Agilent E1418A
8/16-Channel D/A Converter Module

User’s Manual and SCPI Programming Guide

Where to Find it - Online and Printed Information:

System installation (hardware/software) VXIbus Configuration Guide*
Agilent VIC (VXI installation software)*

Module configuration and wiring.................. This Manual
SCPI programming .. This Manual
SCPI example programs............................. This Manual
SCPI command reference This Manual
Register-Based Programming This Manual

VXIplug&play programming VXIplug&play Online Help
VXIplug&play example programs VXIplug&play Online Help
VXIplug&play function reference VXIplug&play Online Help
Soft Front Panel information VXIplug&play Online Help

VISA language information Agilent VISA User’s Guide
Agilent VEE programming information Agilent VEE User’s Manual

*Supplied with Agilent Command Modules, Embedded Controllers, and VXLink.
Contents

Agilent E1418A User's Manual

Warranty .. 7
Safety Symbols ... 8
WARNINGS .. 8
Declaration of Conformity .. 9
User Notes .. 10

Chapter 1. Module Setup and Installation 13
Using This Chapter .. 13
Module Description .. 13
Ordering Options .. 15
Field Kits .. 15
Terminal Modules .. 15
Functional Description ... 16
Front Panel Connectors ... 18
Setting the Logical Address Switch 19
Module Installation .. 20
Installation in a Mainframe .. 20
Terminal Modules .. 22
Screw-Type Terminal Module (Standard) 22
Wiring the Terminal Module .. 23
Attaching the Terminal Module 25
Removing the Terminal Module 26
Terminal Module Options ... 27
Option A3E ... 27
Option A3H ... 29
Option 135 ... 29
Terminal Module Connectors .. 30
Configuring the Terminal Module 31
P/J Jumper ... 31
V/I Jumper ... 31
Terminal Module Connections 33
Voltage and Current Output Connections 33
Combining Channels .. 34
Connecting an External Trigger Source 35
Using the CAL Output Terminals 36
Initial Operation .. 37
Device Driver ... 37
Module Identification .. 38
Chapter 2. Programming Examples .. 39
 Using This Chapter .. 39
 Program Examples .. 39
 Querying Module Identification and Configuration 40
 Configuration Example ... 42
 APPLy Output ... 45
 Error Checking .. 47
 I/O Error Checking ... 47
 SCPI Error Checking ... 47
 SOURce Output ... 50
 Setting the Output Mode ... 52
 Controlling the Output Relay 53
 Triggering .. 54
 Using *OPC? .. 56
 Combining Output Channels ... 57

Chapter 3. Agilent E1418A SCPI Command Reference 59
 Using This Chapter .. 59
 Command Types .. 59
 Common Command Format ... 59
 SCPI Command Format .. 60
 Linking Commands .. 62
 SCPI Command Reference ... 62
 APPLy .. 63
 APPLyn:CURRent .. 64
 APPLyn:VOLTage .. 65
 CALibration .. 66
 CALibration:CONDition? .. 67
 CALibration:CONFigure:RESistance? 68
 CALibration:RESet .. 68
 CALibration:STORERe .. 69
 CALibration:TEST? .. 69
 CALibration:VALue:RESistance 70
 CALibration:CONFigure:CURRent? 71
 CALibration:CONFigure:VOLTage? 72
 CALibration:VALue:CURRent? 73
 CALibration:VALue:VOLTage? 74
 DIAGnostic .. 76
 DIAGnostic:CALibration:OUTPut[:MODE] 76
 DIAGnostic:CALibration:OUTPut[:MODE]? 77
 DIAGnostic:CONFigure? .. 77
 DIAGnostic:OUTPut:ALL[:STATe] 78
 DIAGnostic:SOURce:FUNCTION:MODE 78
 DIAGnostic:TRIGgered? .. 79
 INITiate .. 80
 INITiate[:IMMediate] ... 80
Chapter 3. Agilent E1418A SCPI Command Reference (continued)

OUTPut ... 81
OUTPut:TTLTrgn[:STATe] 81
OUTPut:TTLTrgn[:STATe]? 82
OUTPutn[:STATe] 82
OUTPutn[:STATe]? 83

SOURce ... 84
SOURcen:CURRent[:LEV]e[:IMMediate][:AMPLitude] ... 85
SOURcen:CURRent[:LEV]e[:IMMediate][:AMPLitude]? 86
SOURcen:CURRent[:LEV]e[:TRIGgered][:AMPLitude] ... 87
SOURcen:CURRent[:LEV]e[:TRIGgered][:AMPLitude]? 88
SOURcen:FUNCtion:MODE 89
SOURcen:FUNCtion:MODE? 90
SOURcen:VOLTage[:LEV]e[:IMMediate][:AMPLitude] ... 91
SOURcen:VOLTage[:LEV]e[:IMMediate][:AMPLitude]? 92
SOURcen:VOLTage[:LEV]e[:TRIGgered][:AMPLitude] ... 93
SOURcen:VOLTage[:LEV]e[:TRIGgered][:AMPLitude]? 94

STATus .. 95
STATus:OPERation:CONDition? 96
STATus:OPERation:ENABLE 96
STATus:OPERation:ENABLE? 97
STATus:OPERation[:EVEN]t? 97
STATus:PRESet ... 97
STATus:QUEStionable:CONDition? 98
STATus:QUEStionable:ENABLE 98
STATus:QUEStionable:ENABLE? 99
STATus:QUEStionable[:EVEN]t? 99

SYSTem .. 100
SYSTem:ERRor? .. 100
SYSTem:VERSion? 100

TEST .. 101
TEST:NUMBer? ... 101
TEST:TST[:RES]ults]? 102
*TST? ... 103

TRIGger ... 104
TRIGger[:IMMediate] 104
TRIGger:SOURce .. 105
TRIGger:SOURce? .. 105

IEEE-488.2 Common Command Quick Reference .. 106
Agilent E1418A Command Quick Reference ... 107

Appendix A. Agilent E1418A Specifications ... 111
DC Voltage .. 111
DC Current .. 111
General Characteristics 112
Power Requirements 112
Cooling Requirements 112
Appendix B. Agilent E1418A Register-Based Programming

Addressing the Registers .. 114
 A16 Registers .. 114
 A24 Registers .. 115
 The Base Address ... 117
 Register Offset .. 118
Reset and Registers .. 119
Register Maps ... 120
 A16/A24 REGISTERS .. 120
 A24 REGISTERS ... 121
Register Descriptions .. 126
 Manufacturer ID Register .. 126
 Logical Address Register ... 126
 Device Type Register .. 127
 VXI Status/Control Register ... 127
 VXI Offset Register .. 128
 Calibration Control Register .. 129
 Card Configuration Register .. 130
 Software Trigger Register .. 131
 Trigger Control Register .. 131
 Interrupt Status Register .. 133
 Isolation Status Register ... 133
 Channel Program Jumper Register 134
 Channel Trigger Register ... 135
 Channel Mode Register ... 136
 Channel Relay Control Register ... 136
 Card Control Register ... 137
 Main_DAC Immediate Registers .. 138
 Main_DAC Triggered Registers .. 138
 Offset_DAC Registers ... 139
 Gain_DAC Registers .. 139
 Undefined Registers .. 140
 Channel Voltage Offset Calibration Registers 140
 Channel Voltage Gain Calibration Registers 141
 Channel Current Offset Calibration Registers 142
 Channel Current Gain Calibration Registers 143
 Calibration Resistor Value Registers 144
 Voltage Calibration Status Register 144
 Current Calibration Status Register 145
 Calibration Isolation Status Register 146
 Calibration Card Configuration Register 147
 Calibration Checksum Register .. 147
 Module Serial Number Registers 148
Register Example ... 148
Certification

Agilent Technologies certifies that this product met its published specifications at the time of shipment from the factory. Agilent Technologies further certifies that its calibration measurements are traceable to the United States National Institute of Standards and Technology (formerly National Bureau of Standards), to the extent allowed by that organization’s calibration facility, and to the calibration facilities of other International Standards Organization members.

