NORMal is selected at reset. You select acquisition type with the following command:

\[
\text{ACQ:TYP xxx \quad (xxx = \text{NORM, AVER, ENV})}
\]
Completion Criteria

Completion criteria for an acquisition can be entered from 0 to 100%. 100% is selected at reset. You enter completion criteria with the following command:

```
ACQ:COMP xxx  (xxx = 0 to 100)
```

Count

The number of points to be averaged for each acquisition can be entered from 1 to 2048. 8 is selected at reset. You enter counts with the following command:

```
ACQ:COUNT xxx  (xxx = 1 to 2048)
```

Points

The number of points for each acquisition record can be entered from 32 to 1024. 500 is selected at reset. You enter points with the following command:

```
ACQ:POINT xxx  (xxx = 32 to 1024)
```

Digitize

The DIGitize command causes an acquisition to take place on the specified channel(s) with the resulting data placed in the channel buffer. Upon completion, the data acquisition is stopped. See Chapter 4, DIGitize (Root Level Command) subsystem for more information. You digitize with the following command:

```
DIG xxx  (xxx = CHAN1-4)
```

Note

See Appendix C, Optimizing Measurements, for additional information on measurement techniques.

Disposition

This section discusses the disposition controls you can program with the WAVEform command. These controls allow the selection of:

- Source
- Format
- Reading Waveform Data
- Reading Preamble Data
- Using the Digitized Data

Note

The following discussion is intended to provide only a brief overview of the necessary commands required for basic operation. For a complete list and description of ALL available waveform commands, see Chapter 4, WAVEform subsystem.

Source

Select CHANnel 1-4, FUNCtion 1-2, or Waveform MEMory 1-4 as the source for all WAVEform commands. CHANnel 1 is selected at turn-on or reset. You select waveform source with the following command:

```
WAV:SOUR xxx  (xxx = CHAN1-4, FUNC1-2, or WMEM1-4)
```
Format

Three different formats are available to format digitized data when retrieved from the instrument. See Chapter 4, WAVEform:FORMat for information on WORD, BYTE, and COMPressed formats. BYTE is selected at turn-on or reset. You select format with the following command:

WAV:FORM xxx (xxx = WORD, BYTE, or COMP)

Reading Waveform Data

The digitized data is read over the bus from the waveform memory or channel buffer specified using WAVEform:SOURce command. You read digitized data with the following query:

WAV:DATA?

Reading Preamble Data

The interpretation (preamble) data is read over the bus from the waveform memory or channel buffer specified using WAVEform:SOURce command. This data is needed to interpret the waveform data. You read preamble data with the following query:

WAV:PRE?

Using the Digitized Data

The returned data is read from the instrument starting at the left-most point on the waveform, and must be scaled for useful interpretation. The values needed to perform this task (x/y reference, origin, increment) are included in the preamble data. See Chapter 4, WAVEform subsystem for more information.

Example: Digitize a Waveform and Send Data to the Controller

This example uses the Oscilloscope module to digitize a waveform from CHANEL1, and send the results (waveform and preamble) to the controller. The waveform will be complete when 512 points have been averaged at least four times. The digitized data sent to the controller is to be in byte format.

![Diagram of waveform acquisition and disposition](image)

Figure 3-5. Example: Digitizing Waveforms

3-24 Using the Oscilloscope with COMP
This example is written using:

- an HP-IB select code of 7, primary address of 09, and secondary address of 05 for the Oscilloscope
- an HP Series 200/300 Computer with HP BASIC

Execute:

```
10 DIM Preamble[100]  
20 INTEGER Waveform(2000)

30 OUTPUT 70905; "SYST:HEAD ON"
40 OUTPUT 70905; "SYST:LONG ON"
50 OUTPUT 70905; "*CLS"
60 OUTPUT 70905; "*RST"
70 OUTPUT 70905; "AUT"
80 OUTPUT 70905; "ACQ:TYP AVER"
90 OUTPUT 70905; "ACQ:COUNT 4"
100 OUTPUT 70905; "ACQ:COMP 100"
110 OUTPUT 70905; "ACQ:POIN 512"
120 OUTPUT 70905; "DIG CHAN1"
130 OUTPUT 70905; "WAV:SOUR CHAN1"
140 OUTPUT 70905; "WAV:FORM COMP"

150 OUTPUT 70905; "WAV:PRES"
160 ENTER 70905; Pre
170 OUTPUT 70905; "WAV:DATA?"
180 GOSUB Get_data

190 STOP
200 Get_data:
210 ENTER 70905 USING ";,1A":One_char$  
220 IF One_char$="#" THEN Found_pound
230 GOTO 210
240 Found_pound:
250 ENTER 70905 USING ";,1D":Digits
260 ENTER 70905 USING ";,"&VAL$(Digits)&"D":Length

270 REDIM Waveform(1:Length)
280 ENTER 70905 USING ";,B":Waveform(*)
290 ENTER 70905 USING ";,B":Crlf
300 RETURN
310 END
```

Using the Oscilloscope with COMP 3-25
Comments

Block Data. Both preamble and waveform data is "definite-length block response data". This method allows any type of device-dependent data to be transmitted over the system interface as a series of 8-bit binary data types. This is particularly useful for sending large quantities of data or 8-bit extended ASCII codes. The syntax is a pound sign (#) followed by a non-zero digit representing the number of digits in the decimal integer. After the non-zero digit is the decimal integer that states the number of 8-bit data bytes being sent. This is followed by the actual data. For example, for transmitting 1024 bytes of data, the syntax is:

```
#41024<1024 bytes of data><term>
```

- Number of digits
- Number of bytes
- Actual Data
- Terminator

Reading Block Data. The example program (lines 200 to 300) finds the "#" sign, reads the number of digits and number of bytes, then redefines the field to the correct length. This method will work for all definite-length block response returned data (e.g., DISPlay:DATa? and WAVeform:DATa?).

When to Read Preamble. The preamble should be read prior to the waveform data.

When to Read Waveform Data. To obtain waveform data, you must specify the WAVeform parameters for the waveform data prior to sending the :DATA? query. After receiving the :DATA? query, the instrument will start passing the waveform information to the controller when addressed to talk.
Performing a Measurement

After the oscilloscope and measurement have been setup, and the waveform has been digitized, the actual measurement can be performed. Measurements include:

- Delay
- Fall time
- Frequency
- Period
- Pulse width
- Rise time

Notes

The following discussion is intended to provide only a brief overview of the necessary commands required for basic operation. For a complete list and description of ALL available measurements, see Chapter 4, MEASURE subsystem.

Remember, just because measurement results are obtained does not guarantee that they are correct. It is highly recommended that all measurement results be analyzed to verify authenticity. Incorrect oscilloscope and measurement setup can cause undesirable measurement results. A returned +9.99999E+37 indicates an invalid measurement.

See Appendix C, Optimizing Measurements, for additional information on measurement techniques.

Delay

Used to perform a delay measurement on the selected source(s). Delay time (in seconds) measured from:

- the first specified edge on one source to the next specified edge on the same source, or
- the first specified edge on one source to the first specified edge on another source.

Measurement definitions are specified by the MEASURE:MODe command. You perform a delay measurement and return the measurement results with the following query:

MEAS:DEL?

Fall time

Used to perform a fall time measurement on the selected source. Fall time (in seconds) measured as time at lower threshold point minus time at upper threshold point. Measurement thresholds are specified by the MEASURE:MODe command. You perform a fall time measurement and return the measurement results with the following query:

MEAS:FALL?

Using the Oscilloscope with COMP 3-27
Frequency

Used to perform a frequency measurement on the selected source. Frequency (in hertz) of the first complete cycle is measured. Measurement thresholds are set to the 50% level (STANdard) or defined mid threshold (USER) as specified by the MEASure:MODe command. You perform a frequency measurement and return the measurement results with the following query:

MEAS:FREQ?

Period

Used to perform a period measurement on the selected source. Period (in seconds) of the first complete cycle is measured. Measurement thresholds are set to the 50% level (STANdard) or defined mid threshold (USER) as specified by the MEASure:MODe command. You perform a period measurement and return the measurement results with the following query:

MEAS:PER?

Pulse width

Used to perform a negative or positive pulse width measurements on the selected source. Pulse width of the first positive or negative pulse is measured. Measurement thresholds are set to the 50% level (STANdard) or a defined threshold (USER) as specified by the MEASure:MODe command.

You perform a negative pulse width measurement and return the measurement results with the following query:

MEAS:NWID?

You perform a positive pulse width measurement and return the measurement results with the following query:

MEAS:PWID?

Rise time

Used to perform a rise time measurement on the selected source. Rise time (in seconds) measured as time at upper threshold point minus time at lower threshold point. Measurement thresholds are specified by the MEASure:MODe command. You perform a rise time measurement and return the measurement results with the following query:

MEAS:RIS?

Notes

If the identical command is sent without the "?", the Oscilloscope will be placed in the continuous measurement mode, and start the specified measurement. Measurement results are returned using the MEASure:RESults? query. The query reads the measurement results but does not stop the continuous mode.

These commands are also used during limit testing. See Chapter 4, MEASure subsystem for more information.
Measurement Examples

The following is a list of examples provided to illustrate using COMP commands to perform basic measurements/functions using the Oscilloscope module.

- Autoscale Frequency Measurement
- Manual Fall Time Measurement
- Fall Time Measurement using the Expanded Window
- Using Delay Trigger
- Limit Testing

Caution

MAXIMUM INPUT VOLTAGE. The maximum voltage that can be applied to the four input connectors is 5 Vrms at 50Ω or ±250 V (dc+peak ac<10 kHz) at 1MΩ.

Note

The following examples are intended to provide only a brief overview of the necessary commands required for basic operation. However, these examples can be used to provide a good starting point for much more complex programs. For a complete list and description of ALL COMP commands, see Chapter 4.

All the examples in this section are written using:

- an HP-IB select code of 7, primary address of 09, and secondary address of 05 for the Oscilloscope
- an HP Series 200/300 Computer with HP BASIC
Example: Autoscale Frequency Measurement

This example uses the Oscilloscope module to measure the frequency of an unknown signal connected to Input 2.

Caution

MAXIMUM INPUT VOLTAGE. The maximum voltage that can be applied to any of the four input connectors is 5 Vrms at 50Ω or ±250 V (dc+peak ac<10 kHz) at 1MΩ.

Note

Because of the Autoscale function, disconnect any input signal connected to input 1, 3, or 4.

Figure 3-6. Example: Autoscale Frequency Measurement

Execute:

```
10 DIM A$(25)
20 OUTPUT 70905;"CLS"
30 OUTPUT 70905;"RST"
40 OUTPUT 70905;"AUT"
50 OUTPUT 70905;"SYST:HEAD ON"
60 OUTPUT 70905;"DIG CHAN2"
70 OUTPUT 70905;"MEAS:SOUR CHAN2"
80 OUTPUT 70905;"MEAS:FREQ?"
90 ENTER 70905;A$
100 PRINT A$
110 END
```

String for measurement data and headers.
Clear status.
Resets the Oscilloscope to its default state (table 3-2).
Perform autoscale.
Return headers.
Digitize channel 2 using default acquisition parameters (see table 3-2).
Measurement source to channel 2.
Read measurement results.
Enter measurement results.
Print measurement results.
Terminate program.
Comments

Signal Connection. An input signal must be connected to the Oscilloscope before initiating autoscale, and remain connected until the measurement is terminated.

Multiple Signal Connection using Autoscale. When more than one Oscilloscope input is connected to a signal source, initiating autoscale will setup the Oscilloscope controls using the signal connected closest to channel 1. If a signal is not found on input 1 then input 2 is used, if a signal is not found on input 2 then input 3 is used, etc.

Measurement Time. The time it takes to complete a measurement is dependent on the input signal, acquisition type, and completion criteria. Under certain circumstances, a single measurement can take many hours to complete. See Appendix C, Optimizing Measurements, for additional information on measurement techniques.

Numeric Results. Set SYSTem:HEADer to OFF to return numeric data.

Digitize. This measurement could be performed without digitizing the waveform, however the returned results will not be as accurate or as consistent as when using the digitize command.
Example: Manual Fall Time Measurement

This example uses the Oscilloscope module to measure the fall time of a signal connected to Input 3 using a 1MΩ 10:1 probe. The expected input is a 1.5 V clock at 10 MHz. The user is notified if the returned measurement results are not within specific limits.

Notes

When measuring fall time, the trailing (negative-going) edge of the waveform must be present. In order to obtain accurate results (example signal is a clock pulse-minimum fall time):

- the time base should be setup so the falling edge is maximized over the time base range, and
- the trigger should be set so the falling edge is centered.

Figure 3-7. Example: Manual Fall Time Measurement
System headers off to read numeric data.
Clear status.
Resets the Oscilloscope to its default state (table 3.2).
Set input 3 probe attenuation factor at 10:1.
Set input 3 full scale vertical range to 2 volts (expected input is 1.5V).
Set full scale horizontal range to 100 ns (expected period).
Trigger source to channel 3.
Trigger slope to negative (to ensure falling edge is acquired).
Trigger level to .75 volts (approximately one-half the expected input).
Digitize channel 3 using default acquisition parameters (see table 3.2).
Measure channel 3.
Perform fall time measurement and return results.
Enter measurement results.
Verify measurement results are less than 21 nsec.
Print measurement flag.
Terminate program.

Signal Connection. An input signal must be connected to the Oscilloscope before initiating a measurement, and remain connected until the measurement is terminated.

Probe Attenuation Factor. Probe attenuation factor should be entered before the range and offset parameters. Setting the probe attenuation factor does not change the input sensitivity, but does scale the vertical and trigger parameters to compensate for the entered factor.

Range. Both vertical (CHANnel) and horizontal (TIMebase) RANGe parameters are specified for full scale axis, and not per division values.

Window Command. An alternate method of presenting the waveform for measurement is to use the WINDow command. See Fall Time Measurement using the Expanded Window example in this section for more information.

Measurement Time. The time it takes to complete a measurement is dependent on the input signal, acquisition type, and completion criteria. Under certain circumstances, a single measurement can take many hours to complete. See Appendix C, Optimizing Measurements, for additional information on measurement techniques.
Example: Manual Fall Time Measurement Using the Expanded Window

This example uses the Oscilloscope module to measure the fall time of a signal connected to Input 3. Measurement is taken using the expanded window. The expected input is a 1.5 V clock at 1 MHz. The user is notified if returned measurement results are not within specific limits.

Notes

When measuring fall time, the trailing (negative-going) edge of the waveform must be present. In order to obtain accurate results (example signal is a clock pulse-minimum fall time):

- the expanded window time base should be setup so the falling edge is maximized over the time base range, and
- the trigger should be set so the falling edge is centered.

When using the expanded window, the main sweep is set to present the waveform, then the window parameters are positioned on the main sweep to access the desired portion of the waveform being measured.

Figure 3-8. Example: Manual Fall Time Measurement with Expanded Window
Execute:

10 OUTPUT 70905;"SYST:HEAD OFF"
20 OUTPUT 70905;"CLS"
30 OUTPUT 70905;"RST"
40 OUTPUT 70905;"BLAN CHAN1"
50 OUTPUT 70905;"VIEW CHAN3"
60 OUTPUT 70905;"RUN"
70 OUTPUT 70905;"CHAN3:Coup DC"
80 OUTPUT 70905;"CHAN3:RANG 2"
90 OUTPUT 70905;"TIM:RANG 2US"
100 OUTPUT 70905;"TRIG:SOUR CHAN3"
110 OUTPUT 70905;"TRIG:Slop NEG"
120 OUTPUT 70905;"TRIG:LEV 0"
130 OUTPUT 70905;"TIM:WIND:DEL 0"
140 OUTPUT 70905;"TIM:WIND:RANG 100E-9"
150 OUTPUT 70905;"DIG CHAN3"
160 OUTPUT 70905;"TIM:WIND ON"
170 OUTPUT 70905;"MEAS:SOUR CHAN3"
180 OUTPUT 70905;"MEAS:Fall?"
190 ENTER 70905:Results
200 IF Results<5.E-9 THEN 220
210 PRINT "Measurement out of Spec"
220 END

Comments

Signal Connection. An input signal must be connected to the Oscilloscope before initiating a measurement, and remain connected until the measurement is terminated.

Probe Attenuation Factor. Probe attenuation factor should be entered before the range and offset parameters. Setting the probe attenuation factor does not change the input sensitivity, but does scale the vertical and trigger parameters to compensate for the factor.

Range. Both vertical (CHANnel) and horizontal (TIMebase) RANGE parameters are specified for full scale, and not per division values.

Window Control. Two commands are used to move the expanded window on the main sweep. WINDow:RANGe command is used to set the expanded window full scale horizontal axis, and WINDow:DELay sets the expanded window time base delay.

Measurement Time. The time it takes to complete a measurement is dependent on the input signal, acquisition type, and completion criteria. Under certain circumstances, a single measurement can take many hours to complete. See Appendix C, Optimizing Measurements, for additional information.

Using the Oscilloscope with COMP 3-35
Example: Using Delay Trigger

The trigger is setup in the delay mode to qualify on the first rising edge of the first burst, delay for 2.5μsec to obtain a stable waveform, then trigger on the fifth edge (middle) of the second burst. The expected input is a 1 V burst pulse with ten 5 MHz bursts that repeat every 50μsec.

Note

For the example, the parameters are setup using autoscale, then adjusted as required.

Figure 3-9. Example: Using the Delay Trigger

Execute:

```
10 OUTPUT 70905;"*CLS"
20 OUTPUT 70905;"*RST"
30 OUTPUT 70905;"AUT"
40 OUTPUT 70905;"TRIG:MOD DEL"
50 OUTPUT 70905;"TRIG:QUAL:EDG"
60 OUTPUT 70905;"TRIG:DEL TIM,2.5US"
70 OUTPUT 70905;"TRIG:OCC 1"
80 OUTPUT 70905;"TRIG:OCC:SLOP POS"
90 OUTPUT 70905;"TRIG:OCC:SOUR CHAN1"
100 OUTPUT 70905;"TRIG:SLOP POS"
110 OUTPUT 70905;"TRIG:SOUR CHAN1"
120 OUTPUT 70905;"TIM:RANG 5US"
130 OUTPUT 70905;"TRIG:OCC 5"
140 END
```

Clear status.

Reset the Oscilloscope to its default state (table 3-2).

Perform an autoscale.

Delay trigger mode.

Qualify mode to edge.

Delay time to 2.5μsec to obtain a stable trigger.

Trigger on first event.

Trigger on rising edge.

Trigger source to channel 1.

Trigger on rising edge.

Trigger source to channel 1.

Time base to 5μsec full scale.

Trigger on fifth event.

Terminate program.
Comments

Delay Trigger Qualify Modes. In delay mode, a trigger can be qualified using edge, pattern, or state mode before the delay is defined.

Multiple Signal Connection using Autoscale. When more than one Oscilloscope input is connected to a signal source, initiating autoscale will setup the Oscilloscope controls using the signal connected closest to channel 1. If a signal is not found on input 1 then input 2 is used, if a signal is not found on input 2 then input 3 is used, etc.

After Triggering. After a delay trigger is setup, any parameter can be measured, the waveform data can be digitized and measured, or read over the bus.

Measurement Time. The time it takes to complete a measurement is dependent on the input signal, acquisition type, and completion criteria. Under certain circumstances, a single measurement can take many hours to complete. See Appendix C, Optimizing Measurements, for additional information on measurement techniques.
Example: Limit Testing

This example uses the Oscilloscope module to measure the frequency, duty cycle, and peak-to-peak voltage of a signal connected to Input 2. The expected input is a 1 Vp-p, 10 MHz, 50% duty cycle sinewave. If any of the input signal measured values are not within the specified limits, the waveform will be saved in waveform memory 1, and the test will stop.

Note

For the example, the parameters are setup using autoscale, then adjusted as required.

Figure 3-10. Example: Limit Testing

Execute:

05 DIM Results$(25)
10 OUTPUT 70905;"CLS"
20 OUTPUT 70905;"RST"
30 OUTPUT 70905;"AUT"
40 OUTPUT 70905;"TIM:RANG 200E-9"
50 OUTPUT 70905; "MEAS:SCR"
60 OUTPUT 70905; "MEAS:SOUR CHAN2"
70 OUTPUT 70905; "WAV:SOUR CHAN2"
80 OUTPUT 70905; "MEAS:FREQ"
90 OUTPUT 70905; "MEAS:COMP FREQ,10.5E6,9.5E6"

String for failure results.
Clear status.
Resets the Oscilloscope to its default state (table 3-2).
Perform an autoscale (no signal connected to channel 2).
Set full scale horizontal range to 200 ns (expected period).
Clear measurement queue.
Measure channel 2.
Violation source is channel 2.
Start a continuous frequency measurement on channel 2.

Configure a limit test for frequency measurement with acceptable results from 9.5 to 10.5 MHz.
100 OUTPUT 70905; "MEAS:DUT"
Start a continuous duty cycle measurement on channel 2.

110 OUTPUT 70905; "MEAS:COMP DUT,55,45"
Configure a limit test for duty cycle measurement with acceptable results from 45 to 55%.

120 OUTPUT 70905; "MEAS:VPP"
Start a continuous peak-to-peak voltage measurement on channel 2.

130 OUTPUT 70905; "MEAS:COMP VPP,1.2,0.8V"
Configure a limit test for peak-to-peak voltage measurement with acceptable results from 0.8 to 1.2Vp-p.

140 OUTPUT 70905; "MEAS:POST STOP"
Stop limit test after violation.

150 OUTPUT 70905; "MEAS:DEST WMEM1"
Waveform memory 1 is the destination for limit test violations.

160 OUTPUT 70905; "MEAS:LIM MEAS"
Start limit test.

165 OUTPUT 70905; "DIG CHAN1"
Acquire waveform data.

170 OUTPUT 70905; "LTER?"
Has limit test failed?

180 ENTER 70905; Fail
Read results.

190 IF Fail=0 THEN 170
Read limit test event register until limit test fails.

200 OUTPUT 70905; "MEAS:RES?"
Query instrument to return failed measurement results.

280 ENTER 70905; Results$
Read measurement results.

290 PRINT Results$
Print measured results.

310 END
Terminate program.

Comments

Violation Choices: The limit test can be stopped or continued after a violation has been found. If desired, the data associated with the violation can be saved in pixel or waveform memory.

Determining Limit Test Status. Failures can be determined by reading the limit test event register (LTER?) and/or by analyzing the measurement results (RESults?).

Limit Test on More than One Channel. Limit tests can be performed on up to three different channel at the same time by stepping through the MEASure:SOURce parameter. Only one channel can be specified (using the WAVEform:SOURce command) as the source when saving the limit test violation data.

Multiple Signal Connection using Autoscale. When more than one Oscilloscope input is connected to a signal source, initiating autoscale will setup the Oscilloscope controls using the signal connected closest to channel 1. If a signal is not found on input 1 then input 2 is used, if a signal is not found on input 2 then input 3 is used, etc.

Measurement Time. The time it takes to complete a measurement is dependent on the input signal, acquisition type, and completion criteria. Under certain circumstances, a single measurement can take many hours to complete. See Appendix C, Optimizing Measurements, for additional information on measurement techniques.
Recalling and Saving States

This section contains information about saving and recalling current Oscilloscope module states.

Storing States

The *SAV <numeric_state> command saves the current instrument state. The state number (1-4) is specified in the <numeric_state> parameter. All of the Oscilloscope and measurement setup parameters are saved.

Recalling States

The *RCL <numeric_state> command recalls a previously saved or existing state.

- Enter the number 0 in the <numeric_state> parameter to recall the configuration prior to executing the AUToscale, *RCL, CHANnel:TTL, or CHANnel:ECL commands.

- Enter the number (1-4) in the <numeric_state> parameter of the desired saved state. If *SAV was not previously executed using the selected number, the Oscilloscope module will generate an error.
Recalling and Storing Waveforms

This section contains information about recalling and storing current Oscilloscope module waveforms. These controls allow for:

- Storing
- Viewing
- Blanking
- Erasing
- Merging

Note

The following discussion is intended to provide only a brief overview of the necessary commands required for basic operation. For a complete list and description of these commands, see Chapter 4, STORe, VIEW, BLANk, and ERASe.

Storing Waveforms

The STORe command is used to save an active, previously stored, or function waveform in a non-volatile waveform memory location. The following waveforms are available for viewing:

- CHANnel 1-4 - active waveform from input 1-4
- WMEMory 1-4 - stored in waveform memory (non-volatile)
- FUNCtion 1-2 - function waveform (+,−,X,inverted,only)

You store a waveform with the following command:

STOR xxx,yyy (xxx = source waveform CHAN1-4, WMEM 1-4, or FUNC 1-2 and yyy= memory destination WMEM 1-4)

Note

Whatever is present at the specified source (waveform, baseline, etc) is what will be saved in the specified memory destination.

Viewing Waveforms

The VIEW command is used to present an active, previously stored, or function waveform. The following waveforms are available for viewing:

- CHANnel 1-4 - active waveform from input 1-4
- PMEMory 0-2 - stored in pixel memory (volatile)
- WMEMory 1-4 - stored in waveform memory (non-volatile)
- FUNCtion 1-2 - function waveform (+,−,X,inverted,only)

You view a waveform with the following command:

VIEW xxx (xxx = CHAN1-4, PMEM 0-2, WMEM 1-4, or FUNC 1-2)
Blanking Waveforms

The BLANK command is used to stop presenting an active, previously stored, or function waveform. The following waveforms are available for blanking:

- CHANnel 1-4 - active waveform from input 1-4
- PMEMory 0-2 - stored in pixel memory (volatile)
- WMEMory 1-4 - stored in waveform memory (non-volatile)
- FUNCTION 1-2 - function waveform (+,-,X,inverted,only)

You blank a waveform with the following command:

```
BLANK xxx
```

(where `xxx = CHAN1-4, PMEM 0-2, WMEM 1-4, or FUNC 1-2`)

Note

All unused channels should be blanked. See Appendix C, Optimizing Measurements, for additional information.

Erasing Waveforms

The ERASE command is used to erase the contents of pixel memory. You erase pixel memory with the following command:

```
ERASE xxx
```

(where `xxx = PMEM 0-2`)

Merging Waveforms

The MERGE command is used to merge the contents of pixel memory 0 with the current contents of pixel memory 1 or 2. You merge pixel memories with the following command:

```
MERGE xxx
```

(where `xxx = PMEM 1-2`)

This section summarizes the query commands you can use to determine the configuration or state of the Oscilloscope. All commands end with the "?" which puts the data into the output buffer where you can retrieve it to your computer. See Chapter 4 for more information.

Unless otherwise specified, <n> is the channel number (1-4).

<table>
<thead>
<tr>
<th>Query</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACQuire</td>
<td>Acquire subsystem queries</td>
</tr>
<tr>
<td>:COMPlete?</td>
<td>Acquisition complete value</td>
</tr>
<tr>
<td>:COUNT?</td>
<td>Acquisition count value</td>
</tr>
<tr>
<td>:POINts?</td>
<td>Acquisition points value</td>
</tr>
<tr>
<td>:TYPE?</td>
<td>Acquisition type</td>
</tr>
<tr>
<td>BNC?</td>
<td>Probe compensation connector output</td>
</tr>
<tr>
<td>CALibrate</td>
<td>Calibrate subsystem queries</td>
</tr>
<tr>
<td>:REPort?CHANnel<n></td>
<td>Calibration report</td>
</tr>
<tr>
<td>:TNULi?</td>
<td>Current time null values for channel pairs 1-2, 1-3, and 1-4.</td>
</tr>
<tr>
<td>CHANnel<n></td>
<td>Channel subsystem queries</td>
</tr>
<tr>
<td>:COUPling?</td>
<td>Channel's coupling</td>
</tr>
<tr>
<td>:HFReject?</td>
<td>Channel's low pass filter state</td>
</tr>
<tr>
<td>:LFReject?</td>
<td>Channel's high pass filter state</td>
</tr>
<tr>
<td>:OFFSet?</td>
<td>Channel's offset value</td>
</tr>
<tr>
<td>:PROBe?</td>
<td>Channel's probe attenuation</td>
</tr>
<tr>
<td>:RANGE?</td>
<td>Channel's range value</td>
</tr>
<tr>
<td>DISPLAY</td>
<td>Display subsystem queries</td>
</tr>
<tr>
<td>:DATa?</td>
<td>Display data (block)</td>
</tr>
<tr>
<td>:PERSistence?</td>
<td>Display persistence mode</td>
</tr>
<tr>
<td>:SOURce?</td>
<td>Display source setting</td>
</tr>
<tr>
<td>FUNCTION<n></td>
<td>Function subsystem queries</td>
</tr>
<tr>
<td>:OFFSet?</td>
<td>Function offset value</td>
</tr>
<tr>
<td>:RANGE?</td>
<td>Function range value</td>
</tr>
<tr>
<td>LTER?</td>
<td>Limit test event register value</td>
</tr>
<tr>
<td>MEASURE</td>
<td>Measure subsystem queries</td>
</tr>
<tr>
<td>:ALL?</td>
<td>Measure all parameters, return results</td>
</tr>
<tr>
<td>:COMpare?</td>
<td>Limit test compare mode and values</td>
</tr>
<tr>
<td>:CURSor? <xxxx></td>
<td>Cursor (time/voltage) value, where xxxx is the type</td>
</tr>
<tr>
<td>:DEFine? <xxxx></td>
<td>Measurement definition (delay and pulse width), where xxxx is measurement and parameters</td>
</tr>
<tr>
<td>:DELay?</td>
<td>Measure delay, return results</td>
</tr>
<tr>
<td>:DESTination?</td>
<td>Destination for limit test violation</td>
</tr>
<tr>
<td>:DUTycycle?</td>
<td>Measure duty cycle, return results</td>
</tr>
<tr>
<td>:ESTArt?</td>
<td>Edge start marker position</td>
</tr>
<tr>
<td>:ESTOp?</td>
<td>Edge stop marker position</td>
</tr>
<tr>
<td>:FALLtime?</td>
<td>Measure fall time, return results</td>
</tr>
</tbody>
</table>
Querying the Oscilloscope — Continued

Unless otherwise specified, \(<n> \) is the channel number (1-4).

<table>
<thead>
<tr>
<th>Query</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEASURE—Continued</td>
<td>Measure subsystem queries</td>
</tr>
<tr>
<td>:FREQuency?</td>
<td>Measure frequency, return results</td>
</tr>
<tr>
<td>:LOWer?</td>
<td>Lower threshold value</td>
</tr>
<tr>
<td>:MODE?</td>
<td>Measurement mode definitions</td>
</tr>
<tr>
<td>:NWIDth?</td>
<td>Measure negative pulse width, return results</td>
</tr>
<tr>
<td>:OVERShoot?</td>
<td>Measure overshoot, return results</td>
</tr>
<tr>
<td>:PERiod?</td>
<td>Measure period, return results</td>
</tr>
<tr>
<td>:POSTfailure?</td>
<td>Limit test post-failure instruction</td>
</tr>
<tr>
<td>:PRECision?</td>
<td>Always returns COARse</td>
</tr>
<tr>
<td>:PREShoot?</td>
<td>Measure preshoot, return results</td>
</tr>
<tr>
<td>:PWIDth?</td>
<td>Measure positive pulse width, return results</td>
</tr>
<tr>
<td>:RESULTS?</td>
<td>Measurement queue contents</td>
</tr>
<tr>
<td>:RISetime?</td>
<td>Measure rise time, return results</td>
</tr>
<tr>
<td>:SOURCe?</td>
<td>Measurement source setting</td>
</tr>
<tr>
<td>:STATistics?</td>
<td>Statistics mode</td>
</tr>
<tr>
<td>:TDELta?</td>
<td>Time difference between markers</td>
</tr>
<tr>
<td>:TMAX?</td>
<td>Time at maximum voltage</td>
</tr>
<tr>
<td>:TMIN?</td>
<td>Time at minimum voltage</td>
</tr>
<tr>
<td>:TSTArt?</td>
<td>Time start marker position</td>
</tr>
<tr>
<td>:TSTOP?</td>
<td>Time stop marker position</td>
</tr>
<tr>
<td>:TVOLt? <xxxx></td>
<td>Time interval between trigger and defined event, where xxxx is defined event</td>
</tr>
<tr>
<td>:UNITs?</td>
<td>Threshold level units</td>
</tr>
<tr>
<td>:UPPer?</td>
<td>Upper threshold value</td>
</tr>
<tr>
<td>:VACRms?</td>
<td>Measure AC RMS voltage, return results</td>
</tr>
<tr>
<td>:VAMPitude?</td>
<td>Measure voltage amplitude, return results</td>
</tr>
<tr>
<td>:VAVerge?</td>
<td>Measure average voltage, return results</td>
</tr>
<tr>
<td>:VBASe?</td>
<td>Measure base voltage, return results</td>
</tr>
<tr>
<td>:VDCRms?</td>
<td>Measure DC RMS voltage, return results</td>
</tr>
<tr>
<td>:VDELta?</td>
<td>Voltage difference between markers</td>
</tr>
<tr>
<td>:VMAX?</td>
<td>Measure maximum voltage, return results</td>
</tr>
<tr>
<td>:VMIN?</td>
<td>Measure minimum voltage, return results</td>
</tr>
<tr>
<td>:VPP?</td>
<td>Measure peak-to-peak voltage, return results</td>
</tr>
<tr>
<td>:VRELative?</td>
<td>Current relative voltage stop marker position</td>
</tr>
<tr>
<td>:VRMS?</td>
<td>Measure RMS voltage, return results</td>
</tr>
<tr>
<td>:VSTART?</td>
<td>Voltage start marker position</td>
</tr>
<tr>
<td>:VSTOP?</td>
<td>Voltage stop marker position</td>
</tr>
<tr>
<td>:VTIME? <xxxx></td>
<td>Voltage level at specified time, where xxxx is time</td>
</tr>
<tr>
<td>:VTOP?</td>
<td>Measure top voltage, return results</td>
</tr>
</tbody>
</table>

MEMORY

<table>
<thead>
<tr>
<th>MEMORY</th>
<th>Memory subsystem queries</th>
</tr>
</thead>
<tbody>
<tr>
<td>:VME</td>
<td>Memory address selected</td>
</tr>
<tr>
<td>:ADDRESS?</td>
<td>Memory measurement address selected</td>
</tr>
<tr>
<td>:MEASURE</td>
<td>Memory measure state</td>
</tr>
<tr>
<td>:ADDRESS?</td>
<td>Memory size</td>
</tr>
<tr>
<td>:STATE?</td>
<td>Overall VME memory state</td>
</tr>
</tbody>
</table>
Querying the Oscilloscope — Continued

Unless otherwise specified, \(n \) is the channel number (1-4).

<table>
<thead>
<tr>
<th>Query</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTPUT</td>
<td>Output subsystem queries</td>
</tr>
<tr>
<td>:ECLTrg<xxxx></td>
<td>Select ECL trigger bus line (0-1)</td>
</tr>
<tr>
<td>[:STATE]?</td>
<td>Enable state of ECL trigger bus line selected</td>
</tr>
<tr>
<td>:EXTernal</td>
<td>Front panel trigger connector</td>
</tr>
<tr>
<td>[:STATE]?</td>
<td>Enable state of front panel trigger</td>
</tr>
<tr>
<td>[:STATE]?</td>
<td>Overall output state</td>
</tr>
<tr>
<td>:TTLTrg<xxxx></td>
<td>Select TTL trigger bus line (0-7)</td>
</tr>
<tr>
<td>[:STATE]?</td>
<td>Enable state of TTL trigger bus line selected</td>
</tr>
<tr>
<td>SUMM ary</td>
<td>Summary subsystem commands</td>
</tr>
<tr>
<td>:QUESTionable?</td>
<td>Questionable event register value</td>
</tr>
<tr>
<td>:CALibration?</td>
<td>Calibration event register value</td>
</tr>
<tr>
<td>:CHANnel<n>?</td>
<td>Channel's event register value</td>
</tr>
<tr>
<td>:AD?</td>
<td>Channel's AD event register value</td>
</tr>
<tr>
<td>:DE Lay?</td>
<td>Channel's delay event register value</td>
</tr>
<tr>
<td>:GAIN?</td>
<td>Channel's gain event register value</td>
</tr>
<tr>
<td>:HYSTeresis?</td>
<td>Channel's hysteresis event register value</td>
</tr>
<tr>
<td>:LTRigger?</td>
<td>Channel's logic trigger event register value</td>
</tr>
<tr>
<td>:OFFSet?</td>
<td>Channel's offset event register value</td>
</tr>
<tr>
<td>:TNUL?</td>
<td>Channel's time null event register value</td>
</tr>
<tr>
<td>:TRigger?</td>
<td>Channel's trigger event register value</td>
</tr>
<tr>
<td>:DCALibration?</td>
<td>Default calibration event register value</td>
</tr>
<tr>
<td>:PROBe?</td>
<td>Probe event register value</td>
</tr>
<tr>
<td>:TEST?</td>
<td>Test event register value</td>
</tr>
<tr>
<td>:ACQuisition?</td>
<td>Acquisition test event register value</td>
</tr>
<tr>
<td>:AD?</td>
<td>Acquisition test AD event register value</td>
</tr>
<tr>
<td>:ATRigger?</td>
<td>Acquisition test analog trigger event register value</td>
</tr>
<tr>
<td>:DA?</td>
<td>Acquisition test DA event register value</td>
</tr>
<tr>
<td>:LTRigger?</td>
<td>Acquisition test logic trigger event register value</td>
</tr>
<tr>
<td>:TI Mecbase?</td>
<td>Acquisition test time base event register value</td>
</tr>
<tr>
<td>:INTerpolator?</td>
<td>Time base interpolator event register value</td>
</tr>
<tr>
<td>:RAM?</td>
<td>RAM test event register value</td>
</tr>
<tr>
<td>:ACQuisition?</td>
<td>Acquisition RAM test event register value</td>
</tr>
<tr>
<td>:DISPLAY?</td>
<td>Display RAM test event register value</td>
</tr>
<tr>
<td>:NVOLatile?</td>
<td>Non-volatile RAM test event register value</td>
</tr>
<tr>
<td>:Syst em?</td>
<td>System RAM test event register value</td>
</tr>
<tr>
<td>:ROM?</td>
<td>ROM test event register value</td>
</tr>
<tr>
<td>:NP Rote ct?</td>
<td>Non-protected RAM test event register value</td>
</tr>
<tr>
<td>:Syst em?</td>
<td>System ROM test event register value</td>
</tr>
<tr>
<td>SYST em</td>
<td>System subsystem queries</td>
</tr>
<tr>
<td>:ERRor? <xxxx></td>
<td>Error number and messages, where xxxx specifies message type</td>
</tr>
<tr>
<td>:HEADer?</td>
<td>Command header state</td>
</tr>
<tr>
<td>:LANGU age?</td>
<td>Programming language selected</td>
</tr>
<tr>
<td>:LONGform?</td>
<td>Command header form</td>
</tr>
<tr>
<td>:SETup?</td>
<td>Setup data (block)</td>
</tr>
</tbody>
</table>
Querying the Oscilloscope — Continued

Unless otherwise specified, <n> is the channel number (1-4).

<table>
<thead>
<tr>
<th>Query</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUN?</td>
<td>Current acquisition state</td>
</tr>
<tr>
<td>STATus? <xxxx></td>
<td>Channel, function, waveform memory, or pixel memory status, where xxxx is source</td>
</tr>
<tr>
<td>TER?</td>
<td>Trigger event register value</td>
</tr>
<tr>
<td>TIMebase</td>
<td>Time base subsystem queries</td>
</tr>
<tr>
<td>:DELAYy?</td>
<td>Time base delay value</td>
</tr>
<tr>
<td>:MODE?</td>
<td>Time base mode</td>
</tr>
<tr>
<td>:RANGE?</td>
<td>Time base range value</td>
</tr>
<tr>
<td>:REFERENCE?</td>
<td>Delay reference selection</td>
</tr>
<tr>
<td>:WINDOW?</td>
<td>Expanded window state</td>
</tr>
<tr>
<td>:DELay?</td>
<td>Expanded window delay value</td>
</tr>
<tr>
<td>:RANGE?</td>
<td>Expanded window range value</td>
</tr>
<tr>
<td>TRIGGER</td>
<td>Trigger subsystem queries</td>
</tr>
<tr>
<td>:CONDition?</td>
<td>Trigger condition and values</td>
</tr>
<tr>
<td>:DELAYy?</td>
<td>Trigger delay type (time or event) and value</td>
</tr>
<tr>
<td>:SLOPe?</td>
<td>Trigger delay slope selected</td>
</tr>
<tr>
<td>:SOURCE?</td>
<td>Trigger delay source selected</td>
</tr>
<tr>
<td>:FIELD?</td>
<td>TV Trigger field selected</td>
</tr>
<tr>
<td>:HOLDoff?</td>
<td>Trigger holdoff type (time or events) and value</td>
</tr>
<tr>
<td>:LEVEL?</td>
<td>Trigger level value</td>
</tr>
<tr>
<td>:LINE?</td>
<td>TV Trigger line selected</td>
</tr>
<tr>
<td>:LOGic?</td>
<td>Logic level selected</td>
</tr>
<tr>
<td>:MODE?</td>
<td>Trigger mode selected</td>
</tr>
<tr>
<td>:OCCurrence?</td>
<td>Occurrence value</td>
</tr>
<tr>
<td>:SLOPe?</td>
<td>Occurrence slope selected</td>
</tr>
<tr>
<td>:SOURCE?</td>
<td>Occurrence source selected</td>
</tr>
<tr>
<td>:PATH?</td>
<td>Source selected for logic command</td>
</tr>
<tr>
<td>:POLarity?</td>
<td>TV Trigger polarity selected</td>
</tr>
<tr>
<td>:QUALify?</td>
<td>Quality mode selected</td>
</tr>
<tr>
<td>:SENSitivity?</td>
<td>Trigger sensitivity selected</td>
</tr>
<tr>
<td>:SLOPe?</td>
<td>Trigger slope selected</td>
</tr>
<tr>
<td>:SOURCE?</td>
<td>Trigger source selected</td>
</tr>
<tr>
<td>:STANdard?</td>
<td>TV Trigger standard selected</td>
</tr>
<tr>
<td>WAVEform</td>
<td>Waveform subsystem</td>
</tr>
<tr>
<td>:COUNT?</td>
<td>Always returns 1</td>
</tr>
<tr>
<td>:DATA?</td>
<td>Waveform data (block)</td>
</tr>
<tr>
<td>:FORMat?</td>
<td>Waveform data format selected</td>
</tr>
<tr>
<td>:POINts?</td>
<td>Waveform data points value</td>
</tr>
<tr>
<td>:PREamble?</td>
<td>Preamble (block)</td>
</tr>
<tr>
<td>:SOURCE?</td>
<td>Waveform source selected</td>
</tr>
<tr>
<td>:TYPE?</td>
<td>Waveform data type selected</td>
</tr>
<tr>
<td>:XINCrement?</td>
<td>Time difference of data points</td>
</tr>
<tr>
<td>:XORigin?</td>
<td>Time of first data point</td>
</tr>
<tr>
<td>:XREFERENCE?</td>
<td>Always returns 0</td>
</tr>
<tr>
<td>:YINCrement?</td>
<td>Voltage difference of data points</td>
</tr>
<tr>
<td>:YORigin?</td>
<td>Voltage at center of waveform</td>
</tr>
<tr>
<td>:YREFERENCE?</td>
<td>Data point at y-origin</td>
</tr>
</tbody>
</table>
Chapter 4 — Oscilloscope HP 54503A Compatible Language Command Reference

Using This Chapter .. 4-1
Command Types ... 4-1
 Common Command Format .. 4-1
 COMP Command Format .. 4-1
Linking Commands ... 4-4
COMP Command Reference ... 4-4
 ACQuire Subsystem ... 4-5
 CALibrate Subsystem .. 4-10
 CHANnel Subsystem ... 4-17
 DISPlay Subsystem ... 4-25
 FUNCTION Subsystem .. 4-30
 MEASure Subsystem .. 4-35
 MEMory Subsystem ... 4-93
 OUTPut Subsystem ... 4-101
Root Level Commands .. 4-106
SUMMary Subsystem .. 4-122
SYSTem Subsystem ... 4-157
TEST Subsystem ... 4-163
TIMebase Subsystem .. 4-166
TRIGger Subsystem .. 4-174
WAVEform Subsystem ... 4-199
Command Cross Reference to SCPI Commands 4-210
Command Cross Reference to HP 54503A Commands 4-214
Common Command Reference .. 4-216
Command Quick Reference .. 4-217
COMP Commands Quick Reference 4-217
IEEE 488.2 Common Commands Quick Reference 4-228
Using This Chapter

This chapter describes Hewlett-Packard 54503A Compatible Language (COMP) commands and summarizes IEEE 488.2 Common (*) commands applicable to the Oscilloscope module.

See the HP 54503A Programming Guide for additional information on COMP and common commands. This chapter contains the following sections:

- Command Types .. Page 4-1
- COMP Command Reference Page 4-4
- Command Cross Reference to SCPI commands Page 4-210
- Command Cross Reference to HP54503A commands .. Page 4-214
- Common Command Reference Page 4-216
- Command Quick Reference Page 4-217

Command Types

Commands are separated into two types: IEEE 488.2 Common Commands and Hewlett-Packard 54503A Compatible Language (COMP) Commands.

Common Command Format

The IEEE 488.2 standard defines the Common Commands that perform functions like reset, self-test, status byte query, etc. Common commands are four or five characters in length, always begin with the asterisk character (*), and may include one or more parameters. The command keyword is separated from the first parameter by a space character. Some examples of Common Commands are shown below:

*RST *CLS *STB?

COMP Command Format

The COMP commands perform functions like setting parameters, performing measurements, querying instrument states, and retrieving data. A subsystem command structure is a hierarchical structure that usually consists of a top level (or root) command, one or more lower level sub commands, and their parameters. The following example shows part of a typical subsystem:

TIMebase
 :RANGE <range>
 :WINDow ON|OFF
 :DELay?

TIMebase is the root command, :RANGE and :WINDow are the second level sub commands with <range> and ON|OFF as parameters, and :DELay? is a third level query.
Command Separator

A colon (:) always separates one command from the next lower level command as shown below:

TIMebase:WINDow:DELay?

Colons separate the root command from the second level command (TIMebase:WINDow), and the second level from the third level query (WINDow:DELay?).

Abbreviated Commands

The command syntax shows most commands as a mix of upper and lower case letters. The upper case letters indicate the abbreviated spelling for the command. For shorter program lines, send only the abbreviated form. For better program readability, you may send the entire command. The instrument will only accept either the abbreviated form or the entire command.

For example, if the command syntax shows TIMebase, then TIM and TIMEBASE are both acceptable forms. Other forms of TIMebase, such as TM will generate an error. You may use upper or lower case letters. Therefore, TIMEBASE, and TIMEBaSe are acceptable.

Implied Commands

Implied commands are those which appear in square brackets ([]) in the command syntax. (Note that the brackets are not part of the command and are not sent to the instrument.) Suppose you send a root level and second level command, but do not send the third level implied command. In this case, the instrument assumes you intend to use the implied command and it responds as if you had sent it.

Examine the portion of the SUMMary subsystem shown below:

SUMMary :

:QUESTIONable

[:EVENT]?

The third level query [:EVENT]? is implied. To query the instruments operation event register, you can send either of the following command statements:

SUMM:QUES? or SUMM:QUES:EVEN?
Parameters

Parameter Types. The following table contains explanations and examples of parameter types you might see later in this chapter.

<table>
<thead>
<tr>
<th>Parameter Type</th>
<th>Explanations and Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numeric</td>
<td>Accepts all commonly used decimal representations of numbers including optional signs, decimal points, and scientific notation. 123 or 1.23E2; -123 or -1.23E2; .123, 1.23E-1, or 1.23000E-01. Accepts all commonly used suffixes with decimal representations of numbers including optional signs, and decimal points. .123S or 123MS; 1234OHM or 1.234KOHM. Voltage = "UV" for E-6, "MV" for E-3, "V" for E0, "KV" for E3. Percent = "PCT". Ohms = "OHM", "KOHM" for E3, "MOHM" for E6. Frequency = "HZ" for E0, "KHZ" for E3, "MHZ" for E6, "GHZ" for E9. Time = "PS" for E-12, "NS" for E-9, "US" for E-6, "MS" for E-3, "S" for E0. Special cases include MIN and MAX. MIN (selects minimum value available), and MAX (selects maximum value available).</td>
</tr>
<tr>
<td>Boolean</td>
<td>Represents a single binary condition that is either true or false. 1 or ON; 0 or OFF</td>
</tr>
<tr>
<td>Block</td>
<td>Definite block program data format specified in IEEE 488.2.</td>
</tr>
<tr>
<td>Discrete</td>
<td>Selects from a finite number of values. These parameters use mnemonics to represent each valid setting. An example is the TImebase:MODe <mode> command where <mode> can be AUTO, TRIGgered, or SINGle.</td>
</tr>
</tbody>
</table>

Optional Parameters. Parameters shown within square brackets ([]) are optional parameters. (Note that the brackets are not part of the command and are not sent to the instrument.) If you do not specify a value for an optional parameter, the instrument chooses a default value. For example, consider the MEM:VME:ADDR? [MIN|MAX>] command. If you send the command without specifying a parameter, the present external VME memory address is returned. If you send the MIN parameter, the command returns the lowest address available (2097152). If you send the MAX parameter, the command returns the maximum address available (14647294). Be sure to place a space between the command and the parameter.
Parameters Out of Range - Set to Limit. If an out of range parameter is automatically adjusted to an acceptable value, bit 10 in the SUMMary:QUESTionable register will be set true (1). For example, if CHANnel1:PROBe 0.1 is entered, the value is set to 0.9 (lowest available setting) and bit 10 is set to "1".

Linking Commands

Linking IEEE 488.2 Common Commands with COMP Commands. Use a semicolon between the commands. For example:

*CLS;*RST;CAL:REP? CHAN1

Linking Multiple COMP Commands. Use both a semicolon and a colon between the commands. For example:

CHAN1:COUP AC;:TIM:RANG?

COMP also allows several commands within the same subsystem to be linked with a semicolon. For example:

CAL:SCAL:VERT;CAL:SCAL:BCAL

or

CAL:SCAL:VERT;BCAL

COMP Command Reference

This section describes the Hewlett-Packard 54503A Compatible Language (COMP) commands for the Oscilloscope module. Commands are listed alphabetically by subsystem and also alphabetically within each subsystem. Command guides are printed in the top margin of each page. The left guide indicates the first command listed on that page. The right guide indicates the last command listed on that page. Where only a single command appears on a page, the left and right guides will be the same.
The ACQuire command subsystem is used to set up the conditions to acquire waveform data prior to executing a DIGitize command. This subsystem selects the type of data, the number of averages, the number of data points, and the completion criteria.

Note

The term "Time Buckets" is defined as — the time range divided into a specific number of horizontal time points (as defined by ACQuire:POINts command), each with an equal and fixed time associated with it.

Subsystem Syntax

ACQuire

:COMPLETE <complete>

:COMPLETE?

:COUNt <count>

:COUNt?

:POINts <points>

:POINts?

:TYPE <mode>

:TYPE?
ACQuire:COMPLETE

:COMPLETE ACQuire:COMPLETE <complete> specifies the completion criteria for an acquisition. Specifies what percentage of the time buckets need to be "full" before an acquisition is considered complete.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>complete</td>
<td>numeric</td>
<td>0 to 100</td>
<td>PCT</td>
</tr>
</tbody>
</table>

Example

Set acquire complete to 50%

The following example illustrates the use of the ACQuire:COMPLETE command only. Chapter 3 contains an example on performing a complete digitizing operation.

ACQ:COMP 50

Acquire complete is 50%

Comments

- Time Buckets = "full": A time bucket is considered "full" dependent on the ACQuire:TYPE selected as follows:

 ACQuire:TYPE NORMAL: The instrument only needs one data point per time bucket for that time bucket to be considered full.

 ACQuire:TYPE AVERAGE or ENVelope: A specified number of data points per time bucket (set using ACQuire:COUNT) must be acquired.

- Recommended Completion Value: 60% is the recommended completion criteria. See Appendix C, Optimizing Measurements, for additional information on measurement techniques.

- Completion of 0%: If the complete value is set to 0, then one acquisition cycle will take place.

- Related Commands: ACQuire:TYPE, COUNT.

- *RST Condition: Defaults to 100%.

:COMPLETE?

ACQuire:COMPLETE? returns the completion value (in percent) for the currently selected mode. The value is sent to the output buffer.

Example

Querying acquire complete

ACQ:COMP 50

Acquire complete is 50%

ACQ:COMP?

Query instrument to return acquire complete value

enter statement

Enter value into computer
ACQuire:COUNT

:COUNT
ACQuire:COUNT <count> selects the number of values to be averaged for each time bucket before the acquisition (for that time bucket) is considered complete.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>numeric</td>
<td>1 to 2048</td>
<td>none</td>
</tr>
</tbody>
</table>

Example
Set acquire count to 64
The following example illustrates the use of the ACQuire:COUNT command only. Chapter 3 contains an example on performing a complete digitizing operation.

ACQ:COUN 64
Acquire count is 64

Comments
- Acquire Type: Count values accepted are dependent on the ACQuire:TYPE currently selected, as follows:

 ACQuire:TYPE NORMal: Count is not used in this mode. Any value from 1 to 2048 can be entered, but is disregarded. Query will always return a 1.

 ACQuire:TYPE AVERage: When selected, the acceptable values are from 1 to 2048, however the entry will be rounded to the nearest power of 2.

 ACQuire:TYPE ENvelope: Count is not used in this mode. Any value from 1 to 2048 can be entered, but is disregarded. Query will return entered value.

- Related Commands: ACQuire:COMpletely, TYPE.
- *RST Condition: Defaults to 8.

:COUNT?
ACQuire:COUNT? returns the currently selected count value. The value is sent to the output buffer.

Example
Querying acquire count

ACQ:COUN 64
ACQ:COUN?
enter statement

Comments
- Acquire Type Normal: When ACQuire:TYPE NORMal is selected, a count query will always return a 1.
:POI_nts ACQuire:POI_nts <points> selects the number of time buckets for each acquisition record.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>points</td>
<td>numeric</td>
<td>32</td>
<td>64</td>
</tr>
</tbody>
</table>

Example
Set acquire points to 1024
The following example illustrates the use of the ACQuire:POI_nts command only. Chapter 3 contains an example on performing a complete digitizing operation.

```
ACQ:POIN 1024 Acquire points are 1024
```

Comments
- **Entering Points**: Any value between 32 and 1024 can be entered, however entry will be rounded to the nearest acceptable value.
- **Waveform Points**: To determine the **ACTUAL** number of time buckets acquired, send the WAVeform:POI_nts? query.
- **Related Commands**: WAVeform:POI_nts?.
- **RST Condition**: Defaults to 500.

:POI_nts? ACQuire:POI_nts? returns the currently selected points value. The value is sent to the output buffer.

Example
Querying Acquire Points

```
ACQ:POIN 1024 Acquire points are 1024
ACQ:POIN? Query instrument to return acquire points value
```

```
enter statement Enter value into computer
```
ACQuire:TYPe

ACQuire:TYPe <mode> selects the type of acquisition that will take place when a DIGitize command is executed.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode</td>
<td>discrete</td>
<td>NORMaL</td>
<td>AVERage</td>
</tr>
</tbody>
</table>

Example

Set acquire type to average

The following example illustrates the use of the ACQuire:TYPe command only. Chapter 3 contains an example on performing a complete digitizing operation.

ACQ:TYP AVER
Acquisition type is average

Comments

- **Selecting Mode:** Mode is used to select how the acquisitions are used when generating the waveform. See the WAVeform:TYPe? query for more information on selecting acquisition type.

 NORMaL: Used for general purpose type measurements. The waveform reflects the last data point (hit) in each time bucket. ACQuire:COUNt has no effect in this mode.

 AVERage: Used when reduction of signal noise and improved resolution is desired. The waveform reflects a minimum of n acquisitions averaged per time bucket, where n is the current ACQuire:COUNt value.

 ENVelope: Used when measuring voltage or time jitter. The waveform reflects the minimum and maximum data points (hit) in each time bucket. ACQuire:COUNt has no effect in this mode.

- **Related Commands:** ACQuire:COUNt, DIGitize, WAVeform:TYPe?.

- **RST Condition:** Defaults to NORMaL.

ACQuire:TYPe? returns the currently selected acquisition type. The data is sent to the output buffer. See ACQuire:TYPe command for more information on available types.

Example

Querying acquire type

```
Dimension statement  String for data
ACQ:TYP  AVER     Acquisition type is average
ACQ:TYPE?    Query instrument to return acquisition type
enter statement  Enter value into computer
```
CALibrate

The CALibrate command subsystem contains commands to perform probe/self calibrations, and set channel-to-channel time nulls.

Subsystem Syntax

CALibrate

:PCALibration
 :ATTenuation CHANnel<number>
 :BCALibration
 :TNUL1
 :CH1TO<number> <time>
 :REPort? <channel>
 :SCALibration
 :BCALibration
 :DCALibration
 :DELay <channel>
 :DOUTput <level>
 :LTCalibration
 :TNUL1 <channel_skew>
 :VERTical
 :TNUL1 <value1>,<value2>,<value3>
 :TNUL1?

:PCALibration:BCALibration

CALibrate:PCALibration:BCALibration performs an attenuation calibration on the channel number specified by the CAL:PCAL:ATT CHAN command. Instrument calibrates channel gain at the point connected to the DC Calibrator Output connector (probe, cable, etc). Probe attenuation is then calculated from the results, and a correction is automatically entered in the correct CHANnel<n>:PROBe setting.

Example Perform attenuation calibration on channel 4

This example calibrates the channel gain on input 4. For the example, a 10:1 attenuator probe is connected to the DC Calibrator Output connector from the Input 4 connector.

CAL:PCAL:ATT CHAN4 Attenuation calibration channel 4
pause To connect probe to DC Calibrator Output from Input 4 connector
CAL:PCAL:BCAL Perform attenuation calibration. Correction automatically stored in CHAN4:PROB

Comments

- **Valid Calibration:** Channel gain is corrected using calculated probe attenuation values from 0.9:1 to 250:1. If the measured results cause the calculated attenuation factor to be out of this range, an error will be generated.

- **Related Commands:** CAL:PCAL:ATT CHANnel<n>, CHANnel<n>:PROBe.
:PCALibration:ATTenuation CHANnel

Selects the channel number that will be calibrated when the CAL:PCAL:BCAL command is executed.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1 to 4</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Set attenuation calibration channel to 4

CAL:PCAL:ATT CHAN4
Attenuation calibration channel to 4

Comments

- Related Commands: CAL:PCAL:BCALibration.

:PCALibration:TNULL:CH1TO

CALibrate:PCALibration:TNULL:CH1TO<number> <time> is used to set the timing of channels 2, 3, OR 4 to correspond with channel 1. Use to eliminate any time discrepancies between channels and minimize channel to channel skew variations. Use to manually adjust any differences in cable length.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>2 to 4</td>
<td>none</td>
</tr>
<tr>
<td>time</td>
<td>numeric</td>
<td>-50NS to +70NS</td>
<td>S</td>
</tr>
</tbody>
</table>

Example

Set time null from channel 1 to 3 to 25 ns.

CAL:PCAL:TNULL:CH1TO3 25E-9
Channel 1 to 3 time null to 25 nsec

Comments

- Query Time Null: Use the CALibrate:TNULL? query to return current time null settings.
- **CALibrate:TNULL Command**: This command is similar to the CALibrate:TNULL? query, except the three time null values can be entered separately.
- Related Commands: CALibrate:TNULL.
:REPort? CALibrate:REPort? <channel> is used to query the current calibration status of the instrument. Each channel’s status is queried separately. The data is sent to the output buffer.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>channel</td>
<td>numeric</td>
<td>CHANnel (n=1 to 4)</td>
<td>none</td>
</tr>
</tbody>
</table>

Example
Query channel 2 calibration results

dimension statement String to hold data
CAL:REPort? CHAN2 Query channel 2 calibration results
enter statement Enter value into computer

Comments

- Returned Format: The calibration results are returned in the following format:

 CHANnel1 A/D X, Gain X, Offset X, Hysteresis X, Trigger X, Delay X, Logic Trigger X

 Where X is "F"=Passed, "F"=Failed, "D"=Defaulted, "C"=Corrupted. If X prefixed by a "", indicates a new ROM revision without a recalibration.

:SCALibration:BCALibration

CALibrate:SCALibration:BCALibration is used to begin a self calibration routine. The routine that is performed is dependent on the SCALibration command configured prior to executing the BCALibration command.

Example
Begin a Logic Trigger Calibration

CAL:SCAL:LTE Configure logic trigger calibration
CAL:SCAL:BCAL Begin logic trigger calibration

Comments

- Self Calibration: If the BCALibration command is executed without first defining the SCALibration routine to be performed, a bit will be set in the SUMMary:QUESTionable register.
- Calibration Protect Switch: The Calibration Protect switch must be set to the UNPROTECTED setting prior to performing a SCALibration routine.
CALibrate:SCALibrate:DCALibrate

CALibrate:SCALibrate:DCALibrate is used to load "default" calibration data. Default calibration data is set at the factory and is dependent on the ROM revision currently installed. This command should only be used by service personnel. Procedures for performing this calibration are provided in the Service Manual.

Example
Overwrite all existing calibration data with default calibration data

```
CAL:SCAL:DCAL
```

Configure for default calibration routine

```
CAL:SCAL:BCAL
```

Load default calibration data

Comments
- **Calibration Protect Switch**: The Calibration Protect switch must be set to the UNPROTECTED setting prior to performing a default calibration routine.
- **Related Commands**: CAL:SCAL:BCALibrate, CAL:REPort?.

CALibrate:SCALibrate:DELay

CALibrate:SCALibrate:DELay <channel> performs a delay calibration on all four inputs, one at a time. Each input must be connected to the AC Calibrator Output prior to executing the calibration routine for that channel. The results are stored and used by the instrument to maintain measurement accuracy.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>channel</td>
<td>numeric</td>
<td>CHANnel(n=1) to (4)</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Chapter 3 contains an example on performing a delay calibration

Comments
- **Calibration Results**: Delay calibration results can be reviewed using the Calibrate:REPort? query.
- **Calibration Protect Switch**: The Calibration Protect switch must be set to the UNPROTECTED setting prior to performing a calibration routine.
- **Related Commands**: CAL:SCAL:BCALibrate, CAL:REPort?.
CALibrate:SCALibration:DOUTput is used to set the output level of the DC Calibrator output connector to 0 volts (ZVOLt) or 5 volts (FVOLt).

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>level</td>
<td>discrete</td>
<td>ZVOLt</td>
<td>FVOLt</td>
</tr>
</tbody>
</table>

Example
Set DC calibrator output connector to 5V

```
CAL:SCAL:DOUT 5  DC calibrator output to 5V
```

Comments
- *RST Condition: Defaults to ZVOLt (0 volts).

CALibrate:SCALibration:LT Calibration performs a logic trigger calibration. Input 1 must be connected to the AC Calibrator Output prior to executing the calibration routine. The results are stored and used by the instrument to maintain measurement accuracy.

Example
Chapter 3 contains an example on performing a logic trigger calibration

Comments
- Prior to Logic Trigger Calibration Execution: Prior to executing the logic trigger calibration routine, the calibration results must be reviewed using the CALibrate:REPort? query. All four channel calibration results must indicate "P" before the logic trigger calibration can be executed.
- Calibration Protect Switch: The Calibration Protect switch must be set to the UNPROTECTED setting prior to performing a calibration routine.
- Calibration Results: Logic trigger calibration results can be reviewed using the CALibrate:REPort? query.
- Related Commands: CAL:SCAL:BCALibration, CAL:REPort?.
CALibrate:SCALibration:TNULI

CALibrate:SCALibration:TNULI <channel_skew> performs a time null calibration on one set of channels at a time. The results are stored and used by the instrument to maintain measurement accuracy.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>channel_skew</td>
<td>discrete</td>
<td>CH1TO2</td>
<td>CH1TO3</td>
</tr>
</tbody>
</table>

Example

Chapter 3 contains an example on performing a time null calibration.

Comments

- **Calibration Protect Switch**: The Calibration Protect switch must be set to the UNPROTECTED setting prior to performing a calibration routine.
- **Calibration Results**: Time null calibration results can be reviewed using the CALibrate:REPort? query.
- **Related Commands**: CAL:SCAL:BCALibration, CAL:REPort?.

CALibrate:SCALibration:VERTical

CALibrate:SCALibration:VERTical performs a vertical calibration on all four inputs simultaneously. All inputs must be connected to the DC Calibrator Output prior to executing the calibration routine. The results are stored and used by the instrument to maintain measurement accuracy.

Example

Chapter 3 contains an example on performing a vertical calibration.

Comments

- **Calibration Results**: Vertical calibration results can be reviewed using the CALibrate:REPort? query.
- **Calibration Protect Switch**: The Calibration Protect switch must be set to the UNPROTECTED setting prior to performing a calibration routine.
- **Related Commands**: Calibrate:SCALibration:BCALibration, Calibrate:REPort?.
CALibrate:TNULL

CALibrate:TNULL <value_1>,<value_2>,<value_3> is used to set the timing of channels 2, 3, AND 4 to correspond with channel 1. Use to eliminate any time discrepancies between channels and minimize channel to channel skew variations. Use to manually adjust any differences in cable length.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>value_1</td>
<td>numeric</td>
<td>-50NS to +70NS</td>
<td>S</td>
</tr>
<tr>
<td>value_2</td>
<td>numeric</td>
<td>-50NS to +70NS</td>
<td>S</td>
</tr>
<tr>
<td>value_3</td>
<td>numeric</td>
<td>-50NS to +70NS</td>
<td>S</td>
</tr>
</tbody>
</table>

Example

Set time null to 25 ns from channel 1 to 4

```
CAL:TNULL 0, 0, 25e-9  Channel 1 to 4 time null to 25 nsec
```

Comments

- **Query Time Null:** Use the CALibrate:TNULL? query to return current time null settings.
- **CALibrate:TNULL Command:** This command is similar to the CALibrate:PCALibration:ATTenuation:TNULL CH1TO command, except all three time null values must be entered.
- **Related Commands:** CAL:PCAL:TNULL CH1TO.

CALibrate:TNULL? returns the currently selected time nulls (in seconds) for channels 1 to 2, 1 to 3, and 1 to 4 respectively. The data is sent to the output buffer. See CALibrate:TNULL command for more information.

Example

Querying time nulls

```
CAL:TNULL 0, 0, 25e-9  Set channel 1 to 4 time null to 25 nsec
CAL:TNULL?  Query instrument to return time nulls
```

Comments

- **Related Commands:** CAL:SCAL:TNULL CH1TO, CAL:TNULL.
The CHANnel command subsystem is used to select a specific channel's vertical or Y-axis controls. Channels 1, 2, 3, and 4 are independently programmable for all offset, probe, coupling, and range functions.

See VIEW and BLANK commands for information on channel presentation.

Subsystem Syntax

CHANnel<number>

:COUPling <type>

:COUPling?

:ECL

:HFReject <mode>

:HFReject?

:LFReject <mode>

:LFReject?

:OFFSet <value>

:OFFSet?

:PROBe <atten>

:PROBe?

:RANGE <range>

:RANGE?

:TTL

:COUPling

CHANnel<number>:COUPling <type> is used to select the input coupling for the channel specified. The coupling for each channel can be set to AC, DC or DCfifty.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1 to 4</td>
<td>None</td>
</tr>
<tr>
<td>type</td>
<td>discrete</td>
<td>AC</td>
<td>DC</td>
</tr>
</tbody>
</table>

Example

Set channel 1 coupling to AC

CHAN1: COU AC

Channel 1 coupling to AC

Comments

- Impedance: AC is 1MΩ, DC is 1MΩ, and DCfifty is 50Ω.
- *RST Condition: Defaults to DC on all channels.
- Related Commands: CHANnel<n>:COUPling?
CHANnel:COUPling?

CHANnel<number>:COUPling? returns the currently selected coupling type for the channel specified. The data is sent to the output buffer. See CHANnel<n>:COUPling for more information on coupling types.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1 to 4</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Querying channel 1 coupling

```
Dimension statement String for data
CHAN1:COUP AC Channel 1 coupling to AC
CHAN1:COUP? Query instrument to return channel 1 coupling selection
enter statement Enter value into computer
```

: ECL

CHANnel<number>:ECL sets the specified channel's vertical controls for optimum viewing of ECL signals. CHANnel<n>:RANGE is set to 1.6 volts full scale, CHANnel<n>:OFFSet and TRIGger:LEVel are set to -1.3 volts, and CHANnel<n>:COUPling is set to DC (1MΩ or 50Ω). TRIGger:SLOPe and impedance (coupling) is not changed.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1 to 4</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Set channel 2 to view ECL signal

CHAN2: ECL Channel 2 for ECL signal

Comments

- **Probe Attenuation:** The current CHANnel<n>:PROBe setting (other than 1:1) will affect CHANnel<n>:RANGE and OFFSet settings.
- **Related Commands:** CHANnel<n>:OFFSet, LEVel, RANGE, COUPling.
:HFReject

CHANnel<number>:HFReject <mode> is used to select an internal low pass filter to reject high frequencies. When ON, the bandwidth of the specified channel is limited to approximately 30MHz. The bandwidth limit filter may be used with all coupling selections.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1 to 4</td>
<td>none</td>
</tr>
<tr>
<td>mode</td>
<td>boolean</td>
<td>OFF</td>
<td>ON</td>
</tr>
</tbody>
</table>

Example

Enable low pass filter on channel 1

CHAN1:HFR 1

Channel 1 low pass filter to on

Comments

- Mode: Integer values can be substituted for the OFF (0) and ON (1) parameters.
- Related Commands: CHANnel<n>:COUPling.
- *RST Conditions: Defaults to OFF for all channels.

:HFReject?

CHANnel<number>:HFReject? returns a number to show whether the internal low pass filter is enabled or disabled for the specified channel. "1" = ON, "0" is OFF. The value is sent to the output buffer.

Example

Querying channel 1 low pass filter state

CHAN1:HFR 1
CHAN1:HFR?

Channel 1 low pass filter to on
Query instrument to return channel 1 low pass filter state

enter statement

Enter value into computer
:LFReject

CHANnel<number>:LFRej ect <mode> is used to select an internal high pass filter to reject low frequencies. When ON, the bandwidth of the specified channel is limited to approximately 450 Hz. The bandwidth limit filter may be used only with AC coupling.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1 to 4</td>
<td>none</td>
</tr>
<tr>
<td>mode</td>
<td>boolean</td>
<td>OFF</td>
<td>0</td>
</tr>
</tbody>
</table>

Example

Enable filter on channel 3

CHAN3:LFR 1 Channel 3 filter to on

Comments

- Mode: Integer values can be substituted for the OFF (0) and ON (1) parameters.
- Related Commands: CHANnel<n>:COUPling.
- *RST Conditions: Defaults to OFF for all channels.

:LFReject?

CHANnel<number>:LFRej ect? returns a number to show whether the internal filter is enabled or disabled for the specified channel. "1" = ON, "0" is OFF. The value is sent to the output buffer.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1 to 4</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Querying channel 3 high pass filter state

CHAN3:LFR 1 Channel 3 filter to on
CHAN3:LFR? Query instrument to return channel 3 filter state

enter statement Enter value into computer
:OFFSet

CHANnel<number>:OFFSet <value> sets the voltage that is represented at the center of the current range for the selected channel number.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1 to 4</td>
<td>none</td>
</tr>
<tr>
<td>value</td>
<td>numeric</td>
<td>Depends on CHANnel<n>:RANGE</td>
<td>V</td>
</tr>
</tbody>
</table>

Example
Set channel 2 offset to 10V

CHAN2:OFFS 10

Channel 2 offset to 10 volts

Comments

- Entering Offset: The range of acceptable OFFSet values is dependent on the current CHANnel<n>:RANGE setting as follows:

<table>
<thead>
<tr>
<th>CHANnel<n>:RANGE limits</th>
<th>CHANnel<n>:OFFSet limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>8mV to 400mV</td>
<td>±2V</td>
</tr>
<tr>
<td>>400mV to 2.0V</td>
<td>±10V</td>
</tr>
<tr>
<td>>2.0V to 10.0V</td>
<td>±50V</td>
</tr>
<tr>
<td>>10.0V to 40.0V</td>
<td>±250V</td>
</tr>
</tbody>
</table>

If OFFSet is set to a value outside the allowable range, it will automatically be set to the nearest acceptable value without generating an error.

- Probe Attenuation: Changing CHANnel<n>:PROBe settings after selecting CHANnel<n>:OFFSet will cause the offset parameter to change.

- Related Commands: CHANnel<n>:RANGE, PROBe.

- *RST Condition: Defaults to 0 volts.

:OFFSet?

CHANnel<number>:OFFSet? returns the current offset value for the channel number specified. The value (in volts) is sent to the output buffer.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1 to 4</td>
<td>none</td>
</tr>
</tbody>
</table>

Example
Querying channel 2 offset value

CHAN2:OFFS 10

Channel 2 offset to 10 volts

CHAN2:OFFS?

Query instrument to return channel 2 offset value in volts

enter statement

Enter value into computer
:PROBe

CHANnel<number>:PROBe <atten> is used to enter a probe's attenuation factor for the channel specified. The selection does not change the actual input sensitivity of the instrument, it changes the reference constants for scaling the vertical range and offset, automatic measurements, trigger levels, etc.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1 to 4</td>
<td>none</td>
</tr>
<tr>
<td>atten</td>
<td>numeric</td>
<td>0.9 to 1000.0</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Set channel 1 probe attenuation to 10:1

CHAN1:PROB 10
Channel 1 probe attenuation to 10:1

Comments

- Entering Attenuation: If atten is set to a value outside the allowable range, it will automatically be set to the nearest acceptable value without generating an error.
- Range and Offset: Changing CHANnel<n>:PROBe will effect the current settings of CHANnel<n>:RANGE and OFFSET.
- Related Commands: CALibrate:FCALibration:ATTenuation, CHANnel<n>:RANGE, OFFSET.
- *RST Conditions: Defaults to 1:1 on all channels.

:PROBe?

CHANnel<number>:PROBe? returns the current probe attenuation factor for the channel specified. The value (a ratio :1) is sent to the output buffer.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1 to 4</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Querying channel 1 probe attenuation

CHAN1:PROB 10
Channel 1 probe attenuation to 10:1

CHAN1:PROB?
Query instrument to return channel 1 probe attenuation factor

enter statement
Enter value into computer
CHANnel:RANGe

:RANGe

CHANnel<number>:RANGe <range> is used to define the full scale vertical axis, or "Y-axis" of the channel specified.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1 to 4</td>
<td>none</td>
</tr>
<tr>
<td>range</td>
<td>numeric</td>
<td>8MV to 40.0V</td>
<td>V</td>
</tr>
</tbody>
</table>

Example

Set channel 2 range to 10 volts (full scale)

CHAN2 : RANG 10
Channel 2 range to 10 volts

Comments

- **Range versus Probe Attenuation:** Range values can be set from 8mV to 40.0 V when CHANnel<n>:PROBe is set to 1:1. If the CHANnel<n>:PROBe value is changed, the CHANnel<n>:RANGe value is multiplied by the probe attenuation factor.

- **Range versus Trigger Level:** Changing CHANnel<n>:RANGe could affect trigger level currently selected.

- **Probe Attenuation:** Changing CHANnel<n>:PROBe settings after selecting CHANnel<n>:RANGe will cause the range parameter to change.

- **Related Commands:** CHANnel<n>:PROBe, OFFSet.

- **^RST Condition:** Defaults to 4 volts on all channels.

:RANGe?

CHANnel<number>:RANGe? returns the current range setting for the channel specified. The value (in volts) is sent to the output buffer.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1 to 4</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Querying channel 2 full scale range setting

CHAN2 : RANG 10
Channel 2 range to 10 volts
CHAN2 : RANG?
Query instrument to return channel 2 range setting

enter statement
Enter value into computer
CHANnel<\textit{number}>:TTL sets the specified channels vertical controls for optimum viewing of TTL signals. CHANnel<\textit{n}>::RANGE is set to 8.0 volts full scale, CHANnel<\textit{n}>::OFFSet is set to 2.5 volts, TRIGger:LEVel is set to 1.4 volts, and CHANnel<\textit{n}>::COUPling is set to DC (1M\Omega or 50\Omega). TRIGger:SLOPe and impedance (coupling) is not changed.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{number}</td>
<td>numeric</td>
<td>1 to 4</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Set channel 2 to view TTL signal

\begin{verbatim}
CHAN2 : TTL
\end{verbatim}

\textit{Channel 2 for TTL signal}

Comments

- **Probe Attenuation:** The current CHANnel<\textit{n}>::PROBe setting (other than 1:1) will effect CHANnel<\textit{n}>::RANGE and OFFSet settings.

- **Related Commands:** CHANnel<\textit{n}>::RANGE, OFFSet, LEVel, COUPling.
The DISPlay command subsystem is used to control the display of data in pixel memory.

Subsystem Syntax

```plaintext
DISPlay

:DATa <block>
:DATa?
:PERSistence <period>
:PERSistence?
:SOURce <source>
:SOURce?
```

:DATa

DISPlay:DATa `<block>` is used to write a block of binary waveform data from the bus to one of the pixel memory locations. Only Pixel MEMories 1 and 2 may be written to, and are selected using the DISPlay:SOURce command.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>block</td>
<td>block</td>
<td>binary block data</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Write waveform data to pixel memory 1

In this example, the block data is represented by "#516576..."

- **DISP:SOUR PMEM1** Select pixel memory 1
- **DISP:DAT #516576...** Write binary waveform data

Comments

- **Block Data:** The data is in the IEEE 488.2 definite block form with 16576 bytes of data preceded by seven block header bytes. The block header contains the ASCII characters "#516576" and is sent prior to the data being sent.

- **Display Data versus Waveform Data:** The DISPlay and WAveform DATa commands are similar, except that DISPlay:DATa transfers data to the pixel memories and WAveform:DATa transfers data to the Waveform memories.

- **Related Commands:** DISPlay:DATa?, SOURce.

:DATa?

DISPlay:DATa? is used to write a block of binary waveform data from one of the pixel memory locations to the output buffer. Pixel MEMories 0, 1, or 2 may be written from, and are selected using the DISPlay:SOURce command. See DISPlay:DATa command for more information on waveform data.
Example Transfer active waveform to pixel memory 1

In this example, the retrieved block data is represented by "Xxxxx". See Chapter 3 Digitize example, for the procedure used to read the block length then re-define a string to hold the data.

dimension statement String to hold data (16576 bytes)
VIEW PMEM0 Enables pixel memory 0
DISP:SOUR PMEM0 Select pixel memory 0
DISP:DAT? Read binary waveform data from pixel memory 0 (active waveform)
enter statement Enter value into computer (see Chapter 3, Digitize example, for the procedure to read block length)
DISP:SOUR PMEM1 Select pixel memory 1
DISP:DAT Xxxxxx Write binary waveform data to pixel memory 1

Comments

- Pixel Memories 0-2: PMEM0 represents the active display. PMEM1 and PMEM2 contain data entered using the DISPlay:DATa and MERGe commands. PMEM source is specified using the DISPlay:SOURce command.

- Display Data versus Waveform Data: The DISPlay and WAVeform DATa? commands are similar, except that DISPlay:DATa? transfers data from the pixel memories and WAVeform:DATa? transfers data from the waveform memories, channel buffers, or function buffers.

- Pixel Data Plotting: The active display or pixel memory 0 can be plotted using the DISPlay:DATa? query. See the example on the next page for more information.

- Related Commands: MERGe, DISPlay:DATa, SOURce.

Example The following example shows how to plot pixel memory 0-2. Pixel memory 0 is the active waveform, and pixel memory 1 and 2 are volatile storage locations for waveform data. The pixel data is contained in a total of 16,576 bytes. There are 259 lines of data, and each line contains 64 bytes. Each byte consists of 8 pixels, where bit 7 is the left pixel and bit 0 is the right pixel. Bytes are counted top to bottom, left to right. See the illustration below for more information.
The example is written using:

- an HP-IB select code of 7, primary address of 09, and secondary address of 05 for the Oscilloscope
- an HP Series 200/300 Computer with HP BASIC

Execute:

```
10 INTEGER Pixel(1:16576)
20 INTEGER Pixels
30 S=70901
40 OUTPUT S:"CLS"
50 OUTPUT S:"DIG CHAN1"
60 OUTPUT S:"SYST:HEAD OFF"
70 OUTPUT S:"VIEW PMEO"
80 OUTPUT S:"DISP:SOUR PMEO"
90 OUTPUT S:"DISP:DAT?"
100 ENTER S USING ";,1A":Pound$
110 ENTER S USING ";,1D":Number
120 ENTER S USING ";,:VAL$(Number) &"D":Bytes
130 ENTER S USING ";,B":Pixel(*)
140 ENTER S USING "B":Crlf
150 GRAPHICS ON
160 GINIT
170 PLOTTER IS CRT, "INTERNAL"
180 GCLEAR
190 VIEWPORT 0,RATIO*100,0,100
200 WINDOW 0,512,260,0
210 Position=0
220 Pline=0
230 Ppos=1
240 PEN -1
250 FOR K=1 to 259
260 FOR I=1 TO 64
270 IF Pixel(Ppos)<=0 THEN
280 FOR J=7 TO 0 STEP -1
290 IF BIT(Pixel(Ppos),J) THEN
300 MOVE Position,Pline
310 PEN 1
320 PLOT Position,Pline
330 PEN -1
340 END IF
350 Position=Position+1
360 NEXT J
370 ELSE
380 Position=Position+8
390 END IF
400 Ppos=Ppos+1
410 NEXT I
420 Pline=Pline+1
430 Position=0
440 NEXT K
450 END
```
:PERSistence

Display:PERSistence <period> sets the display persistence for pixel memory 0 (active display).

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>period</td>
<td>discrete</td>
<td>INFinite</td>
<td>SINGLE</td>
</tr>
</tbody>
</table>

Example

Set display persistence to infinite

```
DISP:PERS INF
```

Comments

- Selecting Period: When SINGle is selected, the contents of pixel memory 0 are updated to reflect the last data point hit in a time bucket. When INFinite is selected, all the contents of pixel memory 0 are retained and current waveform data is added.
- *RST Condition: Defaults to SINGle.

:PERSistence?

Display:PERSistence? returns the current display persistence setting. The data (SINGle or INFinite) is sent to the output buffer.

Example

Query display persistence

```
DISP:PERS INF
DISP:PERS?        Query instrument to return display persistence setting
enter statement   Enter value into computer
```
:SOURce

`DISPLAY:SOURce <source>` is used to select the pixel memory location for the `DISPLAY:DATA` query and command.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>source</code></td>
<td>discrete</td>
<td>PMEMoryn (n=0 to 2)</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Set pixel memory 2 as the source

```
DISPLAY:SOUR PMEM2
```

Source is pixel memory 2

Comments

- **Selecting Source**: PMEMory0 represents the active display. PMEMory1 and PMEMory2 are volatile memory locations. Specifies the location to store pixel data using the `DISPLAY:DATA` command, or retrieve pixel data using the `DISPLAY:DATA?` query.

- **RST Condition**: Defaults to PMEMory0.

:SOURce?

`DISPLAY:SOURce?` returns the current display source setting. The setting (PMEM0, PMEM1, or PMEM2) is sent to the output buffer. See `DISPLAY:SOURce` command for more information.

Example

Query display source

```
DISPLAY:SOUR PMEM2
DISPLAY:SOUR?
enter statement
```

Source is pixel memory 2

Query instrument to return display source setting

Enter value into computer
The FUNCTION command subsystem defines six functions that use signals acquired on CHANnels 1 to 4 and/or stored in Waveform MEMories 1 to 4 as operands to create altered or duplicate waveforms. The selected CHANnel<n> or WMEMory<n> is enabled when defined as an operand. Two locations are provided for the results (FUNCTION1 and 2).

Subsystem Syntax

FUNCTION<number>
 :ADD <source>,<source>
 :INVert <source>
 :MULTiply <source>,<source>
 :OFFSet <value>
 :OFFSet?
 :ONLY <source>
 :RANGE <range>
 :RANGE?
 :SUBTract <source>,<source>

:ADD

FUNCTION<number>:ADD <source>,<source> is used to algebraically sum two defined operands. Results are retained in the FUNCTION number specified.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1 or 2</td>
<td>none</td>
</tr>
<tr>
<td>source</td>
<td>discrete</td>
<td>CHANnel{n=1 to 4)}</td>
<td>none</td>
</tr>
<tr>
<td>source</td>
<td></td>
<td>WMEMory{n=1 to 4})</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Algebraically sum channel 1 with waveform memory 4 and retain results in function 1

FUNCTION:ADD CHAN1, WMEM4 Add channel 1 to waveform memory 4, retain as function 1

Comments

- FUNCTION Number: Used to specify where function results are retained. Range and offset are automatically selected to accommodate the resulting waveform. Resulting waveform can be measured, turned on/off, stored, and/or viewed.
- Related Commands: FUNCTION<n>:OFFSet, RANGE, MEASure subsystem, BLANK, STORE, VIEW.
- RST Condition: FUNCTION 1 and 2 default to ADD CHANnel1 + CHANnel1.
INVert

FUNCTION\(<number>\)::INVert \(<source>\) is used to invert the defined operand. Result is retained in the FUNCTION number specified.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1 or 2</td>
<td>none</td>
</tr>
<tr>
<td>source</td>
<td>discrete</td>
<td>CHAnneln (n=1 to 4)</td>
<td>none</td>
</tr>
<tr>
<td>source</td>
<td></td>
<td>WMEMoryn (n=1 to 4)</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Invert channel 1 and retain results in function 2

```
FUNCTION 2: INV CHAN1
```

Conf

- **FUNCTION Number**: Used to specify where function result is retained. Range and offset are automatically selected to accommodate the resulting waveform. Resulting waveform can be measured, turned on/off, stored, and/or viewed.
- **Related Commands**: FUNCTION\(<n>\):OFFSet, RANGE, MEASure subsystem, BLAnk, STORe, VIEW.

MULTiplay

FUNCTION\(<number>\)::MULTiplay \(<source>,<source>\) is used to algebraically multiply two defined operands. Results are retained in FUNCTION number specified.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1 or 2</td>
<td>none</td>
</tr>
<tr>
<td>source</td>
<td>discrete</td>
<td>CHAnneln (n=1 to 4)</td>
<td>none</td>
</tr>
<tr>
<td>source</td>
<td></td>
<td>WMEMoryn (n=1 to 4)</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Algebraically multiply channel 1 with waveform memory 4 and retain results in function 1

```
FUNCTION 1: MULT CHAN1,MEM4
```

Comments

- **FUNCTION Number**: Used to specify where function results are retained. Range and offset are automatically selected to accommodate the resulting waveform. Resulting waveform can be measured, turned on/off, stored, and/or viewed.
- **Related Commands**: FUNCTION\(<n>\):OFFSet, RANGE, MEASure subsystem, BLAnk, STORe, VIEW.
OFFSET

`FUNCTION<number>:OFFSET <value>` sets the voltage that is represented at the center of the current range for the selected function number. Useful in scaling function 1 and 2 results.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>number</code></td>
<td>numeric</td>
<td>1 or 2</td>
<td>none</td>
</tr>
<tr>
<td><code>value</code></td>
<td>numeric</td>
<td>Depends on <code>FUNCTION<n>:RANGE</code></td>
<td>V</td>
</tr>
</tbody>
</table>

Example

Set function 2 offset to 10V

```
FUNCTION<2>:OFFS 10
```

Function 2 offset to 10 volts

Comments

- **Entering Offset**: The maximum range of acceptable `OFFSET` values is ± the current `FUNCTION<n>:RANGE` setting. If `OFFSET` is set to a value outside the allowable range, it will automatically be set to the nearest acceptable value without generating an error.

- **When to Enter Offset**: Because offset is automatically selected to accommodate the resulting waveform (depending on the function selected), offset values must be specified **AFTER** the function result is retained.

- **Related Commands**: `FUNCTION<n>:RANGE`.

- **RST Condition**: Defaults to 0 volts on both functions.

OFFSET?

`FUNCTION<number>:OFFSET?` returns the current offset value for the function number specified. The value (in volts) is sent to the output buffer.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>number</code></td>
<td>numeric</td>
<td>1 or 2</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Querying function 2 offset value

```
FUNCTION<2>:OFFS 10
```

Function 2 offset to 10 volts

```
FUNCTION<2>:OFFS?
```

Query instrument to return function 2 offset value in volts

```
Enter statement
```

Enter value into computer
FUNCTION: ONLY

Parameter

- **Parameter Name**: `number`, `source`
- **Parameter Type**: `numeric`, `discrete`
- **Range of Values**:
 - `1` or `2`
 - `CHAnnle(n) (n=1 to 4)`
 - `WMEMory(n) (n=1 to 4)`
- **Default Units**: `none`

Example

Duplicate channel 1 in function 2

```
FUNC2: ONLY CHAN1
```

Comments

- **FUNCTION Number**: Used to specify where function results are retained. Range and offset are automatically selected to accommodate the resulting waveform. Resulting waveform can be measured, turned on/off, stored, and/or viewed.
- **Scaling**: Use the ONLY command to duplicate a channel or memory waveform, then use the `FUNCTION<n>:RANGE` and `OFFSet` commands to scale the function waveform.
- **Related Commands**: `FUNCTION<n>:OFFSet`, `RANGE`, `MEASure subsystem BLANK`, `STORE`, `VIEW`.

FUNCTION: RANGE

Parameter

- **Parameter Name**: `number`, `range`
- **Parameter Type**: `numeric`
- **Range of Values**:
 - `1` or `2`
 - Depends on `CHAnnle<n>:RANGE`, `OFFSet`, and `PROBE`
- **Default Units**: `V`

Example

Set function 2 range to 10 volts (full scale)

```
FUNC2: RANG 10
```

Comments

- **Entering Range**: Because range is automatically selected to accommodate the resulting waveform (depending on the function selected), range values must be specified AFTER the function result is retained.

Range is automatically adjusted when the operands and/or functions are changed from the default settings (CHAN1 + CHAN1). If the default function is used, and then turned on using the VIEW command, the range will NOT be adjusted.
::RANGE?

FUNCTION<number>:RANGE? returns the current range setting for the function number specified. The value (in volts) is sent to the output buffer.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1 or 2</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Querying function 2 full scale range setting

- `FUNC2 : RANG 10`
 Function 2 range to 10 volts
- `FUNC2 : RANG?`
 Query instrument to return function 2 range setting
- `enter statement`
 Enter value into computer

::SUBTract

FUNCTION<number>:SUBTract <source>,<source> is used to algebraically subtract two defined operands. Results are retained in the FUNCTION number specified.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1 or 2 Channel(n=1 to 4)</td>
<td>none</td>
</tr>
<tr>
<td>source</td>
<td>discrete</td>
<td>WMEMory(n=1 to 4)</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Algebraically subtract channel 4 with waveform memory 1 and retain the results in function 2

- `FUNC2 : SUBT CHAN4, WMEM1`
 Subtract channel 4 from waveform memory 1, retain as function 2

Comments

- **FUNCTION Number**: Used to specify where function results are retained. Range and offset are automatically selected to accommodate the resulting waveform. Resulting waveform can be measured, turned on/off, stored, and/or viewed.
- **Related Commands**: **FUNCTION<n>:OFFSet**, **RANGe**, **MEASure**, **BLANK, STORe, VIEW**.

4-34 COMP Command Reference
The MEASure command subsystem is used to make parametric measurements on the specified source, and to return the measured voltage and time values. Measurement results (up to eight) are retained in a measurement queue. Voltage, time, and event markers are automatically positioned during measurement, or can be manually set to specific voltages, times, or events.

When TIMebase:WINDow is ON, measurements are ONLY applied to the expanded portion of the waveform.

Subsystem Syntax

:ALL?
:COMPare <measurement>,<upper_limit>,<lower_limit>
:COMPare?
:CURSor? <type>
:DEFine <measure_spec>
:DEFine? <measure_spec>
:DELay
:DElay?
:DESTination <location>
:DESTination?
:DUTycycle
:DUTycycle?
:ESTArt <edge>
:ESTArt?
:ESTOp <edge>
:ESTOp?
:FALLtime
:FALLtime?
MEASURE — Continued

:FRQ
:FRQ?
:LIMt <mode>
:LOWer <value>
:LOWer?
:MODE <mode>
:MODE?
:NWIDth
:NWIDth?
:OVERshoot
:OVERshoot?
:PERiod
:PERiod?
:POSTfailure <mode>
:POSTfailure?
:PRECision <coarse>
:PRECision?
:PRES<mode>
:PRES?
:PWIDth
:PWIDth?
:RESults?
:RSETime
:RSETime?
:SCRatch
:SOURce <source>[,<source>]
:SOURce?
:STATistics <mode>
:STATistics?
:DELta?
:TMAX?
:TMIN?
:TSTArt <time>
:TSTArt?
:TSTOP <time>
:TSTOP?
:TVolt? <voltage>,<slope><occurrence>
:UNITs <unit>
:UNITs?
:UPPer <value>
:UPPer?
:VACRms
:VACRms?
:VAMPLitude
:VAMPLitude?
:VAVverage
:VAVverage?
:VBASE
:VBASE?
:VDCRms
:VDCRms?
MEASure — Continued

:VDELta?
:VFIFty
:VMAX
:VMAX?
:VMIN
:VMIN?
:VPP
:VPP?
:VRELative <percent>
:VRELative?
:VRMS
:VRMS?
:VSTArt <voltage>
:VSTArt?
:VSTOp <voltage>
:VSTOp?
:VTIME? <time>
:VTOP
:VTOP?

:ALL?

MEASure:ALL? makes a set of measurements on the present signal and sends the measurement results to the output buffer. The following measurements are performed:

- :FREQuency
- :PERiod
- :PWIDth
- :NWIDth
- :RISetime
- :FALLtime
- :VAMPplitude
- :VPP
- :PRESHeet
- :OVERshoot
- :DUTycycle
- :VACRMS
- :VMAX
- :VMIN
- :VTOP
- :VBASe
- :VAVerage
- :VDCRMS

Example

Perform measure all on channel 3 and return results

<table>
<thead>
<tr>
<th>dimension</th>
<th>statement</th>
<th>String to hold data</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEAS:SOUR</td>
<td>CHAN3</td>
<td>Select channel 3 for measurement</td>
</tr>
<tr>
<td>MEAS:ALL?</td>
<td></td>
<td>Perform measure all, query instrument to return results</td>
</tr>
<tr>
<td>enter</td>
<td>statement</td>
<td>Enter measurement results into computer</td>
</tr>
</tbody>
</table>
• Oscilloscope Setup: When performing measure all, a minimum of one full cycle must be present.

• Returned Format: The measurement results are returned as follows:

 [MEASure:FREQuency] <result>;[PERiod] <result>;[PWIDTh] <result>;[NWIDTh] <result>; [RISetime] <result>; [FALLtime] <result>; [VAMPItude] <result>; [VPP] <result>; [PREShoot] <result>; [OVERshoot] <result>; [DUTycycle] <result>; [VACRms] <result>; [VMAX] <result>; [VMIN] <result>; [VTOP] <result>; [VBASE] <result>; [VAverage] <result>; [VDCRms] <result>

Where: <result> ::= individual measurement results

[MEASure:XXXX] is returned if SYStem:HEADer is ON

The measurement values can be returned to numeric variables instead of the string variables as shown. If numeric variables are used, SYStem:HEADer must be turned OFF.

• Individual MEASure Commands: Refer to the individual commands for information on how the measurements are made and the returned format of the measurement results. See Appendix C, Optimizing Measurements, for additional information on measurement techniques.
MEASure:COMPare <measurement>,<upper_limit>,<lower_limit> is used to configure for a measurement comparison or limit test. When configuring a limit test, the user specifies both the desired measurement and acceptable limits of the test.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>measurement</td>
<td>discrete</td>
<td>RISetime</td>
<td>FALLtime</td>
</tr>
<tr>
<td>upper_limit</td>
<td>numeric</td>
<td>Depends on measurement selected</td>
<td>V/S/HZ/PCT</td>
</tr>
<tr>
<td>lower_limit</td>
<td>numeric</td>
<td>Depends on measurement selected</td>
<td>V/S/HZ/PCT</td>
</tr>
</tbody>
</table>

Example

Configure a limit test on frequency with acceptable results from 1 kHz to 1 MHz

See the MEASure:LIMitTest command for an example of configuring and performing a limit test.

Example

MEAS:COMP FREQ,1E6,1E3 Configure limit test

Comments

- Selecting Upper and Lower Limits: Both upper and lower limits must be within the range of the measurement selected. Refer to the individual measurement commands for information on selecting available limits.

- Starting a Limit Test: The individual MEASure subsystem commands (not queries) are used to place the instrument in the continuous measure mode (e.g., MEAS:FREQ), then the MEASure:LIMitTest command is used to start a configured limit test.

- Related Commands: MEASure:COMPare?, LIMitTest, POSTfailure.

:COMPare?

MEASure:COMPare? <measurement> returns the current limit test configuration for the selected measurement. The data is sent to the output buffer.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>measurement</td>
<td>discrete</td>
<td>RISetime</td>
<td>FALLtime</td>
</tr>
</tbody>
</table>
MEASURE:COMPare?

Example

Querying limit test configuration

dimension statement String to hold data
MEAS:COMP FREQ, 1E6, 1E3 Configure limit test
MEAS:COMP? FREQ Query instrument to return limit
test configuration
enter statement Enter data into computer

Comments

• Returned Format: The measurement configuration is returned as follows:

<measurement>,<upper_value>,<lower_value>

See MEASURE:COMPare command for more information on returned data.

:CURSOR?

MEASURE:CURSOR? <type> returns the time and voltage values of the specified marker as an ordered pair of time/voltage values. The data is sent to the output buffer. When the CURSOR? query is sent, no measurement is made and the cursors are not moved.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>type</td>
<td>discrete</td>
<td>DELTa</td>
<td>STAR</td>
</tr>
</tbody>
</table>

Example

Query the positions of the start marker and V Marker 1

dimension statement String to hold data
MEAS:CURS? STAR Query instrument to return start
cursor
enter statement Enter data into computer

Comments

• Selecting Type: The data returned <time>,<voltage> is dependent on the type of cursor selected as follows:

DELTa: Returns the value of delta T.
STARt: Returns the positions of the start time marker and start voltage marker (VMarker 1).
STOP: Returns the positions of the stop time marker and stop voltage marker (VMarker 2).

• Delta VT: The values for delta V and delta T are calculated as follows:

\[\text{delta } V = \text{Vmarker 2} - \text{Vmarker 1} \]
\[\text{delta } T = \text{stop marker} - \text{start marker} \]

• Moving Cursors: See MEASURE:TSTART and TSTOP commands for moving time start/stop time markers, and MEASURE:VSTART and VSTOP commands for moving voltage start/stop markers.

• Related Commands: MEASURE:TSTART, TSTOP, VSTART, VSTOP.
MEASURE:DEFine

:DEFine

MEASURE:DEFine <measure_spec> sets up the measurement standards for a USER defined measurement. Selects the definitions that DELay, PWIDth, and NWIDth measurements will use when MEASURE:MODE is set to USER. Provides the option of making measurements based on signal width, or delay settings, or threshold parameters.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>measure_spec</td>
<td>discrete</td>
<td>DELay <polarity>,<edge>,<level>, OR PWIDth MIDDle</td>
<td>UPPer</td>
</tr>
<tr>
<td></td>
<td>discrete</td>
<td>NWIDth MIDDle</td>
<td>UPPer</td>
</tr>
<tr>
<td></td>
<td>discrete</td>
<td></td>
<td>none</td>
</tr>
</tbody>
</table>

Example

User defined DELay measurement

This example will set the parameters for a user defined time measurement from the first positive edge at the upper threshold level to the second negative edge at the middle threshold level. If one source is specified (MEASURE:SOURce), both parameters apply to that signal. If two sources are specified, the measurement is from the first positive edge on source 1 to the second negative edge on the source 2.

MEAS:DEF DEL, POS, 1, UPP, NEG, 2, MIDD

Comments

- Entering Measurement Specifications for DELay Measurements: Delay measure_spec entries define the DELay measurement standards.

 DELay specifies that the following parameters are defining delay measurements.

 <polarity>,<edge>,<level> (following DELay) specifies the starting (from) slope, edge count, and transition point.

 ,<polarity>,<edge>,<level> (second group) specifies the stopping (to) slope, edge count, and transition point.

 Available entries of <polarity>,<edge>,<level> are as follows:

 <polarity> = POSitive or NEGative

 <edge> = 1 to 100 (excluding 0) specify an edge

 <level> = MIDDle, UPPer, or LOWer (UPPer level is set using MEASURE:UPPer command, LOWer level is set using MEASURE:LOWer command, MIDDle level is set to the center of the currently selected upper and lower values)
MEASURE:DEFINE

- Entering Measurement Specifications for PWIDth Measurements: PWIDth measure_spec entries define the Positive Pulse Width measurement standards.

 PWIDth specifies that the following parameters are defining positive pulse width measurements.

 MIDDLE|UPPer|LOWer specifies the point on the waveform transition to measure when making the positive width of the active waveform.

 UPPPer is set using MEASURE:UPPer command

 LOWer is set using MEASURE:LOWer command

 MIDDLE is calculated at the center of the currently selected lower and upper values

- Entering Measurement Specifications for NWIDth Measurements: NWIDth measure_spec entries are identical to PWIDth measurement entries, except prefix with NWIDth.

- Related Commands: MEASURE:LOWer, UPPPer, UNITS.

:DEFINE?

MEASURE:DEFINE? <measure_spec> returns the currently selected measurement definitions. The data is sent to the output buffer.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>measure_spec</td>
<td>discrete</td>
<td>DELay</td>
<td>PWIDth</td>
</tr>
</tbody>
</table>

Example

Query the delay measurement user definitions

dimension statement String for data
MEAS:DEF? DEL Query instrument to return delay definitions
enter statement Enter data into computer

Comments

- Returned Format: The data returned is dependent on measure_spec selected as follows:

 DELay: Returns the delay measurement definitions DELay <polarity>,<edge>,<level>,<polarity>,<edge>,<level>. See MEASURE:DEFINE command for more information.

 PWIDth: Returns the positive pulse width measurement definitions PWIDth UPPPer|LOWer|MIDDl. See MEASURE:DEFINE command for more information.

 NWIDth: Returns the negative pulse width measurement definitions NWIDth UPPPer|LOWer|MIDDl. See MEASURE:DEFINE command for more information.
MEASure:DELay is used to place the instrument in the continuous measurement mode and start a Delay measurement.

Example

Start a Delay measurement

```
MEAS:DEL
```

Start a Delay measurement

Comments

- **Measurement Specifications:** See Appendices A and C for measurement Specifications.
- **Selecting Source:** One or two sources are specified using the MEASure:SOURce command.
- **Defining Measurements:** The measurement can be performed using standard or user defined parameters as specified by the MEASure:MODE command.

 STANDARD parameters are the first rising edge at mid threshold to the second rising edge at mid threshold.

 USER defined parameters set the "from" slope, edge count, and transition points; the "to" slope, edge count, and transition points; and the upper, lower and mid threshold values (mid calculated at center of entered upper and lower threshold values).

- **Jitter Measurements:** Jitter measurements can be performed by selecting the ACQuire:TYPe to ENVelope, and specifying the two delay parameters the same. For example,

  ```
  MEAS:SOUR CHAN1,CHAN1
  MEAS:MODE USER
  MEAS:DEF DEL,POS,1,MID,POS,1,MID
  ACQ:TYP ENV
  ```

- **Executing the Measurement:** When the measurement is executed, the instrument will measure the delay from:

 the first specified edge on one source to the next specified edge on the same source (when one source is specified),

 the first specified edge on one source to the first specified edge on another source (when two sources are specified).

- **Reading Measurement Results:** Use the MEASure:RESults? query to return measurement results without stopping the measurement.

- **Limit Test:** Execute the MEASure:DELay command prior to the MEASure:COMPare command when configuring for a delay limit test.

- **Related Commands:** MEASure:DELay?, COMPare, LIMIttest, MODE, RESults?, SOURce.
:DELay?

MEASure:DELay? turns continuous measurement mode off, performs a Delay measurement one time on the signal present, and then sends the measurement results to the output buffer.

Example

Perform Delay measurement on channel 2 and return results

dimension statement String for data
MEAS: SOUR CHAN2 Measure channel 2
MEAS: DEL? Perform Delay measurement, query instrument to return measurement results

text statement Enter measurement results into computer

Comments

- Oscilloscope Setup: In order to perform a Delay measurement, the selected edge must be present. All edges are counted from the first edge of the acquired data, not at the reference point. If the edge is not present, an error will be generated.

- Returned Format: The measurement result is returned as a numeric value (SYSTem:HEADer to OFF) representing measured delay time (in seconds).
:DESTination

MEASure:DESTination <location> specifies the destination used when a limit test violation is found. Used to save the data associated with a limit test failure.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>location</td>
<td>discrete</td>
<td>WMEMory (n=1 to 4))</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PMEMory (n=1 to 2))</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>OFF</td>
<td></td>
</tr>
</tbody>
</table>

Example

Set destination to pixel memory 1

See the MEASure:LIMittest command for an example of configuring and performing a limit test.

MEAS:DEST PMEM1

Pixel memory 1 is the destination for limit test violations

Comments

- Specifying Waveform Memories: Only one source can be stored in Waveform Memory. If Waveform Memory is specified, the source must be set up separately using the WAVEform:SOURce command. When Waveform Memory is selected, the most current data will overwrite the memory each time a violation is found. In the example below, the source is CHAN1, and the destination is WMEM2:

 WAV:SOUR CHAN1
 MEAS:DEST WMEM2

- Specifying Pixel Memories: If Pixel Memory is specified, an accumulated save occurs each time a violation is found. Measurements cannot be made on pixel memory.

- Disable Destination: OFF is specified to disable the destination function.

- Related Commands: MEASure:LIMittest.

- *RST Conditions: Defaults to OFF.

:DESTination?

MEASure:DESTination? returns the currently selected destination (WMEM1-4, PMEM1-2, or OFF) for limit test violations. The data is sent to the output buffer.

Example

Query the violation destination

dimension statement String for data
MEAS:DEST PMEM1 Set destination to pixel memory 1
MEAS:DEST? Query instrument to return destination
enter statement Enter data into computer
MEASure:DUTycle is used to place the instrument in the continuous measurement mode and start a Duty Cycle measurement.

Example

Start a Duty Cycle measurement

```
MEASure:DUT
```

Start a Duty Cycle measurement

Comments

- **Measurement Specifications**: See Appendices A and C for measurement specifications.
- **Selecting Source**: One source is specified using the MEASure:SOURce command.
- **Defining Measurements**: The measurement can be performed using standard or user defined parameters as specified by the MEASure:MODE command.

- **STANDARD** parameters are to measure at 50% levels.
- **USER** defined parameters set the upper, lower and mid threshold values (mid calculated at center of entered upper and lower threshold values).
- **Executing the Measurement**: When the measurement is executed, the instrument will measure and output the Duty cycle of the source specified.
- **Reading Measurement Results**: Use the MEASure:RESults? query to return measurement results without stopping the measurement.
- **Limit Test**: Execute the MEASure:DUTycle command prior to the MEASure:COMPare command when configuring for a duty cycle limit test.
- **Related Commands**: MEASure:DUTycle?, COMPare, LIMit?test, MODE, RESults?, SOURce.
:DUTycycle?

MEASure:DUTycycle? turns continuous measurement mode off, performs a Duty Cycle measurement one time on the signal present, and then sends the measurement results to the output buffer.

Example

Perform duty cycle measurement on channel 3 and return results

- **dimension statement** String for data
- **MEAS:SOUR CHAN3** Measure channel 3
- **MEAS:DUT?** Perform Duty Cycle measurement, query instrument to return measurement results
- **enter statement** Enter measurement results into computer

Comments

- **Oscilloscope Setup:** In order to perform a Duty Cycle measurement, a minimum of one full cycle must be present. If more than one waveform, edge, or pulse is present, the measurement is made on the first edge acquired.

- **Measurement Method:** The method the instrument uses to determine duty cycle is to measure PWIDth and PERiod, then present duty cycle in percent as ratio of the positive pulse width to period as follows:

 duty cycle = pulse width/period

- **Returned Format:** The measurement result is returned as a numeric value (SYSTem:HEAder to OFF) representing measured duty cycle. If the signal is not present, 9.99999E+37 is returned.
MEASURE

:ESTArt MEASURE:ESTArt <edge> used to position the start marker on the specified edge and slope of the waveform. All edges must be present and are counted from the first edge of the acquired data, not at the reference point. The start marker is positioned at the point where VMarker 1 (set using MEASURE:VSTArt command) intersects the waveform.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>edge</td>
<td>numeric</td>
<td>−32,768 to +32,767</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Set edge start marker

This example places the start marker at the second positive-going intersection of the waveform and VMarker 1.

MEAS : ESTA +2
Set start marker

Comments

- **Selecting Edge:** The desired edge number (counted from the first edge of the acquired data) is specified by sending an integer value.
 - If a positive integer is selected (+ sign, space, or blank), the instrument will place the start marker on a positive-going waveform edge.
 - If a negative integer is sent (− sign), the start marker will be placed on a negative-going waveform edge.
 - If the value is out of range, an error will be generated.

- **Related Commands:** MEASURE:VSTArt.

:ESTArt? MEASURE:ESTArt? returns the edge and slope of the edge start marker. The value is sent to the output buffer. Sign indicates selected slope. +, blank, or space indicates positive going, and − indicates negative going. The number returned specifies the edge number as counted from the first edge of the acquired data.

Example

Query the edge start marker

MEAS : ESTA 2
Set start marker

MEAS : ESTA ?
Query instrument to return start marker

enter statement
Enter data into computer
MEASure:ESTOp

:ESTOp MEASure:ESTOp <edge> used to position the stop marker on the specified edge and slope of the acquired waveform. All edges must be present and are counted from the first edge of the acquired data, not at the reference point. The stop marker is positioned at the point where VMarker 2 (set using MEASure:VSTOp command) intersects the waveform.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>edge</td>
<td>numeric</td>
<td>-32768 to +32767</td>
<td>none</td>
</tr>
</tbody>
</table>

Example Set edge stop marker

This example places the stop marker at the second negative-going intersection of the waveform at VMarker2.

```
MEAS : ESTO   -2           Set stop marker
```

Comments

- Selecting Edge: The desired edge number (counted from the first edge of the acquired data) is specified by sending an integer value.
 - If a positive integer is selected (+ sign, space, or blank), the instrument will place the stop marker on a positive-going waveform edge.
 - If a negative integer is sent (- sign), the stop marker will be placed on a negative-going waveform edge.
 - If the value is out of range, an error will be generated.
- Related Commands: MEASure:VSTOp.

:ESTOp? MEASure:ESTOp? returns the edge and slope of the stop marker. The value is sent to the output buffer. Sign indicates selected slope. "+", blank, or space indicates positive going, and "-" indicates negative going. The number returned specifies the edge number as counted from the first edge of the acquired data.

Example Query the edge stop marker

```
MEAS : ESTO   -2           Set stop marker
MEAS : ESTO?   Query instrument to return stop marker
enter statement   Enter data into computer
```
MEASure:FALLtime is used to place the instrument in the continuous measurement mode and start a Fall Time measurement.

Example

Start a Fall Time measurement

```
MEAS:FALL
```

Start a Fall Time measurement

Comments

- **Measurement Specifications:** See Appendices A and C for measurement specifications.
- **Selecting Source:** One source is specified using the MEASure:SOURce command.
- **Defining Measurements:** The measurement can be performed using standard or user defined parameters as specified by the MEASure:MODE command.