Warranty

This Agilent Technologies product is warranted against defects in materials and workmanship for a period of one (1) year from date of shipment. Duration and conditions of warranty for this product may be superseded when the product is integrated into (becomes a part of) other Agilent products. During the warranty period, Agilent Technologies will, at its option, either repair or replace products which prove to be defective.

For warranty service or repair, this product must be returned to a service facility designated by Agilent Technologies. Buyer shall prepay shipping charges to Agilent and Agilent shall pay shipping charges to return the product to Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for products returned to Agilent from another country.

Agilent warrants that its software and firmware designated by Agilent for use with a product will execute its programming instructions when properly installed on that product. Agilent does not warrant that the operation of the product, or software, or firmware will be uninterrupted or error free.

Limitation Of Warranty

The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by Buyer, Buyer-supplied products or interfacing, unauthorized modification or misuse, operation outside of the environmental specifications for the product, or improper site preparation or maintenance.

The design and implementation of any circuit on this product is the sole responsibility of the Buyer. Agilent does not warrant the Buyer’s circuitry or malfunctions of Agilent products that result from the Buyer’s circuitry. In addition, Agilent does not warrant any damage that occurs as a result of the Buyer’s circuit or any defects that result from Buyer-supplied products.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. Agilent SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Exclusive Remedies

THE REMEDIES PROVIDED HEREIN ARE BUYER’S SOLE AND EXCLUSIVE REMEDIES. Agilent SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL THEORY.

Notice

The information contained in this document is subject to change without notice. Agilent Technologies MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Agilent shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance or use of this material. This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this document may be photocopied, reproduced, or translated to another language without the prior written consent of Agilent Technologies, Inc. Agilent assumes no responsibility for the use or reliability of its software on equipment that is not furnished by Agilent.

U.S. Government Restricted Rights

The Software and Documentation have been developed entirely at private expense. They are delivered and licensed as "commercial computer software" as defined in DFARS 252.227-7013 (Oct 1988), DFARS 252.227-7015 (May 1991) or DFARS 252.227-7014 (Jun 1995), as a "commercial item" as defined in FAR 2.101(a), or as "Restricted computer software" as defined in FAR 52.227-19 (Jun 1987)(or any equivalent agency regulation or contract clause), whichever is applicable. You have only those rights provided for such Software and Documentation by the applicable FAR or DFARS clause or the Agilent standard software agreement for the product involved.

Copyright © 1996-2006 Agilent Technologies, Inc. All Rights Reserved.
The following general safety precautions must be observed during all phases of operation, service, and repair of this product. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and intended use of the product. Agilent Technologies assumes no liability for the customer’s failure to comply with these requirements.

Ground the equipment: For Safety Class 1 equipment (equipment having a protective earth terminal), an uninterruptible safety earth ground must be provided from the mains power source to the product input wiring terminals or supplied power cable.

DO NOT operate the product in an explosive atmosphere or in the presence of flammable gases or fumes.

For continued protection against fire, replace the line fuse(s) only with fuse(s) of the same voltage and current rating and type. DO NOT use repaired fuses or short-circuited fuse holders.

Keep away from live circuits: Operating personnel must not remove equipment covers or shields. Procedures involving the removal of covers or shields are for use by service-trained personnel only. Under certain conditions, dangerous voltages may exist even with the equipment switched off. To avoid dangerous electrical shock, DO NOT perform procedures involving cover or shield removal unless you are qualified to do so.

DO NOT operate damaged equipment: Whenever it is possible that the safety protection features built into this product have been impaired, either through physical damage, excessive moisture, or any other reason, REMOVE POWER and do not use the product until safe operation can be verified by service-trained personnel. If necessary, return the product to an Agilent Technologies Sales and Service Office for service and repair to ensure that safety features are maintained.

DO NOT service or adjust alone: Do not attempt internal service or adjustment unless another person, capable of rendering first aid and resuscitation, is present.

DO NOT substitute parts or modify equipment: Because of the danger of introducing additional hazards, do not install substitute parts or perform any unauthorized modification to the product. Return the product to an Agilent Technologies Sales and Service Office for service and repair to ensure that safety features are maintained.
DECLARATION OF CONFORMITY
According to ISO/IEC Guide 22 and CEN/CENELEC EN 45014

Manufacturer’s Name: Agilent Technologies, Incorporated
Manufacturer’s Address: 815 – 14th St. SW
Loveland, Colorado 80537
USA

Declares, that the product

Product Name: 16 Channel 16 Bit D/A Converter
Model Number: E1418A, E1523A, E1524A, E1525A
Product Options: This declaration covers all options of the above product(s).

Conforms with the following European Directives:

Conforms with the following product standards:

<table>
<thead>
<tr>
<th>EMC</th>
<th>Standard</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISPR 11:1990 / EN 55011:1991</td>
<td>Group 1 Class A</td>
<td></td>
</tr>
<tr>
<td>IEC 61000-4-3:1995 / EN 61000-4-3:1995</td>
<td>3 V/m, 80-1000 MHz</td>
<td></td>
</tr>
<tr>
<td>IEC 61000-4-4:1995 / EN 61000-4-4:1995</td>
<td>0.5kV signal lines, 1kV power lines</td>
<td></td>
</tr>
<tr>
<td>IEC 61000-4-5:1995 / EN 61000-4-5:1995</td>
<td>0.5 kV line-line, 1 kV line-ground</td>
<td></td>
</tr>
<tr>
<td>IEC 61000-4-6:1996 / EN 61000-4-6:1996</td>
<td>3V, 0.15-80 MHz I cycle, 100%</td>
<td></td>
</tr>
<tr>
<td>IEC 61000-4-11:1994 / EN 61000-4-11:1994</td>
<td>Dips: 30% 10ms; 60% 100ms</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interrupt > 95%@5000ms</td>
<td></td>
</tr>
</tbody>
</table>

Canada: ICES-001:1998
Australia/New Zealand: AS/NZS 2064.1

The product was tested in a typical configuration with Agilent Technologies test systems.

Safety

| Canada: CSA C22.2 No. 1010.1:1992 |
| UL 3111-1: 1994 |

20 March 2003
Ray Corson
Product Regulations Program Manager

For further information, please contact your local Agilent Technologies sales office, agent or distributor.
Using This Chapter

This chapter provides general module information and tasks you must perform to install and prepare your module. A procedure to verify your installation is also given. The chapter is divided into the following sections:

- Module Description .. Page 13
- Functional Description .. Page 16
- Front Panel Connectors ... Page 18
- Setting the Logical Address Switch Page 19
- Module Installation ... Page 20
- Terminal Modules .. Page 22
- Wiring the Terminal Module Page 23
- Attaching the Terminal Module Page 25
- Removing the Terminal Module Page 26
- Terminal Module Options ... Page 27
- Terminal Module Connectors Page 30
- Configuring the Terminal Module Page 31
- Terminal Module Connections Page 33
- Initial Operation ... Page 37

Module Description

The Agilent E1418A is an 8 or 16 channel digital-to-analog converter module for use in a VXIbus C-size mainframe. The module is a register-based device. The module can be programmed via direct register access or, with the appropriate driver, by high level commands. This manual describes programming the module using SCPI (Standard Commands for Programmable Instruments) and the SCPI driver.

Each Agilent E1418A module is a unique instrument having its own output buffer and error queue. Multiple modules cannot be combined into a single instrument.

Each channel can be configured to either voltage or current output mode. When configured for voltage output, voltages in the range of -16.0 to +16.0 Volts can be set. When configured for current output, current in the range of -0.02 to +0.02 Amps can be set. The channel output mode can be programmatically set, or, can be forced to either voltage or current by mechanical jumpers on the terminal module.
Each output channel is individually configurable to be either an isolated output or a non-isolated output. Channel configuration to isolated or non-isolated is made by individual plug-on modules for each channel.

Figure 1-1 shows the module.
Ordering Options

The Agilent E1418A may be ordered from Agilent Technologies in a variety of configurations. As ordered, the module has the following options:

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1418A 8-Channel D/A Converter with Non-Isolated Outputs</td>
</tr>
<tr>
<td>E1418A Option 001 16-Channel D/A Converter with Non-Isolated Outputs</td>
</tr>
<tr>
<td>E1418A Option 002 8-Channel D/A Converter with Isolated Outputs</td>
</tr>
<tr>
<td>E1418A Option 003 16-Channel D/A Converter with Isolated Outputs</td>
</tr>
</tbody>
</table>

Field Kits

The module can also be user configured as described beginning on page 167 of this manual. The following field expansion and configuration kits are available:

<table>
<thead>
<tr>
<th>Description</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1523A Single Channel Isolated plug-on module</td>
<td>To change a single channel from non-isolated to isolated output.</td>
</tr>
<tr>
<td>E1524A Expansion kit, 8-Channel Non-Isolated Outputs</td>
<td>To add 8 additional non-isolated channels to an existing 8-channel module.</td>
</tr>
<tr>
<td>E1525A Expansion kit, 8-Channel Isolated Outputs</td>
<td>To add 8 additional isolated channels to an existing 8-channel module.</td>
</tr>
</tbody>
</table>

Terminal Modules

The standard Agilent E1418A Terminal Module provides screw terminals for connections. Two other terminal options are available with the Agilent E1418A:

- Crimp and Insert (Option A3E)
- Ribbon Cable (Option A3H)
- Terminal Module Housing without a terminal module PC board or connectors included (Option 135)
The Agilent E1418A provides great flexibility in configuration. This functional description will help you become familiar with the various configurations and how the module is structured. A functional block diagram is shown in Figure 1-2.

* Each channel MUST have either an isolated or non-isolated plug-on module installed. Channels may be configured using any combination of isolated and non-isolated plug-on modules.
As shown, there are four major assemblies that make up an Agilent E1418A:

- Channels 1 through 8 main board and VXIbus backplane circuitry.
- Channels 9 through 16 expansion board.
- Isolated or Non-isolated plug-on modules.
- Terminal Module.

Channels 1–8 main board and VXIbus backplane circuitry.
This assembly contains all the VXIbus interface and decoding circuitry. Isolated and Non-Isolated plug-on modules for channels 1–8 connect to this assembly. The panel connectors for the terminal module are also mounted on this assembly.

The optional **Channels 9–16 expansion board** is electrically connected and mechanically mounted to the main board. Isolated and Non-Isolated plug-on modules for channels 9–16 connect to this assembly.

Isolated or Non-isolated plug-on modules are required for every channel. Eight plug-on modules mount to the main board and 8 plug-on modules mount to the expansion board. Any combination of isolated or non-isolated plug-on modules may be used, but every channel must have a plug-on module installed.

The **Terminal Module** shown in Figure 1-2 is the standard screw-type terminal module. This module provides screw connections for each channel output, the calibration connections, and the external trigger in connections. This module also contains two jumpers for each channel; one, called the P/J Jumper, to enable or disable VXIbus programming of the channel mode (either voltage or current) and one, called the V/I Jumper, to set the channel mode when the P/J Jumper is in the Jumper position.
Front Panel Connectors

Figure 1-3 shows the connections at the front panel connectors of the main module.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>CH 1 Pgm Jmpr</td>
<td>GND</td>
</tr>
<tr>
<td>31</td>
<td>CH 2 Pgm Jmpr</td>
<td>GND</td>
</tr>
<tr>
<td>30</td>
<td>CH 3 Pgm Jmpr</td>
<td>GND</td>
</tr>
<tr>
<td>29</td>
<td>CH 4 Pgm Jmpr</td>
<td>GND</td>
</tr>
<tr>
<td>28</td>
<td>CH 9 Pgm Jmpr</td>
<td>GND</td>
</tr>
<tr>
<td>27</td>
<td>CH 10 Pgm Jmpr</td>
<td>GND</td>
</tr>
<tr>
<td>26</td>
<td>CH 11 Pgm Jmpr</td>
<td>GND</td>
</tr>
<tr>
<td>25</td>
<td>CH 12 Pgm Jmpr</td>
<td>GND</td>
</tr>
<tr>
<td>24</td>
<td>CH 1 Mode Jmpr</td>
<td>GND</td>
</tr>
<tr>
<td>23</td>
<td>CH 2 Mode Jmpr</td>
<td>GND</td>
</tr>
<tr>
<td>22</td>
<td>CH 3 Mode Jmpr</td>
<td>GND</td>
</tr>
<tr>
<td>21</td>
<td>CH 4 Mode Jmpr</td>
<td>GND</td>
</tr>
<tr>
<td>20</td>
<td>CH 9 Mode Jmpr</td>
<td>GND</td>
</tr>
<tr>
<td>19</td>
<td>CH 10 Mode Jmpr</td>
<td>GND</td>
</tr>
<tr>
<td>18</td>
<td>CH 11 Mode Jmpr</td>
<td>GND</td>
</tr>
<tr>
<td>17</td>
<td>CH 12 Mode Jmpr</td>
<td>GND</td>
</tr>
<tr>
<td>16</td>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>15</td>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>14</td>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>13</td>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>12</td>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>11</td>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>10</td>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>9</td>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>8</td>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>7</td>
<td>EXT TRIG</td>
<td>GND</td>
</tr>
<tr>
<td>6</td>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>5</td>
<td>CAL 1S</td>
<td>GND</td>
</tr>
<tr>
<td>4</td>
<td>CAL 1H</td>
<td>GND</td>
</tr>
<tr>
<td>3</td>
<td>CAL 1O</td>
<td>GND</td>
</tr>
<tr>
<td>2</td>
<td>CAL 1S</td>
<td>GND</td>
</tr>
<tr>
<td>1</td>
<td>GND</td>
<td>GND</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>Terminal ID 1</td>
<td>GND</td>
</tr>
<tr>
<td>31</td>
<td>Terminal ID 2</td>
<td>GND</td>
</tr>
<tr>
<td>30</td>
<td>Terminal ID 3</td>
<td>GND</td>
</tr>
<tr>
<td>29</td>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>28</td>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>27</td>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>26</td>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>25</td>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>24</td>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>23</td>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>22</td>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>21</td>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>20</td>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>19</td>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>18</td>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>17</td>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>16</td>
<td>CH 5 Pgm Jmpr</td>
<td>GND</td>
</tr>
<tr>
<td>15</td>
<td>CH 6 Pgm Jmpr</td>
<td>GND</td>
</tr>
<tr>
<td>14</td>
<td>CH 7 Pgm Jmpr</td>
<td>GND</td>
</tr>
<tr>
<td>13</td>
<td>CH 8 Pgm Jmpr</td>
<td>GND</td>
</tr>
<tr>
<td>12</td>
<td>CH 9 Pgm Jmpr</td>
<td>GND</td>
</tr>
<tr>
<td>11</td>
<td>CH 10 Pgm Jmpr</td>
<td>GND</td>
</tr>
<tr>
<td>10</td>
<td>CH 11 Pgm Jmpr</td>
<td>GND</td>
</tr>
<tr>
<td>9</td>
<td>CH 12 Pgm Jmpr</td>
<td>GND</td>
</tr>
<tr>
<td>8</td>
<td>CH 5 Mode Jmpr</td>
<td>GND</td>
</tr>
<tr>
<td>7</td>
<td>CH 6 Mode Jmpr</td>
<td>GND</td>
</tr>
<tr>
<td>6</td>
<td>CH 7 Mode Jmpr</td>
<td>GND</td>
</tr>
<tr>
<td>5</td>
<td>CH 8 Mode Jmpr</td>
<td>GND</td>
</tr>
<tr>
<td>4</td>
<td>CH 13 Mode Jmpr</td>
<td>GND</td>
</tr>
<tr>
<td>3</td>
<td>CH 14 Mode Jmpr</td>
<td>GND</td>
</tr>
<tr>
<td>2</td>
<td>CH 15 Mode Jmpr</td>
<td>GND</td>
</tr>
<tr>
<td>1</td>
<td>CH 16 Mode Jmpr</td>
<td>GND</td>
</tr>
</tbody>
</table>
Setting the Logical Address Switch

Figure 1-4 shows the logical address switch location and setting. The logical address switch factory setting is 72. Valid addresses range from 1 to 255.