 - STANDARD parameters measure at 10%/90% threshold levels.
 - USER defined parameters set the upper and lower threshold values.
- **Executing the Measurement:** When the measurement is executed, the instrument will measure and output the fall time of the source specified.
- **Reading Measurement Results:** Use the MEASure:RES ults? query to return measurement results without stopping the measurement.
- **Limit Test:** Execute the MEASure:FALLtime command prior to the MEASure:COMPor command when configuring for a fall time limit test.
- **Related Commands:** MEASure:FALLtime?, COMPare, LIMit test, MODE, RESults?, SOURce.
MEASURE:FALLtime?

Example

Perform Fall Time measurement on channel 4 and return results

dimension statement String for data
MEAS:SOUR CHAN4 Measure channel 4
MEAS:FALL? Perform Fall Time measurement,
query instrument to return measurement results

to statement Enter measurement results into computer

Comments

- Oscilloscope Setup: In order to perform a Fall Time measurement, the falling edge of the waveform must be present. If more than one waveform, edge, or pulse is present, the measurement is made on the first edge acquired. For best measurement accuracy, set the sweep speed as fast as possible. If the horizontal scaling is questionable when performing a Fall Time measurement, an error will be generated.

- Measurement Method: The method the instrument uses to determine fall time is to measure the time at the upper threshold and then the lower threshold of the first falling (negative-going) edge present. Measurement results are used to calculate fall time as follows:

 \[\text{fall time} = \text{lower threshold time} - \text{upper threshold time} \]

- Returned Format: The measurement result is returned as a numeric value (SYSTem:HEADer to OFF) representing measured fall time (in seconds).
MEASure:FREQuency

Example

Start a Frequency measurement

MEAS : FREQ

Comments

- Measurement Specifications: See Appendices A and C for measurement specifications.
- Selecting Source: One source is specified using the MEASure:SOURce command.
- Defining Measurements: The measurement can be performed using standard or user defined parameters as specified by the MEASure:MODE command.

 STANDARD parameters measure at 50% levels.

 USER defined parameters set the mid threshold level (center of entered upper and lower threshold values).

- Executing the Measurement: When the measurement is executed, the instrument will measure and output the frequency of the source specified.

- Reading Measurement Results: Use the MEASure:RESults? query to return measurement results without stopping the measurement.

- Limit Test: Execute the MEASure:FREQuency command prior to the MEASure:COMPare command when configuring for a frequency limit test.

- Related Commands: MEASure:FREQuency?, COMPare, LIMIttest, MODE, RESults?, SOURce.
MEASure:FREQuency? turns continuous measurement mode off, performs a Frequency measurement one time on the signal present, and then sends the measurement results to the output buffer.

Example

Perform Frequency measurement on waveform memory 1 and return results

```
MEAS:SOUR WMEM1
MEAS:FREQ?
```

Comments

- Oscilloscope Setup: In order to perform a Frequency measurement, a minimum of one full cycle must be present. If more than one waveform, edge, or pulse is present, the measurement is made on the first edge acquired.
- Measurement Method: The method the instrument uses to determine frequency is to measure the time of the first complete cycle, then calculate frequency as follows:

 If first edge of waveform is rising, then
 \[\text{frequency} = \frac{1}{(\text{time at second rising edge} - \text{time at first rising edge})} \]

 If first edge of waveform is falling, then:
 \[\text{frequency} = \frac{1}{(\text{time at second falling edge} - \text{time at first falling edge})} \]

- Returned Format: The measurement result is returned as a numeric value (SYSTem:HEADer to OFF) representing measured frequency (in hertz). If the signal is not present, 9.99999E+37 is returned.

MEASure:LIMIttest

MEASure:LIMIttest <mode> used to perform a measurement comparison or limit test on up to three measurements. The user specifies the measurements to be performed, and the acceptable range of measurement results. The user can also specify what happens if a measurement result falls outside of the acceptable range.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode</td>
<td>discrete</td>
<td>MEASure:OFF</td>
<td>none</td>
</tr>
</tbody>
</table>
Example Frequency Limit Test

This example performs a frequency limit test on channel 1 with violations saved in waveform memory 1. Test will not stop after violations.

MEAS:SCR
MEAS:SOUR CHAN1 Clear measurement queue
WAV:SOUR CHAN1 Measure channel 1
MEAS:FREQ Violation source is channel 1
MEAS:COMP FREQ,1E6,1E3 Start a continuous frequency measurement on channel 1
MEAS:POST CONT Start a limit test for frequency measurement with acceptable results from 1 kHz to 1 MHz
MEAS:DEST WMEM1 Continue limit test after violation
MEAS:LIM MEAS Waveform memory 1 is the destination for limit test violations
 loop beginning Start limit test
 LTER? Loop beginning
 loop end Has limit test failed?
 MEAS:RES? Loop end
 enter statement Query instrument to return measurement results
 MEAS:LIM OFF Enter measurement results into computer
 Stop limit test

Comments
- Limit Test Sequence: A limit test is configured using three MEASure subsystem commands:

 COMPare - is used to set the desired measurement and acceptable limits of the test. See MEASure:COMPare command for more information.

 POSTfailure - is used to specify what will occur (continue or stop) after a violation or measurement out of range has been found. See MEASure:POSTfailure command for more information.

 DESTination - is used to specify the destination where data associated with a limit test failure is stored. See MEASure:DESTination command for more information.

- Limit Test Status: Failures can be determined by one of two commands:

 LTER? Used to return if the limit test has failed. See LTER? query for more information.

 MEASure:RESults? Used to return the current, minimum, maximum, and pass ratio values for the limit test. See MEASure:RESults? query for more information.

- Related Commands: LTER?, MEASure:COMPare, DESTination, POSTfailure, RESults?.

- *RST Conditions: Defaults to OFF.
MEASure:LOWer

:LOWer MEASure:LOWer <value> is used to set the lower measurement threshold level. The value that is sent will be in the units currently selected with the MEASure:UNITs command.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>numeric</td>
<td>-250,000 to +250,000</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>numeric</td>
<td>-25.00 to +125.0</td>
<td>PCT</td>
</tr>
</tbody>
</table>

Example

Set lower threshold to 25 V

```
MEAS:UNIT VOLT
MEAS:LOW 25
```

Comments

- **Entering Value:** The MEASure:UNITs command should precede the MEASure:LOWer command to set units to desired value. When VOLTs are selected as the unit, all entries will be rounded to the nearest millivolt. When PERCent is selected as the unit, all entries will be rounded to the nearest tenth percent.
- **MIDDle Threshold:** When MEASure:MODE USER is selected, all "MID" threshold levels used for measurements are calculated to the center of the present UPPer and LOWer threshold levels. Changing LOWer threshold level will effect the MIDDle threshold level.
- **Related Commands:** MEASure:UNITs, MODE, UPPer.
- **RST Condition:** Defaults to 10 (%).

:LOWer? MEASure:LOWer? returns the currently selected lower measurement threshold level. The value is sent to the output buffer. The value that is returned will be in the units currently selected with the MEASure:UNITs command. See MEASure:LOWer command for more information.

Example

Query the lower threshold level

```
MEAS:UNIT VOLT
MEAS:LOW 25
MEAS:UNIT?
enter statement
MEAS:LOW?
```

Comments

- **Query Value:** The MEASure:UNITs? query should precede the MEASure:LOWer? query to determine the current threshold units.
- **Returned Format:** The measurement result is returned as a numeric value (SYSTem:HEADer to OFF) representing lower threshold (in volts or percent).
- **Determining MIDDle Threshold Level:** MIDDle threshold can be determined by querying both the LOWer and UPPer threshold values, and calculating the center point. For example, if LOWer = 20% and UPPer = 30% then MIDDle is 25%.
- **Related Commands:** MEASure:UNITs, MODE, UPPer.
MEASURE:MODE

MEASURE:MODE <mode> is used to set the standards (definitions and thresholds) under which the measurement will be performed. Allows the user to perform the measurement using "standard" parameters, or with "user defined" parameters.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode</td>
<td>discrete</td>
<td>STANDARD</td>
<td>USER</td>
</tr>
</tbody>
</table>

Example

Set mode so user can define measurement standards

MEASURE:MOD USER
Set mode to USER

Comments

- Selecting Mode: Measurement mode is selected as follows:

 STANDARD - Measurements are performed using default parameters that follow "IEEE" measurement techniques. When measurements are requested, the instrument first determines the top (100%) and base (0%) voltages of the waveform. From this information, thresholds of 90% (upper), 50% (middle), and 10% (lower) are determined. Rise time and fall time measurements are made at the 90% (upper) and 10% (lower) levels. All other measurements are made using the 50% (middle) level. Delay measurements are made from the first positive edge to the second positive edge.

 USER - Measurements are performed to user specified parameters, allowing measurements to be based on selectable signal width, delay settings, and/or threshold levels.

 Use the MEASURE:LOWER, and UPPER commands to set desired threshold levels. MIDDE is set to the center of the current upper and lower threshold levels.

 Use the MEASURE:DEFINE command to enter delay setting and signal width parameters.

- Related Commands: MEASURE:DEFINE, LOWER, UPPER.

- *RST Condition: Defaults to STANDARD.

MEASURE:MODE?

MEASURE:MODE? returns the currently selected mode under which the measurements will be performed. The data is sent to the output buffer. Returns STANDARD when "IEEE" parameters are used. Returns USER when "user defined" parameters are used. See MEASURE:MODE command for more information.

Example

Query current measurement mode

dimension statement String for data
MEASURE:MOD USER Set mode to USER
MEASURE:MOD? Query instrument to return mode
enter statement Enter data into computer

4-56 COMP Command Reference
MEASure:NWIDth

MEASure:NWIDth is used to place the instrument in the continuous measurement mode and start a Negative Pulse Width measurement.

Example

Start a Negative Pulse Width measurement

```
MEAS:NWID
```

Comments

- **Measurement Specifications**: See Appendices A and C for measurement specifications.
- **Selecting Source**: One source is specified using the MEASure:SOURce command.
- **Defining Measurements**: The measurement can be performed using standard or user defined parameters as specified by the MEASure:MODE command.

 STANdard parameters measure at 50% levels.

 USER defined parameters select the transition (upper, middle, lower) to measure when making the measurement. Determined by the current upper, lower and mid threshold values (mid calculated at center of entered upper and lower threshold values).

- **Executing the Measurement**: When the measurement is executed, the instrument will measure and output the negative pulse width of the source specified.
- **Reading Measurement Results**: Use the MEASure:RESults? query to return measurement results without stopping the measurement.
- **Limit Test**: Execute the MEASure:NWIDth command prior to the MEASure:COMPare command when configuring for a negative pulse width limit test.
- **Related Commands**: MEASure:NWIDth?, COMPare, LIMittest, MODE, RESults?, SOURce.
:NWIDth? turns continuous measurement mode off, performs a Negative Pulse Width measurement one time on the signal present, and then sends the measurement results to the output buffer.

Example
Perform Negative Pulse Width measurement on channel 1 and return results

dimension statement String for data
MEAS:SOUR CHAN1 Measure channel 1
MEAS:NWID? Perform Negative Pulse Width measurement, query instrument to return measurement results

enter statement Enter measurement results into computer

Comments
• Oscilloscope Setup: In order to perform a Negative Pulse Width measurement, a minimum of one negative pulse must be present. If more than one waveform, edge, or pulse is present, the measurement is made on the first edge acquired.

• Measurement Method: The method the instrument uses to determine pulse width is to measure the time of the first complete negative pulse, then calculate pulse width as follows:

 If first edge of waveform is rising, then
 pulse width = time at second rising edge – time at first falling edge

 If first edge of waveform is falling, then:
 pulse width = time at first rising edge – time at first falling edge

• Returned Format: The measurement result is returned as a numeric value (SYSTem:HEADER to OFF) representing measured negative pulse width (in seconds). If the signal is not present, 9.99999E+37 is returned.
MEASure:OVERshoot

:OVERshoot

MEASure:OVERshoot is used to place the instrument in the continuous measurement mode and start an Overshoot measurement.

Example

Start an Overshoot measurement

MEAS:OVER

Start an Overshoot measurement

Comments

- Measurement Specifications: See Appendices A and C for measurement specifications.
- Selecting Source: One source is specified using the MEASure:SOURce command.
- Executing the Measurement: When the measurement is executed, the instrument will measure and output the Overshoot of the source specified.
- Reading Measurement Results: Use the MEASure:RESults? query to return measurement results without stopping the measurement.
- Limit Test: Execute the MEASure:OVERshoot command prior to the MEASure:COMPare command when configuring for an overshoot limit test.
- Related Commands: MEASure:OVERshoot?, COMPare, LIMIttest, RESults?, SOURce.

:OVERshoot?

MEASure:OVERshoot? turns continuous measurement mode off, performs an Overshoot measurement one time on the signal present, and then sends the measurement results to the output buffer.

Example

Perform Overshoot measurement on channel 2 and return results

dimension statement

MEAS:SOUR CHAN2

MEAS:OVER?

String for data

Measure channel 2

Perform Overshoot measurement, query instrument to return measurement results

Comments

- Oscilloscope Setup: In order to perform an Overshoot measurement, a minimum of one edge must be present. If more than one waveform, edge, or pulse is present, the measurement is made on the first edge acquired.
- Measurement Method: The method the instrument uses to determine overshoot is to make three different voltage measurements, then calculate overshoot as follows:

 If first edge of waveform is rising, then:

 overshoot = (VMAX - VTOP)/VAMPplitude

 If first edge of waveform is falling, then:

 overshoot = (VBASe - VMIN)/VAMPplitude

- Returned Format: The measurement result is returned as a numeric value (SYSTem:HEAder to OFF) representing measured overshoot. If the signal is not present, 9.99999E+37 is returned.
- Related Commands: MEASure:VBASe, VMIN, VMAX, VTOP, VAMPplitude.
MEASure:PERiod is used to place the instrument in the continuous measurement mode and start a Period measurement.

Example

Start a Period measurement

```
MEAS : PER

Start a Period measurement
```

Comments

- **Measurement Specifications:** See Appendices A and C for measurement specifications.
- **Selecting Source:** One source is specified using the MEASure:SOURce command.
- **Defining Measurements:** The measurement can be performed using standard or user defined parameters as specified by the MEASure:MODE command.

 STANDARD parameters measure at 50% levels.

 USER defined parameters set the mid threshold level (center of entered upper and lower threshold values).

- **Executing the Measurement:** When the measurement is executed, the instrument will measure and output the period of the source specified.
- **Reading Measurement Results:** Use the MEASure:RESults? query to return measurement results without stopping the measurement.
- **Limit Test:** Execute the MEASure:PERiod command prior to the MEASure:COMPare command when configuring for a period limit test.
- **Related Commands:** MEASure:PERiod?, COMPare, LIMittest, MODE, RESults?, SOURce.
MEASure:PERiod?

:PERiod? turns continuous measurement mode off, performs a Period measurement one time on the signal present, and then sends the measurement results to the output buffer.

Example

Perform Period measurement on function 1 and return results

dimension statement String for data
MEAS:SOUR FUNC1 Measure function 1
MEAS:PER? Perform Period measurement, query instrument to return measurement results

tell statement Enter measurement results into computer

Comments

- Oscilloscope Setup: In order to perform a Period measurement, a minimum of one full cycle must be present. If more than one waveform, edge, or pulse is present, the measurement is made on the first edge acquired.

- Measurement Method: The method the instrument uses to determine period is to measure the time of the first complete cycle, then calculate period as follows:

 If first edge of waveform is rising, then
 period = time at second rising edge – time at first rising edge

 If first edge of waveform is falling, then:
 period = time at second falling edge – time at first falling edge

- Returned Format: The measurement result is returned as a numeric value (SYSTem:HEAder to OFF) representing measured period (in seconds). If the signal is not present, 9.99999E+37 is returned.
MEASure:POSTfailure

MEASure:POSTfailure <mode> is used to specify what will occur (limit test continue or stop) after a violation has been found during a limit test.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode</td>
<td>discrete</td>
<td>CONT</td>
<td>STOP</td>
</tr>
</tbody>
</table>

Example
Set to continue limit test after violation
See the MEASure:LIMITest command for an example of configuring and performing a limit test.

MEAS:POST CONT Continue limit test after violation

Comments
- Selecting Mode: After a violation (entered limits exceeded) the limit test will:

 STOP the limit test.

 CONT|inue to look for another violation. If MEASure:DESTination is not OFF, the violation will be written to the selected memory location.

- Related Commands: MEASure:LIMITest, DESTination.
- *RST Conditions: Defaults to STOP.

MEASure:POST? returns the currently selected failure instructions for limit test violations. The data is sent to the output buffer. If CONT|inue is returned, the limit test will continue. If STOP is returned, the limit test will stop.

Example
Query the limit test failure instruction

dimension statement String for data
MEAS:POST CONT Continue limit test after violation
MEAS:POST? Query instrument to return post failure instruction
enter statement Enter data into computer

MEASure:PRECision

MEASure:PRECision has no effect on instrument operations, and is only included for compatibility with other instruments.

MEASure:PRECision?

MEASure:PRECision? always returns COARse. This query has no effect on instrument operations, and is only included for compatibility with other instruments.
MEASURE:PREShoot

:PREShoot is used to place the instrument in the continuous measurement mode and start a Preshoot measurement.

Example

Start a Preshoot measurement

MEAS : PRES

Comments

- **Measurement Specifications**: See Appendices A and C for measurement specifications.
- **Selecting Source**: One source is specified using the MEASURE:SOURce command.
- **Executing the Measurement**: When the measurement is executed, the instrument will measure and output the preshoot of the source specified.
- **Reading Measurement Results**: Use the MEASURE:RESults? query to return measurement results without stopping the measurement.
- **Limit Test**: Execute the MEASURE:PREShoot command prior to the MEASURE:COMPare command when configuring for a preshoot limit test.
- **Related Commands**: MEASURE:PREShoot?, COMPare, LIMITtest, RESults?, SOURce.

:PREShoot?

MEASURE:PREShoot? turns continuous measurement mode off, performs a Preshoot measurement one time on the signal present, and then sends the measurement results to the output buffer.

Example

Perform Preshoot measurement on channel 4 and return results

dimension statement
MEAS : SOUR CHAN4
MEAS : PRES ?

Enter statement

Comments

- **Oscilloscope Setup**: In order to perform a Preshoot measurement, a minimum of one edge must be present. If more than one waveform, edge, or pulse is present, the measurement is made on the first edge acquired.
- **Measurement Method**: The method the instrument uses to determine preshoot is to make three different voltage measurements, then calculate preshoot as follows:

 If first edge of waveform is rising, then
 preshoot = (VBASE - VMIN)/VAMPplitude

 If first edge of waveform is falling, then:
 preshoot = (VMAX - VTOP)/VAMPplitude

- **Returned Format**: The measurement result is returned as a numeric value (SYSTem:HEADer to OFF) representing measured preshoot.
- **Related Commands**: MEASURE:VBASE, VMIN, VMAX, VTOP, VAMPplitude.
MEASure:PWIDth

MEASure:PWIDth is used to place the instrument in the continuous measurement mode and start a Positive Pulse Width measurement.

Example

Start a Positive Pulse Width measurement

```
MEAS:PWID
Start a Positive Pulse Width measurement
```

Comments

- **Measurement Specifications:** See Appendices A and C for measurement specifications.
- **Selecting Source:** One source is specified using the MEASure:SOURce command.
- **Defining Measurements:** The measurement can be performed using standard or user defined parameters as specified by the MEASure:MODE command.

 STANDARD parameters measure at 50% levels.

 USER defined parameters select the transition (upper, middle, lower) to measure when making the measurement.

 Determined by the current upper, lower and mid threshold values (mid calculated at center of entered upper and lower threshold values).

- **Executing the Measurement:** When the measurement is executed, the instrument will measure and output the positive pulse width of the source specified.

- **Reading Measurement Results:** Use the MEASure:RESults? query to return measurement results without stopping the measurement.

- **Limit Test:** Execute the MEASure:PWIDth command prior to the MEASure:COMPare command when configuring for a positive pulse width limit test.

- **Related Commands:** MEASure:PWIDth?, COMPare, LIMitTest, MODe, RESults?, SOURce.
MEASure:PWIDth?

MEASure:PWIDth? turns continuous measurement mode off, performs a Positive Pulse Width measurement one time on the signal present, and then sends the measurement results to the output buffer.

Example

Perform Positive Pulse Width measurement on channel 1 and return results

```
MEAS:SOUR CHAN1
MEAS:PWID?
```

- Measure channel 1
- Perform Positive Pulse Width measurement, query instrument to return measurement results
- Enter measurement results into computer

Comments

- Oscilloscope Setup: In order to perform a Positive Pulse Width measurement, a minimum of one positive pulse must be present. If more than one waveform, edge, or pulse is present, the measurement is made on the first edge acquired.

- Measurement Method: The method the instrument uses to determine pulse width is to measure the time of the first complete positive pulse, then calculate pulse width as follows:

 If first edge of waveform is rising, then:

 pulse width = time at second falling edge – time at first rising edge

 If first edge of waveform is falling, then:

 pulse width = time at first falling edge – time at first rising edge

- Returned Format: The measurement result is returned as a numeric value (SYSTem:HEAder to OFF) representing measured positive pulse width (in seconds). If the signal is not present, 9.99999E+37 is returned.
MEAsure:RESults?

:RESults? MEAsure:RESults? returns the currently active measurement results.

Example

Return active measurement results

dimension statement String to hold data
MEAS:RES? Query instrument to return results
enter statement Enter measurement results into computer

Comments

• Returned Format: The measurement results are returned as follows:

 <No. of Meas> [:<measurement_name measurement_result>]

 No. of Meas is a numeric value representing the number of measurements present in the measurement queue. Up to eight measurements are saved.

 measurement_name indicates the type of measurement.

 measurement_result is the measured value(s).

If the measurement queue is empty, "0" is returned.

• RESults? versus STATistics: When MEAsure:STATistics is selected, executing the RESult? query returns one of the following results depending on the MEAsure:LIMit test selection:

 LIMit test OFF: The current, minimum, maximum, and average values for each measurement are returned.

 LIMit test MEAsure: The current, minimum, maximum, and pass ratio values for the limit test are returned.

• System Headers: The measurement result is returned as a numeric value when SYStem:HEAder is set to OFF.

• Related Commands: MEAsure:STATistics, LIMit test, POSTfailure.
MEASure:RISetime is used to place the instrument in the continuous measurement mode and start a Rise Time measurement.

Example

Start a Rise Time measurement

```
MEAS : RIS
```

Start a Rise Time measurement

Comments

- **Measurement Specifications:** See Appendices A and C for measurement specifications.
- **Selecting Source:** One source is specified using the MEASure:SOURce command.
- **Defining Measurements:** The measurement can be performed using standard or user defined parameters as specified by the MEASure:MODE command.

 STANDARD parameters measure at 10%/90% threshold levels.

 USER defined parameters set the upper and lower threshold values.

- **Executing the Measurement:** When the measurement is executed, the instrument will measure and output the rise time of the source specified.

- **Reading Measurement Results:** Use the MEASure:RESults? query to return measurement results without stopping the measurement.

- **Limit Test:** Execute the MEASure:RISetime command prior to the MEASure:COMPare command when configuring for a rise time limit test.

- **Related Commands:** MEASure:RISetime?, COMPare, LIMIttest, RESults?, SOURce.
MEASure:RISetime?

RISetime? MEASure:RISetime? turns continuous measurement mode off, performs a Rise Time measurement one time on the signal present, and then sends the measurement results to the output buffer.

Example

Perform Rise Time measurement on channel 3 and return results

dimension statement String for data
MEAS:SOUR CHAN3 Measure channel 3
MEAS:RIS? Perform Rise Time measurement, query instrument to return measurement results

ter statement Enter measurement results into computer

Comments

- Oscilloscope Setup: In order to perform a Rise Time measurement, the rising edge of the waveform must be present. For best measurement accuracy, set the sweep speed as fast as possible. If more than one waveform, edge, or pulse is present, the measurement is made on the first edge acquired. If the horizontal scaling is questionable when performing a Rise Time measurement, an error will be generated.

- Measurement Method: The method the instrument uses to determine rise time is to measure the time at the lower threshold then the upper threshold of the first rising (positive-going) edge present. Measurement results are used to calculate rise time as follows:

\[
\text{rise time} = \text{upper threshold time} - \text{lower threshold time}
\]

- Returned Format: The measurement result is returned as a numeric value (SYSTem:HEAder to OFF) representing measured rise time (in seconds). If the signal is not present, 9.99999E+37 is returned.

:SCRatch

MEASure:SCRatch is used to clear the measurement results from the measurement queue.

Example

Clear measurement results from the measurement queue

MEAS:SCR Clear measurement queue

Comments

- Related Commands: MEASure:RESults?.
MEASURE:SOURce

:SOURce MEASURE:SOURce <source>[,<source>] is used to select the source(s) for measurement. The source(s) specified become the source(s) for all the MEASURE subsystem commands.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>source</td>
<td>discrete</td>
<td>CHANnel n (n=1 to 4)</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FUNCTION n (n=1 or 2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WMEMory n (n=1 to 4)</td>
<td></td>
</tr>
</tbody>
</table>

Example

Set source to waveform memory 3

MEAS:SOUR WMEM3 WMEMory 3 specified as source for all MEASURE commands

Comments

- Specifying Source: Two different sources can be specified with this command, however, all measurements except DELay are made on the first specified source only.

- SOURce and DELay: The DELay measurement will use two sources if two have been specified. If only one source is specified, the DELay measurement will use that source for both parameters.

- *RST Condition: Defaults to CHANnel1, CHANnel1.

MEASURE:SOURce?

MEASURE:SOURce? returns the currently selected source (CHAN1-4, FUNC1-2, WMEM1-4) for measurement.

Example

Query selected source(s) for MEASURE subsystem

dimension statement String for data
MEAS:SOUR? Query instrument to return selected measurement source(s)
enter statement Enter measurement results into computer

Comments

- Returned Format: The measurement source(s) returned are dependent on how many different sources are selected.

 If the specified source(s) are different, both will be returned.

 If the specified source(s) are the same, only one will be returned.

 See MEASURE:SOURce command for additional information on available source(s).
MEASURE:STATISTICS

:STATISTICS MEASURE:STATISTICS <mode> select the statistics mode. When ON the minimum, maximum, average (or pass ratio), and current measurement results are placed in the measurement queue. When OFF, only the current measurement results are placed in the measurement queue. Measurements must be in the continuous mode.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode</td>
<td>boolean</td>
<td>OFF</td>
<td>0</td>
</tr>
</tbody>
</table>

Example

Enable statistics mode

```
MEAS:STAT 1
```

Statistics mode enabled

Comments

- **Mode**: Integer values can be substituted for the OFF (0) and ON (1) parameters.
- **Measurement Queue**: The measurement queue holds up to eight measurements, however executing the RESults? query will only return the last three measurements.
- **Read Statistics**: Use the MEASURE:RESULT? query to read measurement results. MEASURE:STATISTICS? query only reads state (ON/OFF).
- **Average or Pass Ratio**: Average is replaced by pass ratio when MEASURE:LIMITTEST is selected and MEASURE:POSTFAILURE is CONTINUE. Pass ratio lists the percentage of times a certain test has passed.
- **Related Commands**: MEASURE:RESULT?
- **RST Conditions**: Defaults to OFF.

:STATISTICS?

MEASURE:STATISTICS? returns a number to show whether mode is enabled or disabled. "1" = ON, "0" = OFF. The value is sent to the output buffer.

Example

Querying statistics state

```
MEAS : STAT 1
```

Statistics mode enabled

```
MEAS : STAT?
```

Query instrument to return statistics mode state

```
enter statement
```

Enter value into computer
MEASure:TDELta?

: TDELta?

Return the time difference between the start and stop time markers. The value is sent to the output buffer.

Example

Query the time difference between start and stop time markers

dimension statement: String for data
MEAS :TDEL? Query instrument to return time difference
enter statement: Enter data into computer

Comments

- **Measurement Method:** Time difference is calculated as follows:

 \[\text{TDELta} = \text{TSTOp} - \text{TSTArt} \]

 TSTOp is the current time stop marker position as set by the MEASure:TSTOp command. TSTArt is the current time start marker position as set by the MEASure:TSTArt command.

- **Returned Format:** The measurement result is returned as a numeric value (SYSTem:HEAder to OFF) representing time difference (in seconds). A \((-\)\) negative number indicates the stop marker is preceding the start marker.

- **Related Commands:** MEASure:TSTArt, TSTOp.
MEASURE: TMAX?

: TMAX? MEASURE: TMAX? returns the time at which the first maximum voltage occurred on the acquired waveform. The value is sent to the output buffer.

Example
Query the first maximum voltage time

 dimension statement String for data
 MEAS: TMAX? Query instrument to return maximum voltage time
 enter statement Enter data into computer

Comments
- Selecting Source: One source is specified using the MEASURE:SOURce command.
- Returned Format: The measurement result is returned as a numeric value (SYSTem:HEADer to OFF) representing time (in seconds) that the maximum voltage occurred. The trigger point is used as the reference (time 0).

MEASURE: TMIN?

: TMIN? MEASURE: TMIN? returns the time at which the first minimum voltage occurred on the acquired waveform. The value is sent to the output buffer.

Example
Query the first minimum voltage time

 dimension statement String for data
 MEAS: TMIN? Query instrument to return minimum voltage time
 enter statement Enter data into computer

Comments
- Selecting Source: One source is specified using the MEASURE:SOURce command.
- Returned Format: The measurement result is returned as a numeric value (SYSTem:HEADer to OFF) representing time (in seconds) that the minimum voltage occurred. The trigger point is used as the reference (time 0).
MEASure:TSTArt

MEASure:TSTArt <time> is used to position the time start marker at a specified time with respect to trigger time.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td>numeric</td>
<td>-200 to +200</td>
<td>S</td>
</tr>
</tbody>
</table>

Example

Set time start marker to 25 nsec

```
MEAS:TSTA 25E-9
```

Set time start marker to 25 nsec

Comments

- **Selecting Time:** The desired time is specified using trigger time as the reference (time 0). Entry can be a positive (post-trigger) or negative (pre-trigger) number.
- **Related Commands:** MEASure:TSTOp, TDELta?.

MEASure:TSTArt?

MEASure:TSTArt? returns the current position of the time start marker. The value is sent to the output buffer. The number returned specifies the position of the time start marker in seconds from trigger time.

Example

Query the time start marker

```
dimension statement
MEAS:TSTA 25E-9
MEAS:TSTA?
```

Set time start marker to 25 nsec

Query instrument to return time start marker

```
enter statement
```

Enter data into computer
MEASure:TSTOp <time> is used to position the time stop marker at a specified time with respect to trigger time.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td>numeric</td>
<td>-200 to +200</td>
<td>S</td>
</tr>
</tbody>
</table>

Example

Set time stop marker to 50 nsec

MEAS:TSTO 50E-9 \(\text{Set time stop marker to 50 nsec} \)

Comments

- Selecting Time: The desired time is specified using trigger time as the reference (time 0). Entry can be a positive (post-trigger) or negative (pre-trigger) number.
- Related Commands: MEASure:TSTAr, TDELta?.

MEASure:TSTOp? returns the current position of the time stop marker. The value is sent to the output buffer. The number returned specifies the position of the time stop marker in seconds from trigger time.

Example

Query the time stop marker

dimension statement String for data
MEAS:TSTO 50E-9 Set time stop marker to 50 nsec
MEAS:TSTO? Query instrument to return time stop marker
enter statement Enter data into computer
MEASure:TVOLT?

:TVOLT?

MEASure:TVOLT? <voltage>,<slope><occurrence> is used to search the selected source for a defined voltage level and transition. The time interval between the trigger event and this defined occurrence is returned as the response to this query.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>voltage</td>
<td>numeric</td>
<td>$-9.999999E+37$ to $+9.999999E+37$</td>
<td>V</td>
</tr>
<tr>
<td>slope</td>
<td>numeric</td>
<td>$+$ or space $-$</td>
<td>none</td>
</tr>
<tr>
<td>occurrence</td>
<td>numeric</td>
<td>$\pm 9.999999E+37$</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Perform TVOLT function

For this example, return the time between the trigger event and the third time the waveform crosses $-25V$ in the positive direction.

MEAS: TVOL? $-25, +3$

Comments

- Specifying the Parameters: Parameters are entered as follows:

 <voltage>: The desired level to be reported is entered. Use a minus ($-$) sign or positive (use a space or $+$) as required.

 <slope>: Specify ($+$) or a space to select the rising edge, and ($-$) to select the falling edge.

 <occurrence>: Specify the occurrence to be reported.

- Returned Format: The measurement results are returned as a numeric value (SYSTem:HEADer to OFF) representing the time in seconds with the trigger point as the reference when all the specified parameters were true.

 True would be defined as the waveform crossing the specified voltage for the specified number of times in the specified direction.

 If all the specified parameters were never true, $+9.999999E+37$ is returned.
MEASURE:UNITS

:UNITS

MEASURE:UNITS <unit> sets the measurement threshold units when the user defined measurement mode is selected.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>unit</td>
<td>discrete</td>
<td>PERCent</td>
<td>VOLTs</td>
</tr>
</tbody>
</table>

Example

Set threshold units to volts

MEAS:UNIT VOLT
Threshold units are in volts

Comments

• Changing Units: When units are changed from the existing setting, the stored upper, lower, and middle threshold values will automatically be changed to the same value for the new units.

• Related Commands: MEASURE:LOWer, UPPer, MODe.

• *RST Condition: Defaults to PERCent.

:UNITS?

MEASURE:UNITS? returns the currently selected measurement threshold units (PERCent or VOLTs). The data is sent to the output buffer.

Example

Query the current units

dimension statement String for data
MEAS:UNIT VOLT Units to volts
MEAS:UNIT? Query instrument to return units
enter statement Enter data into computer
MEASure:TVOLt? <voltage>,<slope><occurrence> is used to search the selected source for a defined voltage level and transition. The time interval between the trigger event and this defined occurrence is returned as the response to this query.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>voltage</td>
<td>numeric</td>
<td>-9.99999E+37 to + 9.99999E+37</td>
<td>V</td>
</tr>
<tr>
<td>slope</td>
<td>numeric</td>
<td>+ or space</td>
<td></td>
</tr>
<tr>
<td>occurrence</td>
<td>numeric</td>
<td>±9.99999E+37</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Perform TVOLt function

For this example, return the time between the trigger event and the third time the waveform crosses -25V in the positive direction.

```
MEAS:TVOL?  -25,+3
```

Comments

- **Specifying the Parameters:** Parameters are entered as follows:

 - `<voltage>`: The desired level to be reported is entered. Use a minus (-) sign or positive (use a space or +) as required.
 - `<slope>`: Specify (+) or a space to select the rising edge, and (-) to select the falling edge.
 - `<occurrence>`: Specify the occurrence to be reported.

- **Returned Format:** The measurement results are returned as a numeric value (SYSTem:HEADer to OFF) representing the time in seconds with the trigger point as the reference when all the specified parameters were true.

 True would be defined as the waveform crossing the specified voltage for the specified number of times in the specified direction.

 If all the specified parameters were never true, +9.99999E+37 is returned.
MEASURE:UNITs

:UNITs

MEASURE:UNITs <unit> sets the measurement threshold units when the user defined measurement mode is selected.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>unit</td>
<td>discrete</td>
<td>PERCent</td>
<td>VOLts</td>
</tr>
</tbody>
</table>

Example

Set threshold units to volts

MEAS:UNIT VOLT

Threshold units are in volts

Comments

- Changing Units: When units are changed from the existing setting, the stored upper, lower, and middle threshold values will automatically be changed to the same value for the new units.
- Related Commands: MEASURE:LOWer, UPPer, MODe.
- *RST Condition: Defaults to PERCent.

:UNITs?

MEASURE:UNITs? returns the currently selected measurement threshold units (PERCent or VOLts). The data is sent to the output buffer.

Example

Query the current units

dimension statement String for data
MEAS:UNIT VOLT Units to volts
MEAS:UNIT? Query instrument to return units
enter statement Enter data into computer
MEASure:UPPer

MEASure:UPPer <value> is used to set the upper measurement threshold level. The value that is sent will be in the units currently selected with the MEASure:UNITs command.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>numeric</td>
<td>-250,000 to +250,000</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>numeric</td>
<td>-25.00 to +125.0</td>
<td>PCT</td>
</tr>
</tbody>
</table>

Example

Set upper threshold to 25%

```
MEAS : UNIT  PERC  Units to percent
MEAS : UPP  25  Upper threshold is 25%
```

Comments

- **Entering Value:** The MEASure:UNITs command should precede the MEASure:UPPer command to set units to a desired value. When VOLTs are selected as the unit, all entries will be rounded to the nearest millivolt. When PERCent is selected as the unit, all entries will be rounded to the nearest tenth percent.

- **MIDDle Threshold:** When MEASure:MODE USER is selected, all "MID" threshold levels used during measurements are calculated to the center of the present UPPer and LOWer threshold levels. Changing UPPer threshold level will affect the MIDDle threshold level.

- **Related Commands:** MEASure:UNITs, MODE, LOWer.

- **RST Condition:** Defaults to 90 (%).

MEASure:UPPer?

MEASure:UPPer? returns the currently selected upper measurement threshold level. The value is sent to the output buffer. The value that is returned will be in the units currently selected with the MEASure:UNITs command. See MEASure:UPPer command for more information.

Example

Query the upper threshold level

```
MEAS : UNIT  PERC  Units to percent
MEAS : UPP  25  Upper threshold is 25%
MEAS : UNIT ?  Query instrument to return units
enter statement  Enter data into computer
MEAS : UPP ?  Query instrument to return lower threshold
enter statement  Enter data into computer
```

Comments

- **Query Value:** The MEASure:UNITs? query should precede the MEASure:UPPer? query to determine the current threshold units.

- **Returned Format:** The measurement results are returned as a numeric value (SYSTem:HEADer to OFF) representing upper threshold (in volts or percent).

- **Determining MIDDle Threshold Level:** MIDDle threshold can be determined by querying both the LOWer and UPPer threshold values, and calculating the center point. For example, if LOWer = 20% and UPPer = 30% then MIDDle is 25%.

- **Related Commands:** MEASure:UNITs, MODE, LOWer.
MEASure:VACRms

Example: Start an AC RMS Voltage measurement

Start an AC RMS Voltage measurement

Comments:
- **Measurement Specifications:** See Appendices A and C for measurement specifications.
- **Selecting Source:** One source is specified using the MEASure:SOURce command.
- **Executing the Measurement:** When the measurement is executed, the instrument will measure and output the AC RMS voltage of the source specified.
- **Reading Measurement Results:** Use the MEASure:RESults? query to return measurement results without stopping the measurement.
- **Limit Test:** Execute the MEASure:VACRms command prior to the MEASure:COMPare command when configuring for an AC RMS voltage limit test.
- **VACRms versus VRMS:** The MEASure:VACRms command is identical to the MEASure:VRMS command.
- **Related Commands:** MEASure:VACRms?, COMPare, LIMit test, RESults?, SOURce, VRMS.

MEASure:VACRms?

Example: Perform an AC RMS amplitude measurement on channel 3 and return results

Perform an AC RMS amplitude measurement on channel 3 and return results

dimension statement String for data
MEAS:SOUR CHAN3 Measure channel 3
MEAS:VACR? Perform an AC RMS Voltage measurement, query instrument to return measurement results

Comments:
- **Oscilloscope Setup:** The AC RMS Voltage measurement is made using the first cycle present. If a complete cycle is not present, the AC RMS value of all data points is calculated.
- **Measurement Method:** The method the instrument uses to determine AC RMS voltage is to measure VAVerage, subtract it from each data point, then calculate AC RMS voltage.
- **Returned Format:** The measurement results are returned as a numeric value (SYSTem:HEADer to OFF) representing measured AC RMS voltage (in volts), with 0 volts as the reference.
- **VACRms? versus VRMS?** The MEASure:VACRms? query is identical to the MEASure:VRMS? query.
- **Related Commands:** MEASure:VRMS?.
MEASure:VAMPlitude

Example

Start an Amplitude Voltage measurement

```plaintext
MEAS:VAMP
```

Comments

- **Measurement Specifications**: See Appendices A and C for measurement specifications.
- **Selecting Source**: One source is specified using the MEASure:SOURce command.
- **Executing the Measurement**: When the measurement is executed, the instrument will measure and output the amplitude voltage of the source specified.
- **Reading Measurement Results**: Use the MEASure:RES ults? query to return measurement results without stopping the measurement.
- **Limit Test**: Execute the MEASure:VAMPlitude command prior to the MEASure:COMPare command when configuring for an amplitude voltage limit test.
- **Related Commands**: MEASure:VAMPlitude?, VTOP, VBASe, COMPare, LIMIttest, RES ults?, SOURce.

MEASure:VAMPlitude?

Example

Perform amplitude voltage measurement on function 2 and return results

```plaintext
dimension statement String for data
MEAS:SOUR FUNC2 Measure function 2
MEAS:VAMP ? Perform Amplitude Voltage measurement, query instrument to return measurement results

enter statement Enter measurement results into computer
```

Comments

- **Oscilloscope Setup**: Amplitude Voltage measurement is made using the entire waveform. When performing a measurement on a particular cycle, set the controls to present only that cycle.
- **Measurement Method**: The method the instrument uses to determine voltage amplitude is to measure VTOP and VBASe, then calculate voltage amplitude as follows:

 voltage amplitude = VTOP - VBASe

- **Returned Format**: The measurement results are returned as a numeric value (SYSTem:HEAder to OFF) representing measured voltage amplitude (in volts) with 0 volts as the reference.
- **Measuring Pulse Signals**: The measured VAMPlitude value will not normally be the same as the "peak-to-peak value" if the input signal is a pulse.
:VAverage

MEASure:VAverage is used to place the instrument in the continuous measurement mode and start an Average Voltage measurement.

Example

Start an Average Voltage measurement

```
MEAS :VAV
```

Start an Average Voltage measurement

Comments

- **Measurement Specifications**: See Appendices A and C for measurement specifications.
- **Selecting Source**: One source is specified using the MEASure:SOURce command.
- **Executing the Measurement**: When the measurement is executed, the instrument will measure and output the average voltage of the source specified.
- **Reading Measurement Results**: Use the MEASure:RESults? query to return measurement results without stopping the measurement.
- **Limit Test**: Execute the MEASure:VAverage command prior to the MEASure:COMParare command when configuring for an average voltage limit test.
- **Related Commands**: MEASure:VAverage?, COMParare, LIMITest, RESults?, SOURce.

:VAverage?

MEASure:VAverage? turns continuous measurement mode off, performs an Average Voltage measurement one time on the signal present, and then sends the measurement results to the output buffer.

Example

Perform voltage amplitude measurement on waveform memory 3 and return results

```
dimension statement String for data
MEAS:SOUR WMEM3 Measure waveform memory 3
MEAS :VAV? Perform Average Voltage measurement, query instrument to return measurement results
```

Enter statement Enter measurement results into computer

Comments

- **Oscilloscope Setup**: Average Voltage measurement is made using the first cycle present. If a complete cycle is not present, all currently acquired data points are averaged.
- **Returned Format**: The measurement results are returned as a numeric value (SYStem:HEAder to OFF) representing measured average voltage (in volts) with 0 volts as the reference.
MEASure:VBASe is used to place the instrument in the continuous measurement mode and start a Base Voltage measurement.

Example
Start a Base Voltage measurement

```
MEAS:VBAS
```

Comments
- **Measurement Specifications:** See Appendices A and C for measurement specifications.
- **Selecting Source:** One source is specified using the MEASure:SOURce command.
- **Executing the Measurement:** When the measurement is executed, the instrument will measure and output the voltage value at the base of the source specified.
- **Reading Measurement Results:** Use the MEASure:RESults? query to return measurement results without stopping the measurement.
- **Limit Test:** Execute the MEASure:VBAS? command prior to the MEASure:COMPar? command when configuring for a base voltage limit test.
- **Related Commands:** MEASure:VBAS?, COMPar, LIMItTest, RESults?, SOURce.

MEASure:VBAS? turns continuous measurement mode off, performs a Base Voltage measurement one time on the signal present, and then sends the measurement results to the output buffer.

Example
Perform base voltage measurement on channel 4 and return results

```
dimension statement
MEAS:SOUR CHAN4
MEAS:VBAS?
```

Comments
- **Oscilloscope Setup:** Base Voltage measurement is made using the entire waveform. When performing a measurement on a particular cycle, set the controls to present only that cycle.

- **Returned Format:** The measurement results are returned as a numeric value (SYSTem:HEADer to OFF) representing measured base voltage (in volts), with 0 volts as the reference.

- **Measuring Pulse Signals:** The measured VBASe value will not normally be the "minimum value" if the input signal is a pulse.
MEASure:VDCRms

:VDCRms

MEASure:VDCRms is used to place the instrument in the continuous measurement mode and start a DC RMS Voltage measurement.

Example

Start a DC RMS Voltage measurement

Start a DC RMS Voltage measurement

Comments

- Measurement Specifications: See Appendices A and C for measurement specifications.
- Selecting Source: One source is specified using the MEASure:SOURce command.
- Executing the Measurement: When the measurement is executed, the instrument will measure and output the DC RMS voltage of the source specified.
- Reading Measurement Results: Use the MEASure:RESults? query to return measurement results without stopping the measurement.
- Limit Test: Execute the MEASure:VDCRms command prior to the MEASure:COMPare command when configuring for a DC RMS voltage limit test.
- Related Commands: MEASure:VDCRms?, COMPare, LIMIttest, RESults?, SOURce.

:VDCRms?

MEASure:VDCRms? turns continuous measurement mode off, performs a DC RMS Voltage measurement one time on the signal present, and then sends the measurement results to the output buffer.

Example

Perform a DC RMS measurement on channel 1 and return results

dimension statement String for data
MEAS:SOUR CHAN1 Measure channel 1
MEAS:VDCR? Perform a DC RMS Voltage measurement, query instrument to return measurement results

enter statement Enter measurement results into computer

Comments

- Oscilloscope Setup: The DC RMS Voltage measurement is made using the the first cycle present. If a complete cycle is not present, the instrument calculates the DC RMS value of all data points.
- Returned Format: The measurement results are returned as a numeric value (SYSTem:HEADer to OFF) representing measured DC RMS voltage (in volts), with 0 volts as the reference.
:VDELta?

MEAS:VDELta? returns the time difference between the start (VMarker1) and stop (VMarker2) voltage markers. The value is sent to the output buffer.

Example
Query the voltage difference between start and stop voltage markers

dimension statement String for data
MEAS : VDEL? Query instrument to return voltage difference
enter statement Enter data into computer

Comments
• Measurement Method: Voltage difference is calculated as follows:

VDELta = VSTOp - VSTArt

VSTOp is the current stop marker position, and VSTArt is the current start marker position. Markers are automatically set during a measurement, or by the MEAS:VSTOp and MEAS:VSTArt commands.

• Returned Format: The measurement results are returned as a numeric value (SYSTem:HEADer to OFF) representing voltage difference (in volts). A (-) negative number indicates the start marker is higher than the stop marker.

• Related Commands: MEAS:VSTArt, VSTOp.

:VFIFty

MEAS:VFIFty is used to find the top and base values of the specified waveform(s), then places the voltage markers at the 50% voltage point on the specified source(s).

Example
Set voltage markers (Vmarker1 and 2) at 50% levels

MEAS : VFIF Voltage markers set at 50% levels

Comments
• Selecting Source: Up to two source(s) are specified using the MEAS:SOURCE command.

When one source is specified, both voltage markers (VMarker1 and VMarker2) are set to the 50% voltage level on that source.

When two sources are specified, VMarker1 is set to the 50% level of the first source and VMarker2 is set to the 50% level of the second source.

• Voltage Marker Query: There is not a query for the VFIFty command. Marker values can be returned using the VSTArt? and VSTOp? commands.

• Related Commands: MEAS:SOURCE, VSTArt?, VSTOp?.

COMP Command Reference 4-83
:VMAX

MEASure:VMAX is used to place the instrument in the continuous measurement mode and start a Maximum Voltage measurement.

Example

Start a Maximum Voltage measurement

```
MEAS : VMAX
```

Start a Maximum Voltage measurement

Comments

- **Measurement Specifications:** See Appendices A and C for measurement specifications.
- **Selecting Source:** One source is specified using the MEASure:SOURce command.
- **Executing the Measurement:** When the measurement is executed, the instrument will measure and output the absolute maximum voltage of the source specified.
- **Reading Measurement Results:** Use the MEASure:RESults? query to return measurement results without stopping the measurement.
- **Limit Test:** Execute the MEASure:VMAX command prior to the MEASure:COMPuter command when configuring for a maximum voltage limit test.
- **Related Commands:** MEASure:VMAX?, COMPare, LIMit, RESults?, SOURce.

:VMAX?

MEASure:VMAX? turns continuous measurement mode off, performs a Maximum Voltage measurement one time on the signal present, and then sends the measurement results to the output buffer.

Example

Perform maximum voltage measurement on channel 2 and return results

```
dimension statement String for data
MEAS:SOUR CHAN2 Measure channel 2
MEAS : VMAX? Perform Maximum Voltage measurement, query instrument to return measurement results

enter statement Enter measurement results into computer
```

Comments

- **Oscilloscope Setup:** Maximum Voltage measurement is made using the entire waveform. When performing a measurement on a particular cycle, set the controls to present only that cycle.
- **Returned Format:** The measurement results are returned as a numeric value (SYSTem:HEADer to OFF) representing measured maximum voltage (in volts), with 0 volts as the reference.
:VMIN

MEASure:VMIN is used to place the instrument in the continuous measurement mode and start a Minimum Voltage measurement.

Example

Start a Minimum Voltage measurement

```
MEAS : VMIN
Start a Min Voltage measurement
```

Comments

- **Measurement Specifications:** See Appendices A and C for measurement specifications.
- **Selecting Source:** One source is specified using the MEASURE:SOURce command.
- **Executing the Measurement:** When the measurement is executed, the instrument will measure and output the absolute minimum voltage of the source specified.
- **Reading Measurement Results:** Use the MEASURE:RESults? query to return measurement results without stopping the measurement.
- **Limit Test:** Execute the MEASURE:VMIN command prior to the MEASURE:COMParE command when configuring for a minimum voltage limit test.
- **Related Commands:** MEASURE:VMIN?, COMParE, LIMitTest, RESults?, SOURce.

:VMIN?

MEASURE:VMIN? turns continuous measurement mode off, performs a Minimum Voltage measurement one time on the signal present, and then sends the measurement results to the output buffer.

Example

Perform minimum voltage measurement on function 1 and return results

```
dimension statement String for data
MEAS: SOUR FUNC1 Measure function 1
MEAS: VMIN? Perform Minimum Voltage measurement, query instrument to return measurement results

test statement Enter measurement results into computer
```

Comments

- **Oscilloscope Setup:** Minimum Voltage measurement is made using the entire waveform. When performing a measurement on a particular cycle, set the controls to present only that cycle.
- **Returned Format:** The measurement results are returned as a numeric value (SYStem:HEAder to OFF) representing measured minimum voltage (in volts), with 0 volts as the reference.
MEASURE:VPP is used to place the instrument in the continuous measurement mode and start a Peak-to-Peak Voltage measurement.

Example

Start a Peak-to-Peak Voltage measurement

```
MEAS:VPP
```

Comments

- **Measurement Specifications**: See Appendices A and C for measurement specifications.
- **Selecting Source**: One source is specified using the MEASURE:SOURce command.
- **Executing the Measurement**: When the measurement is executed, the instrument will measure and output the peak-to-peak voltage of the source specified.
- **Reading Measurement Results**: Use the MEASURE:RES ults? query to return measurement results without stopping the measurement.
- **Limit Test**: Execute the MEASURE:VPP command prior to the MEASURE:COM Pare command when configuring for a peak-to-peak voltage limit test.
- **Related Commands**: MEASURE:VPP?, VMAX, VMIN, COMPare, LIMit test, RES ults?, SOURce.

MEASURE:VPP? turns continuous measurement mode off, performs a Peak-to-Peak Voltage measurement one time on the signal present, and then sends the measurement results to the output buffer.

Example

Perform peak-to-peak voltage measurement on waveform memory 4 and return results

```
dimension statement String for data
MEAS:SOUR WMEM4 Measure waveform memory 4
MEAS:VPP? Perform Vp-p measurement, query instrument to return measurement results
```

Comments

- **Oscilloscope Setup**: Peak-To-Peak Voltage measurement is made using the entire waveform. When performing a measurement on a particular cycle, set the controls to present only that cycle.
- **Measurement Method**: The method the instrument uses to determine peak-to-peak voltage is to measure VMAX and VMIN, then calculate voltage amplitude as follows:

 \[\text{peak-to-peak voltage} = \text{VMAX} - \text{VMIN} \]

- **Returned Format**: The measurement results are returned as a numeric value (SYSTem:HEAder to OFF) representing measured peak to peak voltage (in volts), with 0 volts as the reference.
MEASure:VRELative

MEASure:VRELative <percent> is used to move the voltage markers (Vmarker1 and Vmarker2) to the specified percentage points of their last established position. The location of the voltage markers may not necessarily be on the waveform currently presented.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>percent</td>
<td>numeric</td>
<td>0 to 100</td>
<td>PCT</td>
</tr>
</tbody>
</table>

Example

Move voltage markers

For the following examples, the current position of Vmarker1 is at the base (0%) of the signal and VMarker2 is at the top (100%).

After execution of this example, VMarker1 will move to the 10% level and VMarker2 to the 90% level of the signal.

MEAS:VREL 10 Move voltage markers 10%

After execution of this example, VMarker1 will move to the 20% level and VMarker2 to the 80% level of the signal.

MEAS:VREL 20 Move voltage markers 20%

Comments

- **Entering Percent:** Any value between 0 and 100 can be used, however the markers cannot cross positions.

 If 0 is sent, the markers are not moved.

 If values of ≤50 are sent, both markers are moved the amount specified up to 50%.

 If values of >50 are sent, both markers are moved the specified amount – 50%. This is because VMarker1 is always in the range of 0% to 50% and VMarker2 is in the range of 50% to 100%. For example, if 60% is entered, both markers are moved 10% (60% – 50% = 10%).

- **VRELative versus VSTArt and VSTOp:** Both commands are used to specify voltage marker positions.

 MEASure:VSTArt and VSTOp commands are used to position the voltage markers to a specified voltage level. Each is specified separately, and knowledge of the current marker positions is not necessary.

 MEASure:VRELative command moves both voltage markers a specific percentage point from their last established position. The starting position of the markers must be known for this command to be meaningful. The markers can be set to a known position on the selected waveform using the MEASure:VAMPlitude? query (set to 0% and 100%).

COMP Command Reference 4-87
- **Starting Marker Position:** When the instrument performs a voltage measurement, the voltages markers are automatically moved to perform the measurement, then read. Because of this, the markers can be set to a known position on the selected waveform using the measure voltage commands. For example, use the MEASure:VAMPltude? query to set the markers to 0% and 100%.

- **Upper and Lower Threshold:** The VRELative command does not affect the UPPer and LOWer threshold levels as selected by the MEASure:UPPer and LOWer commands.

- **Related Commands:** MEASure:VSTArt, VSTOp.

MEASure:VRELative? returns the current relative position of the voltage stop marker (Vmarker2). The value is sent to the output buffer. The number returned specifies the position in percent from the last established position of the voltage stop marker.

Example

Query the voltage stop marker relative position

```
    dimension     statement     String for data
    MEAS:VREL 10            Move voltage markers 10%
    MEAS:VREL?            Query instrument to return voltage stop marker relative position (90%)
    enter statement     Enter data into computer
```
MEASURE:VRMS

:VRMS

MEASURE:VRMS is used to place the instrument in the continuous measurement mode and start a RMS Voltage measurement.

Example

Start a RMS Voltage measurement

MEASURE:VRMS

Comments

- Measurement Specifications: See Appendices A and C for measurement specifications.
- Selecting Source: One source is specified using the MEASURE:SOURce command.
- Executing the Measurement: When the measurement is executed, the instrument will measure and output the RMS voltage of the source specified.
- Reading Measurement Results: Use the MEASURE:RESults? query to return measurement results without stopping the measurement.
- VCRMS versus VRMS: The MEASURE:VCRMS command is identical to the MEASURE:VRMS command.
- Related Commands: MEASURE:VRMS?, VCRMS, SOURce, RESults?.

:VRMS?

MEASURE:VRMS? turns continuous measurement mode off, performs a RMS Voltage measurement one time on the signal present, and then sends the measurement results to the output buffer.

Example

Perform RMS amplitude measurement on channel 2 and return results

dimension statement String for data
MEASURE:SOURce CHAN2 Measure channel 2
MEASURE:VRMS? Perform RMS Voltage measurement, query instrument to return measurement results

enter statement Enter measurement results into computer

Comments

- Oscilloscope Setup: RMS Voltage measurement is made using the first cycle present. If a complete cycle is not present, all data points are averaged.
- Measurement Method: The method the instrument uses to determine RMS voltage (ACRMS) is to measure VAVerage, subtract it from each data point, then calculate RMS voltage.
- Returned Format: The measurement results are returned as a numeric value (SYSTem:HEADer to OFF) representing measured RMS voltage (in volts), with 0 volts as the reference.
:VSTArt

`MEASure:VSTArt <voltage>` is used to position the voltage start marker (VMarker1) at a specified voltage with respect to 0 volts.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>voltage</td>
<td>numeric</td>
<td>-4E+10 to +4E+10</td>
<td>V</td>
</tr>
</tbody>
</table>

Example

Set voltage start marker to 5 volts

```
MEAS:vsta 5  
```

Comments

- **Selecting Voltage:** The desired voltage is specified using 0 volts as the reference. Positive and negative values are acceptable. If `voltage` is set to a value outside the allowable range, it will automatically be set to the nearest acceptable value without generating an error.

- **Related Commands:** MEASure:VSTOp, VDELta?.

:VSTArt?

`MEASure:VSTArt?` returns the current position of the voltage start marker (VMarker 1). The value is sent to the output buffer. The number returned specifies the position of the voltage start marker (in volts) from 0 volts.

Example

Query the voltage start marker

```
dimension statement  String for data
MEAS:vsta 5  
MEAS:vsta?  
enter statement  Enter data into computer
```

Set VMarker1 to 5 volts

Query instrument to return voltage start marker
MEASURE:VSTOp

:VSTOp

MEASURE:VSTOp <voltage> is used to position the voltage stop marker (VMarker2) at a specified voltage with respect to 0 volts.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>voltage</td>
<td>numeric</td>
<td>-4E+10 to +4E+10</td>
<td>V</td>
</tr>
</tbody>
</table>

Example

Set voltage stop marker to -5 volts

MEAS:VSTO -5

Set Vmarker2 to -5 volts

Comments

- Selecting Voltage: The desired voltage is specified using 0 volts as the reference. Positive and negative values are acceptable. If voltage is set to a value outside the allowable range, it will automatically be set to the nearest acceptable value without generating an error.

- Related Commands: MEASURE:VSTArt, VDELTa?.

:VSTOp?

MEASURE:VSTOp? returns the current position of the voltage stop (VMarker 2) marker. The value is sent to the output buffer. The number returned specifies the position of the voltage stop marker (in volts) from 0 volts.

Example

Query the voltage start marker

<table>
<thead>
<tr>
<th>dimension</th>
<th>statement</th>
<th>String for data</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEAS:VSTO</td>
<td>-5</td>
<td>Set Vmarker2 to -5 volts</td>
</tr>
<tr>
<td>MEAS:VSTO?</td>
<td></td>
<td>Query instrument to return voltage stop marker</td>
</tr>
</tbody>
</table>

Example

Query the voltage start marker

enter statement

Enter data into computer

:VTIME?

MEASURE:VTIME? <time> returns the voltage level at a specified time. The time is referenced to the trigger event and must be on the acquired waveform.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td>numeric</td>
<td>±9.99999E+37</td>
<td>S</td>
</tr>
</tbody>
</table>

Example

Measure voltage on waveform 100μsec from trigger event

MEAS:VTIM? 100E-6

Set to measure voltage 100μsec from trigger event

Comments

- Oscilloscope Setup: In order to perform measurement, the voltage measurement point must be present.

- Returned Format: The measurement results are returned as a numeric value (SYSTem:HEAder to OFF) representing volts (referenced to 0 volts), at the time specified (referenced to the trigger event).
MEASURE:VTOP

:VTOP

MEASURE:VTOP is used to place the instrument in the continuous measurement mode and start a Top Voltage measurement.

Example

Start a Top Voltage measurement

MEAS:VTOP

Comments

- Measurement Specifications: See Appendices A and C for measurement specifications.
- Selecting Source: One source is specified using the MEASURE:SOURce command.
- Executing the Measurement: When the measurement is executed, the instrument will measure and output the voltage value at the top of the source specified.
- Reading Measurement Results: Use the MEASURE:RESults? query to return measurement results without stopping the measurement.
- Limit Test: Execute the MEASURE:VTOP command prior to the MEASURE:COMPuter command when configuring for a top voltage limit test.
- Related Commands: MEASURE:VTOP?, COMPuter, LIMIt test, RESults?, SOURCe.

:VTOP?

MEASURE:VTOP? turns continuous measurement mode off, performs a Top Voltage measurement one time on the signal present, and then sends the measurement results to the output buffer.

Example

Perform top voltage measurement on channel 2 and return results

dimension statement String for data
MEAS:SOUR CHAN2 Measure channel 2
MEAS:VTOP? Perform Top Voltage measurement, query instrument to return measurement results

enter statement Enter measurement results into computer

Comments

- Oscilloscope Setup: Top Voltage measurement is made using the entire waveform. When performing a measurement on a particular cycle, set the controls to present only that cycle.
- Returned Format: The measurement results are returned as a numeric value (SYSTem:HEADer to OFF) representing measured top voltage (in volts), with 0 volts as the reference.
MEMory

The MEMory command subsystem enables the Oscilloscope to use external A24 VME memory space for routing acquired data from the internal buffers to the external buffer. It also enables measurements to be performed using data from the internal buffer or external buffer.

Subsystem Syntax

MEMory
 :VME
 :ADDRess <address>
 :ADDRess? [MINimum | MAXimum]
 :MEASure
 :ADDRess <address>
 :ADDRess? [MINimum | MAXimum]
 :STATE <mode>
 :STATE?
 :SIZE <bytes>
 :SIZE?
 :STATE <mode>
 :STATE?

The MEMory command allows the Oscilloscope to use external A24 VME memory for data acquisition, when the VME STATE is ON. Once the data has been acquired, it is available in "raw" format. Data is processed depending on type and format selected using the following guidelines:

- ACQuire:TYPE NORMal — The acquired data is 16 bits in length. The starting location, in VME space, of each INPUT buffer is to be calculated as follows:

 INPUT1 (CHANne1) = MEM:VME:ADDR
 INPUT2 (CHANne2) = MEM:VME:ADDR + 8192
 INPUT3 (CHANne3) = MEM:VME:ADDR + 16384
 INPUT4 (CHANne4) = MEM:VME:ADDR + 24576

Data — 16 bits

11111100000000
5432109876543210
xxxxxxxxxxxxxxxxxx

<table>
<thead>
<tr>
<th>BYTE</th>
<th>WORD</th>
<th>COMPRESSED</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>shift right 9 bits</td>
<td>shift right 1 bit</td>
<td>shift right 8 bits</td>
</tr>
</tbody>
</table>

*NOTE: x = bits to shift. The external buffers only contain the acquired waveform data, not preamble information. Preamble information can be read using the WAVeform:PREamble? query.
- **ACQuire:TYPE AVERage** — The acquired data is 32 bits in length. The starting location, in VME space, of each INPUT buffer is to be calculated as follows:

 \[
 \begin{align*}
 \text{INPUT1 (CHANnel1)} &= \text{MEM:VME:ADDR} \\
 \text{INPUT2 (CHANnel2)} &= \text{MEM:VME:ADDR} + 8192 \\
 \text{INPUT3 (CHANnel3)} &= \text{MEM:VME:ADDR} + 16384 \\
 \text{INPUT4 (CHANnel4)} &= \text{MEM:VME:ADDR} + 24576 \\
 \end{align*}
 \]

Data — 32 bits

```
33222222222222222211111111110000000000
1087654321098765432109876543210
```

NOTE: x = bits to shift. The external buffers only contain the acquired waveform data, not preamble information. Preamble information can be read using the WAVeform:PREamble? query.
MEMory

- **ACQuire:TYPOe ENVelope** — The acquired data is 16 bits in length. The starting location, in VME space, of each INPUT buffer is be to calculated as follows:

 If data is digitized:

 MINIMUM

 INPUT1 (CHANnel1) = MEM:VME:ADDR
 INPUT2 (CHANnel2) = MEM:VME:ADDR + 8192
 INPUT3 (CHANnel3) = MEM:VME:ADDR + 16384
 INPUT4 (CHANnel4) = MEM:VME:ADDR + 24576

 MAXIMUM

 INPUT1 (CHANnel1) = MEM:VME:ADDR + (2 * ACQuire:POInts)
 INPUT2 (CHANnel2) = MEM:VME:ADDR + 8192 + (2 * ACQuire:POInts)
 INPUT3 (CHANnel3) = MEM:VME:ADDR + 16384 + (2 * ACQuire:POInts)
 INPUT4 (CHANnel4) = MEM:VME:ADDR + 24576 + (2 * ACQuire:POInts)

 If data is NOT digitized:

 MINIMUM

 INPUT1 (CHANnel1) = MEM:VME:ADDR
 INPUT2 (CHANnel2) = MEM:VME:ADDR + 8192
 INPUT3 (CHANnel3) = MEM:VME:ADDR + 16384
 INPUT4 (CHANnel4) = MEM:VME:ADDR + 24576

 MAXIMUM

 INPUT1 (CHANnel1) = MEM:VME:ADDR + 1002
 INPUT2 (CHANnel2) = MEM:VME:ADDR + 8192 + 1002
 INPUT3 (CHANnel3) = MEM:VME:ADDR + 16384 + 1002
 INPUT4 (CHANnel4) = MEM:VME:ADDR + 24576 + 1002

Data — 16 bits

1111110000000000
5432109876543210
xxxxxxxxxxxxxxxxxxxx

<table>
<thead>
<tr>
<th>BYTE</th>
<th>WORD</th>
<th>COMPRESSED</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>xxxxxx</td>
<td>xxxxxx</td>
<td>xxxxxx</td>
</tr>
<tr>
<td>shift right 9 bits</td>
<td>shift right 1 bit</td>
<td>shift right 8 bits</td>
</tr>
</tbody>
</table>

NOTE: x = bits to shift. The external buffers only contain the acquired waveform data, not preamble information. Preamble information can be read using the WAVeform:PREamble? query.
VME:ADDRESS

VME:ADDRESS <address> sets the address of the external memory board in A24 memory address space where acquisition data will be available. address must be on an even boundary or a settings conflict will be generated.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>address</td>
<td>numeric</td>
<td>2097152-14647294</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#H2000000-#HDF7FFE</td>
<td>MIN</td>
</tr>
</tbody>
</table>

Example

Setting the VME memory address

MEM:VME:ADDR #H250000 Set memory address location

Comments

- Entering Address: Address location can be specified in:
 - Decimal or hexadecimal (#H...)
 - MIN – sets the address to 2097152 (#H200000)
 - MAX – sets the address to 14647294 (#HDF7FFE).
- *RST Condition: MEM:VME:ADDR #H200000

VME:ADDRESS?

VME:ADDRESS? [MINimum|MAXimum] returns one of the following numbers to the output buffer:

- The present hexadecimal address selected if MIN or MAX are not specified.
- The lowest hexadecimal address available (H200000) if MIN is specified.
- The highest hexadecimal address available (HDF7FFE) if MAX is specified.

Example

Querying the VME memory address

dimension statement Dimension computer string array
MEM:VME:ADDR #H250000 Set memory address location
MEM:VME:ADDR? Query instrument to return memory address (in decimal)
enter statement Enter string into computer
MEMory:VME:MEASure:ADDRess

MEMory:VME:MEASure:ADDRess <address> sets the address of the external memory board in A24 memory address space where measurement data will be available. address must be on an even boundary or a settings conflict will be generated.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>address</td>
<td>numeric</td>
<td>2097152-14647294</td>
<td>H200000-HDF7FFE[MIN]MAX</td>
</tr>
</tbody>
</table>

Example

Setting the VME memory measure address

MEM:VME:ADDR #H250000 Set memory address location

Comments

- Entering Address: Address location can be specified in:
 - Decimal or hexadecimal (#H....)
 - MIN – sets the address to 2097152 (#H200000)
 - MAX – sets the address to 14647294 (#HDF7FFE).
- *RST Condition: MEM:VME:ADDR #H200000

MEMory:VME:MEASure:ADDRess?

MEMory:VME:MEASure:ADDRess? [MINimum|MAXimum] returns one of the following numbers to the output buffer:

- The present hexadecimal address selected if MIN or MAX are not specified.
- The lowest hexadecimal address available (H200000) if MIN is specified.
- The highest hexadecimal address available (HDF7FFE) if MAX is specified.

Example

Querying the VME memory measure address

dimension statement Dimension computer string array
MEM:VME:ADDR #H250000 Set memory address location
MEM:VME:ADDR? Query instrument to return memory address (in decimal)
enter statement Enter string into computer
MEMory:VME:MEASure:STATe

MEMory:VME:MEASure:STATe <mode> enables or disables use of the external memory board in A24 memory where data can be used for making a measurement.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode</td>
<td>boolean</td>
<td>OFF</td>
<td>ON</td>
</tr>
</tbody>
</table>

Example

Enabling VME measure memory

MEM:VME:MEAS:ADDR #H250000 Set the measurement memory address location

MEM:VME:MEAS:STAT ON Enable use of external measurement data

Comments

- **Mode**: Integer values can be substituted for the OFF (0) and ON (1) parameters.
- **Memory VME State**: When MEMory:VME:STATe is set to ON, MEMory:VME:MEASure:STATe will automatically be set to ON.
- **#RST Condition**: MEM:VME:MEAS:STAT defaults to OFF.

MEMory:VME:MEASure:STATe?

MEMory:VME:MEASure:STATe? returns the current state of the VME measurement memory. ON is returned when the external memory board in A24 memory is being used for measurements. OFF is returned if the internal buffers are being used. The value is sent to the output buffer.

Example

Querying the VME measure memory state

MEM:VME:MEAS:STAT 1 Enables use of external memory card

MEM:VME:MEAS:STAT? Query instrument to return external memory state

enter statement Enter value into computer
MEMory:VME:SIZE

:VME:SIZE

MEMory:VME:SIZE <bytes> sets the size, in bytes, of the external VME memory card.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>bytes</td>
<td>numeric</td>
<td>#8000 through #H000000</td>
<td>bytes</td>
</tr>
</tbody>
</table>

Example

Setting the VME memory size

MEM:VME:SIZE 64000 Set memory size to 64 kBytes

Comments

- Entering Size: Memory size can be specified in decimal or hexadecimal (#H,...).
- Minimum Memory Required: A minimum of H8000 bytes of VME memory are required to use the external VME feature.

:VME:SIZE?

MEMory:VME:SIZE? returns the current external VME memory allocation (in hexadecimal) to the output buffer.

Example

Querying the VME memory size

MEM:VME:SIZE 64000
MEM:VME:SIZE?

enter statement

Set memory size to 64 kBytes
Query instrument to return memory size
Enter string into computer
MEMory: VME:STATE

MEMory: VME:STATE <mode> enables or disables use of an external VME memory card for acquisition data storage.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode</td>
<td>boolean</td>
<td>OFF[0]ON[1]</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Enabling VME memory

- **MEM:VME:ADDR** #H250000 *Set memory address location*
- **MEM:VME:SIZE** 64000 *Set memory size to 64 kBytes*
- **MEM:VME:STAT** ON *Enable use of external memory card*

Comments

- **Mode**: Integer values can be substituted for the OFF (0) and ON (1) parameters.
- **Memory VME Measure State**: When MEMory:VME:STATE is set to ON, MEMory:VME:MEASure:STATE will automatically be set to ON.
- **RST Condition**: MEM:VME:STAT defaults to OFF.

MEMory: VME:STATE? returns whether the external VME memory feature is enabled (ON) or disabled (OFF). The value is sent to the output buffer.

Example

Querying the VME memory state

- **MEM:VME:STAT** ON *Enables use of external memory card*
- **MEM:VME:STAT?** *Query instrument to return external memory state*
- **enter statement** *Enter value into computer*
The OUTPut command subsystem selects the source of the output trigger generated when the Oscilloscope generates an internal trigger event. The selected output can be enabled, disabled, and queried. The three available outputs are the ECL Trigger bus (lines 0 to 1), TTL Trigger bus (lines 0 to 7), or the "TTL Trigger Output" BNC port on the Oscilloscope front panel.

OUTPut[:STATe] acts like the master switch for the OUTPut subsystem. If the ECLTrg, TTLTrg, or EXTernal states are on, an output will ONLY occur when the OUTPut[:STATe] is set to ON.

Subsystem Syntax

OUTPut
 :ECLTrg<number>
 [:STATe] <mode>
 [:STATe]?
 :EXTernal
 [:STATe] <mode>
 [:STATe]?
 [:STATe]
 [:STATe]?
 :TTLTrg<number>
 [:STATe] <mode>
 [:STATe]?
OUTPut:ECLTrg[:STATe] OUTPut:ECLTrg[number][:STATe] <mode> selects and enables which ECL Trigger bus line (0 or 1) will output a trigger when the Oscilloscope triggers. It is also used to disable a selected ECL Trigger bus line. *number* specifies the ECL Trigger bus line (0 or 1). *mode* enables (ON|1) or disables (OFF|0) the specified bus line.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>0 or 1</td>
<td>none</td>
</tr>
<tr>
<td>mode</td>
<td>boolean</td>
<td>ON</td>
<td>OFF</td>
</tr>
</tbody>
</table>

Example

Enabling ECL trigger bus line 0

```
OUTP:ECLT0:STAT 1  Enable ECL Trigger bus line 0
OUTP 1             Enable output subsystem
```

Comments

- **Enabling ECL Trigger bus**: When enabled, a pulse is output to the selected ECL Trigger bus line (0 or 1) when the Oscilloscope triggers. If disabled, a pulse is not output. The output is a positive going pulse.
- **Numerous outputs selected at a time**: All outputs (ECLTrg 0 or 1; TTLTrg 0, 1, 2, 3, 4, 5, 6, or 7; and EXTernal) can be enabled at one time. Before any output is enabled, both the individual trigger state and the output state must be enabled. For example, to enable TTLTrg1 and ECLTrg2, send the following commands:

  ```
  OUTP:TTLT1 ON
  OUTP:ECLT2 ON
  OUTP ON
  ```
- **Related Commands**: TRIGger subsystem.
- **RST Condition**: Default is OFF.

OUTPut:ECLTrg[number][:STATe]? queries the present state of the specified ECL Trigger bus line. The query returns ON if the specified bus line is enabled or OFF if the specified bus line is disabled. The value is sent to the output buffer.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>0 or 1</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Query ECL trigger bus line 0 state

```
dimension state

OUTP:ECLT0:STAT 1  Enable ECL Trigger bus line 0
OUTP:ECLT0?        Query instrument to return ECL line 0 bus enable state
```

```enter
```
```statement
```
```enter result into computer
```

4-102 COMP Command Reference
OUTPut:EXTERNAL[:STATE]

OUTPut:EXTERNAL[:STATE] <mode> enables or disables the "TTL Trigger Output" BNC port on the Oscilloscope Module to output a trigger when the Oscilloscope triggers. *mode* enables (ON | 1) or disables (OFF | 0) the BNC port.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode</td>
<td>boolean</td>
<td>ON</td>
<td>OFF</td>
</tr>
</tbody>
</table>

Example

Enabling TTL trigger output BNC port

```
OUTP:EXT 1 Enable "TTL Trigger Output" BNC port to output pulse
OUTP 1 Enable output subsystem
```

Comments

- **Enabling Trig Out Port:** When enabled, a pulse is output from the "TTL Trigger Output" BNC port on the Oscilloscope Module. The output is a negative going pulse.
- **Numerous outputs selected at a time:** All outputs (ECLTrg 0 or 1; TTLTrg 0, 1, 2, 3, 4, 5, 6, or 7; and EXTERNAL) can be enabled at one time. Before any output is enabled, both the individual trigger state and the output state must be enabled. For example, to enable TTLTrg1 and ECLTrg2, send the following commands:

```
OUTP:TTLTrg1 ON
OUTP:ECLTrg2 ON
OUTP ON
```
- **Related Commands:** TRIGger subsystem.
- **RST Condition:** Defaults to OFF.

OUTPut:EXTERNAL[:STATE]?

OUTPut:EXTERNAL:STATe? queries the present state of the "TTL Trigger Output" BNC port. The query returns ON if the port is enabled or OFF if the port is disabled. The value is sent to the output buffer.

Example

Query TTL Trigger Output BNC Port Enable State

```
dimension statement String for data
OUTP:EXT ON Enable "TTL Trigger Output" BNC port
OUTP:EXT? Query instrument to return port enable state
enter statement Enter value into computer
```
OUTPut[:STATE] <mode> enables or disables the OUTPut subsystem. mode enables (ON11) or disables (OFF10) all selected TTLTrg, ECLTrg, and EXTernal outputs.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode</td>
<td>boolean</td>
<td>ON</td>
<td>OFF</td>
</tr>
</tbody>
</table>

Example

Enabling Trig Out BNC Port

```
OUTP:EXT 1                      Enable "TTL Trigger Output" BNC port to output pulse
OUTP 1                          Enable output subsystem
```

Comments

- Selecting Outputs: Use the TTLTrg, ECLTrg, or EXTernal commands to enable a specific output. Use the OUTPut[:STATE] command to enable the subsystem.

- *RST Condition: Defaults to OFF.

OUTPut[:STATE]? queries the present state of the OUTPut subsystem. The query returns ON if the output is enabled or OFF if the output is disabled. The value is sent to the output buffer. See [:STATE] command for more information.

Example

Query output subsystem

```
dimension statement String for data
OUTP 1                          Enable "Trigger Output" BNC port
OUTP?                           Query instrument to return port enable state
enter statement                 Enter value into computer
```
OUTPut:TTLTrg[:STATE]

: TTLTrg[:STATE] OUTPut:TTLTrg<number>:STATe <mode> selects and enables which TTL Trigger bus line (0 to 7) will output a trigger when the Oscilloscope triggers. It is also used to disable a selected TTL Trigger bus line. mode enables (ON|1) or disables (OFF|0) the specified bus line.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>0 to 7</td>
<td>none</td>
</tr>
<tr>
<td>mode</td>
<td>boolean</td>
<td>ON</td>
<td>OFF</td>
</tr>
</tbody>
</table>

Example

Enabling TTL Trigger bus line 7

```
OUTP:TTLT7:STAT 1  
Enable TTL Trigger bus line 7 to output pulse
```

```
OUTP 1  
Enable output subsystem
```

Comments

- **Enabling TTL Trigger bus:** When enabled, a pulse is output to the selected TTL Trigger bus line (0 to 7) after the Oscilloscope triggers. If disabled, a pulse is not output. The output is a negative going pulse.
- **Numerous outputs selected at a time:** All outputs (ECLTrg 0 or 1; TTLTrg 0, 1, 2, 3, 4, 5, 6, or 7; and EXternal) can be enabled at one time. Before any output is enabled, both the individual trigger state and the output state must be enabled. For example, to enable TTLTrg1 and ECLTrg2, send the following commands:

  ```
  OUTP:TTLT1 ON
  OUTP:ECLT2 ON
  OUTP ON
  ```

- **Related Commands:** TRIGger subsystem.
- **RST Condition:** Defaults to OFF.

: TTLTrg[:STATE]?

OUTPut:TTLTrg<number>[:STATe]? queries the present state of the specified TTL Trigger bus line. The query returns ON if the specified bus line is enabled or OFF if the specified bus line is disabled. The value is sent to the output buffer.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>0 or 7</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Query TTL trigger bus line 7 state

```
DIMENSION statement  
String for data
```

```
OUTP:TTLT7:STAT 1  
Enable TTL Trigger bus line 7
```

```
OUTP:TTLT7?
Query instrument to return TTL bus line 7 enable state
```

```
ENTER statement
Enter value into computer
```

COMP Command Reference 4-105
The Root Level command subsystem is a fictitious subsystem used to group all the single commands that do not belong to any other subsystem. These commands control many of the basic operations and special features of the Oscilloscope.

"ROOT" is NOT a command and MUST NOT precede the commands listed in this section, or an error will be generated.

Subsystem Syntax

- AUToscale
- BLANK <source>[,<source>[,<source>[,<source>]]]
- BNC <output>
- BNC?
- DIGitize <source>[,<source>[,<source>[,<source>]]]
- ERASE <source>
- LTER?
- MERGEx <location>
- RUN
- RUN?
- SERial <string>
- STATus? <source>
- STOP
- STORe <source>,<destination>
- TER?
- VIEW <source>[,<source>[,<source>[,<source>]]]
AUToscale

The AUToscale command causes the instrument to evaluate all input signals, and then set the correct conditions to present the signals.

AUToscale

Example

Execute an autoscale

AUT

Initiate an autoscale

Comments

• Controls Affected: The following controls are set to present the input signals:

 All markers to off
 All memories to OFF
 CHANnel:OFFSet as required
 CHANnel:RANGE as required
 DISPLAY:PERSistency to SINGLE
 FUNCtion to OFF
 MEASure to OFF
 TIMEbase:RANGE as required
 TIMEbase:WINDow to OFF
 TRIGGER:HOLDoff as required
 TRIGGER:LEVel as required
 TRIGGER:MODE to EDGE
 TRIGGER:SLOPe as required

• More than One Input Signal: If signals are present on more than one input, the sweep will be triggered on the signal closest to channel 1. If a signal is not present on channel 1, then the instrument will be triggered on channel 2. If a signal is not present on channel 2, then the instrument will be triggered on channel 3, etc.

• No Input Signal: If no signals are found on any input, the instrument will be returned to its former state.

• Channel Coupling: If a large offset is present on the input signal, coupling may change from DC to AC.
BLANk

The BLANk command is used to turn off or stop presenting the specified CHANnel<n>, FUNCtion<n>, PMEMory<n>, or WMEMory<n>.

Subsystem Syntax

```
BLANk <source>[,<source>[,<source>[,<source>]]]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>source</td>
<td>discrete</td>
<td>CHANneln (n=1 to 4)</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FUNCtionn (n=1 to 2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WMEMoryn (n=1 to 4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PMEMoryn (n=0 to 2)</td>
<td></td>
</tr>
</tbody>
</table>

Example

Blank Channel 3

```
BLAN CHAN3
```

Stop presenting channel 3

Comments

- **Erasing Memory:** Executing the BLANk command does not erase the the contents of pixel or waveform memory. See ERASE command for information on erasing pixel memory contents.

- **Start Presenting Waveform:** Use the VIEW command to start presenting the specified channel, function, pixel memory, or waveform memory.

- **Related Commands:** VIEW, ERASE.
BNC

BNC `<output>` selects either PROBe or TRIGger as the output mode of the Probe Compensation AC Calibrator Output BNC connector. PROBe outputs a square wave signal at \(\approx 1.5 \) kHz, and TRIGger outputs a rising edge when an internal trigger occurs.

Subsystem Syntax

BNC `<output>`

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td>discrete</td>
<td>PROBe</td>
<td>TRIGger</td>
</tr>
</tbody>
</table>

Example

Set BNC connector to trigger

BNC TRIG

AC Calibrator output to trigger

Comments

- *RST Condition: Defaults to PROBe.*

BNC?

BNC? returns the currently selected (PROBe or TRIGger) Probe Compensation AC Calibrator Output BNC connector output signal. Returns PROBe if output is a square wave signal, and TRIGger if output is a rising edge when an internal trigger occurs. The data is sent to the output buffer. See BNC command for more information on available signals.

Subsystem Syntax

BNC?

Example

Querying BNC connector

<table>
<thead>
<tr>
<th>Dimension statement</th>
<th>String for data</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNC TRIG</td>
<td>AC Calibrator output to trigger</td>
</tr>
<tr>
<td>BNC?</td>
<td>Query instrument to return BNC selection</td>
</tr>
</tbody>
</table>

| enter statement | Enter value into computer |
The DIGitize command is used to acquire waveform data present on channels 1 to 4 to ensure that all measurements are performed using the same data, and that the data obtained is valid. Digitized data can also be moved into waveform memory or transferred over the bus. It causes an acquisition to take place on the specified channel(s) with the resulting digitized data being placed in the channel buffer, then the acquisition is stopped.

Subsystem Syntax

DIGitize <source>[,<source>[,<source>[,<source>]]]]

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>source</td>
<td>numeric</td>
<td>CHAnnel(n=1 to 4)</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Digitize waveform data present on channel 2

The following example illustrates the use of the DIGitize command only. Chapter 3 contains an example on performing a complete digitizing operation.

 DIG CHAN2

 Channel 2 waveform data digitized

Comments

- **Selecting Channel:** Up to four channels can be digitized using a single command; however, because channels 1-2 and 3-4 are paired to share A/D Converters, the digitize sequence is dependent on the channel(s) selected.

 Channels 1-2 (2-1) or 3-4 (4-3): First channel digitized when trigger requirements are satisfied. The second channel is digitized only when another trigger is received.

 Any other Channel Combinations: Both channels digitized simultaneously when trigger requirements satisfied.

 See Appendix C, Optimizing Measurements, for additional information on digitizing operations.

- **Before Digitizing:** Before the waveform data can be digitized (using DIGitize command), set up conditions such as TYPE, number of POINTs, and the COUNt must be selected. See the ACQuire subsystem for more information on selecting these commands.

- **After Digitizing:** After the waveform data has been digitized (using DIGitize command), the waveform DATa is placed in the channel buffer of the specified source where it can be read. See the WAVeform subsystem for more information on selecting these commands.
• **Loss of Digitized Data:** When the DIGitize command is complete the instrument is placed in the stopped mode. When restarted (RUN command), the digitized data stored in the channel buffers will be overwritten. Before executing the RUN command, verify all operations that require the digitized data are completed.

Unused Channels: Executing the DIGitize command will turn off any unused channels.

• **Stopping a Digitize:** Send the device clear (e.g. CLEAR 707) command to stop a digitize in process.

• **Digitizing Speed:** The speed of the total digitize operations may be improved if two or more DIGitize commands are sent without changing other parameters.

• **Related Commands:** ACQuire:, WAVeform:, RUN.
ERAsE

The ERAsE command erases a specified pixel memory.

Subsystem Syntax

ERAsE `<source>`

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>source</td>
<td>discrete</td>
<td>PMEMoryn (n=0 to 2)</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Erase contents of pixel memory 2

```
ERAsE PMEM2
```

Erase pixel memory 2

Comments

- **Erasing Pixel MEMory0**: If the instrument is running and being triggered when ERAsE PMEMory0 is executed, the instrument will momentarily stop acquiring data, clear the contents of pixel memory 0, and then continue with data acquisition.

- **Erasing Pixel MEMory1-2**: When ERAsE PMEMory1 or 2 is executed, the instrument will clear the specified pixel memory. Once the command is executed, there is no way to retrieve the original data.

- **Related Commands**: BLANk, VIEW.
The Limit Test Event Register (LTER?) query is used to return the Limit Test Event Register — Limit Test Fail bit. This bit is set (1) when the limit test has failed. After the Limit Test Event Register is queried, it is cleared (0). The value is sent to the output buffer.

Example

Query the limit test event register—limit test fail bit

```
LTER? Query instrument to return LTER
limit test fail bit

enter statement Enter value into computer
```

Comments

• SRQ: A Service Request (SRQ) can only be generated when the bit transitions from 0 to 1. The bit must be cleared (0) each time you would like a new Service Request to be generated.

• Related Commands: *STB?.
The MERGe command is used to "merge" the current contents of pixel memory 0 (active waveform) with the current contents of pixel memory 1 or 2. Result is retained in pixel memory number specified.

Subsystem Syntax

MERGe <location>

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>location</td>
<td>discrete</td>
<td>PMEMoryn (n=1 or 2)</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Merge pixel memory 0 and pixel memory 2, and retain results in pixel memory 2

 VIEW PMEM0
 MERG PMEM2

Enable pixel memory 0

Merge pixel memory 0 and pixel memory 2

Comments

- **Merge Result**: The merge result is retained in the pixel memory number specified. The original contents of the specified pixel memory (prior to MERGe) are not retained.
- **Pixel Memory 0**: Before any data can be merged into pixel memory 1 or 2, pixel memory 0 must be set to on.
- **Related Commands**: BLANk, VIEW, ERASe.
RUN

RUN is used to start acquiring data for the active waveform.

Subsystem Syntax
RUN

Example
Start acquiring data

RUN

Acquire data

Comments

• RUN versus TIMebase:MODE: The data acquisition is defined by the selected TIMebase:MODE.

 TIMebase:MODE SINGLE - executing RUN enables the trigger once and saves the acquired data.

 TIMebase:MODE AUTO or TRIGGERED - executing RUN enables the trigger repeatedly and saves the acquired data continuously.

• Stop Acquiring Data: Use the STOP command to stop data acquisition in pixel memory 0.

• Related Commands: STOP, TIMebase:MODE.

RUN?

RUN? returns a number to show the current acquisition state. "1" = RUN, "0" = STOP. The value is sent to the output buffer.

Subsystem Syntax
RUN?

Example
Query acquisition state

RUN

Acquire data

RUN?

Query instrument to return acquisition state

ter enter statement

Enter results into computer

Comments

• STOP Command: This is also the query for the STOP command.
SERial

The SERial command is used to enter a serial number in the instrument. As the instrument serial number is entered at the factory, do not use this command unless there is a need to serialize the instrument for a different application.

Subsystem Syntax

SERial <string>

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>string</td>
<td>numeric</td>
<td>Alpha-numeric, no special</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Enter a different serial number

SER "1234A56789" Different serial number

Comments

- Entering Serial Number string: Serial number consists of 10 alpha-numeric digits enclosed in quotes (").
- Protect Switch: The calibration protection switch must be set to the unprotected position to write a new serial number to the protected non-volatile ram within the instrument.
- Serial Number versus *IDN?: The serial number is part of the string returned for the *IDN? query.
The STATus? query returns a number to indicate whether a CHANnel<n>, FUNCTION<n>, WMEMory<n>, or PMEMory<n> is ON or OFF. "1" = ON, "0" = OFF. The value is sent to the output buffer.

Subsystem Syntax

STATus? <source>

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>source</td>
<td>discrete</td>
<td>CHANnel<n> (n=1 to 4)</td>
<td>FUNCTION<n> (n=1 to 2)</td>
</tr>
</tbody>
</table>

Example

Query CHANnel 1 status

STAT? CHAN1

Query instrument to return channel 1 status

enter statement

Enter results into computer

Comments

- Changing the Status: The STATus? query does not change the present status of a channel, function, waveform memory, or pixel memory.
STOP

The STOP command is used to stop acquiring data for the active waveform.

Subsystem Syntax
STOP

Example
Stop acquiring data

Comments
• Restart Acquiring Data: Use the RUN command to start data acquisition.
• Related Commands: RUN, RUN?.
• STOP Query: Use the RUN? query to return acquisition status.
STORE

The STORE command is used to move a previously stored waveform, CHANnel<n>, or FUNCTION<n> to a WMEMory<n> location.

Subsystem Syntax
STORE <source>,<destination>

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>source</td>
<td>discrete</td>
<td>CHANnel<n> (n=1 to 4)</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FUNCTION<n> (n=1 to 2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WMEMory<n> (n=1 to 4)</td>
<td></td>
</tr>
<tr>
<td>destination</td>
<td></td>
<td>WMEMory<n> (n=1 to 4)</td>
<td>none</td>
</tr>
</tbody>
</table>

Example
Move the CHANnel 2 waveform to WMEMory 3

STOR CHAN2,WEM3 Channel 2 waveform stored in waveform memory 3

Comments

- Selecting Source: The source can be specified as any channel, function, or waveform memory. Pixel memories cannot be stored.
- Selecting Destination: The destination of the waveform can only be waveform memory 1 through 4. When executed, the current contents of the specified WMEMory<n> will be overwritten.
- Related Commands: BLANK, VIEW.
TER?

The Trigger Event Register (TER?) query is used to return the Trigger Event Register. Bit 0 is set (1) when a trigger has occurred. Bit is not set (0) if a trigger has not occurred, or if a trigger event is not found and the sweep is auto-triggering. After the Trigger Event Register is queried, it is cleared (0). The value is sent to the output buffer.

Subsystem Syntax

TER?

Example

Query the trigger event register

```
TER?  Query instrument to return trigger event register
      enter statement   Enter value into computer
```

Comments

- **SRQ:** A Service Request (SRQ) can only be generated when the bit transitions from 0 to 1, therefore the bit must be cleared each time you would like a new Service Request to be generated.

- **Related Commands:** *STB?.
The View command causes the instrument to turn on an active CHANnel<n>, FUNCtion<n>, PMEMory<n>, or WMEMory<n>.

Subsystem Syntax

```
VIEW <source>[,<source>[,<source>[,<source>]]]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>source</td>
<td>discrete</td>
<td>CHANnel<n> (n=1 to 4)</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FUNCtion<n> (n=1 to 2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WMEMory<n> (n=1 to 4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PMEMory<n> (n=0 to 2)</td>
<td></td>
</tr>
</tbody>
</table>

Example

View Channel 3

```
VIEW CHAN3
```

Start presenting channel 3

Comments

- **Stop Presenting Waveform:** Use the BLANK command to turn off the specified channel, function, pixel memory, or waveform memory.
- **Unused Channels:** BLANK all channels not in use. See Appendix C, Optimizing Measurements, for additional information.
- **Related Commands:** BLANK, ERASE.
The SUMMary command subsystem enables you to examine the status of the Oscilloscope calibration and self test results by monitoring (reading the bit value) the various register groups. Figure 4-1 shows the six SUMMary Registers in the Oscilloscope.

Standard Event Status Register (*ESE). Operates under IEEE 488.2 control. Refer to the appropriate mainframe or command module users manual for more information on this register.

Status Byte Register (*STB?). Operates under IEEE 488.2 control. Refer to the appropriate mainframe or command module users manual for more information on this register.

Trigger Register (TER?). Operates under Oscilloscope control. Refer to the TER? query in this chapter for more information on this register.

Limit Test Register (LTER?). Operates under Oscilloscope control. Refer to the LTER? query in this chapter for more information on this register.

Questionable Data/Signal Register. Operates under Oscilloscope control. The Questionable Data/Signal Register is discussed in this section. The illustration shown in figure 4-2 illustrates the Questionable Data/Signal Register.
SUMMARY

Subsystem Syntax

:PRESet
:QUIEScentable
:CONDition?
:ENABLE
[:EVENT]?
:CALibration
:CONDition?
:ENABLE
[:EVENT]?
:CHANnel<number>
:CONDition?
:ENABLE
[:EVENT]?
:AD
:CONDition?
:ENABLE
[:EVENT]?
:DELAY
:CONDition?
:ENABLE
[:EVENT]?
:GAIN
:CONDition?
:ENABLE
[:EVENT]?
:HYSTEResis
:CONDition?
:ENABLE
[:EVENT]?
:LTigger
:CONDition?
:ENABLE
[:EVENT]?
:OFFSET
:CONDition?
:ENABLE
[:EVENT]?
:TNULI
:CONDition?
:ENABLE
[:EVENT]?
:TRIGger
:CONDition?
:ENABLE
[:EVENT]?
Subsystem Syntax

SUMMARY — Continued

:QUESTionable — Continued

:TEST

:CONDition?
:ENABLE
[:EVENT]

:ACQuisition
:CONDition?
:ENABLE
[:EVENT]

:AD
:CONDition?
:ENABLE
[:EVENT]

:ATRigger
:CONDition?
:ENABLE
[:EVENT]

:DA
:CONDition?
:ENABLE
[:EVENT]

:LTRigger
:CONDition?
:ENABLE
[:EVENT]

:TIMEbase
:CONDition?
:ENABLE
[:EVENT]

:INTERpolator
:CONDition?
:ENABLE
[:EVENT]

:RAM
:CONDition?
:ENABLE
[:EVENT]

:ACQuisition
:CONDition?
:ENABLE
[:EVENT]

:DISPlay
:CONDition?
:ENABLE
[:EVENT]

:NVOLatile
:CONDition?
:ENABLE
[:EVENT]

:SYSTem
:CONDition?
:ENABLE
[:EVENT]

4-124 COMP Command Reference
SUMMarry

Subsystem Syntax

SUMMarry — Continued

:QUESTionable — Continued

:TEST — Continued

:ROM

:CONDition?

:ENABLE

[:EVENT]?

:NPRotect

:CONDition?

:ENABLE

[:EVENT]?

:SYStem

:CONDition?

:ENABLE

[:EVENT]?

:PRESet

SUMMarry:PRESet sets the contents of the Oscilloscope enable registers to a known state. When executed, the PRESet command affects all 51 QUESTionable ENABLE registers, and sets all bits true (1).

Example

Preset the oscilloscope enable register

```
SUMM : PRES
All Enable register bits to true
```

Comments

- **Other Registers**: PRESet does not affect the Status Byte or Event Status registers. The Triggered and Limit Test ENABLE registers are always set at 1.

- **Questionable Enable Register**: PRESet sets the questionable enable register to 0.

- **Event Registers**: PRESet does not affect any of the QUESTionable EVENT registers. Use the *CLS command is used to clear all event registers.
Figure 4-2. Oscilloscope Summary Questionable Data/Signal Register Subsystem
QUESTionable subsystem contains 52 separate registers that, through summing registers, eventually report to the QUESTionable Data/Signal register. See figure 4-2 and the Subsystem Syntax at the beginning of this section for a list of all the registers that set the QUESTionable Data/Signal Register.

A diagram is provided for each register in the QUESTionable Data/Signal Register system as shown in figure 4-3. The following description for using the CONDition?, [:EVENt]?, and ENABLE commands applies to all registers within the Oscilloscope.

Specified (XXXXX) Register

<table>
<thead>
<tr>
<th>Bit Number</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decimal Value</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>128</td>
<td>256</td>
<td>512</td>
<td>1024</td>
<td>2048</td>
<td>4096</td>
<td>8192</td>
<td>16384</td>
<td>reserved</td>
</tr>
</tbody>
</table>

Figure 4-3. Register Diagram

Each individual register (XXXXX) in the Oscilloscope is made up of three separate registers:

:CONDition register

:EVENt register

:ENABLE register
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>:CONDition?</td>
<td>Queries the current contents of the specified (XXXXX):CONDition Register. The contents of all the CONDition Registers are always set to "0".</td>
</tr>
<tr>
<td>Example</td>
<td>Read the condition register</td>
</tr>
<tr>
<td>:ENABLE</td>
<td>Sets the enable mask, which allows true conditions (transitions) in the specified (XXXXX):EVENT Register to be reported.</td>
</tr>
<tr>
<td>Example</td>
<td>Set enable register bits 9 through 12 to true</td>
</tr>
<tr>
<td>SUMM:QUES:XXXXX:ENAB 7680</td>
<td>Sets bits 9 to 12 true</td>
</tr>
<tr>
<td>:ENABLE?</td>
<td>Returns the bit value of the specified (XXXXX):ENABLE Register. Returns a decimal weighted value from 0 to 65535 indicating which bits are set true. Reading the ENABLE register does not clear its contents.</td>
</tr>
<tr>
<td>Example</td>
<td>Query the enable register</td>
</tr>
<tr>
<td>SUMM:QUES:XXXXX:ENAB?</td>
<td>Queries the specified (XXXXX) Enable register, without clearing the contents</td>
</tr>
<tr>
<td>[:EVENT]?</td>
<td>Queries the status of the specified (XXXXX):EVENT Register. The EVENT Register latches only low to high events from the specified (XXXXX):CONDition Register. Returns a decimal weighted value from 0 to 65535 indicating which bits are set true. Reading the specified EVENT Register by a query will clear its contents.</td>
</tr>
<tr>
<td>Example</td>
<td>Read the event register</td>
</tr>
<tr>
<td>SUMM:QUES:XXXXX?</td>
<td>Queries the specified (XXXXX) Event Register and clears the contents</td>
</tr>
</tbody>
</table>
SUMMARY: QUESTionable: CALibration

SUMMARY: QUESTionable: CALibration register reports a summary of calibration results and status for all channels to the Questionable Data/Signal Register. Use the diagram to interpret returned results. See figure 4-2 and 4-3 for additional information on using the CONDition?, ENABle, ENABle?, and [:EVENT]? commands.

Summary of Calibration Register

- from Channel 1 Register
- from Channel 2 Register
- from Channel 3 Register
- from Channel 4 Register
- from Probe Attenuation Register
- from Default Cal Register
- cal ram write protected
- calibration aborted
- cal not active
- cal ram write unprotected
- cal ram checksum error
- failed interpolator cal
- no signal found
- not used
- not used
- reserved

Logical OR

To Bit 8 Questionable Status Register

Notes: C=Condition Register
EV=Event Register
EN=Enable Register

Example

Query calibration event register

SUMM: QUES: CAL?

Query instrument to return register contents
SUMMARY: QUESTIONable: CALibration: CHANnel

<num> register reports the status of calibration data for the channel specified.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1 to 4</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Query channel 1 event register

```
SUMM: QUES: CAL: CHAN1?
```

Query instrument to return register contents
SUMMARY: QUESTionable: CALibration: CHANnel: AD

Register reports the status of the A/D calibration data for the channel specified. *number* (1 to 4) specifies the desired channel. Use the diagram to interpret returned results. See figure 4-2 and 4-3 for additional information on using the CONDition?, ENABLe, ENABLe?, and [:EVENT]? commands.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1 to 4</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Query channel 2 A/D event register

SUMM: QUES: CAL: CHAN2: AD?

Query instrument to return register contents
Summary:Questionable:Calibration:Channel:Delay

Register reports the status of delay calibration data for the channel specified. `number` (1 to 4) specifies the desired channel. Use the diagram to interpret returned results. See figure 4-2 and 4-3 for additional information on using the Condition?, Enable, ENABLE?, and [:EVENT]? commands.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1 to 4</td>
<td>none</td>
</tr>
</tbody>
</table>

Delay Register

- acq. error, timeout or lost trig. on 50 ns/div range
- no edge found on 50 ns/div range
- acq. error, timeout or lost trig. on 5 ns/div range
- no edge found on 5 ns/div range
- acq. error, timeout or lost trig. on 500 ps/div range
- no edge found on 500 ps/div range
- not used
- ram error in protected ram
- reserved

To Bit 5
- Channel 1 Register
- Channel 2 Register
- Channel 3 Register
- Channel 4 Register

Logical OR

Notes: C=Condition Register
EV=Event Register
EN=Enable Register

Example

Query channel 3 delay event register

`SUMM:QUES:CAL:CHAN3:DEL?`
Query instrument to return register contents
SUMMARY: QUESTIONable: CALibration: CHANnel: GAIN register reports the status of gain calibration data for the channel specified. *number* (1 to 4) specifies the desired channel. Use the diagram to interpret returned results. See figure 4-2 and 4-3 for additional information on using the CONDition?, ENABle, ENABle?, and [:EVENT]? commands.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1 to 4</td>
<td>none</td>
</tr>
</tbody>
</table>

- failed in attempt to pos. trace to near bot. of screen
- acquisition error, timeout in waiting for acquisition
- inadequate resolution of voltage steps across screen
- vernier range error, too few points in data buffer
- x5 attenuator exceeds limit by +/- 5%
- x25 attenuator exceeds limit by +/- 5%
- preamp 1.89 gain setting exceeds limit by +/- 10%
- preamp 3.46 gain setting exceeds limit by +/- 10%
- vernier sens. of 42.4 mv exceeds limit by > +/- 20%
- vernier sens. of 98.4 mv exceeds limit by > +/- 20%
- 80% limit gain reduction > 3%
- not used
- not used
- not used
- nonvolatile ram error
- reserved

Example

Query channel 4 gain event register

SUMM: QUES: CAL: CHAN4: GAIN? *Query instrument to return register contents*
:QUESTionable:CALibration:CHANnel:HYSTeresis

SUMM:QUESTionable:CALibration:CHANnel<number>:HYSTeresis register reports the status of hysteresis calibration data for the channel specified. number (1 to 4) specifies the desired channel. Use the diagram to interpret returned results. See figure 4-2 and 4-3 for additional information on using the CONDition?, ENABle, ENABle?, and [:EVENT]? commands.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1 to 4</td>
<td>none</td>
</tr>
</tbody>
</table>

- **Hysteresis Register**
 - 0: appears trigger state always high, center screen
 - 1: never finds a trigger at any setting
 - 2: trigger state always high, hysteresis cal try to set max hysteresis as desired setting
 - 3: not used
 - 4: not used
 - 5: excessive error in setting for norm. hysteresis
 - 6: excessive error in setting for noise reject hyst.
 - 7: not used
 - 8: not used
 - 9: not used
 - 10: not used
 - 11: not used
 - 12: not used
 - 13: not used
 - 14: nonvolatile ram error
 - 15: reserved

- **Logical OR**:
 - Channel 1 Register
 - Channel 2 Register
 - Channel 3 Register
 - Channel 4 Register

- **Notes**: C = Condition Register
 - EV = Event Register
 - EN = Enable Register

Example

Query channel 1 hysteresis event register

SUMM:QUEST:CAL:CHAN1:HYST?

Query instrument to return register contents
:QUESTIONable:CALibration:CHANnel:LTRigger

SUMM:ary:QUESTIONable:CALibration:CHANnel<number>:LTRigger

register reports the status of logic trigger calibration data for channel 1. Only channel 1 contains the LTRigger register. Use the diagram to interpret returned results. See figure 4-2 and 4-3 for additional information on using the CONDitioIn?, ENABle, ENABle?, and [:EVENT]? commands.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1</td>
<td>none</td>
</tr>
</tbody>
</table>

100 MHz oscillator signal was not found
Double Pulse signal was not found
Trigger not found when exec Pattern Duration Cal #1
Trigger not found when exec Pattern Duration Cal #2
Trigger not found when exec Delay Cal #1
Trigger not found when exec Delay Cal #2
Trigger found when exec Pat Dur Cal #1. DAC FFFFFH/1H
Trigger found when exec Pat Dur Cal #2. DAC FFFFFH/1H
Trigger found when exec Delay Cal #1. DAC FFFFFH/1H
Trigger found when exec Delay Cal #2. DAC FFFFFH/1H
not used
not used
not used
not used
not used
reserved

Example Query channel 1 logic trigger event register

SUMM:QUE:CAL:CHAN1:LTR? Query instrument to return register contents
:QUESTionable:CALibration:CHANnel:OFFSet

SUMMARY:QUESTionable:CALibration:CHANnel<number>:OFFSet register reports the status of offset calibration data for the channel specified. *number* (1 to 4) specifies the desired channel. Use the diagram to interpret returned results. See figure 4-2 and 4-3 for additional information on using the CONDITION?, ENABLE, ENABLE?, and [:EVENT]? commands.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1 to 4</td>
<td>none</td>
</tr>
</tbody>
</table>

Offset Register

- excessive offset in the offset calibration
- fails to converge within 1 a/d level of center screen
- not used
- failed ac offset null calibration
- not used
- not used
- not used
- not used
- failed in attempt to pos. trace to near bot. of screen
- inadequate res. across screen from chan. offs. dac
- failed gain lower limit error, \(-91.5\) uv
- failed gain upper limit error, \(-61\) uv
- failed bw offset correction of \(+/\) 0.25 div
- not used
- nonvolatile ram error
- reserved

Example

Query channel 2 offset event register

```
SUMM: QUES: CAL: CHAN2: OFFS?
```

Query instrument to return register contents
:QUESTionable:CALibration:CHANnel:TNULI

SUMMARY: QUESTionable:CALibration:CHANnel<number>TNULI
register reports the status of time null calibration data for the channel specified. number (2 to 4) specifies the desired channel. Channel 1 does not contain a time null register. Use the diagram to interpret returned results. See figure 4-2 and 4-3 for additional information on using the CONDITION?, ENABle, ENABle?, and [:EVENT]? commands.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>2 to 4</td>
<td>none</td>
</tr>
</tbody>
</table>

acq. error, timeout or lost trig. on 50 ns/div range
no edge found on 1 of the aquired channels

Time Null Register

Example

Query channel 3 time null event register

SUMM: QUES: CAL: CHAN3: TNUL? Query instrument to return register contents
:QUESTionable:CALibration:CHANnel:TRIGger

SUMMARY:QUESTionable:CALibration:CHANnel<number>:TRIGger register reports the status of trigger calibration data for the channel specified. number (1 to 4) specifies the desired channel. Use the diagram to interpret returned results. See figure 4-2 and 4-3 for additional information on using the CONDITION?, ENABLE, ENABLe?, and [:EVENt]? commands.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1 to 4</td>
<td>none</td>
</tr>
</tbody>
</table>

trigger found, unexpected, trigger state always set
no trigger found in last search, default value used
not used
not used
not used
insufficient dac range for +12 div trig. level setting
insufficient dac range for -12 div trig. level setting
fewer dac steps per div of trig. level than expected
not used
nonvolatile ram error
reserved

Trigger Register

To Bit 4
- Channel 1 Register
- Channel 2 Register
- Channel 3 Register
- Channel 4 Register

Notes: C=Condition Register
EV=Event Register
EN=Enable Register

Example

Query channel 4 trigger event register

SUMM: QUES: CAL: CHAN4: TRIG?

Query instrument to return register contents
SUMMARY: The `:QUESTionable:CALibration:DCALibration` register reports default calibration factor status load. Use the diagram to interpret returned results. See figure 4-2 and 4-3 for additional information on using the `CONDition?`, `ENABLE`, `ENABLE?`, and `[:EVENt]?` commands.

Default Cal Register

- **C**: Condition Register
- **EV**: Event Register
- **EN**: Enable Register

Example: Query default calibration event register

```plaintext
SUMM: QUES: CAL: DCAL? Query instrument to return register contents
```
SUMMARY:QUESTIONABLE:CALIBRATION:PROBE

SUMMARY:QUESTIONABLE:CALIBRATION:PROBE register reports probe calibration attenuation results. Use the diagram to interpret returned results. See figure 4-2 and 4-3 for additional information on using the CONDITION?, ENABLE, ENABLE?, and [:EVENt]? commands.

Probe Attenuation Register

<table>
<thead>
<tr>
<th>Channel</th>
<th>Attenuation</th>
</tr>
</thead>
<tbody>
<tr>
<td>chan1</td>
<td>atten too high and/or bad connection</td>
</tr>
<tr>
<td>chan2</td>
<td>atten too high and/or bad connection</td>
</tr>
<tr>
<td>chan3</td>
<td>atten too high and/or bad connection</td>
</tr>
<tr>
<td>chan4</td>
<td>atten too high and/or bad connection</td>
</tr>
<tr>
<td>not used</td>
<td>4</td>
</tr>
<tr>
<td>not used</td>
<td>5</td>
</tr>
<tr>
<td>not used</td>
<td>6</td>
</tr>
<tr>
<td>not used</td>
<td>7</td>
</tr>
<tr>
<td>not used</td>
<td>8</td>
</tr>
<tr>
<td>not used</td>
<td>9</td>
</tr>
<tr>
<td>not used</td>
<td>10</td>
</tr>
<tr>
<td>not used</td>
<td>11</td>
</tr>
<tr>
<td>not used</td>
<td>12</td>
</tr>
<tr>
<td>not used</td>
<td>13</td>
</tr>
<tr>
<td>not used</td>
<td>14</td>
</tr>
<tr>
<td>reserved</td>
<td>15</td>
</tr>
</tbody>
</table>

Example

Query probe calibration attenuation event register

```
SUMM:QUES:CAL:PROB?
```

Query instrument to return register contents
SUMMARY:QUESTIONABLE:TEST register reports diagnostic test results or self test status. Use the diagram to interpret returned results. See figure 4-2 and 4-3 for additional information on using the CONDITION?, ENABLE, ENABLE?, and [:EVENT]? commands.

![Diagram of Self Test Status Register]

Example Query test event register

```
SUMM:QUES:TEST?
```

Query instrument to return register contents
SUMM:QUEST:able:TEST:ACQuisition

The SUMM:QUEST:able:TEST:ACQuisition register reports acquisition diagnostic test results. Use the diagram to interpret returned results. See figure 4-2 and 4-3 for additional information on using the CONDition?, ENAble, ENAble?, and [:EVENt]? commands.