When used with an Agilent Command Module the factory set address of decimal 72 results in a module address of 9 (72 divided by 8). The module address is used as a secondary address when using GPIB and a Command Module. For example, the module address may be 7 09 09, where 7 is the GPIB interface address, 09 is the command module address, and 09 is the Agilent E1418A address.

The Agilent E1418A supports dynamic address configuration. When you set the logical address to 255, the resource manager sets the logical address programmatically.

Note
When using an Agilent C-size mainframe with the Agilent E1405/E1406 Command Modules, the logical address setting must be a multiple of 8.

![Figure 1-4. Setting the Logical Address](image)
Module Installation

To install the module:

1. Verify the position of the CAL Store Enable Jumper for your application. The Jumper, as shipped, is in the CAL position. In this position, a calibration may be performed and the results stored in non-volatile memory. In the Secured position, a calibration may be performed, but may NOT be stored in non-volatile memory. This jumper is described in more detail on page 157.

2. Verify or set the logical address switch as shown in Figure 1-4.

3. Install the module in a mainframe as shown in Figure 1-5.

Installation in a Mainframe

The Agilent E1418A may be installed in any slot (except slot 0) in a C-size VXIbus mainframe. To install in a mainframe:

1. Set the extraction levers out. Slide the module into any slot (except slot 0) until the backplane connectors touch.

2. Seat the module by moving the levers toward each other.

3. Tighten the top and bottom screws to secure the module in the mainframe.

Figure 1-5. Installing the E1418A in a VXIbus Mainframe
To Remove a Module: To remove a module from a mainframe:

1. Remove any terminal modules.

2. Loosen the top and bottom screws securing the module in the mainframe.

3. Move the extraction levers away from each other. As the levers are moved, the module will detach from the backplane connectors.

4. Slide the module out.

Note

The extraction levers will not seat and unseat the backplane connectors on older Agilent VXIbus mainframes and non-Agilent mainframes. You must manually seat the connectors by pushing the module into the mainframe until the front panel is flush with the front of the mainframe. The extraction levers may be used to guide or remove the module.
Terminal Modules

Four terminal modules are available for the Agilent E1418A: a screw-type, a crimp-and-insert type, a ribbon cable type, and an empty terminal housing (without a PC board or connectors).

Screw-Type Terminal Module (Standard)

The standard terminal module uses screw-type terminals to make connections. Figure 1-6 may be photocopied and used for wiring layout.

![Figure 1-6. Screw-Type Terminal Module Layout](image)
Wiring the Terminal Module

Figure 1-7 shows how to open and wire the E1418A terminal module.

1. Remove the clear cover.
 A. Release screws.
 B. Press tab forward and release.

2. Remove and retain wiring exit panel.
 Remove 1 of the 3 wire exit panels.

3. Make connections.
 Screw-Type
 Use wire size 16–26 AWG
 Insert wire into terminal. Tighten screw.
 VW1 Flammability Rating

 Crimp-and-Insert
 Use wire size 22–26 AWG
 64-Conductor 0.05” Center
 2.5mm 0.1”

4. Route wiring and install strain relief.
 Tighten wraps to secure wires.
 Ribbon cable clamp

Figure 1-7. Wiring the E1418A Terminal Module
(continued on next page)
5. Replace wiring exit panel.

- Cut required holes in panels for wire exit.
- Keep the wiring exit panel hole as small as possible.

6. Replace clear cover.

A. Hook in the top cover tabs onto the fixture.
B. Press down and tighten screws.

Figure 1-7. Wiring the E1418A Terminal Module
(continued from previous page)
Attaching the Terminal Module

Figure 1-8 shows how to attach the E1418A terminal module.

1. Extend the extraction levers on the terminal module.

2. Align the terminal module connectors to the E1418A module connectors.

3. Apply gentle pressure to attach the terminal module to the E1418A D/A Module.

4. Push in the extraction levers to lock the terminal module onto the E1418A D/A Module.

Figure 1-8. Attaching the E1418A Terminal Module
Removing the Terminal Module

Figure 1-9 shows how to remove the E1418A terminal module.

1. Release the two extraction levers and push both levers out simultaneously.

 Extraction Lever

 Use a small screwdriver to release the two extraction levers

2. Free and remove the terminal module from the E1418A D/A Module.

 E1418A D/A Module

Figure 1-9. Removing the E1418A Terminal Module
Terminal Module Options

Besides the standard screw-type terminal module, the Agilent E1418A can be ordered with the following two options. One option (A3E) provides crimp-and-insert connectors and terminal housing. The other option (A3H) provides a ribbon cable connector and terminal housing.

Option A3E

Agilent E1418A Option A3E can be ordered if a crimp-and-insert terminal module is desired. This allows you to crimp connectors onto wires which are then inserted directly into the Agilent E1418A faceplate connector. Refer to the pin-out diagram on page 30 to make the connections. The crimp-and-insert connector is shown in Figure 1-10.

Note

The pin numbering on the crimp-and-insert connector may not agree with the pin numbering on the Agilent E1418’s faceplate connector. Use the pin numbering on the faceplate connector to wire the crimp-and-insert connector.

Figures 1-10. Option A3E Crimp-and-Insert Connector
Crimp-and-Insert Terminal Module Accessories

The following accessories are necessary for use with crimp-and-insert Option A3E:

Single-Conductor and Contact

A crimp-and-insert contact is crimped onto one end of a wire. The other end is not terminated. Order Agilent 91510A.

- Length: 2 meters
- Wire Gauge: 24 AWG
- Quantity: 50 each
- Insulation Rating: 105°C maximum
- Voltage: 300 V

Shielded-Twisted-Pair and Contacts

A crimp-and-insert contact is crimped onto each conductor at one end of a shielded-twisted-pair cable. The other end is not terminated. Order Agilent 91511A.

- Length: 2 meters
- Wire Gauge: 24 AWG
- Quantity: 20 each
- Outside Diameter: 0.1 inch
- Insulation Rating: 250°C maximum
- Voltage: 600 V

Jumper Wire and Contacts

A crimp-and-insert contact is crimped onto each end of a single-conductor jumper wire. This jumper is typically used to tie two pins together in a single crimp-and-insert connector. Order Agilent 91512A.

- Length: 10 cm
- Wire Gauge: 24 AWG
- Quantity: 10 each
- Insulation Rating: 105°C maximum
- Voltage: 300 V

Crimp-and-Insert Contacts

These contacts may be crimped onto a conductor and then inserted into a crimp-and-insert connector. The crimp tool kit is required to crimp the contacts onto a conductor and remove the contact from the connector. Order Agilent 91515A.

- Wire Gauge Range: 20-26 AWG
- Quantity: 250 each
- Plating: Gold Plated Contact
- Maximum Current: 2A at 70°C

Crimp-and-Insert Tools

The hand crimp tool (part number Agilent 91518A) is used for crimping contacts onto a conductor. The pin extractor tool (part number Agilent 91519A) is required for removing contacts from the crimp-and-insert connector. These products are not included with Option A3E or with the terminal option accessories listed earlier.
Extra Crimp-and-Insert Connectors

The crimp-and-insert connector is normally supplied with Option A3E. Contact Agilent Technologies if additional connectors are needed. Order Agilent 91484B.

Option A3H

The Ribbon Cable Connector Terminal Option provides a terminal housing and ribbon cable connectors. The connectors are designed to be used with 64-pin 0.05 inch center ribbon cables (not provided). Use Figure 1-12 to make the connections.

Note

In Figure 1-12, the center row of each connector is not used in the ribbon cable. The center row of both connectors is module ground (GND).

Option 135

The Terminal Module Housing Option provides a terminal housing with no connectors of any type.

The user-supplied connector must be a DIN 41612 type C female, 11.6 mm dimension as shown above.
Figure 1-12 shows the connections at the terminal module connectors.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CH 1 Pgm. Jmpr</td>
<td>GND</td>
<td>CH 1 HS</td>
</tr>
<tr>
<td>2</td>
<td>CH 2 Pgm. Jmpr</td>
<td>GND</td>
<td>CH 1 HI</td>
</tr>
<tr>
<td>3</td>
<td>CH 3 Pgm. Jmpr</td>
<td>GND</td>
<td>CH 1 LO</td>
</tr>
<tr>
<td>4</td>
<td>CH 4 Pgm. Jmpr</td>
<td>GND</td>
<td>CH 1 LS</td>
</tr>
<tr>
<td>5</td>
<td>CH 9 Pgm. Jmpr</td>
<td>GND</td>
<td>CH 2 HS</td>
</tr>
<tr>
<td>6</td>
<td>CH 10 Pgm. Jmpr</td>
<td>GND</td>
<td>CH 2 HI</td>
</tr>
<tr>
<td>7</td>
<td>CH 11 Pgm. Jmpr</td>
<td>GND</td>
<td>CH 2 LO</td>
</tr>
<tr>
<td>8</td>
<td>CH 12 Pgm. Jmpr</td>
<td>GND</td>
<td>CH 2 LS</td>
</tr>
<tr>
<td>9</td>
<td>CH 1 Mode Jmpr</td>
<td>GND</td>
<td>CH 3 HS</td>
</tr>
<tr>
<td>10</td>
<td>CH 2 Mode Jmpr</td>
<td>GND</td>
<td>CH 3 HI</td>
</tr>
<tr>
<td>11</td>
<td>CH 3 Mode Jmpr</td>
<td>GND</td>
<td>CH 3 LO</td>
</tr>
<tr>
<td>12</td>
<td>CH 4 Mode Jmpr</td>
<td>GND</td>
<td>CH 3 LS</td>
</tr>
<tr>
<td>13</td>
<td>CH 9 Mode Jmpr</td>
<td>GND</td>
<td>CH 4 HS</td>
</tr>
<tr>
<td>14</td>
<td>CH 10 Mode Jmpr</td>
<td>GND</td>
<td>CH 4 HI</td>
</tr>
<tr>
<td>15</td>
<td>CH 11 Mode Jmpr</td>
<td>GND</td>
<td>CH 4 LO</td>
</tr>
<tr>
<td>16</td>
<td>CH 12 Mode Jmpr</td>
<td>GND</td>
<td>CH 4 LS</td>
</tr>
<tr>
<td>17</td>
<td>GND</td>
<td>GND</td>
<td>CH 9 HS</td>
</tr>
<tr>
<td>18</td>
<td>GND</td>
<td>GND</td>
<td>CH 9 HI</td>
</tr>
<tr>
<td>19</td>
<td>GND</td>
<td>GND</td>
<td>CH 9 LO</td>
</tr>
<tr>
<td>20</td>
<td>GND</td>
<td>GND</td>
<td>CH 9 LS</td>
</tr>
<tr>
<td>21</td>
<td>GND</td>
<td>GND</td>
<td>CH 10 HS</td>
</tr>
<tr>
<td>22</td>
<td>GND</td>
<td>GND</td>
<td>CH 10 HI</td>
</tr>
<tr>
<td>23</td>
<td>GND</td>
<td>GND</td>
<td>CH 10 LO</td>
</tr>
<tr>
<td>24</td>
<td>GND</td>
<td>GND</td>
<td>CH 10 LS</td>
</tr>
<tr>
<td>25</td>
<td>GND</td>
<td>GND</td>
<td>CH 11 HS</td>
</tr>
<tr>
<td>26</td>
<td>EXT TRIGn</td>
<td>GND</td>
<td>CH 11 HI</td>
</tr>
<tr>
<td>27</td>
<td>GND</td>
<td>GND</td>
<td>CH 11 LO</td>
</tr>
<tr>
<td>28</td>
<td>CAL HS</td>
<td>GND</td>
<td>CH 11 LS</td>
</tr>
<tr>
<td>29</td>
<td>CAL HI</td>
<td>GND</td>
<td>CH 12 HS</td>
</tr>
<tr>
<td>30</td>
<td>CALL LO</td>
<td>GND</td>
<td>CH 12 HI</td>
</tr>
<tr>
<td>31</td>
<td>CALL LS</td>
<td>GND</td>
<td>CH 12 LO</td>
</tr>
<tr>
<td>32</td>
<td>GND</td>
<td>GND</td>
<td>CH 12 LS</td>
</tr>
</tbody>
</table>

Figure 1-12. E1418A Terminal Module Connector Pinout
Configuring the Terminal Module

The screw-type terminal module contains jumpers that control how the Agilent E1418A operates. The jumpers are shipped in a separate bag with the terminal module. The Agilent E1418A will operate without any jumpers installed. You can, however, store the jumpers on the terminal module for later reconfiguration. Figure 1-13 shows the jumper locations and example settings.

There are two jumpers for each channel; a P/J jumper and a V/I jumper. The two jumpers work together.

![Diagram of P/J and V/I Jumpers](image)

Figure 1-13. P/J and V/I Jumpers

P/J Jumper

The P/J jumper sets the channel output mode to be either Program Selectable or Jumper Selectable. When the jumper is in the program selectable position, the channel output mode can be set via programming commands. In the jumper selectable position, the channel output mode is set via the V/I jumper.

V/I Jumper

The V/I jumper sets the channel output mode to either voltage or current when the P/J jumper is set to the Jumper Selectable position. When the P/J jumper is set to Program Selectable, this jumper has no effect.

Notes

With no jumpers installed, the module will be in the Program Selectable output mode.

When the P/J Jumper is set to the Jumper Selectable position, the output mode cannot be changed with SCPI commands. The output mode following a *RST common command will be the mode set by the V/I jumper.
Options A3E and A3H Terminals

The P/J jumper connection for each channel is named CH X PRGM JMPR in the connection diagram on page 30. With no connection to this pin, the module will operate in the Program Selectable mode. Shorting this pin to GND will set the Jumper Selectable mode for channel X.

When CH X PRGM JMPR is shorted to GND, the CH X MODE JMPR pin (corresponding to the V/I Jumper) sets the output mode for channel X. If the pin is open, voltage output mode is selected. If the pin is shorted to GND, current output mode is selected for channel X.
Terminal Module Connections

Each channel has four output lines; HI, LO, HS (Hi Sense), and LS (Low Sense). When using a channel in the voltage output mode, you can use the sense lines to increase accuracy or to compensate for long lead lengths. The sense leads are not used in the current output mode.

Voltage and Current Output Connections

Figure 1-14 shows connections for three types of output. Channel 1 is connected in the 2-wire voltage output mode, the sense leads are not used (and the sense connections need not be made). Channel 2 is connected in the 4-wire voltage output mode. Use this connection for the highest voltage accuracy and to compensate for long lead lengths. Channel 3 is connected for current output mode (sense is not used for current output).

Note

The sense leads are internally disconnected for current output. External wiring may be left connected to the sense outputs on the terminal module with no effect.

Options A3E and A3H Terminals

HI, HS, LO, and LS connections are shown on the diagram on page 30.
Combining Channels

You can combine channels in series to obtain higher output voltages or in parallel to obtain higher output currents.

Channels in Series

- All channels connected in series **MUST** be configured as isolated channels (with isolated plug-on modules installed).
- Up to 3 channels may be combined, but the output voltage **MUST NOT** exceed 42 Vdc/42 Vpeak.