ACQ Register

- From ATRIG Register
- From LTRIG Register
- From A/D Register
- From Timebase Register
- From D/A Register
- Not used
- Reserved

Logical OR

To Bit 2
Selt Test Status Register

Notes: C=Condition Register
EV=Event Register
EN=Enable Register

Example

Query acquisition event register

```
SUMM:QUES:TEST:ACQ?  
```

Query instrument to return register contents
Summary: The :QUESTionable:TEST:ACQuisition:AD register reports acquisition A/D diagnostic test results. Use the diagram to interpret returned results. See figure 4-2 and 4-3 for additional information on using the CONDition?, ENABle, ENABle?, and [:EVENt]? commands.

Example

Query acquisition A/D event register

`SUMM:QUES:TST:ACQ:AD?` — Query instrument to return register contents
SUMMARY:QUESTtionable:TEST:ACQusition:ATRigger register reports acquisition analog trigger diagnostic test results. Use the diagram to interpret returned results. See figure 4-2 and 4-3 for additional information on using the CONDITION?, ENABLE, ENABLE?, and [:EVENT]? commands.

ATRIG Register

channel 1 trigger fails
channel 2 trigger fails
channel 3 trigger fails
channel 4 trigger fails
not used
reserved

Logical OR

To Bit 0
ACQ Register

Notes: C = Condition Register
EV = Event Register
EN = Enable Register

Example
Query acquisition analog trigger event register

SUMM: QUES: TEST: ACQ: ATR?

Query instrument to return register contents
SUMMARY: The QUESTionable:TEST:ACQusition:DA register reports acquisition D/A diagnostic test results. Use the diagram to interpret returned results. See figure 4-2 and 4-3 for additional information on using the CONDition?, ENABle, ENABle?, and [:EVENt]? commands.

Example: Query acquisition D/A event register

```
SUM: QUES: TEST: ACQ: DA?
```

Query instrument to return register contents.
SUMMARY: questionable: test: acquisition: LTRigger register reports acquisition logic trigger diagnostic test results. Use the diagram to interpret returned results. See figure 4-2 and 4-3 for additional information on using the CONDITION?, ENABLE, ENABLe?, and [:EVENT]? commands.

Example Query acquisition logic trigger event register

SUMM: QUES: TEST: ACQ: LTR? Query instrument to return register contents
SUMMARY: The ACQ(q)isition:TIMeba(se register reports acquisition time base diagnostic test results. Use the diagram to interpret returned results. See figure 4-2 and 4-3 for additional information on using the CONDition?, ENABLE, ENABLE?], and [:EVENt]? commands.

Example

Query acquisition time base event register

```
SUMM: QUE: TEST: ACQ: TIM?
```

Query instrument to return register contents
The diagram illustrates the time base interpolator event register. It shows the various bits and their corresponding failure conditions. The register reports acquisition time base interpolator diagnostics. Use the diagram to interpret returned results. See figure 4-2 and 4-3 for additional information on using the CONDITION?, ENABLE, ENABLE?, and [:EVENT]? commands.

Example: Query acquisition time base interpolator event register

```
SUMM: QUES: TEST: ACQ: TIM: INT?
```

Query instrument to return register contents
SUMMARY: QUESTIONable: TEST: RAM

SUMMARY: QUESTIONable: TEST: RAM register reports random access memory diagnostic test results. Use the diagram to interpret returned results. See figure 4-2 and 4-3 for additional information on using the CONDition?, ENABle, ENABle?, and [:EVEN] commands.

Example

Query RAM event register

```
SUMM: QUES: TEST: RAM?
```

Query instrument to return register contents
SUMMARY:QUESTionable:TEST:RAM:ACQuisition register reports acquisition random access memory diagnostic test results. Use the diagram to interpret returned results. See figure 4-2 and 4-3 for additional information on using the CONDition?, ENABLE, ENABLE?, and [:EVENt]? commands.

Example Query acquisition RAM event register

SUMM:QUES:TEST:RAM:ACQ? Query instrument to return register contents
The SUMMARY:QUESTable:TEST:RAM:DISPlay register reports display random access memory test results. Use the diagram to interpret returned results. See figure 4-2 and 4-3 for additional information on using the CONDition?, ENABle, ENABLE?, and [:EVENt]? commands.

Example

Query display RAM event register

```
SUMM:UES:TEST:RAM:DISP?
```

Query instrument to return register contents
SUMMARY: Questionable:TEST:RAM:NVOLatile register reports nonvolatile random access memory diagnostic test results. Use the diagram to interpret returned results. See figure 4-2 and 4-3 for additional information on using the CONDITION?, ENABLE, ENABLe?, and [:EVENT]? commands.

Example
Query nonvolatile RAM event register

SUMM: QUES: TEST: RAM: NVOL?

Query instrument to return register contents
SUMMARY: QUESTIONable: TEST: RAM: SYStem register reports system random access memory diagnostic test results. Use the diagram to interpret returned results. See figure 4-2 and 4-3 for additional information on using the CONDition?, ENABLE, ENABLE?, and [:EVENT]? commands.

Example Query system RAM event register

SUMM: QUES: TEST: RAM: SYST? Query instrument to return register contents
The SUMmery:QUESTionable:TEST:ROM register reports read only memory diagnostic test results. Use the diagram to interpret returned results. See figure 4-2 and 4-3 for additional information on using the CONDITION?, ENABLE, ENABLE?, and [:EVENT]? commands.

<table>
<thead>
<tr>
<th>ROM Register</th>
<th>Logical OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>from Nonvolatile Protect Register</td>
<td>To Bit 1 Self Test Status Register</td>
</tr>
<tr>
<td>from System Register</td>
<td></td>
</tr>
<tr>
<td>not used</td>
<td>not used</td>
</tr>
<tr>
<td>reserved</td>
<td>reserved</td>
</tr>
</tbody>
</table>

Example Query ROM event register

```
SUMM:QUEST:TEST:ROM?
```

Query instrument to return register contents

Notes: C=Condition Register
EV=Event Register
EN=Enable Register
SUMMARY:Questionable:TEST:ROM:NPRotect register reports non-volatile protected random access memory diagnostic test results. Use the diagram to interpret returned results. See figure 4-2 and 4-3 for additional information on using the CONDITION?, ENABLE, ENABLE?, and [:EVENT]? commands.

Example
Query non-volatile protected ROM event register
SUMM:QUES:TEST:ROM:NPR?

Query instrument to return register contents
SUMMARY:QUEST:TEST:ROM:SYSTEM register reports system read only memory diagnostic test results. Use the diagram to interpret returned results. See figure 4-2 and 4-3 for additional information on using the CONDition?, ENABLE, ENABLE?, and [EVENT]? commands.

System Register

Example Query system ROM event register

SUMM:QUES:TEST:ROM:SYST? Query instrument to return register contents
The SYSTem command subsystem is used to control the way in which query responses are formatted, and define the programming language used.

SYSTem
:ERRor? [<mode>]
:HEADer <mode>
:HEADer?
:LANGUAGE <command>
:LANGUAGE?
:LONGform <mode>
:LONGform?
:SETup <setup>
:SETup?
SYSTem:ERRor? [message] returns the next error number and (if specified) corresponding error message in the error queue. See Appendix B for a listing of error numbers and messages.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode</td>
<td>discrete</td>
<td>NUMBER</td>
<td>STRING</td>
</tr>
</tbody>
</table>

Example

Read the next error number and quoted string in the error queue

```
SYST:ERR? STR
```

Query instrument to return the next error number and message

Comments

- Entering Mode: When the NUMBER is specified, only the numeric error code is output. When the STRING is specified the error number is output followed by a comma and a quoted string. If no parameter is specified then only the numeric error code is output (same as NUMBER).

- Error Numbers/Messages in the Error Queue. Each error generated by the instrument stores an error number and corresponding error message in the error queue. The error message can be up to 255 characters long.

- Clearing the Error Queue: An error number/message is removed from the queue each time the SYSTem:ERRor? query is sent. The errors are cleared first-in, first-out. When the queue is empty, each following SYSTem:ERRor? query returns 0, "No error". To clear all error numbers/messages in the queue, execute the *CLS command.

- Maximum Error Numbers/Messages in the Error Queue: The queue holds a maximum of 30 error numbers/messages. If the queue overflows, the last error number/message in the queue is replaced by −350, "Too many errors". The least recent error numbers/messages remain in the queue and the most recent are discarded.

- *RST Condition: *RST does not clear the error queue.
:HEADer

SYSTem:HEADer <mode> is used to enable or disable the output header returned with query responses. When selected, all query responses will include a command header. *mode* enables (ON 1) or disables (OFF 0) the command header.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode</td>
<td>boolean</td>
<td>OFF[0]ON[1]</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Enable command headers

```
SYST: HEAD ON
```

Command headers enabled

Comments

- **Length of Command Headers:** If command headers are enabled, use **SYSTem:**LONGform command to specify the header length (long form or short form). For example, response to **CHANnel1:**RANGE? query is as follows:

 Headers OFF:
 Headers ON, Longform OFF:
 Headers ON, Longform ON:

<table>
<thead>
<tr>
<th>Headers Off</th>
<th>Headers ON, Longform Off</th>
<th>Headers ON, Longform On</th>
</tr>
</thead>
</table>

- Numeric Strings: Headers should be turned OFF when returning values to numeric variables.

- Related Commands: **SYSTem:**LONGform.

- *RST Conditions: Defaults to OFF.*

:HEADer?

SYSTem:HEADer? returns a number to show whether the command headers are enabled or disabled: "1" = enabled, "0" = disabled. The value is sent to the output buffer.

Example

Querying the command header state

```
SYST: HEAD ON
SYST: HEAD?
```

Command headers enabled
Query instrument to return command header state

enter statement
Enter value into computer
:LANGuage

SYSTem:LANGuage <command> used to select the programming language. COMPatible selects the HP54503A Compatible Language, and SCPI selects the Standard Commands for Programmable Instruments programming Language.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>command</td>
<td>discrete</td>
<td>COMPatible</td>
<td>SCPI</td>
</tr>
</tbody>
</table>

Example

Select HP 54503A compatible language to instruct the Oscilloscope

SYST:LANG COMP
Select compatible language

Comments

- **Selecting Command:** When the HP 54503A Compatible Language (COMPatible) is selected, use the instructions found in Chapters 3 and 4 to program the Oscilloscope. When Standard Commands for Programmable Instruments (SCPI) is selected, use the instructions found in Chapters 5 and 6 to program the Oscilloscope.

- **Switching Languages:** Switching languages while programming is permissible, however:

 Allow 1 second after changing for the Oscilloscope to configure to the new language.

 After switching languages, a *RST is automatically performed to place the instrument in a known state.

- **Programming the Wrong Language:** If the Oscilloscope is configured to operate using one language, and a command from the other language is executed (with different syntax), an error will be generated.

- ***RST Condition:** *RST does not change SYSTem:LANGuage selected.

:LANGuage?

SYSTem:LANGuage? returns the current programming language selected. Returns COMPatible if the HP 54503A Compatible Language is selected, and SCPI if the Standard Commands for Programmable Instruments programming Language is selected. The data is sent to the output buffer.

Example

Querying the current programming language selected

dimension statement
SYST:LANG?
enter statement

Dimension a string
Query instrument to return current programming language
Enter value into computer
:LONGform

SYSTem:LONGform <mode> is used to select the format of the command header (when on) and alpha arguments sent FROM the Oscilloscope TO the controller. mode (ON|1) is used to select the long form, and (OFF|0) selects the short form.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode</td>
<td>boolean</td>
<td>OFF</td>
<td>ON</td>
</tr>
</tbody>
</table>

Example

Select long form command headers

SYST:LONG ON Command headers to long form

Comments

- Input Data Messages: The SYSTem:LONGform command does not affect the input data messages sent TO the instrument. Headers and arguments may be sent to the Oscilloscope in either the longform or shortform regardless of how the LONGform command is set.
- Selecting Command Headers: See the SYSTem:HEADer command for more information on selecting command headers.
- Related Commands: SYSTem:HEADer.
- *RST Conditions: Defaults to OFF.

:LONGform?

SYSTem:LONGform? returns a number to show the current longform state: "1" = long form, "0" = short form. The value is sent to the output buffer.

Example

Querying the longform state

SYST:LONG ON Command headers to long form
SYST:LONG ? Query instrument to return long form state
enter statement Enter value into computer
:SETup

SYSTem:SETup <setup> is used to set the Oscilloscope to a condition defined by a previously returned learn string. The learn string contains all the commands and parameters necessary to setup the instrument in one 1024 byte string.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>setup</td>
<td>block</td>
<td>binary block data in # format</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

See SYSTem:SETup? query for example

Comments

- **Using SETup:** The logical order for using this instruction is to send the query first to retrieve setup data, store the data until needed, then send the learn string to the instrument using this command.

- **SETup versus *SAV*/RCL:** The SYSTem:SETup command performs the same function as the save and recall commands, except:

 Data can be saved at any location (external to the Oscilloscope) the user desires.

 No limit to the number of setups that can be saved/recalled.

:SETup?

SYSTem:SETup? returns the current learn string from the Oscilloscope. The learn string contains all the commands and parameters the Oscilloscope is currently setup to in one 1024 byte string and a header.

Example

Query setup learn string

For this example, the learn string is \\
"#41024...."

Dimension statement
Dimension string for data

Setup statements
Set oscilloscope as desired using commands described in this chapter

SYST:HEAD OFF
Set headers to off

SYST:SET?
Query instrument to return setup learn string

enter statement
Enter value into computer

store statement
Save data

change instrument
Set the oscilloscope to perform a different function.

recall statement
Recall data

SYST:SET #41024....
Send data to the oscilloscope (recalls previous setup)

Comments

- Related Commands: *LRN?, *SAV, *RCL.
The TEST command subsystem is used to perform internal diagnostics. These diagnostics are provided to give a high confidence level of instrument functionality. Before performing any of the diagnostics, execute a *RST to set critical parameters to a known state, and a SUMMary:PRESet to enable the SUMMary QUESTionable registers.

Subsystem Syntax

```plaintext
TEST

:ACQ [<test>]
:RAM [<test>]
:ROM [<test>]
:TALL
```

:ACQ

`TEST:ACQ [<test>]` is used to perform up to five acquisition tests. When selected, the Oscilloscope performs an Analog Trigger test, Logic Trigger test, an A/D test, a Time base test, and/or a D/A test. If the `test` parameter is not sent, all five tests are performed.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>test</td>
<td>discrete</td>
<td>ATRigger</td>
<td>LTRigger</td>
</tr>
</tbody>
</table>

Example

Perform the acquisition time base test

```
TEST:ACQ TIM Perform Acquisition Time base Test
```

Comments

- **Test Results:** Found by querying the SUMMary:QUESTionable:TEST:ACQ register.

- **Test Failure:** If any of the five acquisition tests fail, perform Firmware Calibration procedures provided in Chapter 3, and repeat the test. If the test fails again, refer to instructions found in the Service Manual.

- **Related Commands:** SUMMary:QUESTionable:TEST.
:RAM

TEST:RAM [<test>] is used to perform up to four random access memory tests. When selected, the Oscilloscope performs a Display RAM test, System RAM test, a Non-volatile RAM test, and/or an Acquisition RAM test. If the test parameter is not sent, all four tests are performed.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>test</td>
<td>discrete</td>
<td>DISPLAY</td>
<td>ACQUisition</td>
</tr>
</tbody>
</table>

Example

Perform all four RAM tests

```
TEST:RAM
```

Comments

- Test Results: Found by querying the SUMMary:QUESTionable:TEST:RAM register.
- Test Failure: If any of the four RAM tests fail, perform Firmware Calibration procedures provided in Chapter 3, and repeat the test. If the test fails again, refer to instructions found in the Service Manual.
- Related Commands: SUMMary:QUESTionable:TEST.

:ROM

TEST:ROM [<test>] is used to perform one read only memory test and one nonvolatile protected random access memory test. When selected, the Oscilloscope performs a System ROM test, and/or a Protected Non-volatile RAM test. If the test parameter is not sent, both tests are performed.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>test</td>
<td>discrete</td>
<td>SYSTErm</td>
<td>NVPReote</td>
</tr>
</tbody>
</table>

Example

Perform the system ROM test

```
TEST:ROM SYST
```

Comments

- Test Results: Found by querying the SUMMary:QUESTionable:TEST:ROM register.
- Test Failure: If any of the two ROM tests fail, perform Firmware Calibration procedures provided in Chapter 3, and repeat the test. If the test fails again, refer to instructions found in the Service Manual.
- Related Commands: SUMMary:QUESTionable:TEST.
:TALL

TEST:TALL is used to perform the RAM, ROM, and ACQ tests. When selected, the Oscilloscope performs all the individual tests.

Example

Perform the RAM, ROM, and ACQ tests

```
TEST: TALL

Perform all tests
```

Comments

- **User Connection:** Disconnect all inputs prior to performing self tests.

- **Test Results:** Found by querying the SUMMary:QUESTionable:TEST register.

- **Test Failure:** If any of the tests fail, perform Firmware Calibration procedures provided in Chapter 3, and repeat the test. If the test fails again, refer to instructions found in the Service Manual.

- **Related Commands:** SUMMary:QUESTionable:TEST.
The TIMebase command subsystem is used to control the horizontal axis, or "X-axis," functions. A second expanded time base (Window mode) can be selected, and has separate control over position and width.

Subsystem Syntax

```plaintext
TIMebase
  :DELay <time>
  :DELay?
  :MODe <mode>
  :MODe?
  :RANGE <range>
  :RANGE?
  :REFERENCE <position>
  :REFERENCE?
  :WINDOW <mode>
  :WINDOW?
    :DELay <time>
    :DELay?
    :RANGE <range>
    :RANGE?
```
TIMebase:DELay

:DELay TIMebase:DELay <time> is used to set the time interval between the trigger event and the active waveform delay reference point. The delay reference point is set to the left, center, or right of the active waveform using the TIMebase:REFERENCE command.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td>numeric</td>
<td>Dependent on TIMebase:RANGE</td>
<td>S</td>
</tr>
</tbody>
</table>

Example

Set the time interval between the trigger event and the delay reference point to 2 msec

TIM:DEL 2E-3
Set delay to 2 msec

Comments

• Entering Time: When 0 is entered, the trigger event occurs at the delay reference point. Positive values set the trigger event to occur before the delay reference point (to capture post-trigger events). Negative values set the trigger event to occur after the delay reference point (to capture pre-trigger events). The range of acceptable DELay values is dependent on the current TIMebase:RANGE setting. If DELay is set to a value outside the allowable range, it will automatically be set to the nearest acceptable value without generating an error.

• Related Commands: TIMebase:REFERENCE, RANGE.

• *RST Condition: Defaults to 0 seconds.

:DELay?

TIMebase:DELay? returns a number representing the current time interval between the trigger event and the delay reference point. The value (in ± seconds) is sent to the output buffer.

Example

Querying current delay value

TIM:DEL 2E-3
Set delay to 2 msec

TIM:DEL?
Query instrument to return delay value in seconds

enter statement
Enter value into computer
:MODE

TIMebase:MODE <mode> is used to select the time base mode. Defines when data will be acquired with respect to triggering.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode</td>
<td>discrete</td>
<td>AUTO</td>
<td>TRIGgered</td>
</tr>
</tbody>
</table>

Example

Set mode to only acquire data only when triggered

TIM:MOD TRIG

Set mode to triggered

Comments

- **Selecting Mode**: The time base mode is selected as follows:

 AUTO - will acquire data regardless of trigger requirements. If selected and no trigger is present, available data is acquired. Provides a baseline in the absence of a signal. If a signal is present but the instrument is not triggered, the waveform will be unsynchronized (not a baseline).

 TRIGgered - will not acquire data until all selected trigger requirements are satisfied (set using TRIGger commands). If selected and no trigger is present, the data acquired on the previous trigger will remain.

 SINGle - will clear the present waveform and stop acquiring data. When the RUN command is received, one data acquisition will occur on the next trigger.

- **Related Commands**: RUN, TRIGger subsystem.

- **RST Condition**: Defaults to AUTO.

:MODE?

TIMebase:MODE? returns the currently selected mode under which the time base will operate. The data is sent to the output buffer. Returns AUTO, TRIGgered, or SINGle depending on the current mode selected. See TIMebase:MODE command for more information.

Example

Query current time base mode

```
Dimension statement String for data
TIM:MOD TRIG Set mode to triggered
TIM:MOD? Query instrument to return mode
enter statement Enter data into computer
```
:RANGe

TIMebase:RANGE <range> is used to define the full scale horizontal axis, or "X-axis" of the main sweep. Controls sweep speed.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>range</td>
<td>numeric</td>
<td>2 NS to 50S</td>
<td>S</td>
</tr>
</tbody>
</table>

Example

Set time base range to 10 μsec (full scale)

TIM: RANG 10E-6 Range to 10μsec

Comments

- **Entering Range**: Range values are entered in a 1,2,5 sequence. If a value is entered that is not in a 1,2,5 sequence, it is automatically rounded to the closest allowable value without generating an error.

- **Effects on Other TIMebase Selections**: Changes in the range parameter may effect the current settings specified for TIMebase:DELay, and TIMebase:WINDow:RANGe.

- **Related Commands**: TIMebase:DELay, WINDow:RANGe.

- **"RST Condition**: Defaults to 1 msec.

:RANGe?

TIMebase:RANGE? returns a numeric value representing the current range setting for the horizontal axis. The value (in seconds) is sent to the output buffer.

Example

Querying full scale horizontal range setting

TIM: RANG 10E-6 Range to 10μsec
TIM: RANG? Query instrument to return time base range setting
enter statement Enter value into computer
:REFERENCE

TIMbase:REFERENCE <position> sets the delay reference to the left, right, or to the center of the active waveform.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>position</td>
<td>discrete</td>
<td>LEFT</td>
<td>CENTer</td>
</tr>
</tbody>
</table>

Example

Set the reference to the left of the active waveform

```
TIM:REF LEFT
Reference to left
```

Comments

- **Selecting Position:** Position entered is used with the TIMbase:DELAY command to set the time interval between the trigger event and the delay reference point. For example, if DELay is 0 seconds, and REFerence is CENTER, pre-trigger data is on the left and post-trigger data is on the right of the active waveform.

- **Related Commands:** TIMbase:DELAY.

:REFERENCE?

TIMbase:REFERENCE? returns the currently selected delay reference point. The data is sent to the output buffer. Returns LEFT, CENTER, or RIGHT depending on the current position selected. See TIMbase:REFERENCE command for more information.

Example

Query current reference point selection

```
Dimension statement String for data
TIM:REF LEFT Reference to left
TIM:REF ? Query instrument to return position
enter statement Enter data into computer
```
:WINDow

TIM:base:WINDow <mode> is used to enable or disable the expanded time base. mode enables (ON|1) or disables (OFF|0) the expanded time base.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode</td>
<td>boolean</td>
<td>ON</td>
<td>OFF</td>
</tr>
</tbody>
</table>

Example

Enabling the expanded time base

TIM:WIND 1

Enable the expanded time base

Comments

- Enabling the Expanded Time Base: When ON, the expanded time base is part of the active waveform, and ALL measurements are taken on the data present in the expanded time base.
- Controlling the Expanded Time Base: Two commands are used to set the expanded time base as follows:

 TIM:base:WINDow:DELay - controls the position of the expanded time base window on the main sweep.

 TIM:base:WINDow:RANGE - sets the full scale horizontal time for the expanded time base.
- Retrieving Second Time Base Data: Data is acquired from the expanded time base using the WAVEform:DATa? query.
- Expanding Stopped Memories and Channels: Stopped Waveforms (stored in WMEM1-4) or channels (CHAN1-4) cannot be expanded into the window.
- *RST Condition: Defaults to OFF.

:WINDow?

TIM:base:WINDow? queries the present state of the expanded time base. The query returns 1 if the expanded time base is enabled or 0 if the expanded time base is disabled. The value is sent to the output buffer.

Example

Query expanded time base state

TIM:WIND 1

Enable the expanded time base

TIM:WIND?

Query instrument to return expanded time base state

enter statement

Enter value into computer
:WINDow:DELay

:WINDow:DELay <time> is used to set the expanded time base delay relative to the main sweep DELay and REFerence point. The window delay actually sets the position of the expanded time base window on the main sweep.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td>numeric</td>
<td>Dependent on TIMebase:DELay and TIMebase:RANGE</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Set expanded time base delay 20 nsec before the main sweep delay/reference point

```
TIM:WIND:DEL 20E-9  Delay to 20 nsec
```

Comments

- **Entering Time**: The range for time is determined by the main sweep RANGE and DELay values. The value selected MUST keep the expanded window within the boundaries of the main sweep.
- **Related Commands**: TIMebase:RANGE, DELay
- **RST Condition**: Defaults to 0 seconds.

:WINDow:DELay?

:WINDow:DELay? returns a number representing the current expanded time base position. The value (in ± seconds) is sent to the output buffer.

Example

Querying current expanded time base delay value

```
TIM:WIND:DEL -20E-9  Delay to -20 nsec
TIM:WIND:DEL?  Query instrument to return delay value in seconds
enter statement  Enter value into computer
```
TIMebase:WINDow:RANGE

TIMebase:WINDow:RANGE <range> is used to define the full scale horizontal axis, or "X-axis" of the expanded time base.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>range</td>
<td>numeric</td>
<td>2 NS to 50S</td>
<td>S</td>
</tr>
</tbody>
</table>

Example

Set expanded time base range to 10 nsec (full scale)

```
TIM:RANG 1E-9
Range to 10nsec
```

Comments

- **Entering Range:** Range values entered can be equal to the TIMebase:RANGE selection, or as low as 1/20 the current setting. Expanded time base setting cannot exceed the current TIMebase:RANGE setting. Any other values entered outside the acceptable range are changed to acceptable limits without generating an error.
- **Related Commands:** TIMebase:RANGE.
- **RST Condition:** Defaults to 1 msec.

TIMebase:WINDow:RANGE?

TIMebase:WINDow:RANGE? returns a numeric value representing the current range setting for the expanded time base horizontal axis. The value (in seconds) is sent to the output buffer.

Example

Querying expanded time base horizontal range setting

```
TIM:RANG 1E-6
Range to 10μsec

TIM:RANG?
Query instrument to return time base range setting

enter statement
Enter value into computer
```
The TRIGger command subsystem is used to define the conditions for a trigger. Many of the commands in the TRIGger subsystem are used in more than one of the TRIGger MODes. If the command is a valid command for a trigger mode, that setting will be accepted. If the command is not valid for a trigger mode, an error will be generated.

See the TRIGger:MODe command for a description of all the available trigger modes, and a sequential list of all parameters that can be entered using each mode.

Auto or triggered mode is selected with the TIMebase:MODe command.

Subsystem Syntax

TRIGger

:CENTErized
:CONDition <argument>
:CONDition?
:DElay <mode>
:DElay?
:SLOPe <polarity>
:SLOPe?
:SOURce <source>
:SOURce?
:FIELD <number>
:FIELD?
:HOLODoff <holdoff>
:HOLODoff?
:LEVEL <level>
:LEVEL?
:LINE <number>
:LINE?
:LOGic <level>
:LOGic?
:MODe <mode>
:OCCurrence <number>
:OCCurrence?
:SLOPe <polarity>
:SLOPe?
:SOURce <channel>
:SOURce?
:PATH <channel>
:PATH?
:POLarity <polarity>
:POLarity?
:QUALify <mode>
:QUALify?
:SENSitivity <mode>
:SENSitivity?
:SLOPe <polarity>
:SLOPe?
:SOURce <source>
:SOURce?
:STANdard <standard>
:STANdard?
:CENTERed

TRIGger:CENTered used to automatically set the trigger level to the current vertical offset value for the channel selected. Can be used in all TRIGger:MODe\$.

Example

Set trigger to 50% level

```
TRIG:CENT
```

Trigger level set to center

Comments

- Query Trigger Level: Use the TRIGger:LEVel? query to return currently selected trigger level.
- Related Commands: TRIGger:LEVel.

:CONDition

TRIGger:CONDition <argument> is used to specify a set of conditions that must be satisfied to generate a trigger event. Can be used in PATTERN, STATe, DELay, and TV TRIGger:MODe.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>argument</td>
<td>discrete</td>
<td>ENTer</td>
<td>EXIT</td>
</tr>
<tr>
<td>value</td>
<td>numeric</td>
<td>200NS to 160MS</td>
<td>S</td>
</tr>
<tr>
<td>range_gt</td>
<td>numeric</td>
<td>200NS to 159.999MS</td>
<td>S</td>
</tr>
<tr>
<td>range_lt</td>
<td>numeric</td>
<td>300NS to 160MS</td>
<td>S</td>
</tr>
</tbody>
</table>

Example

Set time range from 22 msec to 33 msec (valid for pattern, delay, and TV trigger modes)

```
TRIG:COND RANG,22E-6,33E-6  Set range from 22msec to 33msec
```

Comments

- Entering Argument: Purpose, selection and value that can be entered for argument are dependent on the TRIGger:MODe selected.

TRIGger:MODE PATTERN: Valid arguments are ENTer| EXIT| GT,<value>| LT,<value>| RANGE,<range_gt>, <range_lt>.

ENTer: When specified, a trigger is generated on the first transition that makes a specified logic pattern true. The pattern must be false and then go true to generate the trigger.

EXIT: When specified, a trigger is generated on the first transition that makes a specified logic pattern false. The pattern must be true and then go false to generate the trigger.
TRIGGER:CONDITION

GT, <value>: When specified, a trigger is generated when the logic pattern is true for longer than the value specified. Time values entered are rounded to the nearest 10 nsec.

LT, <value>: When specified, a trigger is generated when the logic pattern is true for less than the value specified. Time values entered are rounded to the nearest 10 nsec.

RANGE, <range_gt>, <range_lt>: When specified, a trigger is generated when the logic pattern is true within the time range specified. Time range entered is rounded to the nearest 10 nsec. range_gt must not exceed range_lt.

TRIGGER:MODE STATE: Valid arguments are TRUE and FALSE.

TRUE: When specified, a trigger is generated when the logic pattern is true.

FALSE: When specified, a trigger is generated when the logic pattern is false.

TRIGGER:MODE DELAY: CONDITION command can only be used when PATTERN or STATE is selected as the qualifier using the TRIGGER:QUALIFY command. See PATTERN or STATE arguments above for information on selecting conditions.

TRIGGER:MODE TV: CONDITION command can only be used when TRIGGER:STANDARD USER is selected. argument is RANGE, <range_gt>, <range_lt>.

RANGE, <range_gt>, <range_lt>: When specified, a time range is set for the trigger to occur. Time range entered is rounded to the nearest 10 nsec. range_gt must not exceed range_lt.

- Related Commands: TRIGGER:MODE, STANDARD, QUALIFY.

:CONDITION?

TRIGGER:CONDITION? is used to return the condition currently selected. The data is sent to the output buffer. Returns ENTER, EXIT, GT, <value>, LT, <value>, RANGE, <range_gt>, <range_lt> dependent on current TRIGGER:MODE selected. value is time in seconds from 20nsec to 160msec. range_gt is time in seconds from 20nsec to 159.999msec. range_lt is time in seconds from 30nsec to 160msec. See TRIGGER:CONDITION command for more information.

Example

Query the current condition selection

dimension statement String to hold data
TRIG:COND? Query instrument to return condition
enter statement Enter data into computer

Comments

- Related Commands: TRIGGER:MODE.
TRIGger:DE Lay

:DE Lay

TRIGger:DE Lay <delay> is used to set a delay value in time or number of events. Disables the trigger circuit for a specified period of time, or number of events after the trigger has been qualified. Can be used only in the DELay TRIGger:MODE.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>delay</td>
<td>discrete</td>
<td>TIME,<time></td>
<td>EVENT,<event></td>
</tr>
<tr>
<td>time</td>
<td>numeric</td>
<td>30NS to 160MS</td>
<td>S</td>
</tr>
<tr>
<td>event</td>
<td>numeric</td>
<td>1 to 16,000,000</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Disable trigger circuit for 5 events after trigger is qualified

TRIG:DEL EVEN, 5
Delay to 5 events

Comments

• Selecting Delay: delay is specified as a period of time or number of events using the following guidelines:

 TIME,<time>: Disables the trigger circuit for from 30nsec to 160msec after the trigger has been qualified. Time delay is not available with time qualified pattern settings of GT, LT, or RANGE.

 EVENT,<event>: Disables the trigger circuit for from 1 to 16,000,000 counts after the trigger has been qualified. After the selected count is reached, the instrument will look for the user specified edge.

• Qualifying the Trigger: The mode used to qualify the trigger before a delay is selected using the TRIGger:QUALify command.

• User Specified Edge: The user specified edge is selected using the TRIGger:DE Lay:SOURce and SLOPe commands:

• Related Commands: TRIGger:DE Lay:SOURce, SLOPe, TRIGger:QUALify.

:DE Lay?

TRIGger:DE Lay? is used to return the currently selected delay time or number. The data is sent to the output buffer. Returns TIME,<time> if the current delay is set to time, where time is from 30nsec to 160 msec seconds. Returns EVENT,<event> if the current delay is set to number of events, where event is from 1 to 16,000,000. See TRIGger:DE Lay command for more information.

Example

Query the current delay selection

 dimension statement String to hold data
 TRIG:DEL EVEN, 5 Delay to 5 events
 TRIG:DEL? Query instrument to return delay setting
 enter statement Enter data into computer
:DELay:SLOPe

TRIGger:DELay:SLOPe <polarity> is used to select the edge that will be counted by the DELay EVENt command. Can be used only in the DELay TRIGger:MODE.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>polarity</td>
<td>discrete</td>
<td>POSitive</td>
<td>NEGative</td>
</tr>
</tbody>
</table>

Example

Set delay edge to rising

TRIG:DEL:SLOP POS Delay slope to positive

Comments

- Selecting Polarity: Enter POSitive to select the rising edge, and NEGative to select the falling edge.
- Related Commands: TRIGger:DELay, DELay:SOURCE.

:DELay:SLOPe?

TRIGger:DELay:SLOPe? returns the currently selected delay edge polarity that will be counted by the DELay EVENt command. The data is sent to the output buffer. Returns POSitive if the rising edge is selected, or NEGative if falling edge is selected.

Example

Query the current delay slope selection

dimension statement String to hold data
TRIG:DEL:SLOP POS Delay slope to positive
TRIG:DEL:SLOP? Query instrument to return delay slope setting
enter statement Enter data into computer
TRIGGER:DELAY:SOURce

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>source</td>
<td>discrete</td>
<td>CHANNELn (n=1 to 4)</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Set delay source to channel 3

TRIGGER:DEL:SOUR CHAN3 Delay source to channel 3

Comments

- Related Commands: TRIGGER:DELay, DELay:SLOPe.

TRIGGER:DELAY:SOURce?

TRIGGER:DELAY:SOURce? returns the currently selected delay source (CHANNEL1-4). The data is sent to the output buffer.

Example

Query the current delay source selection

- dimension statement
 - String to hold data
- TRIGGER:DEL:SOUR CHAN3
 - Delay source to channel 3
- TRIGGER:DEL:SOUR?
 - Query instrument to return delay source setting
- enter statement
 - Enter data into computer
TRIGger:FIELD

:FIELD

TRIGger:FIELD <number> is used to select the field of the TV signal. Can be used only in the TV TRIGger:MODE, and when TRIGger:STANdard is 525 or 625.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1 or 2</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Set field of the TV signal to 1

TRIG:FIEL 1

Set field to 1

Comments

- Selecting Field: The field number entered will determine the TRIGger:LINE selections available.
- Related Commands: TRIGger:STANdard, LINE.

TRIGger:FIELD?

TRIGger:FIELD? returns the currently selected field (1 or 2). The value is sent to the output buffer.

Example

Query the current field selection

TRIG:FIEL 1

Set field to 1

TRIG:FIEL?

Query instrument to return field setting

enter statement

Enter data into computer
:HOLDoff

TRIGger:HOLDoff <holdoff> is used to set a holdoff value in time or number of events. Disables the trigger circuit for a specified period of time, or number of events after the trigger event. Can be used only in the EDGE, PATTERN, STATE, or TV TRIGger:MODE.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>holdoff</td>
<td>discrete</td>
<td>TIME,<time></td>
<td>EVENt,<event></td>
</tr>
<tr>
<td>time</td>
<td>numeric</td>
<td>40NS to 320MS</td>
<td>S</td>
</tr>
<tr>
<td>event</td>
<td>numeric</td>
<td>2 to 16,000,000</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Disables the trigger circuit for 50nsec after trigger event

TRIG:HOLD TIM, 50E-9 Holdoff to 50 nsec

Comments

- Selecting Holdoff: holdoff is specified as a period of time or number of events using the following guidelines:
 - TIME,<time>: Disables the trigger circuit for from 40nsec to 320msec after the trigger event.
 - EVENt,<event>: Disables the trigger circuit for from 2 to 16,000,000 counts after the trigger event.
- Related Commands: TRIGger:MODE.
- *RST Conditions: Defaults to TIME, 40 nsec.

:HOLDoff?

TRIGger:HOLDoff? is used to return the currently selected holdoff time or number. The data is sent to the output buffer. Returns TIME,<time> if the current holdoff is set to time, where time is from 40nsec to 320 msec. Returns EVENt,<event> if the current holdoff is set to number of events, where event is from 2 to 16,000,000. See TRIGger:HOLDoff command for more information.

Example

Query the current holdoff selection

dimension statement String to hold data
TRIG:HOLD TIM, 50E-9 Holdoff to 50 nsec
TRIG:HOLD? Query instrument to return holdoff setting
enter statement Enter data into computer
TRIGger:LEVel

:LEVel TRIGger:LEVel <level> is used to set the trigger level voltage of the active trigger. Used for all TRIGger:MODEs.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>level</td>
<td>numeric</td>
<td>See below</td>
<td>V</td>
</tr>
</tbody>
</table>

Example

Set trigger level to 1 volt

TRIG:LEV 1

Trigger level to 1 volt

Comments

- Selecting Level: level can be entered to a value that is ±0.75 of the current CHANnel<n>:RANGE setting from the current CHANnel<n>:OFFSet setting.

- Trigger Level versus Mode: The trigger level can be sent in any mode, however only two separate levels are stored. One value is kept for the TV mode and another value is kept for all other modes. If you are in the PATtern mode and set a trigger level value, that level will also be used for the EDGE, STATe, and DELay modes.

- Trigger Level Source: The trigger level source is selected using the TRIGger:SOURce command.

- Related Commands: TRIGger:MODE.

- *RST Conditions: Defaults to 0 volts.

TRIGger:LEVel?

TRIGger:LEVel? returns the currently selected trigger level (in volts) of the current trigger mode. The value is sent to the output buffer.

Example

Query the current trigger level

TRIG:LEV 1

Trigger level to 1 volt

TRIG:LEV?

Query instrument to return trigger level

enter statement

Enter data into computer
TRIGger:LINE

TRIGger:LINE<number> is used to set which line in the selected FIELD the trigger will be generated on. Can be used only in the TV TRIGger: MODE when TRIGger:STANdard is 525 or 625.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1 to 625</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Set 35th line of field 1 to generate the trigger

TRIG:STAN 525
SET standard to 525
TRIG:FIEL 1
SET field to 1
TRIG:LIN 35
SET line to 35

Comments

- **Selecting Line:** The line _number_ parameter is dependent on the current TRIGger:STANdard and FIELD selection.

 Standard to 60Hz/525 and Field to 1
 1 to 263

 Standard to 60Hz/525 and Field to 2
 1 to 262

 Standard to 50Hz/625 and Field to 1
 1 to 313

 Standard to 50Hz/625 and Field to 2
 314 to 625

- **Related Commands:** TRIGger:STANdard, FIELD.

TRIGger:LINE? returns the currently selected line number. The number (1 to 625) is sent to the output buffer. See TRIGger:LINE command for more information.

Example

Query the current line selection

TRIG:LIN 35
_SET line to 35
TRIG:FIEL?
Query instrument to return line setting
enter statement
Enter data into computer
TRIGger:LOGic

TRIGger:LOGic <level> is used to set the "trigger on" logic level of the currently enabled path. Specifies the relation between the signal (TRIGger:PATH) and the defined voltage level (TRIGger:LEVel) that must exist before that bit of the pattern is considered valid. When all bits (up to 4) are valid, a trigger event is generated. Can be used in the PATTern, STATE, or DELay (when qualifying with PATTern or STATE) TRIGger:MODe.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>level</td>
<td>discrete</td>
<td>HIGH</td>
<td>LOW</td>
</tr>
</tbody>
</table>

Example

Set logic level of the currently enabled path to high

TRIG:LOG HIGH

Logic level to high

Comments

- Selecting Level: Use the following guidelines to select level:
 - HIGH: If the signal on a selected path must be greater than the trigger level.
 - LOW: If the signal on a selected path must be lower than the trigger level.
 - DONTcare: Signal on a selected path disregarded.

- Defining Pattern: Both the TRIGger:PATH and LOGic commands are used to define trigger pattern. The PATH command must be executed prior to the LOGic command. For example, to set path 2 at logic low, send "TRIGger:PATH CHAN2;LOGic LOW".

- Related Commands: TRIGger:PATH, LOGic, LEVel, MODe.

TRIGger:LOGic?

TRIGger:LOGic? returns the selected logic level (HIGH, LOW, or DONTcare) of the currently enabled path. The data is sent to the output buffer. See TRIGger:LOGic and TRIGger:PATH commands for more information.

Example

Query the current logic level selection

dimension statement String to hold data
TRIG:LOG HIGH Logic level to high
TRIG:LOG? Query instrument to return logic setting

table statement Enter data into computer

4-184 COMP Command Reference
TRIGger:MODE

:MODE

TRIGger:MODE <mode> is used to select the edge, pattern, state, delay, or TV trigger modes.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode</td>
<td>discrete</td>
<td>EDGE</td>
<td>PATT</td>
</tr>
</tbody>
</table>

Example

Set trigger mode to pattern

TRIG:MODE PATT

Pattern trigger mode enabled

Comments

- Selecting Mode — Five trigger modes provide many distinctive techniques to trigger and capture data. Select the desired trigger mode using the following guidelines:

 :EDGE — Provides simple edge triggering. Easiest mode to understand and use. Use the following TRIGger commands in the order presented to setup EDGE triggering.

 :SOURce — Use to select the channel that the instrument will trigger on. See TRIGger:SOURce for more information.

 :LEVEL — Use to select the trigger level that the instrument will trigger on. Can be set for each trigger source. See TRIGger:LEVEL and CENTER for more information.

 :SLOPe — Use to select the actual edge that will create the trigger. Can be set for each trigger source. See TRIGger:SLOPe for more information.

 :SENSitivity — Use to select noise reject on or off. Can be set for each trigger source. See TRIGger:SENSitivity for more information.

 :HOLDoff — Use to select the time or number of events to holdoff after the trigger event. See TRIGger:HOLDoff for more information.

 :PATTERn — Defines up to four patterns for the instrument to recognize, and then generate a trigger event. Use the following TRIGger commands in the order presented to setup PATTERN triggering.

 Up to four logic patterns are defined using the PATH and LOGic commands.

 :PATH — Use to select which of the four inputs are used for the logic pattern. See TRIGger:PATH for more information.

 :LOGic — Use to select the "logic" conditions that must be satisfied. Level is set for each active path. See TRIGger:LOGic for more information.
:LEVEL — Use to select the trigger level that the instrument will use to determine logic level. Level is set for each active path. See TRIGger:LEVEL and CENTER for more information.

:SENSitivity — Use to select noise reject on or off. Can be set for each trigger source. See TRIGger:SENSitivity for more information.

:CONDITION — Use to select the "when" conditions that must be satisfied before a trigger event is generated. See TRIGger:CONDition for more information.

:HOLDoff — Use to select the time or number of events to holdoff after the trigger event. See TRIGger:HOLDoff for more information.

:STATE — Similar to PATTERN mode, except one input is selected as a clock edge and the other three inputs define a pattern. When the pattern becomes true, the instrument triggers on the next clock edge. Use the following TRIGger commands in the order presented to setup STATE triggering.

:SOURce — Use to select the channel for the clock source. See TRIGger:SOURce for more information.

:SLOPe — Use to select the edge for the clock source. See TRIGger:SLOPe for more information.

Up to three logic patterns are defined using the PATH and LOGic commands.

:PATH — Use to select which of the three inputs are used for the logic pattern. See TRIGger:PATH for more information.

:LOGic — Use to select the "logic" conditions that must be satisfied. Level is set for each active path. See TRIGger:LOGic for more information.

:LEVEL — Use to select the trigger level that the instrument will use to determine logic level. Level is set for each active path. See TRIGger:LEVEL and CENTER for more information.

:SENSitivity — Use to select noise reject on or off. Can be set for each trigger source. See TRIGger:SENSitivity for more information.

:CONDITION — Use to select the true/false condition that must be satisfied before a trigger event is generated. See TRIGger:CONDition for more information.

:HOLDoff — Use to select the time or number of events to holdoff after the trigger event. See TRIGger:HOLDoff for more information.
TRIGger:MODE

:DELay — Qualifies on a signal (edge, pattern, or state), delays for a period of time or occurrence of events, and then enable a trigger event on a selected edge from any source. Use the following TRIGger commands in the order presented to setup DELay triggering.

:QUALify — Use to select which mode (EDGE, PATTern, or STATe) to qualify the trigger before a delay is defined. Selection of these modes is described above. See TRIGger:QUALify for more information.

:DELay — Use to select the type (time or event) and amount of delay. If events are selected, the source and slope must also be specified. See TRIGger:DELay for more information.

:OCCurrence — Use to select the source, slope, and number of trigger events that occur before the sweep is triggered. See TRIGger:OCCurrence for more information.

:TV — Used for triggering on clamped television signals. This mode allows selection of one TV signal frame and one of the lines within that frame. Use the following TRIGger commands in the order presented to setup TV triggering.

:STANdard — Use to select the TV standard signal. See TRIGger:STANdard for more information.

:SOURce — Use to select the channel that the instrument will trigger on. See TRIGger:SOURce for more information.

:LEVEL — Use to select the trigger level that the instrument will trigger on. See TRIGger:LEVEL and CENTER for more information.

:SENSitivity — Use to select noise reject on or off. Can be set for each trigger source. See TRIGger:SENSitivity for more information.

:POLarity — Use to select the edge that will create the trigger. See TRIGger:POLarity for more information.

:FIELD — Use to select the field that will create the trigger. See TRIGger:FIELD for more information.

:LINE — Use to select the line in the field that will create the trigger. See TRIGger:LINE for more information.

:HOLDoff — Use to select the time or number of events to holdoff after the trigger event. See TRIGger:HOLDoff for more information.
:QUALify — Use to select the qualify on field. See TRIGger:QUALify for more information.

:CONDition — Use to select a range that the qualify on field must occur in before a trigger event is generated. See TRIGger:CONDition for more information.

:OCCurrence — Use to select the source, slope, and number of trigger events that occur before the sweep is triggered. See TRIGger:OCCurrence for more information.

- **RST Conditions:** Defaults to EDGE.

TRIGger:MODe?

TRIGger:MODe? is used to return the currently selected trigger mode. Returns EDGE, PATTERN, STATE, DELAY, or TV. The value is sent to the output buffer. See TRIGger:MODe command for more information.

Example

Return trigger mode currently selected

```
  dimension statement String for data
  TRIG:MOD PATT Pattern trigger mode enabled
  TRIG:MOD? Query instrument to return trigger mode setting
  enter statement Enter data into computer
```
TRIGger: OCCurrence

OCCurrence

TRIGger: OCCurrence `<number>` is used to set the number of trigger events that must occur before the sweep is actually triggered. Can be used only in the DELay or TV (with STANdard USER selected) TRIGger: MODe.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1 to 16,000,000</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Trigger sweep after 100 trigger events

```
TRIG: OCC 100  
```

Occurrence to 100 events

Comments

- Selecting Source: The source to trigger on is selected using the TRIGger: OCCurrence: SOURce command.
- Selecting Edge: The specific edge to trigger on is selected using the TRIGger: OCCurrence: SLOPe command.
- Related Commands: TRIGger: OCCurrence: SOURce, SLOPe.

TRIGger: OCCurrence?

TRIGger: OCCurrence? is used to return the currently selected occurrence number from 1 to 16,000,000. The value is sent to the output buffer. See TRIGger: OCCurrence command for more information.

Example

Query the current occurrence selection

```
TRIG: OCC 100  
TRIG: OCC?  
```

```
Occurrence to 100 events  
Query instrument to return occurrence setting  
```

```
enter statement  
```

```
Enter data into computer  
```
TRIGger:OCCurrence:SLOPe

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>polarity</td>
<td>discrete</td>
<td>POSitive</td>
<td>NEGative</td>
</tr>
</tbody>
</table>

Example

Set occurrence edge to falling

TRIG:OCC:SLOP NEG Occurrence slope to negative

Comments

- Selecting Polarity: Enter POSitive to select the rising edge, and NEGative to select the falling edge.
- Related Commands: TRIGger:OCCurrence, OCCurrence:SOURce.

TRIGger:OCCurrence:SLOPe?

TRIGger:OCCurrence:SLOPe? returns the currently selected occurrence edge. The data is sent to the output buffer. Returns POSitive if the rising edge is selected, or NEGative if falling edge is selected.

Example

Query the current occurrence slope selection

dimension statement String to hold data
TRIG:OCC:SLOP NEG Occurrence slope to negative
TRIG:OCC:SLOP? Query instrument to return occurrence slope setting
enter statement Enter data into computer
TRIGger:OCCurrence:SOURce

TRIGger:OCCurrence:SOURce <source> is used to select the source that will be counted by the OCCurrence command. Can be used only in the DELay TRIGger:MODE.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>source</td>
<td>discrete</td>
<td>CHANnel (n=1 to 4)</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Set occurrence source to channel 2

```
TRIG:OCC:SOUR CHAN2 Occurrence source to channel 2
```

Comments

- Related Commands: TRIGger:OCCurrence, OCCurrence:SLOPe.

TRIGger:OCCurrence:SOURce?

TRIGger:OCCurrence:SOURce? returns the currently selected occurrence source (CHANnel1-4). The data is sent to the output buffer.

Example

Query the current occurrence source selection

```
dimension statement String to hold data
TRIG:OCC:SOUR CHAN2 Occurrence source to channel 2
TRIG:OCC:SOUR? Query instrument to return occurrence source setting
enter statement Enter data into computer
```
:PATH

TRIGger:PATH <channel> used to select a pattern bit as the source for LOGic commands. Can be used in the PATTern, STATe, or DELay (when qualifying with PATTern or STATe) TRIGger:MODE.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>channel</td>
<td>discrete</td>
<td>CHANnel (n=1 to 4)</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Set path to channel 2

```
TRIG:PATH  CHAN2     Path to channel 2
```

Comments

- **Defining Pattern:** Both the TRIGger:PATH and LOGic commands are used to define trigger pattern. PATH must be executed prior to the LOGic command. For example, to set path 2 at logic low, send "TRIGger:PATH CHAN2;LOGic LOW".
- **Related Commands:** TRIGger:LOGic, LEVel, MODe.

:PATH?

TRIGger:PATH? returns the currently selected trigger source (CHANnel1-4) for the present mode. The data is sent to the output buffer. See TRIGger:LOGic and TRIGger:PATH commands for more information.

Example

Query the current trigger source

```
dimension statement String to hold data
TRIG:PATH  CHAN2 Path to channel 2
TRIG:PATH? Query instrument to return source
enter statement Enter data into computer
```
:POLarity

TRIGger:POLarity <polarity> is used to select the edge for the trigger. Can be used only in the TV TRIGger:MODE when STANdard 525 or 625 is selected.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>polarity</td>
<td>discrete</td>
<td>POSitive</td>
<td>NEGative</td>
</tr>
</tbody>
</table>

Example

Set TV trigger polarity to rising

TRIG:POL POS Polarity to positive

Comments

- Selecting Polarity: Enter POSitive to select the rising edge, and NEGative to select the falling sync pulse to trigger on.
- Related Commands: TRIGger:MODE.

:POLarity?

TRIGger:POLarity? returns the currently selected polarity setting. The data is sent to the output buffer. Returns POSitive if the rising edge is selected, or NEGative if falling sync pulse is selected.

Example

Query the current polarity selection

dimension statement String to hold data
TRIG:POL POS Polarity to positive
TRIG:POL? Query instrument to return polarity setting

enter statement Enter data into computer
QUALify

`TRIGger:QUALify <mode>` is used to select a mode to qualify the trigger before a delay is defined in the DELay TRIGger:MODE. Used to set the qualify on field for the TV TRIGger:MODE when STANdard USER selected.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode</td>
<td>discrete</td>
<td>EDGe</td>
<td>PATTern</td>
</tr>
</tbody>
</table>

Example

Qualify delay trigger on pattern

```
TRIG:QUAL PATT
```

Comments

- Selecting Mode: `mode` is specified depending on the current TRIGger:MODE selected. See TRIGger:MODE command for more information on each of the available modes.

EDGe: Available only in DELay mode. When selected, all TRIGger:MODE EDGe parameters and commands can be used to set the source and slope.

PATTern: Available only in DELay mode. When selected, all TRIGger:MODE PATTern commands can be used to set the pattern mode parameters.

STATe: Available only in DELay mode. When selected, all TRIGger:MODE STATe commands can be used to set the state mode parameters.

HIGH: Available only in TV mode with STANdard set to USER. Uses the current TRIGger:LEVel for the specified channel as the reference.

LOW: Available only in TV mode with STANdard set to USER. Uses the current TRIGger:LEVel for the specified channel as the reference.

- Related Commands: TRIGger:MODE, STANdard, CONDition.

QUALify?

`TRIGger:QUALify?` returns the selected qualify setting in the currently selected mode. The data is sent to the output buffer. Returns EDGe, PATTern, or STATe to specify delay trigger qualify mode, and HIGH or LOW to specify edge in the TV trigger mode. See TRIGger:QUALify command for more information.

Example

Query the current qualify selection

```
dimension statement String to hold data
TRIG:QUAL PATT Qualify on pattern
TRIG:QUAL? Query instrument to return setting
enter statement Enter data into computer
```
:SENSitivity

TRIGger:SENSitivity <mode> sets the trigger sensitivity for the selected source. Used to avoid false triggering on noisy signals. NORMal corresponds to noise reject off and LOW corresponds to noise reject on.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode</td>
<td>discrete</td>
<td>NORMal</td>
<td>LOW</td>
</tr>
</tbody>
</table>

Example

Set trigger sensitivity to low (noise reject to on)

```
TRIG:SENS LOW
```

Low trigger sensitivity

Comments

- Specifying Source: Select the source using the TRIGger:SOURce command.
- Related Commands: TRIGger:LEVel, SOURce.
- *RST Conditions: Defaults to NORMal.

:SENSitivity?

TRIGger:SENSitivity? returns the selected sensitivity setting for the currently selected source. The data is sent to the output buffer. Returns NORMal with noise reject off and LOW with noise reject on.

Example

Query the current sensitivity selection

```
dimension statement String to hold data
TRIG:SENS LOW Low trigger sensitivity
TRIG:SENS? Query instrument to return sensitivity setting
```

```
enter statement Enter data into computer
```
TRIGger:SLOPe

:SLOPe\(<\text{polarity}>\) is used to select the edge for the trigger. Can be used only in the EDGe, STATe, and DE Lay (when qualified on EDGe or STATe) TRIGger:MODe.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>polarity</td>
<td>discrete</td>
<td>POSitive</td>
<td>NEGative</td>
</tr>
</tbody>
</table>

Example
Set trigger edge to rising

```
TRIG:SLOP POS
```

Slope to positive

Comments
- **Selecting Slope:** Enter POSitive to select the rising edge, and NEGative to select the falling edge.
- **Related Commands:** TRIGger:SOURce.
- **RST Condition:** Defaults to POSitive.

TRIGger:SLOPe? returns the selected trigger edge for the currently selected trigger mode. The data is sent to the output buffer. Returns POSitive if the rising edge is selected, or NEGative if falling edge is selected.

Example
Query the current slope selection

```
dimension statement String to hold data
TRIG:SLOP POS Slope to positive
TRIG:SLOP? Query instrument to return slope setting
enter statement Enter data into computer
```
TRIGger:SOURce

TRIGger:SOURce <source> is used to select the source that will actually produce the trigger. Can be used only in the EDGE, STATE, TV, and DELay (when qualified on EDGE or STATE) TRIGger: MODE.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>source</td>
<td>discrete</td>
<td>CHANnel (n=1 to 4)</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TTLTrg (n=0 to 7)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ECLTrg (n=0 to 1)</td>
<td></td>
</tr>
</tbody>
</table>

Example

Set trigger source to TTL trigger bus line 5

TRIG: HOLD TIM, 40NS Holdoff to 40 nsec
TRIG: MOD EDG Trigger mode to edge
TRIG: SOUR TLLT5 Source to TTL trigger bus line 5

Comments

- Selecting Source: source is specified depending on the TRIGger:MODE currently selected.

CHANnel1-4: Available on all modes except PATTERN. Source is input connectors 1-4 on the instrument panel.

TTLTrg0-7: Available only in EDGE mode and when TRIGger:HOLDoff is set to TIME (EVENT generates an error). Other trigger commands have no effect on the TTL trigger source. Source is backplane TTL trigger bus lines 0-7.

ECLTrg0-1: Available only in EDGE mode and when TRIGger:HOLDoff is set to TIME (EVENT generates an error). Other trigger commands have no effect on the ECL trigger source. Source is backplane ECL trigger bus lines 0-1.

- AUToscale: Autoscale selects the trigger source from CHANnel1-4 only. TTLTrg and ECLTrg lines cannot be used for an autoscale.
- *RST Condition: Defaults to CHANnel1.

TRIGger:SOURce?

TRIGger:SOURce? returns the selected source (CHANnel1-4, TTLTrg0-7, or ECLTrg0-1) for the currently selected trigger mode. The data is sent to the output buffer.

Example

Query the current trigger source selection

dimension statement String to hold data
TRIG:SOUR TLLT5 Source to TTL trigger bus line 5
TRIG:SOUR? Query instrument to return trigger source setting

enter statement Enter data into computer

COMP Command Reference 4-197
TRIGger:STANdard

TRIGger:STANdard <standard> is used to select the television signal standard to be used. Can be used only in the TV TRIGger:MODE.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>standard</td>
<td>discrete</td>
<td>525</td>
<td>625</td>
</tr>
</tbody>
</table>

Example

Set mode so user can define measurement standards

TRIG:STAN USER
Set standard to USER

Comments

- Selecting Standard: Standard is selected using the following guidelines:

 525 - Standard TV signal used in the United States. 60Hz and 525 lines per frame.

 625 - Standard TV signal used in Europe. 50Hz and 625 lines per frame.

 USER - Allows the user to define ranges of the TV signal. When selected, user inputs parameters with the TRIGger:POLarity, TRIGger:QUALify, and TRIGger:CONDition commands.

- Related Commands: TRIGger:CONDition, POLarity, QUALify, LINE, and FIELD.

TRIGger:STANdard?

TRIGger:STANdard? returns the currently selected standard (525, 625, or USER). The data is sent to the output buffer. See TRIGger:STANdard command for more information.

Example

Query the current standard selection

dimension statement String to hold data
TRIG:STAN USER Set standard to USER
TRIG:STAN? Query instrument to return standard setting

enter statement Enter data into computer

4-198 COMP Command Reference
The WAVEform command subsystem is used to transfer waveform data between the bus and the instrument's waveform memories. The waveform record is actually contained in two portions, the waveform data and the preamble.

The waveform data is the actual data acquired for each point in the specified source.

The preamble contains the information for interpreting the waveform data. This includes the number of points acquired, format of acquired data, and type of acquired data. The preamble also contains the X and Y increments, origins, and references for the acquired data, so that the returned data can be translated to time and voltage values.

The waveform data and preamble must be read (by the controller) or sent (to the instrument) with two separate commands, DATa and PREamble.

Note

The term "Time Buckets" is defined as — the time range divided into a specific number of horizontal time points (as defined by ACQuire:POINts), each with an equal and fixed time associated with it.

Subsystem Syntax

```
WAVEform
  :COUNT?
  :DATa <data>
  :DATa?
  :FORMat <format>
  :FORMat?
  :POINts?
  :PREamble <data>
  :PREamble?
  :SOURce <source>
  :SOURce?
  :TYPE?
  :XINCrement?
  :XORigin?
  :XREFerence?
  :YINCrement?
  :YORigin?
  :YREFerence?
```

:COUNT?

WAVEform:COUNT? always returns 1. This query has no effect on instrument operations, and is only included for compatibility with other instruments.
::DATa:: WAveform:DATa <data> is used to send the instrument a waveform data record over the bus and store it in the previously specified waveform memory.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>block</td>
<td>binary block data in # format</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Send the Oscilloscope waveform data to waveform memory 1

For the example, waveform data is "#41024...."

- WAV:: SOUR WMEM1 Select waveform memory 1
- WAV:: DAT #41024.... Send waveform data to Oscilloscope

Comments

- Storing Waveform Data: Only Waveform MEMories (WMEM1-4) may have waveform data sent to them. Select the desired location using the WAveform:SOURce command.
- Waveform Data Format: The format of the waveform data being sent must match the format previously specified by the waveforms preamble for the destination memory. See WAveform:FORMat command for more information.
- Related Commands: WAveform:PREamble.
:DATa?

WAVeform:DATa? is used to output the waveform data record stored in the instruments previously specified WMEMory<n>, CHANnel<n>, or FUNCTION<n> over the bus.

Example

Send waveform data from channel 1 over the bus

The following example illustrates the use of the WAVeform:DATa? query only. Chapter 3 contains an example of performing a complete digitizing operation, and also the procedure used to read the block length then re-define a string to hold the data.

```
Dimension statement  Dimension string to hold data (1024 bytes)
WAV:SOUR CHAN1   Select channel 1
WAV:DAT?       Enter value into computer (see Chapter 3, Digitize example, for the procedure to read block length)
```

Comments

- Waveform Data: Waveform MEMories (WMEM1-4), channel buffers (CHAN1-4), or FUNCTIONs (FUNC1-2) may have waveform data sent from them. Select the desired location using the WAVeform:SOURce command.

- Waveform Data Format: The format of the waveform data being sent is specified using the WAVeform:FORMat command.

- Interpreting Waveform Data: In order to obtain useful information from the waveform data, the returned data must be scaled. The information necessary for scaling (X/Y) the waveform is contained in the preamble data.

Conversion from Data Value to Voltage: The formula to convert a data value from the specified source to a voltage value is:

\[\text{voltage} = [(\text{data value} - \text{reference}) \times \text{increment}] + \text{yorigin} \]

Conversion from Data Value to Time: The time value of a data point can be determined by the position of the data point. The formula to convert a data point from the specified source to a time value is:

\[\text{time} = [(\text{data point number} - \text{reference}) \times \text{increment}] + \text{xorigin} \]

As an example, the third data point sent with XORigin = 16 ns, XREFerence = 0, and XINCrement = 2 ns, would result in the following calculation:

\[\text{time} = [(3 - 0) \times 2 \text{ ns}] + 16 \text{ ns} = 22 \text{ ns} \]

- Waveform Preamble: The preamble should be read before the waveform data.

- Related Commands: WAVeform:PREamble, FORMat.
WAVeform:FORMat

:FORMAT

WAVeform:FORMat `<format>` is used to specify how the data is formatted on the bus when sent from the instrument, and set the data transmission mode for waveform data output.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>format</td>
<td>discrete</td>
<td>WORD</td>
<td>BYTE</td>
</tr>
</tbody>
</table>

Example

Format waveform data (from oscilloscope over the bus) in word

The following example illustrates the use of the WAVeform:FORMat command only. Chapter 3 contains an example on performing a complete digitizing operation.

WAVeform:FORMat WORD
Waveform data sent over the bus will be in word format

Comments

- **Block Data:** Formatted waveform records are transmitted using the definite block program data format specified in IEEE 488.2. When using this format, the ASCII character string "#6<DD..D>" is sent before the actual data. The 6 indicates how many `<D>` 's will follow. The `<D>` 's are ASCII numbers, which indicate how many data bytes will follow.

 For example, if 512 points were acquired the Block Header "#3512" would be sent. The 3 indicates that three length bytes follow, 512 indicates that 512 data bytes (binary) follow.

- **Selecting Format:** Format is selected using the following guidelines:

 WORD: Useful in applications where the information is read directly into an integer array in a controller. This format also returns the most accurate data values and greatest resolution. Formatted data transfers as 16-bit binary integers in two bytes. The number of data bytes is twice the number of words (data points). The most significant byte of each word is sent first. If there is a hole in the data, it will be represented by the 16-bit value of -1. The range of data in the WORD format is from 0 to 32640.

 BYTE: Will transfer over the bus faster than WORD formatted data, but has less resolution. Only seven bits are used to represent the voltage values. If there is a hole in the data, it is represented by a value of -1.

 COMPressed: Gives greater vertical precision than BYTE formatted data, with faster transfer times than WORD formatted data. The number of data bytes is equal to the number of data points. Eight bits of resolution are retained. So that a hole in the data may be represented, a data value of 255 is mapped to 254, and 255 is used to represent a hole.

- **Related Commands:** WAVeform:DATa?,POINTs?.
- **RST Conditions:** Defaults to BYTE.

4-202 COMP Command Reference
:FORMat?

`WAVeform:FORMat?` returns the currently selected output format (BYTE, WORD, COMPRESSED) for transfer of waveform data. Data is sent to the output buffer.

Example

Query current data format

- `dimension statement`
 - `WAV:FORM WORD`
 - `WAV:FORM?`
 - `enter statement`

- String to hold data
- Waveform data sent over the bus will be in word format
- Query instrument to return selected format
- Enter data into computer

:POINts?

`WAVeform:POINts?` returns the points value in the currently selected waveform preamble. The points value is the number of time buckets contained in the waveform selected with the `WAVeform:SOURce` command. The value is sent to the output buffer.

Example

Query current points value

- `WAV:POIN?`
- `enter statement`

- Query instrument to return points value
- Enter data into computer

Comments

- **Returned Results:** In most cases the number of time buckets actually acquired will be the number of points set with the `ACQuire:POINts` command. There are some TIMebase:RANGE settings where the actual number of points will be less than requested, as shown below.

 TIMebase:RANGE to 2 nsec - the number of points actually acquired will be 32, 64, or 100.

 TIMebase:RANGE to 20 nsec - the number of points actually acquired will be 32, 64, 128, or 200.

 TIMebase:RANGE to 50 nsec - the number of points actually acquired will be 32, 64, 128, 256, 500, 512, or 1000.

- **Related Commands:** TIMebase:RANGE, ACQuire:POINts.
`:PREamble` **WAVeform:**PREamble `<data>` is used to send the instrument waveform preamble over the bus and store it in the previously specified waveform memory.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>data</code></td>
<td>numeric</td>
<td>See below</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Send the Oscilloscope waveform preamble

For the example, the waveform preamble is "xxxx...."

```
WAV:PRE xxxx....  Send waveform preamble to Oscilloscope
```

Comments

- **Waveform Preamble Format:** The format of the preamble data is as follows.

 `<data> = <format NR1>,<type NR1>,<points NR1>,<count NR1>,
 <increment NR3>, <origin NR3>, <reference NR3>, <yincrement NR3>,
 <yorigin NR3>, <yreference NR3>

 Where:

 `<format> = 1 for BYTE format
 2 for WORD format
 4 for COMPRESSED format

 `<type> = 1 for NORMAL type
 2 for AVERAGE type
 3 for ENVELOPE type

 `<points>` = See WAVeform:POINts? query.

 `<count>` = See ACQuire:COUNt? query.

 `<increment>` = See WAVeform:XINCrement? query.

 `<origin>` = See WAVeform:XORigin? query.

 `<yincrement>` = See WAVeform:YINCrement? query.

 `<yorigin>` = See WAVeform:YORigin? query.

 `<yreference>` = See WAVeform:YREFERence? query.

- **Storing Waveform Preamble:** Only Waveform MEMories (WMEM1-4) may have waveform preamble sent to them. The desired location is selected using the WAVeform:SOURce command.

- **Related Commands:** WAVeform:SOURce.
:PREamble?

:PREamble? sends a waveform preamble stored in the instruments previously specified Waveform Memory<n>, channel buffer, or Function over the bus.

Example

Send waveform preamble from the oscilloscope over the bus

The following example illustrates the use of the WAVeform:PREamble? query only. Chapter 3 contains an example on performing a complete digitizing operation.

```plaintext
Dimension statement  Dimension string or array
WAV:PRE?            Send waveform preamble over the bus
enter statement     Enter data into computer
```

Comments

- **Waveform Preamble:** Waveform MEMories (WMEM1-4), channel buffers (CHAN1-4), or FUNCTIONS (FUNC1-2) may have waveform preamble sent from them. The desired source is selected using the WAVeform:SOURce command.

 Preamble Data: The values set in the preamble are determined when the DIGitize command is executed. The Preamble values are based on the settings of variables in the ACQuire subsystem. Although the preamble values can be changed with a controller, the way the data was acquired cannot be changed. Changing the preamble values cannot change the type of data that was actually acquired, the number of points actually acquired, etc. Therefore, extreme caution must be used when changing any waveform preamble values to ensure the data will still be useful. For example, setting POINts in the preamble to a value different from the actual number of points in the waveform will result in inaccurate data.

- **Waveform Preamble Returned Format:** The returned information can be read into a numeric string or an array. The format of the waveform preamble is explained in the WAVeform:PREamble command.

- **Waveform Data:** The preamble should be read before the waveform data.

- **Related Commands:** WAVeform:SOURce.
:SOURCE

WAVeform:SOURce `<source>` is used to select the source used for all the WAVeform subsystem commands.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>source</code></td>
<td>discrete</td>
<td>CHANnel (n=1 to 4)</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WMEMory (n=1 to 4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FUNCTION (n=1 to 2)</td>
<td></td>
</tr>
</tbody>
</table>

Example

Set waveform source to waveform memory 3

The following example illustrates the use of the WAVeform:SOURce command only. Chapter 3 contains an example on performing a complete digitizing operation.

```
WAV:SOUR WMEM3 Source to waveform memory 3
```

Comments

- **Selecting Source:** When the instrument receives information (data or preamble commands) from the bus, source specifies the location where the data will be stored. When the instrument sends information (data or preamble queries) to the bus, source specifies the location where the data currently resides.

When specifying the source, use the following guidelines:

- **ENVelope mode** requires Waveform Memory pairs (WMEM1 and 3, or WMEM 2 and 4) to transfer data. Specify WMEMory1 for WMEM1 and 3, or WMEMory2 for WMEM2 and 4. The data is transferred as two arrays. For example, if WMEM1 is specified as the source, the first array is transferred into WMEMory 1 and the second array is transferred into WMEMory 3. The data type is then changed to normal for each of the waveform memories.

- **NORMal and AVERage modes** are transferred to the selected Waveform Memory (WMEM1, 2, 3, or 4).

 - **RST Condition:** Defaults to CHANnel1.

:SOURce?

WAVeform:SOURce? returns the currently selected source (CHANnel1-4, WMEMory1-4, or FUNCTion1-2) for the waveform subsystem. The data is sent to the output buffer.

Example

Query the current waveform source selection

```
dimension statement String to hold data
WAV:SOUR WMEM3 Source to waveform memory 3
WAV:SOUR? Query instrument to return trigger source setting
enter statement Enter data into computer
```
WAVeform:TYPe?

:TYPe?

WAVeform:TYPe? returns the data type (AVERage, ENVelope, or NORMal) for the previously specified waveform source. The data is sent to the output buffer.

Example

Query acquisition type

```
dimension statement
ACQ:TYP  AVER
WAV:TYP?
```

Comments

- **Selecting Type:** The type of waveform acquisition is selected by the ACQuire:TYPe command.

 Normal: Normal data consists of the last data point (hit) in each time bucket. This data is transmitted over the bus in a sequential fashion starting with time bucket 0 and going through time bucket \(n-1 \), where \(n \) is the number returned by the WAVeform:POINts? query. Time buckets that don't have data in them return \(-1\). Only the magnitude values of each data point are transmitted, the time values correspond to the position in the data array. The first voltage value corresponds to the first time bucket on the left of the active waveform and the last value corresponds to the next to last time bucket on the right of the active waveform.

 Average: Average data consists of the average of the first \(n \) hits in a time bucket, where \(n \) is the value returned by the ACQuire:COUNT? query. Time buckets that have fewer than \(n \) hits return the average of what data they do have. If the ACQuire:COMPLETE parameter is set to 100\%, then each time bucket must contain the number of data hits specified with the ACQuire:COUNT command. Again, if a time bucket doesn't have any data in it, it will return \(-1\). This data is transmitted over the bus in linear fashion starting with time bucket 0 and proceeding through time bucket \(n-1 \), where \(n \) is the number returned by the WAVeform:POINts? query. The first value corresponds to a point at the left of the active waveform and the last value is one point away from the right of the active waveform.

 Envelope: Envelope data consists of two arrays of data, one containing the minimum of the first \(n \) hits in each time bucket and the other containing the maximum of the first \(n \) hits in each time bucket, where \(n \) is the value returned by the ACQuire:COUNT? query. If a time bucket does not have any hits in it, then \(-1\) is returned for both the minimum and maximum values. The two arrays are transmitted one at a time over the bus linearly, starting with time bucket 0 (on the left of the active waveform) and proceeding through time bucket \(n-1 \), where \(n \) is the value returned by the WAVeform:POINts? query. The array with the minimum values is sent first. The first value of each array corresponds to the data point on the left of the active waveform. The last value is one data point away from the right of the active waveform.

- **Related Commands:** ACQuire:TYPe, WAVeform:SOURce.

COMP Command Reference 4-207
:XINCrement?

WAVeform:XINCrement? returns the time difference between consecutive data points. Query returns x-increment value currently in the preamble (WAVeform:PREamble?) for the current specified source set using the WAVeform:SOURce command. The value is sent to the output buffer.

Example

Query preamble for data point time increments

dimension statement String to hold data
WAV:XINC? Query instrument to return x-increment value
enter statement Enter data into computer

Comments

• Data Points: Current data points are returned using the WAVeform:POINts? query.

• Data Type: Current data type returned using the WAVeform:TYPE? query.

• Related Commands: WAVeform:POINts?, TYPE?, PREamble?, SOURce.

:XORigin?

WAVeform:XORigin? returns the time of the first data point in the memory with respect to the trigger point. Query returns x-origin data currently in the preamble (WAVeform:PREamble?) for the current specified source set using the WAVeform:SOURce command. The value is sent to the output buffer.

Example

Query preamble for first data point time

dimension statement String to hold data
WAV:XOR? Query instrument to return x-origin value
enter statement Enter data into computer

Comments

• Related Commands: WAVeform:POINts, PREamble?, SOURce.

:XREFERENCE?

WAVeform:XREFERENCE? always returns 0. Represents the specific data point associated with the XORigin data value. Query returns x-reference data currently in the preamble (WAVeform:PREamble?) for the current specified source set using the WAVeform:SOURce command. The value is sent to the output buffer.

Example

Query preamble for reference data point

dimension statement String to hold data
WAV:XREF? Query instrument to return x-reference value
enter statement Enter data into computer

Comments

• Related Commands: WAVeform:XORigin?, PREamble?, SOURce.
:YINCrement?

WAVform:YINCrement? returns the voltage difference between consecutive data points. Query returns y-increment value currently in the preamble (WAVform:PREamble?) for the current specified source set using the WAVform:SOURce command. The value is sent to the output buffer.

Example

Query preamble for data point voltage increments

dimension statement String to hold data
WAV:YINC? Query instrument to return y-increment value
enter statement Enter data into computer

Comments

• Data Points: Current data points are returned using the WAVform:POINts? query.
• Related Commands: WAVform:POINts?, TYPE?, PREamble?, SOURce.

:YORigin?

WAVform:YORigin? returns the voltage at center range. Query returns y-origin data currently in the preamble (WAVform:PREamble?) for the current specified source set using the WAVform:SOURce command. The value is sent to the output buffer.

Example

Query preamble for center range voltage

dimension statement String to hold data
WAV:YOR? Query instrument to return y-origin value
enter statement Enter data into computer

Comments

• Related Commands: WAVform:POINts?, PREamble?, SOURce.

:YREFerence?

WAVform:YREFerence? returns the specific data point associated with the YORigin data value. Query returns y-reference data currently in the preamble (WAVform:PREamble?) for the current specified source set using the WAVform:SOURce command. The value is sent to the output buffer.

Example

Query preamble for reference data point

dimension statement String to hold data
WAV:YREF? Query instrument to return y-reference value
enter statement Enter data into computer

Comments

• Related Commands: WAVform:YORigin?, PREamble?, SOURce.
Command Cross Reference to SCPI Commands

The following table is provided as a quick cross reference of all applicable Hewlett-Packard 54503A Compatible Language (COMP) commands to the similar Standard Commands for Programmable Instruments (SCPI) commands.

<table>
<thead>
<tr>
<th>COMP Command</th>
<th>SCPI Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACQuire</td>
<td>[SENSe]:SWEep:POInts:COMComplete</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>:COMPLETE</td>
<td>[SENSe]:SWEep:POInts:COMComplete?</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>:COUNT</td>
<td>[SENSe]:AVerAge:COUNt</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>:COUNT?</td>
<td>[SENSe]:AVerAge:COUNt?</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>:POInts</td>
<td>[SENSe]:SWEep:POInts</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>:POInts?</td>
<td>[SENSe]:SWEep:POInts</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>:TYPEP</td>
<td>[SENSe]:AVerAge:[STATe] and [SENSe]:AVerAge:TYPE</td>
<td>In SCPI, average is set by state, scalar (normal) and envelope set by turning average state off, then selecting type. See TYPEP for explanation.</td>
</tr>
<tr>
<td>:TYPEP?</td>
<td>[SENSe]:AVerAge:[STATe]? and [SENSe]:AVerAge:TYPE?</td>
<td></td>
</tr>
<tr>
<td>CALibrate</td>
<td>CALibration</td>
<td>The Compatible CALibrate and the SCPI CALibration subsystems operate the same in both languages.</td>
</tr>
<tr>
<td>CHANNel<n></td>
<td>[SENSe]:INPut<n>:COUPling and [SENSe]:INPut<n>:IMPedance</td>
<td>In SCPI, coupling and impedance must be selected separately.</td>
</tr>
<tr>
<td>:COUPling</td>
<td>[SENSe]:INPut<n>:COUPling and [SENSe]:INPut<n>:IMPedance?</td>
<td>In SCPI, coupling and impedance must be queried separately.</td>
</tr>
<tr>
<td>:COUPling?</td>
<td>[SENSe]:INPut<n>:COUPling? and [SENSe]:INPut<n>:IMPedance?</td>
<td></td>
</tr>
<tr>
<td>:HFRejct</td>
<td>[SENSe]:INPut<n>:FIlt:LPAss[:STATe]</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>:HFRejct?</td>
<td>[SENSe]:INPut<n>:FIlt:LPAss[:STATe]?</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>:LFRejct</td>
<td>[SENSe]:INPut<n>:FIlt:HPAss[:STATe]</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>:LFRejct?</td>
<td>[SENSe]:INPut<n>:FIlt:HPAss[:STATe]?</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>:OFFSet</td>
<td>[SENSe]:VOLtage<n>:RANGe:OFFSet</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>:OFFSet?</td>
<td>[SENSe]:VOLtage<n>:RANGe:OFFSet?</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>:PROBe</td>
<td>[SENSe]:CORRection<n>:AFACtor</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>:PROBe?</td>
<td>[SENSe]:CORRection<n>:AFACtor?</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>:RANGe</td>
<td>[SENSe]:VOLtage<n>:RANGe[:PTPeak]</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>:RANGe?</td>
<td>[SENSe]:VOLtage<n>:RANGe[:PTPeak]</td>
<td></td>
</tr>
<tr>
<td>DISPLAY</td>
<td>TRACe[:DATA]</td>
<td>In SCPI, specify pixel memory 1-2 as the destination, and the display data is the source. In SCPI, specify where the data is located (pixel memory 0-2) as the source.</td>
</tr>
<tr>
<td>:DATa</td>
<td>TRACe[:DATA]?</td>
<td></td>
</tr>
<tr>
<td>:DATa?</td>
<td>TRACe[:DATA]?</td>
<td></td>
</tr>
<tr>
<td>FUNCTION<n></td>
<td>CALculate:MATh<n>[:EXPRession]</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>:ADD</td>
<td>CALculate:MATh<n>[:EXPRession]</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>:MULTIpy</td>
<td>CALculate:MATh<n>[:EXPRision]</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>:SUBTract</td>
<td>CALculate:MATh<n>[:EXPRision]</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>COMP Command</td>
<td>SCPI Title</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>MEASure :DUTycle?</td>
<td>MEASure[:SCALar]:VOLTage:DCYcle [reference] [(@)]</td>
<td>Command operates the same in both languages, except source and the reference are specified with the command in SCPI. In COMP, the SOURce, UPPer, and LOWer commands are used.</td>
</tr>
<tr>
<td>:FALLtime?</td>
<td>MEASure[:SCALar]:VOLTage: FALL:TIME [limits] [(@)] and FTIMe [limits] [(@)]</td>
<td>Commands operate the same in both languages, except source and the upper and lower thresholds are specified with the command in SCPI. In COMP, the SOURce, UPPer, and LOWer commands are used.</td>
</tr>
<tr>
<td>:FREQuency?</td>
<td>MEASure[:SCALar]:VOLTage: FREQuency [(@)]</td>
<td>Command operates the same in both languages, except source is specified with the command in SCPI, and using the SOURce command in COMP.</td>
</tr>
<tr>
<td>:NWIDth?</td>
<td>MEASure[:SCALar]:VOLTage:NWIDth [reference] [(@)]</td>
<td>Command operates the same in both languages, except source and the reference are specified with the command in SCPI. In COMP, the SOURce, UPPer, and LOWer commands are used.</td>
</tr>
<tr>
<td>:OVERshoot?</td>
<td>MEASure[:SCALar]:VOLTage: FALL:OVERshoot [(@)] and RISE:OVERshoot [(@)]</td>
<td>Commands operate the same in both languages, except source is specified with the command in SCPI, and using the SOURce command in COMP.</td>
</tr>
<tr>
<td>:PERiod?</td>
<td>MEASure[:SCALar]:VOLTage:PERiod [(@)]</td>
<td>Command operates the same in both languages, except source is specified with the command in SCPI, and using the SOURce command in COMP.</td>
</tr>
<tr>
<td>:PREshoot?</td>
<td>MEASure[:SCALar]:VOLTage: FALL:PREShoot [(@)] and RISE:PREShoot [(@)]</td>
<td>Commands operate the same in both languages, except source is specified with the command in SCPI, and using the SOURce command in COMP.</td>
</tr>
<tr>
<td>:PWIDth?</td>
<td>MEASure[:SCALar]:VOLTage:PWIDth [reference] [(@)]</td>
<td>Command operates the same in both languages, except source and the reference are specified with the command in SCPI. In COMP, the SOURce, UPPer, and LOWer commands are used.</td>
</tr>
<tr>
<td>:RISEtime?</td>
<td>MEASure[:SCALar]:VOLTage: RISE:TIME [limits] [(@)] and RTIME [limits] [(@)]</td>
<td>Commands operate the same in both languages, except source and the upper and lower thresholds are specified with the command in SCPI. In COMP, the SOURce, UPPer, and LOWer commands are used.</td>
</tr>
<tr>
<td>:TMAX?</td>
<td>MEASure[:SCALar]:VOLTage: TMAXimum [(@)]</td>
<td>Command operates the same in both languages, except source is specified with the command in SCPI, and using the SOURce command in COMP.</td>
</tr>
<tr>
<td>:TMIN?</td>
<td>MEASure[:SCALar]:VOLTage: TMINimum [(@)]</td>
<td>Command operates the same in both languages, except source is specified with the command in SCPI, and using the SOURce command in COMP.</td>
</tr>
<tr>
<td>:VACrms?</td>
<td>MEASure[:SCALar]:VOLTage:AC [(@)]</td>
<td>Command operates the same in both languages, except source is specified with the command in SCPI, and using the SOURce command in COMP.</td>
</tr>
</tbody>
</table>
Command Cross Reference to SCPI Commands — Continued

<table>
<thead>
<tr>
<th>COMP Command</th>
<th>SCPI Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEASure :VAMPitude?</td>
<td>MEASure[:SCAlar]:VOLTage:AMPLitude [@]</td>
<td>Command operates the same in both languages, except source is specified with the command in SCPI, and using the SOURce command in COMP.</td>
</tr>
<tr>
<td>MEASure :VAVerage?</td>
<td>MEASure[:SCAlar]:VOLTage:[DC] [@]</td>
<td>Command operates the same in both languages, except source is specified with the command in SCPI, and using the SOURce command in COMP.</td>
</tr>
<tr>
<td>MEASure :VBASE?</td>
<td>MEASure[:SCAlar]:VOLTage:LOW [@]</td>
<td>Command operates the same in both languages, except source is specified with the command in SCPI, and using the SOURce command in COMP.</td>
</tr>
<tr>
<td>MEASure :VMAX?</td>
<td>MEASure[:SCAlar]:VOLTage:MAXimum [@]</td>
<td>Command operates the same in both languages, except source is specified with the command in SCPI, and using the SOURce command in COMP.</td>
</tr>
<tr>
<td>MEASure :VMIN?</td>
<td>MEASure[:SCAlar]:VOLTage:MINimum [@]</td>
<td>Command operates the same in both languages, except source is specified with the command in SCPI, and using the SOURce command in COMP.</td>
</tr>
<tr>
<td>MEASure :VRMS?</td>
<td>MEASure[:SCAlar]:VOLTage:AC [@]</td>
<td>Command operates the same in both languages, except source is specified with the command in SCPI, and using the SOURce command in COMP.</td>
</tr>
<tr>
<td>MEASure :VTOP?</td>
<td>MEASure[:SCAlar]:VOLTage:HIGH [@]</td>
<td>Command operates the same in both languages, except source is specified with the command in SCPI, and using the SOURce command in COMP.</td>
</tr>
<tr>
<td>OUTPut</td>
<td>OUTPut</td>
<td>The Compatible SCPI OUTPut subsystems operate the same in both languages.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Root Commands</th>
<th>SCPI Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUToscale</td>
<td>SYSTem:AUToscale</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>BLANk</td>
<td>[SENSe:]INPut<n>[:STATe] OFF</td>
<td>Compatible command allows channels, functions, and memories to be turned off. SCPI only allows inputs to be turned off.</td>
</tr>
<tr>
<td>DIGitize</td>
<td>INITiate[:IMMediate]</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>ERASe</td>
<td>TRACe[:DATA]</td>
<td>In SCPI, specify pixel memory being erased as the destination, and "0" as the source.</td>
</tr>
<tr>
<td>MERGe</td>
<td>TRACe[:DATA]</td>
<td>In SCPI, specify pixel memory being merged as the destination, and "PMEM0" as the source.</td>
</tr>
<tr>
<td>RUN</td>
<td>INITiate:CONTInuous ON</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>SERial</td>
<td>SYSTem:SERial</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>STATus?</td>
<td>[SENSe:]INPut<n>[:STATe]?</td>
<td>Compatible command allows channels, functions, and memories to be turned queried. SCPI only allows inputs to be queried.</td>
</tr>
<tr>
<td>STOP</td>
<td>ABORt</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>STORe</td>
<td>TRACe[:DATA]</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>TER?</td>
<td>STATus:OPERation[:EVENT]?</td>
<td>In SCPI, bit 8 is triggered bit.</td>
</tr>
<tr>
<td>VIEW</td>
<td>[SENSe:]INPut<n>[:STATe] ON</td>
<td>Compatible command allows channels, functions, and memories to be turned on. SCPI only allows inputs to be turned on.</td>
</tr>
<tr>
<td>COMP Command</td>
<td>SCPI Title</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------</td>
<td>---</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>STATus</td>
<td>The Compatible SUM mary and the SCPI STAT us subsystems operate the same in both languages.</td>
</tr>
<tr>
<td>SYSTem</td>
<td>SYSTem:ERRor?</td>
<td>Compatible command allows message to be blanked. SCPI always returns number and message.</td>
</tr>
<tr>
<td>:ERRor?</td>
<td>SYSTem:LANGuage</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>:LANGuage</td>
<td>SYSTem:LANGuage?</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>:SETup</td>
<td>SYSTem:SET</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>:SETup?</td>
<td>SYSTem:SET?</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>TEST</td>
<td>TEST</td>
<td>The Compatible SCPI TEST subsystems operate the same in both languages.</td>
</tr>
<tr>
<td>TIMebase</td>
<td>[SENSe:]SWEep:TIME:DElay</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>:DElay?</td>
<td>[SENSe:]SWEep:TIME:RANGE</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>:RANGE</td>
<td>[SENSe:]SWEep:TIME:RANGE?</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>:RANGE?</td>
<td>[SENSe:]SWEep:TIME:DElay:LINK</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>TRIGger</td>
<td>TRIGger:ECOunt</td>
<td>In SCPI, holdoff is defined by events only (not time).</td>
</tr>
<tr>
<td>:HOLDoff</td>
<td>TRIGger:ECOunt?</td>
<td>In SCPI, holdoff is defined by events only (not time).</td>
</tr>
<tr>
<td>:HOLDoff?</td>
<td>TRIGger:LEVEL</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>:LEVEL</td>
<td>TRIGger:LEVEL?</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>:LEVEL?</td>
<td>TRIGger:LEVEL?</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>:SENSitivity</td>
<td>TRIGger:HYSTeresis</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>:SENSitivity?</td>
<td>TRIGger:HYSTeresis?</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>:SLOPe</td>
<td>TRIGger:SLOPe</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>:SLOPe?</td>
<td>TRIGger:SLOPe?</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>:SOURce</td>
<td>TRIGger:SOURce</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>:SOURce?</td>
<td>TRIGger:SOURce?</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>WAVEform</td>
<td>TRACe[:DATA]</td>
<td>In SCPI, the waveform memory (1-4) is specified as the destination, and the waveform data is the source.</td>
</tr>
<tr>
<td>DATa?</td>
<td>TRACe[:DATA]?</td>
<td>In SCPI, the input1-4, math1-2, or waveform memory (1-4) is specified as the source.</td>
</tr>
<tr>
<td>FORMat</td>
<td>FORMat[:DATA] INTeger,[8][16]</td>
<td>In SCPI, INTeger 8 is byte and 16 is returned for word.</td>
</tr>
<tr>
<td>FORMat?</td>
<td>FORMat[:DATA]?</td>
<td>In SCPI, 8 is returned for byte and 16 is word.</td>
</tr>
<tr>
<td>POINTs?</td>
<td>TRACe:POINTs?</td>
<td>Compressed is not available in SCPI.</td>
</tr>
<tr>
<td>PREamble</td>
<td>TRACe:PREamble</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>PREamble?</td>
<td>TRACe:PREamble?</td>
<td>Command operates the same in both languages.</td>
</tr>
</tbody>
</table>
Command Cross Reference to HP 54503A Commands

The following table is provided as a quick cross reference of all Hewlett-Packard 54503A commands that are not supported in the HP E1426A COMPatible programming language. Any command not listed is fully functional on both the HP 54503A and the HP E1426A.

<table>
<thead>
<tr>
<th>HP 54503A Command</th>
<th>COMP Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Commands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*IST?</td>
<td>None</td>
<td>Not supported by COMP.</td>
</tr>
<tr>
<td>*OPT?</td>
<td>None</td>
<td>Not supported by COMP.</td>
</tr>
<tr>
<td>*PRE</td>
<td>None</td>
<td>Not supported by COMP.</td>
</tr>
<tr>
<td>*PRE?</td>
<td>None</td>
<td>Not supported by COMP.</td>
</tr>
<tr>
<td>Root Commands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEEPer</td>
<td>None</td>
<td>Not supported by COMP.</td>
</tr>
<tr>
<td>BEEPer?</td>
<td>None</td>
<td>Not supported by COMP.</td>
</tr>
<tr>
<td>EOI</td>
<td>None</td>
<td>Not supported by COMP.</td>
</tr>
<tr>
<td>EOI?</td>
<td>None</td>
<td>Not supported by COMP.</td>
</tr>
<tr>
<td>LER?</td>
<td>None</td>
<td>Not supported by COMP.</td>
</tr>
<tr>
<td>MENu</td>
<td>None</td>
<td>Not supported by COMP.</td>
</tr>
<tr>
<td>MENu?</td>
<td>None</td>
<td>Not supported by COMP.</td>
</tr>
<tr>
<td>PLOT?</td>
<td>None</td>
<td>Not supported by COMP.</td>
</tr>
<tr>
<td>PRIN?</td>
<td>None</td>
<td>Not supported by COMP.</td>
</tr>
<tr>
<td>SYSTEM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSP</td>
<td>None</td>
<td>Not supported by COMP.</td>
</tr>
<tr>
<td>DSP?</td>
<td>None</td>
<td>Not supported by COMP.</td>
</tr>
<tr>
<td>KEY</td>
<td>None</td>
<td>Not supported by COMP.</td>
</tr>
<tr>
<td>KEY?</td>
<td>None</td>
<td>Not supported by COMP.</td>
</tr>
<tr>
<td>DISPLAY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COLUMN</td>
<td>None</td>
<td>Not supported by COMP.</td>
</tr>
<tr>
<td>COLUMN?</td>
<td>None</td>
<td>Not supported by COMP.</td>
</tr>
<tr>
<td>CONNECT</td>
<td>None</td>
<td>Not supported by COMP.</td>
</tr>
<tr>
<td>CONNECT?</td>
<td>None</td>
<td>Not supported by COMP.</td>
</tr>
<tr>
<td>FORMAT</td>
<td>None</td>
<td>Not supported by COMP.</td>
</tr>
<tr>
<td>FORMAT?</td>
<td>None</td>
<td>Not supported by COMP.</td>
</tr>
<tr>
<td>GRATICule</td>
<td>None</td>
<td>Not supported by COMP.</td>
</tr>
<tr>
<td>GRATICule?</td>
<td>None</td>
<td>Not supported by COMP.</td>
</tr>
<tr>
<td>INVERSE</td>
<td>None</td>
<td>Not supported by COMP.</td>
</tr>
<tr>
<td>INVERSE?</td>
<td>None</td>
<td>Not supported by COMP.</td>
</tr>
<tr>
<td>LINE</td>
<td>None</td>
<td>Not supported by COMP.</td>
</tr>
<tr>
<td>MASK</td>
<td>None</td>
<td>Not supported by COMP.</td>
</tr>
<tr>
<td>MASK?</td>
<td>None</td>
<td>Not supported by COMP.</td>
</tr>
<tr>
<td>PERSistence</td>
<td>PERSistence</td>
<td>Compatible only supports INFinite and SINGle.</td>
</tr>
<tr>
<td>ROW</td>
<td>None</td>
<td>Not supported by COMP.</td>
</tr>
<tr>
<td>ROW?</td>
<td>None</td>
<td>Not supported by COMP.</td>
</tr>
<tr>
<td>SCREEN</td>
<td>None</td>
<td>Not supported by COMP.</td>
</tr>
<tr>
<td>SCREEN?</td>
<td>None</td>
<td>Not supported by COMP.</td>
</tr>
<tr>
<td>STRING</td>
<td>None</td>
<td>Not supported by COMP.</td>
</tr>
</tbody>
</table>
Command Cross Reference to HP 54503A Commands—Continued

Any command not listed is fully functional on both the HP 54503A and the HP E1426A.

<table>
<thead>
<tr>
<th>HP 54503A Command</th>
<th>COMP Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISPLAY TEXT</td>
<td>None</td>
<td>Not supported by COMP.</td>
</tr>
<tr>
<td>TMARker</td>
<td>None</td>
<td>Not supported by COMP.</td>
</tr>
<tr>
<td>TMARker?</td>
<td>None</td>
<td>Not supported by COMP.</td>
</tr>
<tr>
<td>VMARker</td>
<td>None</td>
<td>Not supported by COMP.</td>
</tr>
<tr>
<td>VMARker?</td>
<td>None</td>
<td>Not supported by COMP.</td>
</tr>
<tr>
<td>FUNCTION VERSus</td>
<td>None</td>
<td>Not supported by COMP.</td>
</tr>
<tr>
<td>HARDcopy LENGTH</td>
<td>None</td>
<td>Not supported by COMP.</td>
</tr>
<tr>
<td>HARDcopy LENGTH?</td>
<td>None</td>
<td>Not supported by COMP.</td>
</tr>
<tr>
<td>HARDcopy PAGE</td>
<td>None</td>
<td>Not supported by COMP.</td>
</tr>
<tr>
<td>HARDcopy PAGE?</td>
<td>None</td>
<td>Not supported by COMP.</td>
</tr>
<tr>
<td>TRIGGER SOURce</td>
<td>SOURce</td>
<td>COMP supports TTLTrg0-7 and ECLTrg0-2 backplane trigger bus lines.</td>
</tr>
<tr>
<td>WAVEform DATa</td>
<td>DATa</td>
<td>COMP does not support ASCII data.</td>
</tr>
<tr>
<td>WAVEform FORMat</td>
<td>FORMat</td>
<td>COMP does not support ASCII format.</td>
</tr>
<tr>
<td>WAVEform SOURce</td>
<td>SOURce</td>
<td>COMP supports FUNCTION1-2.</td>
</tr>
</tbody>
</table>
The following table lists the IEEE 488.2 Common (*) Commands that can be executed by the Oscilloscope module. The operation of some of these commands is described in Chapter 3 of this manual. For more information on Common Commands, refer to the HP 54503A Programming Guide or the ANSI/IEEE Standard 488.2-1987.

<table>
<thead>
<tr>
<th>Command</th>
<th>Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*CLS</td>
<td>Clear status register</td>
<td>Clears all Event Registers, the Request for OPC flag, and all Queues (except output queue).</td>
</tr>
<tr>
<td>*ESE <mask></td>
<td>Event status enable</td>
<td>Used to set the bits in the Event Status Enable Register.</td>
</tr>
<tr>
<td>*ESE?</td>
<td>Event status enable query</td>
<td>Queries the current contents in the Event Status Enable Register.</td>
</tr>
<tr>
<td>*ESR?</td>
<td>Event status register query</td>
<td>Queries and clears contents in the Standard Event Status Register.</td>
</tr>
<tr>
<td>*IDN?</td>
<td>Identification query</td>
<td>Returns identification string of the Oscilloscope.</td>
</tr>
<tr>
<td>*LRN?</td>
<td>Learn query</td>
<td>Returns a string that contains the current Oscilloscope setup.</td>
</tr>
<tr>
<td>*OPC</td>
<td>Operation complete</td>
<td>Sets the Request for OPC flag when all pending operations have completed. Also sets OPC bit in the Event Status register. Returns a 1 to the output queue when all pending operations have been completed.</td>
</tr>
<tr>
<td>*OPC?</td>
<td>Operation complete query</td>
<td></td>
</tr>
<tr>
<td>*RCL <n></td>
<td>Recall saved state</td>
<td>Recalls previously stored Oscilloscope Module configuration. <n> (1 to 4) is the location in memory where the desired (previously stored) set-up is located.</td>
</tr>
<tr>
<td>*RST</td>
<td>Reset</td>
<td>Resets the Oscilloscope hardware and firmware to a specific state (refer to Table 3-4 for a list of reset conditions).</td>
</tr>
<tr>
<td>*SAV <n></td>
<td>Save state</td>
<td>Stores the present Oscilloscope Module configuration in memory. Stores all Oscilloscope and Measurement Set-up parameters. <n> (1 to 4) is the location in memory where the current set-up is to be stored.</td>
</tr>
<tr>
<td>*SRE <mask></td>
<td>Service request enable</td>
<td>Used to set the Service Request Enable Register bits to generate a service request.</td>
</tr>
<tr>
<td>*SRE?</td>
<td>Service request enable query</td>
<td>Queries the current contents in the Service Request Enable Register.</td>
</tr>
<tr>
<td>*STB?</td>
<td>Read status byte query</td>
<td>Queries the current contents in the Status Byte Register.</td>
</tr>
<tr>
<td>*TRG?</td>
<td>Trigger</td>
<td>Used to generate a trigger event.</td>
</tr>
<tr>
<td>*TST?</td>
<td>Self-Test query</td>
<td>Returns 0 unless self test fails. Disconnect all inputs prior to performing self tests.</td>
</tr>
<tr>
<td>*WAI</td>
<td>Wait to Continue</td>
<td>Halts execution of commands and queries until the No Operation Pending message is true.</td>
</tr>
</tbody>
</table>
The following tables summarize Hewlett-Packard 54503A Compatible Language (COMP) commands and IEEE 488.2 Common (*) commands for the HP E1426A Oscilloscope module.

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>Command/Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACQuire</td>
<td>:COMPlete <complete></td>
<td>Enters the completion criteria for data acquisition.</td>
</tr>
<tr>
<td></td>
<td>:COMPlete?</td>
<td>Returns the current acquisition complete value.</td>
</tr>
<tr>
<td></td>
<td>:COUNT <count></td>
<td>Enters the count for average data acquisition mode.</td>
</tr>
<tr>
<td></td>
<td>:COUNT?</td>
<td>Returns the current acquisition count value.</td>
</tr>
<tr>
<td></td>
<td>:POINTs <points></td>
<td>Selects the number of time buckets for data acquisition.</td>
</tr>
<tr>
<td></td>
<td>:POINTs?</td>
<td>Returns the current points value.</td>
</tr>
<tr>
<td></td>
<td>:TYPE <mode></td>
<td>Selects the type of acquisition that will occur (average, normal, or envelope).</td>
</tr>
<tr>
<td></td>
<td>:TYPE?</td>
<td>Returns the acquisition type currently selected.</td>
</tr>
<tr>
<td>CALibrate</td>
<td>:PCALibration</td>
<td>Probe calibration related commands.</td>
</tr>
<tr>
<td></td>
<td>:ATTenuation</td>
<td>Probe attenuation calibration related commands.</td>
</tr>
<tr>
<td></td>
<td>:BCALibration</td>
<td>Performs an attenuation calibration.</td>
</tr>
<tr>
<td></td>
<td>:CHANnel<number></td>
<td>Selects the channel (1-4) for the attenuation calibration.</td>
</tr>
<tr>
<td></td>
<td>:TNULi:CH1TO<number>,<time></td>
<td>Enters a time null value for a specified channel pair (1-2, 1-3, 1-4).</td>
</tr>
<tr>
<td></td>
<td>:REPort? <channel></td>
<td>Returns a report of calibration results for the channel specified.</td>
</tr>
<tr>
<td></td>
<td>:SCALibration</td>
<td>Self calibration related commands.</td>
</tr>
<tr>
<td></td>
<td>:BCALibration</td>
<td>Performs a configured calibration, or loads default data.</td>
</tr>
<tr>
<td></td>
<td>:DCALibration</td>
<td>Reads the default calibration data.</td>
</tr>
<tr>
<td></td>
<td>:DElay <channel></td>
<td>Configures a delay calibration on the channel specified (1-4).</td>
</tr>
<tr>
<td></td>
<td>:DOUTput <level></td>
<td>Sets the DC Calibrator output to 0 volts or 5 volts.</td>
</tr>
<tr>
<td></td>
<td>:LTCalibration</td>
<td>Configures for a logic trigger calibration on channel 1.</td>
</tr>
<tr>
<td></td>
<td>:TNULi <channel_skew></td>
<td>Configures for a time null calibration on the channel pair specified (1-2, 1-3, 1-4).</td>
</tr>
<tr>
<td></td>
<td>:VERTical</td>
<td>Configures for a vertical calibration on all channels.</td>
</tr>
<tr>
<td></td>
<td>:TNULi <value1>,<value2>,<value3></td>
<td>Enters time null values for channel pairs 1-2, 1-3, and 1-4.</td>
</tr>
<tr>
<td></td>
<td>:TNULi?</td>
<td>Returns the current time null values for channel pairs 1-2, 1-3, and 1-4.</td>
</tr>
<tr>
<td>CHANnel<number></td>
<td>:COUPling <type></td>
<td>Selects the specified channel's (1-4) coupling and impedance (AC 1MQ, DC 1MQ, or DC 50Q).</td>
</tr>
<tr>
<td></td>
<td>:COUPling?</td>
<td>Returns a specific channel's (1-4) current coupling selection.</td>
</tr>
<tr>
<td></td>
<td>:ECL</td>
<td>Configures the specified channel's (1-4) vertical controls for an ECL measurement.</td>
</tr>
<tr>
<td></td>
<td>:HFReject <mode></td>
<td>Enables or disables the specified channel's (1-4) low-pass filter.</td>
</tr>
<tr>
<td></td>
<td>:HFReject?</td>
<td>Returns a specific channel's (1-4) current low-pass filter state.</td>
</tr>
<tr>
<td></td>
<td>:LFReject <mode></td>
<td>Enables or disables the specified channel's (1-4) high-pass filter.</td>
</tr>
<tr>
<td></td>
<td>:LFReject?</td>
<td>Returns a specific channel's (1-4) current high-pass filter state.</td>
</tr>
<tr>
<td></td>
<td>:OFFSET <value></td>
<td>Enters the specified channel's (1-4) offset.</td>
</tr>
<tr>
<td></td>
<td>:OFFSET?</td>
<td>Returns a specific channel's (1-4) current offset value.</td>
</tr>
<tr>
<td></td>
<td>:PROBe <attenu></td>
<td>Enters the specified channel's (1-4) probe attenuation factor.</td>
</tr>
<tr>
<td></td>
<td>:PROBe?</td>
<td>Returns a specific channel's (1-4) current probe attenuation factor.</td>
</tr>
<tr>
<td></td>
<td>:RANGe <range></td>
<td>Enters the specified channel's (1-4) full scale vertical range.</td>
</tr>
<tr>
<td></td>
<td>:RANGe?</td>
<td>Returns a specific channel's (1-4) current full scale vertical range value.</td>
</tr>
<tr>
<td></td>
<td>:TTL</td>
<td>Configures the specified channel's (1-4) vertical controls for a TTL measurement.</td>
</tr>
</tbody>
</table>
Oscilloscope Module

COMP Commands Quick Reference — Continued

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>Command/Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISPLAY</td>
<td>:DATA <block></td>
<td>Write a binary block of waveform data to pixel memory 1 or 2.</td>
</tr>
<tr>
<td>DISPLAY</td>
<td>:DATA?</td>
<td>Reads a binary block of waveform data from pixel memory 0, 1 or 2.</td>
</tr>
<tr>
<td>DISPLAY</td>
<td>:PERSISTence <period></td>
<td>Selects persistence of infinite or single for pixel memory 0.</td>
</tr>
<tr>
<td>DISPLAY</td>
<td>:PERSISTence?</td>
<td>Returns the persistence currently selected.</td>
</tr>
<tr>
<td>DISPLAY</td>
<td>:SOURCE <source></td>
<td>Selects the source (pixel memory 0-2) for the DATa command and DATa? query.</td>
</tr>
<tr>
<td>DISPLAY</td>
<td>:SOURCE?</td>
<td>Returns the current display source selection.</td>
</tr>
<tr>
<td>FUNCTION<number></td>
<td>:ADD <source>,<source></td>
<td>Adds two specified sources and retains the result in the function number specified.</td>
</tr>
<tr>
<td>FUNCTION<number></td>
<td>:INVert <source></td>
<td>Inverts the specified source and retains the result in the function number specified.</td>
</tr>
<tr>
<td>FUNCTION<number></td>
<td>:MULTIply <source>,<source></td>
<td>Multiplies two specified sources and retains the result in the function number specified.</td>
</tr>
<tr>
<td>FUNCTION<number></td>
<td>:OFFSET <value></td>
<td>Enters the specified function's (1-2) offset.</td>
</tr>
<tr>
<td>FUNCTION<number></td>
<td>:OFFSET?</td>
<td>Returns the specified function's (1-2) current offset value.</td>
</tr>
<tr>
<td>FUNCTION<number></td>
<td>:ONLY <source></td>
<td>Duplicates the specified source and retains the result in the function number specified.</td>
</tr>
<tr>
<td>FUNCTION<number></td>
<td>:RANGE <range></td>
<td>Enters the specified function's (1-2) full scale vertical range.</td>
</tr>
<tr>
<td>FUNCTION<number></td>
<td>:RANGE?</td>
<td>Returns a specific function's (1-2) current range value.</td>
</tr>
<tr>
<td>FUNCTION<number></td>
<td>:SUBTRACT <source>,<source></td>
<td>Subtracts two specified sources and retains the result in the function number specified.</td>
</tr>
<tr>
<td>MEASURE</td>
<td>:ALL?</td>
<td>Measures all parameters and returns results.</td>
</tr>
<tr>
<td>MEASURE</td>
<td>:COMPARE <measurement>,<upper_limit>,<lower_limit></td>
<td>Selects the measurement and limits for a limit test.</td>
</tr>
<tr>
<td>MEASURE</td>
<td>:COMPARE?</td>
<td>Returns the current compare selection.</td>
</tr>
<tr>
<td>MEASURE</td>
<td>:CURSOR <type></td>
<td>Returns time and voltage values of a specific marker (delta, start, or stop).</td>
</tr>
<tr>
<td>MEASURE</td>
<td>:DEFINE <measure_spec></td>
<td>Enters user defined definitions and thresholds.</td>
</tr>
<tr>
<td>MEASURE</td>
<td>:DEFINE? <measure_spec></td>
<td>Returns the user defined definitions and thresholds currently selected.</td>
</tr>
<tr>
<td>MEASURE</td>
<td>:DELAY</td>
<td>Starts a continuous delay measurement. Results are not returned.</td>
</tr>
<tr>
<td>MEASURE</td>
<td>:DELAY?</td>
<td>Measures delay and returns results.</td>
</tr>
<tr>
<td>MEASURE</td>
<td>:DESTINATION <location></td>
<td>Selects the destination (memory) for a limit test violation.</td>
</tr>
<tr>
<td>MEASURE</td>
<td>:DESTINATION?</td>
<td>Returns the destination currently selected.</td>
</tr>
<tr>
<td>MEASURE</td>
<td>:DUTycycle</td>
<td>Starts a continuous duty cycle measurement. Results are not returned.</td>
</tr>
<tr>
<td>MEASURE</td>
<td>:DUTycycle?</td>
<td>Measures duty cycle and returns results.</td>
</tr>
<tr>
<td>MEASURE</td>
<td>:ESTArt <edge></td>
<td>Positions the edge start marker on a specific rising or falling edge.</td>
</tr>
<tr>
<td>MEASURE</td>
<td>:ESTArt?</td>
<td>Returns the current start edge marker position.</td>
</tr>
<tr>
<td>MEASURE</td>
<td>:ESTOp <edge></td>
<td>Positions the edge stop marker on a specific rising or falling edge.</td>
</tr>
<tr>
<td>MEASURE</td>
<td>:ESTOp?</td>
<td>Returns the current start edge marker position.</td>
</tr>
<tr>
<td>MEASURE</td>
<td>:FALLtime</td>
<td>Starts a continuous fall time measurement. Results are not returned.</td>
</tr>
<tr>
<td>MEASURE</td>
<td>:FALLtime?</td>
<td>Measures fall time and returns results.</td>
</tr>
<tr>
<td>MEASURE</td>
<td>:FREQuency</td>
<td>Starts a continuous frequency measurement. Results are not returned.</td>
</tr>
<tr>
<td>MEASURE</td>
<td>:FREQuency?</td>
<td>Measures frequency and returns results.</td>
</tr>
<tr>
<td>Subsystem</td>
<td>Command/Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>MEASure</td>
<td>:LIMITest <mode></td>
<td>Turns the limit test on or off.</td>
</tr>
<tr>
<td></td>
<td>:LOWER <value></td>
<td>Enters a user defined lower threshold level.</td>
</tr>
<tr>
<td></td>
<td>:LOWER?</td>
<td>Returns the current lower threshold level.</td>
</tr>
<tr>
<td></td>
<td>:MODE <mode></td>
<td>Selects whether measurements are made using standard IEEE or user defined parameters.</td>
</tr>
<tr>
<td></td>
<td>:MODE?</td>
<td>Returns measurement mode currently selected.</td>
</tr>
<tr>
<td></td>
<td>:NWIDTH</td>
<td>Starts a continuous negative pulse width measurement. Results are not returned.</td>
</tr>
<tr>
<td></td>
<td>:NWIDTH?</td>
<td>Measures negative pulse width and returns results.</td>
</tr>
<tr>
<td></td>
<td>:OVERshoot</td>
<td>Starts a continuous overshoot measurement. Results are not returned.</td>
</tr>
<tr>
<td></td>
<td>:OVERshoot?</td>
<td>Measures negative pulse width and returns results.</td>
</tr>
<tr>
<td></td>
<td>:PERiod</td>
<td>Starts a continuous period measurement. Results are not returned.</td>
</tr>
<tr>
<td></td>
<td>:PERiod?</td>
<td>Measures period and returns results.</td>
</tr>
<tr>
<td></td>
<td>:POSTfailure <mode></td>
<td>Selects what occurs after a limit test violation (continue or stop).</td>
</tr>
<tr>
<td></td>
<td>:POSTfailure?</td>
<td>Returns the current post-failure selection.</td>
</tr>
<tr>
<td></td>
<td>:PRECision <coarse></td>
<td>Not used in the Oscilloscope.</td>
</tr>
<tr>
<td></td>
<td>:PRECision?</td>
<td>Always returns COARse.</td>
</tr>
<tr>
<td></td>
<td>:PRESHoot</td>
<td>Starts a continuous preshoot measurement. Results are not returned.</td>
</tr>
<tr>
<td></td>
<td>:PRESHoot?</td>
<td>Measures preshoot and returns results.</td>
</tr>
<tr>
<td></td>
<td>:PWIDTH</td>
<td>Starts a continuous positive pulse width measurement. Results are not returned.</td>
</tr>
<tr>
<td></td>
<td>:PWIDTH?</td>
<td>Measures positive pulse width and returns results.</td>
</tr>
<tr>
<td></td>
<td>:RESULTS</td>
<td>Returns the contents of the measurement queue (up to eight active measurement results).</td>
</tr>
<tr>
<td></td>
<td>:RISetime</td>
<td>Starts a continuous rise time measurement. Results are not returned.</td>
</tr>
<tr>
<td></td>
<td>:RISetime?</td>
<td>Measures rise time and returns results.</td>
</tr>
<tr>
<td></td>
<td>:SCRatch</td>
<td>Clears the measurement queue of all measurement results.</td>
</tr>
<tr>
<td></td>
<td>:SOURc<source>[.<source>]</td>
<td>Selects the source for all MEASure commands and queries.</td>
</tr>
<tr>
<td></td>
<td>:SOURc?</td>
<td>Second source used only for delay measurements.</td>
</tr>
<tr>
<td></td>
<td>:STATistics <mode></td>
<td>Returns the source(s) currently selected.</td>
</tr>
<tr>
<td></td>
<td>:STATistics?</td>
<td>Enables or disables the statistics mode (minimum, maximum, average, and current measurement results provided).</td>
</tr>
<tr>
<td></td>
<td>:TDELta</td>
<td>Returns the time difference between time start/stop markers.</td>
</tr>
<tr>
<td></td>
<td>:TMAX?</td>
<td>Returns the time that the maximum voltage occurred (referenced to trigger).</td>
</tr>
<tr>
<td></td>
<td>:TMIN?</td>
<td>Returns the time that the minimum voltage occurred (referenced to trigger time).</td>
</tr>
<tr>
<td></td>
<td>:TSTArt <time></td>
<td>Positions the time start marker to a specific time (referenced to trigger time).</td>
</tr>
<tr>
<td></td>
<td>:TSTArt?</td>
<td>Returns the current time start marker value.</td>
</tr>
<tr>
<td></td>
<td>:TSTOp <time></td>
<td>Positions the time stop marker to a specific time (referenced to trigger time).</td>
</tr>
<tr>
<td></td>
<td>:TSTOp?</td>
<td>Returns the current time stop marker value.</td>
</tr>
<tr>
<td></td>
<td>:TVOLT <voltage>,</td>
<td>Returns the time interval between the trigger and a defined occurrence.</td>
</tr>
<tr>
<td></td>
<td><slope><occurrence></td>
<td>Selects the threshold units (volts or percent).</td>
</tr>
<tr>
<td></td>
<td>:UNIt's <unit></td>
<td>Returns the units currently selected.</td>
</tr>
</tbody>
</table>
Oscilloscope Module

COMP Commands Quick Reference — Continued

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>Command/Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEASure</td>
<td>:UPPer <value></td>
<td>Enters a user defined upper threshold level.</td>
</tr>
<tr>
<td></td>
<td>:UPPer?</td>
<td>Returns the current upper threshold level.</td>
</tr>
<tr>
<td></td>
<td>:VACRms</td>
<td>Starts a continuous AC RMS voltage measurement. Results are not returned.</td>
</tr>
<tr>
<td></td>
<td>:VAMplitude?</td>
<td>Measures AC RMS voltage and returns results.</td>
</tr>
<tr>
<td></td>
<td>:VAMplitude?</td>
<td>Starts a continuous amplitude voltage measurement. Results are not returned.</td>
</tr>
<tr>
<td></td>
<td>:VAverage?</td>
<td>Measures amplitude voltage and returns results.</td>
</tr>
<tr>
<td></td>
<td>:VAverage?</td>
<td>Starts a continuous average voltage measurement. Results are not returned.</td>
</tr>
<tr>
<td></td>
<td>:VBASE</td>
<td>Measures averaged voltage and returns results.</td>
</tr>
<tr>
<td></td>
<td>:VBASec</td>
<td>Starts a continuous base voltage measurement. Results are not returned.</td>
</tr>
<tr>
<td></td>
<td>:VDCRms</td>
<td>Measures base voltage and returns results.</td>
</tr>
<tr>
<td></td>
<td>:VDCRms?</td>
<td>Starts a continuous DC RMS voltage measurement. Results are not returned.</td>
</tr>
<tr>
<td></td>
<td>:VDELta?</td>
<td>Measures DC RMS voltage and returns results.</td>
</tr>
<tr>
<td></td>
<td>:VFIFy</td>
<td>Returns the voltage difference between the voltage start/stop markers.</td>
</tr>
<tr>
<td></td>
<td>:VMAX</td>
<td>Positions the voltage markers at the 50% voltage point.</td>
</tr>
<tr>
<td></td>
<td>:VMAX?</td>
<td>Starts a continuous maximum voltage measurement. Results are not returned.</td>
</tr>
<tr>
<td></td>
<td>:VMIN</td>
<td>Measures maximum voltage and returns results.</td>
</tr>
<tr>
<td></td>
<td>:VMIN?</td>
<td>Starts a continuous minimum voltage measurement. Results are not returned.</td>
</tr>
<tr>
<td></td>
<td>:VPP</td>
<td>Measures minimum voltage and returns results.</td>
</tr>
<tr>
<td></td>
<td>:VPP?</td>
<td>Starts a continuous peak-to-peak voltage measurement. Results are not returned.</td>
</tr>
<tr>
<td></td>
<td>:VRELative <percent></td>
<td>Moves the voltage markers to a specified percentage point from their last established position.</td>
</tr>
<tr>
<td></td>
<td>:VRELative?</td>
<td>Returns the current relative voltage stop marker position.</td>
</tr>
<tr>
<td></td>
<td>:VRMS</td>
<td>Starts a continuous RMS voltage measurement. Results are not returned.</td>
</tr>
<tr>
<td></td>
<td>:VRMS?</td>
<td>Measures RMS voltage and returns results.</td>
</tr>
<tr>
<td></td>
<td>:VSTArt <voltage></td>
<td>Positions the voltage start marker to a specific voltage (referenced to 0 volts).</td>
</tr>
<tr>
<td></td>
<td>:VSTArt?</td>
<td>Returns the current voltage start marker value.</td>
</tr>
<tr>
<td></td>
<td>:VSTOp <voltage></td>
<td>Positions the voltage stop marker to a specific voltage (referenced to 0 volts).</td>
</tr>
<tr>
<td></td>
<td>:VSTOp?</td>
<td>Returns the current voltage stop marker value.</td>
</tr>
<tr>
<td></td>
<td>:VTIme? <time></td>
<td>Returns the voltage level at a specified time (referenced to the trigger).</td>
</tr>
<tr>
<td></td>
<td>:VTOP</td>
<td>Starts a continuous top voltage measurement. Results are not returned.</td>
</tr>
<tr>
<td></td>
<td>:VTOP?</td>
<td>Measures top voltage and returns results.</td>
</tr>
</tbody>
</table>
COMP Commands Quick Reference — Continued

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>Command/Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEMory</td>
<td>:VME</td>
<td>VME Memory allocation for acquisition and measurement data. Selects an A24 memory address space for acquisition data. Returns the present A24 memory address space if parameter is blank. Returns MINimum, or MAXimum address available if selected.</td>
</tr>
<tr>
<td></td>
<td>:ADDRESS <address></td>
<td></td>
</tr>
<tr>
<td></td>
<td>:ADDRESS? [MIN][MAX]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>:MEASure</td>
<td>Commands for measurement data. Selects an A24 memory address space for measurement data. Returns the present A24 memory address space if parameter is blank. Returns MINimum, or MAXimum address available if selected.</td>
</tr>
<tr>
<td></td>
<td>:ADDRESS <address></td>
<td></td>
</tr>
<tr>
<td></td>
<td>:ADDRESS? [MIN][MAX]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>:STATE <mode></td>
<td>Enables or disables VME memory space for measurement data. Returns the VME memory measurement state.</td>
</tr>
<tr>
<td></td>
<td>:STATE?</td>
<td>Returns the size of the external VME memory card.</td>
</tr>
<tr>
<td></td>
<td>:SIZE <bytes></td>
<td>Enables or disables the VME memory subsystem (for acquisition and measurement data). Returns the current VME memory subsystem state.</td>
</tr>
<tr>
<td></td>
<td>:SIZE?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>:STATE <mode></td>
<td></td>
</tr>
<tr>
<td></td>
<td>:STATE?</td>
<td></td>
</tr>
<tr>
<td>OUTPUT</td>
<td>:ECLTrg <number></td>
<td>Selects ECL trigger bus lines 0-2. Enables or disables the selected ECL trigger line.</td>
</tr>
<tr>
<td></td>
<td>[:STATE] <mode></td>
<td>Returns the current ECL trigger state for the line selected.</td>
</tr>
<tr>
<td></td>
<td>[:STATE]?</td>
<td>Selects the TTL Trigger Output BNC connector on the front panel. Enables or disables the TTL Trigger Output connector.</td>
</tr>
<tr>
<td></td>
<td>:EXTERNAL</td>
<td>Returns the current TTL Trigger Output connector state. Enables or disables the entire output subsystem. Must be enabled for any of the outputs to function.</td>
</tr>
<tr>
<td></td>
<td>[:STATE]</td>
<td>Returns the current output subsystem state.</td>
</tr>
<tr>
<td></td>
<td>[:STATE]?</td>
<td>Selects TTL trigger bus lines 0-7. Enables or disables the selected TTL trigger line.</td>
</tr>
<tr>
<td></td>
<td>[:STATE] <mode></td>
<td>Returns the current TTL state for the line selected.</td>
</tr>
<tr>
<td></td>
<td>[:STATE]?</td>
<td></td>
</tr>
<tr>
<td>ROOT Commands</td>
<td>AUToscale</td>
<td>Evaluates all inputs, then sets conditions to present the signals. Turns off the specified source (channels, pixel memories, waveform memories, and functions). Selects the signal present (probe or trigger) at the Probe Compensation AC Calibrator output connector. Returns the current selection of the Probe Compensation AC Calibrator output connector. Digitizes waveform data on the selected channel(s) (1-4).</td>
</tr>
<tr>
<td></td>
<td>:BLANK <source>[,<source>[[..<source>[,<source>[]]]]]</td>
<td>Erases waveform data in pixel memory (0-2). Returns the limit test event register value. 1-violation.</td>
</tr>
<tr>
<td></td>
<td>BNC <output></td>
<td>Merges the contents of pixel memory 0 with the contents of pixel memory 1 or 2 (as specified).</td>
</tr>
<tr>
<td></td>
<td>BNC?</td>
<td>Starts acquiring data for the active waveform. Returns current acquisition state.</td>
</tr>
<tr>
<td></td>
<td>DIGitize <source>[,<source>[[..<source>[,<source>[]]]]]</td>
<td>Enters the Oscilloscope serial number. Returns whether the specified source (channel, pixel memory, waveform memory, or function) is on or off.</td>
</tr>
<tr>
<td></td>
<td>ERASE <source></td>
<td>Stops acquiring data for the active waveform. Moves a previously stored, channel, or function waveform to a specified waveform memory location. Returns the trigger event register value. 1-triggered.</td>
</tr>
<tr>
<td></td>
<td>LTER?</td>
<td>Turns on the specified source (channels, pixel memories, waveform memories, and functions).</td>
</tr>
<tr>
<td></td>
<td>MERGe <location></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RUN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RUN?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SERIAL <string></td>
<td></td>
</tr>
<tr>
<td></td>
<td>STATUS <source></td>
<td></td>
</tr>
<tr>
<td></td>
<td>STOP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STORe <source>[,.destination]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TER?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VIEW <source>[,.source[[..source[,[source][]]]]]</td>
<td></td>
</tr>
</tbody>
</table>
Oscilloscope Module

COMP Commands Quick Reference — Continued

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>Command/Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMry</td>
<td>:PRESet</td>
<td>Sets all the questionable enable registers to "1's".</td>
</tr>
<tr>
<td></td>
<td>:QUESTionable</td>
<td>Reports the calibration and self test results. Always returns 0.</td>
</tr>
<tr>
<td></td>
<td>:CONDition?</td>
<td>Allows true conditions (transitions) in the event register to be reported.</td>
</tr>
<tr>
<td></td>
<td>:ENABLE</td>
<td>Returns a decimal weighted value indicating which bits have been set.</td>
</tr>
<tr>
<td></td>
<td>[:EVENT]?</td>
<td>Reports the channel 1-4, default, and probe attenuation calibration values and conditions. Always returns 0. Allows true conditions (transitions) in the event register to be reported. Returns a decimal weighted value indicating which bits have been set.</td>
</tr>
<tr>
<td></td>
<td>:CALibration</td>
<td>Reports the specified channel's (1-4) current calibration data. Always returns 0. Allows true conditions (transitions) in the event register to be reported. Returns a decimal weighted value indicating which bits have been set.</td>
</tr>
<tr>
<td></td>
<td>:CONDition?</td>
<td>Reports the specified channel's (1-4) A/D calibration data. Always returns 0. Allows true conditions (transitions) in the event register to be reported. Returns a decimal weighted value indicating which bits have been set.</td>
</tr>
<tr>
<td></td>
<td>:ENABLE</td>
<td>Reports the specified channel's (1-4) delay calibration data. Always returns 0. Allows true conditions (transitions) in the event register to be reported. Returns a decimal weighted value indicating which bits have been set.</td>
</tr>
<tr>
<td></td>
<td>[:EVENT]?</td>
<td>Reports the specified channel's (1-4) hysteresis calibration data. Always returns 0. Allows true conditions (transitions) in the event register to be reported. Returns a decimal weighted value indicating which bits have been set.</td>
</tr>
<tr>
<td></td>
<td>:GAIN</td>
<td>Reports the specified channel's (1-4) gain calibration data. Always returns 0. Allows true conditions (transitions) in the event register to be reported. Returns a decimal weighted value indicating which bits have been set.</td>
</tr>
<tr>
<td></td>
<td>[:EVENT]?</td>
<td>Reports the channel 1 logic trigger calibration data. Always returns 0. Allows true conditions (transitions) in the event register to be reported. Returns a decimal weighted value indicating which bits have been set.</td>
</tr>
<tr>
<td>Subsystem</td>
<td>Command/Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>SUMMary</td>
<td>:QUESTionable :CALibration</td>
<td>Reports the specified channel's (1-4) offset calibration data.</td>
</tr>
<tr>
<td></td>
<td>:CHANNEL<number> :OFFSET :CONDition? :ENABLE [:EVENT]?</td>
<td>Always returns 0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Allows true conditions (transitions) in the event register to be reported.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Returns a decimal weighted value indicating which bits have been set.</td>
</tr>
<tr>
<td></td>
<td>:NULL :CONDition? :ENABLE [:EVENT]?</td>
<td>Reports the specified channel's (2-4) time null calibration data.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Always returns 0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Allows true conditions (transitions) in the event register to be reported.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Returns a decimal weighted value indicating which bits have been set.</td>
</tr>
<tr>
<td></td>
<td>:TRIGGER :CONDition? :ENABLE [:EVENT]?</td>
<td>Reports the specified channel's (1-4) trigger calibration data.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Always returns 0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Allows true conditions (transitions) in the event register to be reported.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Returns a decimal weighted value indicating which bits have been set.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Always returns 0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Allows true conditions (transitions) in the event register to be reported.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Returns a decimal weighted value indicating which bits have been set.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Always returns 0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Allows true conditions (transitions) in the event register to be reported.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Returns a decimal weighted value indicating which bits have been set.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Always returns 0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Allows true conditions (transitions) in the event register to be reported.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Returns a decimal weighted value indicating which bits have been set.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Always returns 0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Allows true conditions (transitions) in the event register to be reported.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Returns a decimal weighted value indicating which bits have been set.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Always returns 0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Allows true conditions (transitions) in the event register to be reported.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Returns a decimal weighted value indicating which bits have been set.</td>
</tr>
</tbody>
</table>
Oscilloscope Module

COMP Commands Quick Reference — Continued

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>Command/Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMary</td>
<td>:QUESTionable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>:TEST</td>
<td></td>
</tr>
<tr>
<td></td>
<td>:ACQuision</td>
<td></td>
</tr>
<tr>
<td></td>
<td>:ATRigger</td>
<td></td>
</tr>
<tr>
<td></td>
<td>:CONDition?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>:ENABLE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[:EVENT]?</td>
<td>Reports the acquisition analog trigger self test results.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Always returns 0.</td>
</tr>
<tr>
<td></td>
<td>:DA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>:CONDition?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>:ENABLE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[:EVENT]?</td>
<td>Returns a decimal weighted value indicating which bits have been set.</td>
</tr>
<tr>
<td></td>
<td>:LTRigger</td>
<td></td>
</tr>
<tr>
<td></td>
<td>:CONDition?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>:ENABLE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[:EVENT]?</td>
<td>Reports the acquisition logic trigger self test results.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Always returns 0.</td>
</tr>
<tr>
<td></td>
<td>:TIMebase</td>
<td></td>
</tr>
<tr>
<td></td>
<td>:CONDition?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>:ENABLE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[:EVENT]?</td>
<td>Returns a decimal weighted value indicating which bits have been set.</td>
</tr>
<tr>
<td></td>
<td>:INTERpolator</td>
<td></td>
</tr>
<tr>
<td></td>
<td>:CONDition?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>:ENABLE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[:EVENT]?</td>
<td>Reports the acquisition time base interpolator self test results.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Always returns 0.</td>
</tr>
<tr>
<td></td>
<td>:RAM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>:CONDition?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>:ENABLE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[:EVENT]?</td>
<td>Returns a decimal weighted value indicating which bits have been set.</td>
</tr>
<tr>
<td></td>
<td>:ACQuision</td>
<td></td>
</tr>
<tr>
<td></td>
<td>:CONDition?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>:ENABLE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[:EVENT]?</td>
<td>Returns a decimal weighted value indicating which bits have been set.</td>
</tr>
<tr>
<td></td>
<td>:DISPlay</td>
<td></td>
</tr>
<tr>
<td></td>
<td>:CONDition?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>:ENABLE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[:EVENT]?</td>
<td>Returns a decimal weighted value indicating which bits have been set.</td>
</tr>
</tbody>
</table>
COMP Commands Quick Reference — Continued

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>Command/Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY</td>
<td>:QUESTionable</td>
<td>Reports the non-volatile random access memory self test results.</td>
</tr>
<tr>
<td></td>
<td>:TEST</td>
<td>Always returns 0.</td>
</tr>
<tr>
<td></td>
<td>:RAM</td>
<td>Allows true conditions (transitions) in the event register to be reported.</td>
</tr>
<tr>
<td></td>
<td>:NVOLatile</td>
<td>Returns a decimal weighted value indicating which bits have been set.</td>
</tr>
<tr>
<td></td>
<td>:CONDition?</td>
<td>Reports the system random access memory self test results.</td>
</tr>
<tr>
<td></td>
<td>:ENABLE</td>
<td>Always returns 0.</td>
</tr>
<tr>
<td></td>
<td>[:EVENT]?</td>
<td>Allows true conditions (transitions) in the event register to be reported.</td>
</tr>
<tr>
<td></td>
<td>:SYSTem</td>
<td>Returns a decimal weighted value indicating which bits have been set.</td>
</tr>
<tr>
<td></td>
<td>:CONDition?</td>
<td>Reports the read only memory self test results.</td>
</tr>
<tr>
<td></td>
<td>:ENABLE</td>
<td>Always returns 0.</td>
</tr>
<tr>
<td></td>
<td>[:EVENT]?</td>
<td>Allows true conditions (transitions) in the event register to be reported.</td>
</tr>
<tr>
<td></td>
<td>:ROM</td>
<td>Returns a decimal weighted value indicating which bits have been set.</td>
</tr>
<tr>
<td></td>
<td>:CONDition?</td>
<td>Reports the non-protected random access memory self test results.</td>
</tr>
<tr>
<td></td>
<td>:ENABLE</td>
<td>Always returns 0.</td>
</tr>
<tr>
<td></td>
<td>[:EVENT]?</td>
<td>Allows true conditions (transitions) in the event register to be reported.</td>
</tr>
<tr>
<td></td>
<td>:NPProtect</td>
<td>Returns a decimal weighted value indicating which bits have been set.</td>
</tr>
<tr>
<td></td>
<td>:CONDition?</td>
<td>Reports the system read only memory self test results.</td>
</tr>
<tr>
<td></td>
<td>:ENABLE</td>
<td>Always returns 0.</td>
</tr>
<tr>
<td></td>
<td>[:EVENT]?</td>
<td>Allows true conditions (transitions) in the event register to be reported.</td>
</tr>
<tr>
<td>SYSTEM</td>
<td>:ERROR? [mode]</td>
<td>Returns system error number and, if selected, an error message.</td>
</tr>
<tr>
<td></td>
<td>:HEADER [mode]</td>
<td>Enables or disables the command header returned with the measurement results.</td>
</tr>
<tr>
<td></td>
<td>:HEADER?</td>
<td>Returns the current command header state.</td>
</tr>
<tr>
<td></td>
<td>:LANGUAGE <command></td>
<td>Selects the Oscilloscope programming language (COMP or SCPI).</td>
</tr>
<tr>
<td></td>
<td>:LANGUAGE?</td>
<td>Returns the programming language currently selected.</td>
</tr>
<tr>
<td></td>
<td>:LONGform [mode]</td>
<td>Enables or disables the command header format (long form or short form).</td>
</tr>
<tr>
<td></td>
<td>:LONGform?</td>
<td>Returns the current long form state.</td>
</tr>
<tr>
<td></td>
<td>:SETup <setup></td>
<td>Sends a previously saved learn string to the Oscilloscope.</td>
</tr>
<tr>
<td></td>
<td>:SETup?</td>
<td>Returns the learn string (contains Oscilloscope setup information).</td>
</tr>
</tbody>
</table>
Oscilloscope Module

COMP Commands Quick Reference — Continued

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>Command/Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEST</td>
<td>:ACQ [<test>]</td>
<td>Performs an internal acquisition self test. All five tests (AD, analog trigger, logic trigger, time base, and DA), are performed unless an individual test is specified.</td>
</tr>
<tr>
<td></td>
<td>:RAM [<test>]</td>
<td>Performs an internal random access memory self test. All four tests (display, acquisition, system, and non-volatile) are performed unless an individual test is specified.</td>
</tr>
<tr>
<td></td>
<td>:ROM [<test>]</td>
<td>Performs an internal read only memory self test. Both tests (system ROM and non-volatile protected RAM) are performed unless an individual test is specified.</td>
</tr>
<tr>
<td></td>
<td>:TALL</td>
<td>Performs all internal self tests (ACQ, RAM, and ROM).</td>
</tr>
<tr>
<td>TIMEbase</td>
<td>:DELY <time></td>
<td>Enters the desired time between trigger and delay reference point.</td>
</tr>
<tr>
<td></td>
<td>:DELY?</td>
<td>Returns current time base delay value.</td>
</tr>
<tr>
<td></td>
<td>:MODE <mode></td>
<td>Selects time base mode (auto, triggered, single).</td>
</tr>
<tr>
<td></td>
<td>:MODE?</td>
<td>Returns time base mode currently selected.</td>
</tr>
<tr>
<td></td>
<td>:RANGE <range></td>
<td>Enters full scale horizontal range.</td>
</tr>
<tr>
<td></td>
<td>:RANGE?</td>
<td>Returns current full scale horizontal range value.</td>
</tr>
<tr>
<td></td>
<td>:REF <position></td>
<td>Sets the delay reference point to right, left, or center of the active waveform.</td>
</tr>
<tr>
<td></td>
<td>:REF?</td>
<td>Returns the delay reference point currently selected.</td>
</tr>
<tr>
<td></td>
<td>:WIND <mode></td>
<td>Enables or disables the expanded time base mode.</td>
</tr>
<tr>
<td></td>
<td>:WIND?</td>
<td>Returns expanded time base mode state.</td>
</tr>
<tr>
<td></td>
<td>:DELY <time></td>
<td>Enters expanded time base delay relative to the main sweep delay and reference setting.</td>
</tr>
<tr>
<td></td>
<td>:DELY?</td>
<td>Returns the current expanded time base delay value.</td>
</tr>
<tr>
<td></td>
<td>:RANGE <range></td>
<td>Enters full scale horizontal range for the expanded time base.</td>
</tr>
<tr>
<td></td>
<td>:RANGE?</td>
<td>Returns the current expanded time base range value.</td>
</tr>
<tr>
<td>TRIGGER</td>
<td>:CENTERed</td>
<td>Sets the trigger level to the center of the range.</td>
</tr>
<tr>
<td></td>
<td>:COND <argument></td>
<td>Defines a set of conditions that must exist before a trigger event.</td>
</tr>
<tr>
<td></td>
<td>:COND?</td>
<td>Return the set of conditions currently selected.</td>
</tr>
<tr>
<td></td>
<td>:DELY <mode></td>
<td>Selects the delay type (time or events) and delay value (in seconds or counts). When events are selected, delay slope and source must be defined.</td>
</tr>
<tr>
<td></td>
<td>:DELY?</td>
<td>Returns the current delay type and value.</td>
</tr>
<tr>
<td></td>
<td>:SLOPE <polarity></td>
<td>Selects the edge (rising or falling) that will be counted when delay is set to events.</td>
</tr>
<tr>
<td></td>
<td>:SLOPE?</td>
<td>Returns the delay slope currently selected.</td>
</tr>
<tr>
<td></td>
<td>:SOUR <source></td>
<td>Selects the source (channel 1-4) that will be counted when delay is set to events.</td>
</tr>
<tr>
<td></td>
<td>:SOUR?</td>
<td>Returns the delay source currently selected.</td>
</tr>
<tr>
<td></td>
<td>:FIELD <number></td>
<td>Selects a field (1 or 2) for TV Trigger mode.</td>
</tr>
<tr>
<td></td>
<td>:FIELD?</td>
<td>Returns the field value currently selected.</td>
</tr>
<tr>
<td></td>
<td>:HOLD <holdoff></td>
<td>Selects the holdoff type (time or events) and value (in seconds or counts) for the holdoff.</td>
</tr>
<tr>
<td></td>
<td>:HOLD?</td>
<td>Returns the current holdoff type and value.</td>
</tr>
<tr>
<td></td>
<td>:LEVEL <level></td>
<td>Enters the trigger level.</td>
</tr>
<tr>
<td></td>
<td>:LEVEL?</td>
<td>Return the current trigger level value.</td>
</tr>
<tr>
<td></td>
<td>:LINE <number></td>
<td>Selects the line the trigger will be generated on in TV Trigger mode.</td>
</tr>
<tr>
<td></td>
<td>:LINE?</td>
<td>Returns the current line value.</td>
</tr>
<tr>
<td>Subsystem</td>
<td>Command/Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>TRIGger</td>
<td>:LOGic <level></td>
<td>Selects the "trigger on" logic level (high, low, don't care) for an enabled path. Current trigger level is used as the reference.</td>
</tr>
<tr>
<td></td>
<td>:LOGic?</td>
<td>Returns the logic level currently selected.</td>
</tr>
<tr>
<td></td>
<td>:MODE <mode></td>
<td>Selects the trigger mode (edge, pattern, state, delay, or TV).</td>
</tr>
<tr>
<td></td>
<td>:MODE?</td>
<td>Returns the trigger mode currently selected.</td>
</tr>
<tr>
<td></td>
<td>:OCCurrence <number></td>
<td>Enters the number of trigger events that must occur before a sweep.</td>
</tr>
<tr>
<td></td>
<td>:OCCurrence?</td>
<td>Returns the current occurrence value.</td>
</tr>
<tr>
<td></td>
<td>:SLOPe <polarity></td>
<td>Selects the edge (rising or falling) that will be counted by the occurrence command.</td>
</tr>
<tr>
<td></td>
<td>:SLOPe?</td>
<td>Returns the occurrence slope currently selected.</td>
</tr>
<tr>
<td></td>
<td>:SOURcce <source></td>
<td>Selects the source(channel 1-4) that will be counted by the occurrence command.</td>
</tr>
<tr>
<td></td>
<td>:SOURce?</td>
<td>Returns the occurrence source currently selected.</td>
</tr>
<tr>
<td></td>
<td>:PATH <channel></td>
<td>Selects the path (channel 1-4) for logic commands.</td>
</tr>
<tr>
<td></td>
<td>:PATH?</td>
<td>Returns the currently selected trigger source.</td>
</tr>
<tr>
<td></td>
<td>:POLarity <polarity></td>
<td>Selects the edge (rising or falling) for the trigger in TV mode.</td>
</tr>
<tr>
<td></td>
<td>:POLarity?</td>
<td>Returns the trigger edge currently selected for TV mode.</td>
</tr>
<tr>
<td></td>
<td>:QUALify <mode></td>
<td>Selects the mode to qualify the trigger to before a delay is defined.</td>
</tr>
<tr>
<td></td>
<td>:QUALify?</td>
<td>Returns the qualify mode currently selected.</td>
</tr>
<tr>
<td></td>
<td>:SENSitivity <mode></td>
<td>Enables or disables the noise reject. Normal is off, low is on.</td>
</tr>
<tr>
<td></td>
<td>:SENSitivity?</td>
<td>Returns the current sensitivity (noise reject) state.</td>
</tr>
<tr>
<td></td>
<td>:SLOPe <polarity></td>
<td>Selects the edge (rising or falling) for the trigger.</td>
</tr>
<tr>
<td></td>
<td>:SLOPe?</td>
<td>Returns the trigger edge currently selected.</td>
</tr>
<tr>
<td></td>
<td>:SOURce <source></td>
<td>Selects the source that will produce the trigger (channel 1-4, TTLTrg 0-7, ECLTrg 0-2).</td>
</tr>
<tr>
<td></td>
<td>:SOURce?</td>
<td>Returns the trigger source currently selected.</td>
</tr>
<tr>
<td></td>
<td>:STANDARD <standard></td>
<td>Selects the signal standard for TV mode (525, 625, or user defined).</td>
</tr>
<tr>
<td></td>
<td>:STANDARD?</td>
<td>Returns the signal standard selected currently selected.</td>
</tr>
<tr>
<td></td>
<td>:DATa?</td>
<td>Writes a binary block of waveform data to pixel memory 1 or 2.</td>
</tr>
<tr>
<td></td>
<td>:DATa <data></td>
<td>Reads a binary block of waveform data from pixel memory 0, 1 or 2.</td>
</tr>
<tr>
<td></td>
<td>:DATa?</td>
<td>Reads a binary block of waveform data from channel 1-4, waveform memory 1-4, or function 1-2.</td>
</tr>
<tr>
<td></td>
<td>:FORMAT <format></td>
<td>Receives waveform block data from the Oscilloscope.</td>
</tr>
<tr>
<td></td>
<td>:FORMAT?</td>
<td>Selects waveform data format (word, byte, compressed).</td>
</tr>
<tr>
<td></td>
<td>:POINTS?</td>
<td>Returns the format currently selected.</td>
</tr>
<tr>
<td></td>
<td>:PREEmble <data></td>
<td>Returns the data points value currently selected in the preamble.</td>
</tr>
<tr>
<td></td>
<td>:PREEmble?</td>
<td>Sends preamble data to the Oscilloscope.</td>
</tr>
<tr>
<td></td>
<td>:SOURce <source></td>
<td>Receives preamble data from the Oscilloscope.</td>
</tr>
<tr>
<td></td>
<td>:SOURce?</td>
<td>Selects the source (or destination) for all WAVeform subsystem commands.</td>
</tr>
<tr>
<td></td>
<td>:TYPEr?</td>
<td>Returns waveform source currently selected.</td>
</tr>
<tr>
<td></td>
<td>:XINCrement?</td>
<td>Returns data acquisition mode (normal, average, or envelope).</td>
</tr>
<tr>
<td></td>
<td>:XORgin?</td>
<td>Returns the time difference between data points.</td>
</tr>
<tr>
<td></td>
<td>:XREFerence?</td>
<td>Returns the time of the first data point.</td>
</tr>
<tr>
<td></td>
<td>:YINCrement?</td>
<td>Always returns 0.</td>
</tr>
<tr>
<td></td>
<td>:YORgin?</td>
<td>Returns the voltage difference between data points.</td>
</tr>
<tr>
<td></td>
<td>:YREFerence?</td>
<td>Returns the voltage at the center of the waveform.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Returns the specific data point at y-origin.</td>
</tr>
</tbody>
</table>
Oscilloscope Module

IEEE 488.2 Common Commands Quick Reference

<table>
<thead>
<tr>
<th>Command</th>
<th>Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*CLS</td>
<td>Clear status register</td>
<td>Clears all Event Registers, the Request for OPC flag, and all Queues (except output queue).</td>
</tr>
<tr>
<td>*ESE <mask></td>
<td>Event status enable</td>
<td>Used to set the bits in the Event Status Enable Register. Queries the current contents in the Event Status Enable Register.</td>
</tr>
<tr>
<td>*ESE?</td>
<td>Event status enable query</td>
<td></td>
</tr>
<tr>
<td>*ESR?</td>
<td>Event status register query</td>
<td>Queries and clears contents in the Standard Event Status Register.</td>
</tr>
<tr>
<td>*IDN?</td>
<td>Identification query</td>
<td>Returns identification string of the Oscilloscope.</td>
</tr>
<tr>
<td>*LRN?</td>
<td>Learn query</td>
<td>Returns a string that contains the current Oscilloscope setup.</td>
</tr>
<tr>
<td>*OPC</td>
<td>Operation complete</td>
<td>Sets the Request for OPC flag when all pending operations have completed. Also sets OPC bit in the Event Status register. Returns a 1 to the output queue when all pending operations have been completed.</td>
</tr>
<tr>
<td>*OPC?</td>
<td>Operation complete query</td>
<td></td>
</tr>
<tr>
<td>*RCL <n></td>
<td>Recall saved state</td>
<td>Recalls previously stored Oscilloscope Module configuration. <n> (1 to 4) is the location in memory where the desired (previously stored) set-up is located.</td>
</tr>
<tr>
<td>*RST</td>
<td>Reset</td>
<td>Resets the Oscilloscope hardware and firmware to a specific state (refer to Table 3-4 for a list of reset conditions).</td>
</tr>
<tr>
<td>*SAV <n></td>
<td>Save state</td>
<td>Stores the present Oscilloscope Module configuration in memory. Stores all Oscilloscope and Measurement Set-up parameters. <n> (1 to 4) is the location in memory where the current set-up is to be stored.</td>
</tr>
<tr>
<td>*SRE <mask></td>
<td>Service request enable</td>
<td>Used to set the Service Request Enable Register bits to generate a service request. Queries the current contents in the Service Request Enable Register.</td>
</tr>
<tr>
<td>*SRE?</td>
<td>Service request enable query</td>
<td></td>
</tr>
<tr>
<td>*STB?</td>
<td>Read status byte query</td>
<td>Queries the current contents in the Status Byte Register.</td>
</tr>
<tr>
<td>*TRG?</td>
<td>Trigger</td>
<td>Used to generate a trigger event.</td>
</tr>
<tr>
<td>*TST?</td>
<td>Self-Test query</td>
<td>Returns 0 unless self test fails. Disconnect all inputs prior to performing self tests.</td>
</tr>
<tr>
<td>*WAI</td>
<td>Wait to Continue</td>
<td>Halts execution of commands and queries until the No Operation Pending message is true.</td>
</tr>
</tbody>
</table>
Chapter 5 — Using the Oscilloscope with SCPI

Using This Chapter ... 5-1
Oscilloscope SCPI Commands .. 5-1
Reset Conditions .. 5-3
Measurement Sequence .. 5-5
Firmware Calibration ... 5-6
 Vertical Cal Procedure ... 5-6
 Delay Cal Procedure ... 5-8
Time Null Cal Procedure .. 5-10
Logic Trigger Cal Procedure .. 5-12
Starting a Measurement .. 5-15
 Unknown Input Signal ... 5-15
Measurement Considerations .. 5-15
Oscilloscope Setup ... 5-16
 Input Setup ... 5-16
 Correction Setup ... 5-17
 Voltage Setup ... 5-18
 Sweep Setup ... 5-18
 Trigger Setup .. 5-19
Measurement Setup .. 5-21
Digitizing Waveforms ... 5-22
 Acquisition ... 5-22
 Digitize .. 5-23
 Disposition .. 5-24
 Example: Digitize a Waveform and Send Data to the Controller 5-25
Performing a Measurement .. 5-27
Measurement Examples .. 5-31
 Example: Autoscale Period Measurement 5-32
 Example: Manual Rise Time Measurement 5-34
 Example: Manual Rise Time and Fall Time Measurement 5-36
 Example: AC Voltage Measurement 5-38
 Example: Using a Backplane Trigger 5-40
Recalling and Saving States ... 5-42
 Storing States .. 5-42
 Recalling States ... 5-42
Recalling and Storing Waveforms .. 5-43
 Querying the Oscilloscope ... 5-45
Using the Oscilloscope with SCPI

Using This Chapter
This chapter uses typical examples to show how to use the Oscilloscope module using SCPI commands. See Chapter 3 for instructions on using COMP commands. This chapter contains the following sections:

- Oscilloscope SCPI Commands .. Page 5-1
- Reset Conditions ... Page 5-3
- Measurement Sequence .. Page 5-5
- Firmware Calibration .. Page 5-6
- Starting a Measurement ... Page 5-15
- Oscilloscope Setup .. Page 5-16
- Measurement Setup .. Page 5-21
- Digitizing Waveforms .. Page 5-22
- Performing a Measurement .. Page 5-27
- Measurement Examples .. Page 5-31
- Recalling and Saving States Page 5-42
- Recalling and Storing Waveforms Page 5-44
- Querying the Oscilloscope ... Page 5-45

Oscilloscope SCPI Commands

Table 5-1. Oscilloscope SCPI Commands Used in Chapter 5

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*CLS</td>
<td>Clear status.</td>
</tr>
<tr>
<td>*RST</td>
<td>Reset the Oscilloscope to its default state.</td>
</tr>
<tr>
<td>[SENSel:]</td>
<td></td>
</tr>
<tr>
<td>:AVERage</td>
<td>Set the acquisition type to average.</td>
</tr>
<tr>
<td>:[STATE]</td>
<td>Select the number of averages for average mode.</td>
</tr>
<tr>
<td>:COUNT</td>
<td><r> is the input number 1-4.</td>
</tr>
<tr>
<td>:CORRrection<n></td>
<td>Select the input probe attenuation factor.</td>
</tr>
<tr>
<td>:AFactor</td>
<td>Enable or disable inputs.<r> is the input number 1-4.</td>
</tr>
<tr>
<td>:INPUT<n>:[STATE]</td>
<td>Specify the number of data points for data acquisition.</td>
</tr>
<tr>
<td>:SWEep</td>
<td>Specify the data acquisition completion criteria.</td>
</tr>
<tr>
<td>:POInts</td>
<td>Specify the full scale horizontal range for the main sweep.</td>
</tr>
<tr>
<td>:COMPLETE</td>
<td><r> is the input number 1-4.</td>
</tr>
<tr>
<td>:TIME</td>
<td>Set the full scale vertical range.</td>
</tr>
<tr>
<td>:RANGE</td>
<td></td>
</tr>
<tr>
<td>:VOLT<n></td>
<td>Self Calibration routines.</td>
</tr>
<tr>
<td>:RANGE</td>
<td>Begin a configured calibration, or load default data.</td>
</tr>
<tr>
<td>CALibration</td>
<td>Configure for a default calibration routine.</td>
</tr>
<tr>
<td>:SCALibration</td>
<td>Configure for a delay calibration routine.</td>
</tr>
<tr>
<td>:BCALibration</td>
<td>Configure for a logic trigger calibration routine.</td>
</tr>
<tr>
<td>:DCALibration</td>
<td>Configure for a time null calibration routine.</td>
</tr>
<tr>
<td>:DELAY</td>
<td>Configure for a vertical calibration routine.</td>
</tr>
<tr>
<td>:LTCalibration</td>
<td></td>
</tr>
<tr>
<td>:TNULI</td>
<td></td>
</tr>
<tr>
<td>:VERTical</td>
<td></td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>CONFIGure</td>
<td>Configure for a frequency measurement. Results are NOT returned. yyn is the measurement source.</td>
</tr>
<tr>
<td>[:VOLTage]</td>
<td>Configures for a fall time measurement. Results are NOT returned. xxx is the upper and lower thresholds. yyn is the measurement source. If xxx blank, uses default thresholds (10/90%).</td>
</tr>
<tr>
<td>[:FTIMe]</td>
<td>Configures for a rise time measurement. Results are NOT returned. xxx is the upper and lower thresholds. yyn is the measurement source. If xxx blank, uses default thresholds (10/90%).</td>
</tr>
<tr>
<td>[:RTIMe]</td>
<td>selects the waveform data format, where n is 8 or 16 bit.</td>
</tr>
<tr>
<td>[:DATA]</td>
<td>Digitize waveform data.</td>
</tr>
<tr>
<td>INITiate</td>
<td>Enable data acquisition for each trigger event.</td>
</tr>
<tr>
<td>[:IMMediate]</td>
<td>Measure input signal AC RMS voltage and read the measurement results. yyn is the measurement source.</td>
</tr>
<tr>
<td>[:CONTinuous]</td>
<td>Measure input signal period and read the measurement results. yyn is the measurement source.</td>
</tr>
<tr>
<td>[:SCALar]</td>
<td>Perform a configured measurement, and return measurement results. xxx is the specific measurement. If xxx blank, reads a DC voltage measurement. If READ? executed, will read the last configured measurement.</td>
</tr>
<tr>
<td>[:VOLTage]</td>
<td>Preset the questionable enable registers.</td>
</tr>
<tr>
<td>[:AC?]</td>
<td>Read the Calibration register.</td>
</tr>
<tr>
<td>[:PERiod?]</td>
<td>Perform an Autoscale.</td>
</tr>
<tr>
<td>[:SCALar:]</td>
<td>Read waveform data from the Oscilloscope. yyn is the current location of the data.</td>
</tr>
<tr>
<td>[:VOLTage:]</td>
<td>Read preamble data from the Oscilloscope. yyn is the current location of the data.</td>
</tr>
<tr>
<td>[:DATA]? yyn</td>
<td>Specify the trigger level.</td>
</tr>
<tr>
<td>[:PREamble? yyn]</td>
<td>Select the rising or falling edge for the trigger.</td>
</tr>
<tr>
<td>[:SOURce]</td>
<td>Select the source that will produce the trigger.</td>
</tr>
</tbody>
</table>
Reset Conditions

When the Oscilloscope is sent a *RST (reset), certain command parameters are set to their default values. Unless these parameters are changed prior to performing the measurement, the reset values will be used.

Table 5-2 lists the reset values for the Oscilloscope module. All parameters not listed will remain in the state last selected.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALibration :TNULI</td>
<td>0,0,0</td>
<td>Time nulls to 0 seconds.</td>
</tr>
<tr>
<td>CORRection :AFActor</td>
<td>1:1</td>
<td>Probe attenuation factor is 1:1 on all inputs.</td>
</tr>
<tr>
<td>CALCulate :MATH1 and 2 [:EXPRession]</td>
<td>OFF INP1+INP1</td>
<td>Math function 1 and 2 off. Expression to add input 1 to input 1.</td>
</tr>
<tr>
<td>FORMAT [:DATA]</td>
<td>INTeger 8</td>
<td>Waveform format to 8 bit integer.</td>
</tr>
<tr>
<td>INITiate :CONTInuous</td>
<td>AUTO</td>
<td>Automatically sweeps.</td>
</tr>
<tr>
<td>MEASURE</td>
<td>NULL</td>
<td>Reset all configurations, last measurement is invalid.</td>
</tr>
<tr>
<td>MEMory :VME :ADDRes</td>
<td>200000H</td>
<td>External memory address space (hex).</td>
</tr>
<tr>
<td>:SIZE</td>
<td>8000H</td>
<td>External memory size in bytes (hex).</td>
</tr>
<tr>
<td>:STATe</td>
<td>OFF</td>
<td>External memory disabled.</td>
</tr>
<tr>
<td>:MEASure :ADDRes</td>
<td>OFF</td>
<td>External measurement address space.</td>
</tr>
<tr>
<td>:STATe</td>
<td>OFF</td>
<td>External measurement address is disabled.</td>
</tr>
<tr>
<td>OUTPUT :TTLTrg</td>
<td>OFF</td>
<td>Output trigger set to off.</td>
</tr>
<tr>
<td>:ECLTrg</td>
<td>OFF</td>
<td>TTL trigger lines 0-7 set to off.</td>
</tr>
<tr>
<td>:EXTrnal</td>
<td>OFF</td>
<td>ECL trigger lines 0-1 set to off.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>External trigger set to off.</td>
</tr>
</tbody>
</table>
Table 5-2. *RST (Reset) Conditions and Values —Continued*

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SENSe:]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVERage:COUNT</td>
<td>1</td>
<td>Acquisition complete in 1 value.</td>
</tr>
<tr>
<td>[:STATe]</td>
<td>OFF</td>
<td>Average acquisition mode off.</td>
</tr>
<tr>
<td>:TYPE</td>
<td>SCALar</td>
<td>Acquisition mode is scalar, complete in 1 count.</td>
</tr>
<tr>
<td>INPut:COUPling</td>
<td>DC</td>
<td>Coupling to DC on all inputs.</td>
</tr>
<tr>
<td>:FILTER [:LPASs]</td>
<td>OFF</td>
<td>Internal low pass filter off on all inputs.</td>
</tr>
<tr>
<td>:HPASs</td>
<td>OFF</td>
<td>Internal high pass filter off on all inputs.</td>
</tr>
<tr>
<td>:IMPedance</td>
<td>1E6</td>
<td>Impedance to 1MΩ on all inputs.</td>
</tr>
<tr>
<td>SWEep:POINts</td>
<td>500</td>
<td>Acquisition record contains 500 pts.</td>
</tr>
<tr>
<td>:COMPLETE</td>
<td>100</td>
<td>Acquisition complete when at 100%.</td>
</tr>
<tr>
<td>:TIME</td>
<td>1 ms</td>
<td>Full scale horizontal time (range/span) to 1 ms.</td>
</tr>
<tr>
<td>:CENTER</td>
<td>0</td>
<td>Center of range/span is 0 seconds.</td>
</tr>
<tr>
<td>:DELAY</td>
<td>0</td>
<td>Sweep delay to 0 seconds.</td>
</tr>
<tr>
<td>:LINK</td>
<td>CENTer</td>
<td>Delay reference set to center of sweep.</td>
</tr>
<tr>
<td>:START</td>
<td>−500 μs</td>
<td>Start of range/span is −500 μs.</td>
</tr>
<tr>
<td>:STOP</td>
<td>+500 μs</td>
<td>Range/span stopping point is 500 μs.</td>
</tr>
<tr>
<td>VOLTage:RANGE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:LOWer</td>
<td>−2</td>
<td>Bottom of range is −2 V on all inputs.</td>
</tr>
<tr>
<td>:PThPeak</td>
<td>4</td>
<td>Full scale vertical display is 4 V on all inputs.</td>
</tr>
<tr>
<td>:OFFSet</td>
<td>0</td>
<td>Center range is 0 V on all inputs.</td>
</tr>
<tr>
<td>:UPPer</td>
<td>2</td>
<td>Top of range is 2 V on all inputs.</td>
</tr>
<tr>
<td>TRIGger:ECOunt</td>
<td>2</td>
<td>Holdoff set to 2 counts.</td>
</tr>
<tr>
<td>:HYSTeresis</td>
<td>OFF</td>
<td>Noise reject off.</td>
</tr>
<tr>
<td>:LEVEL</td>
<td>0</td>
<td>Trigger activated at 0 V.</td>
</tr>
<tr>
<td>:SLOPe</td>
<td>POSitive</td>
<td>Positive edge trigger.</td>
</tr>
<tr>
<td>:SOURce</td>
<td>INP1</td>
<td>Input 1 produces trigger.</td>
</tr>
</tbody>
</table>
Oscilloscope measurements are most successful if the following measurement sequence is followed.

1. **Determine if a firmware calibration is required** (due to time, operating temperature differences, or measurement accuracy requirements). See Firmware Calibration later in this chapter for more information.

2. **Know the signal and type of measurement.** Remember, in most cases you will not have a displayed waveform to view. Have an understanding of the type of signal you want to measure; its amplitude and frequency; is it repetitive? An understanding of the signal you want to measure, and the type of measurement being performed, will help you select the correct oscilloscope and measurement setups. See Measurement Considerations later in this chapter for more information.

3. **Set the Oscilloscope controls** (input, correction, voltage, sweep, and trigger). See Oscilloscope Setup later in this chapter for more information.

4. **Set the measurement controls.** See Measurement Setup later in this chapter for more information.

5. **Digitize the Waveform.** Digitizing the waveform ensures that all measurements are performed using the same data, and that the data obtained is valid. The user defines the acquisition and completion criteria for the waveform data. This step is performed using the INITiate command, and is done automatically when using the MEASure commands. See Digitizing Waveforms in this chapter for more information.

6. **Perform the measurement.** See Performing a Measurement later in this chapter for more information.

7. **Read the results.** See Performing a Measurement later in this chapter for more information.

Notes

It is critical that the oscilloscope controls are setup for the specific measurement being performed. Just because measurement results are obtained does not guarantee that they are correct. It is highly recommended that all measurement results be analyzed to verify authenticity. A returned +9.99999E+37 indicates an invalid measurement.

See Appendix C, Optimizing Measurements, for additional information on measurement techniques.
Firmware Calibration

There are two levels of calibration for the Oscilloscope module. The first level, called vertical, delay, time null, and logic trigger calibrations, can be performed by the operator. Procedures are provided in this section. The second level of calibration should be performed only by qualified service personnel using the service manual.

First level calibration should ONLY be performed under the following conditions:

- at six month intervals or every 1000 hours of use,
- if the ambient temperature changes more than 10°C from the temperature at full calibration,
- or to optimize measurement accuracy.

Caution

Do not remove the module with power applied to the mainframe.

The firmware calibration procedures should only be performed after the instrument has run for one hour at ambient temperature installed in the mainframe.

Notes

It is NOT necessary to perform first level calibration procedures prior to every operation.

When performing a first level calibration, all procedures should be done in the order given.

After calibrating, you MUST perform an SYSTem:AUToscale or *RST (reset) to return to normal operation.

Vertical Cal Procedure

Vertical calibration is performed on inputs one through four (simultaneously) using the following procedure:

1. Set the CAL FACTOR PROTECT switch to UNPROTECTED.
2. Connect the Oscilloscope DC Calibrator Output connector to the Input 1-4 connectors.

Note

Verify that the BNC cables are not longer than 1 meter and as close in length as possible.

3. Load the "default" calibration data.
4. Perform clear status, reset, then preset the Oscilloscope.
5. Select and start the vertical calibration routine. Calibration will last for approximately 15 minutes. During calibration, access and error LED's will be on.

Note

If the calibration time exceeds 15 minutes, the calibration is invalid. Recycle power then repeat procedure. If the condition repeats the instrument is malfunctioning. Refer to the Service Manual for information on correcting the malfunction before proceeding.

6. After calibration is complete (LED's off), read the calibration event register to verify that no errors were generated during the procedure.

- If "0" is returned, the calibration was successful.
- If "0" is not returned, the calibration attempt was unsuccessful. See Chapter 4, CALibrate Subsystem for more information.

7. Disconnect cables and perform Delay Calibration Procedure.

![Diagram of vertical calibration setup](image)

Figure 5-1. Example: Vertical Calibration Setup
Example

The following example shows how to perform a vertical calibration. The example is written using:

- an HP-IB select code of 7, primary address of 09, and secondary address of 05 for the Oscilloscope
- an HP Series 200/300 Computer with HP BASIC

Execute:

10 OUTPUT 70905;"CAL:SCAL:DCAL"
 Configure for a default calibration routine.

20 OUTPUT 70905;"CAL:SCAL:BCAL"
 Load default calibration data.

30 OUTPUT 70905;"CLS"
 Clear status.

40 OUTPUT 70905;"*RST"
 Resets the Oscilloscope to its default state.

50 OUTPUT 70905;"STAT:PRES"
 Presets the Oscilloscope.

60 OUTPUT 70905;"CAL:SCAL:VERT"
 Selects vertical calibration routine.

70 OUTPUT 70905;"CAL:SCAL:BCAL"
 Starts vertical calibration routine.

80 OUTPUT 70905;"STAT:QUE:CAL?"
 Read calibration event register.

90 ENTER 70905;A
 Enter calibration event register results.

100 PRINT A
 Print calibration event register results.

110 END
 Terminate program.

Delay Cal Procedure

Delay calibration is performed on inputs one through four (one at a time) using the following procedure:

1. Verify the CAL FACTOR PROTECT switch is set to UNPROTECTED.

2. Connect the Oscilloscope AC Calibrator Output connector to the Input 1 connector using a BNC cable.

Note

Verify that the BNC cable is not longer than 1 meter.

3. Perform clear status, reset, then preset the Oscilloscope.

4. Select and start the delay calibration routine. During calibration, the access and error LED's will be on.

Note

If the calibration time exceeds 1 minute, the calibration is invalid. Recycle power then repeat procedure. If the condition repeats the instrument is malfunctioning. Refer to the Service Manual for information on correcting the malfunction before proceeding.
5. After calibration is complete (LED's to off), read the
 calibration event register to verify that no errors were
generated during the procedure.
 • If "0" is returned, the calibration was successful.
 • If "0" is not returned, the calibration attempt was
 unsuccessful. See Chapter 4, CALibrate Subsystem for
 more information.
6. Disconnect cable from input 1 and reconnect to input 2. Repeat
 steps 4 and 5 for input 2.
7. Disconnect cable from input 2 and reconnect to input 3. Repeat
 steps 4 and 5 for input 3.
8. Disconnect cable from input 3 and reconnect to input 4. Repeat
 steps 4 and 5 for input 4.
9. When complete, disconnect BNC cable and perform Time
 Null Calibration Procedure.

Figure 5-2. Example: Delay Calibration Setup
Example

The following example shows how to perform a delay calibration. The example is written using:

- an HP-IB select code of 7, primary address of 09, and secondary address of 05 for the Oscilloscope
- an HP Series 200/300 Computer with HP BASIC

Execute:

```
10 OUTPUT 70905;"*CLS"
20 OUTPUT 70905;"*RST"
30 OUTPUT 70905;"STAT:PRE5"
40 FOR I=1 TO 4
   50 OUTPUT 70905;"CAL:SCAL:DEL INF"&VALS(I)
55 NEXT I
60 OUTPUT 70905;"CAL:SCAL:BCAL"
70 OUTPUT 70905;"STAT:QUE:CAL?"
80 ENTER 70905;B
90 PRINT B
100 PAUSE
110 NEXT I
120 END
```

Clear status.

Resets the Oscilloscope to its default state.

Prets the Oscilloscope.

Input testing loop.

Selects input n delay calibration routine (n=input 1-4).

Starts delay calibration routine.

Read calibration event register.

Enter calibration event register results.

Print calibration event register results.

Pause to connect next input.

Repeat for inputs 2-4.

Terminate program.

Time Null Cal Procedure

Time Null calibration is performed on inputs one-two, one-three, and one-four (one at a time) using the following procedure:

1. Verify the CAL FACTOR PROTECT switch is set to UNPROTECTED.

2. Connect the Oscilloscope AC Calibrator Output connector to both the Input 1 and Input 2 connectors.

Note

Verify that the BNC cables are not longer than 1 meter and equal in length.

3. Perform clear status, reset, then preset the Oscilloscope.

4. Select and start the time null calibration routine. During calibration, the access and error LED's will be on.

Note

If the calibration time exceeds 1 minute, the calibration is invalid. Recycle power then repeat procedure. If the condition repeats the instrument is malfunctioning. Refer to the Service Manual for information on correcting the malfunction before proceeding.
5. After calibration is complete (LED's to off), read the calibration event register to verify that no errors were generated during the procedure.
 - If "0" is returned, the calibration was successful.
 - If "0" is not returned, the calibration attempt was unsuccessful. See Chapter 4, CALibrate Subsystem for more information.

6. Disconnect cable from input 2 and reconnect to input 3. Repeat steps 4 and 5 for input 3.

7. Disconnect cable from input 3 and reconnect to input 4. Repeat steps 4 and 5 for input 4.

8. When complete, disconnect BNC cable and perform the Logic Trigger Calibration Procedure (if necessary).

Figure 5-3. Example: Time Null Calibration Setup
Example

The following example shows how to perform a time null calibration. The example is written using:

- an HP-IB select code of 7, primary address of 09, and secondary address of 05 for the Oscilloscope
- an HP Series 200/300 Computer with HP BASIC

Execute:

10 OUTPUT 70905;"CLS" Clear status.
20 OUTPUT 70905;"RST" Resets the Oscilloscope to its default state.
30 OUTPUT 70905;"STAT:TRES" Presets the Oscilloscope.
40 FOR I=2 TO 4 Input testing loop.
50 OUTPUT 70905;"CAL:SCAL:TNUL INF"; 5VAL$ (I) Selects input I to n time null calibration routine (n=input 2-4).
60 OUTPUT 70905;"CAL:SCAL:BCAL" Starts time null calibration routine.
70 OUTPUT 70905;"STAT:QUES:CAL?" Read calibration event register.
80 ENTER 70905;C Enter calibration event register results.
90 PRINT C Print calibration event register results.
100 PAUSE Pause to connect next input.
110 NEXT I Repeat for inputs 3-4.
120 END Terminate program.

Logic Trigger Cal Procedure

Logic trigger calibration is performed on input one using the following procedure:

Note

It is NOT necessary to perform this procedure unless very accurate delay by time triggering is required during measurements.

If this procedure is not performed, set the CAL FACTOR PROTECT switch to PROTECTED.

1. Verify the CAL FACTOR PROTECT switch is set to UNPROTECTED.
2. Connect the Oscilloscope AC Calibrator Output connector to the Input 1 connector using a BNC cable.

Note

Verify that the BNC cable is not longer than 1 meter.

3. Read the calibration register to verify that no errors are present.
 - If "0" is returned, proceed with step 5.
 - If "0" is not returned, the Logic Trigger calibration must be terminated, and the cause of the error corrected. See Chapter 4, CALibrate Subsystem for more information.
4. Perform clear status, reset, then preset the Oscilloscope.
5. Locate the logic trigger adjustment on the right side of the Oscilloscope module, and the error and access LED’s on the front panel.

6. Select and start the logic trigger calibration routine. Verify that the triggered LED flashes.

Observe the access and error LED’s.

- If both are on, no adjustment is required.
- If only one is ON, rotate the logic trigger adjustment until both LED’s remain ON.

Approximately 15 seconds after no further rotation of the adjustment, the triggered LED will flash faster, then all LED’s will go out.

7. After calibration is complete (LED’s to off), read the calibration register to verify that no errors were generated during the procedure.

- If "0" is returned, the calibration was successful.
- If "0" is not returned, the calibration attempt was unsuccessful. See Chapter 4, CALibrate Subsystem for more information.

8. Disconnect BNC cable and set the CAL FACTOR PROTECT switch to PROTECTED.

Figure 5-4. Example: Logic Trigger Calibration Setup
The following example shows how to perform a logic trigger calibration. The example is written using:

- an HP-IB select code of 7, primary address of 09, and secondary address of 05 for the Oscilloscope
- an HP Series 200/300 Computer with HP BASIC

Execute:

10 OUTPUT 70905;"CLS"
20 OUTPUT 70905;"RST"
30 OUTPUT 70905;"STAT:PRE"
40 OUTPUT 70905;"STAT:QUS:CAL?"
50 ENTER 70905;D
60 PRINT D
70 IF D<>0 THEN 130
80 OUTPUT 70905;"CAL:SCAL:LTC"
90 OUTPUT 70905;"CAL:SCAL:BCAL"
100 OUTPUT 70905;"STAT:QUS:CAL?"
110 ENTER 70905;E
120 PRINT E
130 END

Clear status.
Resets the Oscilloscope to its default state.
Presets the Oscilloscope.
Read calibration event register.
Enter calibration event register results.
Print calibration event register results.
Terminate if results not 0.
Selects logic trigger calibration routine.
Starts logic trigger calibration routine.
Read calibration event register.
Enter calibration event register results.
Print calibration event register results.
Terminate program.
Starting a Measurement

Unknown Input Signal

Before configuring the Oscilloscope to perform a specific measurement, it is very beneficial to know about the signal being measured, and the type of measurement being performed.

If the input signal is unknown, SYSTem:AUTOscale can be used with any MEASure? query to quickly determine some of the critical input signal parameters.

The following example shows how to perform a frequency measurement on a signal connected to Input 1. The example is written using:

- an HP-IB select code of 7, primary address of 09, and secondary address of 05 for the Oscilloscope
- an HP Series 200/300 Computer with HP BASIC

Execute:

10 OUTPUT 70905;"CLS"
20 OUTPUT 70905;"RST"
30 OUTPUT 70905;"SYST:AUT"
40 OUTPUT 70905;"MEAS:VOLT:FREQ? (@IN1)"
50 ENTER 70905;Results
60 PRINT Results
70 END

Note

Performing certain measurements will return invalid data (+9.99999E+37) because the proper portion of the waveform was not present during the measurements.

See Appendix C, Optimizing Measurements, for additional information on measurement techniques.

Measurement Considerations

In order to make a specific measurement, the portion of the waveform required for that measurement must be setup and present on the oscilloscope. For example, to measure:

- Period or frequency - a minimum of one complete cycle must be present.
- Pulse width - the entire pulse must be present.
- Rise Time - the leading (positive-going) edge of the waveform must be present.
- Fall Time - the trailing (negative-going) edge of the waveform must be present.

Performing this function on an Oscilloscope with a display is a comparatively simple task. However, when the display is removed, certain steps must be taken to assure the correct Oscilloscope and measurement set-ups are performed prior to the actual measurement.
Oscilloscope Setup

Before a specific measurement can be performed, it is necessary to setup the Oscilloscope controls. The settings are dependent on the input signal and the desired measurement being performed. There are two ways to set these controls:

- Automatic (using SYSTem:AUToscale).
- Manual - User enters desired values.

Automatic

When selected, the Oscilloscope automatically evaluates the input signals present at inputs 1-4, and then sets the controls to present the signal. You set up the oscilloscope with the following command:

SYSTem:AUToscale

Note

Autoscale should only be used with relatively stable input signals having a duty cycle of greater than 0.5% and a frequency greater than 50Hz.

Input Setup

This section discusses the vertical or input controls you can program with the INPut command. These controls allow the selection of:

- Input State
- Input Coupling
- Input Impedance
- Input Filter State

Note

The following discussion is intended to provide only a brief overview of the necessary commands required for basic operation. For a complete list and description of ALL INPut commands available, see Chapter 6, [SENSe:] subsystem.

Input State

Each input can be enabled or disabled. Input 1 is on, and inputs 2-4 are off at reset. You enable an input with the following command:

INPn:STAT xxx (n=Input number and xxx = ON or OFF)
Input Coupling
Coupling for each input can be set to AC, DC. DC Coupling is selected at reset. You select coupling with the following command:

\[\text{INPn:COUP xxx} \quad (n=\text{input number and xxx = AC, DC}) \]

Input Impedance
Impedance for each input can be set to 1MΩ or 50Ω. 1MΩ is selected at reset. You select impedance with the following command:

\[\text{INPn:IMP xxx} \quad (n=\text{input number and xxx = 50 or 1E6}) \]

Input Filter State
Two input filters are selectable to provide low-pass (BW=30 MHz) or high-pass (BW=450 Hz) filtering. Both filters are disabled at reset. You enable the low-pass filter with the following command:

\[\text{INPn:FILT:LPAS xxx} \quad (n=\text{input number and xxx = ON or OFF}) \]

You enable the high-pass filter with the following command:

\[\text{INPn:FILT:HPAS xxx} \quad (n=\text{input number and xxx = ON or OFF}) \]

Correction Setup
This section discusses the vertical or input controls you can program with the CORRection command. These controls allow the selection of:

- Input Probe Attenuation

Note
The following discussion is intended to provide only a brief overview of the necessary commands required for basic operation. For a complete list and description of ALL available correction commands, see Chapter 6, [SENSe:] subsystem.

Input Probe Attenuation
Probe attenuation factor for each input can be entered from 0.9:1 to 1000.0:1 to match the probe currently connected to the input. 1:1 is selected at reset. You enter probe attenuation factor with the following command:

\[\text{CORRn:AFAC xxx} \quad (n=\text{input number and xxx = value}) \]

Note
Changing probe attenuation from 1:1 will effect current settings of input range and offset.
Voltage Setup

This section discusses the vertical or input controls you can program with the VOLTage command. These controls allow the selection of:

- Input Offset
- Input Range

Note

The following discussion is intended to provide only a brief overview of the necessary commands required for basic operation. For a complete list and description of ALL available voltage commands, see Chapter 6, [SENSe:] subsystem.

Input Offset

Offset voltage for each input can be entered to a level depending on the current full scale range (PTPeak) selection. 0 volts is selected at reset. You enter offset with the following command:

\[\text{VOLTn:RANG:OFFS} \ xxx \ (n=\text{input number and } xxx = \text{value in volts}) \]

Input Range

Full scale (not per division) vertical axis for each input can be entered from 8 mV to 40 V. 4 volts is selected at reset. You enter vertical full scale range with the following command:

\[\text{VOLTn:RANG:PTP} \ xxx \ (n=\text{input number and } xxx = \text{value in volts}) \]

Note

Changes in probe attenuation will effect current settings of input range and offset.

Sweep Setup

This section discusses the time base or horizontal controls you can program with the SWEep command. These controls allow the selection of:

- Range
- Delay
- Reference

Note

The following discussion is intended to provide only a brief overview of the necessary commands required for basic operation. For a complete list and description of ALL available sweep commands, see Chapter 6, [SENSe:] subsystem.

Range

Full scale (not per division) horizontal axis can be entered from 2ns to 50 seconds. 1 ms is selected at reset. You enter horizontal full scale range with the following command:

\[\text{SWE:TIME:RANG} \ xxx \ (xxx = \text{value in seconds}) \]
Delay

The sweep delay (time interval between trigger event and sweep delay reference point) can be set to a value depending on the current full scale range (TIME) selected. 0 seconds is selected at reset. See Reference below for more information. You select sweep delay with the following command:

\[\text{SWE:TIME:DEL \ xxx (xxx = value in seconds \pm \ xxx)} \]

Reference

Three different settings are available that control the sweep reference point. START, CENTER, or STOP sets the reference to the left, center, or right of the sweep, respectively. CENTER is selected at reset. Refer to Delay earlier in this section for more information. You enter reference with the following command:

\[\text{SWE:TIME:DEL:LINK \ xxx (xxx = STAR, CENT, or STOP)} \]

Trigger Setup

This section discusses the trigger controls you can program with the TRIGger command. These controls allow the selection of:

- Holdoff
- Level
- Noise Rejection
- Slope
- Source

Note

The following discussion is intended to provide only a brief overview of the necessary commands required for basic operation. For a complete list and description of ALL available triggering commands, see Chapter 6, TRIGger subsystem.

Holdoff

Holdoff (disabling of trigger circuit for specific duration) can be set to a count from 2 to 16 million. 2 is selected at reset. You select holdoff with the following command:

\[\text{TRIG:ECO \ xxx (xxx = value in events)} \]

Level

Active trigger level voltage can be entered to a value dependent on VOLTage:PTPeak and :OFFSet settings as follows:

\[\pm0.75 \text{ of selected range from current offset} \]

0 volts is selected at reset. You enter trigger level with the following command:

\[\text{TRIG:LEV \ xxx (xxx = value in volts)} \]

Using the Oscilloscope with SCPI 5-19
Noise Rejection

Noise rejection can be turned ON or OFF for the selected SOURce. Aids in eliminating false triggering. OFF is selected at reset. You enable noise rejection with the following command:

\[
\text{TRIG:HYST} \ xxx \ (xxx = \text{ON or OFF})
\]

Slope

The POSitive (rising) or NEGative (falling) edge of the input signal can be selected as the trigger event for the selected source. POSitive is selected at reset. You select trigger slope with the following command:

\[
\text{TRIG:SLOP} \ xxx \ (xxx = \text{POS or NEG})
\]

Source

The trigger source can be selected from one of the input signals (INPut 1-4), or from one of 10 bus lines (TTLTrg0-7 or ECLTrg 0-1). Only one trigger source can be specified at a time. INPut 1 is selected at reset. You select trigger source with the following command:

\[
\text{TRIG:SOUR} \ xxx \ (xxx = \text{INP1, INP2, INP3, INP4, TTLT0, TTLT1, TTLT2, TTLT3, TTLT4, TTLT5, TTLT6, TTLT7, ECLT0 or ECLT1})
\]
Measurement Setup

After the input, correction, voltage, sweep, and triggering controls are setup, it is necessary to set any unique measurement parameters prior to performing the actual measurement.

Note

The only user defined measurement parameters available in SCPI are the upper and lower threshold limits during rise time and fall time measurements. These parameters are sent with the CONFigure or MEASure command. See Performing a Measurement later in this chapter for more information.
Digitizing Waveforms

Waveforms can be digitized to provide a waveform that fulfills user-defined acquisition and completion criteria. The resulting waveform can be measured by the Oscilloscope or passed to the controller as a numerical representation. In addition, preamble data is passed to the controller so the digitized data can be interpreted. The user can specify exactly what the digitized information will contain, how the waveform is acquired, when the waveform is complete, and the format of the digitized information. Use the following sequence to assist in digitizing waveforms:

1. **Waveform Acquisition**: Defines the data type, completion criteria, number of averages, and number of data points for data acquisition. See Acquisition in this section for more information.

2. **Digitize the Waveform**: Acquires data on the specified input, stores the data in the input buffer, then stops the acquisition. See Digitize in this chapter for more information.

3. **Measure the Waveform**: All measurements made by the Oscilloscope are now performed on the same data. See Performing a Measurement in this chapter for more information.

Note

When using the CONFigure commands to perform a measurement, a digitize is performed when the INITiate or READ? commands are executed. When using the MEASure commands to perform a measurement, a digitize is automatically performed.

4. **Waveform Disposition**: When the data is going to/from the bus, it defines where to get the data, the format the data is to be in, reads the digitized waveform data, and reads the preamble data. See Disposition in this section for more information.

Acquisition

This section discusses the acquisition controls you can program with the [SENSe:] command. These controls allow the selection of:

- Type
- Completion Criteria
- Count
- Points

Note

The following discussion is intended to provide only a brief overview of the necessary commands required for basic operation. For a complete list and description of ALL available acquisition commands, see Chapter 6, [SENSe:] subsystem.
Type

Three different modes define the type of acquisition that will take place when the INITiate[:IMMediate] command is executed. See Chapter 6, [SENSe:]AVERage[:STATe] and [SENSe:]AVERage:TYPE, for information on SCALar, AVERage, and ENvelope modes. SCALar is selected at reset. You select acquisition type with the following command(s):

\[
\text{AVE xxx} \quad (xxx = \text{ON or OFF})
\]

\[
\text{AND}
\]

\[
\text{AVE:TYPE xxx} \quad (xxx = \text{SCAL or ENV})
\]

Completion Criteria

Completion criteria for an acquisition can be entered from 0 to 100%. 100% is selected at reset. You enter completion criteria with the following command:

\[
\text{SWE:POIN:COMP xxx} \quad (xxx = 0 \text{ to } 100)
\]

Count

The number of points to be averaged for each acquisition can be entered from 1 to 2048. 8 is selected at reset. You enter counts with the following command:

\[
\text{AVER:COUN xxx} \quad (xxx = 1 \text{ to } 2048)
\]

Points

The number of points for each acquisition record can be entered from 32 to 1024. 500 is selected at reset. You enter counts with the following command:

\[
\text{SWE:POIN xxx} \quad (xxx = 32 \text{ to } 1024)
\]

Digitize

The INITiate[:IMMediate] command causes an acquisition to take place on the enabled input(s) with the resulting data placed in the input buffer. Upon completion, the data acquisition is stopped. Inputs are enabled using the INPut[:STATe] command. See Chapter 6, INITiate subsystem for more information. You digitize with the following command:

\[
\text{INITiate[:IMMediate]}
\]

Note

See Appendix C, Optimizing Measurements, for additional information on measurement techniques.
This section discusses the disposition controls you can program with the TRACe command. These controls allow the selection of:

- Format
- Reading Waveform Data
- Reading Preamble Data
- Using the Digitized Data

The following discussion is intended to provide only a brief overview of the necessary commands required for basic operation. For a complete list and description of ALL available waveform commands, see Chapter 6, TRACe subsystem.

Format

Two different formats are available to format digitized data when retrieved from the instrument. See Chapter 6, FORMat[:DATA] for information on 8 bit and 16 bit integer formats. 8 bit is selected at turn-on or reset. You select format with the following command:

```
FORM INT,xxx   (xxx = 8 or 16)
```

Reading Waveform Data

The digitized data is read over the bus from the waveform memory, input buffer, or math function. You read digitized data with the following query:

```
TRAC? xxx   (xxx=INP1-4, MATH1-2, or WMEM1-4)
```

Reading Preamble Data

The interpretation (preamble) data is read over the bus from the waveform memory, input buffer, or math function. This data is used to interpret the waveform data. You read preamble data with the following query:

```
TRAC:PRE? xxx   (xxx=INP1-4, MATH1-2, or WMEM1-4)
```

Using the Digitized Data

The returned data is read from the instrument starting at the left-most point on the active waveform, and must be scaled for useful interpretation. The values needed to perform this task (X and Y coordinates) are included in the preamble data. See Chapter 6, TRACe subsystem for more information.
Example: Digitize a Waveform and Send Data to the Controller

This example uses the Oscilloscope module to digitize a waveform from INPut 1, and send the results (waveform and preamble) to the controller. The waveform will be complete when 512 points have been averaged at least four times. The digitized data sent to the controller is to be in 8 bit format.

Figure 5-5. Example: Digitizing Waveforms

The example is written using:
- an HP-IB select code of 7, primary address of 09, and secondary address of 05 for the Oscilloscope
- an HP Series 200/300 Computer with HP BASIC

Execute:

10 DIM Pre$[100]
20 INTEGER Waveform(2000)
30 OUTPUT 70905;"*CLS"
40 OUTPUT 70905;"*RST"
50 OUTPUT 70905;"SYST:AUT"
60 OUTPUT 70905;"AVER ON"
70 OUTPUT 70905;"AVER:COUN 4"
80 OUTPUT 70905;"SWE:POIN:COMP 100"
90 OUTPUT 70905;"SWE:POIN 512"
100 OUTPUT 70905;"INF1 ON"
110 OUTPUT 70905;"ABOR"
120 OUTPUT 70905;"INIT"
130 OUTPUT 70905;"FORM INT,8"
140 OUTPUT 70905;"TRAC:PRES? INF1"
150 ENTER 70905;Pre

--- CONTINUED ---

Using the Oscilloscope with SCPI 5-25
160 OUTPUT 70905;"TRAC:DATA? INP1"
170 GOSUB Get_data

180 STOP
190 !
200 Get_data: !
210 ENTER 70905 USING ";,1A";One_char$
220 IF One_char$="#" THEN Found_pound
230 GOTO 210
240 Found_pound: !
250 ENTER 70905 USING ";,1D";Digits
260 ENTER 70905 USING ";,"VAL(Digits)$"D";Length
270 REDIM Waveform(1:Length)
280 ENTER 70905 USING ";,B";Waveform(*)
290 ENTER 70905 USING ";,B";Crlf
300 RETURN
310 END

Comments

Block Data. Both preamble and waveform data is "definite-length block response data". This method allows any type of device-dependent data to be transmitted over the system interface as a series of 8-bit binary data types. This is particularly useful for sending large quantities of data or 8-bit extended ASCII codes. The syntax is a pound sign (#) followed by a non-zero digit representing the number of digits in the decimal integer. After the non-zero digit is the decimal integer that states the number of 8-bit data bytes being sent. This is followed by the actual data. For example, for transmitting 1024 bytes of data, the syntax is:

```
#41024<1024 bytes of data><term>
```

Number of digits

<table>
<thead>
<tr>
<th>Number of bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual Data</td>
</tr>
<tr>
<td>Terminator</td>
</tr>
</tbody>
</table>

Reading Block Data. The example program (lines 200 to 300) finds the '#' sign, reads the number of digits and number of bytes, then redefines the field to the correct length. This method will work for all definite-length block response returned data (e.g., TRACe[:DATA]?).

When to Read Preamble. The preamble should be read prior to the waveform data.

When to Read Waveform Data. To obtain waveform data, you must specify the TRACe parameters for the waveform data prior to sending the TRACe[:DATA]? query. After receiving the :DATA? query, the instrument will start passing the waveform information to the controller when addressed to talk.
After the Oscilloscope and measurement have been setup, the actual measurement can be performed. Because SCPI supports a number of different "levels" of commands, a number of different commands can be used to select and perform the same measurement function.

For example, the MEASure and CONFigure commands will each setup a FREQuency measurement. The illustration below shows how the MEASure and CONFigure commands differ in how they are used with READ?, INITiate, and FETCH? commands, and how they all perform the same measurement and get the data to the output buffer.

The following discussion is intended to provide only a brief overview of the necessary commands required for basic operation. For a complete list and description of ALL available measurement commands, see Chapter 6, CONFigure, INITiate, READ, FETCH, and MEASure subsystems.

Remember, just because measurement results are obtained does not guarantee that they are correct. It is highly recommended that all measurement results be analyzed to verify authenticity. Incorrect oscilloscope and measurement setup can cause undesirable measurement results. A returned +9.99999E+37 indicates an invalid measurement.

See Appendix C, Optimizing Measurements, for additional information on measurement techniques.
MEASure

MEASure is used to configure, initiate, and perform a measurement, then read the results. You select and perform a measurement with the following query:

MEAS:VOLT:function? (@xnn)

(xnn = Input, waveform memory, or math number
function = AC, AMPL, [DC], DCYC, FALL:OVER, FALL:PRE,
FALL:TIME, FREQ, FTIM, HIGH, LOW, MAX, MIN, NDUT, NWID,
PDUT, PER, PWID, RISE:OVER, RISE:PRE, RISE:TIME, RTIM,
TMAX, TMIN)

The measurement data obtained is stored in the output buffer. An enter statement can be used to transfer this data to the computer.

Note

On rise time and fall time measurements, the user can enter upper and lower threshold parameters.

CONFigure

CONFigure only sets up the configuration, and does not perform the actual measurement. You configure for a measurement with the following query:

CONF:VOLT:function? (@xnn)

(xnn = Input, waveform memory, or math number
function = AC, AMPL, [DC], DCYC, FALL:OVER, FALL:PRE,
FALL:TIME, FREQ, FTIM, HIGH, LOW, MAX, MIN, NDUT, NWID,
PDUT, PER, PWID, RISE:OVER, RISE:PRE, RISE:TIME, RTIM,
TMAX, TMIN)

Once the selected measurement is configured, the measurement is performed using a READ? or INITiate command.

Note

On rise time and fall time measurements, the user can enter upper and lower threshold parameters.
READ?

READ? performs a configured measurement and transfers the result to the output buffer. The actual measurement that is performed depends on if the function is included with the read query.

You perform and read the last configured measurement with the following query:

```
READ?
```

You perform and read a specific configured measurement with the following query:

```
```

In either case, the measurement result is then available to be transferred into the computer.

Notes

Remember, just because measurement results are obtained does not guarantee that they are correct. It is highly recommended that all measurement results be analyzed to verify authenticity. Incorrect oscilloscope and measurement setup can cause undesirable measurement results. A returned +9.99999E+37 indicates an invalid measurement.

See Appendix C, Optimizing Measurements, for additional information on measurement techniques.

INITiate

INITiate has two commands that each perform a different task.

```
INITiate[:IMMediate] performs the configured measurement and transfers the result to the input buffer. You perform a configured measurement on all enabled inputs with the following command:

INIT
```

You must perform an ABORt prior to executing the INITiate[:IMMediate] command.

The selected measurement is performed, and the data is stored in input buffer. Use the FETCH? query to transfer the result from input buffer to the output buffer.

INITiate:CONTinuous selects the sweep modes that are available. INITiate:CONTinuous ON requires a trigger event for each sweep. INITiate:CONTinuous OFF requires an INITiate[:IMMediate] command for each sweep. OFF is selected at reset. You select sweep mode with the following command:

```
INIT:CONT xxx (xxx = ON or OFF)
```
FETCH?

FETCH? retrieves the measurement information from the input buffer, waveform memory, or math function, and transfers it to the output buffer. The actual measurement result that is retrieved depends on if the function is included with the fetch query.

You retrieve the last measurement result with the following query:

FETCH?

You retrieve specific measurement results with the following query:

In either case, the measurement result is then available to be transferred into the computer.

Notes

Remember, just because measurement results are obtained does not guarantee that they are correct. It is highly recommended that all measurement results be analyzed to verify authenticity. Incorrect oscilloscope and measurement setup can cause undesirable measurement results. A returned +9.99999E+37 indicates an invalid measurement.

See Appendix C, Optimizing Measurements, for additional information on measurement techniques.
The following is a list of examples provided to illustrate using SCPI commands to perform basic measurements/functions using the Oscilloscope module.

- Autoscale Period Measurement
- Manual Rise Time Measurement
- Manual Rise Time and Fall Time Measurement
- AC Voltage Measurement
- Using the Backplane Trigger

All the examples are written using:

- an HP-IB select code of 7, primary address of 09, and secondary address of 05 for the Oscilloscope
- an HP Series 200/300 Computer with HP BASIC

Caution

MAXIMUM INPUT VOLTAGE. The maximum voltage that can be applied to the four input connectors is 5 Vrms at 50Ω or ±250 V (dc+peak ac<10 kHz) at 1MΩ.

Note

The following examples are intended to provide only a brief overview of the necessary commands required for basic operation. However, these examples can be used to provide a good starting point for much more complex programs. For a complete list and description of ALL SCPI commands, see Chapter 6.
Example: Autoscale Period Measurement

This example uses the Oscilloscope module to measure the period of an unknown signal connected to Input 2.

Caution

MAXIMUM INPUT VOLTAGE. The maximum voltage that can be applied to any of the four input connectors is 5 Vrms at 50Ω or ±250 V (dc+peak ac<10 kHz) at 1MΩ using a 1:1 Probe.

Note

Disconnect any signal on inputs 1, 3, and 4.

![Diagram of Autoscale Period Measurement]

Figure 5-6. Example: Autoscale Period Measurement

Execute:

10 OUTPUT 70905;"*CLS"
Clear status.

20 OUTPUT 70905;"*RST"
Reset the Oscilloscope to its default state (table 5-2).

30 OUTPUT 70905;"SYST:AUT"
Perform autoscale.

40 OUTPUT 70905;"MEAS:VOLT:PER? (8INP2)"
Measure input signal period, and read the measurement results

50 ENTER 70905;Results
Enter measurement results.

60 PRINT Results
Print measurement results.

70 END
Terminate program.
Comments

Signal Connection. An input signal must be connected to the Oscilloscope before initiating autoscale, and remain connected until the measurement is terminated.

Multiple Signal Connection using Autoscale. When more than one Oscilloscope input is connected to a signal source, initiating autoscale will setup the Oscilloscope controls using the signal connected closest to input 1. If a signal is not found on input 1 then input 2 is used, if a signal is not found on input 2 then input 3 is used, etc.

Measurement Time. The time it takes to complete a measurement is dependent on the input signal, acquisition type, and completion criteria. Under certain circumstances, a single measurement can take many hours to complete. See Appendix C, Optimizing Measurements, for additional information on measurement techniques.
Example: Manual Rise Time Measurement

This example uses the Oscilloscope module to measure the rise time of a signal connected to Input 3 using a 1MΩ 10:1 probe. The expected input is a 1.5 V clock at 1 MHz. The upper threshold value should be set to 80% and the lower threshold value should be set to 20%. The user is notified if returned measurement results are not within specified limits.

Note

When measuring rise time, the leading (positive-going) edge of the waveform must be present. In order to obtain accurate results (example signal is a clock-minimum rise time):

- the sweep should be setup so the rising edge is maximized over the time base range, and
- the trigger should be set so the rising edge is centered.

Figure 5-7. Example: Manual Rise Time Measurement
Execute:

10 OUTPUT 70905;"*CLS"
20 OUTPUT 70905;"*RST"
30 OUTPUT 70905;"CORR3:AFAC 10"
40 OUTPUT 70905;"VOLT3:RANG:PTP 2"
50 OUTPUT 70905;"SWE:TIME:RANG 100E-9"
60 OUTPUT 70905;"TRIG:SOUR INP3"
70 OUTPUT 70905;"TRIG:SLOP POS"
80 OUTPUT 70905;"TRIG:LEV 0.75"
90 OUTPUT 70905;"CONF:VOLT:RTIM 20,80 (INP3)"
100 OUTPUT 70905;"READ:VOLT:RTIM?"
110 ENTER 70905;Results
120 IF Results<21E-9 THEN 160
130 PRINT "Measurement out of Spec"
140 END

Comments

Signal Connection. An input signal must be connected to the Oscilloscope before initiating a measurement, and remain connected until the measurement is terminated.

Probe Attenuation Factor. Probe attenuation (correction) factor should be entered before the range and offset parameters. Setting the probe attenuation factor does not change the input sensitivity, but does scale the vertical and trigger parameters to compensate for the entered factor.

Range. Both vertical (VOLTage) and horizontal (SWEep) RANGE parameters are specified for full scale axis, and not per division values.

Measurement Time. The time it takes to complete a measurement is dependent on the input signal, acquisition type, and completion criteria. Under certain circumstances, a single measurement can take many hours to complete. See Appendix C, Optimizing Measurements, for additional information on measurement techniques.
Example: Manual Rise Time and Fall Time Measurement

This example uses the Oscilloscope module to measure the rise time and fall time of a signal connected to Input 3 using a 1MΩ 10:1 probe. The expected input is a 1.5 V clock at 1 MHz. The upper threshold value should be set to 80% and the lower threshold value should be set to 20% for both measurements.

Note

When measuring rise time, the leading (positive-going) edge of the waveform must be present. When measuring fall time, the trailing (negative-going) edge of the waveform must be present. In order to obtain accurate results (example signal is a clock-minimum rise/fall time):

- the sweep should be setup so the one complete cycle is maximized over the time base range, and
- the trigger should be set so both edges are present.

Figure 5-8. Example: Manual Rise Time and Fall Time Measurement
Execute:
10 OUTPUT 70905;"*CLS"
20 OUTPUT 70905;"*RST"
30 OUTPUT 70905;"CORR3:AFAC 10"
40 OUTPUT 70905;"VOLT3:RANG:PTP 2"
50 OUTPUT 70905;"SWE:TIME:RANG 200E-9"
55 OUTPUT 70905;"TRIG:SOUR INP3"
60 OUTPUT 70905;"TRIG:SLOP POS"
70 OUTPUT 70905;"TRIG:LEV 0.75"
80 OUTPUT 70905;"CONF:VOLT:RTIM 20,80, (INP3) "
85 Configure input 3 for rise time measurement, with thresholds of 20/80%.
90 OUTPUT 70905;"CONF:VOLT:FTIM 20,80, (INP3) "
95 Configure input 3 for a fall time measurement, with thresholds of 20/80%.
100 OUTPUT 70905;"READ:VOLT RTIM?"
105 Read rise time measurement results.
110 ENTER 70905;Rise_Results
120 OUTPUT 70905;"READ:VOLT FTIM?"
125 Read fall time measurement results.
130 ENTER 70905;Fall_Results
135 Enter measurement results.
140 PRINT Rise_Results;Fall_Results
145 Print results.
150 END

Comments

Signal Connection. An input signal must be connected to the Oscilloscope before initiating a measurement, and remain connected until the measurement is terminated.

Probe Attenuation Factor. Probe attenuation factor should be entered before the range and offset parameters. Setting the probe attenuation factor does not change the input sensitivity, but does scale the vertical and trigger parameters to compensate for the entered factor.

Range. Both vertical (VOLTage) and horizontal (SWEep) RANGE parameters are specified for full scale axis, and not per division values.

Measurement Time. The time it takes to complete a measurement is dependent on the input signal, acquisition type, and completion criteria. Under certain circumstances, a single measurement can take many hours to complete. See Appendix C, Optimizing Measurements, for additional information on measurement techniques.

Measurement Parameters. Parameters for both rise time and fall time must be sent with each command, even if the parameters are identical for both measurements. After a measurement has been READ?, the parameter is returned to the default condition (10%/90%) for any other measurements.
Example: AC Voltage Measurement

This example uses the Oscilloscope module to measure the AC RMS voltage of a signal connected to Input 4. The expected input is 10Vrms (at 50Ω) at 1 kHz. Because the input is greater than the maximum input voltage allowed, a 10:1 at 1MΩ probe is used. Because of the impedance mismatch, the approximate measurement result (at 50Ω) will be calculated.

Caution

MAXIMUM INPUT VOLTAGE. The maximum voltage that can be applied to any of the four input connectors is 5 Vrms at 50Ω or ±250 V (dc+peak ac<10 kHz) at 1MΩ using a 1:1 Probe.

Notes

For the example, the parameters are setup using autoscale, then adjusted as required. Disconnect any signal on inputs 1, 2, and 3.

Figure 5-9. Example: AC Voltage Measurement
Execute:

10 OUTPUT 70905;"*CLS"
20 OUTPUT 70905;"*RST"
30 OUTPUT 70905;"CORR4:AFAC 10"
40 OUTPUT 70905;"SYST:AUT"
50 OUTPUT 70905;"SWE:TIME:RANG 5E-3"
60 OUTPUT 70905;"MEAS:VOLT:AC (@INP4)"

70 ENTER 70905:Results
80 LET Results_A = Results/2
90 PRINT "Results_A"
100 END

Comments

Signal Connection. An input signal must be connected to the Oscilloscope before initiating a measurement, and remain connected until the measurement is terminated.

Probe Attenuation Factor. Probe attenuation factor should be entered before the range and offset parameters. Setting the probe attenuation factor does not change the input sensitivity, but does scale the vertical and trigger parameters to compensate for the entered factor.

Range. Both vertical (VOLTage) and horizontal (SWEep) RANGE parameters are specified for full scale axis, and not per division values.

Measurement Time. The time it takes to complete a measurement is dependent on the input signal, acquisition type, and completion criteria. Under certain circumstances, a single measurement can take many hours to complete. See Appendix C, Optimizing Measurements, for additional information on measurement techniques.

Input Mismatch. Because the expected input is 10VRms at 50Ω, and a 10:1 1MΩ probe is used, there is a mismatch at the input of the Oscilloscope. The returned measurement result is halved to compensate for the mismatch. While this will not provide an exact representation of the source output into 50Ω, the calculated result will be very close.
Example: Using a Backplane Trigger

The Oscilloscope is setup to perform an autoscale on a signal connected to input 1, then perform a frequency measurement when triggered from TTL Trigger bus line 5. The input signal is unknown.

Caution

MAXIMUM INPUT VOLTAGE. The maximum voltage that can be applied to any of the four input connectors is $5 \text{ Vrms at } 50\Omega$ or $\pm 250 \text{ V (dc+peak ac<10 kHz) at } 1\Omega$ using a 1:1 Probe.

Note

For the example, the parameters are setup using autoscale, then adjusted as required. Disconnect any signal on inputs 2, 3, and 4.

![Diagram of Oscilloscope and TTL Trigger](image)

Figure 5-10. Example: Using the Backplane TTL Trigger

The example is written using:

- an HP-IB select code of 7, primary address of 09, and secondary address of 05 for the Oscilloscope
- an HP-IB select code of 7, primary address of 09, and secondary address of 00 for the Mainframe
- an HP Series 200/300 Computer with HP BASIC
Execute:

10 OUTPUT 70905;"*CLS"
20 OUTPUT 70905;"*RST"
30 OUTPUT 70905;"SYST:AUT"
40 OUTPUT 70905;"TRIG:SOUR TTL5"
50 OUTPUT 70905;"INIT:CONT ON"
60 OUTPUT 70900;"OUTP:TTL5:STAT ON"
70 OUTPUT 70900;"OUTP:TTL5:SOUR INT"
80 OUTPUT 70900;"OUTP:TTL5:IMM"
90 OUTPUT 70905;"CONF:VOLT:FREQ (@INP1)"
100 OUTPUT 70905;"FETC:VOLT:FREQ?"
110 ENTER 70905;Results
120 PRINT Results
130 END

Comments

Multiple Signal Connection using Autoscale. When more than one Oscilloscope input is connected to a signal source, initiating autoscale will setup the Oscilloscope controls using the signal connected closest to input 1. If a signal is not found on input 1 then input 2 is used, if a signal is not found on input 2 then input 3 is used, etc.

Triggering TTL Trigger line 5. Any instrument in the mainframe can send a trigger on TTLTrg line 5 using the OUTPut:TTLTrg command. The example uses the Control Module to send the trigger after receiving the *TRG command.

After Triggering. After the trigger is received, the frequency measurement is initiated, and the results are returned.

Measurement Time. The time it takes to complete a measurement is dependent on the input signal, acquisition type, and completion criteria. Under certain circumstances, a single measurement can take many hours to complete. See Appendix C, Optimizing Measurements, for additional information on measurement techniques.
Recalling and Saving States

This section contains information about saving and recalling current Oscilloscope module states.

Storing States

The *SAV <numeric_state> command saves the current instrument state. The state number (1-4) is specified in the <numeric_state> parameter. All of the Oscilloscope and measurement setup parameters are saved.

Recalling States

The *RCL <numeric_state> command recalls a previously saved or existing state.

- Enter the number 0 in the <numeric_state> parameter to recall the configuration prior to executing the AUToscale or *RCL commands.

- Enter the number (1-4) in the <numeric_state> parameter of the desired saved state. If *SAV was not previously executed using the selected number, the Oscilloscope module will generate an error.
Recalling and Storing Waveforms

This section contains information about recalling and storing current Oscilloscope module waveforms. These controls allow for:

- Storing
- Turning on input connectors
- Turning off input connectors
- Erasing
- Merging

Note

The following discussion is intended to provide only a brief overview of the necessary commands required for basic operation. For a complete list and description of these commands, see Chapter 6, TRACe subsystem for more information.

Storing Waveforms

The TRACe:DATA] command is used to save an active, previously stored, or calculated waveform in a non-volatile waveform memory location. The following waveforms are available for viewing:

- INPut 1-4 - active waveform from input 1-4
- WMEMory 1-4 - stored in waveform memory (non-volatile)
- MATH 1-2 - calculated waveform (+,-,x)

You store a waveform with the following command:

```
TRAC xxx,yyy (xxx = memory destination WMEM 1-4 and yyy = source waveform INP1-4, WMEM 1-4, or MATH1-2)
```

Note

Whatever is present at the specified source (waveform, baseline, etc) is what will be saved in the specified memory destination.

Turning Inputs ON/OFF

The [SENSe:]INPut[:STATE] command is used to enable or disable an input waveform. You select an input waveform with the following command:

```
INPn xxx (n = Input number and xxx = ON or OFF)
```

Note

All unused inputs should be blanked. See Appendix C, Optimizing Measurements, for additional information.
Erasing Waveforms

The TRAC[e]:DATA command is used to erase the contents of pixel memory. You erase pixel memory with the following command:

```
TRAC xxx,0 (xxx = PMEM 1-2)
```

Merging Waveforms

The TRAC[e]:DATA command is used to merge the contents of pixel memory 0 with the current contents of pixel memory 1 or 2. You merge pixel memories with the following command:

```
TRAC xxx,PMEM0 (xxx = PMEM 1-2)
```
This section summarizes the query commands you can use to determine the configuration or state of the Oscilloscope. All commands end with the "?" which puts the data into the output buffer where you can retrieve it to your computer. See Chapter 4 for more information.

Unless otherwise specified, <n> is the input number (1-4).

<table>
<thead>
<tr>
<th>Query</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALCulate</td>
<td>Calculate subsystem queries</td>
</tr>
<tr>
<td>:DATA?</td>
<td>Calculation data (last executed)</td>
</tr>
<tr>
<td>:MATH<n>:STATE?</td>
<td>Math state, where n is the math number</td>
</tr>
<tr>
<td>CALibration</td>
<td>CALibration subsystem queries</td>
</tr>
<tr>
<td>:REPort? INPut<n></td>
<td>Calibration report, where n is the input number</td>
</tr>
<tr>
<td>:TNUU?</td>
<td>Current time null values for input pairs 1-2, 1-3, and 1-4</td>
</tr>
<tr>
<td>CONFIGure?</td>
<td>Last configured measurement</td>
</tr>
<tr>
<td>FETCH[:SCAlar]:VOLTage::<xxx>]</td>
<td>Configured measurement results, where xxx is the measurement</td>
</tr>
<tr>
<td>FORMat</td>
<td>Format subsystem queries</td>
</tr>
<tr>
<td>[:DATA]?</td>
<td>Waveform data format selection</td>
</tr>
<tr>
<td>INITiate</td>
<td>Initiate subsystem queries</td>
</tr>
<tr>
<td>:CONTinuous?</td>
<td>Initiate continuous state</td>
</tr>
<tr>
<td>MEASURE[:SCAlar]:VOLTage</td>
<td>Measure subsystem queries</td>
</tr>
<tr>
<td>:AC? [@yyy]</td>
<td>Measure AC RMS voltage and return results, where yyyy is the source</td>
</tr>
<tr>
<td>:AMPLitude? [@yyyy]</td>
<td>Measure voltage amplitude and return results, where yyyy is the source</td>
</tr>
<tr>
<td>:DC? [@yyyy]</td>
<td>Measure DC voltage and return results, where yyyy is the source</td>
</tr>
<tr>
<td>:DCYCLE? [<xxx>][@yyyy]</td>
<td>Measure duty cycle and return results, where yyyy is the source and xxx is the reference</td>
</tr>
<tr>
<td>:FALL</td>
<td>Measure overshoot (falling edge) and return results, where yyyy is the source</td>
</tr>
<tr>
<td>:OVERShoot? [@yyyy]</td>
<td>Measure preshoot and return results, where yyyy is the source</td>
</tr>
<tr>
<td>:PRESShoot? [@yyyy]</td>
<td>Measure fall time and return results, where yyyy is the source and xxx are the upper and lower thresholds</td>
</tr>
<tr>
<td>:TIME? [<xxx>] [@yyyy]</td>
<td>Measure fall time and return results, where yyyy is the source and xxx are the upper and lower thresholds</td>
</tr>
<tr>
<td>:FREQuency? [@yyyy]</td>
<td>Measure frequency and return results, where yyyy is the source</td>
</tr>
<tr>
<td>:FTime? [<xxx>] [@yyyy]</td>
<td>Measure high voltage and return results, where yyyy is the source</td>
</tr>
</tbody>
</table>
Querying the Oscilloscope — Continued

Unless otherwise specified, <n> is the input number (1-4).

<table>
<thead>
<tr>
<th>Query</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEASure[:SCALar]:VOLTage LOW? [(@yyyn)]</td>
<td>Measure low voltage and return results, where yyyn is the source</td>
</tr>
<tr>
<td>MEASure[:SCALar]:VOLTage MAXimum? [(@yyyn)]</td>
<td>Measure maximum voltage and return results, where yyyn is the source</td>
</tr>
<tr>
<td>MEASure[:SCALar]:VOLTage MINimum? [(@yyyn)]</td>
<td>Measure minimum voltage and return results, where yyyn is the source</td>
</tr>
<tr>
<td>MEASure[:SCALar]:VOLTage NDUTycycle? [<xxx>][(@yyyn)]</td>
<td>Measure negative duty cycle and return results, where yyyn is the source and xxx is the reference</td>
</tr>
<tr>
<td>MEASure[:SCALar]:VOLTage NWIDth? [<xxx>][(@yyyn)]</td>
<td>Measure negative pulse width and return results, where yyyn is the source and xxx is the reference</td>
</tr>
<tr>
<td>MEASure[:SCALar]:VOLTage PDUTycycle? [<xxx>][(@yyyn)]</td>
<td>Measure positive duty cycle and return results, where yyyn is the source and xxx is the reference</td>
</tr>
<tr>
<td>MEASure[:SCALar]:VOLTage PERiod? [(@yyyn)]</td>
<td>Measure period and return results, where yyyn is the source</td>
</tr>
<tr>
<td>MEASure[:SCALar]:VOLTage PWIDth? [<xxx>][(@yyyn)]</td>
<td>Measure positive pulse width and return results, where yyyn is the source and xxx is the reference</td>
</tr>
<tr>
<td>RISE OVERshoot? [(@yyyn)]</td>
<td>Measure overshoot (rising edge) and return results, where yyyn is the source</td>
</tr>
<tr>
<td>RISE PREShoot? [(@yyyn)]</td>
<td>Measure preshoot (rising edge) and return results, where yyyn is the source</td>
</tr>
<tr>
<td>RISE TIME? [<xxx>][(@yyyn)]</td>
<td>Measure rise time and return results, where yyyn is the source and xxx are the upper and lower thresholds</td>
</tr>
<tr>
<td>RISE RTIME [<xxx>][(@yyyn)]</td>
<td>Measure rise time and return results, where yyyn is the source and xxx are the upper and lower thresholds</td>
</tr>
<tr>
<td>TMAXimum? [(@yyyn)]</td>
<td>Return time at maximum voltage, where yyyn is the source</td>
</tr>
<tr>
<td>TMINimum? [(@yyyn)]</td>
<td>Return time at minimum voltage, where yyyn is the source</td>
</tr>
</tbody>
</table>

MEMory

<table>
<thead>
<tr>
<th>Query</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VME ADDRESS?</td>
<td>Memory address selected</td>
</tr>
<tr>
<td>VME MEASURE ADDRESS?</td>
<td>Memory measurement address selected</td>
</tr>
<tr>
<td>VME STATE?</td>
<td>Memory measure state</td>
</tr>
<tr>
<td>VME SIZE?</td>
<td>Memory size</td>
</tr>
<tr>
<td>VME STATE?</td>
<td>Overall VME memory state</td>
</tr>
</tbody>
</table>
Querying the Oscilloscope — Continued

Unless otherwise specified, `<n>` is the input number (1-4).

<table>
<thead>
<tr>
<th>Query</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>OUTPut</code></td>
<td>Output subsystem queries</td>
</tr>
<tr>
<td><code>:ECLTrg<xxxx>:STATe?</code></td>
<td>ECL trigger bus line state, where xxxx is line number</td>
</tr>
<tr>
<td><code>:EXTernal[:STATe]</code></td>
<td>Front panel trigger connector state</td>
</tr>
<tr>
<td><code>[:STATe]?</code></td>
<td>Overall output state</td>
</tr>
<tr>
<td><code>:TTLTrg<xxxx>:STATe?</code></td>
<td>TTL trigger bus line state, where xxxx is line number</td>
</tr>
<tr>
<td><code>READ[:SCALar]:VOLTage[:<xxxx>]?</code></td>
<td>Perform a configured measurement and return results, where xxx is the measurement</td>
</tr>
<tr>
<td><code>:[SENSe:]</code></td>
<td>Sense subsystem queries</td>
</tr>
<tr>
<td><code>AVERage</code></td>
<td>Average subsystem queries</td>
</tr>
<tr>
<td><code>:COUNT?</code></td>
<td>Acquisition count value</td>
</tr>
<tr>
<td><code>[:STATe]?</code></td>
<td>Acquisition type (average)</td>
</tr>
<tr>
<td><code>:TYPE?</code></td>
<td>Acquisition type (scalar and envelope)</td>
</tr>
<tr>
<td><code>CORREction<n></code></td>
<td>Correction subsystem, where n is the input number</td>
</tr>
<tr>
<td><code>:AFACtor?</code></td>
<td>Input’s probe attenuation</td>
</tr>
<tr>
<td><code>INPUT<n></code></td>
<td>Input subsystem, where n is the input number</td>
</tr>
<tr>
<td><code>:COUPling?</code></td>
<td>Input’s coupling</td>
</tr>
<tr>
<td><code>:FILTER</code></td>
<td><code>[:LPASS]:STATe]?</code></td>
</tr>
<tr>
<td></td>
<td>Input’s low pass filter state</td>
</tr>
<tr>
<td></td>
<td><code>:HPASS]:STATe]?</code></td>
</tr>
<tr>
<td></td>
<td>Input’s high pass filter state</td>
</tr>
<tr>
<td><code>:IMPedance?</code></td>
<td>Input’s impedance value</td>
</tr>
<tr>
<td><code>[:STATe]?</code></td>
<td>Input’s state</td>
</tr>
<tr>
<td><code>SWEep</code></td>
<td>Sweep subsystem</td>
</tr>
<tr>
<td><code>:POINTS?</code></td>
<td>Acquisition points value</td>
</tr>
<tr>
<td></td>
<td>Acquisition complete value</td>
</tr>
<tr>
<td><code>:TIME</code></td>
<td><code>:CENTER?</code></td>
</tr>
<tr>
<td></td>
<td>Sweep center value</td>
</tr>
<tr>
<td></td>
<td><code>:DELAY?</code></td>
</tr>
<tr>
<td></td>
<td>Time base delay value</td>
</tr>
<tr>
<td></td>
<td><code>:LINK?</code></td>
</tr>
<tr>
<td></td>
<td>Delay reference selection</td>
</tr>
<tr>
<td></td>
<td><code>:RANGE?</code></td>
</tr>
<tr>
<td></td>
<td>Time base full scale range value</td>
</tr>
<tr>
<td></td>
<td><code>:SPAN?</code></td>
</tr>
<tr>
<td></td>
<td>Time base full scale range value</td>
</tr>
<tr>
<td><code>:START?</code></td>
<td>Sweep start value</td>
</tr>
<tr>
<td><code>:STOP?</code></td>
<td>Sweep stop value</td>
</tr>
<tr>
<td><code>VOLTage<n></code></td>
<td>Voltage subsystem, where n is the input number</td>
</tr>
<tr>
<td><code>:RANGE</code></td>
<td><code>:LOWer?</code></td>
</tr>
<tr>
<td></td>
<td>Input’s lower range value</td>
</tr>
<tr>
<td></td>
<td><code>:OFFSet?</code></td>
</tr>
<tr>
<td></td>
<td>Input’s offset value</td>
</tr>
<tr>
<td></td>
<td><code>[:PTPeak]?</code></td>
</tr>
<tr>
<td></td>
<td>Input’s full scale range value</td>
</tr>
<tr>
<td></td>
<td><code>:UPPer?</code></td>
</tr>
<tr>
<td></td>
<td>Input’s upper range value</td>
</tr>
</tbody>
</table>
Querying the Oscilloscope — Continued

Unless otherwise specified, \(<n>\) is the input number (1-4).

<table>
<thead>
<tr>
<th>Query</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATus</td>
<td>Status subsystem commands</td>
</tr>
<tr>
<td>:OPERation?</td>
<td>Operation event register value (trigger)</td>
</tr>
<tr>
<td>:QUESTionable?</td>
<td>Questionable event register value</td>
</tr>
<tr>
<td>:CALibration?</td>
<td>Calibration event register value</td>
</tr>
<tr>
<td>:INPUT<(n>)?</td>
<td>Input's event register value</td>
</tr>
<tr>
<td>:AD?</td>
<td>Input's AD event register value</td>
</tr>
<tr>
<td>:DELay?</td>
<td>Input's delay event register value</td>
</tr>
<tr>
<td>:GAIN?</td>
<td>Input's gain event register value</td>
</tr>
<tr>
<td>:HYSteresis?</td>
<td>Input's hysteresis event register value</td>
</tr>
<tr>
<td>:LTrigger?</td>
<td>Input's logic trigger event register value</td>
</tr>
<tr>
<td>:OFFSet?</td>
<td>Input's offset event register value</td>
</tr>
<tr>
<td>:TNULi?</td>
<td>Input's time null event register value</td>
</tr>
<tr>
<td>:TRIGger?</td>
<td>Input's trigger event register value</td>
</tr>
<tr>
<td>:DCALibration?</td>
<td>Default calibration event register value</td>
</tr>
<tr>
<td>:PROBe?</td>
<td>Probe event register value</td>
</tr>
<tr>
<td>:TEST?</td>
<td>Test event register value</td>
</tr>
<tr>
<td>:ACQUisition?</td>
<td>Acquisition test event register value</td>
</tr>
<tr>
<td>:AD?</td>
<td>Acquisition test AD event register value</td>
</tr>
<tr>
<td>:ATRigger?</td>
<td>Acquisition test analog trigger event register value</td>
</tr>
<tr>
<td>:DA?</td>
<td>Acquisition test DA event register value</td>
</tr>
<tr>
<td>:LTRigger?</td>
<td>Acquisition test logic trigger event register value</td>
</tr>
<tr>
<td>:TIMEbase?</td>
<td>Acquisition test time base event register value</td>
</tr>
<tr>
<td>:INTerpolator?</td>
<td>Time base interpolator event register value</td>
</tr>
<tr>
<td>:RAM?</td>
<td>RAM test event register value</td>
</tr>
<tr>
<td>:ACQuisition?</td>
<td>Acquisition RAM test event register value</td>
</tr>
<tr>
<td>:DISPlay?</td>
<td>Display RAM test event register value</td>
</tr>
<tr>
<td>:NVOLatile?</td>
<td>Non-volatile RAM test event register value</td>
</tr>
<tr>
<td>:SYStem?</td>
<td>System RAM test event register value</td>
</tr>
<tr>
<td>:ROM?</td>
<td>ROM test event register value</td>
</tr>
<tr>
<td>:INProtect?</td>
<td>Non-protected RAM test event register value</td>
</tr>
<tr>
<td>:SYStem?</td>
<td>System ROM test event register value</td>
</tr>
<tr>
<td>SYSTEM</td>
<td>System subsystem queries</td>
</tr>
<tr>
<td>:ERRor?</td>
<td>Error number and message</td>
</tr>
<tr>
<td>:LANGuage?</td>
<td>Programming language selected</td>
</tr>
<tr>
<td>:SET?</td>
<td>Setup data (block)</td>
</tr>
<tr>
<td>:VERSion?</td>
<td>SCPI revision (date and number)</td>
</tr>
<tr>
<td>TRACe</td>
<td>Waveform data (block), where xxx is the source</td>
</tr>
<tr>
<td>[:DATA]? <xxx></td>
<td>Waveform data points value, where xxx is the source</td>
</tr>
<tr>
<td>:POInts? <xxx></td>
<td>Preamble (block), where xxx is the source</td>
</tr>
<tr>
<td>:PREAmble? <xxx></td>
<td>Trigger subsystem queries</td>
</tr>
<tr>
<td>TRIGger</td>
<td>Trigger holdoff value (events)</td>
</tr>
<tr>
<td>:ECount?</td>
<td>Trigger noise reject selected</td>
</tr>
<tr>
<td>:HYSTeresis?</td>
<td>Trigger level value</td>
</tr>
<tr>
<td>:LEVel?</td>
<td>Trigger slope selected</td>
</tr>
<tr>
<td>:SLOPe?</td>
<td>Trigger source selected</td>
</tr>
<tr>
<td>:SOURce?</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 6 — Oscilloscope SCPI Command Reference

Using This Chapter .. 6-1
Command Types ... 6-1
 Common Command Format ... 6-1
 SCPI Command Format ... 6-1
 Command Separator ... 6-2
 Abbreviated Commands .. 6-2
 Implied Commands .. 6-2
 Parameters .. 6-3
Linking Commands ... 6-4
SCPI Command Reference ... 6-4
 ABORt Subsystem .. 6-5
 CALCulate Subsystem ... 6-6
 CALibration Subsystem ... 6-10
 CONFigure Subsystem ... 6-17
 CONFigure? Subsystem .. 6-18
 FETCh? Subsystem ... 6-51
 FORMat Subsystem ... 6-53
 INITiate Subsystem .. 6-55
 MEASure Subsystem ... 6-58
 MEMORY Subsystem ... 6-93
 OUTPut Subsystem .. 6-101
 READ? Subsystem ... 6-106
 [SENSe:] Subsystem ... 6-108
 AVERage Subsystem ... 6-109
 CORRection Subsystem .. 6-113
 INPut Subsystem .. 6-115
 SWEep Subsystem .. 6-120
 VOLTage Subsystem .. 6-130
 STATUs Subsystem .. 6-136
 SYSTem Subsystem .. 6-172
 TEST Subsystem .. 6-178
 TRACe Subsystem .. 6-181
 TRIGger Subsystem .. 6-189
Command Cross Reference to COMP Commands 6-194
Common Command Reference ... 6-199
Command Quick Reference .. 6-201
SCPI Commands Quick Reference ... 6-201
IEEE 488.2 Common Commands Quick Reference 6-211
Oscilloscope SCPI Command Reference

Using This Chapter

This chapter describes Standard Commands for Programmable Instruments (SCPI) commands and summarizes IEEE 488.2 Common (*) commands applicable to the Oscilloscope module.