Channels in Parallel

- Channels may be either Isolated or Non-Isolated.
- Up to 16 channels may be combined.

Figure 1-15 shows how to combine voltage channels (in series) and current channels (in parallel).

CAUTIONS

All SERIES CONNECTED output channels **MUST** be configured as **ISOLATED OUTPUTS**.

When combining output voltage channels, be sure not to exceed the maximum module isolation rating of 42 Vdc or 42 Vpeak.
Connecting an External Trigger Source

An external trigger input is provided on the terminal module. Use the external trigger to externally synchronize multiple outputs or multiple instruments. The External Trigger uses TTL levels. The trigger occurs when the EXT TRIGn connection is pulled low for at least 1 \(\mu \text{s} \). Typical connections to the external trigger is shown in Figure 1-16.

Options A3E and A3H Terminals

The external trigger line is located on the upper connector and is labeled EXT TRIGn in the diagram on page 30.
Using the CAL Output Terminals

The CAL Output Terminals provide one set of connections that can be used to calibrate the output on all 16 channels. Calibration and adjustment procedures are described in Appendix D beginning on page 155.

The CAL output terminals are available on the terminal module. There are four lines; HI, LO, HS (Hi Sense), and LS (Low Sense). Typical CAL output terminal connections are shown in Figure 1-17.

Figure 1-17. Calbus Connections

Options A3E and A3H Terminals

The CAL Output Terminals are located on the upper connector and are labeled CAL HI, CAL HS, CAL LO, and CAL LS in the diagram on page 30.
Initial Operation

This section provides a programming example to help verify correct module installation and operation. Additional programming examples and procedures are given in the next chapter.

The examples shown here use BASIC and SCPI (Standard Commands for Programmable Instruments). The example assumes a factory set logical address of 72 for the Agilent E1418A module and uses an Agilent Command Module for command interpretation. Examples in ANSI C are given in the next chapter.

Note

This discussion applies to SCPI programming using the driver provided with the module. The SCPI commands are described in Chapter 3 of this manual. Appendix B of this manual describes direct register access.

Device Driver

The Agilent E1418A module is shipped a driver CD. This CD contains the SCPI instrument driver, VXI plug-and-play drivers, example programs, and Agilent VIC (VXI Installation Consultant). Follow the instructions contained on the CD to properly install the device driver.

The following example shows how to query the command module and verify that the correct device driver is installed:

```
10 DIM A$[256]
20 OUTPUT 70900;"DIAG:DRIV:LIST?"
30 ENTER 70900;A$
40 PRINT A$
50 END
```

In this example, the command module is located on GPIB (interface address 7) and uses a primary address of 09. Responses to this example vary depending upon the drivers loaded on your system. A typical response might look like:

```
E1418,E1418,A.01.00,RAM;SWITCH,SWITCHBOX,A.08.00,RAM;
SYSTEM,E1405A,A.08.00,ROM;IBASIC,IBASIC,A.04.02,ROM;
VOLTMTR,E1326A,A.05.00,ROM;SWITCH,SWITCHBOX,A.07.00,
ROM;COUNTER,E1332A,A.04.02,ROM;COUNTER,E1333A,A.04.02,
ROM;DIG_I/O,E1330A,A.04.03,ROM;D/A,E1328A,A.04.02,ROM
```

Verify that the string “E1418,E1418,A.01.00,” is located somewhere within the returned string.
This example can be used to verify that the logical address has been correctly set, that the module is correctly installed, and that the module is communicating with the command module. The terminal module does not need to be installed for this example to work. This example queries the module for the identification string.

10 DIM A$[256]
20 OUTPUT 70909;"*IDN?"
30 ENTER 70909;A$
40 PRINT A$
50 END

The response should be similar to one of the following:

HEWLETT-PACKARD, E1418A_8CH, xxxxAxxxx, A.01.00

or

HEWLETT-PACKARD, E1418A_16CH, xxxxAxxxx, A.01.00

The xxxxAxxxx portion of the response string is the module serial number.
Chapter 2
Programming Examples

Using This Chapter

This chapter provides examples and descriptions of the most common operations using the Agilent E1418A. Use this chapter to gain an overview of how to program the module, and to obtain programming hints. The examples shown in this chapter are in ANSI C and use SCPI commands to control the module. The SCPI commands are described in detail in Chapter 3 of this manual. SCPI usage conventions and syntax rules are described beginning on page 60.

This chapter is divided into the following sections:

- Querying Module Identification and Configuration Page 40
- APPLy Output .. Page 45
- Error Checking .. Page 47
- SOURce Output .. Page 50
- Setting the Output Mode Page 52
- Controlling the Output Relay Page 53
- Triggering .. Page 54
- Using *OPC? .. Page 56
- Combining Output Channels Page 57

Program Examples

Example programs in ANSI C format are included on the driver CD supplied with the Agilent E1418A. Most examples in this chapter are included. The examples are ASCII files with the *.c extension.

Note

The int data type is system dependent. These examples were developed on a system where int is a 16-bit integer. Other systems may define int to be a different width.

In the examples, the Agilent VISA Transition Library is used for I/O operations with the VXIbus. An Agilent command module (Agilent E1405/E1406) is used and controlled via GPIB.

To use the Agilent VISA Transition Library (abbreviated as VTL), include the visa.h header file.

#include visa.h
Agilent VTL function calls and data types typically begin with the lower case letters `vi`. Output and enter are performed with functions named `viPrintf` and `viSscanf`. Both these functions require a session (a VTL defined I/O function) to uniquely identify the device being controlled. In the examples, the session has been named `dac`.

Querying Module Identification and Configuration

This example will query the module for the identification string and determine the module configuration.

The module identification is obtained using the IEEE-488 Command `*IDN?`.

!Send query to the module.

`*IDN?`

!Enter a string.

The string returned should be similar to one of the following:

```
HEWLETT-PACKARD,E1418A_8CH,xxxxAxxxxx,A.01.00
```

or

```
HEWLETT-PACKARD,E1418A_16CH,xxxxAxxxxx,A.01.00
```

The `xxxxAxxxxx` portion of the response string is the module serial number.

The module configuration is obtained using the `DIAGnostic:CONFiguration?` query.

!Send query to the module.

`DIAG:CONF?`

!Enter six integers and decode the integers.
The DIAG:CONF? query returns six integers. The six integers returned contain the module configuration and have the following meaning.

<table>
<thead>
<tr>
<th>Integer Returned</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Expansion Board ID in the form: 0 = present, 7 = none (expansion board contains channels 9 through 16)</td>
</tr>
<tr>
<td>2nd</td>
<td>Terminal Module ID in the form 0 = screw type, 7 = none or other</td>
</tr>
<tr>
<td>3rd</td>
<td>Isolated/Non-isolated Channel status A bit set to 0 indicates an isolated channel A bit set to 1 indicates a non-isolated channel or no plug-on module installed (DO NOT operate the module without a plug-on module) Bits 0 – 15 correspond to channels 1 – 16, respectively*</td>
</tr>
<tr>
<td>4th</td>
<td>Channel Mode A bit set to 0 indicates a current output channel A bit set to 1 indicates a voltage output channel Bits 0 – 15 correspond to channels 1 – 16, respectively*</td>
</tr>
<tr>
<td>5th</td>
<td>Channel Output State A bit set to 0 indicates the channel output relay is closed A bit set to 1 indicates the channel output relay is open Bits 0 – 15 correspond to channels 1 – 16, respectively*</td>
</tr>
<tr>
<td>6th</td>
<td>Channel Mode Programmable State (P/J Jumper) A bit set to 0 indicates a channel is not mode programmable A bit set to 1 indicates a channel is mode programmable Bits 0 – 15 correspond to channels 1 – 16, respectively*</td>
</tr>
</tbody>
</table>

* For 8-channel configurations, the upper 8 bits of integers 3, 4, 5, and 6 are set to 1’s.