See the HP E1405 User’s Guide for additional information on SCPI and common commands. This chapter contains the following sections:

- Command Types .. Page 6-1
- SCPI Command Reference Page 6-4
- Command Cross Reference to COMP commands Page 6-194
- Common Command Reference Page 6-199
- Command Quick Reference Page 6-201

Command Types

Commands are separated into two types: IEEE 488.2 Common Commands and Standard Commands for Programmable Instruments (SCPI) Commands.

The IEEE 488.2 standard defines the Common Commands that perform functions like reset, self-test, status byte query, etc. Common commands are four or five characters in length, always begin with the asterisk character (*), and may include one or more parameters. The command keyword is separated from the first parameter by a space character. Some examples of Common Commands are shown below:

*RST *CLS *STB?

SCPI Command Format

The SCPI commands perform functions like setting parameters, performing measurements, querying instrument states, and retrieving data. A subsystem command structure is a hierarchical structure that usually consists of a top level (or root) command, one or more lower level sub commands, and their parameters. The following example shows part of a typical subsystem:

[SENSe:]
INPut<number>
:COUPling AC|DC
:IMPedance?

[SENSe:] is the root command, INPut is the second level sub command with <number> as a parameter, and :COUPling and :IMPedance? are third level commands/queries with AC|DC as a parameter.
Command Separator

A colon (:) always separates one command from the next lower level command as shown below:

[SENSe:]INPut<number>::IMPedance?

Colons separate the root command from the second level command ([SENSe:]INPut), and the second level from the third level query (INPut<number>::IMPedance?).

Abbreviated Commands

The command syntax shows most commands as a mix of upper and lower case letters. The upper case letters indicate the abbreviated spelling for the command. For shorter program lines, send only the abbreviated form. For better program readability, you may send the entire command. The instrument will only accept either the abbreviated form or the entire command.

For example, if the command syntax shows IMPedance?, then IMP? and IMPEDANCE? are both acceptable forms. Other forms of IMPedance?, such as IM? will generate an error. You may use upper or lower case letters. Therefore, IMPEDANCE? and IMPedance? are acceptable.

Implied Commands

Implied commands are those which appear in square brackets ([]) in the command syntax. (Note that the brackets are not part of the command and are not sent to the instrument.) Suppose you send a root level and second level command, but do not send the third level implied command. In this case, the instrument assumes you intend to use the implied command and it responds as if you had sent it.

Examine the portion of the [SENSe:] subsystem shown below:

[SENSe:]
INPut<number>:
:COUPling AC|DC
::IMPedance?

The first level command [SENSe:] is an implied command. To query the instrument’s input 1 impedance selection, you can send either of the following command statements:

[SENS:]INP1:IMP? or INP1:IMP?
Parameters

Parameter Types. The following table contains explanations and examples of parameter types you might see later in this chapter.

<table>
<thead>
<tr>
<th>Parameter Type</th>
<th>Explanations and Examples</th>
</tr>
</thead>
</table>
| **Numeric** | Accepts all commonly used decimal representations of numbers including optional signs, decimal points, and scientific notation.
123 or 1.23E2; -123 or -1.23E2; .123, 1.23E-1, or 1.23000E-01.
Accepts all commonly used suffixes with decimal representations of numbers including optional signs, and decimal points.
.123S or 123MS; 1234OHM or 1.234KOHM.
Voltage = "V" for E-6, "MV" for E-3, "V" for E0, "KV" for E3.
Percent = "PCT".
Ohms = "OHM", "KOHM" for E3, "MOHM" for E6.
Frequency = "HZ" for E0, "KHZ" for E3, "MHZ" for E6, "GHZ" for E9.
Time = "PS" for E-12, "NS" for E-9, "US" for E-6, "MS" for E-3, "S" for E0.
Special cases include MIN and MAX.
MIN (selects minimum value available), and MAX (selects maximum value available). |
| **Boolean** | Represents a single binary condition that is either true or false.
1 or ON; 0 or OFF |
| **Block** | Definite block program data format specified in IEEE 488.2. |
| **Discrete** | Selects from a finite number of values. These parameters use mnemonics to represent each valid setting.
An example is the [SENSe:]INPut<ct> Coupling <mode> command where <mode> can be AC or DC. |

Optional Parameters. Parameters shown within square brackets ([I]) are optional parameters. (Note that the brackets are not part of the command and are not sent to the instrument.) If you do not specify a value for an optional parameter, the instrument chooses a default value. For example, consider the MEM:VME:ADDR? [<MIN | MAX>] command. If you send the command without specifying a parameter, the present external VME memory address is returned. If you send the MIN parameter, the command returns the lowest address available (2097152). If you send the MAX parameter, the command returns the maximum address available (14647294). Be sure to place a space between the command and the parameter.
Linking Commands

Parameters Out of Range - Set to Limit. If an out of range parameter is automatically adjusted to an acceptable value, bit 10 in the STATus:QUEStionable register will be set true (1). For example, if CORRection1:AFACtor 0.1 is entered, the value is set to 0.9 (lowest available setting) and bit 10 is set to "1".

Linking IEEE 488.2 Common Commands with SCPI Commands. Use a semicolon between the commands. For example:

```
*CLS;*RST;CAL:REP? INP1
```

Linking Multiple SCPI Commands. Use both a semicolon and a colon between the commands. For example:

```
INP1:COUP AC;:SYST:ERR?
```

SCPI also allows several commands within the same subsystem to be linked with a semicolon. For example:

```
CAL:SCAL:VERT;:CAL:SCAL:BCAL
```

or

```
CAL:SCAL:VERT;BCAL
```

SCPI Command Reference

This section describes the Standard Commands for Programmable Instruments (SCPI) commands for the Oscilloscope module. Commands are listed alphabetically by subsystem and also alphabetically within each subsystem. Command guides are printed in the top margin of each page. The left guide indicates the first command listed on that page. The right guide indicates the last command listed on that page. Where only a single command appears on a page, the left and right guides will be the same.
ABORT

The ABORT command is used to stop acquiring data for the active waveform.

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>Syntax</th>
<th>ABORT</th>
</tr>
</thead>
</table>

Example

Stop acquiring data

```plaintext
ABOR
```

Comments

- **Restart Acquiring Data:** Use the INITiate command to start data acquisition.
- **Related Commands:** INITiate:CONTinuous.
- **RST Condition:** After a *RST, the instrument acts as though an ABORT has occurred.
The CALCulate command subsystem defines three functions that use signals acquired on INPut 1 to 4 or stored in WMEMories 1-4 as operands to create altered waveforms. The selected input is enabled when defined as an operand. Two different functions (MATH1 and 2) can be specified. The results are read using the DATA? query, and can be transferred into waveform memory using the TRACe[:DATA] command.

CALCulate[:STATe] acts like the master switch for the CALCulate subsystem. If the MATH 1 or 2 states are on, a math function will ONLY occur when the CALCulate[:STATe] is set to ON.

Subsystem Syntax

```
CALCulate
:DATA?
:MATH<number>
  [:EXPRession] <function>
  :STATe <mode>
  :STATe?
  :STATe <mode>
  :STATe?
```

:DATA?

CALCulate:DATA? returns the calculated results of the last math operation performed. The data is sent to the output buffer.

Example

Query results of last math function

```
dimension statement String for data
CALC:STAT ON Enable the calculate subsystem
CALC:MATH1:STAT ON Enable math 1 state
CALC:MATH1 (INP1-INP2) Subtract signal present on input 2 from signal present on input 1, retain as math 1
CALC:DATA? Query instrument to return results
enter statement Enter math results into computer
```

Comments

- Reading MATH 1 or 2 Results. The results of the last function performed are read using the DATA? query. Math 1 or 2 results can be selectively read into waveform memory using the TRACe[:DATA]? command.
- Returned Format: IEEE definite block format.
- Related Commands: TRACe[:DATA], FORMat[:DATA].
CALCulate:MATH[:EXPReSSion]

CALCulate:MATH<number>[:EXPReSSion] <function> is used to algebraically sum (+), subtract (−), or multiply (*) two defined operands (sources). Results are retained in the MATH number specified.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1 or 2</td>
<td>none</td>
</tr>
<tr>
<td>function</td>
<td>discrete</td>
<td>(<source> + <source>)</td>
<td>none</td>
</tr>
<tr>
<td>source</td>
<td>discrete</td>
<td>INPutn (n=1 to 4)</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WMEMoryn (n=1 to 4)</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Algebraically sum input 1 with input 2 and retain results in math1

```
CALC:MATH1 (INP1-INP2)
```

Subtract signal present on

input 2 from signal present on

input 1, retain as math1

Comments

- **Performing Math Functions:** MATH:STATe must be ON before calculations can be performed.

- **Math Number:** Used to specify where math results are retained. Resulting waveform can be read using the CALCulate:DATA? query.

- **Specifying Function:** Three choices are used to specify the source(s) and math function to be performed. Parentheses "()" are used to specify individual functions.

 (source - source) is used to algebraically subtract two defined operands.

 (source + source) is used to algebraically add two defined operands.

 (source * source) is used to algebraically multiply two defined operands.

- **Specifying Source:** Inputs 1-4 and/or waveform memories 1-4 can be defined as the operands for the math function.

- **Related Commands:** CALCulate:DATA?,CALCulate:STATe, CALCulate:MATH:STATe.

- **RST Condition:** MATH1 and 2 default to INPut1+INPut1.
CALCulate:MATH:STATE

CALCulate:MATH<number**>:STATe <mode>** enables or disables the specified math function.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1 or 2</td>
<td>none</td>
</tr>
<tr>
<td>mode</td>
<td>boolean</td>
<td>OFF</td>
<td>0</td>
</tr>
</tbody>
</table>

Example

Enabling math 1 function

```
CALC:MATH1:STAT ON
```

Enable math function 1

Comments

- Mode: Integer values can be substituted for the OFF (0) and ON (1) parameters.
- *RST Condition: Both MATH1 and 2 default to OFF.

CALCulate:MATH<**number**>:STATe?

CALCulate:MATH<number**>:STATe?** returns a value to show whether use of the math function is enabled (ON) or disabled (OFF). The value is sent to the output buffer.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1 or 2</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Querying the math function 1 state

```
dimension statement String for data
CALC:MATH1:STAT ON Enable math function 1
CALC:MATH1:STAT? Query instrument to return math function state
enter statement Enter value into computer
```
CALCulate:STATe

CALCulate:STATe <mode> enables or disables the CALCulate subsystem. *mode enables (ON|1) or disables (OFF|0) all selected MATH (1-2) functions.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode</td>
<td>boolean</td>
<td>ON</td>
<td>OFF</td>
</tr>
</tbody>
</table>

Example

Enabling math 1 functions

```
CALC:MATH1:STAT ON
```

Enable math 1

```
CALC:STAT ON
```

Enable the calculate subsystem

Comments

- **Selecting Math Functions:** Use the CALCulate:MATH<n>:STATe command to enable a specific function. Use the CALCulate:STATe command to enable the subsystem.

- **RST Condition:** Defaults to OFF.

CALCulate:STATe?

CALCulate:STATe? queries the present state of the CALCulate subsystem. The query returns ON if the calculate subsystem is enabled or OFF if the calculate subsystem is disabled. The value is sent to the output buffer. See CALCulate:STATe command for more information.

Example

Query calculate subsystem state

```
dimension statement String for data
CALC:STAT ON Enable the calculate subsystem
CALC:STAT? Query instrument to return calculate state
enter statement Enter value into computer
```
The CALibration command subsystem contains commands to perform probe/self calibrations, and set input-to-input time nulls.

Subsystem Syntax

```
CALibration
  :PCALibration
  :ATTenuation
  :BCALibration
  :INPut<number>
  :TNULI
    :INP1TO<number> <time>
  :REPort? <input>
  :SCALLibration
  :BCALibration
  :DCALibration
  :DELay <input>
  :DOUTput <level>
  :LTCalibration
  :TNULI <input_skew>
  :VERTical
  :TNULI <value1>,<value2>,<value3>
  :TNULI?
```

:PCALibration:ATTenuation:BCALibration

CALibration: performs an attenuation calibration on the input number specified by the CAL:PCAL:ATT:INP<n> command. Instrument calibrates input gain at the point connected to the DC Calibrator Output connector (probe, cable, etc). Probe attenuation is then calculated from the results, and a correction is automatically entered in the correct CORRection<n>:AFACtor setting.

Example

Perform attenuation calibration on input 4

This example calibrates the input gain on input 4. For example, a 10:1 attenuator probe is connected to the DC Calibrator Output connector from the Input 4 connector.

```
CAL:PCAL:ATT:INP4 Attenuation calibration input 4
pause To connect probe to DC Calibrator
CAL:PCAL:ATT:BCAL Output from Input 4 connector
Perform attenuation calibration. Correction automatically stored in
INP4:PROB
```

Comments

- **Valid Calibration:** Input gain is corrected using calculated probe attenuation values from 0.9:1 to 250:1. If the measured results cause the calculated attenuation factor to be out of this range, an error will be generated.

- **Related Commands:** CAL:PCAL:ATT:INPut<n>, CORRection<n>:AFACtor.
CALibration:PCALibration:ATTenuation:INPut

CALibration:PCALibration:ATTenuation:INPut<number> selects the input number that will be calibrated when the CAL:PCAL:ATT:BCAL command is executed.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1 to 4</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Set attenuation calibration input to 4

CAL:PCAL:ATT:INP4

Attenuation calibration input to 4

Comments

CALibration:PCALibration:TNULI:INP1TO

CALibration:PCALibration:TNULI:INP1TO<number> <time> is used to set the timing of inputs 2, 3, OR 4 to correspond with input 1. Use to eliminate any time discrepancies between inputs and minimize input to input skew variations. Use to manually adjust any differences in cable length.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>2 to 4</td>
<td>none</td>
</tr>
<tr>
<td>time</td>
<td>numeric</td>
<td>-50NS to +70NS</td>
<td>S</td>
</tr>
</tbody>
</table>

Example

Set time null from input 1 to 3 to 25 ns.

CAL:PCAL:TNUL:INP1TO3 25E-9 Input 1 to 3 time null to 25 ns

Comments

- Query Time Null: Use the CALibration:TNUL? query to return current time null settings.
- CALibration:TNUL1 Command: This command is similar to the CALibration:TNUL? query, except the three time null values can be entered separately.
- Related Commands: CALibration:TNULi.
:REPort?

CALibration:REPort? <input> is used to query the current calibration status of the instrument. Each input's status is queried separately. The data is sent to the output buffer.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td>numeric</td>
<td>INPut (n=1 to 4)</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Query input 2 calibration results

dimension statement String to hold data
CAL:REPort? INP2 Query input 2 calibration results
enter statement Enter value into computer

Comments

- Returned Format: The calibration results are returned in the following format:

 Input1 A/D X, Gain X, Offset X, Hysteresis X, Trigger X,
 Delay X, Logic Trigger X

 Input2-4 A/D X, Gain X, Offset X, Hysteresis X, Trigger X,
 Delay X, Time Null X

 Where X is "P"=Passed, "F"=Failed, "D"=Defaulted,
 "C"=Corrupted. If X prefixed by a ",", indicates a new ROM
 revision without a recalibration.

- Related Commands: CAL:SCAL:VERTical,
 CAL:SCAL:DCALibration, CAL:SCAL:DELay,
 CAL:SCAL:LTCalibration, CAL:SCAL:TNULL.

:SCALibration:BCALibration

CALibration:SCALibration:BCALibration is used to begin a self calibration routine. The routine that is performed is dependent on the SCALibration command configured prior to executing the BCALibration command.

Example

Begin a Logic Trigger Calibration

CAL:SCAL:LTC Configure logic trigger calibration
CAL:SCAL:BCAL Begin logic trigger calibration

Comments

- Self Calibration: If the BCALibration command is executed without first defining the SCALibration routine to be performed, a bit will be set in the STATus:QUEStionable register.

- Calibration Protect Switch: The Calibration Protect switch must be set to the UNPROTECTED setting prior to performing a SCALibration routine.

- Related Commands: CAL:SCAL:VERTical,
 CAL:SCAL:DCALibration, CAL:SCAL:DELay,
 CAL:SCAL:LTCalibration, CAL:SCAL:TNULL, CAL:TNULL,
 STATus:QUEStionable.
CALibration:SCALibration:DCALibration

CALibration:SCALibration:DCALibration is used to load "default" calibration data. Default calibration data is set at the factory and is dependent on the ROM revision currently installed. This command should only be used by service personnel. Procedures for performing this calibration are provided in the Service Manual.

Example

Overwrite all existing calibration data with default calibration data

```
CAL:SCAL:DCAL
```

Configure for a default calibration routine

```
CAL:SCAL:BCAL
```

Load default calibration data

Comments

- **Calibration Protect Switch:** The Calibration Protect switch must be set to the UNPROTECTED setting prior to performing a default calibration routine.

- **Related Commands:** CAL:SCAL:BCALibration, CAL:REPort?.

CALibration:SCALibration:DElay

CALibration:SCALibration:DElay `<input>` performs a delay calibration on all four inputs, one at a time. Each input must be connected to the AC Calibrator Output prior to executing the calibration routine for that input. The results are stored and used by the instrument to maintain measurement accuracy.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>input</code></td>
<td>numeric</td>
<td>INPutn (n=1 to 4)</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Chapter 5 contains an example on performing a delay calibration

Comments

- **Calibration Results:** Delay calibration results can be reviewed using the CALibration:REPort? query.

- **Calibration Protect Switch:** The Calibration Protect switch must be set to the UNPROTECTED setting prior to performing a calibration routine.

- **Related Commands:** CAL:SCAL:BCALibration, CAL:REPort?.
CALibration:SCALibration:DOUTput

CALibration:SCALibration:DOUTput <level> is used to set the output level of the DC Calibrator output connector to 0 volts (ZVOLT) or 5 volts (FVOLT).

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>level</td>
<td>discrete</td>
<td>ZVOLT</td>
<td>FVOLT</td>
</tr>
</tbody>
</table>

Example

Set DC calibrator output connector to 5 V

CAL: SCAL:DOUT FVOL DC calibrator output to 5 V

Comments

- *RST Condition: Defaults to ZVOLT (0 volts).

CALibration:SCALibration:LT Calibration

CALibration:SCALibration:LT Calibration performs a logic trigger calibration. Input 1 must be connected to the AC Calibrator Output prior to executing the calibration routine. The results are stored and used by the instrument to maintain measurement accuracy.

Example

Chapter 5 contains an example on performing a logic trigger calibration

Comments

- Prior to Logic Trigger Calibration Execution: Prior to executing the logic trigger calibration routine, the calibration results must be reviewed using the CALibration:REP ort? query. All four input calibration results must indicate "P" before the logic trigger calibration can be executed.

- Calibration Protect Switch: The Calibration Protect switch must be set to the UNPROTECTED setting prior to performing a calibration routine.

- Calibration Results: Logic trigger calibration results can be reviewed using the CALibration:REP ort? query.

- Related Commands: CAL:SCAL:BCALibration, CAL:REPort?.
:SCALibration:TNULI

CALibration:SCALibration:TNULI <input_skew> performs a time null calibration on one set of inputs at a time. The results are stored and used by the instrument to maintain measurement accuracy.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>input_skew</td>
<td>discrete</td>
<td>INP1TO2</td>
<td>INP1TO3</td>
</tr>
</tbody>
</table>

Example

Chapter 5 contains an example on performing a time null calibration.

Comments

- Calibration Protect Switch: The Calibration Protect switch must be set to the UNPROTECTED setting prior to performing a calibration routine.
- Calibration Results: Time null calibration results can be reviewed using the CALibration:REPort? query.
- Related Commands: CAL:SCAL:BCALibration, CAL:REPort?.

:SCALibration:VERTical

CALibration:SCALibration:VERTical performs a vertical calibration on all four inputs simultaneously. All inputs must be connected to the DC Calibrator Output prior to executing the calibration routine. The results are stored and used by the instrument to maintain measurement accuracy.

Example

Chapter 5 contains an example on performing a vertical calibration.

Comments

- Calibration Results: Vertical calibration results can be reviewed using the CALibration:REPort? query.
- Calibration Protect Switch: The Calibration Protect switch must be set to the UNPROTECTED setting prior to performing a calibration routine.
- Related Commands: CALibration:SCALibration:BCALibration, CALibration:REPort?.
CALibration:TNULI <value_1>,<value_2>,<value_3> is used to set the timing of inputs 2, 3, AND 4 to correspond with input 1. Used to eliminate any time discrepancies between inputs and minimize input to input skew variations. Use to manually adjust any differences in cable length.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>2 to 4</td>
<td>none</td>
</tr>
<tr>
<td>value_1</td>
<td>numeric</td>
<td>-50NS to +70NS</td>
<td>S</td>
</tr>
<tr>
<td>value_2</td>
<td>numeric</td>
<td>-50NS to +70NS</td>
<td>S</td>
</tr>
<tr>
<td>value_3</td>
<td>numeric</td>
<td>-50NS to +70NS</td>
<td>S</td>
</tr>
</tbody>
</table>

Example

Set time null to 25 ns from input 1 to 4

```
CAL:TNUL 0, 0, 25E-9  Input 1 to 4 time null to 25 nsec
```

Comments

- **Query Time Null**: Use the CALibration:TNULI? query to return current time null settings.
- **CALibration:TNULI Command**: This command is similar to the CALibration:PCALibration:ATTenuation:TNULI INPITO command, except all three time null values must be entered.
- **Related Commands**: CAL:PCAL:TNULI INPITO.

TNULI?

CALibration:TNULI? returns the currently selected time nulls (in seconds) for inputs 1 to 2, 1 to 3, and 1 to 4 respectively. The data is sent to the output buffer. See CALibration:TNULI command for more information.

Example

Querying time nulls

```
CAL:TNUL 0, 0, 25E-9  Set input 1 to 4 time null to 25 nsec
CAL:TNUL?  Query instrument to return time nulls
```

Comments

- **Related Commands**: CAL:SCAL:TNULI INPITO, CAL:TNULI.
The CONFigure command subsystem sets up the instrument to perform a specified measurement, but does not perform the actual measurement. Use INITiate/FETCH[:<function>]? or READ[:<function>]? to initiate the measurement and read the results.

All measurements can be performed using the following methods:

The CONFigure[:SCALar]:VOLTage command only configures an input for a specific function, and DOES NOT PERFORM the measurement. Use additional commands/queries (READ[:<function>]? or INIT/FECh[:<function>]?) to perform the measurement and read the result is necessary.

The MEASure configures an input for a specific function, performs the measurement, and returns the results.

[:SCALar] specifies that a single value, not an array of readings, will be taken. :VOLTage specifies that the voltage characteristics of the signal will be measured.

The illustration below shows the point(s) where measurements are taken.
CONFigure

Subsystem Syntax

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONFigure?</td>
<td>returns the last configured measurement.</td>
</tr>
<tr>
<td>CONFigure[:SCALar]</td>
<td>Configure input 1 for an AC RMS voltage measurement</td>
</tr>
<tr>
<td>:VOLTage</td>
<td></td>
</tr>
<tr>
<td>:AC [channel_list]</td>
<td></td>
</tr>
<tr>
<td>:AMPLitude [channel_list]</td>
<td></td>
</tr>
<tr>
<td>:DC [channel_list]</td>
<td></td>
</tr>
<tr>
<td>:DCYCLE [reference][channel_list]</td>
<td></td>
</tr>
<tr>
<td>:FALL</td>
<td></td>
</tr>
<tr>
<td>:OVERRitch [channel_list]</td>
<td></td>
</tr>
<tr>
<td>:PRESitch [channel_list]</td>
<td></td>
</tr>
<tr>
<td>:TIME [lower_limit][upper_limit][channel_list]</td>
<td></td>
</tr>
<tr>
<td>:FREQUENCY [channel_list]</td>
<td></td>
</tr>
<tr>
<td>:FTIME [lower_limit][upper_limit][channel_list]</td>
<td></td>
</tr>
<tr>
<td>:HIGH [channel_list]</td>
<td></td>
</tr>
<tr>
<td>:LOW [channel_list]</td>
<td></td>
</tr>
<tr>
<td>:MAXIMUM [channel_list]</td>
<td></td>
</tr>
<tr>
<td>:MINIMUM [channel_list]</td>
<td></td>
</tr>
<tr>
<td>:NDUTYcycle [reference][channel_list]</td>
<td></td>
</tr>
<tr>
<td>:NWIDTH [reference][channel_list]</td>
<td></td>
</tr>
<tr>
<td>:PDUTYcycle [reference][channel_list]</td>
<td></td>
</tr>
<tr>
<td>:PERIOD [channel_list]</td>
<td></td>
</tr>
<tr>
<td>:PWIDTH [reference][channel_list]</td>
<td></td>
</tr>
<tr>
<td>:RISE</td>
<td></td>
</tr>
<tr>
<td>:OVERRitch [channel_list]</td>
<td></td>
</tr>
<tr>
<td>:PRESitch [channel_list]</td>
<td></td>
</tr>
<tr>
<td>:TIME [lower_limit][upper_limit][channel_list]</td>
<td></td>
</tr>
<tr>
<td>:RTIME [lower_limit][upper_limit][channel_list]</td>
<td></td>
</tr>
<tr>
<td>:TMAXIMUM [channel_list]</td>
<td></td>
</tr>
<tr>
<td>:TMINIMUM [channel_list]</td>
<td></td>
</tr>
</tbody>
</table>

CONFigure?

CONFigure? is used to return the last configured measurement.

Example

Configure input 1 for an AC RMS voltage measurement

```
CONFigure?  Configure input 1 for an AC RMS Voltage measurement
```

Comments

- Returned Results: Returns the last configured measurement, including parameters and channel_list (e.g. "CONFigure? VOLT:AC (@INP1)").

6-18 SCPI Command Reference
CONFigure:AC

:AC

CONFigure[:SCALar]:VOLTage:AC [<channel_list>] is used to configure the source specified by channel_list for an AC RMS voltage measurement.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>channel_list</td>
<td>numeric</td>
<td>INPut (n=1 to 4)</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WMEMory (n=1 to 4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATHn (n=1 to 2)</td>
<td></td>
</tr>
</tbody>
</table>

Example

Configure input 1 for an AC RMS voltage measurement

CONF:VOLT:AC (@INF1) Configure input 1 for an AC RMS Voltage measurement

Comments

- **Measurement Specifications:** See Appendices A and C for measurement specifications.

- **Selecting channel_list.** channel_list has the form (@source) where source is the specified input, waveform memory, or math function being configured for measurement. Only one source can be specified at a time. If channel_list is not specified, INPut1 is used.

- **Oscilloscope Setup:** The AC RMS Voltage measurement is made using the the first cycle present. If a complete cycle is not present, the AC RMS value of all data points is calculated.

- **Executing the Measurement:** When the measurement is executed using the INITiate/FETCH? or READ? command(s), the instrument will measure and output the AC RMS voltage (with 0 volts as the reference) of the source specified.

- **Related Commands:** READ?, INITiate, FETCH?.
CONFigure:AMPLitude

:AMPLitude

CONFigure[:SCALar]:VOLTage:AMPLitude [<channel_list>] is used to configure the source specified by channel_list for an Amplitude voltage measurement.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>channel_list</td>
<td>numeric</td>
<td>INPut (n=1 to 4)</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WMEMory (n=1 to 4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATH (n=1 to 2)</td>
<td></td>
</tr>
</tbody>
</table>

Example

Configure waveform memory 2 for an amplitude voltage measurement

CON:VOLT:AMPL (@WME2) Configure waveform memory 2 for an Amplitude Voltage measurement

Comments

- Measurement Specifications: See Appendices A and C for measurement specifications.

- Selecting channel_list. channel_list has the form (@source) where source is the specified input, waveform memory, or math function being configured for measurement. Only one source can be specified at a time. If channel_list is not specified, INPut1 is used.

- Oscilloscope Setup: Amplitude voltage measurement is made using the entire waveform. When performing a measurement on a particular cycle, set the controls to present only that cycle.

- Executing the Measurement: When the measurement is executed using the INITiate/FETCH? or READ? command(s), the instrument will measure and output the amplitude voltage (with 0 volts as the reference) of the source specified.

- Measurement Method: The method the instrument uses to determine voltage amplitude is to measure HIGH and LOW, then calculate voltage amplitude as follows:

 voltage amplitude = HIGH - LOW

- Related Commands: READ?, INITiate, FETCH?.
[::DC]

CONFigure[:SCALar]:VOLTage[:DC] [<channel_list>] is used to configure the source specified by channel_list for a DC voltage measurement.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>channel_list</td>
<td>numeric</td>
<td>INPut(n) (n=1 to 4)</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WMEMory(n) (n=1 to 4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATH(n) (n=1 to 2)</td>
<td></td>
</tr>
</tbody>
</table>

Example

Configure input 3 for a DC voltage measurement

CONF:VOLT (@INP3) Configure input 3 for a DC Voltage measurement

Comments

- **Measurement Specifications:** See Appendices A and C for measurement specifications.

- **Selecting channel_list.** channel_list has the form (@source) where source is the specified input, waveform memory, or math function being configured for measurement. Only one source can be specified at a time. If channel_list is not specified, INPut1 is used.

- **Oscilloscope Setup:** DC Voltage measurement is made using the first cycle present. If a complete cycle is not present, all currently acquired data points are averaged.

- **Executing the Measurement:** When the measurement is executed using the INITiate/FETCH? or READ? command(s), the instrument will measure and output the DC voltage (with 0 volts as the reference) of the source specified

- **Related Commands:** READ?, INITiate, FETCH?.
CONFigure:DCYCle

:DCYCle

CONFigure[:SCALar]:VOLTage:DCYCle

[<reference>] [<channel_list>] is used to configure the source specified by channel_list for a Duty Cycle measurement.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>reference</td>
<td>numeric</td>
<td>0 to 100</td>
<td>PCT</td>
</tr>
<tr>
<td>channel_list</td>
<td>numeric</td>
<td>INPutn (n=1 to 4)</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WMEMoryn (n=1 to 4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATHn (n=1 to 2)</td>
<td></td>
</tr>
</tbody>
</table>

Example

Configure input 4 for a duty cycle measurement at 40%

CONF:VOLT:DCYC 40, (@INP4) Configure input 4 for a Duty Cycle measurement at 40%

Comments

• Measurement Specifications: See Appendices A and C for measurement specifications.

• Selecting channel_list. channel_list has the form (@source) where source is the specified input, waveform memory, or math function being configured for measurement. Only one source can be specified at a time. If channel_list is not specified, INPut1 is used.

• Combinations of reference and channel_list. The various combinations of reference and channel_list are entered as follows:

 <reference>,<channel_list> – when selecting both parameters

 <channel_list> – when selecting the channel list only (uses middle defaults value (50%)

Specifying Reference: The measurement is performed at a specified level if the reference parameter is used. Values from 0 to 100% are accepted. reference can also be entered in voltage units (±250,000 volts) by specifying "V" in the parameter. For example, to set the reference to 0.2 volts, send the following:

CONF:VOLT:DCYC 0.2V, (@XXX)

• Oscilloscope Setup: In order to perform a Duty Cycle measurement, a minimum of one full cycle must be present. If more than one waveform, edge, or pulse is present, the measurement is made on the first edge acquired. Duty Cycle is determined at the specified reference level on the waveform.
- **Executing the Measurement:** When the measurement is executed using the INITiate/FETCH? or READ? command(s), the instrument will measure and output the duty cycle of the source specified.

- **Measurement Method:** The method the instrument uses to determine duty cycle is to measure PWIDTH and PERIOD, then present duty cycle in percent as ratio of the positive pulse width to period as follows:

 \[
 \text{duty cycle} = \frac{\text{pulse width}}{\text{period}}
 \]

- **DCYCLE versus PDUTycycle:**
 CONFigure[:SCALar]:VOLTage:DCYCLE command is identical to the CONFigure[:SCALar]:VOLTage:PDUTycycle command.

- **Related Commands:** READ?, INITiate, FETCH?, CONFigure[:SCALar]:VOLTage:PDUTycycle.
:FALL:OVERshoot

`CONF[:SCALar]:VOLTage:FALL:OVERshoot [<channel_list>]` is used to configure the source specified by `channel_list` for an Overshoot measurement on the falling edge of the waveform.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>channel_list</code></td>
<td>numeric</td>
<td><code>INPUTn (n=1 to 4)</code></td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>WMEmory (n=1 to 4)</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>MATHn (n=1 to 2)</code></td>
<td></td>
</tr>
</tbody>
</table>

Example

Configure math function 2 for an overshoot measurement on the falling edge of the waveform

```
CONF:VOLT:FALL:OVER (@MATH2) Configure math 2 for an overshoot measurement on the falling edge
```

Comments

- **Measurement Specifications:** See Appendices A and C for measurement specifications.
- **Selecting channel_list:** `channel_list` has the form `{source}` where `source` is the specified input, waveform memory, or math function being configured for measurement. Only one source can be specified at a time. If `channel_list` is not specified, `INPUT1` is used.
- **Oscilloscope Setup:** In order to perform an Overshoot measurement, a minimum of one falling edge must be present. If more than one waveform, edge, or pulse is present, the measurement is made on the first edge acquired.
- **Executing the Measurement:** When the measurement is executed using the `INITiate/FETCH?` or READ? command(s), the instrument will measure and output the overshoot of the falling edge (in percent) of the source specified.
- **Measurement Method:** The method the instrument uses to determine overshoot is to make three different voltage measurements of the first falling (negative-going) edge present, then calculate overshoot as follows:

  ```
  overshoot = ((LOW - MINimum)/AMPLitude) * 100
  ```

- **Related Commands:** READ?, INITiate, FETCH?.
Configure: FALL: PRES

FALL: PRES

<channel_list> is used to configure the source specified by channel_list for a Preshoot measurement on the falling edge of the waveform.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>channel_list</td>
<td>numeric</td>
<td>INPUTn (n=1 to 4)</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WMEMoryn (n=1 to 4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATHn (n=1 to 2)</td>
<td></td>
</tr>
</tbody>
</table>

Example

Configure input 3 for a preshoot measurement on the falling edge of the waveform

CONF : VOLT : FALL : PRES (@INP3) Configure input 3 for a preshoot measurement on the falling edge

Comments

- Measurement Specifications: See Appendices A and C for measurement specifications.
- Selecting channel_list. channel_list has the form (@source) where source is the specified input, waveform memory, or math function being configured for measurement. Only one source can be specified at a time. If channel_list is not specified, INPUT1 is used.
- Oscilloscope Setup: In order to perform a Preshoot measurement, a minimum of one falling edge must be present. If more than one waveform, edge, or pulse is present, the measurement is made on the first edge acquired.
- Executing the Measurement: When the measurement is executed using the INITiate/FETCH? or READ? command(s), the instrument will measure and output the preshoot of the falling edge (in percent) of the source specified.
- Measurement Method: The method the instrument uses to determine preshoot is to make three different voltage measurements of the first falling (negative-going) edge present, then calculate preshoot as follows:

 \[
 \text{preshoot} = \left(\left(\frac{\text{HIGH} - \text{MAXimum}}{\text{AMPLitude}} \right) \right) \times 100
 \]

- Related Commands: READ?, INITiate, FETCH?.
FALL:TIME

`CONF[SCAL]:VOLTage:FALL:TIME [lower_limit[,upper_limit]][<channel_list>]` is used to configure the source specified by `channel_list` for a Fall Time measurement. `lower_limit` defines the lower measurement threshold. `upper_limit` defines the upper measurement threshold.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>channel_list</code></td>
<td>numeric</td>
<td><code>INPutn (n=1 to 4)</code></td>
<td>none</td>
</tr>
<tr>
<td><code>lower_limit</code></td>
<td>numeric</td>
<td><code>WMEMoryn (n=1 to 4)</code></td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>numeric</td>
<td><code>MATHn (n=1 to 2)</code></td>
<td>none</td>
</tr>
<tr>
<td><code>upper_limit</code></td>
<td>numeric</td>
<td><code>-25.00 to +125.0</code></td>
<td>PCT</td>
</tr>
<tr>
<td><code>channel_list</code></td>
<td>numeric</td>
<td><code>-25.00 to +125.0</code></td>
<td>PCT</td>
</tr>
</tbody>
</table>

Example

Configure input 1 for a fall time measurement at 10% lower threshold limit and 90% upper threshold limit (defaults)

```
CONF:VOLT:FALL:TIME Configure input 1 for a Fall Time measurement
```

Comments

- **Measurement Specifications:** See Appendices A and C for measurement specifications.

- **Combinations of `upper_limit`, `lower_limit`, `channel_list`**.
 The various combinations of `upper_limit`, `lower_limit`, and `channel_list` are entered as follows:

 `<lower_limit>,<upper_limit>,<channel_list>` – when selecting all parameters

 `<lower_limit>,<channel_list>` – when selecting the lower limit and channel list (uses upper limit default)

 `<channel_list>` – when selecting the channel list only (uses upper and lower limit defaults)

- **Selecting `channel_list`**. `channel_list` has the form (@source) where `source` is the specified input, waveform memory, or math function being configured for measurement. Only one source can be specified at a time. If `channel_list` is not specified, INPut1 is used.
- **Selecting Limits**: The upper and lower limits for the fall time measurement can be defined by the user as follows (units of percent and voltage cannot be specified together):

 Default: The measurement is performed at 10%/90% threshold levels if the lower_limit and upper_limit parameters are omitted.

 Specifying Lower Limit: The measurement is performed at a specified lower threshold if the lower_limit parameter is used. Values from -25.00% to +125.0% are accepted. lower_limit can also be entered in voltage units (±250,000 volts) by specifying "V" in the parameter. For example, to set the lower_limit to 0.2 volts, send the following:

 \[
 \text{CONF:VOLT:_FALL:TIME 0.2V, XXXX, (0XXX)}
 \]

 Specifying Upper Limit: The measurement is performed at a specified upper threshold if the upper_limit parameter is used. Values from -25.00% to +125.0% are accepted. upper_limit can also be entered in voltage units (±250,000 volts) by specifying "V" in the parameter. For example, to set the upper_limit to 4.5 volts, send the following:

 \[
 \text{CONF:VOLT:_FALL:TIME XXXX, 4.5V, (0XXX)}
 \]

- **Oscilloscope Setup**: In order to perform a Fall Time measurement, the falling edge of the waveform must be present. If more than one waveform, edge, or pulse is present, the measurement is made on the first edge acquired. For best measurement accuracy, set the sweep speed as fast as possible. If the horizontal scaling is questionable when performing a Fall Time measurement, an error will be generated.

- **Executing the Measurement**: When the measurement is executed using the INITiate/FETCH? or READ? command(s), the instrument will measure and output the fall time (in seconds) at the specified upper and lower limits of the selected source.

- **Measurement Method**: The method the instrument uses to determine fall time is to measure the time at the upper threshold then the lower threshold of the first falling (negative-going) edge present. Measurement results are used to calculate fall time as follows:

 \[
 \text{fall time} = \text{lower threshold time} - \text{upper threshold time}
 \]

- **FAll:TIME versus FTIME**: CONFigure[:SCALar]:VOLTage:FAll:TIME command is identical to the CONFigure[:SCALar]:VOLTage:FTIME command.

- **Related Commands**: READ?, INITiate, FETCH?, CONFigure[:SCALar]:VOLTage:FTIME.

- **RST Conditions**: Lower limit defaults to 10% and upper limit defaults to 90%.
CONFigure:FREQuency

CONFigure[:SCAlar]:VOLTage:FREQuency [<channel_list>] is used to configure the source specified by channel_list for a Frequency measurement.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>channel_list</td>
<td>numeric</td>
<td>INPutn (n=1 to 4)</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WMEMoryn (n=1 to 4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATHn (n=1 to 2)</td>
<td></td>
</tr>
</tbody>
</table>

Example

Configure waveform memory 4 for a frequency measurement

CONF:VOLT::FREQ (WMEM4) Configure waveform memory 4 for a Frequency measurement

Comments

- Measurement Specifications: See Appendices A and C for measurement specifications.

- Selecting channel_list. channel_list has the form (@source) where source is the specified input, waveform memory, or math function being configured for measurement. Only one source can be specified at a time. If channel_list is not specified, INPut1 is used.

- Oscilloscope Setup: In order to perform a Frequency measurement, a minimum of one full cycle must be present. If more than one waveform, edge, or pulse is present, the measurement is made on the first edge acquired.

- Executing the Measurement: When the measurement is executed using the INITiate/FETCH? or READ? command(s), the instrument will measure and output the frequency (in hertz) of the source specified.

- Measurement Method: The method the instrument uses to determine frequency is to measure the time of the first complete cycle, then calculate frequency as follows:

 If first edge of waveform is rising, then:
 frequency = 1/(time at second rising edge – time at first rising edge)

 If first edge of waveform is falling, then:
 frequency = 1/(time at second falling edge – time at first falling edge)

- Related Commands: READ?, INITiate, FETCH?.
CONFigure[:SCALar]:VOLTage:FTIMe

[lower_limit, upper_limit][<channel_list>] is used to configure the source specified by channel_list for a Fall Time measurement. lower_limit defines the lower measurement threshold. upper_limit defines the upper measurement threshold.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>channel_list</td>
<td>numeric</td>
<td>INPUT (n=1 to 4)</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WMEMory (n=1 to 4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATHn (n=1 to 2)</td>
<td></td>
</tr>
<tr>
<td>lower_limit</td>
<td>numeric</td>
<td>−25.00 to +125.0</td>
<td>PCT</td>
</tr>
<tr>
<td>upper_limit</td>
<td>numeric</td>
<td>−25.00 to +125.0</td>
<td>PCT</td>
</tr>
</tbody>
</table>

Example

Configure waveform memory 1 for a fall time measurement at 20% lower threshold limit and 70% upper threshold limit

```
CONF:VOLT:FTIM 20, 70,(WMEM1)
```

Comments

- **Measurement Specifications:** See Appendices A and C for measurement specifications.
- **Combinations of upper_limit/ lower_limit/ channel_list.** The various combinations of upper_limit, lower_limit, and channel_list are entered as follows:

 `<lower_limit>,<upper_limit>,<channel_list>` – when selecting all parameters

 `<lower_limit>,<channel_list>` – when selecting the lower limit and channel list (uses upper limit default)

 `<channel_list>` – when selecting the channel list only (uses upper and lower limit defaults)

- **Selecting Limits:** The upper and lower limits for the fall time measurement can be defined by the user as follows (units of percent and voltage cannot be specified together):

 Default: The measurement is performed at 10%/90% threshold levels if the lower_limit and upper_limit parameters are omitted.

 Specifying Lower Limit: The measurement is performed at a specified lower threshold if the lower_limit parameter is used. Values from −25.00% to +125.0% are accepted. lower_limit can also be entered in voltage units (±250,000 volts) by specifying "V" in the parameter. For example, to set the lower_limit to 0.2 volts, send the following:

  ```
  CONF:VOLT:FTIM 0.2V,XXX,(Bn)
  ```
Specifying Upper Limit: The measurement is performed at a specified upper threshold if the upper limit parameter is used. Values from -25.00% to +125.0% are accepted. upper_limit can also be entered in voltage units (±250,000 volts) by specifying "V" in the parameter. For example, to set the upper_limit to 4.5 volts, send the following:

```
CONF:VOLT:FTIM XXXX, 4.5V, (@X)
```

- Selecting channel_list: channel_list has the form (@source) where source is the specified input, waveform memory, or math function being configured for measurement. Only one source can be specified at a time. If channel_list is not specified, INPut1 is used.

- Oscilloscope Setup: In order to perform a Fall Time measurement, the falling edge of the waveform must be present. If more than one waveform, edge, or pulse is present, the measurement is made on the first edge acquired. For best measurement accuracy, set the sweep speed as fast as possible. If the horizontal scaling is questionable when performing a Fall Time measurement, an error will be generated.

- Executing the Measurement: When the measurement is executed using the INITiate/FETCH? or READ? command(s), the instrument will measure and output the fall time (in seconds) at the specified upper and lower limits of the selected source.

- Measurement Method: The method the instrument uses to determine fall time is to measure the time at the upper threshold then the lower threshold of the first falling (negative-going) edge present. Measurement results are used to calculate fall time as follows:

```
fall time = lower threshold time - upper threshold time
```

- FALL:TIME versus FTIME:

```
CONFFigure[:SCALar]:VOLTage:FTIMe command is identical to the CONFFigure[:SCALar]:VOLTage:FALL:TIME command.
```

- Related Commands: READ?, INITiate, FETCH?, CONFFigure[:SCALar]:VOLTAGE:FALL:TIME.

- *RST Conditions: Lower limit defaults to 10% and upper limit defaults to 90%.
:HIGH

CONFigure[:SCALar]:VOLTage:HIGH [<channel_list>] is used to configure the source specified by channel_list for a High voltage measurement.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>channel_list</td>
<td>numeric</td>
<td>INPut (n=1 to 4)</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WMEMoryn (n=1 to 4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATHn (n=1 to 2)</td>
<td></td>
</tr>
</tbody>
</table>

Example

Configure input 2 for a high voltage measurement

\[\text{CONF:VOLT:HIGH (@INP2)} \] Configure input 2 for a High Voltage measurement

Comments

- **Measurement Specifications**: See Appendices A and C for measurement specifications.

- **Selecting channel_list**: channel_list has the form (@source) where source is the specified input, waveform memory, or math function being configured for measurement. Only one source can be specified at a time. If channel_list is not specified, INPut1 is used.

- **Oscilloscope Setup**: High Voltage measurement is made using the entire waveform. When performing a measurement on a particular cycle, set the controls to present only that cycle.

- **Executing the Measurement**: When the measurement is executed using the INITiate/FETCH? or READ? command(s), the instrument will measure and output the voltage value (with 0 volts as the reference) at the highest point of the source specified.

- **Related Commands**: READ?, INITiate, FETCH?.
CONFigure:LOW

:LOW

CONFigure[:SCALar]:VOLTage:LOW [<channel_list>] is used to configure the source specified by channel_list for a Low voltage measurement.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>channel_list</td>
<td>numeric</td>
<td>INPutn (n=1 to 4)</td>
<td>WMEMoryn (n=1 to 4)</td>
</tr>
</tbody>
</table>

Example

Configure input 3 for a low voltage measurement

CONF:VOLT:LOW (@INF3) Configure input 3 for a Low Voltage measurement

Comments

- Measurement Specifications: See Appendices A and C for measurement specifications.
- Selecting channel_list. channel_list has the form (@source) where source is the specified input, waveform memory, or math function being configured for measurement. Only one source can be specified at a time. If channel_list is not specified, INPut1 is used.
- Oscilloscope Setup: Low Voltage measurement is made using the entire waveform. When performing a measurement on a particular cycle, set the controls to present only that cycle.
- Executing the Measurement: When the measurement is executed using the INITiate/FETCH? or READ? command(s), the instrument will measure and output the voltage value (with 0 volts as the reference) at the lowest point of the source specified.
- Related Commands: READ?, INITiate, FETCH?.
CONFigure::MAXimum

CONFigure[:SCALar]:VOLTage::MAXimum [<channel_list>] is used to configure the source specified by channel_list for a Maximum voltage measurement.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>channel_list</td>
<td>numeric</td>
<td>INPut(n=1) to (4)</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WMEMory(n=1) to (4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATH(n=1) to (2)</td>
<td></td>
</tr>
</tbody>
</table>

Example

Configure input 4 for a maximum voltage measurement

```
CONF:VOLT:MAX (@INP4)  Configure input 4 for a Maximum Voltage measurement
```

Comments

- Measurement Specifications: See Appendices A and C for measurement specifications.

- Selecting channel_list. channel_list has the form (@source) where source is the specified input, waveform memory, or math function being configured for measurement. Only one source can be specified at a time. If channel_list is not specified, INPut1 is used.

- Oscilloscope Setup: Maximum Voltage measurement is made using the entire waveform. When performing a measurement on a particular cycle, set the controls to present only that cycle.

- Executing the Measurement: When the measurement is executed using the INITiate/FETCH? or READ? command(s), the instrument will measure and output the absolute maximum voltage (with 0 volts as the reference) of the source specified.

- Related Commands: READ?, INITiate, FETCH?.
CONfigure:MINimum

CONfigure[:SCALar]:VOLTage:MINimum [<channel_list>] is used to configure the source specified by *channel_list* for a Minimum voltage measurement.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>channel_list</td>
<td>numeric</td>
<td>INPut(n=1 to 4)]</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WMEMory(n=1 to 4)]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATH(n=1 to 2)</td>
<td></td>
</tr>
</tbody>
</table>

Example

Configure math function 1 for a minimum voltage measurement

```
CONF:VOLT:MIN (@MATH1) Configure math function 1 for a Minimum Voltage measurement
```

Comments

- **Measurement Specifications:** See Appendices A and C for measurement specifications.
- **Selecting channel_list:** `channel_list` has the form (@source) where `source` is the specified input, waveform memory, or math function being configured for measurement. Only one source can be specified at a time. If `channel_list` is not specified, INPut1 is used.
- **Oscilloscope Setup:** Minimum Voltage measurement is made using the entire waveform. When performing a measurement on a particular cycle, set the controls to present only that cycle.
- **Executing the Measurement:** When the measurement is executed using the INITiate/FETCH? or READ? command(s), the instrument will measure and output the absolute minimum voltage (with 0 volts as the reference) of the source specified.
- **Related Commands:** READ?, INITiate, FETCH?.
CONFigure:NDUTycycle

CONFigure[<SCALAR>]:VOLTage:NDUTycycle

[<reference>][<channel_list>] is used to configure the source specified by channel_list for a Negative Duty Cycle measurement.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>reference</td>
<td>numeric</td>
<td>0 to 100</td>
<td>PCT</td>
</tr>
<tr>
<td>channel_list</td>
<td>numeric</td>
<td>INPUTn (n=1 to 4)</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WMEMoryn (n=1 to 4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATHn (n=1 to 2)</td>
<td></td>
</tr>
</tbody>
</table>

Example

Configure input 2 for a negative duty cycle measurement

CONF:VOLT:NDUT (@INP2) Configure input 2 for a Negative Duty Cycle measurement

Comments

- Measurement Specifications: See Appendices A and C for measurement specifications.
- Selecting channel_list. channel_list has the form (@source) where source is the specified input, waveform memory, or math function being configured for measurement. Only one source can be specified at a time. If channel_list is not specified, INPUT1 is used.
- Combinations of reference and channel_list. The various combinations of reference and channel_list are entered as follows:
 - <reference>,<channel_list> – when selecting both parameters
 - <channel_list> – when selecting the channel list only (uses middle defaults value (50%))

Specifying Reference: The measurement is performed at a specified level if the reference parameter is used. Values from 0 to 100% are accepted. reference can also be entered in voltage units (±250,000 volts) by specifying “V” in the parameter. For example, to set the reference to 0.2 volts, send the following:

CONF:VOLT:NDUT 0.2V, (@XXX)

- Oscilloscope Setup: In order to perform a Negative Duty Cycle measurement, a minimum of one full cycle must be present. If more than one waveform, edge, or pulse is present, the measurement is made on the first edge acquired. Negative Duty Cycle is determined at the specified reference level on the waveform.
- Executing the Measurement: When the measurement is executed using the INITiate/FETCH? or READ? command(s), the instrument will measure and output the negative duty cycle of the source specified.
- Measurement Method: The method the instrument uses to determine negative duty cycle is to measure NWIDTH and PERIOD, then present duty cycle in percent as ratio of the negative pulse width to period as follows:

 negative duty cycle = – pulse width/period

- Related Commands: READ?, INITiate, FETCH?.
CONFigure:VOLTage:WIDth

[:WIDth] [reference] [channel_list] is used to configure the source specified by channel_list for a Negative Pulse Width measurement.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>reference</td>
<td>numeric</td>
<td>0 to 100</td>
<td>PCT</td>
</tr>
<tr>
<td>channel_list</td>
<td>numeric</td>
<td>INPutn (n=1 to 4)</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WMEMoryn (n=1 to 4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATHn (n=1 to 2)</td>
<td></td>
</tr>
</tbody>
</table>

Example

Configure input 3 for a negative pulse width measurement

```
CON:VOLT:WID 3 (@INF3) Configure input 3 for a Negative Pulse Width measurement
```

Comments

- **Measurement Specifications:** See Appendices A and C for measurement specifications.

- **Selecting channel_list.** channel_list has the form (@source) where source is the specified input, waveform memory, or math function being configured for measurement. Only one source can be specified at a time. If channel_list is not specified, INPut1 is used.

- **Combinations of reference and channel_list.** The various combinations of reference and channel_list are entered as follows:

 - `<reference>,<channel_list>` – when selecting both parameters
 - `<channel_list>` – when selecting the channel list only (uses middle defaults value (50%))

Specifying Reference: The measurement is performed at a specified level if the reference parameter is used. Values from 0 to 100% are accepted. reference can also be entered in voltage units (±250,000 volts) by specifying "V" in the parameter. For example, to set the reference to 0.2 volts, send the following:

```
CON:VOLT:WID 0.2V, (@XXX)
```

- **Oscilloscope Setup:** In order to perform a Negative Pulse Width measurement, a minimum of one negative pulse must be present. If more than one waveform, edge, or pulse is present, the measurement is made on the first edge acquired. Negative Pulse Width is determined at the specified reference level on the waveform.

- **Executing the Measurement:** When the measurement is executed using the INITiate/FETCh? or READ? command(s), the instrument will measure and output the negative pulse width (in seconds) of the source specified.
• **Measurement Method:** The method the instrument uses to determine pulse width is to measure the time of the first complete negative pulse, then calculate pulse width as follows:

 If first edge of waveform is rising, then:

 \[\text{pulse width} = \text{time at second rising edge} - \text{time at first falling edge} \]

 If first edge of waveform is falling, then:

 \[\text{pulse width} = \text{time at first rising edge} - \text{time at first falling edge} \]

• **Related Commands:** READ?, INITiate, FETCH?.
Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>reference</td>
<td>numeric</td>
<td>0 to 100</td>
<td>PCT</td>
</tr>
<tr>
<td>channel_list</td>
<td>numeric</td>
<td>INPut(n=1 to 4)</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WMEMon(n=1 to 4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATHn(n=1 to 2)</td>
<td></td>
</tr>
</tbody>
</table>

Example

Configure waveform memory 4 for a duty cycle measurement

```conf
cfg:vol:pdu  (@wmem4)
```

Comments

- **Measurement Specifications:** See Appendices A and C for measurement specifications.

- **Selecting channel_list.** channel_list has the form (@source) where source is the specified input, waveform memory, or math function being configured for measurement. Only one source can be specified at a time. If channel_list is not specified, INPut1 is used.

- **Combinations of reference and channel_list.** The various combinations of reference and channel_list are entered as follows:

  ```
  <reference>,<channel_list> – when selecting both parameters
  <channel_list> – when selecting the channel list only (uses middle defaults value (50%)
  ```

Specifying Reference: The measurement is performed at a specified level if the reference parameter is used. Values from 0 to 100% are accepted. reference can also be entered in voltage units (±250,000 volts) by specifying "V" in the parameter. For example, to set the reference to 0.2 volts, send the following:

```conf
cfg:vol:pdu  0.2V, (@xxx)
```

- **Oscilloscope Setup:** In order to perform a Positive Duty Cycle measurement, a minimum of one full cycle must be present. If more than one waveform, edge, or pulse is present, the measurement is made on the first edge acquired. Positive Duty Cycle is determined at the specified reference level on the waveform.

- **Executing the Measurement:** When the measurement is executed using the INITiate/FETCH? or READ? command(s), the instrument will measure and output the positive duty cycle of the source specified.
- **Measurement Method**: The method the instrument uses to determine duty cycle is to measure PWIDTH and PERIOD, then present duty cycle in percent as ratio of the positive pulse width to period as follows:

 \[
 \text{positive duty cycle} = \frac{+ \text{pulse width}}{\text{period}}
 \]

- **DCYCle versus PDUTycycle**:
 CONFIGure[:SCALar]:VOLTage:DCYCle command is identical to the CONFIGure[:SCALar]:VOLTage:PDUTycycle command.

- **Related Commands**: READ?, INITiate, FETCH?, CONFIGure[:SCALar]:VOLTage:DCYCle.
CONFigure:PERIod

CONFigure[:SCALar]:VOLTage:PERIod [<channel_list>] is used to configure the source specified by channel_list for a Period measurement.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>channel_list</td>
<td>numeric</td>
<td>INPut(n=1 to 4)</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WMEMory(n=1 to 4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATH(n=1 to 2)</td>
<td></td>
</tr>
</tbody>
</table>

Example

Configure math function 1 for a period measurement

CONF:VOLT:PER (@MATH1) Configure math function 1 for a Period measurement

Comments

- Measurement Specifications: See Appendices A and C for measurement specifications.

- Selecting channel_list. channel_list has the form (@source) where source is the specified input, waveform memory, or math function being configured for measurement. Only one source can be specified at a time. If channel_list is not specified, INPut1 is used.

- Oscilloscope Setup: In order to perform a Period measurement, a minimum of one full cycle must be present. If more than one waveform, edge, or pulse is present, the measurement is made on the first edge acquired.

- Executing the Measurement: When the measurement is executed using the INITiate/FETCH? or READ? command(s), the instrument will measure and output the period (in seconds) of the source specified.

- Measurement Method: The method the instrument uses to determine period is to measure the time of the first complete cycle, then calculate period as follows:

 If first edge of waveform is rising, then:
 period = time at second rising edge – time at first rising edge

 If first edge of waveform is falling, then:
 period = time at second falling edge – time at first falling edge

- Related Commands: READ?, INITiate, FETCH?
:PWIDth

CONFigure[:SCALar]:VOLTage:PWIDth

[<reference>][<channel_list>]

This is used to configure the source specified by channel_list for a Positive Pulse Width measurement.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>reference</td>
<td>numeric</td>
<td>0 to 100</td>
<td>PCT</td>
</tr>
<tr>
<td>channel_list</td>
<td>numeric</td>
<td>Input (n=1 to 4) WMEMory (n=1 to 4)</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Configure input 2 for a positive pulse width measurement

```
CONF:VOLT:PWID (@INP2) Configure input 2 for a Positive Pulse Width measurement
```

Comments

- **Measurement Specifications:** See Appendices A and C for measurement specifications.

- **Selecting channel_list.** channel_list has the form (@source) where source is the specified input, waveform memory, or math function being configured for measurement. Only one source can be specified at a time. If channel_list is not specified, INPut1 is used.

- **Combinations of reference and channel_list.** The various combinations of reference and channel_list are entered as follows:

 - `<reference>,<channel_list>` – when selecting both parameters
 - `<channel_list>` – when selecting the channel list only (uses middle defaults value (50%)

Specifying Reference:

The measurement is performed at a specified level if the reference parameter is used. Values from 0 to 100% are accepted. reference can also be entered in voltage units (±250,000 volts) by specifying "V" in the parameter. For example, to set the reference to 0.2 volts, send the following:

```
CONF:VOLT:PWID 0.2V, (@XXX)
```

- **Oscilloscope Setup:** In order to perform a Positive Pulse Width measurement, a minimum of one positive pulse must be present. If more than one waveform, edge, or pulse is present, the measurement is made on the first edge acquired. Positive Pulse Width is determined at the specified reference level on the waveform.

- **Executing the Measurement:** When the measurement is executed using the INITiate/FETCH? or READ? command(s), the instrument will measure and output the positive pulse width (in seconds) of the source specified.
- **Measurement Method:** The method the instrument uses to determine pulse width is to measure the time of the first complete positive pulse, then calculate pulse width as follows:

 If first edge of waveform is rising, then:

 \[\text{pulse width} = \text{time at second falling edge} - \text{time at first rising edge} \]

 If first edge of waveform is falling, then:

 \[\text{pulse width} = \text{time at first falling edge} - \text{time at first rising edge} \]

- **Related Commands:** READ?, INITiate, FETCH?.
RISE:OVERshoot

CONFigure[:SCALar]:VOLTage:RISE:OVERshoot

[<channel_list>] is used to configure the source specified by channel_list for an Overshoot measurement on the rising edge of the waveform.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>channel_list</td>
<td>numeric</td>
<td>INPutn (n=1 to 4)</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WMEMoryn (n=1 to 4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATHn (n=1 to 2)</td>
<td></td>
</tr>
</tbody>
</table>

Example

Configure input 3 for an overshoot measurement on the rising edge of the waveform

CONF:VOLT:RISE:OVER (@INP3) Configure input 3 for an overshoot measurement on the rising edge

Comments

- Measurement Specifications: See Appendices A and C for measurement specifications.
- Selecting channel_list. channel_list has the form (@source) where source is the specified input, waveform memory, or math function being configured for measurement. Only one source can be specified at a time. If channel_list is not specified, INPut1 is used.
- Oscilloscope Setup: In order to perform an Overshoot measurement, a minimum of one rising edge must be present. If more than one waveform, edge, or pulse is present, the measurement is made on the first edge acquired.
- Executing the Measurement: When the measurement is executed using the INITiate/FETCH? or READ? command(s), the instrument will measure and output the overshoot of the rising edge (in percent) of the source specified.
- Measurement Method: The method the instrument uses to determine overshoot is to make three different voltage measurements of the first rising (positive-going) edge present, then calculate overshoot as follows:

\[\text{overshoot} = \left(\frac{\text{HIGH} - \text{MAXimum}}{\text{AMPLitude}}\right) \times 100\]

- Related Commands: READ?, INITiate, FETCH?.
:RISE:PRES

Configure[:SCALar]:VOLTage:RISE:PRES

Usage:

[channel_list] is used to configure the source specified by [channel_list] for a Preshoot measurement on the rising edge of the waveform.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>channel_list</td>
<td>numeric</td>
<td>INPut (n=1 to 4)</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WMEMoryn (n=1 to 4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATHn (n=1 to 2)</td>
<td></td>
</tr>
</tbody>
</table>

Example

Configure input 4 for a preshoot measurement on the rising edge of the waveform

CONF:VOLT:RISE:PRES (4@INP) Configure input 4 for a preshoot measurement on the rising edge

Comments

- **Measurement Specifications**: See Appendices A and C for measurement specifications.

- **Selecting channel_list**: channel_list has the form [@source] where source is the specified input, waveform memory, or math function being configured for measurement. Only one source can be specified at a time. If channel_list is not specified, INPut1 is used.

- **Oscilloscope Setup**: In order to perform a Preshoot measurement, a minimum of one rising edge must be present. If more than one waveform, edge, or pulse is present, the measurement is made on the first edge acquired.

- **Executing the Measurement**: When the measurement is executed using the INITiate/FETCH? or READ? command(s), the instrument will measure and output the preshoot of the rising edge (in percent) of the source specified.

- **Measurement Method**: The method the instrument uses to determine preshoot is to make three different voltage measurements of the first rising (positive-going) edge present, then calculate preshoot as follows:

 preshoot = ((LOW - MINimum)/AMPLitude) • 100

- **Related Commands**: READ?, INITiate, FETCH?.
:RISE:TIME

CONF[ure[:SCALar]:VOLTage:RISE:TIME

[lower_limit,upper_limit][<channel_list>] is used to configure the source specified by channel_list for a Rise Time measurement. lower_limit defines the lower measurement threshold. upper_limit defines the upper measurement threshold.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>channel_list</td>
<td>numeric</td>
<td>INPut (n=1 to 4) WMEMory (n=1 to 4) MATH(n=1 to 2)</td>
<td>none</td>
</tr>
<tr>
<td>lower_limit</td>
<td>numeric</td>
<td>-25.00 to +125.0</td>
<td>PCT</td>
</tr>
<tr>
<td>upper_limit</td>
<td>numeric</td>
<td>-25.00 to +125.0</td>
<td>PCT</td>
</tr>
</tbody>
</table>

Example

Configure waveform memory 1 for a rise time measurement at 10% lower threshold limit and 90% upper threshold limit

CONF:VOLT:FAIL:TIME (WMEM1) Configure waveform memory 1 for a Rise Time measurement

Comments

- Measurement Specifications: See Appendices A and C for measurement specifications.
- Combinations of upper_limit/lower_limit/channel_list. The various combinations of upper_limit, lower_limit, and channel_list are entered as follows:

 <lower_limit>,<upper_limit>,<channel_list> - when selecting all parameters

 <lower_limit>,<channel_list> - when selecting the lower limit and channel list (uses upper limit default)

 <channel_list> - when selecting the channel list only (uses upper and lower limit defaults)
- Selecting Limits: The upper and lower limits for the rise time measurement can be defined by the user as follows (units of percent and voltage cannot be specified together):

 Default: The measurement is performed at 10%/90% threshold levels if the lower_limit and upper_limit parameters are omitted.

 Specifying Lower Limit: The measurement is performed at a specified lower threshold if the lower_limit parameter is used. Values from -25.00% to +125.0% are accepted. lower_limit can also be entered in voltage units (±250,000 volts) by specifying "V" in the parameter. For example, to set the lower_limit to 0.2 volts, send the following:

 CONF:VOLT:RISE:TIME 0.2V, XXXX, (X)
Specifying Upper Limit: The measurement is performed at a specified upper threshold if the upper_limit parameter is used. Values from -25.00% to +125.0% are accepted. upper_limit can also be entered in voltage units (±250,000 volts) by specifying "V" in the parameter. For example, to set the upper_limit to 4.5 volts, send the following:

CONFIGURE:RISE:TIME XXXX,4.5V,(6X)

- Selecting channel_list. channel_list has the form (@source) where source is the specified input, waveform memory, or math function being configured for measurement. Only one source can be specified at a time. If channel_list is not specified, INPut1 is used.

- Oscilloscope Setup: In order to perform a Rise Time measurement, the rising edge of the waveform must be present. If more than one waveform, edge, or pulse is present, the measurement is made on the first edge acquired. For best measurement accuracy, set the sweep speed as fast as possible. If the horizontal scaling is questionable when performing a Rise Time measurement, an error will be generated.

- Executing the Measurement: When the measurement is executed using the INITiate/FETCH? or READ? command(s), the instrument will measure and output the rise time (in seconds) at the specified upper and lower limits of the selected source.

- Measurement Method: The method the instrument uses to determine rise time is to measure the time at the lower threshold then the upper threshold of the first rising (positive-going) edge present. Measurement results are used to calculate rise time as follows:

\[
\text{rise time} = \text{upper threshold time} - \text{lower threshold time}
\]

- RISE:TIME versus RTIMe:

- *RST Conditions: Lower limit defaults to 10% and upper limit defaults to 90%.
CONFigure[:SCALar]:VOLTage:RTIMe

[lower_limit[,upper_limit][<channel_list>]] is used to configure the source specified by channel_list for a Rise Time measurement. lower_limit defines the lower measurement threshold. upper_limit defines the upper measurement threshold.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
</table>
| channel_list | numeric | INPut (n=1 to 4)
 | | WMEMory (n=1 to 4)
 | | MATH (n=1 to 2) | |
| lower_limit | numeric | -25.00 to +125.0 |
| upper_limit | numeric | -25.00 to +125.0 |

Example

Configure input 2 for a rise time measurement at 20% lower threshold limit and 70% upper threshold limit

CONF:VOLT:RTIM 20, 70, (8INF2) Configure input 2 for a Rise Time measurement

Comments

- **Measurement Specifications:** See Appendices A and C for measurement specifications.

- **Combinations of upper_limit/lower_limit/channel_list.**
 The various combinations of upper_limit, lower_limit, and channel_list are entered as follows:

 <lower_limit>,<upper_limit>,<channel_list> – when selecting all parameters

 <lower_limit>,<channel_list> – when selecting the lower limit and channel list (uses upper limit default)

 <channel_list> – when selecting the channel list only (uses upper and lower limit defaults)

- **Selecting Limits:** The upper and lower limits for the rise time measurement can be defined by the user as follows (units of percent and voltage cannot be specified together):

 Default: The measurement is performed at 10%/90% threshold levels if the lower_limit and upper_limit parameters are omitted.

 Specifying Lower Limit: The measurement is performed at a specified lower threshold if the lower_limit parameter is used. Values from -25.00% to +125.0% are accepted. lower_limit can also be entered in voltage units (±250,000 volts) by specifying "V" in the parameter. For example, to set the lower_limit to 0.2 volts, send the following:

 CONF:VOLT:RTIM 0.2V, XXXX, (8X)
Specifying Upper Limit: The measurement is performed at a specified upper threshold if the upper_limit parameter is used. Values from -25.00% to +125.0% are accepted. upper_limit can also be entered in voltage units (±250,000 volts) by specifying "V" in the parameter. For example, to set the upper_limit to 4.5 volts, send the following:

```
CONF:VOLT:RTIM XXXX, 4.5V, (8X)
```

- Selecting channel_list: channel_list has the form (@source) where source is the specified input, waveform memory, or math function being configured for measurement. Only one source can be specified at a time. If channel_list is not specified, INPut1 is used.

- Oscilloscope Setup: In order to perform a Rise Time measurement, the rising edge of the waveform must be present. If more than one waveform, edge, or pulse is present, the measurement is made on the first edge acquired. For best measurement accuracy, set the sweep speed as fast as possible. If the horizontal scaling is questionable when performing a Rise Time measurement, an error will be generated.

- Executing the Measurement: When the measurement is executed using the INITiate/FETCH? or READ? command(s), the instrument will measure and output the rise time (in seconds) at the specified upper and lower limits of the selected source.

- Measurement Method: The method the instrument uses to determine rise time is to measure the time at the lower threshold then the upper threshold of the first rising (positive-going) edge present. Measurement results are used to calculate rise time as follows:

```
\text{rise time} = \text{upper threshold time} - \text{lower threshold time}
```

- RISE:TIME versus RTIME:
 CONFIGure:[SCALar]:VOLTage:RTIME command is identical to the CONFIGure:[SCALar]:VOLTage:RISE:TIME command.

- Related Commands: READ?, INITiate, FETCH?, CONFIGure:[SCALar]:VOLTAGE:RISE:TIME.

- *RST Conditions: Lower limit defaults to 10% and upper limit defaults to 90%.
CONfigure:TMAXimum

CONfigure[:SCALar]:VOLTage:TMAXimum [<channel_list>]
returns the time at which the first maximum voltage occurred on the present waveform.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>channel_list</td>
<td>numeric</td>
<td>INPutn (n=1 to 4)</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WMEMoryn (n=1 to 4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATHn (n=1 to 2)</td>
<td></td>
</tr>
</tbody>
</table>

Example

Configure input 3 for a first maximum voltage time measurement

CONf:VOLT:TMAX (@INP3) Configure input 3 for a time at maximum voltage measurement

Comments

- Selecting channel_list. channel_list has the form (@source) where source is the specified input, waveform memory, or math function being configured for measurement. Only one source can be specified at a time. If channel_list is not specified, INPut1 is used.

- Executing the Measurement: When the measurement is executed using the INITiate/FETCh? or READ? command(s), the instrument will measure and output the time (in seconds, referenced to the trigger) that the maximum voltage occurred on the selected source.
CONFigure:TMINimum

CONFigure[:SCALar]:VOLTage:TMINimum [<channel_list>]
returns the time at which the first minimum voltage occurred on the present waveform. Data is sent to the output buffer.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>channel_list</td>
<td>numeric</td>
<td>INPUTn (n=1 to 4)</td>
<td>WMEMoryn (n=1 to 4)</td>
</tr>
</tbody>
</table>

Example

Configure input 4 for a first minimum voltage time measurement

CONF:VOLT:TMIN (8 INF4) Configure input 4 for a time at minimum voltage measurement

Comments

- Selecting channel_list. channel_list has the form (@source) where source is the specified input, waveform memory, or math function being configured for measurement. Only one source can be specified at a time. If channel_list is not specified, INPut1 is used.

- Executing the Measurement: When the measurement is executed using the INITiate/FETCH? or READ? command(s), the instrument will measure and output the time (in seconds, referenced to the trigger) that the minimum voltage occurred on the selected source.
The `FETCH?` query retrieves measurement results performed by the most recent `INITiate` command, and places them in the output buffer. Measurement must have been previously configured using the `CONFigure` command.

Subsystem Syntax

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
</table>

Comments

- **Selecting Function**: Depending on the desired action, `function` can either be specified or omitted as follows:

 FETCH?: When executed, will retrieve results from the measurement that was last initiated. A measurement must have been previously performed to return any measurement results. If `*RST` is executed prior to sending the `FETCH?`, an error will be generated.

 FETCH[:SCALar]:VOLTage[:<function>]?: When executed, will retrieve the results from the previously configured measurement as specified using `function`.

 For example,

  ```
  dimension statement
  CONF:VOLT:FREQ (81)
  MEAS:VOLT:AC? (82)
  CONF:VOLT:PER (83)
  ABOR
  INIT
  FETCH?

  OR
  FETCH:VOLT:FREQ?
  ```

 String for data
 Configure input 1 for a frequency measurement
 Configure input 2 for an AC voltage measurement
 Configure input 3 for a period measurement
 Stop all measurements
 Acquire waveform data
 Would return AC voltage measurement results
 Would return frequency measurement results
 Enter measurement results into computer

 SCPI Command Reference 6-51
• **FETCH? and INITiate versus READ?**: Performing a measurement using the INITiate and FETCH? commands are identical to performing the READ? query.

• **Return Format**: Previous data stored in the output buffer is lost when a FETCH? is executed. A returned 9.99999E+37 indicates an invalid measurement. See the individual CONFIGure commands for more information on returned measurement results.
The `FORMat` command subsystem is used to specify the format of waveform data and set data transmission mode.

Subsystem Syntax

```plaintext
FORMat [:DATA] <type>,<format>
[:DATA]?
```

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>type</td>
<td>discrete</td>
<td>INTeger</td>
<td>none</td>
</tr>
<tr>
<td>format</td>
<td>numeric</td>
<td>8 or 16</td>
<td>8</td>
</tr>
</tbody>
</table>

[:DATA] `FORMat[:DATA] <type>,<format>` is used to specify how the data is formatted on the bus when sent from the instrument, and set the data transmission mode for waveform data output.

Example

Format waveform data (from oscilloscope over the bus) in 16 bit INTeger

The following example illustrates the use of the `FORMat[:DATA]` command only. Chapter 5 contains an example on performing a complete digitizing operation.

```
FORM INT,16
```

Waveform data sent over the bus will be in 16 bit integer format

Comments

- **Block Data:** Formatted waveform records are transmitted using the definite block program data format specified in IEEE 488.2. When using this format, the ASCII character string "#6<DD..D>" is sent before the actual data. The 6 indicates how many <D> 's will follow. The < D > 's are ASCII numbers, which indicate how many data bytes will follow.

For example, if 512 points were acquired the Block Header "#3512" would be sent. The 3 indicates that three length bytes follow, 512 indicates that 512 data bytes (binary) follow.

- **Selecting Format:** Format is selected using the following guidelines:

 16 bit: Useful in applications where the information is read directly into an integer array in a controller. This format also returns the most accurate data values and greatest resolution. Formatted data transfers as 16-bit binary integers in two bytes. The number of data bytes is twice the number of words (data points). The most significant byte of each word is sent first. If there is a hole in the data, it will be represented by the 16-bit value of -1. The range of data in the WORD format is from 0 to 327640.

 8 bit: Will transfer over the bus faster than 16 bit formatted data, but has less resolution. Only seven bits are used to represent the voltage values. The first bit is a 0 or -1. If there is a hole in the data, it is represented by a value of -1.
- **Pixel Data**: Pixel data is always returned in 8 bit format.
- **Learn String**: The learn string returned using the SYSTem:SET? query is not effected by the FORMat[:DATA] command.
- **Related Commands**: TRACe[:DATA]?, TRACe:POINts.
- **RST Conditions**: Defaults to 8 bit.

Example

Query current data format

<table>
<thead>
<tr>
<th>dimension</th>
<th>statement</th>
<th>String to hold data</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORM</td>
<td>INT, 16</td>
<td>Waveform data sent over the bus will be in 16 bit integer format</td>
</tr>
<tr>
<td>FORM?</td>
<td></td>
<td>Query instrument to return selected format</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>enter</th>
<th>statement</th>
<th>Enter data into computer</th>
</tr>
</thead>
</table>
The INITiate command subsystem acquires waveform data. The INITiate command performs two functions:

- Initiates or begins a previously configured measurement.
- Digitizes waveform data.

Subsystem Syntax

```
INITiate
:CONTinuous <mode>
:CONTinuous?
[:IMMEDIATE]
```

:CONTinuous

INITiate:CONTinuous <mode> is used to enable or disable acquiring waveform data.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode</td>
<td>boolean</td>
<td>AUTO</td>
<td>ON</td>
</tr>
</tbody>
</table>

Example

Set acquisition mode to continuous

```
INIT:CONT ON
```

Acquire data continuously

Comments

- **Mode**: Integer values can be substituted for the OFF (0) and ON (1) parameters.

- **Continuous Data Acquisition**: Continuous data acquisition is enabled with INITiate:CONTinuous to ON|1. A data acquisition takes place each time a trigger that satisfies the selected TRIGger requirements is received.

- **Single Data Acquisition**: Single data acquisition is enabled with INITiate:CONTinuous to OFF|0. Sending the INITiate[:IMMEDIATE] command causes one data acquisition to take place. Another data acquisition will only take place if the INITiate[:IMMEDIATE] command is sent again.

- **Automatic Data Acquisition**: Automatic data acquisition will acquire data regardless of trigger requirements. If selected and no trigger is present, available data is acquired. Provides a baseline in the absence of a signal. If a signal is present but the instrument is not triggered, the waveform will be unsynchronized (not a baseline).

- **DC Measurement**: SCPI requires that a DC measurement be performed in AUTOmode, otherwise the oscilloscope may not trigger and the digitize will not complete. If the oscilloscope is not set to CONT AUTO, then a setting conflict will occur when a DC measurement is attempted.

- **Stop Acquiring Data**: See the ABORT command.

- **Related Commands**: ABORT, TRIGger.

- **:RST Condition**: Defaults to AUTO.
:CONTInuous?

INITiate:CONTInuous? returns a value to show the data acquisition state. ON = Continuous, OFF = Single, AUTO = Automatically triggered. The value is sent to the output buffer.

Example

Query acquisition state

dimension statement String for the data
INIT:CONT ON Acquire data continuously
INIT:CONT? Query instrument to return acquisition state
enter statement Enter results into computer

[:IMMediate]

INITiate[:IMMediate] starts the data acquisition process on all inputs selected using the [SENSe:]INPut<n>[:STATe] command.

Example

Acquire data present on input 3 one time and save in the input 3 buffer

INF3 ON Enable input 3
INIT:CONT OFF Acquire data once
INIT Input 3 waveform data acquired

Comments

• Starting Data Acquisition: The INITiate[:IMMediate] command starts data acquisition by acquiring the waveform data on each active input selected using the [SENSe:]INPut<n>[:STATe] command, with the resulting digitized data being placed in the input buffer. Further action is dependent on the INITiate:CONTInuous state:

 INITiate:CONTInuous OFF: Data is acquired one time only.

 INITiate:CONTInuous ON: An ABORt command must be sent prior to the INITiate[:IMMediate] command. Failure to do so will generate an error.

• Before INITiate[:IMMediate]: Before the waveform data can be acquired, certain conditions must be setup. These conditions depend on the function being performed as follows:

 Measure Parameters: To measure the data (e.g. FREQuency, PERiod, etc) the specific measurement must be setup or CONFIGured. See the CONFIGure subsystem for more information.

 Digitize the Waveform: To digitize the data conditions such as AVERage:TYPE, number of SWEep:POINTS, and the AVERAge:COUNT must be selected. See the [SENSe:] subsystem for more information on these commands.
• **After Data Acquisition:** After the waveform data has been acquired (using `INITiate[:IMMediate]` command), the data is read depending on the function being performed as follows:

 Measure Parameters: When measuring specific parameters, the results are FETCHed to the output buffer. See the FETCH? subsystem for more information on using this query.

 Digitize the Waveform: When digitizing the waveform, the TRACe DATA and PREamble are read. See the TRACe subsystem for more information on using these commands.

• **Loss of Acquired Data:** When the `INITiate` command is complete the instrument is placed in the stopped mode. When restarted (another `INITiate` command), the digitized data stored in the input buffers will be overwitten. Before executing another `INITiate` command, verify that all operations that require the digitized data are completed.

• **Related Commands:** [SENSe:], TRACe:, INITiate:CONTinuous.
The MEASure command subsystem sets up the instrument to perform a specified measurement, and then performs the measurement. After the measurement is performed, the reading is placed in the output buffer.

All measurements can be performed using the following methods:

The MEASure configures an input for a specific function, performs the measurement, and returns the results.

The CONFigure[:SCALar]:VOLTage command only configures an input for a specific function, and does not perform the measurement. Use additional commands/queries (READ[:<function>]? or INIT/FETC[:<function>]?) to perform the measurement and read the result is necessary.

[:SCALar] specifies that a single value, not an array of readings, will be taken. :VOLTage specifies that the voltage characteristics of the signal will be measured.

Output Format: After the measurement is complete, the results are sent to the output buffer. Previous data in the output buffer is lost when the MEAS command is executed. A returned 9.999999E+37 indicates an invalid measurement.

Individual MEASure Commands: Refer to the individual commands for information on how the measurements are made and the returned measurement results. See Appendix C, Optimizing Measurements, for additional information on measurement techniques.

The illustration below shows the point(s) where measurements are taken.
MEASure Syntax

MEASure[:SCALar]:VOLTage
:AC? [channel_list]
:AMPLitude? [channel_list]
:[DC]? [channel_list]
:DCYCLE? [reference][channel_list]
:FALL
 :OVERShoot? [channel_list]
 :PRESShoot? [channel_list]
 :TIME? [lower_limit[,upper]] [channel_list]
:FREQuency? [channel_list]
:FTIME? [lower_limit[,upper]] [channel_list]
:HIGH? [channel_list]
:LOW? [channel_list]
:MAXimum? [channel_list]
:MINimum? [channel_list]
:NDUTycycle? [reference][channel_list]
:NWIDth? [reference][channel_list]
:PDUTycycle? [reference][channel_list]
:PERiod? [channel_list]
:PWIDth? [reference][channel_list]
:RISE
 :OVERShoot? [channel_list]
 :PRESShoot? [channel_list]
 :TIME? [lower_limit[,upper]] [channel_list]
:RTIME? [lower_limit[,upper]] [channel_list]
:TMAXimum? [channel_list]
:TMINimum? [channel_list]
MEASURE:AC?

:AC?
MEASURE[:SCALar]:VOLTage:AC? [<channel_list>] is used to configure the source specified by *channel_list* for an AC RMS voltage measurement, perform the measurement on the signal present, then transfer the results to the output buffer.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>channel_list</td>
<td>numeric</td>
<td>INPut(n=1 to 4)</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WMEMory(n=1 to 4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATH(n=1 to 2)</td>
<td></td>
</tr>
</tbody>
</table>

Example

Make an AC RMS voltage measurement on input 1

MEASURE:VOLT:AC? (@INP1)
Configure input 1 for an AC RMS Voltage measurement, perform the measurement, and transfer the result to the output buffer

enter statement

Enter measurement into computer

Comments

- **Measurement Specifications:** See Appendices A and C for measurement specifications.
- **Selecting channel_list.** *channel_list* has the form (@source) where *source* is the specified input, waveform memory, or math function being measured. Only one source can be specified at a time. If *channel_list* is not specified, INPut1 is used.
- **Oscilloscope Setup:** The AC Voltage measurement is made using the the first cycle present. If a complete cycle is not present, the AC value of all data points is calculated.
- **Executing the Measurement:** When the measurement is executed, the instrument will measure and output the AC RMS voltage (with 0 volts as the reference) of the source specified.
- **Related Commands:** CONFigure:, READ?, INITiate, FETCH?.
MEASURE:AMPLITUDE? MEASURE[:SCALAR]:VOLTAGE:AMPLITUDE? [<channel_list>] is used to configure the source specified by channel_list for an Amplitude voltage measurement, perform the measurement on the signal present, then transfer the results to the output buffer.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>channel_list</td>
<td>numeric</td>
<td>INPut<n> (n=1 to 4)</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WMEMory<n> (n=1 to 4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATH<n> (n=1 to 2)</td>
<td></td>
</tr>
</tbody>
</table>

Example

Make an amplitude voltage measurement on math function 2

```plaintext
MEAS:VOLT:AMPL? (@MATH2) Configure math 2 for an Amplitude Voltage measurement, perform the measurement, and transfer the result to the output buffer
```

```plaintext
enter statement
```

Enter measurement into computer

Comments

- **Measurement Specifications:** See Appendices A and C for measurement specifications.
- **Selecting channel_list:** channel_list has the form (@source) where source is the specified input, waveform memory, or math function being measured. Only one source can be specified at a time. If channel_list is not specified, INPut1 is used.
- **Oscilloscope Setup:** Amplitude voltage measurement is made using the entire waveform. When performing a measurement on a particular cycle, set the controls to present only that cycle.
- **Executing the Measurement:** When the measurement is executed, the instrument will measure and output the amplitude voltage (with 0 volts as the reference) of the source specified.
- **Measurement Method:** The method the instrument uses to determine voltage amplitude is to measure HIGH and LOW, then calculate voltage amplitude as follows:

\[
\text{voltage amplitude} = \text{HIGH} - \text{LOW}
\]
- **Related Commands:** CONFIGure:, READ?, INITiate, FETCH?.
MEASure[:DC]? MEASure[:SCALar]:VOLTage[:DC]? [<channel_list>] is used to configure the source specified by channel_list for a DC voltage measurement, perform the measurement on the signal present, then transfer the results to the output buffer.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>channel_list</td>
<td>numeric</td>
<td>INPutn (n=1 to 4)</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WMEMoryn (n=1 to 4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATHn (n=1 to 2)</td>
<td></td>
</tr>
</tbody>
</table>

Example

Make a DC voltage measurement on input 3

```
MEAS:VOLT? (@INP3)  
Configure input 3 for a DC Voltage measurement, perform the measurement, and transfer the result to the output buffer.
```

Enter statement

Enter measurement into computer

Comments

- **Measurement Specifications**: See Appendices A and C for measurement specifications.

- **Selecting channel_list**: channel_list has the form (@source) where source is the specified input, waveform memory, or math function being measured. Only one source can be specified at a time. If channel_list is not specified, INPut1 is used.

- **Oscilloscope Setup**: DC Voltage measurement is made using the first cycle present. If a complete cycle is not present, all currently acquired data points are averaged.

- **Executing the Measurement**: When the measurement is executed, the instrument will measure and output the DC voltage (with 0 volts as the reference) of the source specified.

- **Related Commands**: CONFigure:, READ?, INITiate, FETCH?.
MEASURE:DCYCle?

:DCYCle?

[<reference>][<channel_list>] is used to configure the source specified by channel_list for a Duty Cycle measurement, perform the measurement on the signal present, then transfer the results to the output buffer.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>reference</td>
<td>numeric</td>
<td>0 to 100</td>
<td>PCT</td>
</tr>
<tr>
<td>channel_list</td>
<td>numeric</td>
<td>Inputn (n=1 to 4)</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WMMEMory (n=1 to 4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATHn (n=1 to 2)</td>
<td></td>
</tr>
</tbody>
</table>

Example

Make a duty cycle measurement on waveform memory 4

```
MEAS:VOLT:DCYC? (@WMEM4)  Configure waveform memory 4 for a Duty Cycle measurement, perform the measurement, and transfer the result to the output buffer
```

```
enter statement
Enter measurement into computer
```

Comments

- **Measurement Specifications:** See Appendices A and C for measurement specifications.
- **Selecting channel_list.** channel_list has the form (@source) where source is the specified input, waveform memory, or math function being measured. Only one source can be specified at a time. If channel_list is not specified, INPut1 is used.
- **Combinations of reference and channel_list.** The various combinations of reference and channel_list are entered as follows:
 - `<reference>,<channel_list>` – when selecting both parameters
 - `<channel_list>` – when selecting the channel list only (uses middle defaults value (50%))

Specifying Reference: The measurement is performed at a specified level if the reference parameter is used. Values from 0 to 100% are accepted. reference can also be entered in voltage units (±250,000 volts) by specifying "V" in the parameter. For example, to set the reference to 0.2 volts, send the following:

```
CONF:VOLT:DCYC 0.2V, (@XXX)
```

- **Oscilloscope Setup:** In order to perform a Duty Cycle measurement, a minimum of one full cycle must be present. If more than one waveform, edge, or pulse is present, the measurement is made on the first edge acquired. Duty Cycle is determined at the specified reference level on the waveform. If the signal is not present, 9.99999E+37 is returned.
- **Executing the Measurement:** When the measurement is executed, the instrument will measure and output the duty cycle of the source specified.

- **Measurement Method:** The method the instrument uses to determine duty cycle is to measure PWIDth and PERiod, then present duty cycle in percent as ratio of the positive pulse width to period as follows:

 \[
 \text{duty cycle} = \frac{\text{pulse width}}{\text{period}}
 \]

- **DCYClE versus PDUYcycle:**
 MEASure[:SCAlar]:VOLTage:DCYClE command is identical to the MEASure[:SCAlar]:VOLTage:PDUYcycle command.

- **Related Commands:** CONFigure:, READ?, INITiate, FETCH?, MEASure[:SCAlar]:VOLTage:PDUYcycle.
MEASure:FALL:OVERshoot?

:FALL:OVERshoot?

MEASure[SCALar]:VOLTage:FALL:OVERshoot? [<channel_list>] is used to configure the source specified by channel_list for an Overshoot measurement on the falling edge of the waveform, perform the measurement on the signal present, then transfer the results to the output buffer.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>channel_list</td>
<td>numeric</td>
<td>INPutn (n=1 to 4)</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WMEMoryn (n=1 to 4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATHn (n=1 to 2)</td>
<td></td>
</tr>
</tbody>
</table>

Example

Make an overshoot measurement on the falling edge of the waveform on input 2

```
MEAS:VOLT:FALL:OVER? (@INP2)
```

Configure input 2 for an overshoot measurement on the falling edge, perform the measurement, and transfer the result to the output buffer

Enter measurement into computer

Comments

- **Measurement Specifications:** See Appendices A and C for measurement specifications.

- **Selecting channel_list.** channel_list has the form (@source) where source is the specified input, waveform memory, or math function being measured. Only one source can be specified at a time. If channel_list is not specified, INPut1 is used.

- **Oscilloscope Setup:** In order to perform an Overshoot measurement, a minimum of one falling edge must be present. If more than one waveform, edge, or pulse is present, the measurement is made on the first edge acquired. If the signal is not present, 9.99999E+37 is returned.

- **Executing the Measurement:** When the measurement is executed, the instrument will measure and output the overshoot of the falling edge (in percent) of the source specified.

- **Measurement Method:** The method the instrument uses to determine overshoot is to make three different voltage measurements of the first falling (negative-going) edge present, then calculate overshoot as follows:

 \[\text{overshoot} = \left(\frac{\text{LOW} - \text{MINimum}}{\text{AMPplitude}}\right) \times 100\]

- **Related Commands:** CONFigure:, READ?, INITiate, FETCh?.
MEASURE:FALL:PRESHoot?

MEASURE[:SCALar]:VOLTage:FALL:PRESHoot? [<channel_list>]
is used to configure the source specified by channel_list for a Preshoot measurement on the falling edge of the waveform, perform the measurement on the signal present, then transfer the results to the output buffer.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>channel_list</td>
<td>numeric</td>
<td>INPut n (n=1 to 4)</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WMEMory n (n=1 to 4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATHn (n=1 to 2)</td>
<td></td>
</tr>
</tbody>
</table>

Example

Make a preshoot measurement on the falling edge of the waveform on input 3

MEAS:VOLT:FALL:PRES? (@INF3) Configure input 3 for a preshoot measurement on the falling edge, perform the measurement, and transfer the result to the output buffer

textual statement

Enter measurement into computer

Comments

- **Measurement Specifications:** See Appendices A and C for measurement specifications.
- **Selecting channel_list:** channel_list has the form (@source) where source is the specified input, waveform memory, or math function being measured. Only one source can be specified at a time. If channel_list is not specified, INPut1 is used.
- **Oscilloscope Setup:** In order to perform a Preshoot measurement, a minimum of one falling edge must be present. If more than one waveform, edge, or pulse is present, the measurement is made on the first edge acquired. If the signal is not present, 9.99999E+37 is returned.
- **Executing the Measurement:** When the measurement is executed, the instrument will measure and output the preshoot of the falling edge (in percent) of the source specified.
- **Measurement Method:** The method the instrument uses to determine preshoot is to make three different voltage measurements of the first falling (negative-going) edge present, then calculate preshoot as follows:

\[
\text{preshoot} = ((\text{HIGH} - \text{MAXimum})/\text{AMPLitude}) \times 100
\]

- **Related Commands:** CONFigure:, READ?, INITiate, FETCH?.
The `MEAS[:SCALar]:VOLTage:FAIL:TIME?` command is used to configure the source specified by `channel_list` for a Fall Time measurement, perform the measurement on the signal present, then transfer the results to the output buffer. `lower_limit` defines the lower measurement threshold, and `upper_limit` defines the upper measurement threshold.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>channel_list</code></td>
<td>numeric</td>
<td>INPUTn (n=1 to 4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WMEMoryn (n=1 to 4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATHn (n=1 to 2)</td>
<td></td>
</tr>
<tr>
<td><code>lower_limit</code></td>
<td>numeric</td>
<td>-25.00 to +125.0</td>
<td></td>
</tr>
<tr>
<td><code>upper_limit</code></td>
<td>numeric</td>
<td>-25.00 to +125.0</td>
<td></td>
</tr>
</tbody>
</table>

Example

Make a fall time measurement at 10% lower threshold limit and 90% upper threshold limit on input 1 (defaults)

```
MEAS[:VOLT]:FAIL:TIME? Configure input 1 for a Fall Time measurement, perform the measurement, and transfer the result to the output buffer
```

```
enter statement Enter measurement into computer
```

Comments

- **Measurement Specifications**: See Appendices A and C for measurement specifications.

- **Combinations of upper_limit/lower_limit/channel_list**. The various combinations of `upper_limit`, `lower_limit`, and `channel_list` are entered as follows:

 `<lower_limit>,<upper_limit>,<channel_list>` – when selecting all parameters

 `<lower_limit>,<channel_list>` – when selecting the lower limit and channel list (uses upper limit default)

 `<channel_list>` – when selecting the channel list only (uses upper and lower limit defaults)

- **Selecting Limits**: The upper and lower limits for the fall time measurement can be defined by the user as follows (units of percent and voltage cannot be specified together):

 Default: The measurement is performed at 10%/90% threshold levels if the `lower_limit` and `upper_limit` parameters are omitted.
Specifying Lower Limit: The measurement is performed at a specified lower threshold if the lower_limit parameter is used. Values from -25.00% to +125.0% are accepted. lower_limit can also be entered in voltage units (±250,000 volts) by specifying "V" in the parameter. For example, to set the lower_limit to 0.2 volts, send the following:

```
MEAS:VOLT:FAIL:TIME? 0.2V, XXXX, (6X)
```

Specifying Upper Limit: The measurement is performed at a specified upper threshold if the upper_limit parameter is used. Values from -25.00% to +125.0% are accepted. upper_limit can also be entered in voltage units (±250,000 volts) by specifying "V" in the parameter. For example, to set the upper_limit to 4.5 volts, send the following:

```
MEAS:VOLT:FAIL:TIME? XXXX, 4.5V, (6X)
```

- **Selecting channel_list.** channel_list has the form (@source) where source is the specified input, waveform memory, or math function being measured. Only one source can be specified at a time. If channel_list is not specified, INPut1 is used.

- **Executing the Measurement:** When the measurement is executed, the instrument will measure and output the fall time (in seconds) at the specified upper and lower limits of the selected source.

- **Oscilloscope Setup:** In order to perform a Fall Time measurement, the falling edge of the waveform must be present. If more than one waveform, edge, or pulse is present, the measurement is made on the first edge acquired. For best measurement accuracy, set the sweep speed as fast as possible. If the horizontal scaling is questionable when performing a Fall Time measurement, an error will be generated.

- **Measurement Method:** The method the instrument uses to determine fall time is to measure the time at the upper threshold then the lower threshold of the first falling (negative-going) edge present. Measurement results are used to calculate fall time as follows:

 \[
 \text{fall time} = \text{lower threshold time} - \text{upper threshold time}
 \]

- **FAIL:TIME versus FTIME:** MEASure[:SCALar]:VOLTage:FAIL:TIME command is identical to the MEASure[:SCALar]:VOLTage:FTIME command.

- **Related Commands:** CONFIGure:, READ?, INITiate, FETCH?, MEASure[:SCALar]:VOLTage:FTIME.

- **RST Conditions:** Lower limit defaults to 10% and upper limit defaults to 90%.
MEASURE: FREQUENCY?

MEASURE[:SCALAR]:VOLTage:FREQUENCY? [<channel_list>] is used to configure the source specified by channel_list for a Frequency measurement, perform the measurement on the signal present, then transfer the results to the output buffer.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>channel_list</td>
<td>numeric</td>
<td>INPutn (n=1 to 4)</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WMEMoryn (n=1 to 4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATHn (n=1 to 2)</td>
<td></td>
</tr>
</tbody>
</table>

Example

Make a frequency measurement on waveform memory 4

`MEAS:VOLT:FREQ? (@WMEM4)` Configure waveform memory 4 for a Frequency measurement, perform the measurement, and transfer the result to the output buffer

`enter statement` Enter measurement into computer

Comments

- Measurement Specifications: See Appendices A and C for measurement specifications.
- Selecting channel_list. channel_list has the form (@source) where source is the specified input, waveform memory, or math function being measured. Only one source can be specified at a time. If channel_list is not specified, INPut1 is used.
- Oscilloscope Setup: In order to perform a Frequency measurement, a minimum of one full cycle must be present. If more than one waveform, edge, or pulse is present, the measurement is made on the first edge acquired. If the signal is not present, 9.99999E+37 is returned.
- Executing the Measurement: When the measurement is executed, the instrument will measure and output the frequency (in hertz) of the source specified.
- Measurement Method: The method the instrument uses to determine frequency is to measure the time of the first complete cycle, then calculate frequency as follows:

 If first edge of waveform is rising, then:
 \[
 \text{frequency} = \frac{1}{(\text{time at second rising edge} - \text{time at first rising edge})}
 \]

 If first edge of waveform is falling, then:
 \[
 \text{frequency} = \frac{1}{(\text{time at second falling edge} - \text{time at first falling edge})}
 \]
- Related Commands: CONFigure:, READ?, INITiate, FETCH?.
:FTI? MEASure[:SCALar]:VOLTage:FTI?
[lower_limit[,upper_limit]][[channel_list]] is used to configure the source specified by channel_list for a Fall Time measurement, perform the measurement on the signal present, then transfer the results to the output buffer. lower_limit defines the lower measurement threshold. upper_limit defines the upper measurement threshold.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>channel_list</td>
<td>numeric</td>
<td>INPut (n=1 to 4)</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WMEMory (n=1 to 4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATH (n=1 to 2)</td>
<td>none</td>
</tr>
<tr>
<td>lower_limit</td>
<td>numeric</td>
<td>-25.00 to +125.0</td>
<td>PCT</td>
</tr>
<tr>
<td>upper_limit</td>
<td>numeric</td>
<td>-25.00 to +125.0</td>
<td>PCT</td>
</tr>
</tbody>
</table>

Example

Make a fall time measurement at 20% lower threshold limit and 70% upper threshold limit on math function 1

`MEAS:VOLT:FTI? 20, 70, (@MATH1)` Configure input 1 for a Fall Time measurement, perform the measurement, and transfer the result to the output buffer

`enter statement` Enter measurement into computer

Comments

- Measurement Specifications: See Appendices A and C for measurement specifications.

- Combinations of upper_limit/lower_limit/channel_list. The various combinations of upper_limit, lower_limit, and channel_list are entered as follows:

 `<lower_limit>,<upper_limit>,<channel_list>` – when selecting all parameters

 `<lower_limit>,<channel_list>` – when selecting the lower limit and channel list (uses upper limit default)

 `<channel_list>` – when selecting the channel list only (uses upper and lower limit defaults)
Selecting Limits: The upper and lower limits for the fall time measurement can be defined by the user as follows (units of percent and voltage cannot be specified together):

Default: The measurement is performed at 10%\%/90% threshold levels if the lower limit and upper limit parameters are omitted.

Specifying Lower Limit: The measurement is performed at a specified lower threshold if the lower_limit parameter is used. Values from -25.00% to +125.0% are accepted. lower_limit can also be entered in voltage units (±250,000 volts) by specifying "V" in the parameter. For example, to set the lower_limit to 0.2 volts, send the following:

```
MEAS:VOLT:FTIM 0.2V, XXXX, (8X)
```

Specifying Upper Limit: The measurement is performed at a specified upper threshold if the upper_limit parameter is used. Values from -25.00% to +125.0% are accepted. upper_limit can also be entered in voltage units (±250,000 volts) by specifying "V" in the parameter. For example, to set the upper_limit to 4.5 volts, send the following:

```
MEAS:VOLT:FTIM XXXX, 4.5V, (8X)
```

Selecting channel_list. channel_list has the form (@source) where source is the specified input, waveform memory, or math function being measured. Only one source can be specified at a time. If channel_list is not specified, INPut1 is used.

Oscilloscope Setup: In order to perform a Fall Time measurement, the falling edge of the waveform must be present. If more than one waveform, edge, or pulse is present, the measurement is made on the first edge acquired. For best measurement accuracy, set the sweep speed as fast as possible. If the horizontal scaling is questionable when performing a Fall Time measurement, an error will be generated.

Executing the Measurement: When the measurement is executed, the instrument will measure and output the fall time (in seconds) at the specified upper and lower limits of the selected source.

Measurement Method: The method the instrument uses to determine fall time is to measure the time at the upper threshold then the lower threshold of the first falling (negative-going) edge present. Measurement results are used to calculate fall time as follows:

```
fall time = lower threshold time - upper threshold time
```

FALL:TIME versus FTIME:
MEASURE[:SCALar]:VOLTage:FTIME command is identical to the MEASURE[:SCALar]:VOLTage:FALL:TIME command.

Related Commands: CONFIGure, READ?, INITiate, FETCh?, MEASURE[:SCALar]:VOLTAGE:FALL:TIME.

RST Conditions: Lower limit defaults to 10% and upper limit defaults to 90%.
MEASure::HIGH?

_MEASure[:SCALar]:VOLTage::HIGH? [channel_list]_ is used to configure the source specified by channel_list for a High voltage measurement, perform the measurement on the signal present, then transfer the results to the output buffer.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>channel_list</td>
<td>numeric</td>
<td>INPut (n=1 to 4)</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WMEMoryn (n=1 to 4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATHn (n=1 to 2)</td>
<td></td>
</tr>
</tbody>
</table>

Example

Make a high voltage measurement on input 2

```plaintext
MEAS:VOLT:HIGH? (@INP2)  Configure input 2 for a High Voltage measurement, perform the measurement, and transfer the result to the output buffer

Enter statement Enter measurement into computer
```

Comments

- **Measurement Specifications:** See Appendices A and C for measurement specifications.

- Selecting channel_list. channel_list has the form (@source) where source is the specified input, waveform memory, or math function being measured. Only one source can be specified at a time. If channel_list is not specified, INPut1 is used.

- Oscilloscope Setup: High Voltage measurement is made using the entire waveform. When performing a measurement on a particular cycle, set the controls to present only that cycle.

- Executing the Measurement: When the measurement is executed, the instrument will measure and output the voltage value (with 0 volts as the reference) at the highest point of the source specified.

- Related Commands: CONFigure:, READ?, INITiate, FETCH?.
MEASURE:LOW?

MEASURE[:SCALar]:VOLTage:LOW? [channel_list] is used to configure the source specified by channel_list for a Low voltage measurement, perform the measurement on the signal present, then transfer the results to the output buffer.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>channel_list</td>
<td>numeric</td>
<td>INPut (n=1 to 4)</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WMEMory (n=1 to 4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATHn (n=1 to 2)</td>
<td></td>
</tr>
</tbody>
</table>

Example

Make a low voltage measurement on waveform memory 3

MEAS:VOLT:LOW? (WMEM3) Configure waveform memory 3 for a Low Voltage measurement, perform the measurement, and transfer the result to the output buffer.

enter statement Enter measurement into computer

Comments

- Measurement Specifications: See Appendices A and C for measurement specifications.
- Selecting channel_list. channel_list has the form (@source) where source is the specified input, waveform memory, or math function being measured. Only one source can be specified at a time. If channel_list is not specified, INPut1 is used.
- Oscilloscope Setup: Low Voltage measurement is made using the entire waveform. When performing a measurement on a particular cycle, set the controls to present only that cycle.
- Executing the Measurement: When the measurement is executed, the instrument will measure and output the voltage value (with 0 volts as the reference) at the lowest point of the source specified.
- Related Commands: CONFigure:, READ?, INITiate, FETCH?.
MEASure[:SCALar]:VOLTage:MAXimum? is used to configure the source specified by channel_list for a Maximum voltage measurement, perform the measurement on the signal present, then transfer the results to the output buffer.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>channel_list</td>
<td>numeric</td>
<td>INPutn ((n=1 \text{ to } 4))</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WMEMoryn ((n=1 \text{ to } 4))</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATHn ((n=1 \text{ to } 2))</td>
<td></td>
</tr>
</tbody>
</table>

Example

Make a maximum voltage measurement on input 4

```
MEAS:VOLT:MAX (@INP4) Configure input 4 for a Maximum Voltage measurement, perform the measurement, and transfer the result to the output buffer
```

Comments

- **Measurement Specifications:** See Appendices A and C for measurement specifications.
- **Selecting channel_list.** channel_list has the form (@source) where source is the specified input, waveform memory, or math function being measured. Only one source can be specified at a time. If channel_list is not specified, INPut1 is used.
- **Oscilloscope Setup:** Maximum Voltage measurement is made using the entire waveform. When performing a measurement on a particular cycle, set the controls to present only that cycle.
- **Executing the Measurement:** When the measurement is executed, the instrument will measure and output the absolute maximum voltage (with 0 volts as the reference) of the source specified.
- **Related Commands:** CONFigure:, READ?, INITiate, FETCH?.
MEASure[:SCALar]:VOLTage:MINimum? [<channel_list>]

is used to configure the source specified by channel_list for a Minimum voltage measurement, perform the measurement on the signal present, then transfer the results to the output buffer.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>channel_list</td>
<td>numeric</td>
<td>INPut(n=1 to 4)</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WMEMory(n=1 to 4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATH(n=1 to 2)</td>
<td></td>
</tr>
</tbody>
</table>

Example

Make a minimum voltage measurement on input 1

```
MEAS:VOLT:MIN?
```

Configure input 1 for a Minimum Voltage measurement, perform the measurement, and transfer the result to the output buffer

```
enter statement
```

Enter measurement into computer

Comments

- **Measurement Specifications:** See Appendices A and C for measurement specifications.
- **Selecting channel_list:** channel_list has the form (@source) where source is the specified input, waveform memory, or math function being measured. Only one source can be specified at a time. If channel_list is not specified, INPut1 is used.
- **Oscilloscope Setup:** Minimum Voltage measurement is made using the entire waveform. When performing a measurement on a particular cycle, set the controls to present only that cycle.
- **Executing the Measurement:** When the measurement is executed, the instrument will measure and output the absolute minimum voltage (with 0 volts as the reference) of the source specified.
- **Related Commands:** CONFigure:, READ?, INITiate, FETCH?.
MEASure:NDUTycycle?

:NDUTycycle? MEASure[:SCALar]:VOLTage:NDUTycycle?

[<reference>] [<channel_list>] is used to configure the source specified by channel_list for a Negative Duty Cycle measurement, perform the measurement on the signal present, then transfer the results to the output buffer.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>reference</td>
<td>numeric</td>
<td>0 to 100</td>
<td>PCT</td>
</tr>
<tr>
<td>channel_list</td>
<td>numeric</td>
<td>INPut(n=1 to 4)]</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WMEMory(n=1 to 4)]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATH(n=1 to 2)</td>
<td></td>
</tr>
</tbody>
</table>

Example

Make a negative duty cycle measurement on math function 2

MEAS:VOLT:NDUT? (@MATH2) Configure input 2 for a Negative Duty Cycle measurement, perform the measurement, and transfer the result to the output buffer

Example statement

Enter measurement into computer

Comments

- Measurement Specifications: See Appendices A and C for measurement specifications.
- Selecting channel_list. channel_list has the form (@source) where source is the specified input, waveform memory, or math function being measured. Only one source can be specified at a time. If channel_list is not specified, INPut1 is used.
- Combinations of reference and channel_list. The various combinations of reference and channel_list are entered as follows:
 - <reference>,<channel_list> – when selecting both parameters
 - <channel_list> – when selecting the channel list only (uses middle defaults value (50%))

Specifying Reference: The measurement is performed at a specified level if the reference parameter is used. Values from 0 to 100% are accepted. reference can also be entered in voltage units (±250,000 volts) by specifying "V" in the parameter. For example, to set the reference to 0.2 volts, send the following:

CONF:VOLT:NDUT 0.2V, (@XXX)

- Oscilloscope Setup: In order to perform a Negative Duty Cycle measurement, a minimum of one full cycle must be present. If more than one waveform, edge, or pulse is present, the measurement is made on the first edge acquired. Negative Duty Cycle is determined at the specified reference level on the waveform. If the signal is not present, 9.99999E+37 is returned.
• **Executing the Measurement:** When the measurement is executed, the instrument will measure and output the negative duty cycle of the source specified.

• **Measurement Method:** The method the instrument uses to determine negative duty cycle is to measure NWIDth and PERiod, then present duty cycle in percent as ratio of the negative pulse width to period as follows:

 \[
 \text{negative duty cycle} = - \frac{\text{pulse width}}{\text{period}}
 \]

• **Related Commands:** CONFigure:, READ?, INITiate, FETCH?.
MEASure:NWIDth?

[:NWIDth? MEASure:[SCLA]r:VOLTage:NWIDth?]

[:<reference>[:<channel_list>]] is used to configure the source specified by channel_list for a Negative Pulse Width measurement, perform the measurement on the signal present, then transfer the results to the output buffer.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>reference</td>
<td>numeric</td>
<td>0 to 100</td>
<td>PCT</td>
</tr>
<tr>
<td>channel_list</td>
<td>numeric</td>
<td>INPutn (n=1 to 4)</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WMEMoryn (n=1 to 4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATHn (n=1 to 2)</td>
<td></td>
</tr>
</tbody>
</table>

Example

Make a negative pulse width measurement on input 3

```
MEAS:VOLT:NWID? (@INP3)
```

Configure input 3 for a Negative Pulse Width measurement, perform the measurement, and transfer the result to the output buffer.

enter statement

Enter measurement into computer

Comments

- **Measurement Specifications**: See Appendices A and C for measurement specifications.

- Selecting channel_list. channel_list has the form (@source) where source is the specified input, waveform memory, or math function being measured. Only one source can be specified at a time. If channel_list is not specified, INPut1 is used.

- **Combinations of reference and channel_list.** The various combinations of reference and channel_list are entered as follows:

 - `<reference>,<channel_list>` – when selecting both parameters
 - `<channel_list>` – when selecting the channel list only (uses middle defaults value (50%)

Specifying Reference: The measurement is performed at a specified level if the reference parameter is used. Values from 0 to 100% are accepted. reference can also be entered in voltage units (+250,000 volts) by specifying "V" in the parameter. For example, to set the reference to 0.2 volts, send the following:

  ```
  CONF:VOLT:NWID 0.2V, (@XXX)
  ```

- Oscilloscope Setup: In order to perform a Negative Pulse Width measurement, a minimum of one negative pulse must be present. If more than one waveform, edge, or pulse is present, the measurement is made on the first edge acquired. Negative Pulse Width is determined at the specified reference level on the waveform. If the signal is not present, 9.99999E+37 is returned.
• Executing the Measurement: When the measurement is executed, the instrument will measure and output the negative pulse width (in seconds) of the source specified.

• Measurement Method: The method the instrument uses to determine pulse width is to measure the time of the first complete negative pulse, then calculate pulse width as follows:

 If first edge of waveform is rising, then:
 pulse width = time at second rising edge − time at first falling edge

 If first edge of waveform is falling, then:
 pulse width = time at first rising edge − time at first falling edge

• Related Commands: CONFigure; READ?, INITiate, FETCH?.

SCPI Command Reference 6-79
Measure::PDUTycycle?

Measure[:SCALar]:VOLTage::PDUTycycle?

Where \(<reference>[:channel_list]\) is used to configure the source specified by \(channel_list\) for a Positive Duty Cycle measurement, perform the measurement on the signal present, then transfer the results to the output buffer.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>reference</td>
<td>numeric</td>
<td>0 to 100</td>
<td>PCT</td>
</tr>
<tr>
<td>channel_list</td>
<td>numeric</td>
<td>INPut(n) (n=1 to 4)</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WMEMory(n) (n=1 to 4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATH(n) (n=1 to 2)</td>
<td></td>
</tr>
</tbody>
</table>

Example

Make a duty cycle measurement on input 4

```
MEAS:VOLT:PDUT? (@INP4)  Configure input 4 for a Positive Duty Cycle measurement,
perform the measurement, and transfer the result to the output buffer

enter statement
Enter measurement into computer
```

Comments

- **Measurement Specifications:** See Appendices A and C for measurement specifications.
- **Selecting channel_list.** channel_list has the form (@source) where source is the specified input, waveform memory, or math function being measured. Only one source can be specified at a time. If channel_list is not specified, INPut1 is used.
- **Combinations of reference and channel_list.** The various combinations of reference and channel_list are entered as follows:
 - \(<reference>,<channel_list>\) - when selecting both parameters
 - <channel_list> - when selecting the channel list only (uses middle defaults value (50%))

Specifying Reference: The measurement is performed at a specified level if the reference parameter is used. Values from 0 to 100% are accepted. reference can also be entered in voltage units (±250,000 volts) by specifying "V" in the parameter. For example, to set the reference to 0.2 volts, send the following:

```
CONF:VOLT:PDUT 0.2V, (@XXX)
```

- **Oscilloscope Setup:** In order to perform a Positive Duty Cycle measurement, a minimum of one full cycle must be present. If more than one waveform, edge, or pulse is present, the measurement is made on the first edge acquired. Positive Duty Cycle is determined at the specified reference level on the waveform. If the signal is not present, 9.99999E+37 is returned.
- **Executing the Measurement:** When the measurement is executed, the instrument will measure and output the positive duty cycle of the source specified.

- **Measurement Method:** The method the instrument uses to determine duty cycle is to measure PWIDth and PERiod, then present duty cycle in percent as ratio of the positive pulse width to period as follows:

\[
\text{positive duty cycle} = \frac{\text{pulse width}}{\text{period}}
\]

- **DCYCle versus PDUTycycle:**
 MEASure[:SCALar]:VOLTage:DCYCle command is identical to the MEASure[:SCALar]:VOLTage:PDUTycycle command.

- **Related Commands:** CONFIGure:, READ?, INITiate, FETCH?, MEASure[:SCALar]:VOLTage:DCYCle.
:PERiod?

`MEASure[:SCALar]:VOLTage:PERiod? [<channel_list>]` is used to configure the source specified by `channel_list` for a Period measurement, perform the measurement on the signal present, then transfer the results to the output buffer.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>channel_list</code></td>
<td>numeric</td>
<td>INPut (n=1) to 4]</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WMEMory (n=1) to 4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATHn (n=1) to 2)</td>
<td></td>
</tr>
</tbody>
</table>

Example

Make a period measurement on math function 1

```latex
MEAS:VOLT:PER? (@MATH1) Configure math function 1 for a Period measurement, perform the measurement, and transfer the result to the output buffer
```

```latex
enter statement
Enter measurement into computer
```

Comments

- **Measurement Specifications:** See Appendices A and C for measurement specifications.
- **Selecting channel_list:** `channel_list` has the form `(@source)` where `source` is the specified input, waveform memory, or math function being measured. Only one source can be specified at a time. If `channel_list` is not specified, INPut1 is used.
- **Oscilloscope Setup:** In order to perform a Period measurement, a minimum of one full cycle must be present. If more than one waveform, edge, or pulse is present, the measurement is made on the first edge acquired. If the signal is not present, 9.99999E+37 is returned.
- **Executing the Measurement:** When the measurement is executed, the instrument will measure and output the period (in seconds) of the source specified.
- **Measurement Method:** The method the instrument uses to determine period is to measure the time of the first complete cycle, then calculate period as follows:
 - If first edge of waveform is rising, then:
    ```latex
    \text{period} = \text{time at second rising edge} - \text{time at first rising edge}
    ```
 - If first edge of waveform is falling, then:
    ```latex
    \text{period} = \text{time at second falling edge} - \text{time at first falling edge}
    ```
- **Related Commands:** CONFigure:, READ?, INITiate, FETCH?.
MEASURE:PWIDth?

:PWIDth?

[<reference>][<channel_list>] is used to configure the source specified by channel_list for a Positive Pulse Width measurement, perform the measurement on the signal present, then transfer the results to the output buffer.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>reference</td>
<td>numeric</td>
<td>0 to 100</td>
<td>PCT</td>
</tr>
<tr>
<td>channel_list</td>
<td>numeric</td>
<td>INPutn (n=1 to 4)</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WMEMoryn (n=1 to 4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATH(n=1 to 2)</td>
<td></td>
</tr>
</tbody>
</table>

Example

Make a positive pulse width measurement on waveform memory 2

```
MEAS:VOLT:PWID? (@WMEM2)  Configure waveform memory
2 for a Positive Pulse Width measurement, perform the
measurement, and transfer the
result to the output buffer

enter statement

Enter measurement into computer
```

Comments

- Measurement Specifications: See Appendices A and C for measurement specifications.
- Selecting channel_list. channel_list has the form (@source) where source is the specified input, waveform memory, or math function being measured. Only one source can be specified at a time. If channel_list is not specified, INPut1 is used.
- Combinations of reference and channel_list. The various combinations of reference and channel_list are entered as follows:
 - <reference>,<channel_list> – when selecting both parameters
 - <channel_list> – when selecting the channel list only (uses middle defaults value (50%)

Specifying Reference: The measurement is performed at a specified level if the reference parameter is used. Values from 0 to 100% are accepted. reference can also be entered in voltage units (±250,000 volts) by specifying "V" in the parameter. For example, to set the reference to 0.2 volts, send the following:

```
CONF:VOLT:PWID 0.2V, (@XXX)
```
- Oscilloscope Setup: In order to perform a Positive Pulse Width measurement, a minimum of one positive pulse must be present. If more than one waveform, edge, or pulse is present, the measurement is made on the first edge acquired. Positive Pulse Width is determined at the specified reference level on the waveform. If the signal is not present, 9.99999E+37 is returned.
• **Executing the Measurement:** When the measurement is executed, the instrument will measure and output the positive pulse width (in seconds) of the source specified.

• **Measurement Method:** The method the instrument uses to determine pulse width is to measure the time of the first complete positive pulse, then calculate pulse width as follows:

 - If first edge of waveform is rising, then:
 \[
 \text{pulse width} = \text{time at second falling edge} - \text{time at first rising edge}
 \]

 - If first edge of waveform is falling, then:
 \[
 \text{pulse width} = \text{time at first falling edge} - \text{time at first rising edge}
 \]

• **Related Commands:** CONFigure:, READ?, INITiate, FETCH?.

6-84 SCPI Command Reference
MEASURE:RISE:OVERShoot?

:RISE:OVERShoot?

MEASURE:SCALar:VOLTage:RISE:OVERShoot? [channel_list] is used to configure the source specified by channel_list for an Overshoot measurement on the rising edge of the waveform, perform the measurement on the signal present, then transfer the results to the output buffer.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>channel_list</td>
<td>numeric</td>
<td>INPut (n=1 to 4)</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WMEMory/n (n=1 to 4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATH/n (n=1 to 2)</td>
<td></td>
</tr>
</tbody>
</table>

Example

Make an overshoot measurement on the rising edge of the waveform on input 1

```
MEAS:VOLT:RISE:OVER?
```

Configure input 1 for an overshoot measurement on the rising edge, perform the measurement, and transfer the result to the output buffer

```
enter statement
```

Enter measurement into computer

Comments

- Measurement Specifications: See Appendices A and C for measurement specifications.

- Selecting channel_list. channel_list has the form (@source) where source is the specified input, waveform memory, or math function being measured. Only one source can be specified at a time. If channel_list is not specified, INPut1 is used.

- Oscilloscope Setup: In order to perform an Overshoot measurement, a minimum of one rising edge must be present. If more than one waveform, edge, or pulse is present, the measurement is made on the first edge acquired. If the signal is not present, 9.99999E+37 is returned.

- Executing the Measurement: When the measurement is executed, the instrument will measure and output the overshoot of the rising edge (in percent) of the source specified.

- Measurement Method: The method the instrument uses to determine overshoot is to make three different voltage measurements of the first rising (positive-going) edge present, then calculate overshoot as follows:

 \[
 \text{overshoot} = \left(\frac{\text{HIGH - MAXimum}}{\text{AMPLitude}} \right) \times 100
 \]

- Related Commands: CONFIGure:, READ?, INITiate, FETCH?.

SCPI Command Reference 6-85
:RISE:PREShoot?

MEASure[:SCALar]:VOLTage:RISE:PREShoot? [channel_list]
is used to configure the source specified by channel_list for a Preshoot measurement on the rising edge of the waveform, perform the measurement on the signal present, then transfer the results to the output buffer.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>channel_list</td>
<td>numeric</td>
<td>INPut(n=1 to 4)</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WMEMory(n=1 to 4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATH(n=1 to 2)</td>
<td></td>
</tr>
</tbody>
</table>

Example
Make a preshoot measurement on the rising edge of the waveform on input 4

```
MEAS:VOLT:RISE:PRE? (@INF4) Configure input 4 for a preshoot measurement on the rising edge, perform the measurement, and transfer the result to the output buffer
```

```
Enter statement
```

Comments
- Measurement Specifications: See Appendices A and C for measurement specifications.
- Selecting channel_list. channel_list has the form (@source) where source is the specified input, waveform memory, or math function being measured. Only one source can be specified at a time. If channel_list is not specified, INPut1 is used.
- Oscilloscope Setup: In order to perform a Preshoot measurement, a minimum of one rising edge must be present. If more than one waveform, edge, or pulse is present, the measurement is made on the first edge acquired. If the signal is not present, 9.99999E+37 is returned.
- Executing the Measurement: When the measurement is executed, the instrument will measure and output the preshoot of the rising edge (in percent) of the source specified.
- Measurement Method: The method the instrument uses to determine preshoot is to make three different voltage measurements of the first rising (positive-going) edge present, then calculate preshoot as follows:

\[
preshoot = ((LOW \cdot \text{MINimum}/\text{AMPLitude}) \cdot 100
\]

- Related Commands: CONFigure:, READ?, INITiate, FETCH?.
:RISE:TIME?

`MEASure[:SCALar]:VOLTage:RISE:TIME? [lower_limit][upper_limit][<channel_list>]` is used to configure the source specified by `channel_list` for a Rise Time measurement, perform the measurement on the signal present, then transfer the results to the output buffer. `lower_limit` defines the lower measurement threshold. `upper_limit` defines the upper measurement threshold.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>channel_list</td>
<td>numeric</td>
<td>INPut (n=1 to 4)</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WMEmory (n=1 to 4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATH (n=1 to 2)</td>
<td></td>
</tr>
<tr>
<td>lower_limit</td>
<td>numeric</td>
<td>-25.00 to +125.0</td>
<td>PCT</td>
</tr>
<tr>
<td>upper_limit</td>
<td>numeric</td>
<td>-25.00 to +125.0</td>
<td>PCT</td>
</tr>
</tbody>
</table>

Example

Make a rise time measurement at 10% lower threshold limit and 90% upper threshold limit on waveform memory 1 (defaults)

```plaintext
MEAS:VOLT:RISE:TIME? (WMEM1)
```

Enter measurement into computer

Comments

- **Measurement Specifications**: See Appendices A and C for measurement specifications.

- **Combinations of upper_limit/lower_limit/channel_list**.
 The various combinations of `upper_limit`, `lower_limit`, and `channel_list` are entered as follows:

 `<lower_limit>,<upper_limit>,<channel_list>` – when selecting all parameters

 `<lower_limit>,<channel_list>` – when selecting the lower limit and channel list (uses upper limit default)

 `<channel_list>` – when selecting the channel list only (uses upper and lower limit defaults)

- **Selecting Limits**: The upper and lower limits for the rise time measurement can be defined by the user as follows (units of percent and voltage cannot be specified together):

 Default: The measurement is performed at 10%/90% threshold levels if the `lower_limit` and `upper_limit` parameters are omitted.
Specifying Lower Limit: The measurement is performed at a specified lower threshold if the lower_limit parameter is used. Values from -25.00% to +125.0% are accepted. lower_limit can also be entered in voltage units (±250,000 volts) by specifying "V" in the parameter. For example, to set the lower_limit to 0.2 volts, send the following:

```
MEAS:VOLT:RISE:TIME 0.2V, XXXX, (8X)
```

Specifying Upper Limit: The measurement is performed at a specified upper threshold if the upper_limit parameter is used. Values from -25.00% to +125.0% are accepted. upper_limit can also be entered in voltage units (±250,000 volts) by specifying "V" in the parameter. For example, to set the upper_limit to 4.5 volts, send the following:

```
MEAS:VOLT:RISE:TIME XXXX, 4.5V, (8X)
```

- Selecting channel_list. channel_list has the form (@source) where source is the specified input, waveform memory, or math function being measured. Only one source can be specified at a time. If channel_list is not specified, INPut1 is used.

- Oscilloscope Setup: In order to perform a Rise Time measurement, the rising edge of the waveform must be present. If more than one waveform, edge, or pulse is present, the measurement is made on the first edge acquired. For best measurement accuracy, set the sweep speed as fast as possible. If the horizontal scaling is questionable when performing a Rise Time measurement, an error will be generated.

- Executing the Measurement: When the measurement is executed, the instrument will measure and output the rise time (in seconds) at the specified upper and lower limits of the selected source.

- Measurement Method: The method the instrument uses to determine rise time is to measure the time at the lower threshold then the upper threshold of the first rising (positive-going) edge present. Measurement results are used to calculate rise time as follows:

\[
\text{rise time} = \text{upper threshold time} - \text{lower threshold time}
\]

- **RISE:TIME versus RTIME:**

 MEASure[:SCALar]:VOLTage:RISE:TIME command is identical to the MEASure[:SCALar]:VOLTage:RTIME command.

- Related Commands: CONFigure:, READ?, INITiate, FETCH?, MEASure[:SCALar]:VOLTage:RTIME.

- **RST Conditions:** Lower limit defaults to 10% and upper limit defaults to 90%.
:RTIMe?

MEASure[:SCALar]:VOLTage:RTIMe?

`[lower_limit],[upper_limit],[<channel_list>]` is used to configure the source specified by `channel_list` for a Rise Time measurement, perform the measurement on the signal present, then transfer the results to the output buffer. `lower_limit` defines the lower measurement threshold. `upper_limit` defines the upper measurement threshold.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>channel_list</code></td>
<td>numeric</td>
<td>INPUT(n=1 to 4)</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WMEMory(n=1 to 4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATH(n=1 to 2)</td>
<td></td>
</tr>
<tr>
<td><code>lower_limit</code></td>
<td>numeric</td>
<td>-25.00 to +125.0</td>
<td>PCT</td>
</tr>
<tr>
<td><code>upper_limit</code></td>
<td>numeric</td>
<td>-25.00 to +125.0</td>
<td>PCT</td>
</tr>
</tbody>
</table>

Example

Make a rise time measurement at 20% lower threshold limit and 70% upper threshold limit on input 2.

```
MEAS:VOLT:RTIM? 20,70,(@INP2)
```

Comments

- **Measurement Specifications:** See Appendices A and C for measurement specifications.
- **Combinations of upper_limit/lower_limit/channel_list.**
 - The various combinations of `upper_limit`, `lower_limit`, and `channel_list` are entered as follows:
 - `<lower_limit>,<upper_limit>,<channel_list>` – when selecting all parameters
 - `<lower_limit>,<channel_list>` – when selecting the lower limit and channel list (uses upper limit default)
 - `<channel_list>` – when selecting the channel list only (uses upper and lower limit defaults)
- **Selecting Limits:** The upper and lower limits for the rise time measurement can be defined by the user as follows (units of percent and voltage cannot be specified together):
 - **Default:** The measurement is performed at 10%/90% threshold levels if the `lower_limit` and `upper_limit` parameters are omitted.
Specifying Lower Limit: The measurement is performed at a specified lower threshold if the lower_limit parameter is used. Values from -25.00% to +125.00% are accepted. lower_limit can also be entered in voltage units (±250,000 volts) by specifying "V" in the parameter. For example, to set the lower_limit to 0.2 volts, send the following:

MEAS:VOLT:RTIM 0.2V, XXX, (Gx)

Specifying Upper Limit: The measurement is performed at a specified upper threshold if the upper_limit parameter is used. Values from -25.00% to +125.00% are accepted. upper_limit can also be entered in voltage units (±250,000 volts) by specifying "V" in the parameter. For example, to set the upper_limit to 4.5 volts, send the following:

MEAS:VOLT:RTIM XXX, 4.5V, (Gx)

- Selecting channel_list: channel_list has the form (@source) where source is the specified input, waveform memory, or math function being measured. Only one source can be specified at a time. If channel_list is not specified, INPut1 is used.

- Oscilloscope Setup: In order to perform a Rise Time measurement, the rising edge of the waveform must be present. If more than one waveform, edge, or pulse is present, the measurement is made on the first edge acquired. For best measurement accuracy, set the sweep speed as fast as possible. If the horizontal scaling is questionable when performing a Rise Time measurement, an error will be generated.

- Executing the Measurement: When the measurement is executed, the instrument will measure and output the rise time (in seconds) at the specified upper and lower limits of the selected source.

- Measurement Method: The method the instrument uses to determine rise time is to measure the time at the lower threshold then the upper threshold of the first rising (positive-going) edge present. Measurement results are used to calculate rise time as follows:

 \[\text{rise time} = \text{upper threshold time} - \text{lower threshold time} \]

- RISE:TIME versus RTIMe:
 MEASure[:SCALar]:VOLTage:RTIMe command is identical to the MEASure[:SCALar]:VOLTage:RISE:TIME command.

- Related Commands: CONFigure:, READ?, INITiate, FETCH?, MEASure[:SCALar]:VOLTage:RISE:TIME.

- *RST Conditions: Lower limit defaults to 10% and upper limit defaults to 90%.
MEASURE:TMAXimum?

MEASURE[:SCALar]:VOLTage:TMAXimum? [<channel_list>]
returns the time at which the first maximum voltage occurred on the present waveform.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>channel_list</td>
<td>numeric</td>
<td>INPutn (n=1 to 4)</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WMEMoryn (n=1 to 4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATHn (n=1 to 2)</td>
<td></td>
</tr>
</tbody>
</table>

Example
Measure the first maximum voltage time on input 1

```
MEAS:VOLT:TMAX?  Configure input 2 for a time at maximum voltage measurement, perform the measurement, and transfer the result to the output buffer
```

```
enter statement  Enter data into computer
```

Comments

- Selecting channel_list. channel_list has the form (@source) where source is the specified input, waveform memory, or math function being measured. Only one source can be specified at a time. If channel_list is not specified, INPut1 is used.

- Executing the Measurement: When the measurement is executed, the instrument will measure and output the time (in seconds) that the maximum voltage occurred. The trigger point is used as the reference (time 0).
MEASure::SCALar::VOLTage::TMINimum? [<channel_list>]
returns the time at which the first minimum voltage occurred on the present waveform.

Example
Measure the first minimum voltage time for input 3

MESA::VOLT::TMIN? (0\n
Comments
- Selecting channel_list. channel_list has the form (@source) where source is the specified input, waveform memory, or math function being measured. Only one source can be specified at a time. If channel_list is not specified, INPut1 is used.
- Executing the Measurement: When the measurement is executed, the instrument will measure and output the time (in seconds) that the minimum voltage occurred. The trigger point is used as the reference (time 0).
The MEMory command subsystem enables the Oscilloscope to use external A24 VME memory space for routing acquired data from the internal buffers to the external buffer. It also enables measurements to be performed using data from the internal buffer or external buffer.

Subsystem Syntax

MEMory

:VME
 :ADDRESS <address>
 :ADDRESS? [MINimum | MAXimum]
 :MEASURE
 :ADDRESS <address>
 :ADDRESS? [MINimum | MAXimum]
 :STATE <mode>
 :STATE?
 :SIZE <bytes>
 :SIZE?
 :STATE <mode>
 :STATE?

The MEMory command allows the Oscilloscope to use external A24 VME memory for data acquisition, when the VME STATE is ON. Once the data has been acquired, it is available in "raw" format. Data is processed depending on type and format selected using the following guidelines:

- **Acquisition TYPE NORMAL** — The acquired data is 16 bits in length. The starting location, in VME space, of each INPUT buffer is to be calculated as follows:

 input1 = MEM:VME:ADDR
 input2 = MEM:VME:ADDR + 8192
 input3 = MEM:VME:ADDR + 16384
 input4 = MEM:VME:ADDR + 24576

 Data — 16 bits
 111111000000000000
 5432109876543210
 xxxxxxxxxxxxxxxx

 BYTE
 0 15
 xxxxxxxxxxxxxxxx

 WORD
 0 15
 xxxxxxxxxxxxxxxx

 COMPRESSED
 0
 xxxxxxxxxxxxxxxx

 NOTE: x = bits to shift. The external buffers only contain the acquired waveform data, not preamble information. Preamble information can be read using the TRACe:PREamble? query.
MEMory

- Acquisition TYPE AVERAGE — The acquired data is 32 bits in length. The starting location, in VME space, of each INPUT buffer is to be calculated as follows:

 \[
 \begin{align*}
 \text{INPut1} &= \text{MEM:VME:ADDR} \\
 \text{INPut2} &= \text{MEM:VME:ADDR} + 8192 \\
 \text{INPut3} &= \text{MEM:VME:ADDR} + 16384 \\
 \text{INPut4} &= \text{MEM:VME:ADDR} + 24576
 \end{align*}
 \]

Data — 32 bits

332222222222211111111111110000000000
10987654321098765432109876543210
xxxxxxxxxxxxxxxxxxxx

<table>
<thead>
<tr>
<th>BYTE</th>
<th>WORD</th>
<th>COMPRESSED</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>xxxxxxxx--------- > xxxxxxxxxxxxxxxx > xxxxxxxxxxx--------- ></td>
<td></td>
<td></td>
</tr>
<tr>
<td>shift right 9 bits</td>
<td>shift right 1 bit</td>
<td>shift right 8 bits</td>
</tr>
</tbody>
</table>

*NOTE: \(x \) bits to shift. The external buffers only contain the acquired waveform data, not preamble information. Preamble information can be read using the TRACe:PREAMble? query.
- Acquisition TYPE ENVelope — The acquired data is 16
 bits in length. The starting location, in VME space, of each
 INPUT buffer is be to calculated as follows:

 If data is digitized:

 MINIMUM

 INPut1 = MEM:VME:ADDR
 INPut2 = MEM:VME:ADDR + 8192
 INPut3 = MEM:VME:ADDR + 16384
 INPut4 = MEM:VME:ADDR + 24576

 MAXIMUM

 INPut1 = MEM:VME:ADDR + (2 * SWep:POINts)
 INPut2 = MEM:VME:ADDR + 8192 + (2 * SWep:POINts)
 INPut3 = MEM:VME:ADDR + 16384 + (2 * SWep:POINts)
 INPut4 = MEM:VME:ADDR + 24576 + (2 * SWep:POINts)

 If data is NOT digitized:

 MINIMUM

 INPut1 = MEM:VME:ADDR
 INPut2 = MEM:VME:ADDR + 8192
 INPut3 = MEM:VME:ADDR + 16384
 INPut4 = MEM:VME:ADDR + 24576

 MAXIMUM

 INPut1 = MEM:VME:ADDR + 1002
 INPut2 = MEM:VME:ADDR + 8192 + 1002
 INPut3 = MEM:VME:ADDR + 16384 + 1002
 INPut4 = MEM:VME:ADDR + 24576 + 1002

 Data — 16 bits

 1111110000000000
 5432109876543210
 xxxxxxxxxxxxxxxx

 BYTE

 15
 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

 shift right 9 bits

 WORD

 0 15
 xxxxxxxxxxxxxxxxxxxxxxxxxxxx
 >
 shift right 1 bit

 COMPRESSED

 0
 xxxxxxxxxxxxxxxxxxxxxxxxxxxx
 >
 shift right 8 bits

*NOTE: x = bits to shift. The external buffers only contain the acquired waveform data, not
preamble information. Preamble information can be read using the TRAc:PREamble? query.
:VME:ADDRess

MEMory:VME:ADDRess <address> sets the address of the external memory board in A24 memory address space where acquisition data will be available. address must be on an even boundary or a settings conflict will be generated.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>address</td>
<td>numeric</td>
<td>2097152-14647294</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#H200000-#HDF7FFE</td>
<td>MIN</td>
</tr>
</tbody>
</table>

Example

Setting the VME memory address

MEM:VME:ADDR #H250000 Set memory address location

Comments

- Entering Address: Address location can be specified in:
 - Decimal or hexadecimal (#H....)
 - MIN - sets the address to 2097152 (#H200000)
 - MAX - sets the address to 14647294 (#HDF7FFE).
- *RST Condition: MEM:VME:ADDR #H200000

:VME:ADDRess?

MEMory:VME:ADDRess? [MINimum|MAXimum] returns one of the following numbers to the output buffer:

- The present hexadecimal address selected if MIN or MAX are not specified.
- The lowest hexadecimal address available (H200000) if MIN is specified.
- The highest hexadecimal address available (HDF7FFE) if MAX is specified.

Example

Querying the VME memory address

dimension statement Dimension computer string array
MEM:VME:ADDR #H250000 Set memory address location
MEM:VME:ADDR? Query instrument to return memory address (in decimal)
enter statement Enter string into computer
:VME:MEASure:ADDRess

`MEMory:VME:MEASure:ADDRess <address>` sets the address of the external memory board in A24 memory address space where measurement data will be available. `address` must be on an even boundary or a settings conflict will be generated.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>address</td>
<td>numeric</td>
<td>2097152-14647294</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#H200000-#HDF7FFE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MIN</td>
<td>MAX</td>
</tr>
</tbody>
</table>

Example

Setting the VME memory address

```
MEM:VME:ADDR #H250000
```

memory address location

Comments

- Entering Address: Address location can be specified in:
 - Decimal or hexadecimal (#H...)
 - MIN – sets the address to 2097152 (#H200000)
 - MAX – sets the address to 14647294 (#HDF7FFE).
- *RST Condition: MEM:VME:ADDR #H200000

:VME:MEASure:ADDRess?

`MEMory:VME:MEASure:ADDRess? [MINimum|MAXimum]` returns one of the following numbers to the output buffer:

- The present hexadecimal address selected if MIN or MAX are not specified.
- The lowest hexadecimal address available (H200000) if MIN is specified.
- The highest hexadecimal address available (HDF7FFE) if MAX is specified.

Example

Querying the VME memory measure address

```
dimension statement
MEM:VME:ADDR #H250000
MEM:VME:ADDR?
enter statement
```

*Dimension computer string array
Set memory address location
Query instrument to return memory address (in decimal)
Enter string into computer*
MEMory:VME:MEASure:STATe

MEMory:VME:MEASure:STATe <mode> enables or disables use of the external memory board in A24 memory where data can be used for making a measurement.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode</td>
<td>boolean</td>
<td>OFF[0][ON][1]</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Enabling VME measure memory

```
MEM:VME:MEAS:ADDR #H250000 Set measurement memory address location
MEM:VME:MEAS:STAT ON Enable use of external measurement data
```

Comments

- Mode: Integer values can be substituted for the OFF (0) and ON (1) parameters.
- Memory VME State: When MEMory:VME:STATe is set to ON, MEMory:VME:MEASure:STATe will automatically be set to ON.
- *RST Condition: MEM:VME:MEAS:STAT defaults to OFF.

MEMory:VME:MEASure:STATe?

MEMory:VME:MEASure:STATe? returns the current state of the VME measurement memory. ON is returned when the external memory board in A24 memory is being used for measurements. OFF is returned if the internal buffers are being used. The value is sent to the output buffer.

Example

Querying the VME measure memory state

```
MEM:VME:MEAS:STAT 1 Enables use of external memory card
MEM:VME:MEAS:STAT? Query instrument to return external memory state
enter statement Enter value into computer
```
MEMory:VME:SIZE

:VME:SIZE

MEMory:VME:SIZE <bytes> sets the size, in bytes, of the external VME memory card.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>bytes</td>
<td>numeric</td>
<td>#8000 through #HC00000</td>
<td>bytes</td>
</tr>
</tbody>
</table>

Example

Setting the VME memory size

MEM:VME:SIZE 64000 Set memory size to 64 kbytes

Comments

- Entering Size: Memory size can be specified in decimal or hexadecimal (#H...).
- Minimum Memory Required: A minimum of H8000 bytes of VME memory are required to use the external VME feature.

:VME:SIZE?

MEMory:VME:SIZE? returns the current external VME memory allocation (in hexadecimal) to the output buffer.

Example

Querying the VME memory size

MEM:VME:SIZE 64000 Set memory size to 64 kbytes
MEM:VME:SIZE? Query instrument to return memory size

enter statement Enter string into computer
MEMory:VME:STATe

MEMory:VME:STATe <mode> enables or disables use of an external VME memory card for acquisition data storage.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode</td>
<td>boolean</td>
<td>OFF</td>
<td>ON</td>
</tr>
</tbody>
</table>

Example

Enabling VME memory

MEM:VME:ADDR #H250000 Set memory address location
MEM:VME:SIZE 64000 Set memory size to 64 kbytes
MEM:VME:STAT ON Enable use of external memory card

Comments

- Mode: Integer values can be substituted for the OFF (0) and ON (1) parameters.
- Memory VME Measure State: When MEMory:VME:STATe is set to ON, MEMory:VME:MEASure:STATe will automatically be set to ON.
- *RST Condition: MEM:VME:STAT defaults to OFF.

MEMory:VME:STATe?

MEMory:VME:STATe? returns whether the external VME memory feature is enabled (ON) or disabled (OFF). The value is sent to the output buffer.

Example

Querying the VME memory state

MEM:VME:STAT ON Enables use of external memory card
MEM:VME:STAT? Query instrument to return external memory state
enter statement Enter value into computer
The OUTPut command subsystem selects the source of the output trigger generated when the Oscilloscope generates an internal trigger event. The selected output can be enabled, disabled, and queried. The three available outputs are the ECL Trigger bus (lines 0 to 1), TTL Trigger bus (lines 0 to 7), or the "TTL Trigger Output" BNC port on the Oscilloscope front panel.

OUTPut[:STATE] acts like the master switch for the OUTPut subsystem. If the ECLTrg, TTLTrg, or EXTernal states are on, an output will ONLY occur when the OUTPut[:STATE] is set to ON.

```scpi
OUTPUT
  :ECLTrg<number>
  [:STATE] <mode>
  [:STATE]?
  :EXTERNAL
  [:STATE] <mode>
  [:STATE]?
  [:STATE]
  [:STATE]?
  :TTLTrg<number>
  [:STATE] <mode>
  [:STATE]?
```
OUTPut:ECLTrg[:STATE]

OUTPut:ECLTrg<number>[:STATE] <mode> selects and enables which ECL Trigger bus line (0 or 1) will output a trigger when the Oscilloscope triggers. It also is used to disable a selected ECL Trigger bus line. number specifies the ECL Trigger bus line (0 or 1). mode enables (ON11) or disables (OFF10) the specified bus line.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>0 or 1</td>
<td>none</td>
</tr>
<tr>
<td>mode</td>
<td>boolean</td>
<td>ON</td>
<td>OFF</td>
</tr>
</tbody>
</table>

Example

Enabling ECL trigger bus line 0

OUTP:ECL0:STAT 1
Enable ECL Trigger bus line 0
OUTP 1
Enable output subsystem

Comments

- Enabling ECL Trigger bus: When enabled, a pulse is output to the selected ECL Trigger bus line (0 or 1) when the Oscilloscope triggers. If disabled, a pulse is not output. The output is a positive going pulse.

- Numerous outputs selected at a time: All outputs (ECLTrg 0 or 1; TTLTrg 0, 1, 2, 3, 4, 5, 6, or 7; and EXternal) can be enabled at one time. Before any output is enabled, both the individual trigger state and the output state must be enabled. For example, to enable TTLTrg1 and ECLTrg2, send the following commands:

 OUTP:TTLT1 ON
 OUTP:ECLT2 ON
 OUTP ON

- Related Commands: TRIGger subsystem.
- *RST Condition: Default is OFF.

OUTPut:ECLTrg[:STATE]?

OUTPut:ECLTrg<number>[:STATE]? queries the present state of the specified ECL Trigger bus line. The query returns ON if the specified bus line is enabled or OFF if the specified bus line is disabled. The value is sent to the output buffer.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>0 or 1</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Query ECL trigger bus line 0 state

dimension statement String for data
OUTP:ECL0:STAT 1
Enable ECL Trigger bus line 0
OUTP:ECL0?
Query instrument to return ECL line 0 bus enable state

enter statement Enter result into computer
:EXTERNAL[:STATE]

OUTPut:EXTERNAL[:STATE] <mode> enables or disables the "TTL Trigger Output" BNC port on the Oscilloscope Module to output a trigger when the Oscilloscope triggers. mode enables (ON|1) or disables (OFF|0) the BNC port.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode</td>
<td>boolean</td>
<td>ON</td>
<td>OFF</td>
</tr>
</tbody>
</table>

Example

Enabling the TTL trigger output connector

```
OUTP::EXT 1  
Enable "TTL Trigger Output" BNC port to output pulse
```

```
OUTP 1
Enable output subsystem
```

Comments

- **Enabling Trig Out Port:** When enabled, a pulse is output from the "TTL Trigger Output" BNC port on the Oscilloscope Module. If disabled, a pulse is not output. The output is a negative going pulse.
- **Numerous outputs selected at a time:** All outputs (ECLTrg 0 or 1; TTLTrg 0, 1, 2, 3, 4, 5, 6, or 7; and EXTERNAL) can be enabled at one time. Before any output is enabled, both the individual trigger state and the output state must be enabled. For example, to enable TTLTrg1 and ECLTrg2, send the following commands:

```
OUTP:TTL1 ON
OUTP:ECLT2 ON
OUTP ON
```

- **Related Commands:** TRIGger subsystem.
- **RST Condition:** Defaults to OFF.

:EXTERNAL[:STATE]?

OUTPut:EXTERNAL:STATE? queries the present state of the "TTL Trigger Output" BNC port. The query returns ON if the port is enabled or OFF if the port is disabled. The value is sent to the output buffer.

Example

Query TTL trigger output connector enable state

```
dimension statement String for data
OUTP::EXT ON Enable "TTL Trigger Output" BNC port
OUTP::EXT? Query instrument to return port enable state
enter statement Enter value into computer
```
OUTPut[:STATE] <mode> enables or disables the OUTPut subsystem. mode enables (ON|1) or disables (OFF|0) all selected TTLTrg, ECLTrg, and EXTernal outputs.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode</td>
<td>boolean</td>
<td>ON</td>
<td>OFF</td>
</tr>
</tbody>
</table>

Example Enabling TTL trigger output connector

```
OUTP:EXT 1
        Enable "TTL Trigger Output" BNC port to output pulse
OUTP 1
        Enable output subsystem
```

Comments • Selecting Outputs: Use the TTLTrg, ECLTrg, or EXTernal commands to enable a specific output. Use the OUTPut[:STATE] command to enable the subsystem.

• *RST Condition: Defaults to OFF.

OUTPut[:STATE]? queries the present state of the OUTPut subsystem. The query returns ON if the output is enabled or OFF if the output is disabled. The value is sent to the output buffer. See [:STATE] command for more information.

Example Query output subsystem state

```
dimension statement String for data
OUTP 1
        Enable "Trigger Output" BNC port
OUTP?
        Query instrument to return port enable state
enter statement Enter value into computer
```
OUTPut:TTLTrg[:STATE]?

OUTPut:TTLTrg[number][:STATE] <mode> selects and enables which TTL Trigger bus line (0 to 7) will output a trigger when the Oscilloscope triggers. It also is used to disable a selected TTL Trigger bus line. *mode* enables (ON|1) or disables (OFF|0) the specified bus line.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>0 to 7</td>
<td>none</td>
</tr>
<tr>
<td>mode</td>
<td>boolean</td>
<td>ON</td>
<td>OFF</td>
</tr>
</tbody>
</table>

Example

Enabling TTL Trigger bus line 7

```
OUTP:TTL7:STAT 1
```

Enable TTL Trigger bus line 7 to output pulse

```
OUTP 1
```

Enable output subsystem

Comments

- **Enabling TTL Trigger bus**: When enabled, a pulse is output to the selected TTL Trigger bus line (0 to 7) after the Oscilloscope triggers. If disabled, a pulse is not output. The output is a negative going pulse.

- **Numerous outputs selected at a time**: All outputs (ECLTrg 0 or 1; TTLTrg 0, 1, 2, 3, 4, 5, 6, or 7; and EXternal) can be enabled at one time. Before any output is enabled, both the individual trigger state and the output state must be enabled. For example, to enable TTLTrg1 and ECLTrg2, send the following commands:

  ```
  OUTP:TTL1 ON
  OUTP:ECL2 ON
  OUTP ON
  ```

- **Related Commands**: TRIGger subsystem.

- **RST Condition**: Defaults to OFF.

OUTPut:TTLTrg[number][:STATE]?? queries the present state of the specified TTL Trigger bus line. The query returns ON if the specified bus line is enabled or OFF if the specified bus line is disabled. The value is sent to the output buffer.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>0 or 7</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Query TTL trigger bus line 7 state

```
dimension statement String for data
OUTP:TTL7:STAT 1 Enable TTL Trigger bus line 7
OUTP:TTL7?? Query instrument to return TTL bus line 7 enable state
```

```
enter statement Enter value into computer
```

SCPI Command Reference 6-105
The READ? query is used to initiate a previously configured measurement, and then transfer the measurement results to the output buffer. The READ? query performs the identical function as the INITiate and FETCH? commands.

Subsystem Syntax

```
READ[[:SCALar]:VOLTage[:<function>]]?
```

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>function</td>
<td>discrete</td>
<td>[AC</td>
<td>AMPLitude][DC]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>none</td>
</tr>
</tbody>
</table>

Comments

- **Selecting Function**: Depending on the desired action, `function` can either be omitted or specified as follows:

 - **READ?**: When executed, will initiate and retrieve results from the last measurement. If *RST is executed prior to sending the READ?, an error will be generated.
 - **READ[:SCALar]:VOLTage[:<function>]?**: When executed, will initiate and retrieve the results from a previously configured measurement as specified using `function`.

 For example,

  ```
  dimension statement
  CONF:VOLT:FREQ (@1)
  MEAS:VOLT:AC? (@2)
  CONF:VOLT:PER (@3)
  ABOR
  READ?
  
  OR
  READ:VOLT:FREQ?
  ```

 *String for data
 Configure input 1 for a frequency measurement
 Perform an AC voltage measurement on input 2
 Configure input 3 for a period measurement
 Stop all measurements
 Would initiate an AC voltage measurement, then return measurement results
 Would initiate a frequency measurement, then return measurement results
 Enter measurement results into computer

6-106 SCPI Command Reference
- **READ? versus FETCH? and INITiate**: Performing a measurement using the READ? query is identical to performing the INITiate/FETCH? commands.

- **Return Format**: Previous data stored in the output buffer is lost when a READ? is executed. A returned 9.99999E+37 indicates an invalid measurement. See the individual CONFigure commands for more information on returned measurement results.
The `SENSe:` command subsystem is used to setup the instrument's vertical, horizontal, and data acquisition controls. The `SENSe:` subsystem is comprised of five lower level subsystems shown below.

<table>
<thead>
<tr>
<th>Subsystem Syntax</th>
<th><code>SENSe:</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>AVERage</td>
<td>:COUNT <count></td>
</tr>
<tr>
<td></td>
<td>:COUNT?</td>
</tr>
<tr>
<td></td>
<td>[:STATE] <mode></td>
</tr>
<tr>
<td></td>
<td>[:STATE]?</td>
</tr>
<tr>
<td></td>
<td>:TYPE <mode></td>
</tr>
<tr>
<td></td>
<td>:TYPE?</td>
</tr>
<tr>
<td>CORRection<number></td>
<td>:AFACtor <atten></td>
</tr>
<tr>
<td></td>
<td>:AFACtor?</td>
</tr>
<tr>
<td>INPut<number></td>
<td>:COUPling <type></td>
</tr>
<tr>
<td></td>
<td>:COUPling?</td>
</tr>
<tr>
<td></td>
<td>:FILTER</td>
</tr>
<tr>
<td></td>
<td>[:LPASs]</td>
</tr>
<tr>
<td></td>
<td>[:STATE] <mode></td>
</tr>
<tr>
<td></td>
<td>[:LPASs]?</td>
</tr>
<tr>
<td></td>
<td>[:HPASs]</td>
</tr>
<tr>
<td></td>
<td>[:STATE] <mode></td>
</tr>
<tr>
<td></td>
<td>[:HPASs]?</td>
</tr>
<tr>
<td></td>
<td>:IMPedance <value></td>
</tr>
<tr>
<td></td>
<td>:IMPedance?</td>
</tr>
<tr>
<td></td>
<td>[:STATE] <mode></td>
</tr>
<tr>
<td></td>
<td>[:STATE]?</td>
</tr>
<tr>
<td>SWEEep</td>
<td>:POINts <points></td>
</tr>
<tr>
<td></td>
<td>:POINts?</td>
</tr>
<tr>
<td></td>
<td>:COMPLETE <complete></td>
</tr>
<tr>
<td></td>
<td>:COMPLETE?</td>
</tr>
<tr>
<td>TIME:</td>
<td>:CENTer <center_time></td>
</tr>
<tr>
<td></td>
<td>:CENTer?</td>
</tr>
<tr>
<td></td>
<td>:DELAY <time></td>
</tr>
<tr>
<td></td>
<td>:DELAY?</td>
</tr>
<tr>
<td></td>
<td>:LINK <reference></td>
</tr>
<tr>
<td></td>
<td>:LINK?</td>
</tr>
<tr>
<td></td>
<td>:RANGE <range></td>
</tr>
<tr>
<td></td>
<td>:RANGE?</td>
</tr>
<tr>
<td></td>
<td>:SPAN </td>
</tr>
<tr>
<td></td>
<td>:SPAN?</td>
</tr>
<tr>
<td></td>
<td>:START <start_time></td>
</tr>
<tr>
<td></td>
<td>:START?</td>
</tr>
<tr>
<td></td>
<td>:STOP <stop_time></td>
</tr>
</tbody>
</table>
| | :STOP?
[SENSe:] AVERAGE

Subsystem Syntax

VOLTage<number>
 :RANGE
 :LOWer <lower>
 :LOWer?
 :OFFSet <value>
 OFFSet?
 [:PTEak] <range>
 [:PTEak]?
 :UPPer <upper>
 :UPPer?

AVERAGE

[SENSe:] AVERAGE subsystem is used to select the type of data and number of averages when acquiring waveform data. Must be setup prior to executing the INITiate[:IMMediate] command when digitizing waveform data.

Note

The term "Time Buckets" is defined as — the time range divided into a specific number of horizontal time points (as defined by [SENSe:] SWEep:POINts command), each with an equal and fixed time associated with it.
AVERaGe:COUNt

AVERaGe:COUNt selects the number of values to be averaged for each time bucket before the acquisition (for that time bucket) is considered complete.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>numeric</td>
<td>1 to 2048</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Set average count to 64

The following example illustrates the use of the AVERaGe:COUNt command only. Chapter 5 contains an example on performing a complete digitizing operation.

```
AVER:COUN 64
```

Average count is 64

Comments

- **Average Type**: Count values accepted are dependent on the AVERaGe:[STATE] and/or the AVERaGe:TYPE currently selected, as follows:

 AVERaGe:[STATE] ON: This is the Average mode. The acceptable values are from 1 to 2048, however entry will be rounded to the nearest power of 2. Selection of AVERaGe:TYPE is not required. Any value entered outside the range will automatically be adjusted to the nearest acceptable value.

 AVERaGe:[STATE] OFF — AVERaGe:TYPE SCALar: This is the Scalar mode. Count is not used in this mode. Any value from 1 to 2048 can be entered, but is disregarded. Query will always return a 1.

 AVERaGe:[STATE] OFF — AVERaGe:TYPE ENvelope: This is the Envelope mode. Count is not used in this mode. Any value from 1 to 2048 can be entered, but is disregarded. Query will return entered value.

- **Related Commands**: [SENSe:]AVERaGe:TYPE, [SENSe:]SWEep:POINts.

- **RST Condition**: Defaults to 8.

AVERaGe:COUNt?

AVERaGe:COUNt? returns the currently selected count value. The value is sent to the output buffer.

Example

Querying average count

```
AVER:COUN 64
```

Average count is 64

```
AVER:COUN?
```

Query instrument to return average count value

```
enter statement
```

Enter value into computer

Comments

- **Average Type Scalar**: When AVERaGe:[STATE] is OFF and AVERaGe:TYPE SCALar is selected, a count query will always return a 1.
AVERage[:STATE]?

[SENSE:]AVERage[:STATe] <mode> is used to select the average acquisition mode. Also used with the AVERage:TYPE command to select the other acquisition modes.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode</td>
<td>boolean</td>
<td>ON</td>
<td>OFF</td>
</tr>
</tbody>
</table>

Example

Enabling average acquisition mode

The following example illustrates the use of the AVERage:STATe command only. Chapter 5 contains an example on performing a complete digitizing operation.

AVER ON

Enable average acquisition mode

Comments

- Selecting Acquisition Mode: Acquisition mode is selected using the AVERage:TYPE and AVERage[:STATe] commands as follows:

 AVERAge Mode: The average acquisition mode is selected when AVERage[:STATe] is enabled (ON|1). AVERage:TYPE is not used (overridden), however when AVERage[:STATe] is set to OFF, TYPE is automatically set to SCALar.

 SCALar or ENVelope Mode: The Scalar and Envelope acquisition modes are selected when AVERage[:STATe] is disabled (OFF|0). The AVERage:TYPE command then selects the ENVelope or SCALar acquisition mode.

- AVERAge Mode: Average acquisition mode is used when reduction of signal noise and improved resolution is desired. The waveform reflects a minimum of n acquisitions averaged per time bucket, where n is the current AVERage:COUNt value.

- Related Commands: [SENSe:]AVERage:TYPE, [SENSe:]AVERage:COUNt.

- *RST Condition: Defaults to OFF.

AVERage[:STATe]?

[SSENSe:]AVERage[:STATe]? queries the present state of the average acquisition mode. The query returns ON if the average mode enabled or OFF if the average mode is disabled. The value is sent to the output buffer.

Example

Query average mode state

dimension statement String for data
AVER ON Enable average acquisition mode
AVER? Query instrument to return average mode state
enter statement Enter value into computer
AVERage:TYPE

AVERage:TYPE <mode> is used to select the scalar or envelope acquisition mode. Used only when AVERage[:STATE] is OFF.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode</td>
<td>discrete</td>
<td>SCALar</td>
<td>ENvelope</td>
</tr>
</tbody>
</table>

Example

Set acquisition type to envelope

The following example illustrates the use of the AVERage:TYPE command only. Chapter 5 contains an example on performing a complete digitizing operation.

AVER:TYPE ENV

Acquisition type is envelope

Comments

- Selecting Acquisition Mode: Acquisition mode is selected using the AVERage:TYPE and AVERage[:STATE] commands as follows:

 AVERage Mode: The average acquisition mode is selected when AVERage[:STATE] is enabled (ON|1). AVERage:TYPE is not used (overridden), however when AVERage[:STATE] is set to OFF, TYPE is automatically set to SCALar.

 SCALar Mode: The Scalar acquisition mode is selected when AVERage[:STATE] is disabled (OFF|0), and AVERage:TYPE is SCALar.

 ENvelope Mode: The Envelope acquisition mode is selected when AVERage[:STATE] is disabled (OFF|0), and AVERage:TYPE is ENvelope.

- Why Three Modes?: Mode is used to select how the acquisitions are used when generating the waveform.

 SCALar: Used for general purpose type measurements. The waveform reflects the last data point (hit) in each time bucket. AVERage:COUNt has no effect in this mode.

 AVERage: Used when reduction of signal noise and improved resolution is desired. The waveform reflects a minimum of \(n \) acquisitions averaged per time bucket, where \(n \) is the current AVERage:COUNt value.

 ENvelope: Used when measuring voltage or time jitter. The waveform reflects the minimum and maximum data points (hit) in each time bucket. AVERage:COUNt has no effect in this mode.

- Related Commands: AVERage:COUNt, INITiate[:IMMediate].

- *RST Condition: Defaults to SCALar.
Average: Type

[SENSe:]AVERage:TYPE? returns the currently selected acquisition type. Does not return active acquisition mode. The data is sent to the output buffer. See AVERage:TYPE and AVERage[:STATe] commands for more information on available types.

Example

Querying acquisition type

<table>
<thead>
<tr>
<th>Dimension</th>
<th>statement</th>
<th>String for data</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVER OFF</td>
<td>AVER:TYPE ENV</td>
<td>Average acquisition to off</td>
</tr>
<tr>
<td>AVER:TYPE?</td>
<td></td>
<td>Acquisition type is envelope</td>
</tr>
</tbody>
</table>

Correction

[SENSe:]CORRection<number> subsystem is used to select a specific input's probe attenuation factor. Inputs 1, 2, 3, and 4 are independently programmable.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1 to 4</td>
<td>none</td>
</tr>
</tbody>
</table>

Comments

- **Entering Number:** The desired input number from 1 to 4 is specified for the correction commands listed in this section.
CORRection:AFACtor

[SENSe:]CORRection<number>:AFACtor <atten> is used to enter a probe's attenuation factor for the input specified. The selection does not change the actual input sensitivity of the instrument, it changes the reference constants for scaling the vertical range and offset, automatic measurements, trigger levels, etc.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1 to 4</td>
<td>none</td>
</tr>
<tr>
<td>atten</td>
<td>numeric</td>
<td>0.9 to 1000.0</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Set input 1 probe attenuation to 10:1

CORR1:AFAC 10
Input 1 probe attenuation to 10:1

Comments

- **Entering Attenuation:** If *atten* is set to a value outside the allowable range, it will automatically be set to the nearest acceptable value without generating an error.

- **Range and Offset:** Changing CORRection<number>:AFACtor will effect the current settings of VOLTage<number>:RANGE[:PTPeak] and OFFSet.

- **Related Commands:** CALibration:PCALibration:ATTenuation.

- **RST Conditions:** Defaults to 1:1 on all inputs.

CORRection:AFACtor?

[SENSe:]CORRection<number>:AFACtor? returns the current probe attenuation factor for the input specified. The value (a ratio :1) is sent to the output buffer.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1 to 4</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Querying input 1 probe attenuation

CORR1:AFAC 10
Input 1 probe attenuation to 10:1

CORR1:AFAC?
Query instrument to return input 1 probe attenuation factor

enter statement
Enter value into computer
InPut

[SENSE:]INPut<number> subsystem is used to select a specific input's coupling, impedance, filter, and on/off functions. Inputs 1, 2, 3, and 4 are independently programmable.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1 to 4</td>
<td>none</td>
</tr>
</tbody>
</table>

Comments

- **Entering Number:** The desired input number from 1 to 4 is specified for the input commands listed in this section.

InPut:COUPlIng

[SENSE:]INPut<number>:COUPling <type> is used to select the coupling for the input specified. The coupling for each input can be set to AC or DC.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1 to 4</td>
<td>None</td>
</tr>
<tr>
<td>type</td>
<td>discrete</td>
<td>AC/DC</td>
<td>None</td>
</tr>
</tbody>
</table>

Example

Set input 1 coupling to AC

```
INP1:COUP AC
Input 1 coupling to AC
```

Comments

- **Coupling versus IMPedance:** AC coupling is not available when the IMPedance is set to 50Ω. Setting coupling to AC sets impedance to 1MΩ.
- **Coupling versus FILTER:** DC coupling is not available when the high pass filter is enabled.
- **Related Commands:** [SENSe:]INPut<n>:IMPedance, [SENSe:]INPut<n>:FILTER:HPAS.
- **RST Condition:** Defaults to DC on all inputs.

InPut:COUPlIng?

[SENSE:]INPut<number>:COUPling? returns the currently selected coupling type (AC or DC) for the input specified. The data is sent to the output buffer. See INPut<n>:COUPling for more information on coupling types.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1 to 4</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Querying input 1 coupling

```
dimension statement
INP1:COUP AC
INP1:COUP?
```

String for data

```
Input 1 coupling to AC
Query instrument to return input 1 coupling selection
```

Enter statement

```
Enter value into computer
```
INPUT:FILTER:HPAS[:STATE]

[SENSe:]INPUT:FILTER:HPAS[:STATE] <mode> is used to select an internal high pass filter. When ON, the bandwidth of the specified input is limited to approximately 450 Hz. The bandwidth limit filter may be used only with AC coupling.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>number</td>
<td>numeric</td>
<td>1 to 4</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>mode</td>
<td>boolean</td>
<td>OFF</td>
<td>ON</td>
</tr>
</tbody>
</table>

Example
Enable high pass filter on input 3

`INP3:FILT:HPAS ON`
Input 3 high pass filter to on

Comments
- Mode: Integer values can be substituted for the OFF (0) and ON (1) parameters.
- Related Commands: [SENSe:]INPUT<n>:COUPling.
- *RST Conditions: Defaults to OFF for all inputs.

INPUT:FILTER:HPAS[:STATE]?

[SENSe:]INPUT<number>:FILTER:HPAS[:STATE]? returns the currently selected high pass filter state (ON or OFF) for the input specified. The value is sent to the output buffer.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>number</td>
<td>numeric</td>
<td>1 to 4</td>
<td>none</td>
</tr>
</tbody>
</table>

Example
Querying input 3 high pass filter state

- `dimension statement String for data`
- `INP3:FILT:HPAS ON Input 3 high pass filter to on`
- `INP3:FILT:HPAS? Query instrument to return input 3 high pass filter state`
- `enter statement Enter value into computer`
[SENSe:]INPUT:FILTER[:LPASs][:STATE]

INPUT:FILTER[:LPASs][:STATE]

[SSENSe:]INPUT<number>:FILTER[:LPASs][:STATE] <mode> is used to select an internal low pass filter. When ON, the bandwidth of the specified input is limited to approximately 30 MHz. The bandwidth limit filter may be used with all coupling selections.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1 to 4</td>
<td>none</td>
</tr>
<tr>
<td>mode</td>
<td>boolean</td>
<td>OFF</td>
<td>0</td>
</tr>
</tbody>
</table>

Example

Enable low pass filter on input 1

```
INP1:FILT 1
```

Input 1 low pass filter to on

Comments

- Mode: Integer values can be substituted for the OFF (0) and ON (1) parameters.
- Related Commands: [SENSe:]INPUT<n>:COUPling.
- *RST Conditions: Defaults to OFF for all inputs.

[SSENSe:]INPUT<number>:FILTER[:LPASs][STATE]? returns the currently selected low pass filter state (ON or OFF) for the input specified. The value is sent to the output buffer.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1 to 4</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Querying input 1 low pass filter state

```
dimension statement String for data
INP1:FILT 1 Input 1 low pass filter to on
INP1:FILT? Query instrument to return input 1 low pass filter state
enter statement Enter value into computer
```
INPut:IMPedance

[SENSe:]INPut\(<number>\):IMPedance \(<value>\) is used to select the impedance for the input specified. The impedance for each input can be set to 1MΩ or 50Ω. The 50Ω impedance selection may be used only with DC coupling.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1 to 4</td>
<td>None</td>
</tr>
<tr>
<td>value</td>
<td>numeric</td>
<td>50</td>
<td>1E6</td>
</tr>
</tbody>
</table>

Example

Set input 1 impedance to 50Ω

```
INP1:IMP 50
```

Input 1 impedance to 50Ω

Comments

- **Coupling versus IMPedance**: Setting impedance to 50Ω automatically sets coupling to DC.
- **RST Condition**: Defaults to 1MΩ on all inputs.
- **Related Commands**: [SENSe:]INPut\(<n>\):COUPling.

INPut:IMPedance?

[SENSe:]INPut\(<number>\):IMPedance? returns the currently selected input impedance (50 or 1E6) for the input specified. The data is sent to the output buffer.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1 to 4</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Querying input 1 coupling

```
INP1:IMP 50
INP1:IMP?
```

Input 1 impedance to 50Ω

Query instrument to return input 1 impedance selection

Enter statement Enter value into computer
[SENSe:]INPut[:STATe]

INPut[:STATe] [SENSe:]INPut<number>[:STATe] <mode> is used to enable (ON|1) or disable (OFF|0) the specified input.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1 to 4</td>
<td>none</td>
</tr>
<tr>
<td>mode</td>
<td>boolean</td>
<td>ON</td>
<td>OFF</td>
</tr>
</tbody>
</table>

Example

Enabling input 4

```
INP4:STAT 1
```

Enable input 4

Comments

- Related Commands: [SENSe:]INPut<n>[:STATe]?
- *RST Condition: Defaults to input 1 on, input 2-4 off.

INPut[:STATe]?

[SENSe:]INPut<number>[:STATe]? queries the present state of the specified input. The query returns ON if the specified input is enabled or OFF if the specified input is disabled. The value is sent to the output buffer.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1 to 4</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Query input 4 state

```
INP4:STAT 1
INP4?
```

Enable input 4
Query instrument to return input 4 state

```
enter statement
```

Enter value into computer
SWEep [SENSe:]SWEep subsystem is used to control the horizontal axis, or "X-axis," functions.

Note

The term "Time Buckets" is defined as — the time range divided into a specific number of horizontal time points (as defined by SWEep:POINts command), each with an equal and fixed time associated with it.

For purposes of selecting the SWEep commands START, STOP, CENTer, RANGE/SPAN are as shown below.
SWEep:POINts

[SSENSe:]SWEep:POINts <points> selects the number of time buckets for each acquisition.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>points</td>
<td>numeric</td>
<td>32</td>
<td>64</td>
</tr>
</tbody>
</table>

Example

Set acquisition points to 1024

The following example illustrates the use of the SWEep:POINts command only. Chapter 5 contains an example on performing a complete digitizing operation.

```
SWE:POIN 1024
Acquisition points are 1024
```

Comments

- **Entering Points**: Any value between 32 and 1024 can be entered, however entry will be rounded to the nearest acceptable value.
- **Waveform Points**: To determine the **ACTUAL** number of time buckets acquired, send the TRACe:POINts? query.
- **Related Commands**: TRACe:POINts?.
- **RST Condition**: Defaults to 500.

SWEep:POINts?

[SSENSe:]SWEep:POINts? returns the currently selected points value. The value is sent to the output buffer.

Example

Querying acquisition points

```
SWE:POIN 1024
Acquisition points are 1024
SWE:POIN?
Query instrument to return acquisition points value
```

```
enter statement
Enter value into computer
```
SWEep:POINTs:COMPLETE

[SENSE:]SWEep:POINTs:COMPLETE <complete> specifies the completion criteria for an acquisition. Specifies what percentage of the time buckets need to be "full" before an acquisition is considered complete.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>complete</td>
<td>numeric</td>
<td>0 to 100</td>
<td>PCT</td>
</tr>
</tbody>
</table>

Example

Set acquisition complete to 50%

The following example illustrates the use of the SWEep:POINTs:COMPLETE command only. Chapter 5 contains an example on performing a complete digitizing operation.

```
SWE:POINT:COMP 50  Acquisition complete is 50%
```

Comments

- **Time Buckets = "full":** A time bucket is considered "full" dependent on the acquisition mode selected as follows:

 SCALar Mode: The instrument only needs one data point per time bucket for that time bucket to be considered full.

 AVERage or ENVelope Mode: A specified number of data points per time bucket (set using AVERage:COUNt) must be acquired.

- **Recommended Completion Value:** 60% is the recommended completion criteria. See Appendix C, Optimizing Measurements, for additional information on measurement techniques.

- **Completion of 0%:** If the complete value is set to 0, then one acquisition cycle will take place.

- **Related Commands:** [SENSe:AVerage:TYPE], [SENSe:AVerage:COUNt].

- **RST Condition:** Defaults to 100%.

SWEep:POINTs:COMPLETE?

[SENSE:]SWEep:POINTs:COMPLETE? returns the completion value (in percent) for the currently selected acquisition mode. The value is sent to the output buffer. See SWEep:POINTs:COMPLETE command for more information.

Example

Querying current acquisition complete value

```
SWE:POINT:COMP 50  Acquisition complete is 50%
SWE:POINT:COMP?  Query instrument to return acquisition complete value
```

Enter statement Enter value into computer
[SENSe:]SWEep:TIME:CENTer

SWEep:TIME:CENTer

[SENSe:]SWEep:TIME:CENTer <center_time> is used to set the
time interval (in seconds) between the trigger event and the center of
the currently specified range/span. The range is set to a specific time
using the SWEep:TIME:RANGE or SPAN command, and does not
change.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>center_time</td>
<td>numeric</td>
<td>Depends on SWEep:TIME:RANGE</td>
<td>S</td>
</tr>
</tbody>
</table>

Example

Set center time to 2 msec

SWE:TIME:CENT 2E-3 Center to 2 msec

Comments

• Entering Center Time: center_time selects the time at the center
 of the selected SWEep:TIME:RANGE or SPAN.

• Effects on Other SWEep Selections: Center changes will
 cause the following commands to change their current
 parameters:

 SWEep:DELay: Amount of change is proportional to the
 amount that center was changed.

 SWEep:TIME:START: New start time is calculated and
 entered as follows:

 \[
 \text{start} = \text{center} - (\text{span}/2)
 \]

 SWEep:TIME:STOP: New stop time is calculated and
 entered as follows:

 \[
 \text{stop} = \text{center} + (\text{span}/2)
 \]

• Entering SWEep:TIME:RANGE or SPAN: Range/span
 CANNOT be entered or changed using the TIME:START, STOP,
 or CENTer commands.

• TIME:START:/STOP:/CENTer versus DELay: Setting
 TIME:START, TIME:STOP, and TIME:CENTer is identical to
 setting the same values using DELay and TIME:DELay:LINK
 commands.

• Related Commands: [SENSe:]SWEep:DELay,
 [SENSe:]SWEep:TIME:(START and STOP).

• *RST Condition: Defaults to 0 sec.

SWEep:TIME:CENTer?

[SENSe:]SWEep:TIME:CENTer? returns a number representing the
current time interval between the trigger event and the center of
the currently specified range/span. The value (in ± seconds) is sent to
the output buffer.

Example

Querying current center time value

SWE:TIME:CENT 2E-3 Center to 2 msec
SWE:TIME:CENT? Query instrument to return center
time value in seconds
enter statement Enter value into computer
SWEep:TIME:DELay

[SSENSe:]SWEep:TIME:DELay <time> is used to set the time interval between the trigger event and the delay reference point. The delay reference point is set to the START, CENTER, or STOP position of the waveform using the SWEep:TIME:DELay:LINK command.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td>numeric</td>
<td>Depends on SWEep:TIME:RANGE</td>
<td>seconds</td>
</tr>
</tbody>
</table>

Example

Set the time interval between the trigger event and the delay reference point to 2 msec

```
SWE:TIME:DEL 2E-3 Set delay to 2 msec
```

Comments

- **Entering Time:** When 0 is entered, the trigger event occurs at the delay reference point. Positive values set the trigger event to occur before the delay reference point (to capture post-trigger events). Negative values set the trigger event to occur after the delay reference point (to capture pre-trigger events). The range of acceptable DELay values is dependent on the current SWEep:TIME:RANGE setting. If DELay is set to a value outside the allowable range, it will automatically be set to the nearest acceptable value without generating an error.

- **DElay versus TIME:START/STOP/CENTER:** Setting DELay and TIME:DELay:LINK is identical to setting the same values using the TIME:START, TIME:STOP, and TIME:CENTER commands.

- **Related Commands:** [SENSe:]SWEep:TIME.

- **RST Condition:** Defaults to 0 seconds.

SWEep:TIME:DELay?

[SSENSe:]SWEep:TIME:DELay? returns a number representing the current time interval between the trigger event and the delay reference point. The value (in ± seconds) is sent to the output buffer.

Example

Querying current delay value

```
SWE:TIME:DEL 2E-3 Set delay to 2 msec
SWE:TIME:DEL? Query instrument to return delay value in seconds
 enter statement Enter value into computer
```
SWEEP:TIME:DELAY:LINK

[SENSe:]SWEEP:TIME:DELAY:LINK <position> sets the delay reference to the start, stop, or to the center of the active waveform.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>position</td>
<td>discrete</td>
<td>START</td>
<td>CENTER</td>
</tr>
</tbody>
</table>

Example

Set the reference to the start (left side) of the waveform

SWE:TIME:DEL:LINK STAR Reference to start (post-trigger)

Comments

- Selecting Position: Position entered is used with the SWEEP:DELay command to set the time interval between the trigger event and the delay reference point. For example, if DELay is 0 seconds, and LINK is CENTER, pre-trigger data is on the left and post-trigger data is on the right of the waveform.
- Effects on Other SWEEP Selections: A change in LINK will cause the following SWEEP commands to change their current parameters:
 - TIME:START, TIME:STOP, TIME:CENTER
- Related Commands: [SENSe:]SWEEP:DELay,
 - [SENSe:]SWEEP:TIME:(START, STOP, and CENTER).

SWEEP:TIME:DELAY:LINK?

[SENSe:]SWEEP:TIME:DELAY:LINK? returns the currently selected delay reference point. The data is sent to the output buffer. Returns START, CENTER, or STOP depending on the current position selected. See SWEEP:TIME:DELAY:LINK command for more information.

Example

Query current reference point selection

Dimension statement String for data
SWE:TIME:DEL:LINK STAR Reference to start
SWE:TIME:DEL:LINK? Query instrument to return position

Enter statement Enter data into computer

SCPI Command Reference 6-125
SWEep:TIME:RANGE

[SENSE:]SWEep:TIME:RANGE less than range greater than is used to define the full scale horizontal axis, or "X-axis" of the main sweep.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>range</td>
<td>numeric</td>
<td>2NS to 50S</td>
<td>S</td>
</tr>
</tbody>
</table>

Example

Set horizontal range to 2 msec (full scale)

```
SWE:TIME:RANG 2E-3  Range to 2 msec
```

Comments

- Entering Range: Range values are entered in a 1,2,5 sequence. If a value is entered that is not in a 1,2,5 sequence, it is automatically rounded to the closest allowable value without generating an error.

- Effects on Other SWEep Selections: A change in range may cause the following SWEep commands to change their current parameters:

 - DELay, TIME:STARt, TIME:STOP, TIME:CENTer

 - SWEep:TIME:RANGE versus SWEep:TIME:SPAN: Both commands perform the identical function.

 - *RST Condition: Defaults to 1 msec.

SWEep:TIME:RANGE?

[SSENSe:]SWEep:TIME:RANGE? returns a numeric value representing the current range setting for the horizontal axis. The value (in seconds) is sent to the output buffer.

Example

Querying full scale horizontal range setting

```
SWE:TIME:RANG 2E-3  Range to 2 msec
SWE:TIME:RANG?  Query instrument to return current range setting
```

```enter statement``` Enter value into computer
SWEep:TIME:SPAN

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>range</td>
<td>numeric</td>
<td>2NS to 50S</td>
<td>S</td>
</tr>
</tbody>
</table>

Example

Set horizontal span to 2 msec (full scale)

```
SWE:TIME:SPAN 2E-3 Span to 2 msec
```

Comments

- Entering Span: Span values are entered in a 1,2,5 sequence. If a value is entered that is not in a 1,2,5 sequence, it is automatically rounded to the closest allowable value without generating an error.

- Effects on Other SWEep Selections: A change in span may cause the following SWEep commands to change their current parameters:

  DELay, TIME:START, TIME:STOP, TIME:CENTer

- SWEep:TIME:SPAN versus SWEep:TIME:RANGE: Both commands perform the identical function.


- *RST Condition: Defaults to 1 msec.

SWEep:TIME:SPAN?

[SENSe:]SWEep:TIME:SPAN? returns a numeric value representing the current span setting for the horizontal axis. The value (in seconds) is sent to the output buffer.

Example

Querying full scale horizontal span setting

```
SWE:TIME:SPAN 2E-3 Span to 2 msec
SWE:TIME:SPAN? Query instrument to return current span setting
enter statement Enter value into computer
```
**[SENSe:]SWEep:TIME:START**

**SWEep:TIME:START**

[SENSe:]SWEep:TIME:START \(<\text{start}_\text{time}>\) is used to set the time interval (in seconds) between the trigger event and the start of the currently specified range/span. The range is set to a specific time using the SWEep:TIME:RANGE or SPAN command, and does not change.

**Parameters**

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{start}_\text{time})</td>
<td>numeric</td>
<td>Depends on SWEep:TIME:RANGE</td>
<td>S</td>
</tr>
</tbody>
</table>

**Example**

Set start time to 1µsec

\[
\text{SWE:TIME:STAR } 1 \times 10^{-6} \quad \text{Start to 1µsec}
\]

**Comments**

- Entering Start Time: \(\text{start}_\text{time}\) specifies the starting time of the selected SWEep:TIME:RANGE or SPAN.
- Effects on Other SWEep Selections: Start changes will cause the following commands to change their current parameters:
  - SWEep:DELay: Amount of change is proportional to the amount that start was changed.
  - SWEep:TIME:CENTer: New center time is calculated and entered as follows:
    \[
    \text{center} = (\text{start} + \text{stop})/2
    \]
  - SWEep:TIME:STOP: New stop time is calculated and entered as follows:
    \[
    \text{stop} = \text{center} + (\text{span}/2)
    \]
- Entering SWEep:TIME:RANGE or SPAN: Range/span CANNOT be entered or changed using the TIME:START, STOP, or CENTer commands.
- \(\text{TIME:START}/\text{STOP}:\text{CENTer}\) versus DELay: Setting \(\text{TIME:START}, \text{TIME:STOP}\), and \(\text{TIME:CENTer}\) is identical to setting the same values using DELay and TIME:DELay:LINK commands.
- Related Commands: [SENSe:]SWEep:DELay, [SENSe:]SWEep:TIME:(CENTer and STOP).
- \(^*\text{RST Condition: Defaults to} -500 \mu\text{sec.}\)

**[SENSe:]SWEep:TIME:START?**

[SENSe:]SWEep:TIME:START? returns a number representing the current time interval between the trigger event and the start of the currently specified range/span. The value (in ± seconds) is sent to the output buffer.

**Example**

Querying current start time value

\[
\text{SWE:TIME:STAR } 1 \times 10^{-6} \\
\text{SWE:TIME:STAR?} \\
\text{enter statement}
\]

Start to 1µsec
Query instrument to return start time value in seconds
Enter value into computer
SWEep:TIME:STOP

[SENSE:]SWEep:TIME:STOP <stop_time> is used to set the time interval (in seconds) between the trigger event and the stop of the currently specified range/span. The range/span is set to a specific time using the SWEep:TIME:RANGE or SPAN command, and does not change.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>stop_time</td>
<td>numeric</td>
<td>Depends on SWEep:TIME:RANGE</td>
<td>S</td>
</tr>
</tbody>
</table>

Example

Set stop time to 10µsec

SWE:TIME:STOP 10E-6 Stop to 10µsec

Comments

- Entering Stop Time: stop_time specifies the stopping time of the selected SWEep:TIME:RANGE or SPAN.
- Effects on Other SWEep Selections: Stop changes will cause the following commands to change their current parameters:
  - SWEep:Delay: Amount of change is proportional to the amount that stop was changed.
  - SWEep:TIME:CENTer: New center time is calculated and entered as follows:
    \[
    \text{center} = \frac{\text{start} + \text{stop}}{2}
    \]
  - SWEep:TIME:START: New start time is calculated and entered as follows:
    \[
    \text{start} = \text{center} - \left(\frac{\text{span}}{2}\right)
    \]
- Entering SWEep:TIME:RANGE or SPAN: Range/span CANNOT be entered or changed using the TIME:START, STOP, or CENTer commands.
- TIME:START/STOP/CENTer versus DELay: Setting TIME:START, TIME:STOP, and TIME:CENTer is identical to setting the same values using DELay and TIME:DELay:LINK commands.
- Related Commands: [SENSe:]SWEep:DELay, [SENSe:]SWEep:TIME:CENTer and START.
- *RST Condition: Defaults to 500 µsec.

SWEep:TIME:STOP?

[SENSE:]SWEep:TIME:STOP? returns a number representing the current time interval between the trigger event and the stop of the currently specified range/span. The value (in ± seconds) is sent to the output buffer.

Example

Querying current stop time value

SWE:TIME:STOP 10E-6 Stop to 10µsec
SWE:TIME:STOP? Query instrument to return stop time value in seconds
enter statement Enter value into computer
[SENSe:]VOLTage

VOLTage

[SENSe:]VOLTage<number> subsystem is used to select a specific inputs vertical range and offset. Inputs 1, 2, 3, and 4 are independently programmable.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1 to 4</td>
<td>none</td>
</tr>
</tbody>
</table>

Comments

- Entering Number: The desired input number from 1 to 4 is specified for the input commands listed in this section.

For purposes of selecting the VOLTage commands PTPeak, LOWer, OFFSET, and UPPer are as shown below.

![Diagram of voltage range and offset]

VOLTage:RANGE:LOWer

[SENSe:]VOLTage<number>:RANGE:LOWer <lower> sets the voltage that is represented at the lower end of the range for the selected input number.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>lower</td>
<td>numeric</td>
<td>Depends on VOLTage&lt;ng&gt;:RANGE:PTPeak</td>
<td>V</td>
</tr>
</tbody>
</table>

Example

Set input 2 lower to 1 volt

VOLT2 : RANG : LOW 1

Lower limit to 1 volt
Entering Lower: The range of acceptable LOWer values are dependent on the current VOLTage<n>:RANGE:[PTPeak] setting. LOWer can be calculated using the values given below and the following formula:

\[ \text{LOWer} = \text{OFFSet} \pm (\text{PTPeak}/2) \]

<table>
<thead>
<tr>
<th>VOLTage&lt;n&gt;:RANGE:[PTPeak]</th>
<th>VOLTage&lt;n&gt;:OFFSet limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 mV to 400 mV</td>
<td>±2 V ± (PTPeak/2)</td>
</tr>
<tr>
<td>&gt;400 mV to 2.0 V</td>
<td>±10 V ± (PTPeak/2)</td>
</tr>
<tr>
<td>&gt;2.0 V to 10.0 V</td>
<td>±50 V ± (PTPeak/2)</td>
</tr>
<tr>
<td>&gt;10.0 V to 40.0 V</td>
<td>±250 V ± (PTPeak/2)</td>
</tr>
</tbody>
</table>

For example, if PTPeak is set to 400 mV, then

Minimum LOWer\(=\quad 2 V - (400 \text{ mV}/2) = 2 V - 200 \text{ mV} = -2.2 \text{ V}\)

If LOWer is set to a value outside the allowable range, it will automatically be set to the nearest acceptable value without generating an error.

Effects on Other VOLTage Selections: Lower changes will cause the following commands to change their current parameters:

- **VOLTage<n>:RANGE:UPPer:** New upper value is calculated and entered as follows:
  
  \[ \text{upper} = \text{lower} + \text{PTPeak} \]

- **VOLTage<n>:RANGE:OFFSet:** New OFFSet value is calculated and entered as follows:
  
  \[ \text{offset} = \text{center of upper and lower} \]

- Entering VOLTage<n>:RANGE:[PTPeak]: PTPeak CANNOT be entered or changed using the VOLTage<n>:RANGE:UPPer/LOWer commands.

- Related Commands: [SENSe:VOLTage<n>:RANGE ([:PTPeak], OFFSet, and UPPer)].

- *RST Condition: Defaults to \(-2\) volts.

---

**VOLTage:RANGE:LOWer?**

[SENSe:]VOLTage<number>:RANGE:LOWer? returns the current lower value for the input number specified. The value (in \(\pm\) volts) is sent to the output buffer.

**Example**

Querying input 2 current lower value

```
VOLT2:RANG:LOW 1 Lower limit to 1 volt
VOLT2:RANG:LOW? Query instrument to return lower range limit value in volts
enter statement Enter value into computer
```
[SENSe:]VOLTage:RANGE:OFFSET

VOLTage:RANGE:OFFSET

[SENSe:]VOLTage<number>:RANGE:OFFSET <value> sets the voltage that is represented at the center of the current range for the selected input number.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>numeric</td>
<td>1 to 4</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depends on</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VOLTagen&gt;RANGE[:PTPeak]</td>
<td></td>
</tr>
</tbody>
</table>

**Parameters**

**Example**

Set input 2 offset to 10 V

VOLT2: RANG: OFFS 10  
*Input 2 offset to 10 volts*

**Comments**

- **Entering Offset:** The range of acceptable OFFSET values is dependent on the current VOLTagen>RANGE[:PTPeak] setting as follows:

  VOLTagen>RANGE[:PTPeak]  
  VOLTagen>RANGE[:OFFSET] limits
  8 mV to 400 mV  
  >400 mV to 2.0 V  
  >2.0 V to 10.0 V  
  >10.0 V to 40.0 V

  ±2 V  
  ±10 V  
  ±50 V  
  ±250 V

  If OFFSET is set to a value outside the allowable range, it will automatically be set to the nearest acceptable value without generating an error.

- **Probe Attenuation:** Changing CORRection<n>:AFACtor settings after selecting VOLTagen>RANGE:OFFSET will cause the offset parameter to change.

- **Related Commands:** [SENSe:]VOLTagen>RANGE[:PTPeak], CORRection<n>:AFACtor.

- **RST Condition:** Defaults to 0 volts.

**VOLTagen>RANGE:OFFSET?**

[SENSe:]VOLTagen>RANGE:OFFSET? returns the current offset value for the input number specified. The value (in volts) is sent to the output buffer.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1 to 4</td>
<td>none</td>
</tr>
</tbody>
</table>

**Parameters**

**Example**

Querying input 2 offset value

VOLT2: RANG: OFFS 10  
*Input 2 offset to 10 volts*

VOLT2: RANG: OFFS?
*Query instrument to return input 2 offset value in volts*

enter statement  
*Enter value into computer*
**VOLTage:RANGE[:PTPeak]**

[SENSe:]VOLTage:RANGE[:PTPeak] <range> is used to define the full scale vertical axis, or "Y-axis" of the input specified.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1 to 4</td>
<td>none</td>
</tr>
<tr>
<td>range</td>
<td>numeric</td>
<td>8 MV to 40.0 V</td>
<td>V</td>
</tr>
</tbody>
</table>

**Example**

Set input 2 range to 10 volts (full scale)

```
VOLT2:RANG:PTP 10 Input 2 range to 10 volts
```

**Comments**

- **PTPeak versus CORRection**: PTPeak values can be set from 0.008 to 40.0 when CORRection<n>:AFACtor is set to 1:1. If the CORRection<n>:AFACtor value is changed, the VOLTage<n>:RANGE[:PTPeak] value is multiplied by the probe attenuation factor.

- **Effects on Other VOLTage Selections**: PTPeak changes may cause the following commands to change their current parameters:

  - **VOLTage<n>:RANGE:LOWer**: New lower voltage is calculated and entered as follows:
    
    \[
    \text{LOWer} = (\text{PTPeak}/2) \text{ below current OFFset setting}
    \]

  - **VOLTage<n>:RANGE:UPPer**: New upper voltage is calculated and entered as follows:
    
    \[
    \text{UPPer} = (\text{PTPeak}/2) \text{ above current OFFset setting}
    \]

- **PTPeak versus TRIGger**: Changing the PTPeak value may effect the TRIGger:LEVel currently selected.

- **PTPeak versus OFFSet**: Changing the PTPeak value does **NOT** change the current OFFSet value.

- **Related Commands**: CORRection<n>:AFACtor, [SENSe:]VOLTage<n>:RANGE:OFFSet, UPPer, and LOWer.

- **RST Condition**: Defaults to 4 volts on all inputs.
**VOLTage:RANGE[:PPPeak]**?

[SENSe:]VOLTage<number>:RANGE[:PPPeak]? returns the current full scale vertical axis setting for the input specified. The value (in volts) is sent to the output buffer.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1 to 4</td>
<td>none</td>
</tr>
</tbody>
</table>

**Example**

Querying input 2 full scale range setting

```
VOLT2:RANG:PP 10 Input 2 range to 10 volts
VOLT2:RANG:PP? Query instrument to return input 2 full scale range setting
enter statement Enter value into computer
```

---

**VOLTage:RANGE:UPPer**

[SENSe:]VOLTage<number>:RANGE:UPPer <upper> sets the voltage that is represented at the upper screen for the selected input number.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>upper</td>
<td>numeric</td>
<td>Dependent on VOLTage&lt;n&gt;:RANGE[:PPPeak]</td>
<td>volts</td>
</tr>
</tbody>
</table>

**Example**

Set input 3 upper range limit to 10 volts

```
VOLT3:RANG:UPP 10 Upper limit to 10 volts
```
Entering Upper: The range of acceptable UPPer values is dependent on the current VOLTage<n>:RANGE{:PTPeak} setting. UPPer can be calculated using the values given below and the following formula:

$$UPPer = OFFSET \pm (PTPeak/2)$$

<table>
<thead>
<tr>
<th>VOLTage&lt;n&gt;:RANGE{:PTPeak}</th>
<th>VOLTage&lt;n&gt;:OFFSET limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 mV to 400 mV</td>
<td>±2 V ± (PTPeak/2)</td>
</tr>
<tr>
<td>&gt;400 mV to 2.0 V</td>
<td>±10 V ± (PTPeak/2)</td>
</tr>
<tr>
<td>&gt;2.0 V to 10.0 V</td>
<td>±50 V ± (PTPeak/2)</td>
</tr>
<tr>
<td>&gt;10.0 V to 40.0 V</td>
<td>±250 V ± (PTPeak/2)</td>
</tr>
</tbody>
</table>

For example, if PTPeak is set to 400 mV, then

$$Maximum\ UPPer = +2\ V + (400\ mV/2) = +2\ V + 200\ mV = +2.2\ V$$

If UPPer is set to a value outside the allowable range, it will automatically be set to the nearest acceptable value without generating an error.

Effects on Other VOLTage Selections: Upper changes will cause the following commands to change their current parameters:

- **VOLTage<n>:RANGE:LOWer**: New lower value is calculated and entered as follows:
  
  $$lower = upper - PTPeak$$

- **VOLTage<n>:RANGE:OFFSET**: New OFFSET value is calculated and entered as follows:
  
  $$offset = center\ of\ upper\ and\ lower$$

- Entering VOLTage<n>:RANGE{:PTPeak}: PTPeak CANNOT be entered or changed using the VOLTage<n>:RANGE:UPPer/:LOWer commands.

Related Commands: [SENSe:]VOLTage<n>:RANGE{:PTPeak}, OFFSET, and LOWer.

*RST Condition: Defaults to 2 volts.*

---

**VOLTage:RANGE:UPPer?**

[SENSe:]VOLTage<number>:RANGE:UPPer? returns the current lower value for the input number specified. The value (in ± volts) is sent to the output buffer.

**Example**

Querying input 3 current upper value

```
VOLT3:RANG:UPP 10 Upper limit to 10 volts
VOLT3:RANG:UPP? Query instrument to return upper range limit value in volts
enter statement Enter value into computer
```
The STATus command subsystem enables you to examine the status of the Oscilloscope trigger, calibration, and self test results by monitoring (reading the bit value) the various register groups. Figure 6-1 shows the four STATus Registers in the Oscilloscope.

**Standard Event Status Register (\*ESE).** Operates under IEEE 488.2 control. Refer to the appropriate mainframe or command module users manual for more information on this register.

**Status Byte Register (\*STB?).** Operates under IEEE 488.2 control. Refer to the appropriate mainframe or command module users manual for more information on this register.

**Standard Operation Status Register.** Operates under Oscilloscope control. The Operation Status Register (figure 6-1) is discussed in this section.

**Questionable Data/Signal Register.** Operates under Oscilloscope control. The Questionable Data/Signal Register (figure 6-2) is discussed in this section.

![Image showing the STATus Registers](image-url)

**Figure 6-1. Oscilloscope STATus Registers**
Status

Subsystem Syntax Status

:OPERation
  :CONDition?
  :ENABLE
  [:EVENt]?

:PRESet
  :QUESTionable
  :CONDition?
  :ENABLE
  [:EVENt]?

:CALibration
  :CONDition?
  :ENABLE
  [:EVENt]?

:INPut<number>
  :CONDition?
  :ENABLE
  [:EVENt]?

:AD
  :CONDition?
  :ENABLE
  [:EVENt]?

:DELay
  :CONDition?
  :ENABLE
  [:EVENt]?

:GAIN
  :CONDition?
  :ENABLE
  [:EVENt]?

:HYSTeresis
  :CONDition?
  :ENABLE
  [:EVENt]?

:LTTrigger
  :CONDition?
  :ENABLE
  [:EVENt]?

:OFFSet
  :CONDition?
  :ENABLE
  [:EVENt]?

:TNULI
  :CONDition?
  :ENABLE
  [:EVENt]?

:TRIGger
  :CONDition?
  :ENABLE
  [:EVENt]?

:DCALibration
  :CONDition?
  :ENABLE
  [:EVENt]?
STATus

Subsystem Syntax

STATus — Continued

:QUESTionable — Continued

:PROBe

:CONDition?

:ENABle

[:EVENT]??

:TEST

:CONDition?

:ENABle

[:EVENT]?

:ACQuisition

:CONDition?

:ENABle

[:EVENT]?

:AD

:CONDition?

:ENABle

[:EVENT]?

:ATRigger

:CONDition?

:ENABle

[:EVENT]?

:DA

:CONDition?

:ENABle

[:EVENT]?

:LTRigger

:CONDition?

:ENABle

[:EVENT]?

:TIMebase

:CONDition?

:ENABle

[:EVENT]?

:INTERpolator

:CONDition?

:ENABle

[:EVENT]?

:RAM

:CONDition?

:ENABle

[:EVENT]?

:ACQuisition

:CONDition?

:ENABle

[:EVENT]?

:DISPLAY

:CONDition?

:ENABle

[:EVENT]?

:NVOLatile

:CONDition?

:ENABle

[:EVENT]?
STATus — Continued
:QUESTionable — Continued
:TST — Continued
:RAM — Continued
:SYSTem
 :CONDition?
 :ENABle
 [:EVEnt]?
 :ROM
 :CONDition?
 :ENABle
 [:EVEnt]?
 :NProtect
 :CONDition?
 :ENABle
 [:EVEnt]?
 :SYSTem
 :CONDition?
 :ENABle
 [:EVEnt]?

:OPERation:CONDition?

STATus:OPERation:CONDition? returns a decimal weighted value from 0 to 65535 indicating which bits are set true in the Operation Status Register's condition register. The contents of all the CONDITION Registers are always set to "0".

Example
Read the condition register

STAT : OPER : COND?
Queries the condition register, without clearing the contents

:OPERation:ENABle

STATus:OPERation:ENABLE <number> sets the enable mask, which allows true conditions (transitions) in the OPERation[:EVEnt] register to be reported.

Example
Set enable register bit 8 to true

STAT : OPER : ENAB 256
Sets bit 8 true

• Bits Used: Bit 8 (decimal 256) is the only bit used in the Operation Status Register for this instrument.
:OPERation:ENABLE?

:OPERation:ENABLE? returns the bit value of the Operation Status Register's enable register. Returns a decimal weighted value from 0 to 65535 indicating which bits are set true. Reading the ENABLE register does not clear its contents.

Example

Read the enable register

```
STAT: OPER: ENAB?
```

Queries the enable register without clearing the contents

- **Bits Used:** Bit 8 (decimal 256) is the only bit used in the Operation Status Register for this instrument. Bit 8 is set true (1) when a trigger has occurred.

:OPERation[:EVENT]? 

:OPERation[:EVENT]? queries the status of the Operation Status Register's event register. The event register latches only low to high events from the Operation Status Register's condition register. Returns a decimal weighted value from 0 to 65535 indicating which bits are set true. Reading the event register by a query will clear its contents.

Example

Read the event register

```
STAT: OPER?
```

Queries the event register, and clears the contents

- **Bits Used:** Bit 8 (decimal 256) is the only bit used in the Operation Status Register for this instrument. Bit 8 is set true (1) when a trigger has occurred.

:PRESet

:PRESet sets the contents of the Oscilloscope enable registers to a known state. When executed, the PRESet command affects all 51 QUESTIONable ENABLE registers, and sets all bits true (1).

Example

Preset the oscilloscope enable register

```
STAT: PRES
```

All Enable register bits to true

Comments

- **Other Registers:** PRESet does not affect the Status Byte or Event Status registers.
- **Questionable Enable Register:** PRESet sets the questionable enable register to 0.
- **Event Registers:** PRESet does not clear any of the QUESTIONable EVENT registers. Use the *CLS command is used to clear all event registers.
Figure 6-2. Oscilloscope Status Questionable Data/Signal Register Subsystem
The QUESTionable subsystem contains 52 separate registers that, through summing registers, eventually report to the QUESTionable Data/Signal register. See figure 6-2 and the Subsystem Syntax at the beginning of this section for a list of all the registers that set the QUESTionable Data/Signal Register.

A diagram is provided for each register in the QUESTionable Data/Signal Register system as shown in figure 6-3. The following description for using the CONDition?, [:EVENT]?, and ENABle commands/queries apply to all registers within the Oscilloscope.

### Specified (XXXXX) Register

<table>
<thead>
<tr>
<th>Bit Number</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decimal Value</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>128</td>
<td>256</td>
<td>512</td>
<td>1024</td>
<td>2048</td>
<td>4096</td>
<td>8192</td>
<td>16384</td>
<td></td>
</tr>
</tbody>
</table>

**Notes:**
- C = Condition Register
- EV = Event Register
- EN = Enable Register

These registers are set and queried using decimal weighted bit values. The decimal equivalent for bits 0 to 15 is shown below. As an example, sending a decimal value of 4608 will set bits 9 and 12 true (1).

**Figure 6-3. Register Diagram**

Each individual register (XXXXX) in the Oscilloscope is made up of three separate registers:

- :CONDition register
- :EVENT register
- :ENABle register
:CONDITION? STATUs:QUESTIONable:XXXXX:CONDITION? queries the current contents of the specified (XXXXX):CONDITION Register. The contents of all the CONDITION Registers are always set to "0".

Example Read the condition register

    STAT : QUES : XXXX : COND?

Queries the specified (XXXXX) Condition Register.

:ENABLE STATUs:QUESTIONable:XXXXX:ENABLE <number> sets the enable mask, which allows true conditions (transitions) in the specified (XXXXX):EVENT Register to be reported.

Example Set enable register bits 9 through 12 to true

    STAT : QUES : XXXX : ENAB 7680 Sets bits 9 to 12 true

:ENABLE? STATUs:QUESTIONable:XXXXX:ENABLE? returns the bit value of the specified (XXXXX):ENABLE Register. Returns a decimal weighted value from 0 to 65535 indicating which bits are set true. Reading the ENABLE register does not clear its contents.

Example Query the enable register

    STAT : QUES : XXXX : ENAB?

Queries the specified (XXXXX) Enable register, without clearing the contents.

[:EVENT]? STATUs:QUESTIONable:XXXXX[:EVENT]? Queries the status of the specified (XXXXX):EVENT Register. The EVENT Register latches only low to high events from the specified (XXXXX):CONDITION Register. Returns a decimal weighted value from 0 to 65535 indicating which bits are set true. Reading the specified EVENT Register by a query will clear its contents.

Example Read the event register

    STAT : QUES : XXXX?

Queries the specified (XXXXX) Event Register and clears the contents.
The \texttt{STATus:QUEStionable:CALibration} register reports a summary of calibration results and status for all inputs to the Questionable Data/Signal Register. Use the diagram to interpret returned results. See figure 6-2 and 6-3 for additional information on using the \texttt{CONDition?}, \texttt{ENABle}, \texttt{ENABle?}, and \texttt{[:EVENt]?} commands/queries.

### Summary of Calibration Register

<table>
<thead>
<tr>
<th>From Register</th>
<th>Bit Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input 1 Register</td>
<td>0</td>
</tr>
<tr>
<td>Input 2 Register</td>
<td>1</td>
</tr>
<tr>
<td>Input 3 Register</td>
<td>2</td>
</tr>
<tr>
<td>Input 4 Register</td>
<td>3</td>
</tr>
<tr>
<td>Default Calibration Register</td>
<td>4</td>
</tr>
<tr>
<td>Cal Ram Write Protected</td>
<td>5</td>
</tr>
<tr>
<td>Calibration Aborted</td>
<td>6</td>
</tr>
<tr>
<td>Cal Not Active</td>
<td>7</td>
</tr>
<tr>
<td>Cal Ram Write Unprotected</td>
<td>8</td>
</tr>
<tr>
<td>Cal Ram Checksum Error</td>
<td>9</td>
</tr>
<tr>
<td>Failed Interpolator Cal</td>
<td>10</td>
</tr>
<tr>
<td>No Signal Found</td>
<td>11</td>
</tr>
<tr>
<td>Not Used</td>
<td>12</td>
</tr>
<tr>
<td>Not Used</td>
<td>13</td>
</tr>
<tr>
<td>Reserved</td>
<td>14</td>
</tr>
<tr>
<td>Reserved</td>
<td>15</td>
</tr>
</tbody>
</table>

- **Logical OR**
- **To Bit 8** Questionable Status Register

Notes:
- \texttt{C=} Condition Register
- \texttt{EV=} Event Register
- \texttt{EN=} Enable Register

### Example

**Query calibration event register**

```
STAT : QUE : CAL?
```

Query instrument to return register contents
STAT:QUEST:CALibration:INPut

STAT:QUEST:CALibration:INPut<number> register reports the status of calibration data for the input specified. number (1 to 4) specified the desired input. Use the diagram to interpret returned results. See figure 6-2 and 6-3 for additional information on using the CONDITION?, ENABLE, ENABLE?, and [:EVENT]? commands/queries.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1 to 4</td>
<td>none</td>
</tr>
</tbody>
</table>

Input 1 Register
- from A/D Register 0
- from Gain Register 1
- from Offset Register 2
- from Hysteresis Register 3
- from Trigger Register 4
- from Delay Register 5
- from Logic Trigger Register 6
  - not used 7
  - not used 8
  - not used 9
  - not used 10
  - not used 11
  - not used 12
  - not used 13
  - not used 14
  - reserved 15

Input 2, 3, 4 Registers
- from A/D Register 0
- from Gain Register 1
- from Offset Register 2
- from Hysteresis Register 3
- from Trigger Register 4
- from Delay Register 5
- from Time Null Register 6
  - not used 7
  - not used 8
  - not used 9
  - not used 10
  - not used 11
  - not used 12
  - not used 13
  - not used 14
  - reserved 15

Notes: C=Condition Register
EV=Event Register
EN=Enable Register

Example
Query input 1 event register

STAT:QUEST:CAL:INP1?

Query instrument to return register contents
STAT:QUES:CALibration:INPut:AD

:QUESTionable:CALibration:INPut:AD

STATus:QUESTionable:CALibration:INPut<number>:AD

register reports the status of the A/D calibration data for the input specified. number (1 to 4) specifies the desired input. Use the diagram to interpret returned results. See figure 6-2 and 6-3 for additional information on using the CONDition?, ENABLE, ENABLE?, and [:EVENT]? commands/queries.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1 to 4</td>
<td>none</td>
</tr>
</tbody>
</table>

A/D Register

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

- 0: failed in attempt to position trace to -3 div acquisition error, timeout in waiting for acquisition
- 1: no input detected
- 2: not used
- 3: divide by 5 attenuator relay not switching
- 4: divide by 25 attenuator relay not switching
- 5: 1 Mohm/50 ohm impedance switch not switching
- 6: not used
- 7: failed in attempt to pos. trace to near bot. of screen
- 8: acquisition error, timeout in waiting for acquisition
- 9: + of data points across screen insuff. to do meas
- 10: input voltage not high enough to get to top of screen
- 11: unexpected large positive jump in data
- 12: unexpected large negative jump in data
- 13: nonvolatile ram error
- 14: reserved
- 15: C, EV, EN

Logical OR

To Bit 0
Input 1 Register
Input 2 Register
Input 3 Register
Input 4 Register

Notes: C=Condition Register
EV=Event Register
EN=Enable Register

Example

Query input 2 A/D event register

STAT:QUES:CAL:INP2:AD?

Query instrument to return register contents

6-146 SCPI Command Reference
:QUESTionable:CALibration:INPut:DELay

Status:QUESTionable:CALibration:INPut<number>:DELay register reports the status of delay calibration data for the input specified. number (1 to 4) specifies the desired input. Use the diagram to interpret returned results. See figure 6-2 and 6-3 for additional information on using the CONDITION?, ENABLE, ENABLE?, and [:EVENT]? commands/queries.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1 to 4</td>
<td>none</td>
</tr>
</tbody>
</table>

Delay Register

acq. error, timeout or lost trig. on 50 ns/div
no edge found on 50 ns/div range
acq. error, timeout or lost trig. on 5 ns/div
no edge found on 5 ns/div range
acq. error, timeout or lost trig. on 500 ps/div
no edge found on 500 ps/div range

not used

ram error in protected ram
reserved

Example

Query input 3 delay event register

STAT: QUES: CAL: INF3: DEL?

Query instrument to return register contents

Notes:
C = Condition Register
EV = Event Register
EN = Enable Register
STAT:QUES:CALibration:INPut:GAIN

:QUESTIONable:CALibration:INPut:GAIN

STATus:QUESTIONable:CALibration:INPut<number>:GAIN register reports the status of gain calibration data for the input specified. number (1 to 4) specifies the desired input. Use the diagram to interpret returned results. See figure 6-2 and 6-3 for additional information on using the CONDition?, ENABLE, ENABLE?, and [:EVENT?] commands/queries.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1 to 4</td>
<td>none</td>
</tr>
</tbody>
</table>

Gain Register

Notes: C=Condition Register
EV=Event Register
EN=Enable Register

Example: Query input 4 gain event register

STAT:QUES:CAL:INP4:GAIN? Query instrument to return register contents

6-148 SCPI Command Reference
:QUESTIONable:CALibration:INPut:HYSTeresis

register reports the status of hysteresis calibration data for the input specified. number (1 to 4) specifies the desired input. Use the diagram to interpret returned results. See figure 6-2 and 6-3 for additional information on using the CONDition?, ENABle, ENABle?, and [:EVENT]? commands/queries.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1 to 4</td>
<td>none</td>
</tr>
</tbody>
</table>

Hysteresis Register

appears trigger state always high, center screen never finds a trigger at any setting
trigger state always high, hysteresis cal try to set max hysteresis as desired setting
not used
not used
excessive error in setting for norm. hysteresis
excessive error in setting for noise reject hyst.
not used
nonvolatile ram error
reserved

Example Query input 1 hysteresis event register

STAT:QUES:CAL:INP1:HYST?

Query instrument to return register contents
The \texttt{STAT:QUES:CAL:INPut:LTRigger} register reports the status of logic trigger calibration data for input 1. Only input 1 contains the LTRigger register. Use the diagram to interpret returned results. See figure 6-2 and 6-3 for additional information on using the \texttt{CONDition?}, \texttt{ENABLE}, \texttt{ENABLE?}, and \texttt{[:EVENT]?} commands/queries.

### Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1</td>
<td>none</td>
</tr>
</tbody>
</table>

**Example**

Query input 1 logic trigger event register

```
STAT:QUES:CAL:INP1:LTR?
```

*Query instrument to return register contents*
:QUESTIONable:CALibration:INPut:OFFSet

STATus:QUESTIONable:CALibration:INPut<number>:OFFSet register reports the status of offset calibration data for the input specified. number (1 to 4) specifies the desired input. Use the diagram to interpret returned results. See figure 6-2 and 6-3 for additional information on using the CONDition?, ENABLE, ENABLE?, and [:EVENT]? commands/queries.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1 to 4</td>
<td>none</td>
</tr>
</tbody>
</table>

Example Query input 2 offset event register

STAT:QUES:CAL:INS:OFS?

Query instrument to return register contents
STAT:QUES:CAL:INPut:TNUL?

:QUEstionable:CALibration:INPut:TNUL?

STATus:QUEStionable:CALibration:INPut<number>TNUL? register reports the status of time null calibration data for the input specified. number (2 to 4) specifies the desired input. Input 1 does not contain a time null register. Use the diagram to interpret returned results. See figure 6-2 and 6-3 for additional information on using CONDition?, ENABle, ENABle?, and [:EVEnt]? commands/queries.

**Parameters**

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>2 to 4</td>
<td>none</td>
</tr>
</tbody>
</table>

**Time Null Register**

acq. error, timeout or lost trig. on 50 ns/div range
no edge found on 1 of the acquired channels
not used
reserved

To Bit 6
Input 2 Register
Input 3 Register
Input 4 Register

Logical OR

Notes: C=Condition Register
EV=Event Register
EN=Enable Register

**Example**

Query input 3 time null event register

STAT:QUES:CAL:INP3:TNUL? Query instrument to return register contents
:QUESTionable:CALibration:INPut:TRIGger

STATus:QUESTionable:CALibration:INPut<number>:TRIGger register reports the status of trigger calibration data for the input specified. number (1 to 4) specifies the desired input. Use the diagram to interpret returned results. See figure 6-2 and 6-3 for additional information on using the CONDITION?, ENABLE, ENABLE?, and [:EVENT]? commands/queries.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>numeric</td>
<td>1 to 4</td>
<td>none</td>
</tr>
</tbody>
</table>

trigger found, unexpected, trigger state always set
no trigger found in last search, default value used
not used
not used
insufficient dac range for +12 div trig, level setting
insufficient dac range for −12 div trig, level setting
fewer dac steps per div of trig, level than expected
not used
nonvolatile ram error
reserved

Example

Query input 4 trigger event register

STAT : QUES : CAL : INP 4 : TRIG?

Query instrument to return register contents

Notes: C = Condition Register
EV = Event Register
EN = Enable Register
The STATus:QUESTionable:CALibration:DCALibration register reports default calibration factor status load. Use the diagram to interpret returned results. See figure 6-2 and 6-3 for additional information on using the CONDITION?, ENABLE, ENABLE?, and [:EVENT] commands/queries.

**Default Cal Register**

<table>
<thead>
<tr>
<th>Default Calibration Factors Loaded</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>not used</td>
<td></td>
</tr>
<tr>
<td>not used</td>
<td></td>
</tr>
<tr>
<td>not used</td>
<td></td>
</tr>
<tr>
<td>not used</td>
<td></td>
</tr>
<tr>
<td>not used</td>
<td></td>
</tr>
<tr>
<td>not used</td>
<td></td>
</tr>
<tr>
<td>not used</td>
<td></td>
</tr>
<tr>
<td>not used</td>
<td></td>
</tr>
<tr>
<td>not used</td>
<td></td>
</tr>
<tr>
<td>not used</td>
<td></td>
</tr>
<tr>
<td>reserved</td>
<td></td>
</tr>
</tbody>
</table>

**Logical OR**

To Bit 5
Summary of Calibration Register

**Notes:**
- C = Condition Register
- EV = Event Register
- EN = Enable Register

**Example:**

Query default calibration event register

```
STAT : QUES : CAL : DCAL ?
```

*Query instrument to return register contents*
STAT:QUEST:CALibration:PROBe

STAT:QUEST:CALibration:PROBe register reports probe calibration attenuation results. Use the diagram to interpret returned results. See figure 6-2 and 6-3 for additional information on using the CONDition?, ENABle, ENABle?, and [:EVENT]? commands/queries.

Probe Attenuation Register

Example: Query probe calibration attenuation event register

STAT: QUEST: CAL: PROB?  Query instrument to return register contents
STAT:QUESTable:TEST register reports diagnostic test results or self test status. Use the diagram to interpret returned results. See figure 6-2 and 6-3 for additional information on using the CONDITION?, ENABLE, ENABLe?, and [:EVENt]? commands/queries.

Example

Query test event register

```
STAT:QUEST:TEST?
```

Query instrument to return register contents
STATus:QUESTionable:TEST:ACQuisition register reports acquisition diagnostic test results. Use the diagram to interpret returned results. See figure 6-2 and 6-3 for additional information on using the CONDITION?, ENABLE, ENABLE?, and [:EVENt]? commands/queries.

Example: Query acquisition event register

```
STAT:QUES:TEST:ACQ?
```

Query instrument to return register contents.
STAT:QUEST:TEST:ACQisition:AD register reports acquisition A/D diagnostic test results. Use the diagram to interpret returned results. See figure 6-2 and 6-3 for additional information on using the CONDition?, ENAble, ENAble?, and [:EVENt]? commands/queries.

Example Query acquisition A/D event register

STAT : QUEST : TEST : ACQ : AD?

Query instrument to return register contents
STAT:QUEST:TEST:ACQsItion:ATRigge

STAT:QUEST:TEST:ACQsItion:ATRigge

STATUs:QUESTionable:TEST:ACQsItion:ATRigge register reports acquisition analog trigger diagnostic test results. Use the diagram to interpret returned results. See figure 6-2 and 6-3 for additional information on using the CONDition?, ENABle, ENABle?, and [:EVENt]? commands/queries.

**Example**
Query acquisition analog trigger event register

```
STAT:QUEST:TEST:ACQ:ATR?
```

*Query instrument to return register contents*
STAT: QUEST: TEST: ACQ: DA

STAT:QUEST:TEST:ACQ:DA register reports acquisition D/A diagnostic test results. Use the diagram to interpret returned results. See figure 6-2 and 6-3 for additional information on using the CONDition?, ENABle, ENABle?, and [:EVENT]?
commands/queries.

D/A Register

input 1 fails
input 2 fails
input 3 fails
input 4 fails
not used
reserved

Notes: C=Condition Register
EV=Event Register
EN=Enable Register

Example Query acquisition D/A event register

STAT: QUEST: TEST: ACQ: DA?  
Query instrument to return register contents
STAT:QUEST:TEST:ACQuisltion:LTRigger

STAT:QUEST:TEST:ACQuisltion:LTRigger register reports acquisition logic trigger diagnostic test results. Use the diagram to interpret returned results. See figure 6-2 and 6-3 for additional information on using the CONDition?, ENABLE, ENABLE?, and [:EVENt]? commands/queries.

Example: Query acquisition logic trigger event register

STAT:QUE:TST:ACQ:LTR? Query instrument to return register contents
STAT:QUEST:TEST:ACQuisition:TIMebase

STAT:QUEST:TEST:ACQuisition:TIMebase

:QUESTionable:TEST:ACQuisition:TIMebase

STATus:QUESTionable:TEST:ACQuisition:TIMebase register reports acquisition time base diagnostic test results. Use the diagram to interpret returned results. See figure 6-2 and 6-3 for additional information on using the CONDition?, ENABLE, ENABLe?, and [:EVENt]? commands/queries.

![Timebase Register Diagram]

Example Query acquisition time base event register

STAT:QUES:TEST:ACQ:TIM?

Query instrument to return register contents

---

6-162 SCPI Command Reference
STAT:QUEST:TEST:ACQ:TIM:INTERpolator

**STAT:QUEST:TEST:ACQ:TIM:INTERpolator**

Register reports acquisition time base interpolator diagnostics. Use the diagram to interpret returned results. See figure 6-2 and 6-3 for additional information on using the CONDition?, ENABLE, ENABLE?, and [:EVENT]? commands/queries.

---

**Example**

Query acquisition time base interpolator event register

STAT:QUEST:TEST:ACQ:TIM:INT?   Query instrument to return register contents

---

Notes: C=Condition Register
      EV=Event Register
      EN=Enable Register

---

SCPI Command Reference  6-163
The STATus:QUESTlonable:TEST:RAM register reports random access memory diagnostic test results. Use the diagram to interpret returned results. See figure 6-2 and 6-3 for additional information on using the CONDition?, ENABle, ENABle?, and [:EVENT]? commands/queries.

Example Query RAM event register

STAT: QUES: TEST: RAM?

Query instrument to return register contents
STAT:QUEST:TEST:RAM:ACQ usition

:QUESTionable:TEST:RAM:ACQ usition register reports acquisition random access memory diagnostic test results. Use the diagram to interpret returned results. See figure 6-2 and 6-3 for additional information on using the CONDITION?, ENABLE, ENABLe?, and [:EVENt]? commands/queries.

Example Query acquisition RAM event register

STAT:QUEST:TEST:RAM:ACQ?

Query instrument to return register contents
STAT:QUEST:TEST:RAM:DISPLAY

The STAT:QUEST:TEST:RAM:DISPLAY register reports display random access memory test results. Use the diagram to interpret returned results. See figure 6-2 and 6-3 for additional information on using the CONDition?, ENABLE, ENABLE?, and [:EVENT]? commands/queries.

**Example**

Query display RAM event register

```
STAT:QUEST:TEST:RAM:DISP?
```

Query instrument to return register contents.
STATuestionable:TEST:RAM:NVOLatile

STATus:QUESTionable:TEST:RAM:NVOLatile register reports nonvolatile random access memory diagnostic test results. Use the diagram to interpret returned results. See figure 6-2 and 6-3 for additional information on using the CONDition?, ENABLE, ENABle?, and [:EVENT]? commands/queries.

Nonvolatile Register

Example
Query nonvolatile RAM event register

STAT : QUES : TEST : RAM : NVOL?

Query instrument to return register contents
STAT:QUES:TEST:RAM:SYSTem

STATus:QUES tionable:TEST:RAM:SYSTem register reports system random access memory diagnostic test results. Use the diagram to interpret returned results. See figure 6-2 and 6-3 for additional information on using the CONDition?, ENABle, ENABle?, and [:EVENt]? commands/queries.

**System Register**

- System ram memory test fails
- System ram address line is stuck
- Address bit 0 if stuck
- Address bit 1 if stuck
- Address bit 2 if stuck
- Address bit 3 if stuck
- Address bit 4 if stuck
- Not used
- Reserved
- Reserved

**Logical OR**

- To Bit 1 RAM Register

**Example**

Query system RAM event register

STAT:QUES:TEST:RAM:SYST?

Query instrument to return register contents
STATus:QUESTIONable:TEST:ROM register reports read only memory diagnostic test results. Use the diagram to interpret returned results. See figure 6-2 and 6-3 for additional information on using the CONDITION?, ENABLE, ENABLE?, and [:EVENT]? commands/queries.

Example: Query ROM event register

```
STAT:QUES:TEST:ROM?
```

Query instrument to return register contents
The STAT:QUEST:TEST:ROM:NPRotect register reports non-volatile protected random access memory diagnostic test results. Use the diagram to interpret returned results. See figure 6-2 and 6-3 for additional information on using the CONDITION?, ENABLE, ENABLE?, and [:EVENT]? commands/queries.

Example: Query non-volatile protected ROM event register

```
STAT:QUEST:TEST:ROM:NPR?
```

Query instrument to return register contents.
STAT:QUEST:TEST:ROM:SYSTem

STAT:QUEST:TEST:ROM:SYSTem register reports system read only memory diagnostic test results. Use the diagram to interpret returned results. See figure 6-2 and 6-3 for additional information on using the CONDition?, ENABLE, ENABLE?, and [:EVENT]? commands/queries.

Example: Query system ROM event register

STAT:QUEST:TEST:ROM:SYST? Query instrument to return register contents
The SYSTem command subsystem is used to define the programming language used, enable reading and writing to the advisory line of the instrument, read the SCPI version, and perform an autoscale function.

Subsystem Syntax

```
SYSTem
 :AUToscale
 :ERRor?
 :LANGuage <command>
 :LANGuage?
 :SERial <string>
 :SET <setup>
 :SET?
 :VERSION?
```

:AUToscale
The AUToscale command causes the instrument to evaluate all input signals, and then set the correct conditions to present the signals.

Example
Execute an autoscale

```
AUT
 Initiate an autoscale
```

Comments
- **Controls Affected:** The following controls are set to present the input signals:
  - [SENSe:]INPut<n>:RANGE all (range and offset) as required
  - CALCulate:MATH<n> to OFF
  - INITiate:CONTInuous to OFF
  - [SENSe:]SWEep:TIME as required
  - TRIGger:ECOunt as required
  - TRIGger:LEVel as required
  - TRIGger:SLOPe as required

- **More than One Input Signal:** If signals are present on more than one input, the sweep will be triggered on the signal closest to input 1. If a signal is not present on input 1, then the instrument will be triggered on input 2. If a signal is not present on input 2, then the instrument will be triggered on input 3, etc.

- **No Input Signal:** If no signals are found on any input, the instrument will be returned to its former state.

- **Channel Coupling:** If a large offset is present on the input signal, coupling may change from DC to AC.
SYSTem:ERRor?

:ERRor? SYSTem:ERRor? returns the next error number and corresponding error message in the error queue. See Appendix B for a listing of error numbers and messages.

Example Read the next error number in the error queue

```
dimension statement Dimension a string
SYST:ERR? Query instrument to return the next
 error number and message
enter statement Enter value into computer
```

Comments

- **Error Numbers/Messages in the Error Queue.** Each error generated by the instrument stores an error number and corresponding error message in the error queue. The error message can be up to 255 characters long.

- **Clearing the Error Queue:** An error number/message is removed from the queue each time the SYSTem:ERRor? query is sent. The errors are cleared first-in, first-out. When the queue is empty, each following SYSTem:ERRor? query returns 0, "No error". To clear all error numbers/messages in the queue, execute the *CLS command.

- **Maximum Error Numbers/Messages in the Error Queue:** The queue holds a maximum of 30 error numbers/messages. If the queue overflows, the last error number/message in the queue is replaced by -350, "Too many errors". The least recent error numbers/messages remain in the queue and the most recent are discarded.

- ***RST Condition:** *RST does not clear the error queue.
**:LANGUAGE**

SYS TEM:LANGU AGE <command> used to select the programming language. COMPatible selects the HP 54503A Compatible Language, and SCPI selects the Standard Commands for Programmable Instruments programming Language.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>command</td>
<td>discrete</td>
<td>COMPatible</td>
<td>SCPI</td>
</tr>
</tbody>
</table>

**Example**

Select SCPI to instruct the Oscilloscope

SYS TEM: LANG SCPI Select SCPI language

**Comments**

- **Selecting Command:** When the HP 54503A Compatible Language (COMPatible) is selected, use the instructions found in Chapters 3 and 4 to program the Oscilloscope. When Standard Commands for Programmable Instruments (SCPI) is selected, use the instructions found in Chapters 5 and 6 to program the Oscilloscope.

- **Switching Languages:** Switching languages while programming is permissible, however:

  Allow 1 second after changing for the Oscilloscope to configure to the new language.

  After switching languages, a *RST is automatically performed to place the instrument in a known state.

- **Programming the Wrong Language:** If the Oscilloscope is configured to operate using one language, and a command from the other language is executed (with different syntax), an error will be generated.

- ***RST Condition:** *RST does not change SYS TEM:LAN GU AGE selected.

**:LANGUAGE?**

SYS TEM:LANGU AGE? returns the current programming language selected. Returns COMPatible if the HP 54503A Compatible Language is selected, and SCPI if the Standard Commands for Programmable Instruments programming Language is selected. The data is sent to the output buffer.

**Example**

Querying the current programming language selected

```
dimension statement
SYST:LANG?
enter statement
```

*Dimension a string
*Query instrument to return current programming language
*Enter value into computer
SYSTem:SERial

SYSTem:SERial <string> used to enter a serial number in the instrument. As the instrument serial number is entered at the factory, do not use this command unless there is a need to serialize the instrument for a different application.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>string</td>
<td>numeric</td>
<td>Alpha-numeric, no special</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Enter a different serial number

```
SER "1234A56789" Different serial number
```

Comments

- Entering Serial Number string: Serial number consists of 10 alpha-numeric digits enclosed in quotes (").
- Protect Switch: The calibration protection switch must be set to the UNPROTECTED position to write a new serial number to the protected non-volatile ram within the instrument.
- Serial Number versus *IDN?: The serial number is part of the string returned for the *IDN? query.
:SET

SYSTem:SET <setup> is used to set the Oscilloscope to a condition defined by a previously returned learn string. The learn string contains all the commands and parameters necessary to setup the instrument in one 1024 byte string.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>setup</td>
<td>block</td>
<td>binary block data in # format</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

See SYSTem:SET? query for example

Comments

• Using SET: The logical order for using this instruction is to send the query first to retrieve setup data, store the data until needed, then send the learn string to the instrument using this command.

• SET versus *SAV*/RCL: The SYSTem:SET command performs the same function as the save and recall commands, except:
  
  Data can be saved at any location the user desires.
  
  No limit to the number of setups that can be saved/recalled.

:SET?

SYSTem:SET? returns the current learn string from the Oscilloscope. The learn string contains all the commands and parameters the Oscilloscope is currently setup to in one 1024 byte string and a header.

Example

Query setup learn string

For this example, the learn string is "#41024...."