For example, if the following six integers are returned, the module has the configuration indicated.

<table>
<thead>
<tr>
<th>Integer</th>
<th>Decimal Value</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>7</td>
<td>No expansion board installed (Only channels 1 through 8).</td>
</tr>
<tr>
<td>2nd</td>
<td>7</td>
<td>No Terminal Module installed or unknown terminal module installed.</td>
</tr>
<tr>
<td>3rd</td>
<td>-1</td>
<td>All channels are non-isolated.</td>
</tr>
<tr>
<td>4th</td>
<td>-1</td>
<td>All channels are voltage output channels.</td>
</tr>
<tr>
<td>5th</td>
<td>-1</td>
<td>All channel outputs are disabled (all output relays are open).</td>
</tr>
<tr>
<td>6th</td>
<td>-1</td>
<td>All channels are output mode programmable.</td>
</tr>
</tbody>
</table>
The following program segment demonstrates how to read the module identification string and the configuration. The configuration integers are bit manipulated using the C operator for bit shifting \(\text{result} = \text{result} << 1 \) (a one bit shift to the left).

```c
/** FUNCTION PROTOTYPES **/
void main (void);
void err_handler(ViSession vi, ViStatus x); /* VTL error routine */
void sys_err(ViSession resource); /* Checks for SCPI programming errors */

/** GLOBAL **/
ViStatus err;
ViSession defaultRM, cmd, dac;

void main (void)
{
    int i, num_chan, result = {0}, config[6]={0};
    char buf[256] = { 0 };

    /** Check the module identification ***/
    err=viPrintf(dac, "*IDN?\n"); /* request id from the module */
    err=viScanf(dac, "%t", &buf); /* enter string returned */
    printf("Module is identified as a %s\n", buf); /* print the result */

    /** Get the module configuration ***/
    err=viPrintf(dac, "DIAG:CONF?\n"); /* request module configuration */
    err=viScanf(dac, ",6d", &config); /* returns six integers */

    /* Decode the first integer */
    result=config[0]; /* Expansion board */
    if (result < 7)
    {
        printf("Module is a 16 channel device\n");
        num_chan = 16;
    }
    else
    {
        printf("Module is an 8 channel device\n");
        num_chan=8;
    }
}
/* Decode the second integer */

result = config[1];  /* Terminal Module */
if (result > 0)
{
    printf("Module does NOT have a terminal module installed\n");
} else
{
    printf("Module has a screw-type terminal module installed\n");
}

/* Decode the third integer */

result = config[2];  /* Isolated or non-isolated outputs */
if (num_chan < 9) result = result << 8; /* strip upper 8 bits */
for (i=num_chan;i>0;i--)
{
    if (result >= 0x8000)
    {
        printf("Channel %d is configured for non-isolated output\n",i);
    } else
    {
        printf("Channel %d is configured for isolated output\n",i);
    }
    result = result << 1;
}

/* Decode the fourth integer */

result = config[3];  /* Output Mode Voltage or Current */
if (num_chan < 9) result = result << 8; /* strip upper 8 bits */
for (i=num_chan;i>0;i--)
{
    if (result >= 0x8000)
    {
        printf("Channel %d is set to voltage output mode\n",i);
    } else
    {
        printf("Channel %d is set to current output mode\n",i);
    }
    result = result << 1;
}
/* Decode the fifth integer */

result=config[4];     /* Channel relay open or closed */
if (num_chan < 9) result = result << 8; /* strip upper 8 bits */
for (i=num_chan;i>0;i – –)
{ 
    if (result >= 0x8000) 
    { 
        printf("Channel %d output is disabled\n",i);
    }
    else 
    { 
        printf("Channel %d output is enabled\n",i);
    }
    result = result << 1;
}

/* Decode the sixth integer */

result=config[5];     /* P/J Jumper position */
if (num_chan < 9) result = result << 8; /* strip upper 8 bits */
for (i=num_chan;i>0;i – –)
{ 
    if (result >= 0x8000) 
    { 
        printf("Channel %d output mode is programmable\n",i);
    }
    else 
    { 
        printf("Channel %d output mode is fixed and jumper selected\n",i);
    }
    result = result << 1;
}
**APPLy Output**

The APPLyn subsystem commands provide the easiest method to output voltages or currents.

```c
/* Set channel 1 for 5.0 Volt output */
APPLy1:VOLTage 5.000
/* Channel is set to voltage output and 5.000 V applied */
/* Set channel 8 for 10 mA output */
APPLy8:CURRent 0.0100
/* Channel is set to current output and 10 mA applied */
```

The APPLyn subsystem outputs the voltage or current specified on the channel specified immediately. The output relay for that channel is closed. Other channel outputs and output states are not disturbed.

An APPLyn subsystem command performs several actions with a single command. Each APPLyn command affects a single channel and:

- Sets the channel output mode (voltage or current).
- Sets the output value (volts or amps).
- Enables the outputs (closes the output relay).

The output channel remains enabled, and outputs the last programmed voltage or current value, unless you take explicit action to turn off the output. For example, if you send two APPLyn commands to the same channel, the first command sets an output value and closes the output relay. The second command changes only the output value (since the relay is already closed).

```c
/* Set channel 1 for 5.0 Volt output */
APPLy1:VOLTage 5.000
/* Channel 1 is set to voltage output and 5.000 V applied */
/* Now set channel 1 for 6.0 Volt output */
APPLy1:VOLTage 6.000
/* Channel 1 is set to voltage output and 6.000 V applied */
```

The commands above will set a 5.000 Volt output on Channel 1, and then set a 6.000 Volt output on channel 1. The output relay is not affected by the second command.
The output can also be disabled before changing the mode or output value. Use the OUTPutn commands to disable the output.

/* Set channel 1 for 5.0 Volt output */
APPLy1:VOLTage 5.000
/* Disable the output */
OUTPut1 OFF
/* Channel 1 output relay is opened */
/* Now, enable the output */
OUTPut1 ON
/* Channel 1 is set to voltage output and 5.000 V applied */
/* Disable the output */
OUTPut1 OFF
/* Now set channel 1 for 20 mA current output */
APPLy1:CURRent .0200
/* Channel 1 is set to current output and 20 mA applied */

The OUTPut subsystem commands only affect the output relay. The programmed mode and output value for a given channel is not changed. Once the mode is set and the desired output value programmed, the output can be turned on or off as needed with the OUTPutn[:STATe] command.

It is also possible, with the APPLyn commands, to change the channel output mode from voltage to current.

/* Set channel 1 for 5.0 Volt output */
APPLy1:VOLTage 5.000
/* Channel 1 is set to voltage output and 5.000 V applied */
/* Now set channel 1 for 20 mA current output */
APPLy1:CURRent .0200
/* Channel 1 is set to current output and 20 mA applied */

During the change from voltage to current (or current to voltage), the channel output relay is opened. Sending a command sequence similar to the one above performs the following actions:

- Programs channel 1 to the voltage mode and 5.000 Volts output.
- Closes the channel 1 output relay.
- Opens the channel 1 output relay.
- Programs channel 1 to current mode and 20 mA output.
- Closes the channel 1 output relay.
Error Checking

To develop programs you will need to create one or more error checking routines. For example, you will need routines to check for errors in the following operations:

- I/O operations to the VXIbus, and
- SCPI commands to the module.

I/O Error Checking

I/O error checking is specific to the type of I/O library you are using to communicate with the VXIbus. In this manual and on the CD, the Agilent VISA Transition Library is used.

Function calls to the Agilent VISA Transition Library (VTL) typically begin with a lower case vi. For example, viPrintf is a VTL output function call. The Agilent VTL I/O function calls return a variable that can be tested for errors against the VTL variable VI_SUCCESS. In the examples, the variable err is used to trap the VTL errors and is declared as a global variable of the ViStatus type (defined in visa.h).

I/O error checking is illustrated in the following program example. The VTL error checking function is named error_handler. Errors found are reported to the standard output device.

SCPI Error Checking

You must also check for errors reported by the SCPI driver. The SCPI driver reports errors in response to the SYSTem:ERRor? query.

/* Repeat … */
SYST:ERR?
/* …until no errors found */

The query returns two values: an integer error code and an error description string. The integer value returns +0 and the string returns “No Error” if no errors are found.

SCPI errors are reported in an error queue. The error queue is a first in, first out queue. Each response to the SYSTem:ERRor? query removes one error from the queue. Multiple SCPI errors may be generated by a single incorrect command and the error queue should be read until it reports +0, "No Error".
SCPI error checking is illustrated in the following program example. The SCPI error routine is named `sys_error`. Errors found are reported to the standard output device.