```
Dimension statement Dimension string for data
Setup statements Setup Oscilloscope as desired using commands described in this chapter
SYST:SET? Query instrument to return setup learn string
enter statement Enter value into computer
store statement Save data
change instrument Set the Oscilloscope to perform a different function.
recall statement Recall data
SYST:SET #41024.... Send data to the Oscilloscope (recalls previous setup)
```

Comments

• Related Commands: *LRN?, *SAV, *RCL.
SYST:VERSion?

SYST:VERSion? returns the current SCPI version number the instrument complies with. The data is sent to the output buffer.

Example

Return the instruments SCPI version number

SYST:VERS?

Query instrument to return version number

text statement

Enter value into computer

Comments

- Returned Format: Return data is in the form YYYY.V, where YYYY is the year-version, and the V is the revision number for that year. V=0 if no approved revisions are claimed.

- *RST Conditions: *RST does not effect revision number.
The TEST command subsystem is used to perform internal diagnostics. These diagnostics are provided to give a high confidence level of instrument functionality. Before performing any of the diagnostics, execute a *RST to set critical parameters to a known state, and a STATus:PRESet to enable the STATus:QUEStionable registers.

**Subsystem Syntax**

TEST

:ACQ [<test>]

:RAM [<test>]

:ROM [<test>]

:TALL

---

**:ACQ**

TEST:ACQ [<test>] is used to perform up to five acquisition tests. When selected, the Oscilloscope performs an Analog Trigger test, Logic Trigger test, an A/D test, a Time base test, and/or a D/A test. If the test parameter is not sent, all five tests are performed.

**Parameters**

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>test</em></td>
<td>discrete</td>
<td>ATRigger</td>
<td>LTRigger</td>
</tr>
</tbody>
</table>

**Example**

Perform the acquisition time base test

TEST:ACQ TIM

*Perform acquisition time base test*

**Comments**

- **Test Results:** Found by querying the STATus:QUEStionable:TEST:ACQ register.

- **Test Failure:** If any of the five acquisition tests fail, perform Firmware Calibration procedures provided in Chapter 5, and repeat the test. If the test fails again, refer to instructions found in the Service Manual.

- **Related Commands:** STATus:QUEStionable:TEST.
:RAM

TEST:RAM [<test>] is used to perform up to four random access memory tests. When selected, the Oscilloscope performs a Display RAM test, System RAM test, a Non-volatile RAM test, and/or an Acquisition RAM test. If the test parameter is not sent, all four tests are performed.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>test</td>
<td>discrete</td>
<td>DISPlay</td>
<td>ACQuisition</td>
</tr>
</tbody>
</table>

Example
Perform all four RAM tests

TEST:RAM

Comments
- Test Results: Found by querying the STATus:QUESTionable:TEST:RAM register.
- Test Failure: If any of the four RAM tests fail, perform Firmware Calibration procedures provided in Chapter 5, and repeat the test. If the test fails again, refer to instructions found in the Service Manual.
- Related Commands: STATus:QUESTionable:TEST.

:ROM

TEST:ROM [<test>] is used to perform one read only memory test and one non-volatile protected random access memory test. When selected, the Oscilloscope performs a System ROM test, and/or a Protected Non-volatile RAM test. If the test parameter is not sent, both tests are performed.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>test</td>
<td>discrete</td>
<td>SYSTem</td>
<td>NVP</td>
</tr>
</tbody>
</table>

Example
Perform the system ROM test

TEST:ROM SYST

Comments
- Test Results: Found by querying the STATus:QUESTionable:TEST:ROM register.
- Test Failure: If any of the two ROM tests fail, perform Firmware Calibration procedures provided in Chapter 5, and repeat the test. If the test fails again, refer to instructions found in the Service Manual.
- Related Commands: STATus:QUESTionable:TEST.
:TALL

`TEST::TALL` is used to perform the RAM, ROM, and ACQ tests. When selected, the Oscilloscope performs all the individual tests.

Example

Perform the RAM, ROM, and ACQ tests

```
TEST::TALL Perform all tests
```

Comments

- **User Connection**: Disconnect all inputs prior to performing self tests.
- **Test Results**: Found by querying the \texttt{STATus:QUESTionable:TEST} register.
- **Test Failure**: If any of the tests fail, perform Firmware Calibration procedures provided in Chapter 5, and repeat the test. If the test fails again, refer to instructions found in the Service Manual.
- **Related Commands**: \texttt{STATus:QUESTionable:TEST}. 
The TRACe command subsystem is used to transfer waveform data. The transfer can take place internally (memories within the instrument) or externally (bus and controller).

**Internal:** Transfer of data between pixel memories, waveform memories, and inputs. Destination and source are specified using one command (DATA), and data is transferred.

**External:** Transfer of data between the bus and the instrument's waveform or pixel memories. The waveform record is actually contained in two portions, the waveform data and the preamble.

The waveform data is the actual data acquired for each point in the specified input.

The preamble contains the information for interpreting the waveform data. This includes the number of points acquired, format of acquired data, and type of acquired data. The preamble also contains the X and Y increments, origins, and references for the acquired data, so that the returned data can be translated to time and voltage values.

The waveform data and preamble must be read (by the controller) or sent (to the instrument) with two separate commands, DATA (?) and PREamble (?).

---

**Note**

The term "Time Buckets" is defined as — the time range divided into a specific number of horizontal time points (as defined by \[\text{SENSe:AVERage:POINts}\]), each with an equal and fixed time associated with it.

---

**Subsystem Syntax**

```
TRACe:
[:DATA] <destination>,<source>
[:DATA]? <source>
:POINts? <source>
:PREamble <destination>,<data>
:PREamble? <source>
```
TRACe[:DATA] <destination>,<source> is used to transfer waveform data. By specifying different source and destination parameters, the command can be used to:

- Erase pixel memory.
- Merge pixel memory.
- Store waveform data in waveform memory.
- Send the instrument a waveform data record over the bus and store it in the previously specified memory.

### Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>destination</td>
<td>discrete</td>
<td>PMEMory(n=1 to 2)</td>
<td>none</td>
</tr>
<tr>
<td>source</td>
<td>discrete</td>
<td>WMEMory(n=1 to 4)</td>
<td>none</td>
</tr>
<tr>
<td>data</td>
<td>block</td>
<td>See comments before selecting</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0&lt;data</td>
<td>PMEMory0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>INPUT(n=1 to 4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WMEMory(n=1 to 4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATH(n=1 to 2)</td>
<td></td>
</tr>
</tbody>
</table>

### Example

Send the Oscilloscope waveform data and place in pixel memory 1.

For the example, waveform data is "#41024...."

```
TRAC PMEM1,#41024.....
Send waveform data to Oscilloscope and place in PMEM1
```

### Comments

- **Selecting Source and Destination:** Depending on the desired action, make selections of source and destination as follows:

  **Erase Pixel Memory:** To erase a pixel memory location, enter destination of the location to be erased (PMEMory 1 or 2), and source to 0. Once the command is executed, there is no way to retrieve the original data. PMEMory0 cannot be erased.

  **Merge Pixel Memory:** To merge the current contents of pixel memory 0 (active waveform) with the current contents of pixel memory 1 or 2, set destination to PMEMory 1 or 2, and source to PMEMory0 (active waveform). Once the command is executed, there is no way to retrieve the original PMEMory1 or 2 data.
Store Data in Waveform Memory (from internal location): To store waveform data in one of four Waveform Memories, set destination to where data will be stored (WMEMory1 to 4), and source to where data is currently (WMEMory1 to 4, INPute1-4, MATH1-2). Pixel Memories cannot be stored.

Store Data in Waveform Memory (from external location): To store waveform data in one of four Waveform Memories, set destination to where data will be stored (WMEMory1 to 4). source is the actual waveform data (binary block data in # format) received over the bus. The format of the waveform data being sent must match the format previously specified by the waveforms preamble for the destination memory. See FORMat[:DATA] command for more information. When specifying the source, use the following guidelines:

ENVelope mode requires Waveform MEMory pairs (WMEMory1 and 3, or WMEM 2 and 4) to transfer data. Specify WMEMory1 for WMEM1 and 3, or WMEMory2 for WMEM2 and 4. The data is transferred as two arrays. For example, if WMEM1 is specified as the source, the first array is transferred into WMEMory 1 and the second array is transferred into WMEMory 3. The data type is then changed to normal for each of the waveform memories.

SCALar and AVERage modes are transferred to the selected Waveform MEMory (WMEM1, 2, 3, or 4).

Store Data in Pixel Memory (from external location): To store waveform data in one of two Pixel Memories, set destination to where data will be stored (PMEMory1 to 2). source is the actual waveform data (binary block data in # format) received over the bus.

- Waveform Data Format: The format of the waveform data being sent must match the format previously specified by the waveforms preamble for the destination memory. See FORMat[:DATA] command for more information.
- Related Commands: FORMat[:DATA], TRACe[:DATA]?, TRACe:PREamble.
TRACe[:DATA]? <source> is used to output the waveform data record stored in the instruments Waveform MEMory, Pixel MEMory, MATH function, or input buffer over the bus.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>source</td>
<td>discrete</td>
<td>PMEMory (n=0) to 2)</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>INPUT (n=1) to 4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WMEMory (n=1) to 4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATHn (n=1) to 2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>See comments before selecting</td>
<td></td>
</tr>
</tbody>
</table>

Example 1 Send waveform data from the oscilloscope over the bus

The following example illustrates the use of the TRACe[:DATA]? query only. Chapter 5 contains an example of performing a complete digitizing operation, and also the procedure used to read the block length then re-define a string to hold the data.

Dimension statement String to hold data

TRACe? INF3 Enter value from input 3 input buffer into computer (see Chapter 5, Digitize example, for the procedure to read block lengths

Enter statement Enter data into computer

Comments

- Waveform Data Source: Waveform MEMories (WMEM1-4), Pixel MEMories (PMEM0-2), MATH functions (MATH1-2), or input buffers (INP1-4) may have waveform data sent from them. Select the desired location using the source parameter. When PMEM0-2 is selected, the current FORMat[:DATA] and [SENSe:]AVERage[:STATe] and TYPE selections are disregarded.

- Waveform Data Format: The format of the waveform data being sent is specified using the FORMat[:DATA] command. FORMat does not apply to pixel data (PMEM0-2).
• Selecting Type: The type of waveform acquisition is selected by the [SENSe:]AVERage:TYPE command. Acquisition TYPE does not apply to pixel data (PMEM0-2).

SCALar: SCALar data consists of the last data point (hit) in each time bucket. This data is transmitted over the bus in a sequential fashion starting with time bucket 0 and going through time bucket \( n-1 \), where \( n \) is the number returned by the TRACE:POINt? query. Time buckets that don't have data in them return -1. Only the magnitude values of each data point are transmitted, the time values correspond to the position in the data array. The first voltage value corresponds to the first time bucket on the left of the active waveform and the last value corresponds to the next to last time bucket on the right of the active waveform.

AVERage: Average data consists of the average of the first \( n \) hits in a time bucket, where \( n \) is the value returned by the [SENSe:]AVERage:COUNt? query. Time buckets that have fewer than \( n \) hits return the average of what data they do have. If the [SENSe:]SWEep:POINts:COMPLETE parameter is set to 100%, then each time bucket must contain the number of data hits specified with the [SENSe:]AVERage:COUNt command. Again, if a time bucket doesn't have any data in it, it will return -1. This data is transmitted over the bus in linear fashion starting with time bucket 0 and proceeding through time bucket \( n-1 \), where \( n \) is the number returned by the TRACE:POINt? query. The first value corresponds to a point at the left of the active waveform and the last value is one point away from the right of the active waveform.

ENvelope: Envelope data consists of two arrays of data, one containing the minimum of the first \( n \) hits in each time bucket and the other containing the maximum of the first \( n \) hits in each time bucket, where \( n \) is the value returned by the [SENSe:]AVERage:COUNt? query. If a time bucket does not have any hits in it, then -1 is returned for both the minimum and maximum values. The two arrays are transmitted one at a time over the bus linearly, starting with time bucket 0 (on the left of the active waveform) and proceeding through time bucket \( n-1 \), where \( n \) is the value returned by the TRACE:POINt? query. The array with the minimum values is sent first. The first value of each array corresponds to the data point on the left of the of the active waveform. The last value is one data point away from the right of the active waveform.

• Interpreting Waveform Data: In order to obtain useful information from the waveform data, the returned data must be scaled. The information necessary for scaling (X/Y) the waveform is contained in the preamble data.
Conversion from Data Value to Voltage: The formula to convert a data value from the specified source to a voltage value is:

\[ \text{voltage} = \left[ (\text{data value}-\text{reference}) \times \text{increment} \right] + \text{yorigin} \]

Conversion from Data Value to Time: The time value of a data point can be determined by the position of the data point. The formula to convert a data point from the specified source to a time value is:

\[ \text{time} = \left[ \left( \text{data point number} - \text{xreference} \right) \times \text{increment} \right] + \text{xorigin} \]

As an example, the third data point sent with \text{xorigin} = 16 ns, \text{xreference} = 0, and \text{increment} = 2 ns, would result in the following calculation:

\[ \text{time} = [(3 - 0) \times 2 \text{ ns}] + 16 \text{ ns} = 22 \text{ ns} \]

- Related Commands: TRACe:PREamble, FORMat[:DATA], [SENSe:]AVERage:TYPE.

---

**:POINts?**

TRACe:POINts? <source> returns the points value in the currently selected (source) waveform preamble. The points value is the number of time buckets contained in the waveform selected with the TRACe[:DATA]? query. The value is sent to the output buffer.

**Parameters**

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>source</td>
<td>discrete</td>
<td>INPUTn (n=1 to 4) WMEror/n (n=1 to 4)</td>
<td>none</td>
</tr>
</tbody>
</table>

**Example**

Query current points value of waveform memory 1

```
TRAC:POIN? WMEM1
```

Query instrument to return points value of waveform memory 1

Enter statement Enter data into computer

**Comments**

- **Returned Results:** In most cases the number of time buckets actually acquired will be the number of points set with the [SENSe:]AVERage:POINts command. There are some [SENSe:]SWEep:TIME settings where the actual number of points will be less than requested, as shown below.

  - SWEep:TIME to 2 nsec - the number of points actually acquired will be 32, 64, or 100.
  - SWEep:TIME to 20 nsec - the number of points actually acquired will be 32, 64, 128, or 200.
  - SWEep:TIME to 50 nsec - the number of points actually acquired will be 32, 64, 128, 256, 500, 512, or 1000.

- **Related Commands:** [SENSe:]SWEep:TIME, [SENSe:]AVERage:POINts.
:PREamble

TRACe:PREamble <destination>,<data> is used to send the instrument waveform preamble over the bus and store it in the previously specified waveform memory.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>destination</td>
<td>discrete</td>
<td>WMEMory(n=1 to 4)</td>
<td>none</td>
</tr>
<tr>
<td>data</td>
<td>numeric</td>
<td>See comments below</td>
<td>none</td>
</tr>
</tbody>
</table>

Example

Send the Oscilloscope waveform preamble to waveform memory 1

For the example, waveform preamble is "xxxx...."

TRAC:PRE WMEM1, xxxx.... Send waveform preamble to waveform memory 1

Comments

- Storing Waveform Preamble: Only Waveform MEMories (WMEM1-4) may have a waveform preamble sent to them. The desired location is selected using source.

- Waveform Preamble Format: The format of the preamble data is as follows.

  <data> = <format NR1>,<type NR1>,<points NR1>,<count NR1>,
          <xincrement NR3>, <xorigin NR3>, <xreference NR3>, <yincrement NR3>,
          <yorigin NR3>, <yreference NR3>

  Where:

  <format> = 1 for 8 bit format
             2 for 16 bit format

  <type> = 1 for SCALar type
            2 for AVERage type
            3 for ENvelope type

  <points> = See TRACe:POINts? query.
  <count> = See [SENSe:]AVERage:COUNT? query.
  <xincrement> = See TRACe:[DATA]? query.
  <xorigin> = See TRACe:[DATA]? query.
  <xreference> = See TRACe:[DATA]? query.
  <yincrement> = See TRACe:[DATA]? query.
  <yorigin> = See TRACe:[DATA]? query.
  <yreference> = See TRACe:[DATA]? query.

- Related Commands: TRACe:PREamble?.
**Parameters**

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>source</td>
<td>discrete</td>
<td>INPutn ((n=1 \text{ to } 4))</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WMEMory((n=1 \text{ to } 4))</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATHn ((n=1 \text{ to } 2))</td>
<td></td>
</tr>
</tbody>
</table>

**Example**

Send waveform preamble from input 1 buffer the bus

The following example illustrates the use of the TRACe:PREamble query only. Chapter 5 contains an example on performing a complete digitizing operation.

```
Dimension statement Dimension string or array
TRACe:PRE? INP1 Send waveform preamble over the bus
enter statement Enter data into computer
```

**Comments**

- **Waveform Preamble:** Waveform MEMories (WMEM1-4), MATH functions (MATH1-2), or input buffers (INP1-4) may have waveform preamble sent from them, as selected by source.

- **Preamble Data:** The values set in the preamble are determined when the INITiate[:IMMediate] command is executed. The Preamble values are based on the settings of variables in the [SENSe:] subsystem. Although the preamble values can be changed with a controller, the way the data was acquired cannot be changed. Changing the preamble values cannot change the type of data that was actually acquired, the number of points actually acquired, etc. Therefore, extreme caution must be used when changing any waveform preamble values to ensure the data will still be useful. For example, setting PONts in the preamble to a value different from the actual number of points in the waveform will result in inaccurate data.

- **Waveform Preamble Returned Format:** The returned information can be read into a numeric string or an array. The format of the waveform preamble is explained in the TRACe:PREamble command.

- **Related Commands:** TRACe:PREamble.
TRIGger

TRIGger

The TRIGger command subsystem is used to define the conditions for a trigger. The Hewlett-Packard 54503A Compatible Language (COMP) offers a choice of complex trigger modes. See Chapter 4, TRIGger for more information.

Auto or triggered mode is selected with the INITiate:CONTInuous command.

Subsystem Syntax

TRIGger
.:ECOunt <events>
.:ECOunt?
.:HYSTeresis <mode>
.:HYSTeresis?
.:LEVEL <level>
.:LEVEL?
.:SLOPe <polarity>
.:SLOPe?
.:SOURce <source>
.:SOURce?

:ECOunt TRIGger:ECOunt <events> is used to enable the trigger circuit on a specified trigger event.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>events</td>
<td>numeric</td>
<td>1, 3 to 16,000,000</td>
<td>none</td>
</tr>
</tbody>
</table>

ECOunt 1 sets holdoff-by-time mode with time set to 40 ns. ECOunt 3 through 16,000,000 enables trigger event mode.

Example

Enable the trigger circuit on the 8th trigger event

TRIG:ECO 8

Trigger on the 8th edge

Comments

- Event Source: The source for counted events is specified using the TRIGger:SOURce command.
- Related Commands: TRIGger:SOURce.
- *RST Conditions: Defaults to 1

:ECOunt? TRIGger:ECOunt? is used to return the currently selected number of counts (1 or from 3 to 16,000,000). The data is sent to the output buffer. See TRIGger:ECOunt command for more information.

Example

Query the current count selection

TRIG:ECO 8

Trigger on 8th edge

TRIG:ECO?

Query instrument to return count setting

enter statement

Enter data into computer

SCPI Command Reference 6-189
**TRIGger:HYSTeresis**

**Parameters**

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode</td>
<td>boolean</td>
<td>ON</td>
<td>OFF</td>
</tr>
</tbody>
</table>

**Example**

Set noise reject to on

```
TRIG:HYST ON
```

Noise reject on

**Comments**

- **Mode**: Integer values can be substituted for the OFF (0) and ON (1) parameters.
- **Specifying Source**: Select the source using the TRIGger:SOURce command.
- **Related Commands**: TRIGger:LEVel, TRIGger:SOURce.
- ***RST Conditions**: Defaults to OFF.

---

**TRIGger:HYSTeresis?**

TRIGger:HYSTeresis? returns the currently selected noise reject function state (LOW if ON, or HIGH if OFF) for the input specified. The value is sent to the output buffer.

**Example**

Query the noise reject selection

```
dimension statement String for data
TRIG:HYST ON Noise reject on
TRIG:HYST? Query instrument to return hysteresis setting
enter statement Enter data into computer
```
**:LEVEL**

TRIGger:LEVEL <level> is used to set the trigger level voltage of the active trigger.

### Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>level</td>
<td>numeric</td>
<td>See below</td>
<td>V</td>
</tr>
</tbody>
</table>

### Example

Set trigger level to 1 volt

```
TRIG:LEV 1
```

*Trigger level to 1 volt*

### Comments

- **Selecting Level**: level can be entered to a value that is ±0.75 of the current VOLTage<n>:RANGE[:PTPeak] setting from the current VOLTage<n>:RANGE:OFFSet setting.

- **Trigger Level Source**: The trigger level source is selected using the TRIGger:SOURce command.

- **Related Commands**: TRIGger:SOURce.

- **RST Conditions**: Defaults to 0 volts.

---

**:LEVEL?**

TRIGger:LEVEL? returns the currently selected trigger level (in volts). The value is sent to the output buffer.

### Example

Query the current trigger level

```
TRIG:LEV 1
TRIG:LEV?
```

*Trigger level to 1 volt*

*Query instrument to return trigger level*

*Enter statement*

*Enter data into computer*
TRIGger:SLOPe

TRIGger:SLOPe <polarity> is used to select the edge for the trigger.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>polarity</td>
<td>discrete</td>
<td>POSitive</td>
<td>NEGative</td>
</tr>
</tbody>
</table>

Example

Set trigger edge to rising

```
TRIG:SLOP POS
```

Slope to positive

Comments

- Selecting Slope: Enter POSitive to select the rising edge, and NEGative to select the falling edge.
- Related Commands: TRIGger:SOURce.
- *RST Condition: Defaults to POSitive.

TRIGger:SLOPe?

TRIGger:SLOPe? returns the selected trigger edge for the currently selected trigger source. The data is sent to the output buffer. Returns POSitive if the rising edge is selected, or NEGative if falling edge is selected.

Example

Query the current slope selection

```
dimension statement String to hold data
TRIG:SLOP POS Slope to positive
TRIG:SLOP? Query instrument to return slope setting
```

```
enter statement Enter data into computer
```
TRIGger:SOURce

**:SOURce**

TRIGger:SOURce <source> is used to select the source that will actually produce the trigger.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>source</td>
<td>discrete</td>
<td>INPut&lt;n (n=1 to 4)</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TTLTrg&lt;n (n=0 to 7)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ECLTrg&lt;n (n=0 to 1)</td>
<td></td>
</tr>
</tbody>
</table>

**Example**

Set trigger source to TTL trigger bus line 5

TRIG:SOUR TTL5 \(\text{Source to TTL trigger bus line 5}\)

**Comments**

- **Selecting Source**: source is specified depending on the desired source as follows:
  
  INPut1-4: Source is input connectors 1-4 on the instrument panel.
  
  TTLTrg0-7: Source is backplane TTL trigger bus lines 0-7. TRIGger:ECOunt, LEVel, and SLOPe do not effect TTL trigger sources.
  
  ECLTrg0-1: Source is backplane ECL trigger bus lines 0-1. TRIGger:ECOunt, LEVel, and SLOPe do not effect ECL trigger sources.

- **SYSTem:AUTOscale**: Autoscale selects the trigger source from INPut 1-4 only. TTLTrg and ECLTrg lines cannot be used for an autoscale.

- ***RST Condition**: Defaults to INPut1.

**:SOURce?**

TRIGger:SOURce? returns the selected trigger source (INPut1-4, TTLTrg0-7, or ECLTrg0-1). The data is sent to the output buffer.

**Example**

Query the current trigger source selection

```
 dimension statement String to hold data
 TRIG:SOUR TTL5 Source to TTL trigger bus line 5
 TRIG:SOUR? Query instrument to return trigger source setting
 enter statement Enter data into computer
```
## Command Cross Reference to COMP Commands

The following table is provided as a quick cross reference of all applicable Standard Commands for Programmable Instruments (SCPI) commands to the similar Hewlett-Packard 54503A Compatible Language (COMP) command(s).

<table>
<thead>
<tr>
<th>SCPI Command</th>
<th>COMP Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABORT</td>
<td>STOP</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>CALCulate</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| :MATH<
[:EXPReption] | FUNCTION<n>:ADD | Add, subtract, and multiply command operates the same in both languages. |
<p>|              | FUNCTION&lt;n&gt;:MULTiply | |
|              | FUNCTION&lt;n&gt;:SUBTract | |
| CALibration  | CALibrate    | The SCPI CALibration and COMP CALibrate subsystems operate the same in both languages. |
| FORMat       |              |             |
| [:DATA]      | WAVeform:FORMat | In COMP, BYTE is INT 8 and WORD is INT 16. |
| [:DATA]?     | WAVeform:FORMat? | In COMP, BYTE is returned for 8 and WORD is returned for 16. |
| INITiate :CONTinuous ON | RUN and TIMebase:MODe TRIGgered | Command operates the same in both languages. |
| :CONTinuous AUTO | RUN and TIMebase:MODe AUTO | Command operates the same in both languages. |
| [:IMMediate] | DIGitize     | Command operates the same in both languages. |
| MEASure [:SCALar] |              |             |
| :VOLTage     | MEASure:VAverage? | Command operates the same in both languages, except source is specified using the MEASure:SOURce command in COMP. |
| [:DC]? [@]   | MEASure:VACrms? | Command operates the same in both languages, except source is specified using the MEASure:SOURce command in COMP. |
|              | MEASure:VRMS? | |
| :AMPLitude? [@] | MEASure:VAMPplitude? | Command operates the same in both languages, except source is specified using the MEASure:SOURce command in COMP. |
| :DNCYcle? [ref] [@] | MEASure:DUTYcycle? | Command operates the same in both languages, except source, and the reference level are specified with the MEASure:SOURce, UPPer, and LOWer commands in COMP. |</p>
<table>
<thead>
<tr>
<th>SCPI Command</th>
<th>COMP Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEASure [:SCALar]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:VOLTage :FALL :OVERshoot? [(@)]</td>
<td>MEASure:OVERshoot?</td>
<td>Command operates the same in both languages, except source is specified using the MEASure:SOURce command in COMP.</td>
</tr>
<tr>
<td>:PRESshoot? [(@)]</td>
<td>MEASure:PREshoot?</td>
<td>Command operates the same in both languages, except source is specified using the MEASure:SOURce command in COMP.</td>
</tr>
<tr>
<td>:TIME? [limits] [(@)]</td>
<td>MEASure:FALLtime?</td>
<td>Command operates the same in both languages, except source, and the upper and lower thresholds are specified with the MEASure:SOURce, UPPER, and LOWER commands in COMP.</td>
</tr>
<tr>
<td>:FREQuency? [(@)]</td>
<td>MEASure:FREQuency?</td>
<td>Command operates the same in both languages, except source is specified using the MEASure:SOURce command in COMP.</td>
</tr>
<tr>
<td>:FTIME? [limits] [(@)]</td>
<td>MEASure:FALLtime?</td>
<td>Command operates the same in both languages, except source, and the upper and lower thresholds are specified with the MEASure:SOURce, UPPER, and LOWER commands in COMP.</td>
</tr>
<tr>
<td>:HIGH? [(@)]</td>
<td>MEASure:VTOP?</td>
<td>Command operates the same in both languages, except source is specified using the MEASure:SOURce command in COMP.</td>
</tr>
<tr>
<td>:LOW? [(@)]</td>
<td>MEASure:VBASE?</td>
<td>Command operates the same in both languages, except source is specified using the MEASure:SOURce command in COMP.</td>
</tr>
<tr>
<td>:MAXimum? [(@)]</td>
<td>MEASure:VMAX?</td>
<td>Command operates the same in both languages, except source is specified using the MEASure:SOURce command in COMP.</td>
</tr>
<tr>
<td>:MINimum? [(@)]</td>
<td>MEASure:VMIN?</td>
<td>Command operates the same in both languages, except source is specified using the MEASure:SOURce command in COMP.</td>
</tr>
<tr>
<td>:NWIDth? [(@)]</td>
<td>MEASure:NWIDth?</td>
<td>Command operates the same in both languages, except source, and the reference level are specified with the MEASure:SOURce, UPPER, and LOWER commands in COMP.</td>
</tr>
<tr>
<td>:PERiod? [(@)]</td>
<td>MEASure:PERiod?</td>
<td>Command operates the same in both languages, except source is specified using the MEASure:SOURce command in COMP.</td>
</tr>
<tr>
<td>:PDUTycycle? [&lt;ref&gt;][(@)]</td>
<td>MEASure:DUTYcycle?</td>
<td>Command operates the same in both languages, except source, and the reference level are specified with the MEASure:SOURce, UPPER, and LOWER commands in COMP.</td>
</tr>
<tr>
<td>:PWIDth? [&lt;ref&gt;][(@)]</td>
<td>MEASure:PWIDth?</td>
<td>Command operates the same in both languages, except source, and the reference level are specified with the MEASure:SOURce, UPPER, and LOWER commands in COMP.</td>
</tr>
</tbody>
</table>
### Command Cross Reference to COMP Commands — Continued

<table>
<thead>
<tr>
<th>SCPI Command</th>
<th>COMP Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEASure [:SCALar]</td>
<td></td>
<td>Command operates the same in both languages, except source is specified using the MEASure:SOURce command in COMP.</td>
</tr>
<tr>
<td>:VOLTage :RISE</td>
<td>MEASure:OVERshoot?</td>
<td>Command operates the same in both languages, except source is specified using the MEASure:SOURce command in COMP.</td>
</tr>
<tr>
<td>:OVERshoot? [(@)]</td>
<td>MEASure:PREshoot?</td>
<td>Command operates the same in both languages, except source is specified using the MEASure:SOURce command in COMP.</td>
</tr>
<tr>
<td>:TIME? [limits][(@)]</td>
<td>MEASure:RISEtime?</td>
<td>Command operates the same in both languages, except source, and the upper and lower thresholds are specified with the MEASure:SOURce, UPPER, and LOWER commands in COMP.</td>
</tr>
<tr>
<td>:RTIme? [limits][(@)]</td>
<td>MEASure:RISEtime?</td>
<td>Command operates the same in both languages, except source, and the upper and lower thresholds are specified with the MEASure:SOURce, UPPER, and LOWER commands in COMP.</td>
</tr>
<tr>
<td>:TMAXimum? [(@)]</td>
<td>MEASure:TMAX?</td>
<td>Command operates the same in both languages, except source is specified using the MEASure:SOURce command in COMP.</td>
</tr>
<tr>
<td>:TMINimum? [(@)]</td>
<td>MEASure:TMIN?</td>
<td>Command operates the same in both languages, except source is specified using the MEASure:SOURce command in COMP.</td>
</tr>
<tr>
<td>OUTPUT</td>
<td>OUTPUT</td>
<td>The Compatible SCPI OUTPUT subsystems operate the same in both languages.</td>
</tr>
<tr>
<td>[SENSe:]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVERage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:COUNT</td>
<td>ACQuire:COUNT</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>:COUNT?</td>
<td>ACQuire:COUNT?</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>[:STATE]</td>
<td>ACQuire:TYPE</td>
<td>In COMP, NORMal is the equivalent of scalar, and mode selected using the ACQuire:TYPE command only.</td>
</tr>
<tr>
<td>[:STATE]?</td>
<td>ACQuire:TYPE?</td>
<td>See AVERage[:STATE] for an explanation.</td>
</tr>
<tr>
<td>[:TYPE]</td>
<td>ACQuire:TYPE?</td>
<td>In COMP, NORMal is the equivalent of scalar, and mode selected using the ACQuire:TYPE command only.</td>
</tr>
<tr>
<td>CORRaction&lt;nt&gt;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:AFActor</td>
<td>CHANnel&lt;nt&gt;:PROBe</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>:AFActor?</td>
<td>CHANnel&lt;nt&gt;:PROBe?</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>INPut&lt;nt&gt;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:COUPling</td>
<td>CHANnel&lt;nt&gt;:COUPling</td>
<td>In COMP, AC is the equivalent of selecting AC and 1MΩ, DC is the equivalent of selecting DC and 1MΩ, and DCFifty is the equivalent of selecting DC and 50Ω.</td>
</tr>
<tr>
<td>SCPI Command</td>
<td>COMP Command</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>[SENSe:]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INP&lt;ct&gt;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:FILTER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:HPASs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:STATe]</td>
<td>CHANnel&lt;ct&gt;:LFRejct</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>[:STATe]?</td>
<td>CHANnel&lt;ct&gt;:LFRejct?</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>[:LPASs]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:STATe]</td>
<td>CHANnel&lt;ct&gt;:HFRejct</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>[:STATe]?</td>
<td>CHANnel&lt;ct&gt;:HFRejct?</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>:IMPedance</td>
<td>CHANnel&lt;ct&gt;:COUPling</td>
<td>In COMP, AC is the equivalent of selecting AC and 1MΩ. DC is the equivalent of selecting DC and 1MΩ, and DCFifty is the equivalent of selecting DC and 50Ω. See INP&lt;ct&gt;:IMPedance for an explanation.</td>
</tr>
<tr>
<td>:IMPedance?</td>
<td>CHANnel&lt;ct&gt;:COUPling?</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>[:STATe] OFF</td>
<td>BLANK</td>
<td>COMP command allows channels, functions, and memories to be turned off.</td>
</tr>
<tr>
<td>[:STATe] ON</td>
<td>VIEW</td>
<td>COMP command allows channels, functions, and memories to be turned on.</td>
</tr>
<tr>
<td>[:STATe]?</td>
<td>STATus?</td>
<td>COMP command allows channels, functions, and memories to be turned queried.</td>
</tr>
<tr>
<td>SWEep</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:POINts</td>
<td>ACQuire:POINts</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>:POINts</td>
<td>ACQuire:POINts?</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>:COMPLETE</td>
<td>ACQuire:COMPLETE</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>:COMPLETE?</td>
<td>ACQuire:COMPLETE?</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>:TIME</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:DElay</td>
<td>TIMebase:DElay</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>:DElay?</td>
<td>TIMebase:DElay?</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>:LINK</td>
<td>TIMebase:REFERENCE</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>:LINK?</td>
<td>TIMebase:REFERENCE?</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>:RANGE</td>
<td>TIMebase:RANGE</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>:RANGE?</td>
<td>TIMebase:RANGE?</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>VOLTage&lt;ct&gt;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:RANGE</td>
<td>CHANnel&lt;ct&gt;:OFFSet</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>:RANGE</td>
<td>CHANnel&lt;ct&gt;:OFFSet?</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>[:PTPeak]</td>
<td>CHANnel&lt;ct&gt;:RANGE</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>[:PTPeak]?</td>
<td>CHANnel&lt;ct&gt;:RANGE?</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>STATus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:OPERation</td>
<td>TER?</td>
<td>In COMP, trigger register separate for trigger bit. Command operates the same in both languages.</td>
</tr>
<tr>
<td>:PRESet</td>
<td>SUMMary:PRESet</td>
<td>The COMP and SCPI QUESTIONable registers operate the same in both languages.</td>
</tr>
<tr>
<td>:QUESTionable</td>
<td>SUMMary:QUESTionable</td>
<td>Command operates the same in both languages.</td>
</tr>
</tbody>
</table>

SCPI Command Reference 6-197
<table>
<thead>
<tr>
<th>SCPI Command</th>
<th>COMP Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSTem</td>
<td>AUToscale</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>:AUToscale</td>
<td>SYSTem:AUToscale</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>:ERROR?</td>
<td>SYSTem:ERROR?</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>:LANGUAGE</td>
<td>SYSTem:LANGUAGE</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>:LANGUAGE?</td>
<td>SYSTem:LANGUAGE?</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>:SERial</td>
<td>SERial</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>:SET</td>
<td>SYSTem:SETup</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>:SET?</td>
<td>SYSTem:SETUp?</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td>TEST</td>
<td>TEST</td>
<td>The Compatible SCPI TEST subsystems operate the same in both languages.</td>
</tr>
<tr>
<td>TRACe</td>
<td>:DATA</td>
<td>In COMP, source is specified using the DISPLAY:SOURce command.</td>
</tr>
<tr>
<td></td>
<td>DISPLAY:DATa</td>
<td>In COMP, source is specified using the DISPLAY:SOURce command.</td>
</tr>
<tr>
<td></td>
<td>MERGe</td>
<td>In COMP, only the merge to location is specified.</td>
</tr>
<tr>
<td></td>
<td>ERASe</td>
<td>In COMP, only the source being erased is specified.</td>
</tr>
<tr>
<td></td>
<td>STORe</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td></td>
<td>WAVEform:DATa</td>
<td>In COMP, source is specified using the WAVEform:SOURce command.</td>
</tr>
<tr>
<td></td>
<td>WAVEform:DATa?</td>
<td>In COMP, source is specified using the WAVEform:SOURce command.</td>
</tr>
<tr>
<td></td>
<td>WAVEform:POINTs?</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td></td>
<td>WAVEform:PREamble</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td></td>
<td>WAVEform:PREamble?</td>
<td>In COMP, source is specified using the WAVEform:SOURce command.</td>
</tr>
<tr>
<td>TRIGger</td>
<td>:ECount</td>
<td>In COMP, holdoff is defined by time or events.</td>
</tr>
<tr>
<td></td>
<td>TRIGger:ECount</td>
<td>In COMP, holdoff is returned in time or events.</td>
</tr>
<tr>
<td></td>
<td>TRIGger:HOLDoff?</td>
<td>In COMP, holdoff is returned in time or events.</td>
</tr>
<tr>
<td></td>
<td>TRIGger:HOLDoff</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td></td>
<td>TRIGger:SENSitivity</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td></td>
<td>TRIGger:SENSitivity?</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td></td>
<td>:LEVEL</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td></td>
<td>TRIGger:LEVEL</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td></td>
<td>:LEVEL?</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td></td>
<td>TRIGger:LEVEL?</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td></td>
<td>:SLOPe</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td></td>
<td>TRIGger:SLOPe?</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td></td>
<td>:SLOPe?</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td></td>
<td>TRIGger:SOURce</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td></td>
<td>:SOURce</td>
<td>Command operates the same in both languages.</td>
</tr>
<tr>
<td></td>
<td>TRIGger:SOURce?</td>
<td>Command operates the same in both languages.</td>
</tr>
</tbody>
</table>
The following table lists the IEEE 488.2 Common (*) Commands that can be executed by the Oscilloscope module. The operation of some of these commands is described in Chapter 5 of this manual. For more information on Common Commands, refer to the HP E1405 Command Module User’s Guide or the ANSI/IEEE Standard 488.2-1987.

<table>
<thead>
<tr>
<th>Command</th>
<th>Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*CLS</td>
<td>Clear status register</td>
<td>Clears all Event Registers, the Request for OPC flag, and all Queues (except output queue).</td>
</tr>
<tr>
<td>*ESE &lt;mask&gt;</td>
<td>Event status enable</td>
<td>Used to set the bits in the Event Status Enable Register.</td>
</tr>
<tr>
<td>*ESE?</td>
<td>Event status enable query</td>
<td>Queries the current contents in the Event Status Enable Register.</td>
</tr>
<tr>
<td>*ESR?</td>
<td>Event status register query</td>
<td>Queries &amp; clears contents in the Standard Event Status Register.</td>
</tr>
<tr>
<td>*IDN?</td>
<td>Identification query</td>
<td>Returns identification string of the Oscilloscope.</td>
</tr>
<tr>
<td>*LRN?</td>
<td>Learn query</td>
<td>Returns a string that contains the current Oscilloscope setup.</td>
</tr>
<tr>
<td>*OPC</td>
<td>Operation complete</td>
<td>Sets the Request for OPC flag when all pending operations have completed. Also sets OPC bit in the Event Status register.</td>
</tr>
<tr>
<td>*OPC?</td>
<td>Operation complete query</td>
<td>Returns a 1 to the output queue when all pending operations have completed.</td>
</tr>
<tr>
<td>*RCL &lt;n&gt;</td>
<td>Recall saved state</td>
<td>Recalls previously stored Oscilloscope Module configuration. &lt;n&gt; (1 to 4) is the location in memory where the desired (previously stored) set-up is located.</td>
</tr>
<tr>
<td>*RST</td>
<td>Reset</td>
<td>Resets the Oscilloscope hardware and firmware to a specific state (refer to Table 3-4 for a list of reset conditions).</td>
</tr>
<tr>
<td>*SAV &lt;n&gt;</td>
<td>Save state</td>
<td>Stores the present Oscilloscope Module configuration in memory. Stores all Oscilloscope and Measurement Set-up parameters. &lt;n&gt; (1 to 4) is the location in memory where the current set-up is to be stored.</td>
</tr>
<tr>
<td>*SRE &lt;mask&gt;</td>
<td>Service request enable</td>
<td>Used to set the Service Request Enable Register bits to generate a service request.</td>
</tr>
<tr>
<td>*SRE?</td>
<td>Service request enable query</td>
<td>Queries the current contents in the Service Request Enable Register.</td>
</tr>
<tr>
<td>*STB?</td>
<td>Read status byte query</td>
<td>Queries the current contents in the Status Byte Register.</td>
</tr>
<tr>
<td>*TRG?</td>
<td>Trigger</td>
<td>Used to generate a trigger event.</td>
</tr>
<tr>
<td>*TST?</td>
<td>Self-Test query</td>
<td>Returns 0 unless self test fails. Disconnect all inputs prior to performing self tests.</td>
</tr>
<tr>
<td>*WAI</td>
<td>Wait to Continue</td>
<td>Halts execution of commands and queries until the No Operation Pending message is true.</td>
</tr>
</tbody>
</table>
# Command Quick Reference

The following tables summarize Standard Commands for Programmable Instruments (SCPI) commands and IEEE 488.2 Common (*) commands for the HP E1426A Oscilloscope module.

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>Command/Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABORT</td>
<td>:DATA?</td>
<td>Stops acquiring data for the active waveform.</td>
</tr>
<tr>
<td>CALCulate</td>
<td>:MATH&lt;number&gt;</td>
<td>Returns the calculated results of the last math operation performed.</td>
</tr>
<tr>
<td></td>
<td>[:EXPression] &lt;function&gt;</td>
<td>Selects the math number (1-2).</td>
</tr>
<tr>
<td></td>
<td>:STATE &lt;mode&gt;</td>
<td>Adds, subtracts, or multiplies two specified sources and retains the result in the math number specified.</td>
</tr>
<tr>
<td></td>
<td>:STATE?</td>
<td>Enables or disables math operations for the selected math number.</td>
</tr>
<tr>
<td></td>
<td>:STATE &lt;mode&gt;</td>
<td>Returns the current state of the math number specified.</td>
</tr>
<tr>
<td></td>
<td>:STATE?</td>
<td>Enables or disables the calculate subsystem.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Returns the current state of the math subsystem.</td>
</tr>
<tr>
<td>CALibration</td>
<td>:PCALibration</td>
<td>Probe calibration related commands.</td>
</tr>
<tr>
<td></td>
<td>:ATTenuation</td>
<td>Probe attenuation calibration related commands.</td>
</tr>
<tr>
<td></td>
<td>:BCALibration</td>
<td>Performs an attenuation calibration.</td>
</tr>
<tr>
<td></td>
<td>:INPUT&lt;number&gt;</td>
<td>Selects the input (1-4) for the attenuation calibration.</td>
</tr>
<tr>
<td></td>
<td>:TNULI:INP1TO&lt;number&gt;,&lt;time&gt;</td>
<td>Enters a time null value for a specified input pair (1-2, 1-3, 1-4).</td>
</tr>
<tr>
<td></td>
<td>:REPORT? &lt;input&gt;</td>
<td>Returns a report of calibration results for the input specified.</td>
</tr>
<tr>
<td></td>
<td>:SCALibration</td>
<td>Self calibration related commands.</td>
</tr>
<tr>
<td></td>
<td>:BCALibration</td>
<td>Performs a configured calibration, or loads default data.</td>
</tr>
<tr>
<td></td>
<td>:DCALibration</td>
<td>Configures for a default calibration routine.</td>
</tr>
<tr>
<td></td>
<td>:DELAY &lt;input&gt;</td>
<td>Configures for a delay calibration on the input specified (1-4).</td>
</tr>
<tr>
<td></td>
<td>:DOUTPut &lt;level&gt;</td>
<td>Sets the DC Calibrator output to 0 volts or 5 volts.</td>
</tr>
<tr>
<td></td>
<td>:LTCalibration</td>
<td>Configures for a logic trigger calibration on the input specified (1-4).</td>
</tr>
<tr>
<td></td>
<td>:TNULI &lt;input_skew&gt;</td>
<td>Configures for a time null calibration on the input pair specified (1-2, 1-3, 1-4).</td>
</tr>
<tr>
<td></td>
<td>:VERTical</td>
<td>Configures for a vertical calibration on all inputs.</td>
</tr>
<tr>
<td></td>
<td>:TNULI &lt;value1&gt;,&lt;value2&gt;,&lt;value3&gt;</td>
<td>Enters time null values for input pairs 1-2, 1-3, and 1-4.</td>
</tr>
<tr>
<td></td>
<td>:TNULI?</td>
<td>Returns the current time null values for input pairs 1-2, 1-3, and 1-4.</td>
</tr>
<tr>
<td>CONFIGure</td>
<td>:SCALar]</td>
<td>Configures the source specified by chan_list for an AC voltage measurement.</td>
</tr>
<tr>
<td></td>
<td>:VOLTage</td>
<td>Configures the source specified by chan_list for an amplitude voltage measurement.</td>
</tr>
<tr>
<td></td>
<td>:AMPLitude [chan_list]</td>
<td>Configures the source specified by chan_list for a DC voltage measurement.</td>
</tr>
<tr>
<td></td>
<td>:DC [chan_list]</td>
<td>Configures the source specified by chan_list for a duty cycle measurement. Reference level can be specified, or the default value can be used (if left blank).</td>
</tr>
<tr>
<td></td>
<td>:DCYCLE [creb][chan_list]</td>
<td>Falling edge measurements.</td>
</tr>
<tr>
<td></td>
<td>:FALL</td>
<td>Configures the source specified by chan_list for an overshoot measurement on the falling edge.</td>
</tr>
<tr>
<td></td>
<td>:OVERShoot [chan_list]</td>
<td>Configures the source specified by chan_list for a preeshoot measurement on the falling edge.</td>
</tr>
<tr>
<td></td>
<td>:PREShoot [chan_list]</td>
<td></td>
</tr>
</tbody>
</table>
## Oscilloscope Module

### SCPI Commands Quick Reference — Continued

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>Command/Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONFIGure</td>
<td>[:SCLAr][VOLTage[:FALL][:TIME[&lt;lower_limit&gt;][&lt;upper_limit&gt;][&lt;chan_list&gt;][:FREQuency[&lt;chan_list&gt;]]][FTIme[&lt;lower_limit&gt;][&lt;upper_limit&gt;][&lt;chan_list&gt;][:HIGH[&lt;chan_list&gt;][:LOW[&lt;chan_list&gt;][:MAXimum[&lt;chan_list&gt;][:MINimum[&lt;chan_list&gt;][:NDUrycle[&lt;ref&gt;][&lt;chan_list&gt;][:NWIDth[&lt;ref&gt;][&lt;chan_list&gt;][:PDytcycle[&lt;ref&gt;][&lt;chan_list&gt;][:PERiod[&lt;chan_list&gt;][:PWIDth[&lt;ref&gt;][&lt;chan_list&gt;][:RISE[OVERshoot[&lt;chan_list&gt;][PREShoot[&lt;chan_list&gt;][:TIME[&lt;lower_limit&gt;][&lt;upper_limit&gt;][&lt;chan_list&gt;][:RTIme[&lt;lower_limit&gt;][&lt;upper_limit&gt;][&lt;chan_list&gt;][:TMAXimum[&lt;chan_list&gt;][:TMNimum[&lt;chan_list&gt;]:FETCh][:SCLAr][VOLTage[:function&gt;]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]}</td>
<td>Falling edge measurements. Configures the source specified by <em>chan_list</em> for a fall time measurement. Upper and lower threshold limits can be specified, or the default values can be used (if left blank). Configures the source specified by <em>chan_list</em> for a frequency measurement. Configures the source specified by <em>chan_list</em> for a fall time measurement. Upper and lower threshold limits can be specified, or the default values can be used (if left blank). Configures the source specified by <em>chan_list</em> for a high voltage measurement. Configures the source specified by <em>chan_list</em> for a low voltage measurement. Configures the source specified by <em>chan_list</em> for a maximum voltage measurement. Configures the source specified by <em>chan_list</em> for a minimum voltage measurement. Configures the source specified by <em>chan_list</em> for a negative duty cycle measurement. Reference level can be specified, or the default value can be used (if left blank). Configures the source specified by <em>chan_list</em> for a negative pulse width measurement. Reference level can be specified, or the default value can be used (if left blank). Configures the source specified by <em>chan_list</em> for a positive duty cycle measurement. Reference level can be specified, or the default value can be used (if left blank). Configures the source specified by <em>chan_list</em> for a period measurement. Configures the source specified by <em>chan_list</em> for a positive pulse width measurement. Reference level can be specified, or the default value can be used (if left blank). Rising edge measurements. Configures the source specified by <em>chan_list</em> for an overshoot measurement on the rising edge. Configures the source specified by <em>chan_list</em> for a preshoot measurement on the rising edge. Configures the source specified by <em>chan_list</em> for a rise time measurement. Upper and lower threshold limits can be specified, or the default values can be used (if left blank). Configures the source specified by <em>chan_list</em> for a rise time measurement. Upper and lower threshold limits can be specified, or the default values can be used (if left blank). Configures the source specified by <em>chan_list</em> for a time at first maximum voltage measurement. Configures the source specified by <em>chan_list</em> for a time at first maximum voltage measurement.</td>
</tr>
</tbody>
</table>

| FETCh | [:SCLAr][VOLTage[:function>]] | Transfers the results of a previously executed measurement to the output buffer. When function is provided, transfers the results of the specified measurement. When function is blank, transfers the results of the last measurement executed. |
## SCPI Commands Quick Reference — Continued

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>Command/Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>FORMat</strong></td>
<td>[:DATA] &lt;type&gt;,&lt;format&gt; &lt;DATA&gt;</td>
<td>Selects the waveform data format (8 or 16 bit). Returns the format currently selected.</td>
</tr>
<tr>
<td><strong>INITiate</strong></td>
<td>:CONTInuous &lt;mode&gt;</td>
<td>Enables or disables waveform data acquisition. Returns the current data acquisition state. Digitizes waveform data on the selected input (1-4), and starts a configured measurement.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Performs an amplitude voltage measurement on the source specified by chan_list.</td>
</tr>
<tr>
<td></td>
<td>:DC? [chan_list]</td>
<td>Performs a DC voltage measurement on the source specified by chan_list.</td>
</tr>
<tr>
<td></td>
<td>:DCYcle? [refs][chan_list]</td>
<td>Performs a duty cycle measurement on the source specified by chan_list. Reference level can be specified, or the default value can be used (if left blank).</td>
</tr>
<tr>
<td></td>
<td>:TIME? [lower_limit] [...upper_limit] [chan_list]</td>
<td>Performs a fall time measurement on the source specified by chan_list. Upper and lower threshold limits can be specified, or the default values can be used (if left blank).</td>
</tr>
<tr>
<td></td>
<td>:FREQuency? [chan_list]</td>
<td>Performs a frequency measurement on the source specified by chan_list.</td>
</tr>
<tr>
<td></td>
<td>:FTIME? [lower_limit] [...upper_limit] [chan_list] :HIGH? [chan_list] :LOW? [chan_list]</td>
<td>Performs a fall time measurement on the source specified by chan_list. Upper and lower threshold limits can be specified, or the default values can be used (if left blank). Performs a high voltage measurement on the source specified by chan_list. Performs a low voltage measurement on the source specified by chan_list.</td>
</tr>
<tr>
<td></td>
<td>:NDUTycycle? [ref][chan_list]</td>
<td>Performs a negative duty cycle measurement on the source specified by chan_list. Reference level can be specified, or the default value can be used (if left blank).</td>
</tr>
<tr>
<td></td>
<td>:NWIDth? [ref][chan_list]</td>
<td>Performs a negative pulse width measurement on the source specified by chan_list. Reference level can be specified, or the default value can be used (if left blank).</td>
</tr>
<tr>
<td></td>
<td>:PDTYcycle? [ref][chan_list]</td>
<td>Performs a positive duty cycle measurement on the source specified by chan_list. Reference level can be specified, or the default value can be used (if left blank).</td>
</tr>
<tr>
<td></td>
<td>:PERiod? [chan_list]</td>
<td>Performs a period measurement on the source specified by chan_list.</td>
</tr>
<tr>
<td></td>
<td>:PWIDth? [ref][chan_list]</td>
<td>Performs a positive pulse width measurement on the source specified by chan_list. Reference level can be specified, or the default value can be used (if left blank).</td>
</tr>
</tbody>
</table>
### Oscilloscope Module

### SCPI Commands Quick Reference — Continued

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>Command/Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEASure</td>
<td>[:SCALar]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>:VOLTage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>:RISE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>:OVERshoot? [&lt;chan_list&gt;]</td>
<td>Performs an overshoot measurement on the source specified by chan_list.</td>
</tr>
<tr>
<td></td>
<td>:TIME? [&lt;lower_limit&gt; [&lt;upper_limit&gt;] [&lt;chan_list&gt;]</td>
<td>Performs a rise time measurement on the source specified by chan_list. Upper and lower threshold limits can be specified, or the default values can be used (if left blank).</td>
</tr>
<tr>
<td></td>
<td>:RTIMe? [&lt;lower_limit&gt; [&lt;upper_limit&gt;] [&lt;chan_list&gt;]</td>
<td>Performs a rise time measurement on the source specified by chan_list. Upper and lower threshold limits can be specified, or the default values can be used (if left blank).</td>
</tr>
<tr>
<td></td>
<td>:TMAXimum? [&lt;chan_list&gt;]</td>
<td>Performs a time at first maximum voltage measurement on the source specified by chan_list.</td>
</tr>
<tr>
<td></td>
<td>:TMINimum? [&lt;chan_list&gt;]</td>
<td>Performs a time at first maximum voltage measurement on the source specified by chan_list.</td>
</tr>
<tr>
<td>MEMory</td>
<td>:VME</td>
<td>VME Memory allocation for acquisition and measurement data.</td>
</tr>
<tr>
<td></td>
<td>:ADDRes &lt;address&gt;</td>
<td>Selects an A24 memory address space for acquisition data.</td>
</tr>
<tr>
<td></td>
<td>:ADDRes? [MIN][MAX]</td>
<td>Returns the present A24 memory address space selected if the parameter is blank. Returns MINimum, or MAXimum address available, if selected.</td>
</tr>
<tr>
<td></td>
<td>:MEASure</td>
<td>Commands for measurement data.</td>
</tr>
<tr>
<td></td>
<td>:ADDRes &lt;address&gt;</td>
<td>Selects an A24 memory address space for measurement data.</td>
</tr>
<tr>
<td></td>
<td>:ADDRes? [MIN][MAX]</td>
<td>Returns the present A24 memory address space selected if the parameter is blank. Returns MINimum, or MAXimum address available, if selected.</td>
</tr>
<tr>
<td></td>
<td>:STATE &lt;mode&gt;</td>
<td>Enables or disables VME memory space for measurement data.</td>
</tr>
<tr>
<td></td>
<td>:STATE?</td>
<td>Returns the current VME memory measurement state.</td>
</tr>
<tr>
<td></td>
<td>:SIZE &lt;bytes&gt;</td>
<td>Selects the size of the external VME memory card.</td>
</tr>
<tr>
<td></td>
<td>:STATE &lt;mode&gt;</td>
<td>Returns the current size of the external VME memory card.</td>
</tr>
<tr>
<td></td>
<td>:STATE?</td>
<td>Enables or disables the VME memory subsystem (for acquisition and measurement data).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Returns the current VME memory subsystem state.</td>
</tr>
<tr>
<td>OUTPut</td>
<td>:ECLTrg&lt;number&gt;</td>
<td>Selects ECL trigger bus lines 0-2.</td>
</tr>
<tr>
<td></td>
<td>[:STATE] &lt;mode&gt;</td>
<td>Enables or disables the selected ECL trigger line.</td>
</tr>
<tr>
<td></td>
<td>[:STATE]?</td>
<td>Returns the current ECL trigger state for the line selected.</td>
</tr>
<tr>
<td></td>
<td>:ETrnal</td>
<td>Selects the TTL Trigger Output connector on the front panel.</td>
</tr>
<tr>
<td></td>
<td>[:STATE] &lt;mode&gt;</td>
<td>Enables or disables the TTL Trigger Output connector.</td>
</tr>
<tr>
<td></td>
<td>[:STATE]?</td>
<td>Returns the current TTL Trigger Output connector state.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enables or disables the entire output subsystem. Must be enabled for any selected output to function.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Returns the current output subsystem state.</td>
</tr>
<tr>
<td></td>
<td>:TTLTrg&lt;number&gt;</td>
<td>Selects TTL trigger bus lines 0-7.</td>
</tr>
<tr>
<td></td>
<td>[:STATE] &lt;mode&gt;</td>
<td>Enables or disables the selected TTL trigger line.</td>
</tr>
<tr>
<td></td>
<td>[:STATE]?</td>
<td>Returns the current TTL state for the line selected.</td>
</tr>
<tr>
<td>READ</td>
<td>[:SCALar]</td>
<td>Initiates a previously configured measurement and transfers the results to the output buffer. When function is provided, the specified measurement is performed. When function is blank, the last measurement executed is performed.</td>
</tr>
<tr>
<td></td>
<td>:VOLTage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[:&lt;function&gt;]</td>
<td></td>
</tr>
</tbody>
</table>
### SCPI Commands Quick Reference — Continued

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>Command/Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SENSe:]</td>
<td>AVERAGE</td>
<td>Average subsystem. Enters the count used during average data acquisition mode. Returns the current acquisition count value. Enables or disables the average acquisition mode. When OFF, acquisition mode is determined by the AVERAGE:TYPE selected. Returns the current average acquisition mode state. Selects the type of acquisition that will occur (scalar or envelope) when AVERAGE[:STATE] is set to OFF. Returns the acquisition type (scalar or envelope) currently selected. Correction subsystem. Enters the specified input's (1-4) probe attenuation factor. Returns the current probe attenuation factor for the specified input. Input subsystem. Selects the specified input's (1-4) coupling (AC or DC). Returns the specified input's (1-4) current coupling selection. Filter selections. Enables or disables the specified input's (1-4) low pass filter. Returns the specified input's (1-4) current low pass filter state. Enables or disables the specified input's (1-4) high pass filter. Returns the specified input's (1-4) current high pass filter state. Selects the specified input's (1-4) impedance (1MΩ or 50Ω). Returns the specified input's (1-4) current impedance selection. Enables or disables the specified input (1-4). Returns the specified input's (1-4) current state. Sweep subsystem. Selects the number of time buckets for a data acquisition. Returns the current points value. Enters the completion criteria for a data acquisition. Returns the current acquisition complete value. Time selections. Enters the time representing the center of the selected horizontal range. Returns the current center sweep time value. Enters the desired time between the trigger and delay reference point. Returns current sweep delay value. Sets the delay reference point to start, stop, or center of the active waveform. Returns the delay reference point currently selected. Enters full scale horizontal range. Returns current full scale horizontal range value. Enters full scale horizontal span (range). Returns current full scale horizontal span (range) value. Enters the time representing the start of the selected horizontal range. Returns the current start sweep time value. Enters the time representing the stop of the selected horizontal range. Returns the current stop sweep time value.</td>
</tr>
<tr>
<td></td>
<td>POINTs</td>
<td>Selects the number of time buckets for a data acquisition. Returns the current points value. Enters the completion criteria for a data acquisition. Returns the current acquisition complete value. Time selections. Enters the time representing the center of the selected horizontal range. Returns the current center sweep time value. Enters the desired time between the trigger and delay reference point. Returns current sweep delay value. Sets the delay reference point to start, stop, or center of the active waveform. Returns the delay reference point currently selected. Enters full scale horizontal range. Returns current full scale horizontal range value. Enters full scale horizontal span (range). Returns current full scale horizontal span (range) value. Enters the time representing the start of the selected horizontal range. Returns the current start sweep time value. Enters the time representing the stop of the selected horizontal range. Returns the current stop sweep time value.</td>
</tr>
</tbody>
</table>
### Oscilloscope Module

#### SCPI Commands Quick Reference — Continued

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>Command/Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SENSe:]</td>
<td>VOLTage&lt;number&gt;</td>
<td>Voltage subsystem.</td>
</tr>
<tr>
<td></td>
<td>:RANGE</td>
<td>Range selections.</td>
</tr>
<tr>
<td></td>
<td>:LOWer &lt;lower&gt;</td>
<td>Enters the voltage representing the bottom of the selected vertical range.</td>
</tr>
<tr>
<td></td>
<td>:LOWer?</td>
<td>Returns the current lower range value.</td>
</tr>
<tr>
<td></td>
<td>:OFFSET &lt;value&gt;</td>
<td>Enters the specified input's (1-4) offset.</td>
</tr>
<tr>
<td></td>
<td>:OFFSET?</td>
<td>Returns the specified input's (1-4) current offset value.</td>
</tr>
<tr>
<td></td>
<td>[:PTPeak] &lt;range&gt;</td>
<td>Enters the specified input's (1-4) full scale vertical range.</td>
</tr>
<tr>
<td></td>
<td>[:PTPeak]?</td>
<td>Returns the specified input's (1-4) current full scale vertical range value.</td>
</tr>
<tr>
<td></td>
<td>:UPPer &lt;upper&gt;</td>
<td>Enters the voltage representing the top of the selected vertical range.</td>
</tr>
<tr>
<td></td>
<td>:UPPer?</td>
<td>Returns the current upper range value.</td>
</tr>
</tbody>
</table>

STATus	:OPERation	Reports when a trigger has occurred.
	:CONDITION?	Always returns (0).
	:ENABLE	Allows true conditions (transitions) in the event register to be reported.
	[:EVEN!]?	Returns a decimal weighted value indicating which bits have been set.
	:PRESet	Sets all the questionable enable registers to "1's".
	:QUESTIONable	Reports the calibration and self test results.
	:CONDITION?	Always returns 0.
	:ENABLE	Allows true conditions (transitions) in the event register to be reported.
	[:EVEN!]?	Returns a decimal weighted value indicating which bits have been set.
	:CALibration	Reports the input 1-4, default, and probe attenuation calibration values and conditions.
	:CONDITION?	Always returns 0.
	:ENABLE	Allows true conditions (transitions) in the event register to be reported.
	[:EVEN!]?	Returns a decimal weighted value indicating which bits have been set.
	:INPUT<number>	Reports the specified input's (1-4) current calibration data.
	:CONDITION?	Always returns 0.
	:ENABLE	Allows true conditions (transitions) in the event register to be reported.
	[:EVEN!]?	Returns a decimal weighted value indicating which bits have been set.
	:AD	Reports the specified input's (1-4) A/D calibration data.
	:CONDITION?	Always returns 0.
	:ENABLE	Allows true conditions (transitions) in the event register to be reported.
	[:EVEN!]?	Returns a decimal weighted value indicating which bits have been set.
	:DELAY	Reports the specified input's (1-4) delay calibration data.
	:CONDITION?	Always returns 0.
	:ENABLE	Allows true conditions (transitions) in the event register to be reported.
	[:EVEN!]?	Returns a decimal weighted value indicating which bits have been set.
### SCPI Commands Quick Reference — Continued

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>Command/Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATus</td>
<td>:QUESTionable</td>
<td>Reports the specified input's (1-4) gain calibration data. Always returns 0. Allows true conditions (transitions) in the event register to be reported.</td>
</tr>
<tr>
<td></td>
<td>:CALibration</td>
<td>Returns a decimal weighted value indicating which bits have been set.</td>
</tr>
<tr>
<td></td>
<td>:INPUT&lt;number&gt;</td>
<td>Reports the specified input's (1-4) hysteresis calibration data. Always returns 0. Allows true conditions (transitions) in the event register to be reported.</td>
</tr>
<tr>
<td></td>
<td>:GAIN :CONDition?</td>
<td>Returns a decimal weighted value indicating which bits have been set.</td>
</tr>
<tr>
<td></td>
<td>:ENABLE</td>
<td>Reports the input 1 logic trigger calibration data. Always returns 0. Allows true conditions (transitions) in the event register to be reported.</td>
</tr>
<tr>
<td></td>
<td>[:EVENT]</td>
<td>Returns a decimal weighted value indicating which bits have been set.</td>
</tr>
<tr>
<td></td>
<td>:HYSTeresis</td>
<td>Reports the specified input's (1-4) offset calibration data. Always returns 0. Allows true conditions (transitions) in the event register to be reported.</td>
</tr>
<tr>
<td></td>
<td>:CONDition?</td>
<td>Returns a decimal weighted value indicating which bits have been set.</td>
</tr>
<tr>
<td></td>
<td>:ENABLE</td>
<td>Reports the specified input's (2-4) time null calibration data. Always returns 0. Allows true conditions (transitions) in the event register to be reported.</td>
</tr>
<tr>
<td></td>
<td>[:EVENT]</td>
<td>Returns a decimal weighted value indicating which bits have been set.</td>
</tr>
<tr>
<td></td>
<td>:TRIGGER :CONDition?</td>
<td>Reports the specified input's (1-4) trigger calibration data. Always returns 0. Allows true conditions (transitions) in the event register to be reported.</td>
</tr>
<tr>
<td></td>
<td>:ENABLE</td>
<td>Returns a decimal weighted value indicating which bits have been set.</td>
</tr>
<tr>
<td></td>
<td>[:EVENT]</td>
<td>Reports default calibration load status. Always returns 0. Allows true conditions (transitions) in the event register to be reported.</td>
</tr>
<tr>
<td></td>
<td>:DCAliBration</td>
<td>Returns a decimal weighted value indicating which bits have been set.</td>
</tr>
<tr>
<td></td>
<td>:CONDition?</td>
<td>Reports the probe calibration attenuation results. Always returns 0. Allows true conditions (transitions) in the event register to be reported.</td>
</tr>
<tr>
<td></td>
<td>:ENABLE</td>
<td>Returns a decimal weighted value indicating which bits have been set.</td>
</tr>
<tr>
<td></td>
<td>[:EVENT]</td>
<td></td>
</tr>
<tr>
<td>Subsystem</td>
<td>Command/Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>STATUs</td>
<td>:QUESTionable</td>
<td>Reports diagnostic or self test results. Always returns 0.</td>
</tr>
<tr>
<td></td>
<td>:TEST</td>
<td>Allows true conditions (transitions) in the event register to be reported.</td>
</tr>
<tr>
<td></td>
<td>:CONDition?</td>
<td>Returns a decimal weighted value indicating which bits have been set.</td>
</tr>
<tr>
<td></td>
<td>:ENABLE</td>
<td>Reports the acquisition self test results. Always returns 0.</td>
</tr>
<tr>
<td></td>
<td>[:EVENT]?</td>
<td>Allows true conditions (transitions) in the event register to be reported.</td>
</tr>
<tr>
<td></td>
<td>:ACQuision</td>
<td>Returns a decimal weighted value indicating which bits have been set.</td>
</tr>
<tr>
<td></td>
<td>:CONDition?</td>
<td>Reports the acquisition A/D self test results. Always returns 0.</td>
</tr>
<tr>
<td></td>
<td>:ENABLE</td>
<td>Allows true conditions (transitions) in the event register to be reported.</td>
</tr>
<tr>
<td></td>
<td>[:EVENT]?</td>
<td>Returns a decimal weighted value indicating which bits have been set.</td>
</tr>
<tr>
<td></td>
<td>:ATRigger</td>
<td>Reports the acquisition analog trigger self test results. Always returns 0.</td>
</tr>
<tr>
<td></td>
<td>:CONDition?</td>
<td>Allows true conditions (transitions) in the event register to be reported.</td>
</tr>
<tr>
<td></td>
<td>:ENABLE</td>
<td>Returns a decimal weighted value indicating which bits have been set.</td>
</tr>
<tr>
<td></td>
<td>[:EVENT]?</td>
<td>Reports the acquisition D/A self test results. Always returns 0.</td>
</tr>
<tr>
<td></td>
<td>:CONDition?</td>
<td>Allows true conditions (transitions) in the event register to be reported.</td>
</tr>
<tr>
<td></td>
<td>:ENABLE</td>
<td>Returns a decimal weighted value indicating which bits have been set.</td>
</tr>
<tr>
<td></td>
<td>[:EVENT]?</td>
<td>Reports the acquisition logic trigger self test results. Always returns 0.</td>
</tr>
<tr>
<td></td>
<td>:CONDition?</td>
<td>Allows true conditions (transitions) in the event register to be reported.</td>
</tr>
<tr>
<td></td>
<td>:ENABLE</td>
<td>Returns a decimal weighted value indicating which bits have been set.</td>
</tr>
<tr>
<td></td>
<td>[:EVENT]?</td>
<td>Reports the acquisition time base self test results. Always returns 0.</td>
</tr>
<tr>
<td></td>
<td>:CONDition?</td>
<td>Allows true conditions (transitions) in the event register to be reported.</td>
</tr>
<tr>
<td></td>
<td>:ENABLE</td>
<td>Returns a decimal weighted value indicating which bits have been set.</td>
</tr>
<tr>
<td></td>
<td>[:EVENT]?</td>
<td>Reports the acquisition time base interpolator self test results. Always returns 0.</td>
</tr>
<tr>
<td></td>
<td>:CONDition?</td>
<td>Allows true conditions (transitions) in the event register to be reported.</td>
</tr>
<tr>
<td></td>
<td>:ENABLE</td>
<td>Returns a decimal weighted value indicating which bits have been set.</td>
</tr>
<tr>
<td>Subsystem</td>
<td>Command/Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>STATus</td>
<td>:QUESTIONable</td>
<td>Reports the random access memory self test results.</td>
</tr>
<tr>
<td></td>
<td>:TEST</td>
<td>Always returns 0.</td>
</tr>
<tr>
<td></td>
<td>:RAM</td>
<td>Allows true conditions (transitions) in the event register to be reported.</td>
</tr>
<tr>
<td></td>
<td>:CONDITION?</td>
<td>Returns a decimal weighted value indicating which bits have been set.</td>
</tr>
<tr>
<td></td>
<td>:ENABLE</td>
<td>Reports the acquisition random access memory self test results.</td>
</tr>
<tr>
<td></td>
<td>[:EVENT]?</td>
<td>Always returns 0.</td>
</tr>
<tr>
<td></td>
<td>:ACQUisition</td>
<td>Allows true conditions (transitions) in the event register to be reported.</td>
</tr>
<tr>
<td></td>
<td>:CONDITION?</td>
<td>Returns a decimal weighted value indicating which bits have been set.</td>
</tr>
<tr>
<td></td>
<td>:ENABLE</td>
<td>Reports the display random access memory self test results.</td>
</tr>
<tr>
<td></td>
<td>[:EVENT]?</td>
<td>Always returns 0.</td>
</tr>
<tr>
<td></td>
<td>:DISPLAY</td>
<td>Allows true conditions (transitions) in the event register to be reported.</td>
</tr>
<tr>
<td></td>
<td>:CONDITION?</td>
<td>Returns a decimal weighted value indicating which bits have been set.</td>
</tr>
<tr>
<td></td>
<td>:ENABLE</td>
<td>Reports the non-volatile random access memory self test results.</td>
</tr>
<tr>
<td></td>
<td>[:EVENT]?</td>
<td>Always returns 0.</td>
</tr>
<tr>
<td></td>
<td>:NVOLatile</td>
<td>Allows true conditions (transitions) in the event register to be reported.</td>
</tr>
<tr>
<td></td>
<td>:CONDITION?</td>
<td>Returns a decimal weighted value indicating which bits have been set.</td>
</tr>
<tr>
<td></td>
<td>:ENABLE</td>
<td>Reports the system random access memory self test results.</td>
</tr>
<tr>
<td></td>
<td>[:EVENT]?</td>
<td>Always returns 0.</td>
</tr>
<tr>
<td></td>
<td>:SYSTem</td>
<td>Allows true conditions (transitions) in the event register to be reported.</td>
</tr>
<tr>
<td></td>
<td>:CONDITION?</td>
<td>Returns a decimal weighted value indicating which bits have been set.</td>
</tr>
<tr>
<td></td>
<td>:ENABLE</td>
<td>Reports the read only memory self test results.</td>
</tr>
<tr>
<td></td>
<td>[:EVENT]?</td>
<td>Always returns 0.</td>
</tr>
<tr>
<td></td>
<td>:ROM</td>
<td>Allows true conditions (transitions) in the event register to be reported.</td>
</tr>
<tr>
<td></td>
<td>:CONDITION?</td>
<td>Returns a decimal weighted value indicating which bits have been set.</td>
</tr>
<tr>
<td></td>
<td>:ENABLE</td>
<td>Reports the non-protected random access memory self test results.</td>
</tr>
<tr>
<td></td>
<td>[:EVENT]?</td>
<td>Always returns 0.</td>
</tr>
<tr>
<td></td>
<td>:NPRotect</td>
<td>Allows true conditions (transitions) in the event register to be reported.</td>
</tr>
<tr>
<td></td>
<td>:CONDITION?</td>
<td>Returns a decimal weighted value indicating which bits have been set.</td>
</tr>
<tr>
<td></td>
<td>:ENABLE</td>
<td>Reports the system read only memory self test results.</td>
</tr>
<tr>
<td></td>
<td>[:EVENT]?</td>
<td>Always returns 0.</td>
</tr>
<tr>
<td></td>
<td>:SYSTem</td>
<td>Allows true conditions (transitions) in the event register to be reported.</td>
</tr>
<tr>
<td></td>
<td>:CONDITION?</td>
<td>Returns a decimal weighted value indicating which bits have been set.</td>
</tr>
<tr>
<td>Subsystem</td>
<td>Command/Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>SYSTem</td>
<td>:AUToscale</td>
<td>Evaluates all inputs, then sets conditions to present the signals. Returns system error number and message. Selects the Oscilloscope programming language (COMP or SCPI). Returns the programming language currently selected. Enters the instrument serial number. Sends a previously saved learn string to the Oscilloscope (contains Oscilloscope setup information). Returns the learn string (contains Oscilloscope setup information).</td>
</tr>
<tr>
<td></td>
<td>:ERRor?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>:LANGuage &lt;command&gt;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>:LANGuage?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>:SERial &lt;string&gt;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>:SET &lt;setup&gt;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>:SET?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>:VERSion?</td>
<td></td>
</tr>
<tr>
<td>TEST</td>
<td>:ACQ [&lt;test&gt;]</td>
<td>Performs an internal acquisition self test. All five tests (AD, analog trigger, logic trigger, time base, and DA), are performed unless an individual test is specified. Performs an internal random access memory self test. All four tests (display, acquisition, system, and non-volatile) are performed unless an individual test is specified. Performs an internal read only memory self test. Both tests (system ROM and non-volatile protected RAM) are performed unless an individual test is specified. Performs all internal self tests (ACQ, RAM, and ROM).</td>
</tr>
<tr>
<td></td>
<td>:RAM [&lt;test&gt;]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>:ROM [&lt;test&gt;]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>:TALL</td>
<td></td>
</tr>
<tr>
<td>TRACE:</td>
<td>[:DATA] &lt;destination&gt;,&lt;source&gt;</td>
<td>Writes a binary block of data to the specified destination, or moves the specified source to the selected destination. Reads a binary block of data from the specified source. Returns the data points value currently selected in the preamble of the specified source. Sends preamble data to the specified destination. Receives preamble data from the specified source.</td>
</tr>
<tr>
<td></td>
<td>[:DATA]? &lt;source&gt;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>:POINTS? &lt;source&gt;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>:PREamble &lt;destination&gt;,&lt;data&gt;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>:PREamble? &lt;source&gt;</td>
<td></td>
</tr>
<tr>
<td>TRIGger</td>
<td>:ECOunt &lt;events&gt;</td>
<td>Selects the number of events to holdoff the trigger event. Returns the current holdoff value. Enables or disables noise rejection for the currently selected source. Returns the current noise rejection state. Enters the trigger level. Returns the current trigger level value. Selects the edge (rising or falling) for the trigger. Returns the trigger edge currently selected. Selects the source that will produce the trigger (input 1-4, TTLTrg 0-7, ECLTrg 0-2). Returns the trigger source currently selected.</td>
</tr>
<tr>
<td></td>
<td>:ECOunt?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>:HYSTerisis &lt;mode&gt;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>:HYSTerisis?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>:LEVEL &lt;level&gt;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>:LEVEL?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>:SLOPe &lt;polarity&gt;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>:SLOPe?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>:SOURce &lt;source&gt;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>:SOURce?</td>
<td></td>
</tr>
<tr>
<td>Command</td>
<td>Title</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>*CLS</td>
<td>Clear status register</td>
<td>Clears all Event Registers, the Request for OPC flag, and all Queues (except output queue).</td>
</tr>
<tr>
<td>*ESE &lt;mask&gt;</td>
<td>Event status enable</td>
<td>Used to set the bits in the Event Status Enable Register.</td>
</tr>
<tr>
<td>*ESE</td>
<td>Event status enable query</td>
<td>Queries the current contents in the Event Status Enable Register.</td>
</tr>
<tr>
<td>*ESR?</td>
<td>Event status register query</td>
<td>Queries and clears contents in the Standard Event Status Register.</td>
</tr>
<tr>
<td>*IDN?</td>
<td>Identification query</td>
<td>Returns identification string of the Oscilloscope.</td>
</tr>
<tr>
<td>*LRN?</td>
<td>Learn query</td>
<td>Returns a string that contains the current Oscilloscope setup.</td>
</tr>
<tr>
<td>*OPC</td>
<td>Operation complete</td>
<td>Sets the Request for OPC flag when all pending operations have completed. Also sets OPC bit in the Event Status register.</td>
</tr>
<tr>
<td>*OPC?</td>
<td>Operation complete query</td>
<td>Returns a 1 to the output queue when all pending operations have been completed.</td>
</tr>
<tr>
<td>*RCL &lt;n&gt;</td>
<td>Recall saved state</td>
<td>Recalls previously stored Oscilloscope Module configuration. &lt;n&gt; (1 to 4) is the location in memory where the desired (previously stored) set-up is located.</td>
</tr>
<tr>
<td>*RST</td>
<td>Reset</td>
<td>Resets the Oscilloscope hardware and firmware to a specific state (refer to Table 3-4 for a list of reset conditions).</td>
</tr>
<tr>
<td>*SAV &lt;n&gt;</td>
<td>Save state</td>
<td>Stores the present Oscilloscope Module configuration in memory. Stores all Oscilloscope and Measurement Set-up parameters. &lt;n&gt; (1 to 4) is the location in memory where the current set-up is to be stored.</td>
</tr>
<tr>
<td>*SRE &lt;mask&gt;</td>
<td>Service request enable</td>
<td>Used to set the Service Request Enable Register bits to generate a service request.</td>
</tr>
<tr>
<td>*SRE?</td>
<td>Service request enable query</td>
<td>Queries the current contents in the Service Request Enable Register.</td>
</tr>
<tr>
<td>*STB?</td>
<td>Read status byte query</td>
<td>Queries the current contents in the Status Byte Register.</td>
</tr>
<tr>
<td>*TRG?</td>
<td>Trigger</td>
<td>Used to generate a trigger event.</td>
</tr>
<tr>
<td>*TST?</td>
<td>Self-Test query</td>
<td>Returns 0 unless self test fails. Disconnect all inputs prior to performing self tests.</td>
</tr>
<tr>
<td>*WAI</td>
<td>Wait to Continue</td>
<td>Halts execution of commands and queries until the No Operation Pending message is true.</td>
</tr>
</tbody>
</table>
Oscilloscope Specifications and Characteristics

Specifications

The following are performance specifications for the HP E1426A Digitizing Oscilloscope.

Vertical

Bandwidth (~3 dB, dc coupled)

Repetitive: dc to 500 MHz

Single-shot: dc to 2 MHz (based on 10 points per period of input signal)

Rise Time: 700 ps

Input R (selectable): 1 MΩ ±1% or 50Ω ±1%

Maximum Input Voltage

1MΩ: ±250 V [dc + peak ac(<10 kHz)]

50Ω: 5 Vrms

Offset Accuracy: ±(0.5% of ch. offset + 2% of voltage range)

Voltage Measurement Accuracy (dc)

Dual Cursor: ±(1.25% of voltage range)

Single Cursor: ±(1.25% of voltage range + offset accuracy)

Horizontal

Time Base Reference Accuracy: 0.005%

Delta-t Accuracy

Real-time: ±(0.2% x time base range + 0.005% x delta-t + 150 ps)

Trigger

Trigger Sensitivity

≥40 mV Voltage Range

dc to 100 MHz: 0.063 x voltage range

100 MHz to 500 MHz: 0.156 x voltage range

<40 mV Voltage Range

dc to 100 MHz: 2.5 mV

100 MHz to 500 MHz: 6 mV

Notes: Specifications valid for temperature range ±10°C from software calibration temperature with eight or more averages selected.

1. Upper bandwidth reduces by 2.5 MHz for each °C above 35°C.

2. Rise time figure is calculated from: tr = 0.35/Bandwidth.

3. On voltage ranges ≤400 mV the maximum overdrive of the input must not exceed 125 times the voltage range.

4. Expansion is used below 56 mV voltage range so vertical resolution and accuracies are correspondingly reduced.

5. Accuracy decreases 0.08% per °C from software calibration temperature.
Characteristics

The following are performance characteristics of the HP E1426A Digitizing Oscilloscope.

Vertical

Switchable Bandwidth Limits
ac-coupled (lower -3 dB frequency): 90 Hz
LF reject (lower -3 dB frequency): 450 Hz
bandwidth limit (upper -3 dB frequency): dc to 30 MHz

Number of channels: 4

Vertical Sensitivity Voltage Range (all channels): 8 mV to 40 V
Vertical Gain Accuracy (dc): ±1.25%
Vertical Resolution: ±0.4% (8-bit A/D)
±0.1% (10 bits via digitize with averaging)

Maximum Sample Rate: 20 MSa/s

Waveform Record Length: Up to 1024 points

Input C: 7 pF nominal
Input coupling: ac, dc

<table>
<thead>
<tr>
<th>Offset Range</th>
<th>Voltage Range</th>
<th>Available Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 mV-400 mV</td>
<td>±2 V</td>
<td></td>
</tr>
<tr>
<td>&gt;400 mV-2 V</td>
<td>±10 V</td>
<td></td>
</tr>
<tr>
<td>&gt;2 V-10 V</td>
<td>±50 V</td>
<td></td>
</tr>
<tr>
<td>&gt;10 V-40 V</td>
<td>±250 V</td>
<td></td>
</tr>
</tbody>
</table>

Dynamic range (dc + peak ac): ±1.5 x voltage range from offset

Channel-to-channel Isolation: (with channels at equal sensitivity)
40 dB: dc to 100 MHz
30 dB: 100 to 500 MHz

Horizontal

Time Base Range: 2 ns to 50 s

Time Base Resolution: 20 ps

<table>
<thead>
<tr>
<th>Delay Range</th>
<th>Time Base Range</th>
<th>Available Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>(post-trigger)</td>
<td>500 ms—50 s</td>
<td>4 x time base range</td>
</tr>
<tr>
<td></td>
<td>1 ms—200 ms</td>
<td>1 s</td>
</tr>
<tr>
<td></td>
<td>2 ns—500 μs</td>
<td>1,000 x time base range</td>
</tr>
<tr>
<td>Delay Range</td>
<td>50 μs—50 s</td>
<td>-3.996 x time base range</td>
</tr>
<tr>
<td>(pre-trigger)</td>
<td>100 ns—20 μs</td>
<td>-99.9 μs</td>
</tr>
<tr>
<td></td>
<td>2 ns—50 ns</td>
<td>-1,000 x time base range</td>
</tr>
</tbody>
</table>

Trigger

Trigger Pulse Width (minimum): 1.5 ns

Trigger Level Range: ±1.5 x voltage range from offset.

Backplane Trigger Delay: ~40 ns (from oscilloscope input to backplane).

Notes: Specifications valid for temperature range ±10°C from software calibration temperature with eight or more averages selected.

1. Simultaneous acquisition on two channels. Channels 1 and 4 are acquired simultaneously. If four channels are used, data is acquired alternately by channels 1 and 4, then 2 and 3.
2. Accuracy decreases 0.08% per °C from software calibration temperature.
3. Expansion is used below 56 mV range so vertical resolution and accuracies are correspondingly reduced.
4. In repetitive mode:
   - 2 ns time base range, waveform record length is 100 points
   - 5 ns time base range, waveform record length is 250 points
   - 10 ns time base range, waveform record length is 500 points
   - ≥20 ns time base range, waveform record length is 1000 points

5. For single shot via digitize, the waveform record length is dependent on the timebase range. Note: You may need to set ACQUIRE:COMPLETE to a value less than 100 (for 100%).

<table>
<thead>
<tr>
<th>Screen Width</th>
<th>Single-Shot Points/Acquisitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>50ns to 50µs</td>
<td>500</td>
</tr>
<tr>
<td>20µs</td>
<td>≈400</td>
</tr>
<tr>
<td>10µs</td>
<td>≈200</td>
</tr>
<tr>
<td>5µs</td>
<td>≈100</td>
</tr>
<tr>
<td>2µs</td>
<td>≈40</td>
</tr>
<tr>
<td>1µs</td>
<td>≈20</td>
</tr>
<tr>
<td>500ns</td>
<td>≈10</td>
</tr>
<tr>
<td>200ns</td>
<td>≈4</td>
</tr>
<tr>
<td>100ns</td>
<td>≈1</td>
</tr>
<tr>
<td>50ns to 2ns</td>
<td>0 - Single-shot not available</td>
</tr>
</tbody>
</table>
Operating Characteristics

Vertical

Deflection Factors: All channel's deflection factors are adjustable from 8 mV to 40 V.

Probe Attenuation Factors: Values from 0.9 to 1000 may be entered to scale the oscilloscope for external probes or attenuators attached to the channel inputs. When probe tip calibration is done, this value is calculated automatically.

Input Impedance: 1MΩ or 50 Ω selectable for each input.

Bandwidth limit (HF Reject): Can be selected for each input individually. Provides low pass filter with a −3 dB point at approximately 30 MHz for both triggering and signal acquisition.

LF Reject: Can be selected for each input individually. Provides high pass filter with a −3 dB point at approximately 450 Hz for both triggering and signal acquisition.

AC Coupling: Can be selected for each input individually. Provides high pass filter with a −3 dB point at approximately 90 Hz and a two-pole roll-off for both triggering and signal acquisition.

ECL/TTL Presets: Vertical deflection factor, offset, and trigger level can be preset independently on each channel for ECL and TTL levels.

Note

ECL and TTL presets are only available when using the COMPatible programming language.

Horizontal

Dual Time Base Windowing: Allows user to zoom in on portions of the waveform. The window time base can be set to provide as much as a 20:1 expansion ratio. Waveform measurements are performed on the dual time base window information when windowing is turned on.

Note

Dual Time Base Windowing is only available when using the COMPatible programming language.

Delay Between Channels: Difference in delay between channels can be nullled out to compensate for differences in input cables or probe length. See the Time Null (TNUL) Probe Calibration command in chapters 4 or 6 for more information.

Reference Location: The reference point can be located at the left edge, center, or right of the active waveform. The reference point is equal to trigger point plus the delay time.
Trigger Modes

Edge Trigger: Positive or negative edge can be selected for trigger on any of the four channel inputs.

Note

The remaining trigger modes are only available when using the COMPatible programming language.

Pattern Trigger: A pattern can be specified using all four of the inputs. Each of the inputs can be specified as a high, low, or don’t care with respect to the level setting in the edge trigger mode. Trigger can be selected to occur on the last edge to enter the specified pattern or the first edge to exit the specified pattern.

Time Qualified Pattern Trigger: A trigger will occur on the first edge to exit a pattern only if it meets the specified time criteria. The available time qualified modes are:

- pattern present < [time]
- pattern present > [time]
- range–pattern present > [time1] and <[time2]

The time settings are adjustable from 20 ns to 160 ms (±3% ±2 ns). The time filter recovery time is ≤12 ns. In the "pattern present < [time]" mode, the pattern must be present > 1.5 ns for the trigger to respond.

Glitch Trigger: Use "pattern present < [time]" with [time] selected such that it is just less than the pulse width of the signal you are analyzing. The minimum glitch width is 1.5 ns.

State Trigger: A pattern is specified on any three of the four inputs, with the fourth input used as a clock. A trigger will occur on the rising or falling edge of the input specified as the clock when the pattern is present or not present. Setup time for the pattern with respect to the clock is less than or equal to 10 ns; hold time is zero.

Delayed Trigger

Event-delayed Mode: The trigger can be qualified by an edge, pattern, time qualified pattern or state. The delay can be specified as a number of occurrences of a rising or falling edge on any one of the four inputs. After the delay, an occurrence of a rising or falling edge of any one of the four inputs will generate the trigger. The occurrence value of the edge to trigger on is selectable from 1 to 16,000,000. The maximum edge counting rate is 70 MHz.
**TV Trigger**

60 Hz/525 Lines: Source is selected to be any one of the four inputs. Trigger level is adjustable for the selected source. Polarity is selected for positive or negative synchronizing pulses. A trigger occurs on the selected line and field of a 2/1 interlaced composite video signal. Line numbering is 1 to 263 for field 1 and 1 to 262 for field 2. This TV trigger mode is compatible with broadcast standard M.

50 Hz/625 Lines: Source is selected to be any one of the four inputs. Trigger level is adjustable for the selected source. Polarity is selected for positive or negative synchronizing pulses. A trigger occurs on the selected line and field of a 2/1 interlaced composite video signal. Line numbering is 1 to 313 for field 1 and 314 to 625 for field 2. This TV trigger mode is compatible with broadcast standards B, C, D, G, H, I, K, K1, L, and N.

**User-defined Mode:** Source is selected to be any one of the four inputs. Trigger level is adjustable for the selected source. The trigger is qualified with a high or low pulse that meets a selectable time range. The trigger is an occurrence of a rising or falling edge of the source after the qualifying pulse. The time settings for the qualifier are selectable from 20 ns to 160 ms (±3% ±2 ns). The trigger occurrence value is selectable from 1 to 16,000,000.

---

**Note**

All TV trigger modes require a clamped video signal for stable triggering. Use the HP 1133A TV pod to provide clamped video output that can be used in conjunction with the HP E1426A's TV triggering capabilities.

---

**Trigger Holdoff:** Trigger can be held off by either time or events over the ranges:

- **Time:** 40 ns to 320 ms
- **Events:** 2 to 16,000,000

An Event is defined as the specified trigger condition. A separate holdoff setting (time or events) is available for each trigger mode except delayed trigger, which is set to 40 ns.

---

**Note**

Holdoff by time is only available when using the COMPatible programming language.

---

**Noise Reject Trigger:** Improves triggering on noisy signals by increasing hysteresis.
**Acquisition Modes**

**Minimum Persistence:** The waveform is updated as new data is acquired for a particular time bucket, with one waveform data value per time bucket.

**Note**

The term "Time Bucket" is defined as — the time range divided into a specific number of horizontal time points (as defined by the :POINts command), each with an equal and fixed time associated with it.

**Infinite Persistence:** Each data point (existing and new) is always retained (never replaced).

**Note**

Persistence selections are only available when using the COMPatible programming language.

**Averaging:** The number of averages \( n \) can be specified in powers of 2, up to 2048. On each acquisition, \( 1/n \) times the new data is added to \( (n-1)/n \) of the previous value at each time coordinate. Averaging operates continuously, except for the digitize command, for which averaging terminates at the specified number of averages.

**Envelope:** Provides the running maximum and minimum voltage levels at each time bucket for a repetitive waveform.

**Scroll Mode:** In the Auto Mode at settings from 2 s to 50 s the E1426A automatically selects the scroll mode. It will also select scroll mode in the triggered mode with delay reference (= left and delay \( \geq 0 \)). Scroll mode updates each data point on the waveform as the data is acquired.

**Delta t/Delta V**

**Markers:** Dual voltage markers and dual time markers are available. Voltage markers can be independently assigned to channels, memories, or functions.

**Note**

Time and voltage markers are only available when using the COMPatible programming language.

**Waveform Math**

Two independent functions are provided for waveform math. The operators are \(+, -, X, \) invert, and only. The vertical channels and the waveform memories can be used as operands for the waveform math. Sensitivity and offset for these functions can be adjusted independently.

**Note**

Invert and only functions are only available when using the COMPatible programming language.
Waveform Save

Four non-volatile waveform memories and two volatile pixel memories are provided. Waveform memories store single-valued waveforms, such as an averaged waveform. If an envelope waveform is stored to a waveform memory, it will automatically be stored with the upper waveform in one waveform memory and the lower waveform in another. Pixel memories store an entire active waveform. They are very useful for storing multiple overlapping waveforms and infinite persistence waveforms.

Automatic Pulse Parameter Measurements

The E1426A offers 19 automatic pulse parameter measurements. The standard measurements are performed with 10%, 50%, and 90% voltage thresholds, as defined by IEEE standard 194-1977, "IEEE Standard Pulse Terms and Definitions."

**Automatic measurements available on the HP E1426A**

<table>
<thead>
<tr>
<th></th>
<th>Rise Time</th>
<th>Fall Time</th>
<th>Frequency</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+ Pulse Width</td>
<td>Volts amp</td>
<td>Volts avg</td>
<td>Preread</td>
</tr>
<tr>
<td></td>
<td>- Pulse width</td>
<td>Volts top (high)</td>
<td>Overshoot</td>
<td>Volts DCrms</td>
</tr>
<tr>
<td></td>
<td>Duty Cycle</td>
<td>Volts p-p</td>
<td>Volts DCrms</td>
<td></td>
</tr>
</tbody>
</table>

**Note**

Delay, peak-to-peak, and DCrms voltage measurements are only available when using the COMPatible programming language.

User-Definable Measurement Thresholds

The E1426A allows you to set your own thresholds for automatic measurements. Both the upper and lower thresholds can be set, either in % or Volts, as long as the upper threshold value is always ≥ the lower threshold. The mid threshold is always equal to mid-value between the upper and lower threshold.

**Note**

Only upper and lower thresholds for rise time and fall time can be defined by the user when using the SCPI programming language.

**Continuous Measurements:** Allows automatic measurements to be continuously updated. With continuous measurements off, the voltage and time markers are set on the waveform to indicate the position of the last measurement.

**Measurement Statistics:** The maximum, minimum and average of continuously updated measurements are calculated. Any three measurements can be selected for simultaneous calculation.

**Measurement Limit Test:** Maximum and minimum limits can be set for three of the automatic measurements. These continuously updated measurements are compared to the maximum and minimum limits. If the measurements are found to be outside the defined limits, the acquisition can be stopped and the waveform can be stored to a memory. In addition, the Service Request line can be set, to flag the controller. Measurement limit test can be set to stop after test limits have exceeded, or to continue testing.

**Note**

Continuous measurements, measurement statistics, and limit testing are only available when using the COMPatible programming language.
**Setup Aids**

**Auto-Scale:** The Auto-Scale feature automatically adjusts the vertical and horizontal factors, and the trigger level to values appropriate to the signals applied to the inputs. The Auto-Scale feature requires a signal with a duty cycle greater than 0.5% and a frequency greater than 50 Hz. Auto-Scale is operative only for relatively stable input signals.

**Save/Recall:** Four setups (1-4) may be saved in non-volatile memory.

**Recall:** If Auto-Scale, ECL or TTL preset, or recall setup are inadvertently selected, recall 0 restores the instrument to its last state prior to selection.

**Front Panel Outputs**

**TTL Trigger Output:** BNC female connector provides a TTL level output signal. The trailing (falling) edge should be used as the edge synchronous with the acquisition trigger. The trigger output uses the standard buffering scheme recommended in the VXI System specification.

**Probe Compensation, AC Calibrator Output:** BNC female connector provides a signal (~1.5 kHz) for probe compensation. A probe-to-BNC adapter is used to connect the probe to the Front panel Probe Compensation BNC output. During calibration, this output is used to provide other calibration signals. This same BNC connector is used for trigger output. The leading (rising) edge, with amplitude from approximately ~400 mV to 0 V (when a terminated in 50 Ω), is synchronous with the system trigger. The trailing (falling) edge of this pulse occurs approximately at the end of holdoff. The leading (rising) edge should be used as the edge synchronous with trigger.

**Note**

Selection of a trigger output from this connector is only available when using the COMpatible programming language.

**Self Test Calibration**

**DC Calibrator Output:** BNC female connector provides the output used for vertical calibration of the E1426A.

**Built-in Self Test and Calibration Routines:** Internal self-test capabilities provide a 90% confidence that the instrument is operating properly. External test procedures in the service manual provide 100% confidence. Self-calibration routines, ensure that the instrument is operating with its greatest accuracy and requires no external test equipment.
### General Characteristics

<table>
<thead>
<tr>
<th>Environmental Conditions</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Operating: 0°C to +55°C</td>
</tr>
<tr>
<td></td>
<td>Non-operating: −40°C to +70°C</td>
</tr>
</tbody>
</table>

**Humidity**

- **Operating:** up to 95% relative humidity (non-condensing) at +40°C
- **Non-operating:** up to 90% relative humidity at +65°C.

**Altitude**

- **Operating:** up to 4,600 meters (15,000 ft)
- **Non-operating:** up to 15,300 meters (50,000 ft).

**Vibration**

- **Operating:** Random vibration 5-500 Hz, 10 minutes per axis, 0.3 Grms.
- **Non-operating:** Random vibration 5-500 Hz, 10 minute per axis, 2.41 Grms; Resonant search 5 to 500 Hz swept sine, 1 octave/minute sweep rate, (0.75 G), 5 minute resonant dwell @ 4 resonances per axis.

### Weight

- **Net:** approximately 4 kg (9 lb.)
- **Shipping:** approximately 8 kg (18 lb.)
Oscilloscope Error Messages

Table B-1 lists the error messages associated with the Oscilloscope module programmed using Hewlett-Packard 54503A Compatible Language (COMP). Table B-2 lists the error messages associated with the Oscilloscope module programmed using Standard Commands for Programmable Instruments (SCPI). See the appropriate mainframe manual for a complete list of error messages.

Table B-1. COMP Error Messages

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No error</td>
</tr>
<tr>
<td>-100</td>
<td>Command error (unknown command)</td>
</tr>
<tr>
<td>-101</td>
<td>Invalid character received</td>
</tr>
<tr>
<td>-110</td>
<td>Command header error</td>
</tr>
<tr>
<td>-111</td>
<td>Header delimiter error</td>
</tr>
<tr>
<td>-120</td>
<td>Numeric argument error</td>
</tr>
<tr>
<td>-121</td>
<td>Wrong data type (numeric expected)</td>
</tr>
<tr>
<td>-123</td>
<td>Numeric overflow</td>
</tr>
<tr>
<td>-129</td>
<td>Missing numeric argument</td>
</tr>
<tr>
<td>-130</td>
<td>Non-numeric argument error</td>
</tr>
<tr>
<td>-131</td>
<td>Wrong data type (char expected)</td>
</tr>
<tr>
<td>-132</td>
<td>Wrong data type (string expected)</td>
</tr>
<tr>
<td>-133</td>
<td>Wrong data type (block expected)</td>
</tr>
<tr>
<td>-134</td>
<td>Data Overflow string or block to long</td>
</tr>
<tr>
<td>-139</td>
<td>Missing non-numeric argument</td>
</tr>
<tr>
<td>-142</td>
<td>Too many arguments</td>
</tr>
<tr>
<td>-143</td>
<td>Argument delimiter error</td>
</tr>
<tr>
<td>-144</td>
<td>Invalid message unit delimiter</td>
</tr>
<tr>
<td>No.</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-------------------------------------------------------</td>
</tr>
<tr>
<td>-200</td>
<td>No Can Do (generic execute error)</td>
</tr>
<tr>
<td>-201</td>
<td>Not executable in local mode</td>
</tr>
<tr>
<td>-202</td>
<td>Settings lost due to remote to local or power on</td>
</tr>
<tr>
<td>-203</td>
<td>Trigger ignored</td>
</tr>
<tr>
<td>-211</td>
<td>Legal command, but settings conflict</td>
</tr>
<tr>
<td>-212</td>
<td>Argument out of range</td>
</tr>
<tr>
<td>-221</td>
<td>Busy doing something else</td>
</tr>
<tr>
<td>-222</td>
<td>Insufficient capability or configuration</td>
</tr>
<tr>
<td>-232</td>
<td>Output buffer full or overflow</td>
</tr>
<tr>
<td>-300</td>
<td>Device failure</td>
</tr>
<tr>
<td>-301</td>
<td>Interrupt fault</td>
</tr>
<tr>
<td>-302</td>
<td>System error</td>
</tr>
<tr>
<td>-303</td>
<td>Time out</td>
</tr>
<tr>
<td>-310</td>
<td>RAM error</td>
</tr>
<tr>
<td>-311</td>
<td>RAM failure (hard error)</td>
</tr>
<tr>
<td>-312</td>
<td>RAM data loss (soft error)</td>
</tr>
<tr>
<td>-313</td>
<td>Calibration data loss</td>
</tr>
<tr>
<td>-320</td>
<td>ROM error</td>
</tr>
<tr>
<td>-321</td>
<td>ROM checksum</td>
</tr>
<tr>
<td>-322</td>
<td>Hardware and firmware incompatible</td>
</tr>
<tr>
<td>-330</td>
<td>Power on test failed</td>
</tr>
<tr>
<td>-340</td>
<td>Self test failed</td>
</tr>
<tr>
<td>-350</td>
<td>Too Many Errors (error queue overflow)</td>
</tr>
<tr>
<td>-400</td>
<td>Query Error (generic)</td>
</tr>
<tr>
<td>-410</td>
<td>Query INTERRUPTED</td>
</tr>
<tr>
<td>-420</td>
<td>Query UTERMINATED</td>
</tr>
<tr>
<td>-421</td>
<td>Query received, Indefinite block response in progress</td>
</tr>
<tr>
<td>-422</td>
<td>Addressed to Talk, Nothing to Say</td>
</tr>
<tr>
<td>-430</td>
<td>Query DEADLOCKED</td>
</tr>
<tr>
<td>No.</td>
<td>Title</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>0</td>
<td>No error</td>
</tr>
<tr>
<td>70</td>
<td>Ram write protected</td>
</tr>
<tr>
<td>−100</td>
<td>Command error</td>
</tr>
<tr>
<td>−101</td>
<td>Invalid character</td>
</tr>
<tr>
<td>−102</td>
<td>Syntax error</td>
</tr>
<tr>
<td>−103</td>
<td>Invalid separator</td>
</tr>
<tr>
<td>−104</td>
<td>Data type error</td>
</tr>
<tr>
<td>−105</td>
<td>GET not allowed</td>
</tr>
<tr>
<td>−108</td>
<td>Parameter not allowed</td>
</tr>
<tr>
<td>−109</td>
<td>Missing parameter</td>
</tr>
<tr>
<td>−112</td>
<td>Program mnemonic too long</td>
</tr>
<tr>
<td>−113</td>
<td>Undefined header</td>
</tr>
<tr>
<td>−121</td>
<td>Invalid character in number</td>
</tr>
<tr>
<td>−123</td>
<td>Numeric overflow</td>
</tr>
<tr>
<td>−124</td>
<td>Too many digits</td>
</tr>
<tr>
<td>−128</td>
<td>Numeric data not allowed</td>
</tr>
<tr>
<td>−130</td>
<td>Suffix error</td>
</tr>
<tr>
<td>−131</td>
<td>Invalid suffix</td>
</tr>
<tr>
<td>−138</td>
<td>Suffix not allowed</td>
</tr>
<tr>
<td>−140</td>
<td>Character data error</td>
</tr>
<tr>
<td>−141</td>
<td>Invalid character data</td>
</tr>
<tr>
<td>−144</td>
<td>Character data too long</td>
</tr>
<tr>
<td>−148</td>
<td>Character data not allowed</td>
</tr>
<tr>
<td>−150</td>
<td>String data error</td>
</tr>
<tr>
<td>−151</td>
<td>Invalid string data</td>
</tr>
<tr>
<td>−158</td>
<td>String data not allowed</td>
</tr>
<tr>
<td>No.</td>
<td>Title</td>
</tr>
<tr>
<td>------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>-160</td>
<td>Block data error</td>
</tr>
<tr>
<td>-161</td>
<td>Invalid block data</td>
</tr>
<tr>
<td>-168</td>
<td>Block data not allowed</td>
</tr>
<tr>
<td>-170</td>
<td>Expression error</td>
</tr>
<tr>
<td>-171</td>
<td>Invalid expression</td>
</tr>
<tr>
<td>-178</td>
<td>Expression data not allowed</td>
</tr>
<tr>
<td>-200</td>
<td>Execution error</td>
</tr>
<tr>
<td>-211</td>
<td>Trigger ignored</td>
</tr>
<tr>
<td>-213</td>
<td>INITiate ignored</td>
</tr>
<tr>
<td>-221</td>
<td>Settings conflict</td>
</tr>
<tr>
<td>-222</td>
<td>Data out or range</td>
</tr>
<tr>
<td>-223</td>
<td>Too much data</td>
</tr>
<tr>
<td>-310</td>
<td>System error</td>
</tr>
<tr>
<td>-350</td>
<td>Too many errors</td>
</tr>
<tr>
<td>-400</td>
<td>Query error</td>
</tr>
<tr>
<td>-410</td>
<td>Query interrupted</td>
</tr>
<tr>
<td>-420</td>
<td>Query unterminated</td>
</tr>
<tr>
<td>-430</td>
<td>Query deadlocked</td>
</tr>
<tr>
<td>-440</td>
<td>Query unterminated after indefinite response</td>
</tr>
</tbody>
</table>
Optimizing Measurements

Using This Appendix

This appendix shows how to increase measurement speed using the HP E1426A Oscilloscope Module. Operation, measuring capabilities, and typical measurement times are all discussed to assist the user in performing measurements. This appendix contains the following sections:

- Introduction ........................................... Page C-1
- Sampling Techniques .......................... Page C-2
- Random Repetitive Sampling ............... Page C-3
- Digitizing Waveforms ......................... Page C-4
- Typical Measurement Times .................. Page C-13
- Accuracy versus Percent Completion ......... Page C-16
- Throughput Comparison HP 54503A - E1426A ...... Page C-19

Introduction

VXIbus is a relatively new systems architecture which provides many benefits including:

- Standardization
- Size Reduction
- Flexibility
- High Speed Measurement Throughput

While the standardization, size reduction, and flexibility benefits provided by the VXIbus are fairly obvious, measurement throughput is somewhat more complicated.

In order to obtain the maximum measurement throughput from any instrument, the user should have a basic understanding of its operation. This is especially true for the HP E1426A Digitizing Oscilloscope module. A good understanding of how the oscilloscope operates, coupled with using the proper measurement setups, can increase throughput by nearly 10 times.

Automatic Measurements

There are two basic steps required when performing an automatic measurement.

- Acquiring or digitizing the waveform on which the measurement will be performed.
- Measuring the parameter(s) using the digitized waveform.

Note

Once the waveform is digitized, perform as many measurements as possible on that one waveform. Do not digitize the waveform again for another measurement.
Sampling Techniques

All digitizing oscilloscopes digitize waveforms, however the method in which the waveform voltage is sampled can be divided into three basic categories:

- Real-Time
- Sequential
- Random Repetitive

The following discussion explains the basic operation of each sampling technique. Refer to Chapter 1, Figure 1-1 as required for a block diagram of the HP E1426A.

Real-Time

Real-time, or single-shot sampling, digitizes the input signal on its first occurrence.

**Advantages:** All signal data is acquired in one acquisition cycle. This is an important feature for capturing events that occur only one time, and also allows the capture of events prior to the trigger (pre-trigger).

**Disadvantages:** The bandwidth of the instrument is determined by the sampling rate of the A/D converter (2 MHz in the HP E1426A). Also, digital reconstruction to fill the points between samples is required. The HP E1426A does not use digital reconstruction.

The figure below illustrates real-time sampling. All points are acquired on one acquisition. Real-time sampling can be used to improve measurement throughput, since only one acquisition is needed to acquire a complete waveform.

Sequential

Sequential sampling acquires one sample of the signal, a predetermined period of time after a trigger occurs. With each successive trigger, the sampling point is delayed further from the trigger point. After enough samples are acquired and digitized, the signal is reconstructed in waveform memory. Sequential sampling requires the signal to be repetitive (not periodic), and that a trigger occurs prior to each sample.

**Advantages:** The advantage of sequential sampling is that greater accuracy can be provided, since it can use a slower, higher resolution A/D converter.
Disadvantages: Because the acquisition takes place after the trigger, pre-trigger data cannot be sampled. At slower sweep speeds, it will take longer to acquire a waveform because only one point per trigger is sampled.

The figure shown below illustrates sequential sampling. Three acquisitions have been made, with one point acquired each time.

![Sequential Sampling Diagram](image)

**Random Repetitive**

Random Repetitive sampling or equivalent-time sampling, is similar to sequential sampling, except that the signal is constantly sampled and digitized. The sampling rate is determined by the instrument's clock, not the trigger repetition rate. Depending upon the sweep speed setting, many points will be acquired on each trigger. Each sample will be separated by the sample period, causing the currently acquired points to be offset from the previously acquired points by a random time. Random Repetitive sampling requires the signal to be repetitive (not periodic), and that a trigger occur during each sample.

**Advantages:** The advantage of random repetitive sampling is that very precise time interval measurements can be made on very high bandwidth signals.

**Disadvantages:** Usually requires more than one acquisition to build up the waveform.

The figure shown below illustrates random repetitive sampling. Three acquisitions have been made, with six points acquired each time.

![Random Repetitive Sampling Diagram](image)
Random Repetitive Sampling

Random-Repetitive sampling takes advantage of two items:

- There is a trigger which always has the same time relationship to the waveform being viewed.
- The majority of signals viewed by a user are repetitive in nature.

Repetitive Signals

The signal does not have to be periodic to be repetitive, but must occur more than once. Examples of repetitive waveforms are shown below.

- Repetitive square wave
- Repetitive glitch
- Repetitive glitch
- Repetitive pulse train
Basic Operation

These two factors provide the entire basis upon which the random repetitive architecture depends. Knowing these two facts about the waveform, the E1426A can view signals at a bandwidth of 500 MHz, with 1.25% accuracy, and a time resolution of 20 ps. The method the HP E1426A accomplishes random repetitive sampling is illustrated and explained below.

The preamplifier amplifies or attenuates (depending upon the sensitivity setting) the input signal to provide the Track and Hold circuit with the proper voltage range.

Since the A/D Converter cannot digitize a signal with a 500 MHz bandwidth, a high-speed Track and Hold circuit is used. The Track and Hold circuit captures the signal voltage and holds it (on the capacitor) until the lower speed A/D converter can digitize it.

Once the Signal is digitized and stored in the acquisition memory, it is then processed by the CPU, and reconstructed in the waveform memory. The CPU determines where in the waveform memory each point belongs, and then re-constructs the waveform.

A microprocessor controls the acquisition hardware, which performs thousands of acquisitions per second. The sample rate of the digitizer has no affect on the bandwidth of the signal which can be acquired with the HP E1426A oscilloscope.

At very slow time base ranges the sample clock frequency is reduced so that the acquisition memory does not fill up with unneeded points. The time resolution will be reduced, but at slower time base ranges, most users do not require fine resolution.
Timing Relationship

The A/D converter runs at 20 Megasamples/second, causing a sample to be taken every 50 nsec. Whenever a trigger occurs, 1024 samples are taken, each spaced by 50 nsec. These points are placed in acquisition memory.

At the same time the waveform is being digitized, a Fine Interpolator circuit determines the exact timing relationship (t) between the trigger point and the sample clock. Since the Fine Interpolator has a resolution of 20 psec, and each sampled point is spaced precisely 50 nsec apart, each point in the acquisition memory can be precisely placed in the waveform memory.

The waveform memory is 1 kbyte, and extends to the full time range. The acquisition memory is also 1 kbyte, but extends further than the waveform memory. This is because each point is spaced 50 nsec apart (when sampled at 20 Megasamples/second). This causes some acquired points not to be placed in the waveform memory.

Acquiring a Waveform

Because random repetitive sampling requires more than one acquisition to build up the waveform, the oscilloscope must make the most efficient use of each acquisition. To acquire data points at different locations on the waveform, each sample is separated by a random time. To accomplish this, the frequency of the sample clock is varied (slightly) to ensure that the trigger and the sample clock always have a random relationship to each other. This causes the currently acquired points to be offset from the previously acquired points by a random time.
The method the oscilloscope acquires a waveform is discussed below.

- The figure below shows the points acquired in the waveform memory after one acquisition. Each point is spaced 50 nsec apart. \( t \) represents the fine interpolator time, or the time between the sample clock and the trigger (discussed previously).

![Diagram of trigger point and sample points]

- At the next trigger, another set of points is acquired. Since there is a random relationship between the sample clock and the trigger, the newly acquired points will be offset from the original ones by a random amount of time \( t_r \).

![Diagram of random offset]

This cycle is repeated (as specified by the oscilloscope setup) until the waveform is acquired.

![Sine wave diagram]
Digitizing Waveforms

The following section discusses some of the factors which affect the "digitization" process, or acquisition of a full waveform. With random repetitive sampling, several acquisitions may be required to digitize a waveform.

Note

When configuring the Oscilloscope to perform a waveform digitization, the user should set up the oscilloscope to perform the measurement required, NOT the most accurate measurement possible.

When the user instructs the oscilloscope to digitize a waveform, several factors determine how long the digitization will take. These factors include:

- Time Base,
- Repetition Rate,
- Completion Criteria,
- Acquisition Mode, and
- Number of Points.

Time Base

The time base setting directly affects the time it takes to digitize a waveform.

- At sweep ranges slower than 50μsec full scale, one acquisition will fill up the entire waveform memory (1024 points). This is because each sampled data point is spaced 50 nsec apart.

- At sweep ranges faster than 50μsec full scale, more than one acquisition will need to take place. This is because at a time range of 50μsec, only 1000 points will be acquired.
As an example, at a time base range of 40 nsec full scale, a single acquisition may not acquire any points within the waveform memory, since each point is spaced 50 nsec apart. However, since there is a random relationship between the trigger and the sample clock, points are acquired on the second and third acquisition and the waveform will eventually be constructed in the waveform memory.

Using the same example, it would take less than a hundred milliseconds to fill up the entire waveform memory at a time base range of 100 μsec. Some typical digitization times can be found in figure C-1 later in the appendix.

**Maximum Throughput**

Selecting Time Base For Maximum Digitizing Speed: Set the time base to give the required resolution for the desired measurement or waveform acquisition. Remember:

- Too fast a sweep speed will slow down the digitization.
- Too slow a speed will reduce the accuracy.

**Repetition Rate**

Another factor which affects digitization speed is the repetition rate of the trigger event.

**Note**

Do not confuse repetitive with periodic. A repetitive signal is any signal that repeats itself. It can happen every few milliseconds and then not again for another hour. Several examples of repetitive signals are shown at the beginning of the appendix.
A trigger event is required before the acquisition can take place. More triggers (up to a point) will produce more acquisitions, which will digitize the signal faster.

- If a trigger happens only once an hour, and the time base is set at a fast sweep speed, it could take several hours to digitize the waveform.

- If a trigger happens every microsecond there will be many trigger events which will not be acquired, since the acquisition hardware cannot reset itself in less than a microsecond. Reset time is discussed below.

There will be a certain amount of time when no triggers will be acquired. This is the time it takes the microprocessor to transfer and calibrate the data from the acquisition memory to the waveform memory, and then reset the trigger. The shortest reset time on the HP E1426A is 200 μsec. This means that for maximum digitization speed, a trigger should occur at a faster rate than 1/200 μsec, or faster than 5 kHz. If the repetition rate of the signal is slower than 5 kHz, the oscilloscope may not be digitizing at its fastest rate.

---

**Maximum Throughput**

Selecting Repetition Rate For Maximum Digitizing Speed: Always set the repetition rate of the trigger to greater than 5 kHz to ensure that the oscilloscope gets another trigger as soon as it is reset.

---

**Completion Criteria**

Selecting too high a percentage of completion is the major contributor of slow measurements and digitizations. Often times the user will set completion to 100%, believing that a full waveform is required for every measurement. If the instrument is set to acquire 500 points and completion criteria of 100% is specified, it will take much longer to digitize that signal than one specified with a 50% completion.

Completion criteria is not a linear relationship. 50% completion means that half the points must be "hit" before the digitization process is complete. It does not specify which 50% of the 500 points need to be filled. The randomness of the trigger and sample clock time relationship ensures that all the points will eventually be filled. However, the time it takes to fill 250 points is not 1/2 the time required to fill 500, since some of the acquisitions may hit the same "time bucket" as a previous acquisition.

The importance of this parameter can be seen by comparing the times required for a waveform to digitize in Figure C-1.

- At a time base range of 100 nsec it takes nearly 1 second to digitize a waveform at 100% completion.

- At a time base range of 100 nsec it takes only 200 msec seconds to digitize to 60% completion.
A comparison of waveforms with different completion criteria's is shown below. In some cases a 20% completion percentage may be all the user requires. If the user only needs the shape of the waveform, a 40% completion would be adequate and digitize time would be reduced.

- At 20% and 40% completion, an outline of the signal can be seen.

- As the completion percentage increases, the waveform becomes more discernible. At 60% and 80% completion criteria, the waveform is very discernible.

- A 100% completion criteria would give little extra information, but would take 5 times longer to digitize.
**Maximum Throughput**

Selecting Completion Criteria For Maximum Digitizing Speed: Select the smallest percentage of completion which will satisfy measurement requirements. 60% is a good value. See Accuracy versus Completion later in the appendix for more information.

- The lower the completion percentage, the faster the digitization.
- The higher the completion percentage, the more accurate the measurement results will be.

**Acquisition Mode**

Averaging is a method which the oscilloscope uses to reduce the amount of random noise present on the signal and improve vertical resolution. If the instrument is set up to average 16 times, each time point must be hit 16 times, and then the average of all 16 values used. Averaging can increase the digitize time by an order of magnitude. It is NOT recommended to use the averaging feature unless needed to reduce noise on the signal. Averaging can improve the repeatability and accuracy of the measurement, but for most cases such accuracy is not needed. The "normal or scalar" mode is recommended for most applications.

**Maximum Throughput**

Selecting Acquisition Mode For Maximum Digitizing Speed: The acquisition mode should be set to normal or scalar unless the signal is noisy and requires an averaging filter.

**Number of Points**

The last factor which affects digitization speed is the number of points requested. There is a fairly linear relationship between digitization time and transfer time, and the number of points selected.

- Digitizing Time: 1024 points will take twice as long to digitize as 512 points at fast sweep speeds. The user needs to decide how much time resolution is needed and this will determine the number of points to request. The E1426A defaults to 500 points which, for most users, should give plenty of time resolution.

- Transfer Time: 1024 points will take twice as long to transfer to the controller as 512 points. The HP E1426A supports shared memory so the waveform data can be dumped directly into the controller's memory. However, if the data is being dumped using word serial protocol, waveform transfer time can be reduced by sending only bytes (8 bits) of data rather than whole words (16 bits).

**Maximum Throughput**

Selecting Number of Points For Maximum Digitizing Speed: To select the number of points, determine the time resolution needed for each digitized point. For example, if the user needs 200 psec resolution at a time base range of 100 nsec, set the number of points to 500. 500 points is a good value for complex waveforms.
Typical Measurement Times

As previously discussed, there are two steps required when making an automatic measurement.

- Digitizing the waveform.
- Measuring the parameter using the digitized waveform.

Each step is performed separately, and will require a certain amount of time to complete.

- The measurement times are basically determined by the measurement algorithm in the instrument, so the user cannot really improve speed in this area. Measurement times are fairly constant with changes in time base setting, completion criteria, and number of points selected. Repetition rate has no effect on the measurement times.

- Digitization process will normally require the most time. Once the waveform is digitized, many measurements can be taken on that waveform without the need for a new digitization.
To determine the amount of time required for a measurement, add the "digitize" time to the "measure" time as described below. Typical numbers can be found in figures C-1 and C-2. Typical measurement time is calculated as follows:

1. Select the time base setting which will be used for the measurement. Use figure C-1 to determine the digitize time using 60% completion. This is referred to as the "digitize" time.

Figure C-1. Typical Digitize Times.
2. Use Figure C-2 to determine the measurement time of the type of measurement being performed. Similar measurements will have similar times. The time shown is the time from sending out the command to receiving the measurement using a Radix VXI microcontroller. This time is referred to as the "measurement" time.

![Bar Chart](image)

* Time (ms)

- 102
- 32
- 32
- 65
- 103

500 Points
Normal Mode
60% Completion

* Times do not include digitize times

Figure C-2. Typical Measurement Times.

3. Add the "digitize" time to the "measurement" time to determine a typical time required by the E1426A to perform the measurement.

For example, to perform a VAMP measurement at a time base setting of 10 μsec would take 112 msec. The "digitize" time would take 80 msec and the "measurement" time would take 32 msec.

*Maximum Throughput*

If multiple measurements will be taken on only one waveform, then include only one digitize time and add the required measurements. This can significantly improve measurement throughput.
Accuracy vs. Percent Completion

The HP E1426A Oscilloscope often acquires more data than is needed for typical measurements taken in ATE systems. For example, to determine the pulse width of a particular waveform, does the oscilloscope really need 100%, or would 60% be enough to provide an accurate measurement?

To answer the question "How small a completion percentage can be used and still provide accurate results?", an experiment was performed to determine the optimum completion criteria for typical waveform measurements. Data on eight different measurements was taken:

- Pulse Width (PWIDth)
- VPP,
- VMAXimum
- VAMPplitude
- VTOP (HIGH)
- VBASE (LOW)
- PERiod
- RISEtime (RTIME)

A waveform was selected which is typical of the types test engineers might encounter. The waveforms for each of the measurements are shown below.
The waveform was digitized at the completion criteria specified and then a measurement was taken on that waveform. This setup was performed 100 times and the worst case measurement was compared to the actual value using this formula:

\[
\frac{(\text{worst case value} - \text{actual value})}{\text{full scale setting}} \times 100\%
\]

Using this formula, the data could be normalized to any full scale setting. Completion criteria's were used which ranged from 10% to 100% on a point selection of 500. The figure below shows the results of this experiment.

Note that any value over 8 actually represents invalid measurements because of lack of data points. From this data it can be seen that a completion criteria of greater than 60% does not improve the measurement accuracy very much. Some measurements, such as rise time, require even fewer points to provide accurate results.
This experiment was performed on a fairly complex waveform. On simpler waveforms (shown below) even fewer points would be needed to provide accurate measurements. However, by using a completion criteria of 60% with 500 data points, the test engineer can perform accurate measurements in the least amount of the time and use the oscilloscope to its full potential.

**Pwidth, Vpp, Vmax, Vamp, Vtop, Vbase**
Throughput Comparison
HP 54503A - E1426A

This section compares the various digitize, measurement and transfer times of the HP 54503A (rack and stack) vs the E1426A (VXI) 500 MHz Digitizing Oscilloscopes. All of the measurements were done with the RadiSys AT-compatible computer. The RadiSys computer was located in slot 0 and the E1426A oscilloscope in slot 2. The HP 54503A Oscilloscope was connected to the GP-IB port of the RadiSys computer. The times recorded are typical times.

Note

The HP 54503A was set up with the screen off to reduce the amount of overhead in waveform processing.

Digitize Times

The "digitize" time is the time from when the digitize command is sent out until the Oscilloscope signals the computer that it has completed the operation. Both instruments were set up as follows:

- Acquire 500 points.
- 60% complete.
- Input a 10 kHz square wave.

Digitize times were as follows:

<table>
<thead>
<tr>
<th>Time Range</th>
<th>HP 54503A</th>
<th>HP E1426A</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 ns</td>
<td>224 ms</td>
<td>202 ms</td>
</tr>
<tr>
<td>100 µs</td>
<td>110 ms</td>
<td>92 ms</td>
</tr>
</tbody>
</table>

Transfer Times

The "transfer" time is the time from when the WAVeform:DATa? query is sent to the time all the data is transferred. The data is transferred using "byte" format (one data byte is sent for each data point).

Transfer times were as follows:

<table>
<thead>
<tr>
<th># points</th>
<th>HP 54503A</th>
<th>HP E1426A</th>
<th>HP E1426A (w/shared ram)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1024</td>
<td>35 ms</td>
<td>45 ms</td>
<td>0</td>
</tr>
<tr>
<td>512</td>
<td>27 ms</td>
<td>25 ms</td>
<td>0</td>
</tr>
<tr>
<td>256</td>
<td>24 ms</td>
<td>15 ms</td>
<td>0</td>
</tr>
<tr>
<td>128</td>
<td>21 ms</td>
<td>10 ms</td>
<td>0</td>
</tr>
<tr>
<td>64</td>
<td>21 ms</td>
<td>7 ms</td>
<td>0</td>
</tr>
</tbody>
</table>

Measurement Times

The "measurement" time is the time from when the measurement query is sent until the number is returned. For the values of "t" in the table below see Figure C-2.

Measurement times were as follows:

<table>
<thead>
<tr>
<th>HP 54503A</th>
<th>HP E1426A</th>
</tr>
</thead>
<tbody>
<tr>
<td>t+42 ms</td>
<td>meas. time (t)</td>
</tr>
</tbody>
</table>
Two example programs are provided, one Compatible and one SCPI, to assist in programming the oscilloscope. Both programs will initialize the system, digitize to acquire data, then analyze the acquired data. See programming examples for additional information.

Each example is written using:

- an HP-IB select code of 7, primary address of 09, and secondary address of 01 for the Oscilloscope
- an HP Series 200/300 Computer with HP BASIC
- An HP HP 8116A or suitable Pulse Generator

Execute:

```plaintext
10 !DIGI_COM E1426A HP Basic Compatible program
20 !
30 !MAIN PROGRAM
40 !
50 REAL Preamble(1:10) !array for preamble information
60 !
70 CLEAR SCREEN
80 PRINT "This example program will perform the following tasks:"
90 PRINT " a. initialize interface and scope"
100 PRINT " b. digitize to acquire data"
110 PRINT " c. do two simple parametric measurements"
120 PRINT " d. acquire waveform data from scope"
130 PRINT " e. store data to disk"
140 PRINT " f. retrieve data from disk"
150 PRINT " g. draw signal on computer"
160 PRINT
170 PRINT "Before running this sample program, set addresses to your"
180 PRINT "system configuration. This sample program ASSIGN:"n
190 PRINT "Isc to 7 (HP-IB interface)"
200 PRINT "Scope to 70901 (scope address)"
210 PRINT
220 PRINT "PRESS Continue TO START PROGRAM OR SHIFT/RESET TO TERMINATE"
230 PAUSE
240 GOSUB Initialize !initialize interface and scope
250 GOSUB Capture_data !digitize signal
260 GOSUB Measure !do Vpp and frequency measurement
270 GOSUB Get_waveform !transfer signal data to controller
280 GOSUB Save_waveform !store to disk
290 !
300 CLEAR SCREEN
310 PRINT "The waveform data and preamble information have now been"
320 PRINT "read from the scope and stored in the computer's disk."
330 PRINT "This information will now be retrieved from the disk, and"
340 PRINT "will be used to plot the waveform, calculate and plot the"
350 PRINT "integral, as well as calculate scaling information."
360 PRINT "Press CONTINUE to continue."
```
PAUSE
GOSUB Retrieve_wave !retrieve from disk
GOSUB Graph !draw waveform
STOP

!INITIALIZE INTERFACE AND SCOPE

Initialize:

PRINT "INITIALIZE"
ON TIMEOUT 7.20 GOTO 1620 !timeout on hpiib
ASSIGN @Is TO 7 !Interface Select Code = 7
ASSIGN @Scope TO 70904 !scope address
CLEAR @Is !clear HP-IB interface
OUTPUT @Scope:"*:SYSTEM:LANGUAGE COMP"!set to compatible
WAIT 1 !1 sec wait for language switch
!The language switch does an #'RST and hence if the language switch
!is in the program, the following #'RST is redundant and should be
!removed.
OUTPUT @Scope:"*RST" !set scope to default config
OUTPUT @Scope:"*:AUTOSCALE" !AUTOSCALE
OUTPUT @Scope:"*:SYSTEM:HEADER OFF" !turn headers off
!The following four commands are set by the *RST, but are
!included here for completeness to emphasize the fact that
!they can be controlled by the programmer.

!set source to channel 1
OUTPUT @Scope:"*:WAVEFORM:SOURCE CHAN1"
!set to normal acquisition mode
OUTPUT @Scope:"*:ACQUIRE:TYPE NORMAL"
OUTPUT @Scope:"*:ACQUIRE:COMPLETE 100" !set complete criteria
OUTPUT @Scope:"*:ACQUIRE:POINTS 500" !set # of pts to 4000

CLEAR SCREEN
RETURN

!DIGITIZE signal: DIGITIZE is a macro that will acquire data to
!programmer's specification and will stop when complete.

Capture data:
OUTPUT @Scope:"*:DIGITIZE CHANNEL1" !DIGITIZE channel 1
RETURN
!
!measure the Vpp and frequency of the digitized signal
Measure:

CLEAR SCREEN
OUTPUT @Scope:"measure:vpp?;frequency?" !measure the signal
ENTER @Scope;V,F
PRINT "Vpp = \";V;\" volts and frequency = \";F;\" Hz"
PRINT "Press Continue to transfer and plot waveform data to controller"
PAUSE
RETURN

!read waveform data and preamble from scope; waveform data is in
!scope format and the preamble information is used to convert
!it to voltage/timing information.

Get_waveform:

!format data in compressed format
OUTPUT @Scope:"*:WAVEFORM:FORMAT COMP"
OUTPUT @Scope:"*:WAVEFORM:DATA?"
ENTER @Scope USING ",1A","One_char$ !strip off header & size
IF One_char$="#" THEN Found_pound
PRINT "BAD DATA"
STOP

1000 Found_pound: !read record length from header

Page-2 Programming Example
1010 ENTER @Scope USING ",1D";Digits       !get length of record
1020 ENTER @Scope USING ",VAL$(Digits)";Length
1030 PRINT "reading ";Length," bytes from scope"
1040 !
1050 ! allocate an array for the waveform data. After the array has been
1060 ! read in, one extra byte read is done to input the line feed (10)
1070 ! attached to the end of the scope's output buffer.
1080 !
1090 ALLOCATE INTEGER Waveform(1:Length)
1100 ENTER @Scope USING ",B";Waveform(*)     !read waveform information
1110 ENTER @Scope USING ",K,B";End$          !get last byte (line feed)
1120 OUTPUT @Scope:;"WAVEFORM:PREAMBLE?"    !query for preamble
1130 ENTER @Scope;Preamble(*)               !read preamble information
1140 RETURN
1150 !
1160 !
1170 ! plot waveform data to display
1180 !
1190 Graph:                                  !
1200 GCLEAR                                  !initialize graphics
1210 CLEAR SCREEN
1220 GINIT
1230 GRAPHICS ON
1240 VIEWPORT 0,130,35,100
1250 WINDOW 1,Preamble(3),0,256
1260 FRAME
1270 PEN 4
1280 MOVE 0,0
1290 FOR I=1 TO Preamble(3)                  !plot data points
1300   MOVE I,Waveform(I)
1310   DRAW I,Waveform(I)
1320 NEXT I
1330 OUTPUT @Scope;"TIMEBASE:RANGE?"
1340 ENTER @Scope;Srange
1350 OUTPUT @Scope;"TIMEBASE:DELAY?"
1360 ENTER @Scope;Dvalue
1370 OUTPUT @Scope;"CHAN1:RANGE?"
1380 ENTER @Scope;Vrange
1390 OUTPUT @Scope;"CHAN1:OFFSET?"
1400 ENTER @Scope;Offset
1410 PRINT TABXY(0,18),"Vertical=";Vrange," V";TAB(50),"Offset = ";Offset,"V"
1420 PRINT TABXY(0,19),"Time=";Srange," s";TAB(50),"Delay = ";Dvalue,"S"
1430 RETURN
1440 !
1450 ! save waveform data and preamble information to computer disk
1460 !
1470 Save_waveform:
1480 ON ERROR GOTO 1500
1490 PURGE "WAVESAMPLE"
1500 OFF ERROR
1510 CREATE BDAT "WAVESAMPLE",1,4080
1520 ASSIGN @Path TO "WAVESAMPLE"
1530 OUTPUT @Path;Waveform(*),Preamble(*)
1540 RETURN
1550 !
1560 ! retrieve waveform data and preamble information from disk
1570 !
1580 Retrieve_wave:
1590 ASSIGN @Path TO "WAVESAMPLE"
1600 ENTER @Path;Waveform(*),Preamble(*)
1610 RETURN
1620 PRINT "timeout error -- check cables, addresses, etc. and rerun"
1630 STOP
1640 END
!DIGI_SCP
HP Basic SCPI program
!
!MAIN PROGRAM
!
REAL Preamble(1:10) !array for preamble information
!
CLEAR SCREEN
PRINT "This example program will perform the following tasks:"
PRINT "a. initialize interface and scope"
PRINT "b. digitize and acquire data"
PRINT "c. do simple parametric measurements on signal"
PRINT "d. store data to disk"
PRINT "e. retrieve data from disk"
PRINT "f. draw signal on computer"
PRINT "Before running this sample program, set addresses to your"
PRINT "system configuration. This sample program ASSIGNS:" PRINT "Is to 7 HP-IB interface"
PRINT "scope to 70901 scope address"
PRINT "PRESS Continue TO START OR SHIFT/RESET TO TERMINATE"
PAUSE
GOSUB Initialize !initialize interface and scope
GOSUB Capture_data !digitize signal
GOSUB Measure !query for freq and vpp. Print values
GOSUB Get_waveform !transfer signal data to controller
GOSUB Save_waveform !store to disk
!
CLEAR SCREEN
PRINT "The waveform data and preamble information have now been"
PRINT "read from the scope and stored in the computer's disk."
PRINT "This information will now be retrieved from the disk, and"
PRINT "will be used to plot the waveform, calculate and plot the"
PRINT "integral, as well as calculate scaling information."
PRINT "Press CONTINUE to continue."
PAUSE
GOSUB Retrieve_wave !retrieve from disk
GOSUB Graph !draw waveform
STOP
!
!INITIALIZE INTERFACE AND SCOPE
!
Initialize:
!
PRINT "INITIALIZE"
ON TIMEOUT 7,20 GOTO 1660
ASSIGN $Isc TO 7 !Interface Select Code = 7
ASSIGN $Scope TO 70901 !scope address
CLEAR $Isc !clear HP-IB interface
OUTPUT $Scope;";:SYSTEM:LANGUAGE SCPI"!set to SCPI
WAIT 1 !1 sec wait for language switch
!The language switch does an *RST and hence if the language switch
!is in the program, the following *RST is redundant and should be
!removed.
OUTPUT $Scope;":*RST" !set scope to default config
OUTPUT $Scope;":*CLS" !clear status registers
OUTPUT $Scope;":*SYST:AUT" !AUTOSCALE
!
!the following 3 commands are the default configuration setting
!that the RST sets up; but, they are included here for clarity and
!completeness. This ensures scope is configured for DIGITIZE, if
!*RST was not done.
!
OUTPUT $Scope;";:APER:TYPE SCAL" !set to normal acq mode
OUTPUT $Scope;";:Sweep:POIN:COMP 100" !set complete criteria
OUTPUT $Scope;";:Sweep:POINTS 500" !set # of pts to 500

Page-4 Programming Example
CLEAR SCREEN
RETURN

!DIGITIZE signal: INIT is a macro that will acquire data
:programmer's specification and will stop when complete.
!
Capture data:
OUTPUT @Scope;":INP1 ON"
OUTPUT @Scope;"ABORT"
OUTPUT @Scope;":INIT"
RETURN
!complete scope configuration; DIGITIZE and acquire waveform data
!and preamble (voltage/timing) information into computer.
!
Find frequency and Vpp
!
Measure:
OUTPUT @Scope;":CONFIGURE:VOLT:FREQUENCY (@INP1)"
OUTPUT @Scope;":FETCH:VOLT:FREQ?"
ENTER @Scope;Freq
CLEAR SCREEN
PRINT "Frequency = ";Freq;" Hz"
OUTPUT @Scope;":CONFIGURE:VOLT:AMPL (@INP1)"
OUTPUT @Scope;":FETCH:VOLT:AMPL?"
ENTER @Scope;Vpp
PRINT "Vpp = ";Vpp;" V"
PRINT
PRINT "PRESS continue to transfer data to computer and plot"
PAUSE
RETURN

Get_waveform:
OUTPUT @Scope;":FORM INT,8"
data in 8 bit format across bus
OUTPUT @Scope;":TRACE:DATA? INP1"
query scope for channel 1 data
ENTER @Scope USING ";1A","One_char$" strip off header & size
IF One_char$="" THEN Found_pound
PRINT "BAD DATA"
STOP

Found_pound: ;read record length from header
ENTER @Scope USING ";1D",Digits
get length of record
ENTER @Scope USING ";1VAL$(Digits)";Length
PRINT "reading ";Length," bytes from scope"
!
allocate an array for the waveform data. After the array has been
read in, one extra byte read is done to input the line feed (10)
attached to the end of the scope's output buffer.
!
ALLOCATE INTEGER Waveform(1:Length)
ENTER @Scope USING ";1B",Waveform(*)read waveform information
ENTER @Scope USING ";K.B",End$;get last byte (line feed)
OUTPUT @Scope;":TRACE:PRE? INP1";query for preamble
ENTER @Scope;Preamble(*)read preamble information
RETURN
!
!plot waveform data to display
!
Graph:
!initialize graphics
GCLEAR
CLEAR SCREEN
GINIT
GRAPHICS ON
VIEWPORT 0,130,35,100
1290 WINDOW 1,Preamble(3),0,128          !data between 0 and 128
1300 FRAME
1310 PEN 4
1320 MOVE 0,0
1330 FOR I=1 TO Preamble(3)          !plot data points
1340 MOVE I,Waveform(I)
1350 DRAW I,Waveform(I)
1360 NEXT I
1370 OUTPUT @Scope:"SWEEP:TIME:RANGE?"
1380 ENTER @Scope;Srango
1390 OUTPUT @Scope:"SWEEP:TIME:DELAY?"
1400 ENTER @Scope;Dvalue
1410 OUTPUT @Scope;"VOLT1:RANGE?"
1420 ENTER @Scope;Vrange
1430 OUTPUT @Scope;"VOLT1:RANGE:OFFSET?"
1440 ENTER @Scope;Offset
1450 PRINT TABXY(0,18),"Vertical=";Vrange;" V";TAB(50),"Offset = ";Offset;"V"
1460 PRINT TABXY(0,19),"Time=";Srango;" s";TAB(50),"Delay = ";Dvalue;"S"
1470 RETURN
1480 !
1490 !save waveform data and preamble information to computer disk
1500 !
1510 !Save waveform:
1520 ON ERROR GOTO 1540
1530 PURGE "WAVESAMPLE"
1540 OFF ERROR
1550 CREATE BOAT "WAVESAMPLE",1,4080
1560 ASSIGN @Path TO "WAVESAMPLE"
1570 OUTPUT @Path;Waveform(*),Preamble(*)
1580 RETURN
1590 !
1600 !retrieve waveform data and preamble fromation from disk
1610 !
1620 Retrieve wave:
1630 ASSIGN @Path TO "WAVESAMPLE"
1640 ENTER @Path;Waveform(*),Preamble(*)
1650 RETURN
1660 PRINT "timeout error -- check cables, addresses, and rerun"
1670 END
A — Continued

AMPlitude, 6-20
AMPLitude?, 6-61
ATRigger, 4-144, 6-159
ATTenuation
:BCALibration, 4-10, 6-10
:CHANnel, 4-11
:INPut, 6-11
Automatic
Measurements, C-1
Pulse Parameter Measurements, A-7
Autoscale, Example of, 3-15, 3-30, 3-36, 5-15, 5-32, 5-41
AUTOscale, 4-107, 6-172
AVERage
:COUNT, 6-110
:COUNT?, 6-110
[:STATE], 6-111
[:STATE?], 6-111
:TYPE, 6-112
:TYPE?, 6-113

B

Backplane Trigger, Example of, 5-40
Basic Operation, 1-2, C-5
BCALibration, 4-10, 4-12, 6-10, 6-12
BLANk, 4-108
Block
Diagram, 1-2
Parameters, 4-3, 6-3
BNC, 4-109
BNC?, 4-109
Boolean Parameters, 4-3, 6-3
Bus Request, selection of, 2-3

C

Cabling Guidelines, 2-5
CALCulate Subsystem, 6-6
:DATA?, 6-6
:MATH:STATE, 6-8
:MATH:STATE?, 6-8
:MATH[:EXPRESSION], 6-7
:STATE, 6-9
:STATE?, 6-9
C — Continued

CALibrate Subsystem, 4-10
   :PCALibration:ATTenuation:BCALibration, 4-10
   :PCALibration:ATTenuation:CHANnel, 4-11
   :PCALibration:TNULI:CH1TO, 4-11
   :REPort?, 4-12
   :SCALibration:BCALibration, 4-12
   :SCALibration:DCALibration, 4-13
   :SCALibration:DELay, 4-13
   :SCALibration:DOUTput, 4-14
   :SCALibration:LTCalibration, 4-14
   :SCALibration:TNULI, 4-15
   :SCALibration:VERTical, 4-15
   :TNULI, 4-16
   :TNULI?, 4-16

Calibration
   Firmware
      COMPatible, 3-6
      SCPI, 5-6

Procedure
   COMPatible
      Delay, 3-8
      Logic Trigger, 3-12
      Time Null, 3-10
      Vertical, 3-6

   SCPI
      Delay, 5-8
      Logic Trigger, 5-12
      Time Null, 5-10
      Vertical, 5-6

   Registers, 4-129, 6-144
      :CHANnel, 4-130
      :CHANnel:AD, 4-131
      :CHANnel:DELay, 4-132
      :CHANnel:GAIN, 4-133
      :CHANnel:HYSTeresis, 4-134
      :CHANnel:LTRigger, 4-135
      :CHANnel:OFFSet, 4-136
      :CHANnel:TNULI, 4-137
      :CHANnel:TRIGger, 4-138
      :DCALibration, 4-139, 6-154
      :INPut, 6-145
      :INPut:AD, 6-146
      :INPut:DELay, 6-147
      :INPut:GAIN, 6-148
      :INPut:HYSTeresis, 6-149
      :INPut:LTRigger, 6-150
      :INPut:OFFSet, 6-151
      :INPut:TNULI, 6-152
      :INPut:TRIGger, 6-153
      :PROBe, 4-140, 6-155
C — Continued

*CLS, 4-216, 4-228, 6-199, 6-211
Clearing Error Queue, 4-158, 6-173

Command
Cross Reference
COMPatible to HP 54503A, 4-214
COMPatible to SCPI, 4-210
SCPI to COMPatible, 6-194

Format
COMPatible, 4-1
COMPatible, 1-4, 4-1
SCPI, 1-5, 6-1

Quick Reference
COMPatible, 4-217
SCPI, 6-201

Reference
COMPatible, 4-216, 6-199
Root, 4-1, 6-1
Second Level, 3-1, 5-1
Separator, 4-2, 6-2
Structure, 4-1, 6-1
Types, 4-1, 6-1

Commands
Abbreviated, 4-2, 6-2
ABORT, 6-5
ACQuire, 4-5
ACQuire:COMPLETE, 4-6
ACQuire:COMPLETE?, 4-6
ACQuire:COUNT, 4-7
ACQuire:COUNT?, 4-7
ACQuire:POINTS, 4-8
ACQuire:POINTS?, 4-8
ACQuire:TYPE, 4-9
ACQuire:TYPE?, 4-9
AUToscale, 4-107
BLANK, 4-108
BNC, 4-109
BNC?, 4-109
CALCulate, 6-6
CALCulate:DATA?, 6-6
CALCulate:MATH:STATE?, 6-8
CALCulate:MATH:STATE?, 6-8
CALCulate:MATH[:EXPRESSION], 6-7
CALCulate:STATE?, 6-9
CALCulate:STATE?, 6-9
CALibrate, 4-10
CALibrate:PCALibration:ATTenuation:
BCALibration, 4-10
CALibrate:PCALibration:ATTenuation:
:CHANnel, 4-11
CALibrate:PCALibration:TNUll:CH1TO, 4-11

C — Continued

Commands — Continued
CALibrate:RFPor?, 4-12
CALibrate:SCALibration:BCALibration, 4-12
CALibrate:SCALibration:DCALibration, 4-13
CALibrate:SCALibration:DElay, 4-13
CALibrate:SCALibration:DOTput, 4-14
CALibrate:SCALibration:LTCalibration, 4-14
CALibrate:SCALibration:TNUll, 4-15
CALibrate:SCALibration:VERTical, 4-15
CALibrate:TNUll, 4-16
CALibrate:TNUll?, 4-16
CALibrate, 6-10
CALibrate:PCALibration:ATTenuation:
:BCALibration, 6-10
CALibrate:PCALibration:ATTenuation:
:INPUT, 6-11
CALibrate:PCALibration:TNUll
:INPUT?, 6-11
CALibrate:REPort?, 6-12
CALibrate:SCALibration:BCALibration, 6-12
CALibrate:SCALibration:DCALibration, 6-13
CALibrate:SCALibration:DElay, 6-13
CALibrate:SCALibration:DOTput, 6-14
CALibrate:SCALibration:LTCalibration, 6-14
CALibrate:SCALibration:TNUll, 6-15
CALibrate:SCALibration:VERTical, 6-15
CALibrate:TNUll, 6-16
CALibrate:TNUll?, 6-16
CHANnel, 4-17
CHANnel:COUPling, 4-17
CHANnel:COUPling?, 4-18
CHANnel:ECL, 4-18
CHANnel:HFReject, 4-19
CHANnel:HFReject?, 4-19
CHANnel:LFReject, 4-20
CHANnel:LFReject?, 4-20
CHANnel:OFFSet, 4-21
CHANnel:OFFSet?, 4-21
CHANnel:PROBe, 4-22
CHANnel:PROBe?, 4-22
CHANnel:RANGE, 4-23
CHANnel:RANGE?, 4-23
CHANnel:TTL, 4-24
CONFigure, 6-17
CONFigure:AC, 6-19
CONFigure:AMPlitude, 6-20
CONFigure:DCI, 6-21
CONFigure:DCYCLE, 6-22

Index - 3
Commands — Continued

CONFigure:FALL:OVERshoot, 6-24
CONFigure:FALL:PREShoot, 6-25
CONFigure:FALL:TIME, 6-26
CONFigure:FRQquency, 6-28
CONFigure:FTIME, 6-29
CONFigure:HIGH, 6-31
CONFigure:LOW, 6-32
CONFigure:MAXimum, 6-33
CONFigure:MINimum, 6-34
CONFigure:NDUTycycle, 6-35
CONFigure:NWIDth, 6-36
CONFigure:PDUTycycle, 6-38
CONFigure:PERiod, 6-40
CONFigure:PWIDth, 6-41
CONFigure:RISE:OVERshoot, 6-43
CONFigure:RISE:PREShoot, 6-44
CONFigure:RISE:TIME, 6-45
CONFigure:RTIME, 6-47
CONFigure:TMAXimum, 6-49
CONFigure:TMINimum, 6-50
CONFigure ?, 6-18
DIGitize, 4-110
DISPlay, 4-25
DISPlay:DATa, 4-25
DISPlay:DATa ?, 4-25
DISPlay:PERsistence, 4-28
DISPlay:PERsistence ?, 4-28
DISPlay:SOURce, 4-29
DISPlay:SOURce ?, 4-29
ERASe, 4-112
FETCH ?, 6-51
FORMat, 6-53
FORMat:DATA, 6-53
FORMat:DATA ?, 6-54
FUNCTION, 4-30
FUNCTION:ADD, 4-30
FUNCTION:INVert, 4-31
FUNCTION:MULTIply, 4-31
FUNCTION:OFFSet, 4-32
FUNCTION:OFFSet ?, 4-32
FUNCTION:ONLY, 4-33
FUNCTION:RANGE, 4-33
FUNCTION:RANGE ?, 4-34
FUNCTION:SUBTract, 4-34
IMPLIED, 4-2, 6-2
INITiate, 6-55
INITiate:CONTInuous, 6-55
INITiate:CONTInuous ?, 6-56
INITiate:IMMEDIATE, 6-56

Commands — Continued

Linking, 4-4, 6-4
Lower Case, 4-2, 6-2
LTER ?, 4-113
MEASure, 4-35, 6-58
MEASure:AC ?, 6-60
MEASure:ALL ?, 4-37
MEASure:AMPLitude ?, 6-61
MEASure:COMPar, 4-39
MEASure:COMPar ?, 4-39
MEASure:CURSor ?, 4-40
MEASure:DC ?, 6-62
MEASure:DCYCLE ?, 6-63
MEASure:DEFine, 4-41
MEASure:DEFine ?, 4-42
MEASure:DELay, 4-43
MEASure:DELay ?, 4-44
MEASure:DESTination, 4-45
MEASure:DESTination ?, 4-45
MEASure:DUTime, 4-46
MEASure:DUTime ?, 4-47
MEASure:ESTArt, 4-48
MEASure:ESTArt ?, 4-48
MEASure:ESTOp, 4-49
MEASure:ESTOp ?, 4-49
MEASure:FALL:OVERshoot ?, 6-65
MEASure:FALL:PREShoot ?, 6-66
MEASure:FALL:TIME ?, 6-67
MEASure:FALLtime, 4-50
MEASure:FALLtime ?, 4-51
MEASure:FREquency, 4-52
MEASure:FREquency ?, 4-53, 6-69
MEASure:PTIME ?, 6-70
MEASure:HIGH ?, 6-72
MEASure:LIMITest, 4-53
MEASure:LOW ?, 6-73
MEASure:LOWER, 4-55
MEASure:LOWER ?, 4-55
MEASure:MAXimum ?, 6-74
MEASure:MINimum ?, 6-75
MEASure:MODE, 4-56
MEASure:MODE ?, 4-56
MEASure:NDUTycycle ?, 6-76
MEASure:NWIDth, 4-57
MEASure:NWIDth ?, 4-58, 6-78
MEASure:OVERshoot, 4-59
MEASure:OVERshoot ?, 4-59
MEASure:PDUTycycle ?, 6-80
MEASure:PERiod, 4-60
MEASure:PERiod ?, 4-61, 6-82
MEASure:POSTfailure, 4-62
Commands — Continued

MEASure:POSTfailure?, 4-62
MEASure:PRECision, 4-62
MEASure:PRECision?, 4-62
MEASure:PREShoot, 4-63
MEASure:PREShoot?, 4-63
MEASure:PWIDth, 4-64
MEASure:PWIDth?, 4-65, 6-83
MEASure:RESults?, 4-66
MEASure:RISE:OVERshoot?, 6-85
MEASure:RISE:PREShoot?, 6-86
MEASure:RISE:TIME?, 6-87
MEASure:RISEtime, 4-67
MEASure:RISEtime?, 4-68
MEASure:RTCime?, 6-89
MEASure:SCRatch, 4-68
MEASure:SOURce, 4-69
MEASure:SOURce?, 4-69
MEASure:STATistics, 4-70
MEASure:STATistics?, 4-70
MEASure:TDELta?, 4-71
MEASure:TMAXimum?, 4-72, 6-91
MEASure:TMINimum?, 4-72, 6-92
MEASure:TSTArt, 4-73
MEASure:TSTArt?, 4-73
MEASure:TSTOP, 4-74
MEASure:TSTOP?, 4-74
MEASure:TVOLt?, 4-75
MEASure:UNITs, 4-76
MEASure:UNITs?, 4-76
MEASure:UPPer, 4-77
MEASure:UPPer?, 4-77
MEASure:VACRms, 4-78
MEASure:VACRms?, 4-78
MEASure:VAMPplitude, 4-79
MEASure:VAMPplitude?, 4-79
MEASure:VAverage, 4-80
MEASure:VAverage?, 4-80
MEASure:VBASE, 4-81
MEASure:VBASE?, 4-81
MEASure:VDCRms, 4-82
MEASure:VDCRms?, 4-82
MEASure:VDELta?, 4-83
MEASure:VFIFty, 4-83
MEASure:VMAX, 4-84
MEASure:VMAX?, 4-84
MEASure:VMIN, 4-85
MEASure:VMIN?, 4-85
MEASure:VPP, 4-86
MEASure:VPP?, 4-86
MEASure:VRELative, 4-87

Commands — Continued

MEASure:VRELative?, 4-88
MEASure:VRMS, 4-89
MEASure:VRMS?, 4-89
MEASure:VSTArt, 4-90
MEASure:VSTArt?, 4-90
MEASure:VSTOP, 4-91
MEASure:VSTOP?, 4-91
MEASure:VTIME?, 4-91
MEASure:VTOP, 4-92
MEASure:VTOP?, 4-92
MEMory, 4-93, 6-93
MEMory:VME:ADDress, 4-96, 6-96
MEMory:VME:ADDress?, 4-96, 6-96
MEMory:VME:MEASure:ADDress, 4-97, 6-97
MEMory:VME:MEASure:ADDress?, 4-97, 6-97
MEMory:VME:MEASure:STATE, 4-98, 6-98
MEMory:VME:MEASure:STATE?, 4-98, 6-98
MEMory:VME:SIZE, 4-99, 6-99
MEMory:VME:SIZE?, 4-99, 6-99
MEMory:VME:STATE, 4-100, 6-100
MEMory:VME:STATE?, 4-100, 6-100
MEREge, 4-114
Multiple, 4-4, 6-4
OUTPut, 4-101, 6-101
OUTPut:ECLTrg[:STATE], 4-102, 6-102
OUTPut:ECLTrg[:STATE]?, 4-102, 6-102
OUTPut:EXISTnal[:STATE], 4-103, 6-103
OUTPut:EXISTnal[:STATE]?, 4-103, 6-103
OUTPut[:STATE], 4-104, 6-104
OUTPut[:STATE]?, 4-104, 6-104
OUTPut:TTTLTrg[:STATE], 4-105, 6-105
OUTPut:TTTLTrg[:STATE]?, 4-105, 6-105
Quick Reference

Common, 4-228, 6-211
COMPatible, 4-217
SCPI, 6-201
READ?, 6-106
Root Level, 4-106
RUN, 4-115
RUN?, 4-115
Selecting

COMPatible, 1-4
SCPI, 1-5
[SENSe:], 6-108
[SENSe:]AVerAGE, 6-109
[SENSe:]AVerAGE:COUNT, 6-110
[SENSe:]AVerAGE:COUNT?, 6-110
[SENSe:]AVerAGE[:STATE], 6-111
[SENSe:]AVerAGE[:STATE]?, 6-111

Index - 5
Commands — Continued

[SENSe:]AVERAge:TYPE, 6-112
[SENSe:]AVERAge:TYPE?, 6-113
[SENSe:]CORRection, 6-113
[SENSe:]CORRection:AFACtor, 6-114
[SENSe:]CORRection:AFACtor?, 6-114
[SENSe:]INPut, 6-115
[SENSe:]INPut:COUPling, 6-115
[SENSe:]INPut:COUPling?, 6-115
[SENSe:]INPut:FILTER:HPASs[:STATe], 6-116
[SENSe:]INPut:FILTER:HPASs[:STATe]?, 6-116
[SENSe:]INPut:FILTER[:LPASs][:STATe], 6-117
[SENSe:]INPut:FILTER[:LPASs][:STATe]?, 6-117
[SENSe:]INPut:IMPedance, 6-118
[SENSe:]INPut:IMPedance?, 6-118
[SENSe:]INPut[:STATe], 6-119
[SENSe:]INPut[:STATe]?, 6-119
[SENSe:]SWEEP, 6-120
[SENSe:]SWEEP:POINts, 6-121
[SENSe:]SWEEP:POINts?, 6-121
[SENSe:]SWEEP:POINts:COMPLETE, 6-122
[SENSe:]SWEEP:POINts:COMPLETE?, 6-122
[SENSe:]SWEEP:TIME:CENTEr, 6-123
[SENSe:]SWEEP:TIME:CENTEr?, 6-123
[SENSe:]SWEEP:TIME:DELaY, 6-124
[SENSe:]SWEEP:TIME:DELaY?, 6-124
[SENSe:]SWEEP:TIME:DELaY:LINK, 6-125
[SENSe:]SWEEP:TIME:DELaY:LINK?, 6-125
[SENSe:]SWEEP:TIME:RANGe, 6-126
[SENSe:]SWEEP:TIME:RANGe?, 6-126
[SENSe:]SWEEP:TIME:SPAN, 6-127
[SENSe:]SWEEP:TIME:SPAN?, 6-127
[SENSe:]SWEEP:TIME:STARt, 6-128
[SENSe:]SWEEP:TIME:STARt?, 6-128
[SENSe:]SWEEP:TIME:STOP, 6-129
[SENSe:]SWEEP:TIME:STOP?, 6-129
[SENSe:]VOLTage, 6-130
[SENSe:]VOLTage:RANGe:LOWer, 6-130
[SENSe:]VOLTage:RANGe:LOWer?, 6-131
[SENSe:]VOLTage:RANGe:OFFSet, 6-132
[SENSe:]VOLTage:RANGe:OFFSet?, 6-132
[SENSe:]VOLTage:RANGe[:PPPeak], 6-133
[SENSe:]VOLTage:RANGe[:PPPeak]?, 6-134
[SENSe:]VOLTage:RANGe:UPPer, 6-134
[SENSe:]VOLTage:RANGe:UPPer?, 6-135
SERial, 4-116
STATus, 4-117, 6-136

Commands — Continued

STATus:CONDition?, 6-143
STATus:ENABLE, 6-143
STATus:ENABLE?, 6-143
STATus[:EVENT]?, 6-143
STATus:OPERation::CONDition?, 6-139
STATus:OPERation::ENABLE, 6-139
STATus:OPERation::ENABLE?, 6-140
STATus:OPERation[:EVENT]?, 6-140
STATus:PRESet, 6-140
STATus:QUESTionable, 6-142
STATus:QUESTionable::CALibration, 6-144
STATus:QUESTionable::CALibration :DCALibration, 6-154
STATus:QUESTionable::CALibration :INPut, 6-145
STATus:QUESTionable::CALibration:INPut :AD, 6-146
STATus:QUESTionable::CALibration:INPut :DElay, 6-147
STATus:QUESTionable::CALibration:INPut :GAIN, 6-148
STATus:QUESTionable::CALibration:INPut :HYSTEResis, 6-149
STATus:QUESTionable::CALibration:INPut :LTRigger, 6-150
STATus:QUESTionable::CALibration:INPut :OFFSet, 6-151
STATus:QUESTionable::CALibration:INPut :TNULi, 6-152
STATus:QUESTionable::CALibration:INPut :TRIGGER, 6-153
STATus:QUESTionable::CALibration :PROBe, 6-155
STATus:QUESTionable::TEST, 6-156
STATus:QUESTionable::TEST:ACQuisition, 6-157
STATus:QUESTionable::TEST:ACQuisition :AD, 6-158
STATus:QUESTionable::TEST:ACQuisition :ATRigger, 6-159
STATus:QUESTionable::TEST:ACQuisition :DA, 6-160
STATus:QUESTionable::TEST:ACQuisition :LTRigger, 6-161
STATus:QUESTionable::TEST:ACQuisition :TIMebase, 6-162
STATus:QUESTionable::TEST:ACQuisition :TIMebase:INTERpolator, 6-163
STATus:QUESTionable::TEST:RAM, 6-164
C — Continued

Commands — Continued
STATus:QUEStionable:TEST:RAM
:ACQuisition, 6-165
STATus:QUEStionable:TEST:RAM
:DISPLAY, 6-166
STATus:QUEStionable:TEST:RAM
:NVOLatile, 6-167
STATus:QUEStionable:TEST:RAM
:SYSTEM, 6-168
STATus:QUEStionable:TEST:ROM, 6-169
STATus:QUEStionable:TEST:ROM
:NPProtec, 6-170
STATus:QUEStionable:TEST:ROM
:SYSTEM, 6-171
STOP, 4-118
STORE, 4-119
SUMMarry, 4-122
SUMMarry:CONDition?, 4-128
SUMMarry:ENABLE, 4-128
SUMMarry:ENABLE?, 4-128
SUMMarry:EVENt?, 4-128
SUMMarry:PRESet, 4-125
SUMMarry:QUEStionable, 4-127
SUMMarry:QUEStionable:CALibration, 4-129
SUMMarry:QUEStionable:CALibration
:CHANnel, 4-130
SUMMarry:QUEStionable:CALibration
:CHANnel:AD, 4-131
SUMMarry:QUEStionable:CALibration
:CHANnel:DElay, 4-132
SUMMarry:QUEStionable:CALibration
:CHANnel:GAIN, 4-133
SUMMarry:QUEStionable:CALibration
:CHANnel:LTRigger, 4-135
SUMMarry:QUEStionable:CALibration
:CHANnel:OFFSET, 4-136
SUMMarry:QUEStionable:CALibration
:CHANnel:TNULL, 4-137
SUMMarry:QUEStionable:CALibration
:CHANnel:TRIGger, 4-138
SUMMarry:QUEStionable:CALibration
:DCALibration, 4-139
SUMMarry:QUEStionable:CALibration
:PROBE, 4-140
SUMMarry:QUEStionable:CALibration
:CHANnel:HYSteresis, 4-134
SUMMarry:QUEStionable:TEST, 4-141
SUMMarry:QUEStionable:TEST
:ACQuisition, 4-142
SUMMarry:QUEStionable:TEST:ACQuisition
:AD, 4-143

C — Continued

SUMMarry:QUEStionable:TEST:ACQuisition
:ATRigger, 4-144
Commands — Continued
SUMMarry:QUEStionable:TEST:ACQuisition
:DA, 4-145
SUMMarry:QUEStionable:TEST:ACQuisition
:LTRigger, 4-146
SUMMarry:QUEStionable:TEST:ACQuisition
:TIMEbase, 4-147
SUMMarry:QUEStionable:TEST:ACQuisition
:TIMEbase:INTERpolator, 4-148
SUMMarry:QUEStionable:TEST:RAM, 4-149
SUMMarry:QUEStionable:TEST:RAM
:ACQuisition, 4-150
SUMMarry:QUEStionable:TEST:RAM
:DISPLAY, 4-151
SUMMarry:QUEStionable:TEST:RAM
:NVOLatile, 4-152
SUMMarry:QUEStionable:TEST:RAM
:SYSTEM, 4-153
SUMMarry:QUEStionable:TEST:ROM, 4-154
SUMMarry:QUEStionable:TEST:ROM
:NPProtec, 4-155
SUMMarry:QUEStionable:TEST:ROM
:SYSTEM, 4-156
SYSTEM, 4-157, 6-172
SYSTEM:AUToscale, 6-172
SYSTEM:ERROR?, 4-155, 6-173
SYSTEM:HEADer, 4-159
SYSTEM:HEADer?, 4-159
SYSTEM:LANGuage, 4-160, 6-174
SYSTEM:LANGuage?, 4-160, 6-174
SYSTEM:LONGform, 4-161
SYSTEM:LONGform?, 4-161
SYSTEM:SERial, 6-175
SYSTEM:SET, 6-176
SYSTEM:SET?, 6-176
SYSTEM:SETup, 4-162
SYSTEM:SETup?, 4-162
SYSTEM:VERSion?, 6-177
TER?, 4-120
TEST, 4-163, 6-178
TEST:ACQ, 4-163, 6-178
TEST:RAM, 4-164, 6-179
TEST:ROM, 4-164, 6-179
TEST:TALL, 4-165, 6-180
TIMEbase, 4-166
TIMEbase:DELAY, 4-167
TIMEbase:DELAY?, 4-167
TIMEbase:MODE, 4-168
TIMEbase:MODE?, 4-168

Index - 7
<table>
<thead>
<tr>
<th>Commands — Continued</th>
<th>Commands — Continued</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIMebase:RANGe, 4-169</td>
<td>TRIGger:POLarity, 4-193</td>
</tr>
<tr>
<td>TIMebase:RANGe?, 4-169</td>
<td>TRIGger:POLarity?, 4-193</td>
</tr>
<tr>
<td>TIMebase:REFERence, 4-170</td>
<td>TRIGger:QUALify, 4-194</td>
</tr>
<tr>
<td>TIMebase:REFERence?, 4-170</td>
<td>TRIGger:QUALify?, 4-194</td>
</tr>
<tr>
<td>TIMebase:WINDow, 4-171</td>
<td>TRIGger:SENSitivity, 4-195</td>
</tr>
<tr>
<td>TIMebase:WINDow?, 4-171</td>
<td>TRIGger:SENSitivity?, 4-195</td>
</tr>
<tr>
<td>TIMebase:WINDow:DELay, 4-172</td>
<td>TRIGger:SLOPe, 4-196, 6-192</td>
</tr>
<tr>
<td>TIMebase:WINDow:DELay?, 4-172</td>
<td>TRIGger:SLOPe?, 4-196, 6-192</td>
</tr>
<tr>
<td>TIMebase:WINDow:RANGe, 4-173</td>
<td>TRIGger:SOURce, 4-197, 6-193</td>
</tr>
<tr>
<td>TIMebase:WINDow:RANGe?, 4-173</td>
<td>TRIGger:SOURce?, 4-197, 6-193</td>
</tr>
<tr>
<td>TRACe, 6-181</td>
<td>TRIGger:STANdard, 4-198</td>
</tr>
<tr>
<td>TRACe:[DATA], 6-182</td>
<td>TRIGger:STANdard?, 4-198</td>
</tr>
<tr>
<td>TRACe:[DATA]?, 6-184</td>
<td>Upper Case, 4-2, 6-2</td>
</tr>
<tr>
<td>TRACe:POINts, 6-186</td>
<td>VIEW, 4-121</td>
</tr>
<tr>
<td>TRACe:PREamble, 6-187</td>
<td>WAVEform, 4-199</td>
</tr>
<tr>
<td>TRACe:PREamble?, 6-188</td>
<td>WAVEform:COUNt?, 4-199</td>
</tr>
<tr>
<td>TRIGger, 4-174, 6-189</td>
<td>WAVEform:DATa, 4-200</td>
</tr>
<tr>
<td>TRIGger:CENTered, 4-175</td>
<td>WAVEform:DATa?, 4-201</td>
</tr>
<tr>
<td>TRIGger:CONDition, 4-175</td>
<td>WAVEform:FORMat, 4-202</td>
</tr>
<tr>
<td>TRIGger:CONDition?, 4-176</td>
<td>WAVEform:FORMat?, 4-203</td>
</tr>
<tr>
<td>TRIGger:DELay, 4-177</td>
<td>WAVEform:POINts?, 4-203</td>
</tr>
<tr>
<td>TRIGger:DELay?, 4-177</td>
<td>WAVEform:PREamble, 4-204</td>
</tr>
<tr>
<td>TRIGger:DELay:SLOPe, 4-178</td>
<td>WAVEform:PREamble?, 4-205</td>
</tr>
<tr>
<td>TRIGger:DELay:SLOPe?, 4-178</td>
<td>WAVEform:SOURce, 4-206</td>
</tr>
<tr>
<td>TRIGger:DELay:SOURce, 4-179</td>
<td>WAVEform:SOURce?, 4-206</td>
</tr>
<tr>
<td>TRIGger:DELay:SOURce?, 4-179</td>
<td>WAVEform:TYPE?, 4-207</td>
</tr>
<tr>
<td>TRIGger:ECOunt, 6-189</td>
<td>WAVEform:XINCrement?, 4-208</td>
</tr>
<tr>
<td>TRIGger:ECOunt?, 6-189</td>
<td>WAVEform:XYORigin?, 4-208</td>
</tr>
<tr>
<td>TRIGger:FIELd, 4-180</td>
<td>WAVEform:XREFErence?, 4-208</td>
</tr>
<tr>
<td>TRIGger:FIELd?, 4-180</td>
<td>WAVEform:YINCrement?, 4-209</td>
</tr>
<tr>
<td>TRIGger:HOLDoff, 4-181</td>
<td>WAVEform:YORigin?, 4-209</td>
</tr>
<tr>
<td>TRIGger:HOLDoff?, 4-181</td>
<td>WAVEform:YREFErence?, 4-209</td>
</tr>
<tr>
<td>TRIGger:HYSTeresis, 6-190</td>
<td><strong>Common (*) Command</strong></td>
</tr>
<tr>
<td>TRIGger:HYSTeresis?, 6-190</td>
<td>*CLS, 4-216, 4-228, 6-199, 6-211</td>
</tr>
<tr>
<td>TRIGger:LEVEL, 4-182, 6-191</td>
<td>*ESE &lt;mask&gt;, 4-216, 4-228, 6-199, 6-211</td>
</tr>
<tr>
<td>TRIGger:LEVEL?, 4-182, 6-191</td>
<td>*ESE?, 4-216, 4-228, 6-199, 6-211</td>
</tr>
<tr>
<td>TRIGger:LINe, 4-183</td>
<td>*ESR?, 4-216, 4-228, 6-199, 6-211</td>
</tr>
<tr>
<td>TRIGger:LINe?, 4-183</td>
<td><strong>Format</strong></td>
</tr>
<tr>
<td>TRIGger:LOGic, 4-184</td>
<td>COMPatible, 4-1</td>
</tr>
<tr>
<td>TRIGger:LOGic?, 4-184</td>
<td>SCPI, 6-1</td>
</tr>
<tr>
<td>TRIGger:MODE, 4-185</td>
<td>*IDN?, 4-216, 4-228, 6-199, 6-211</td>
</tr>
<tr>
<td>TRIGger:MODE?, 4-188</td>
<td>*LRN?, 4-216, 4-228, 6-199, 6-211</td>
</tr>
<tr>
<td>TRIGger:OCCurrence, 4-189</td>
<td>*OPC, 4-216, 4-228, 6-199, 6-211</td>
</tr>
<tr>
<td>TRIGger:OCCurrence?, 4-189</td>
<td>*OPC?, 4-216, 4-228, 6-199, 6-211</td>
</tr>
<tr>
<td>TRIGger:OCCurrence:SLOPe, 4-190</td>
<td>Quick Reference, 4-228, 6-211</td>
</tr>
<tr>
<td>TRIGger:OCCurrence:SLOPe?, 4-190</td>
<td><strong>RCL &lt;n&gt;, 4-216, 4-228, 6-199, 6-211</strong></td>
</tr>
<tr>
<td>TRIGger:OCCurrence:SOURce, 4-191</td>
<td><strong>Reference</strong></td>
</tr>
<tr>
<td>TRIGger:OCCurrence:SOURce?, 4-191</td>
<td>COMPatible, 4-216</td>
</tr>
<tr>
<td>TRIGger:PATH, 4-192</td>
<td>SCPI, 6-199</td>
</tr>
<tr>
<td>TRIGger:PATH?, 4-192</td>
<td>*RST, 4-216, 4-228, 6-199, 6-211</td>
</tr>
</tbody>
</table>
C — Continued

Common (*) Command — Continued
*SAV <n>, 4-216, 4-228, 6-199, 6-211
*SRE <mask>, 4-216, 4-228, 6-199, 6-211
*SRE?, 4-216, 4-228, 6-199, 6-211
*STB?, 4-216, 4-228, 6-199, 6-211
*TRG?, 4-216, 4-228, 6-199, 6-211
*TST?, 4-216, 4-228, 6-199, 6-211
*WAI, 4-216, 4-228, 6-199, 6-211

COMPatible
Abbreviated Commands, 4-2
Acquisition, 3-22
Calibration Procedure
  Delay, 3-8
  Logic Trigger, 3-12
  Time Null, 3-10
  Vertical, 3-6
Command
  Format, 1-5, 4-1
  Reference, 4-4
  Separator, 4-2
  Types, 4-1
Commands, 1-4, 3-1
Common Command Reference, 4-216
Cross Reference to HP 54503A
  Commands, 4-214
Cross Reference to SCPI Commands, 4-210
Digitize, 3-22, 3-23
Disposition, 3-23
Error Messages, B-1
Examples
  Digitize a Waveform, 3-24
  Fall Time Measurement, 3-32
  Frequency Measurement, 3-30
  Limit Testing, 3-38
  Using Delay Trigger, 3-36
  Using the Expanded Window, 3-34
Firmware Calibration, 3-6
Implied Commands, 4-2
Measurement
  Considerations, 3-15
  Examples, 3-29
  Sequence, 3-5
  Setup, 3-21
Oscilloscope Setup, 3-16
Performing a Measurement, 3-27
Querying the Oscilloscope, 3-43
Quick Reference, 4-217
Recalling and Saving States, 3-40
Recalling and Storing Waveforms, 3-41
Register Diagram, 4-127

C — Continued

COMPatible — Continued
*RST (Reset) Conditions and Values, 3-3
Reset Conditions, 3-3
Starting a Measurement, 3-15
Storing States, 3-40
Time Base Setup, 3-18
Trigger Setup, 3-19
Unknown Input Signal, 3-15
Vertical Setup, 3-16

COMPare, 4-39
COMPare?, 4-39
Comparison HP 54503–E1426A, C-19
Compatible Commands, 3-1
COMPLETE, 4-6, 6-122
COMPLETE?, 4-6, 6-122
Completion
  Accuracy vs. Percent, C-16
  Criteria, C-10
CONDITION?, 4-128, 4-175, 4-176, 6-139, 6-143
Conditions, *RST (Reset)
  COMPatible, 3-3
  SCPI, 5-3

CONFigure, 6-17
  :AC, 6-19
  :AMPLitude, 6-20
  [:DC], 6-21
  :DCYcle, 6-22
  :FALL:OVERshoot, 6-24
  :FALL:PREshoot, 6-25
  :FALL:TIME, 6-26
  :FREQuency, 6-28
  :FTIME, 6-29
  :HIGH, 6-31
  :LOW, 6-32
  :MAXimum, 6-33
  :MINimum, 6-34
  :NDUTycycle, 6-35
  :NWIDTH, 6-36
  :PDUTycycle, 6-38
  :PERiod, 6-40
  :PWIDth, 6-41
  :RISE:OVERshoot, 6-43
  :RISE:PREShoot, 6-44
  :RISE:TIME, 6-45
  :RTIME, 6-47
  :TMAXimum, 6-49
  :TMINimum, 6-50

CONFigure?, 6-18
Configuring the Oscilloscope Module, 2-1
Connecting User Inputs, 2-5

Index - 9
C — Continued

Considerations, Measurement
   COMPatible, 3-15
   SCPI, 5-15
CONTinuous, 6-55
CONTinuous?, 6-56
Correction Setup, 5-17
CORRection:AFACtor, 6-114
CORRection:AFACtor?, 6-114
COUNT, 4-7, 6-110
COUNT?, 4-7, 4-199, 6-110
COUPling, 4-17, 6-115
COUPling?, 4-18, 6-115
Cross Reference
   COMPatible to HP 54503A Commands, 4-214
   COMPatible to SCPI Commands, 4-210
   SCPI to COMPatible Commands, 6-194
CURSor?, 4-40

D

DA, 4-145, 6-160
Data to the Controller, example of, 3-24, 5-25
DATA, 4-25, 4-200
DATA?, 4-25, 4-201
DATA?, 6-6
[DATA], 6-53, 6-182
[DATA]?, 6-54, 6-184
[DC], 6-21
[DC]?, 6-62
DCALibration, 4-13, 4-139, 6-13, 6-154
DCYCLE, 6-22
DCYCLE?, 6-63
Definable Measurement Thresholds, A-7
DEFine, 4-41
DEFine?, 4-42
Definition, Instrument, 1-3
Delay Calibration Procedure,
   COMPatible, 3-8
   SCPI, 5-8
Delay Trigger, example of, 3-36
DELAY, 4-13, 4-43, 4-132, 4-167, 4-172, 4-177, 6-13,
   6-124, 6-147
DELAY, 4-44, 4-167, 4-172, 4-177, 6-124
DELAY:LINK, 6-125
DELAY:LINK?, 6-125
DELAY:SLOPe, 4-178
DELAY:SLOPe?, 4-178
DELAY:SOURce, 4-179
DELAY:SOURce?, 4-179
Delayed Trigger, A-4
Delta t, A-6

D — Continued

Delta V, A-6
Description
   General, 1-1
   Oscilloscope, 1-1
DESTination, 4-45
DESTination?, 4-45
Determining Typical Measurement Times, C-14
Diagram
   Oscilloscope Module Block, 1-2
   Register
      COMPatible, 4-127
      SCPI, 6-142
Digitize
   COMPatible 3-23
   SCPI, 5-23
   Times Typical, C-14, C-19
   Waveform, example of, 3-24, 5-25
DIGitize, 4-110
Digitizing Waveforms, 3-22, 5-22, C-8
Discrete Parameters, 4-3, 6-3
DISPLAY
   Registers, 4-151, 6-166
   Subsystem, 4-25
      :DATA, 4-25
      :DATA?, 4-25
      :PERSistence, 4-28
      :PERSistence?, 4-28
      :SOURce, 4-29
      :SOURce?, 4-29
Disposition
   COMPatible, 3-23
   SCPI, 5-24
DOUTput, 4-14, 6-14
DUTycycle, 4-46
DUTycycle?, 4-47

E

ECL, 4-18
ECL[STATE], 4-102, 6-102
ECL[STATE]?, 4-102, 6-102
ECount, 6-189
ECOUNT?, 6-189
ENABLE, 4-128, 6-139, 6-143
ENABLE?, 6-140, 6-143
Environmental Conditions, A-9
ERASE, 4-112
Error
   Messages
      COMPatible, B-1
      SCPI, B-3
E — Continued

Error — Continued
Numbers, B-1
Queue, 4-158, 6-173
ERRor?, 4-158, 6-173
*ESE <mask>, 4-216, 4-228, 6-199, 6-211
*ESE?, 4-216, 4-228, 6-199, 6-211
*ESR?, 4-216, 4-228, 6-199, 6-211
ESTArt, 4-48
ESTArt?, 4-48
ESTOP, 4-49
ESTOP?, 4-49
[:EVENt]?, 4-128, 6-140, 6-143
Example of
COMPatible Measurement, 3-29
Digitize a Waveform, 3-24
Fall Time Measurement, 3-32, 3-34
Frequency Measurement, 3-30
Limit Testing, 3-38
Send Data to the Controller, 3-24
Using Delay Trigger, 3-36
Using the Expanded Window, 3-34
Mask, Page 1
SCPI Measurement, 5-31
AC Voltage Measurement, 5-38
Digitize a Waveform, 5-25
Fall Time Measurement, 5-36
Period Measurement, 5-32
Rise Time Measurement, 5-34, 5-36
Send Data to the Controller, 5-25
Using a Backplane Trigger, 5-40
[:EXPression], 6-7
EXTerminal[:STATE], 4-103, 6-103
EXTerminal[:STATE]?, 4-103, 6-103

F

Factory Setting,
Address Switch, 2-2
Bus Request, 2-3
Grant Level, 2-3
Servant Area, 2-4
Fall Time Measurement, example of
COMPatible, 3-32
SCPI, 5-36
FALL
:OVERShoot, 6-24
:OVERShoot?, 6-65
:PREShoot, 6-25
:PREShoot?, 6-66
:TIME, 6-26

F — Continued

FALL — Continued
:TME?, 6-67
FALLtime, 4-50
FALLtime?, 4-51
FETCH? Subsystem, 6-51
FIELD, 4-180
FIELD?, 4-180
FILTER
:HPAS[:STATE], 6-116
:HPAS[:STATE]? , 6-116
[:LPAS][:STATE], 6-117
[:LPAS][:STATE]? , 6-117
Firmware Calibration
COMPatible, 3-6
SCPI, 5-6
Format
Common Command, 4-1
COMPatible Command, 1-4, 4-1
SCPI Command, 1-5, 6-1
FOMat, 4-202
FORMat?, 4-203
FORMat Subsystem, 6-53
[:DATA], 6-53
[:DATA]?, 6-54
Frequency Measurement, example of, 3-30
FREQuency, 4-52, 6-28
FREQuency?, 4-53, 6-69
Front Panel, 2-5
Front Panel Outputs, A-8
FTIME, 6-29
FTIME?, 6-70
FUNCTION Subsystem, 4-30
:ADD, 4-30
:INVert, 4-31
:MULTIply, 4-31
:OFFSet, 4-32
:OFFSet?, 4-32
:ONLY, 4-33
:RANGE, 4-33
:RANGE?, 4-34
:SUBLerate, 4-34

G

GAIN, 4-133, 6-148
General
Characteristics, A-9
Description, 1-1
Grant Level, selection of, 2-3
Guidelines, Cabling, 2-5

Index - 11
I — Continued

INPut — Continued
  Register — Continued
    :TNULl, 6-152
    :TRIGger, 6-153

Subsystem, 6-115
  :COUPling, 6-115
  :COUPling?, 6-115
  :FILTer:HPASs[:STATe], 6-116
  :FILTer:HPASs[:STATe]?, 6-116
  :FILTer[:LPASs][:STATe], 6-117
  :FILTer[:LPASs][:STATe]?, 6-117
  :IMPedance, 6-118
  :IMPedance?, 6-118
  [:STATe], 6-119
  [:STATe]?, 6-119

Inputs, User, 2-5
Instrument Definition, 1-3
INTerpolator, 4-148, 6-163
INVert, 4-31

J

Jitter Measurements, 4-9, 4-43, 6-112

K

Keyword, 1-5

L

Language, selection of, 1-3
LANGuage, 4-160, 6-174
LANGuage?, 4-160, 6-174
Level, Grant, selection of, 2-3
LEVEL, 4-182, 6-191
LEVEL?, 4-182, 6-191
LFReject, 4-20
LFReject?, 4-20
Limit Testing, example of, 3-38
LIMittest, 4-53
LINE, 4-183
LINE?, 4-183
LINK, 6-125
LINK?, 6-125
Linking Commands, 4-4, 6-4
Logic Trigger Calibration Procedure
  COMPatible, 3-12
  SCPI, 5-12
LOGic, 4-184
LOGic?, 4-184
Logical Address, selection of, 2-2
L — Continued
LONGform, 4-161
LONGform?, 4-161
LOW, 6-32
LOW?, 6-73
LOWer, 4-55, 6-130
LOWer?, 4-55, 6-131
[:LPAs][:STATE], 6-117
[:LPAs][:STATE]?, 6-117
*LRN?, 4-216, 4-228, 6-199, 6-211
LTCalibration, 4-14, 6-14
LTER?, 4-113
LTRigger, 4-135, 4-146, 6-150, 6-161

M
Manual
Fall Time Measurement, example of, 3-34, 5-36
Rise Time Measurement, example of, 5-34, 5-36
Mask Test Program, example of, Page 1
Math, Waveform, A-6
MATH:STATE, 6-8
MATH:STATE?, 6-8
MATH[:EXPression], 6-7
Maximum
Defined, 4-3, 6-3
Errors, 4-158, 6-173
Input, 2-1
Measurement Time, 3-31, 5-33
MAXimum, 6-33
MAXimum?, 6-74
MEASure, 4-35, 6-58
:AC?, 6-60
:ADDRes, 4-97, 6-97
:ADDRes?, 4-97, 6-97
:ALL?, 4-37
:AMPLitude, 6-61
:COMPARE, 4-39
:COMPARE?, 4-39
:CURSor?, 4-40
[:DC]?, 6-62
:DCYCLE?, 6-63
:DEFINE, 4-41
:DEFINE?, 4-42
:DELAY, 4-43
:DElay?, 4-44
:DESTination, 4-45
:DESTination?, 4-45
:DUTycycle, 4-46
:DUTycycle?, 4-47

M — Continued
MEASure — Continued
:ESTArt, 4-48
:ESTArt?, 4-48
:ESTOp, 4-49
:ESTOp?, 4-49
:FALL:OVERshoot?, 6-65
:FALL:PREShoot?, 6-66
:FALL:TIME?, 6-67
:FALLtime, 4-50
:FALLtime?, 4-51
:FREQuency, 4-52
:FRQquency?, 4-53, 6-69
:FTIME?, 6-70
:HIGH?, 6-72
:LIMinutes, 4-53
:LOW, 6-73
:LOWer, 4-55
:LOWer?, 4-55
:MAXimum?, 6-74
:MINimum?, 6-75
:MODE, 4-56
:MODE?, 4-56
:NUTycycle, 6-76
:NWIDth, 4-57
:NWIDth?, 4-58, 6-78
:OVERshoot, 4-59
:OVERshoot?, 4-59
:PDUTycycle, 6-80
:PERiod, 4-60
:PERiod?, 4-61, 6-82
:POSTfailure, 4-62
:POSTfailure?, 4-62
:PRECision, 4-62
:PRECision?, 4-62
:PREShoot, 4-63
:PREShoot?, 4-63
:PWIDth, 4-65
:PWIDth?, 4-65, 6-83
:RESULTS, 4-66
:RISE:OVERshoot?, 6-85
:RISE:PREShoot?, 6-86
:RISE:TIME?, 6-87
:RISetime, 4-67
:RISetime?, 4-68
:RTIME?, 6-89
:SCRatch, 4-68
:SOURce, 4-69
:SOURce?, 4-69
:STATE, 4-98, 6-98
:STATE?, 4-98, 6-98
:STATistics, 4-70
WEASure — Continued

:STATistics?, 4-70
:TDELta?, 4-71
:TMAXimum?, 4-72, 6-91
:TMINimum?, 4-72, 6-92
:TSTArt, 4-73
:TSTArt?, 4-73
:TSTOp, 4-74
:TSTOp?, 4-74
:TVOLT?, 4-75
:UNITs, 4-76
:UNITs?, 4-76
:UPPer, 4-77
:UPPer?, 4-77
:VACRms, 4-78
:VACRms?, 4-78
:VAMPlitude, 4-79
:VAMPlitude?, 4-79
:VAVerage, 4-80
:VAVerage?, 4-80
:VBASE, 4-81
:VBASE?, 4-81
:VDCRms, 4-82
:VDCRms?, 4-82
:VDELta?, 4-83
:VFIfy, 4-83
:VMAX, 4-84
:VMAX?, 4-84
:VMIN, 4-85
:VMIN?, 4-85
:VPP, 4-86
:VPP?, 4-86
:VRELative, 4-87
:VRELative?, 4-88
:VRMS, 4-89
:VRMS?, 4-89
:VSTArt, 4-90
:VSTArt?, 4-90
:VSTOP, 4-91
:VSTOP?, 4-91
:VTIME?, 4-91
:VTOP, 4-92
:VTOP?, 4-92

MEASurement — Continued

Examples of — Continued

COMPatible Measurement — Continued
Fall Time Measurement, 3-32, 3-34
Frequency Measurement, 3-30
Limit Testing, 3-38
Send Data to the Controller, 3-24
Using Delay Trigger, 3-36
Using the Expanded Window, 3-34

Mask, Page 1
SCPI Measurement, 5-31
AC Voltage Measurement, 5-38
Digitize a Waveform, 5-25
Fall Time Measurement, 5-36
Period Measurement, 5-32
Rise Time Measurement, 5-34
Rise Time Measurement, 5-36
Send Data to the Controller, 5-25
Using a Backplane Trigger, 5-40

Performing a
COMPatible, 3-27
SCPI, 5-27

Sequence,
COMPatible, 3-5
SCPI, 5-5

Starting a
COMPatible, 3-15
SCPI, 5-15

Setup
COMPatible, 3-21
SCPI, 5-21
Thresholds, User-Definable, A-7
Times, C-13, C-14, C-15, C-19

Measurements
Automatic, C-1
Automatic Pulse Parameter, A-7
Optimizing, C-1

MEMory Subsystem, 4-93, 6-93
:VME:ADDRess, 4-96, 6-96
:VME:ADDRess?, 4-96, 6-96
:VME:MEASure:ADDRess, 4-97, 6-97
:VME:MEASure:ADDRess?, 4-97, 6-97
:VME:MEASure:STATE, 4-98, 6-98
:VME:MEASure:STATE?, 4-98, 6-98
:VME:SIZE, 4-99, 6-99
:VME:SIZE?, 4-99, 6-99
:VME:STATE, 4-100, 6-100
:VME:STATE?, 4-100, 6-100

MERGe, 4-114

Measurement — Continued

Considerations
COMPatible, 3-15
SCPI, 5-15

Examples of,
COMPatible Measurement, 3-29
Digitize a Waveform, 3-24

14 - Index
Messages
  Error
    COMPatible, B-1
    SCPI, B-3
MIN defined, 4-3, 6-3
MINimum, 6-34
MINimum?, 6-75
Mode
  Acquisition, A-6, C-12
  Trigger, A-4
MODE, 4-56, 4-168, 4-185
MODE?, 4-56, 4-168, 4-188
MULTiply, 4-31

N

NDUTycycle, 6-35
NDUTycycle?, 6-76
NPRotect, 4-155, 6-170
Number of Points, C-12
Numbers, Error, B-1
Numeric Parameters, 4-3, 6-3
NVOLatile, 4-152, 6-167
NWIDth, 4-57, 6-36
NWIDth?, 4-58, 6-78

O

OCCurrence, 4-189
OCCurrence?, 4-189
  :SLOPe, 4-190
  :SLOPe?, 4-190
  :SOURce, 4-191
  :SOURce?, 4-191
OFFSet, 4-21, 4-32, 4-136, 6-132, 6-151
OFFSet?, 4-21, 4-32, 6-132
ONLY, 4-33
  *OPC, 4-216, 4-228, 6-199, 6-211
  *OPC?, 4-216, 4-228, 6-199, 6-211
Operating Characteristics, A-3
Operation, Basic, 1-2, C-5
OPERation:CONDition?, 6-139
OPERation:ENABle, 6-139
OPERation:ENABle?, 6-140
OPERation[:EVENT]?, 6-140
Optimizing Measurements, C-1
Optional Parameters, 4-3, 6-3
Oscilloscope
  Block Diagram, 1-2
  Characteristics, A-2
  COMPatible Commands, 3-1

Oscilloscope — Continued
  Configuration, 2-1
  Description, 1-1
  Front Panel, 2-5
  Programming, 1-3
  Querying
    COMPatible, 3-43
    SCPI, 5-45
  SCPI Commands, 5-1
  Setup
    COMPatible, 3-16
    SCPI, 5-16
  Specifications, A-1
  Outputs, Front Panel, A-8
  OUTPut Subsystem, 4-101, 6-101

  :ECLTrg[:STATe], 4-102, 6-102
  :ECLTrg[:STATe]?, 4-102, 6-102
  :EXTrnal[:STATe], 4-103, 6-103
  :EXTrnal[:STATe]?, 4-103, 6-103
  [:STATe], 4-104, 6-104
  [:STATe]?, 4-104, 6-104
  :TTLTrg[:STATe], 4-105, 6-105
  :TTLTrg[:STATe]?, 4-105, 6-105
  OVERshoot, 4-59, 6-24, 6-43
  OVERshoot?, 4-59, 6-65, 6-85

P

Panel, Front, 2-5
Parameter
  Block, 4-3, 6-3
  Boolean, 4-3, 6-3
  COMPatible, 4-3
  Description, 4-3, 6-3
  Discrete, 4-3, 6-3
  In brackets, 4-3, 6-3
  Measurements, Automatic, A-7
  Numeric, 4-3, 6-3
  SCPI, 6-3
  Types, 4-3, 6-3
PATH, 4-192
PATH?, 4-192
PCALibration
  :ATTenuation:BCALibration, 4-10, 6-10
  :ATTenuation:CHANnel, 4-11
  :ATTenuation:INPut, 6-11
  :TNULL:CH1TO, 4-11
  :TNULL:INP1TO, 6-11
PDUTycycle, 6-38
PDUTycycle?, 6-80
Percent Completion vs. Accuracy, C-16
Performing a Measurement
  COMPatible, 3-27
  SCPI, 5-27
Period Measurement, example of, 5-32
PERiod, 4-60, 6-40
PERiod?, 4-61, 6-82
PERSistence, 4-28
PERSistence?, 4-28
Points, number of, C-12
POINts, 4-8, 6-121
POINts?, 4-8, 4-203, 6-121, 6-186
  :COMPlete, 6-122
  :COMPlete?, 6-122
POLarity, 4-193
POLarity?, 4-193
POSTailure, 4-62
POSTfailure?, 4-62
PREamble, 4-204, 6-187
PREamble?, 4-205, 6-188
PRECision, 4-62
PRECision?, 4-62
PRESet, 4-125, 6-140
PREShot, 4-63, 6-44, 6-25
PREShot?, 4-63, 6-66, 6-86
PROBe, 4-22, 4-140, 6-155
PROBe?, 4-22
Programming
  Mask, example of, Page 1
  The Oscilloscope Module, 1-3
  [:PTPeak], 6-133
  [:PTPeak]?, 6-134
Pulse Parameter Measurements, Automatic A-7
PWIDth, 4-64, 6-41
PWIDth?, 4-65, 6-83

Q

QUALify, 4-194
QUALify?, 4-194
Querying the Oscilloscope
  COMPatible, 3-43
  Parameters, 4-3, 6-3
  SCPI, 5-45
Questionable Data/Signal Register Subsystem
  COMPatible 4-126
  SCPI, 6-141
QUEStionable, 4-127, 6-142
  :CALibration, 4-129, 6-144
  :CALibration:CHANnel, 4-130
  :CALibration:CHANnel:AD, 4-131
  :CALibration:CHANnel:DE Lay, 4-132

R

RAM, 4-149, 4-164, 6-164, 6-179
  :ACQuisition, 4-150, 6-165
  :DISPlay, 4-151, 6-166
  :NVOLatile, 4-152, 6-167
  :SYStem, 4-153, 6-168
Random Repetitive Sampling, C-3, C-4
RANGE, 4-23, 4-33, 4-169, 4-173, 6-126
RANGE?, 4-23, 4-34, 4-169, 4-173, 6-126

SCPI — Continued

Examples — Continued
   Send Data to the Controller, 5-25
   Using a Backplane Trigger, 5-40
Firmware Calibration, 5-6
Implied Commands, 6-2
Input Setup, 5-16
Measurement
   Considerations, 5-15
   Examples, 5-31
   Sequence, 5-5
   Setup, 5-21
Oscilloscope Setup, 5-16
Performing a Measurement, 5-27
Querying the Oscilloscope, 5-45
Quick Reference, 6-201
Recalling and Saving States, 5-42
Recalling and Storing Waveforms, 5-43
Register Diagram, 6-142
Reset Conditions, 5-3
*RST (Reset) Conditions and Values, 5-3
Starting a Measurement, 5-15
Storing States, 5-42
Sweep Setup, 5-18
Trigger Setup, 5-19
Unknown Input Signal, 5-15
Voltage Setup, 5-18
SCRatch, 4-68
Selecting
   Bus Request, 2-3
   COMPatible Commands, 1-4
   Grant Level, 2-3
   Language, 1-3
   SCPI Commands, 1-5
   Servant Area, 2-4
Self Test Calibration, A-8

[SENSe:] — Continued

INPut:FILTER:HPASs[:STATe]?, 6-116
INPut:FILTER[:LPASs][:STATe], 6-117
INPut:FILTER[:LPASs][:STATe]?, 6-117
INPut:IMPedance, 6-118
INPut:IMPedance?, 6-118
INPut[:STATe], 6-119
INPut[:STATe]?, 6-119
SWEep Subsystem, 6-120
SWEep:POINts, 6-121
SWEep:POINts:COMplete, 6-122
SWEep:POINts:COMplete?, 6-122
SWEep:POINts?, 6-121
SWEep:TIME:CENTER, 6-123
SWEep:TIME:CENTER?, 6-123
SWEep:TIME:DELay, 6-124
SWEep:TIME:DELay:LINK, 6-125
SWEep:TIME:DELay:LINK?, 6-125
SWEep:TIME:DELay?, 6-124
SWEep:TIME:RANGe, 6-126
SWEep:TIME:RANGe?, 6-126
SWEep:TIME:SPAN, 6-127
SWEep:TIME:SPAN?, 6-127
SWEep:TIME:START, 6-128
SWEep:TIME:START?, 6-128
SWEep:TIME:STOP, 6-129
SWEep:TIME:STOP?, 6-129
VOLTage Subsystem, 6-130
VOLTage:RANGe:LOWer, 6-130
VOLTage:RANGe:LOWer?, 6-131
VOLTage:RANGe:OFFSet, 6-132
VOLTage:RANGe:OFFSet?, 6-132
VOLTage:RANGe:UPPer, 6-134
VOLTage:RANGe:UPPer?, 6-135
VOLTage:RANGe[:PTPeak], 6-133
VOLTage:RANGe[:PTPeak]?, 6-134

SENSitivitY, 4-195
SENSitivitY?, 4-195
Separator, Command, 4-2, 6-2
Sequence, Measurement
   COMPatible, 3-5
   SCPI, 5-5
SERial, 4-116, 6-175
Servant Area, selection of, 2-4
SET, 6-176
SET?, 6-176
Setting the
   Bus Request Switch, 2-3
   Grant Level Switch, 2-3
   Logical Address, 2-2
   Servant Area Switch, 2-4

18 - Index
S — Continued

Setup
Aids, A-8
Correction, 5-17
Input, 5-16
Measurement
COMPatible, 3-21
SCPI, 5-15
Oscilloscope
COMPatible, 3-16
SCPI, 5-15
Sweep, 5-18
Time Base, 3-18
Trigger
COMPatible, 3-19
SCPI, 5-19
Vertical, 3-16
Voltage, 5-18
SETup, 4-162
SETup?, 4-162
Signals, Repetitive, C-4
SIZE, 4-99, 6-99
SIZE?, 4-99, 6-99
SLOPe, 4-190, 4-196, 6-192
SLOPe?, 4-190, 4-196, 6-192
SOURce, 4-29, 4-69, 4-179, 4-191, 4-197, 4-206, 6-193
SOURce?, 4-29, 4-69, 4-179, 4-191, 4-197, 4-206, 6-193
SPAN, 6-127
SPAN?, 6-127
Specifications, A-1
*SRE <mask>, 4-216, 4-228, 6-199, 6-211
*SRE?, 4-216, 4-228, 6-199, 6-211
STANdard, 4-198
STANdard?, 4-198
Star (*) Commands
*CLS, 4-216, 4-228, 6-199, 6-211
*ESE <mask>, 4-216, 4-228, 6-199, 6-211
*ESE?, 4-216, 4-228, 6-199, 6-211
*ESR?, 4-216, 4-228, 6-199, 6-211
*IDN?, 4-216, 4-228, 6-199, 6-211
*LRN?, 4-216, 4-228, 6-199, 6-211
*OPC, 4-216, 4-228, 6-199, 6-211
*OPC?, 4-216, 4-228, 6-199, 6-211
*RCL <cn>, 4-216, 4-228, 6-199, 6-211
*RST, 4-216, 4-228, 6-199, 6-211
*SAV <cn>, 4-216, 4-228, 6-199, 6-211
*SRE <mask>, 4-216, 4-228, 6-199, 6-211
*SRE?, 4-216, 4-228, 6-199, 6-211
*STB?, 4-216, 4-228, 6-199, 6-211
*TRG?, 4-216, 4-228, 6-199, 6-211
*TST?, 4-216, 4-228, 6-199, 6-211
*WAI, 4-216, 4-228, 6-199, 6-211

S — Continued

START, 6-128
START?, 6-128
Starting a Measurement
COMPatible, 3-15
SCPI, 5-15
STATE, 4-98, 4-100, 6-8, 6-9, 6-98, 6-100
[:STATE], 4-102, 4-103, 4-104, 4-105, 6-102, 6-103,
6-104, 6-105, 6-111, 6-116, 6-117, 6-119
STATE?, 4-98, 4-100, 6-8, 6-9, 6-98, 6-100
[:STATE?], 4-102, 4-103, 4-104, 4-105, 6-102, 6-103,
6-104, 6-105, 6-111, 6-116, 6-117, 6-119
States, Recalling and Saving, 3-40, 5-42
STATistics, 4-70
STATistics?, 4-70
Status Byte Register, 4-122, 6-136
STATus, 4-117
STATus Subsystem, 6-136
:CONDition?, 6-143
:ENABLE, 6-143
:ENABLE?, 6-143
[:EVENT?], 6-143
:OPERation:CONDition?, 6-139
:OPERation:ENABLE, 6-139
:OPERation:ENABLE?, 6-140
:OPERation[:EVENT]?, 6-140
:PRESet, 6-140
:QUESTIONable, 6-142
:QUESTIONable:CALibration, 6-144
:QUESTIONable:CALibration:DCALibration, 6-154
:QUESTIONable:CALibration:INPut, 6-145
:QUESTIONable:CALibration:INPut:AD, 6-146
:QUESTIONable:CALibration:INPut:DE Lay, 6-147
:QUESTIONable:CALibration:INPut:GAIN, 6-148
:QUESTIONable:CALibration:INPut:HYSTeresis, 6-149
:QUESTIONable:CALibration:INPut:LTrigger, 6-150
:QUESTIONable:CALibration:INPut:OFFSet, 6-151
:QUESTIONable:CALibration:INPut:TNUL, 6-152
:QUESTIONable:CALibration:INPut:TRIGger, 6-153
:QUESTIONable:CALibration:PROBe, 6-155
:QUESTIONable:TEST, 6-156
:QUESTIONable:TEST:ACQuisition, 6-157
:QUESTIONable:TEST:ACQuisition:AD, 6-158
S — Continued

STATus — Continued
:QUESTionable:TEST:ACQuisition
 :ATRigger, 6-159
:QUESTionable:TEST:ACQuisition:DA, 6-160
:QUESTionable:TEST:ACQuisition
 :LTRigger, 6-161
:QUESTionable:TEST:ACQuisition
 :TIMebase, 6-162
:QUESTionable:TEST:ACQuisition:TIMebase
 :INTERpolator, 6-163
:QUESTionable:TEST:RAM, 6-164
:QUESTionable:TEST:RAM:ACQuisition, 6-165
:QUESTionable:TEST:RAM:DISPlay, 6-166
:QUESTionable:TEST:RAM:NVOLatile, 6-167
:QUESTionable:TEST:RAM:SYStem, 6-168
:QUESTionable:TEST:ROM, 6-169
:QUESTionable:TEST:ROM:NPRotect, 6-170
:QUESTionable:TEST:ROM:SYStem, 6-171

*STB?, 4-216, 4-228, 6-199, 6-211
STOP, 4-118, 6-129
STOP?, 6-129
STORE, 4-119
Storing States, 3-40, 5-42
Storing Waveforms
 COMPatible, 3-41
 SCPI, 5-43

Subsystem
 ABORT, 6-5
 ACQUIRE 4-5
 AVERAGE, 6-109
 CALCulate, 6-6
 CALibrate 4-10
 CALibration, 6-10
 CHANnel 4-17
 CONFIGure, 6-17
 CONFIGure?, 6-18
 CORrection, 6-113
 DISPlay, 4-25
 FUNCTION 4-30
 INPut, 6-115
 MEASURE 4-35, 6-58
 MEMORY 4-93, 6-93
 OUTPut 4-101, 6-101
 READ?, 6-106
 [SENSe:], 6-108
 STATus, 6-136
 SUMMARY, 4-122
 SWEep, 6-120
 SYStem, 4-157, 6-172
 TEST 4-163, 6-178

S — Continued

Subsystem — Continued
 TIMebase, 4-166
 TRACe, 6-181
 TRIGger, 4-174, 6-189
 VOLTage, 6-130
 WAVEform 4-199
 SUBTract, 4-34
 Suffix, allowed, 4-3, 6-3
 SUMMARY Subsystem, 4-122
 :CONDition?, 4-128
 :ENABLE, 4-128
 :ENABLE?, 4-128
 [:EVENT]?, 4-128
 :PRESet, 4-125
 :QUESTionable, 4-127
 :QUESTionable:CALibration, 4-129
 :QUESTionable:CALibration:CHANnel, 4-130
 :QUESTionable:CALibration:CHANnel:AD, 4-131
 :QUESTionable:CALibration:CHANnel
 :DELAY, 4-132
 :QUESTionable:CALibration:CHANnel
 :GAIN, 4-133
 :QUESTionable:CALibration:CHANnel
 :LTRigger, 4-135
 :QUESTionable:CALibration:CHANnel
 :OFFSET, 4-136
 :QUESTionable:CALibration:CHANnel
 :TNULi, 4-137
 :QUESTionable:CALibration:CHANnel
 :TRIGger, 4-138
 :QUESTionable:CALibration:DCALibration, 4-139
 :QUESTionable:CALibration:PROBe, 4-140
 :QUESTionable:CALibration:CHANnel
 :HYSTeresis, 4-134
 :QUESTionable:TEST, 4-141
 :QUESTionable:TEST:ACQuisition, 4-142
 :QUESTionable:TEST:ACQuisition:AD, 4-143
 :QUESTionable:TEST:ACQuisition
 :ATRigger, 4-144
 :QUESTionable:TEST:ACQuisition:DA, 4-145
 :QUESTionable:TEST:ACQuisition
 :LTRigger, 4-146
 :QUESTionable:TEST:ACQuisition
 :TIMebase, 4-147
 :QUESTionable:TEST:ACQuisition:TIMebase
 :INTERpolator, 4-148
 :QUESTionable:TEST:RAM, 4-149
 :QUESTionable:TEST:RAM:ACQuisition, 4-150
SUMMARY — Continued

:QUESTorable:TEST:RAM:DISPlay, 4-151
:QUESTorable:TEST:RAM:NVOLatile, 4-152
:QUESTorable:TEST:RAM:SYSTem, 4-153
:QUESTorable:TEST:ROM, 4-154
:QUESTorable:TEST:ROM:NPRotect, 4-155
:QUESTorable:TEST:ROM:SYSTem, 4-156

Sweep Setup, 5-18
SWEep Subsystem, 6-120

:POInts, 6-121
:POInts?, 6-121
:POInts:COMPLETE, 6-122
:POInts:COMPLETE?, 6-122
:TIME:CENTer, 6-123
:TIME:CENTer?, 6-123
:TIME:DElay, 6-124
:TIME:DElay?, 6-124
:TIME:DElay:LINK, 6-125
:TIME:DElay:LINK?, 6-125
:TIME:RANGE, 6-126
:TIME:RANGE?, 6-126
:TIME:SPAN, 6-127
:TIME:SPAN?, 6-127
:TIME:START, 6-128
:TIME:START?, 6-128
:TIME:STOP, 6-129
:TIME:STOP?, 6-129

Switch
Bus Request, 2-3
Grant Level, 2-3
Logical Address, 2-2
Servant Area, 2-4

SYSTem

Registers, 4-153, 4-156, 6-168, 6-171
Subsystem, 4-157, 6-172

:AUToscale, 6-172
:ERor?, 4-158, 6-173
:HEADer, 4-159
:HEADer?, 4-159
:LANGuage, 4-160, 6-174
:LANGuage?, 4-160, 6-174
:LONGform, 4-161
:LONGform?, 4-161
:SERial, 6-175
:SET, 6-176
:SET?, 6-176
:SETup, 4-162
:SETup?, 4-162
:VERSion?, 6-177

T

TALL, 4-165, 6-180
TDELTa?, 4-71
Techniques, Sampling, C-2
TER?, 4-120
Test Program Using Functions, Page 1

TEST

:ACQuisition, 4-142, 6-157
:ACQuisition:AD, 4-143, 6-158
:ACQuisition:ATRigger, 4-144, 6-159
:ACQuisition:DA, 4-145, 6-160
:ACQuisition:LTRigger, 4-146, 6-161
:ACQuisition:TIMebase, 4-147, 6-162
:ACQuisition:TIMebase:INTERpolator, 4-148, 6-163
:RAM, 4-149, 6-164
:RAM:ACQuisition, 4-150, 6-165
:RAM:DISPlay, 4-151, 6-166
:RAM:NVOLatile, 4-152, 6-167
:RAM:SYSTem, 4-153, 6-168
:ROM, 4-154, 6-169
:ROM:NPRotect, 4-155, 6-170
:ROM:SYSTem, 4-156, 6-171

Subsystem, 4-163, 6-178

:ACQ, 4-163, 6-178
:RAM, 4-164, 6-179
:ROM, 4-164, 6-179
:TALL, 4-165, 6-180

Test, Limit, 3-38
Thresholds, User-Definable, A-7
Throughput Comparison, HP 54503-E1426A, C-19
Time Base, C-8

Time Base Setup, 3-18
Time Null Calibration Procedure

COMPatible, 3-10
SCPI, 5-10
TIME, 6-26, 6-45
TIME?, 6-67, 6-87
TIME:CENTer, 6-123
TIME:CENTer?, 6-123
TIME:DElay, 6-124
TIME:DElay?, 6-124
TIME:DElay:LINK, 6-125
TIME:DElay:LINK?, 6-125
TIME:RANGE, 6-126
TIME:RANGE?, 6-126
TIME:SPAN, 6-127
TIME:SPAN?, 6-127
TIME:START, 6-128

Index - 21
TIME:START, 6-128
TIME:STOP, 6-129
TIME:STOP?, 6-129
TIMebase
  Registers, 4-147, 6-162
    :INTERpolator, 4-148, 6-163
  Subsystem, 4-166
    :DElay, 4-167
    :DElay?, 4-167
    :MODE, 4-168
    :MODE?, 4-168
    :RANGE, 4-169
    :RANGE?, 4-169
    :REFerence, 4-170
    :REFerence?, 4-170
    :WINDow, 4-171
    :WINDow?, 4-171
    :WINDow:DElay, 4-172
    :WINDow:DElay?, 4-172
    :WINDow:RANGE, 4-173
    :WINDow:RANGE?, 4-173

Times
  Determining Typical Measurement, C-14
  Digitize, C-19
  Measurement, C-19
  Transfer, C-19
  Typical Digitize, C-14
  Typical Measurement, C-13, C-15

Timing Relationship, C-6

TMAXimum, 6-49
TMAXimum?, 4-72, 6-91
TMINimum, 6-50
TMINimum?, 4-72, 6-92
TNULI, 4-15, 4-16, 4-137, 6-15, 6-16, 6-152
TNULI?, 4-16, 6-16
TNULI:CH1TO, 4-11
TNULI:INP1TO, 6-11

TRACe Subsystem, 6-181
  [:DATA], 6-182
  [:DATA]?, 6-184
  :POInts?, 6-186
  :PREAmble, 6-187
  :PREAmble?, 6-188

Transfer Times, C-19
*TRG?, 4-216, 4-228, 6-199, 6-211

Trigger
  Calibration Procedure, Logic
    COMPatible, 3-12
    SCPI, 5-12
  Characteristics, A-2
  Delayed, A-4
  Example of
    Using a Backplane, 5-40
    Using Delay, 3-36
  Modes, A-4
  Setup
    COMPatible, 3-19
    SCPI, 5-19
  Specifications, A-1
  TV, A-5

TRIGger
  Registers, 4-138, 6-153
  Subsystem, 4-174, 6-189
    :CENTered, 4-175
    :CONDition, 4-175
    :CONDition?, 4-176
    :DElay, 4-177
    :DElay:SLOPe, 4-178
    :DElay:SLOPe?, 4-178
    :DElay:SOURce, 4-179
    :DElay:SOURce?, 4-179
    :DElay?, 4-177
    :ECOunt, 6-189
    :ECOunt?, 6-189
    :FIELD, 4-180
    :FIELD?, 4-180
    :HOLDoff, 4-181
    :HOLDoff?, 4-181
    :HYSTeresis, 6-190
    :HYSTeresis?, 6-190
    :LEVEL, 4-182, 6-191
    :LEVEL?, 4-182, 6-191
    :LINE, 4-183
    :LINE?, 4-183
    :LOGic, 4-184
    :LOGic?, 4-184
    :MODE, 4-185
    :MODE?, 4-188
    :OCCurrence, 4-189
    :OCCurrence?, 4-189
    :OCCurrence:SLOPe, 4-190
    :OCCurrence:SLOPe?, 4-190
    :OCCurrence:SOURce, 4-191
    :OCCurrence:SOURce?, 4-191
    :PATH, 4-192
    :PATH?, 4-192
    :POLarity, 4-193
    :POLarity?, 4-193
    :QUALify, 4-194
    :QUALify?, 4-194
    :SENSitivity, 4-195
TRIGGER — Continued
Subsystem — Continued
:SENSitivity?, 4-195
:SLOPe, 4-196, 6-192
:SLOPe?, 4-196, 6-192
:SOURce, 4-197, 6-193
:SOURce?, 4-197, 6-193
:STANdard, 4-198
:STANdard?, 4-198
*TST?, 4-216, 4-228, 6-199, 6-211
TSTArt, 4-73
TSTArt?, 4-73
TSTOp, 4-74
TSTOp?, 4-74
TTL, 4-24
TTLTrg[:STATe], 4-105, 6-105
TTLTrg[:STATe]?, 4-105, 6-105
TV Trigger, A-5
TVOLT?, 4-75
TYPE, 4-9
TYPE?, 4-9, 4-207
TYPE, 6-112
TYPE?, 6-113
Typical
Digitize Times, C-14
Measurement Times, C-13, C-14, C-15

UNITs, 4-76
UNITs?, 4-76
Unknown Input Signal
COMPAtible, 3-15
SCPI, 5-15
UPPer, 4-77, 6-134
UPPer?, 4-77, 6-135
User Inputs, 2-5
Using Backplane Trigger, 5-40
Using Delay Trigger, 3-36
Using Expanded Window, 3-34

V
VACRms, 4-78
VACRms?, 4-78
Valid Address Selection, 2-2
Values, *RST (Reset)
COMPAtible, 3-3
SCPI, 5-3
VAMPplitude, 4-79
VAMPplitude?, 4-79

VME
:ADDress, 4-96, 6-96
:ADDress?, 4-96, 6-96
:MEASure:ADDress, 4-97, 6-97
:MEASure:ADDress?, 4-97, 6-97
:MEASure:STATE, 4-98, 6-98
:MEASure:STATE?, 4-98, 6-98
:SIZE, 4-99, 6-99
:SIZE?, 4-99, 6-99
:STATe, 4-100, 6-100
:STATe?, 4-100, 6-100
VMIN, 4-85
VMIN?, 4-85
Voltage
Measurement, example of, 5-38
Setup, 5-18
VOLTage:RANGe:LOWer, 6-130
VOLTage:RANGe:LOWer?, 6-131
VOLTage:RANGe:OFFSet, 6-132
VOLTage:RANGe:OFFSet?, 6-132
VOLTage:RANGe[:PTPeak], 6-133
VOLTage:RANGe[:PTPeak]?, 6-134
VOLTage:RANGe:UPPer, 6-134
VOLTage:RANGe:UPPer?, 6-135
VPP, 4-86
VPP?, 4-86
VRELative, 4-87
VRELative?, 4-88
VRMS, 4-89
VRMS?, 4-89
V — Continued

VSTArt, 4-90
VSTArt?, 4-90
VSTOp, 4-91
VSTOp?, 4-91
VTIMe?, 4-91
VTOP, 4-92
VTOP?, 4-92

W — Continued

:DELay, 4-172
:DELay?, 4-172
:RANGe, 4-173
:RANGe?, 4-173

*WAI, 4-216, 4-228, 6-199, 6-211
Warnings, 2-1

Waveform

Acquiring C-6
Digitizing, C-8
COMPatible, 3-22
SCPI, 5-22

Example of
Data to the Controller, 3-24
Digitize
COMPatible, 3-24
SCPI, 5-25

Mask Test Program Using Functions,
Page 1
Math, A-6
Recalling and Storing
COMPatible, 3-41
SCPI, 5-43

Save, A-7

WAVeform Subsystem, 4-199

:COUNTr, 4-199
:DATa, 4-200
:DATa?, 4-201
:FORMat, 4-202
:FORMat?, 4-203
:POINts?, 4-203
:PREamble, 4-204
:PREamble?, 4-205
:SOURce, 4-206
:SOURce?, 4-206
:TYPE?, 4-207
:XINCrement?, 4-208
:XORgin?, 4-208
:XREFeRence?, 4-208
:YINCrement?, 4-209
:YORgin?, 4-209
:YREFeRence?, 4-209

Weight, A-9
Window, example of, 3-34
WINDoW, 4-171
WINDoW?, 4-171