```c
/** FUNCTION PROTOTYPES **/
void main (void);
void err_handler(ViSession vi, ViStatus x); /* VTL error routine */
void sys_err(ViSession resource); /* SCPI error routine */

/** GLOBAL **/
ViStatus err;
ViSession defaultRM, cmd, dac;

void main (void)
{
 /*** Open the resource manager, command module, and dac sessions **/**
 viOpenDefaultRM (&defaultRM);
 viOpen (defaultRM, CMD_ADDRESS, VI_NULL, VI_NULL, &cmd);
 viOpen(defaultRM, DAC_ADDRESS, VI_NULL, VI_NULL, &dac);

 /*** Set the timeout for the dac **/**
 viSetAttribute(dac, VI_ATTR_TMO_VALUE, 10000); /* 10 second timeout */
 err=viPrintf(dac, "*RSTn"); /* reset the dac */
 if(err < VI_SUCCESS) err_handler(dac, err); /* VTL error check */
 sys_err (dac); /* SCPI error check */
}

/***VTL Error handling function **/**
void err_handler (ViSession dac, ViStatus err)
{
 char buf[1024]=0;
 viStatusDesc(dac,err,buf);
 printf("VTL ERROR = %s\n", buf);
 return;
}

/***End of VTL error handler **/**
```
/** SCPI Error check ****/
void sys_err(ViSession resource)
{
    char buf [1024] = {0};
    int err_no;
    err = viPrintf (resource, "SYST:ERR?"); /* query error queue */
    if (err < VI_SUCCESS) err_handler(resource,err);
    err = viScanf (resource,"%d\t",&err_no,buf); /* get error number and string */
    if (err < VI_SUCCESS) err_handler(resource,err);
    while (err_no != 0)
    {
        printf ("Command Error: %d,%s\n",err_no,buf);
        err = viPrintf (resource, "SYST:ERR?"); /* query error queue */
        if (err < VI_SUCCESS) err_handler(resource,err);
        err = viScanf (resource,"%d\t",&err_no,buf); /* get error number and string */
        if (err < VI_SUCCESS) err_handler(resource,err);
    }
    return;
}
/*** End of SCPI error check ****/
SOURce Output

Setting an output on a channel is a three step process:

– Set the channel mode (voltage or current)
– Set the channel output value (volts or amps)
– Enable the output (close the channel output relay)

As described previously, a single **APPLYn** command performs all three of these actions. In some cases you may need more control of each step in the output process. The following commands perform the same action as a single **APPLYn** command.

/* Set channel 1 voltage mode */
SOURce1:FUNCtion:MODE VOLTage

/* Channel 1 is set to voltage output */
/* Set channel 1 voltage output */
SOURce1:VOLTage 5.000

/* Channel 1 is set to output 5.000 Volts */
/* Turn on the output */
OUTPut1 ON

/* Channel 1 output is enabled */

The SOURce subsystem contains two types of commands to set current or voltage output. The type used in the above examples has the form:

SOURcen:CURRent[:LEVell][:IMMediate][:AMPLitude] <value>
SOURcen:VOLTage[:LEVell][:IMMediate][:AMPLitude] <value>

The implied commands (enclosed in brackets [ ] ) are not shown in the examples. The commands shown above immediately program the output values. The SOURce subsystem also contains commands of the form:

SOURcen:CURRent[:LEVell]:TRIGgered[:AMPLitude] <value>
SOURcen:VOLTage[:LEVell]:TRIGgered[:AMPLitude] <value>

These commands are used with the trigger system to control when the outputs are applied. The trigger system is described on page 54.
Like the APPLyn commands, you can change the output value by sending additional SOURce*n* commands. Changing the output value with the SOURce*n* commands does not open the output relay.

/* Set channel 1 voltage mode */
SOURce1:FUNCtion:MODE VOLTage

/* Set channel 1 voltage output */
SOURce1:VOLTage 5.000

/* Turn on the output */
OUTPut1 ON

/* Channel 1 output is enabled */
/* Send a new output voltage */
SOURce1:VOLTage 15.000

Changing the output mode with the SOURce*n* commands opens the output relay.

/* Set channel 1 voltage mode */
SOURce1:FUNCtion:MODE VOLTage

/* Set channel 1 voltage output */
SOURce1:VOLTage 5.000

/* Turn on the output */
OUTPut1 ON

/* Channel 1 output is enabled and 5 volts applied */
/* Send a new output mode */
SOURce1:FUNCtion:MODE CURRent

/* Channel 1 output is disabled */
/* Set channel 1 output current */
SOURce1:CURRent .01

/* Channel 1 is programmed for 10 mA */
/* Turn on the output */
OUTPut1 ON

/* Channel 1 output is enabled and 10 mA applied */
Setting the Output Mode

The output mode can be set using commands in the SOURce subsystem.

```
SOURce1:FUNCtion:MODE VOLTage
SOURce2:FUNCtion:MODE CURRent
```

The mode can also be set on the terminal module with the P/J jumpers and V/I jumpers (see page 31). If the mode is set to Jumper selectable with the P/J jumper on the terminal module, the mode cannot be changed with the SCPI commands and the output mode is set by the V/I jumper (also on the terminal module, see page 31).

For example, if on the terminal module, channel 1 P/J jumper is set to Jumper Selectable and the V/I jumper is set to current mode, the following command will each generate an error:

```
SOURce1:FUNCtion:MODE VOLT
```

The error returned is:

```
+3012 Channel cannot be programmed to this mode, check jumpers
```

Appendix C, starting on page 151 contains a full list of the errors that may be generated by the SCPI commands for the Agilent E1418A.
Controlling the Output Relay

There are three programming methods to enable the output of a channel (close the output relay).

- The `APPLy:VOLTage <value>` or `APPLy:CURRent <value>` command both program an output value and close the output relay on a single channel.
- The `OUTPut<n>:STATe ON` command closes the output relay for a single channel. The last programmed mode and output value remains in effect.
- The `DIAGnostic:OUTPut:ALL:STATe ON` command closes all output relays. The order of relay closure is not guaranteed.

There are three programming methods to disable the output of a channel (open the output relay).

- Send the `OUTPut<n>:STATe OFF` command to open a single channel output relay without changing the programmed mode or output value for that channel or affecting any other channels.
- Send `*RST` to program all channels to voltage mode, 0 volts output, and open all output relays. `*RST` will not change the output mode if the P/J jumper is set to Jumper Selectable.
- Send the `DIAGnostic:OUTPut:ALL OFF` command to open all output relays without changing the programmed mode or output value.

The output relay will also be opened and then closed by a change of output mode using the `APPLy` commands.

- An `APPLy:VOLTage <value>` followed by an `APPLy:CURRent <value>` command (or vice versa) will open and then close the output relay.

All output relays will be opened, and left open, by the following commands.

- The `SOURcen:FUNCTION:MODE VOLTage` or `SOURcen:FUNCTION:MODE CURRent` commands set output mode for a single channel and opens the output relay for that channel. Other channels are not affected.
- The `*RST` command performs a reset and leaves the output relays open on all channels (the command also programs all channels to voltage mode, 0 volts output unless the P/J jumper is set to Jumper Selectable).
- The `*TST?` command performs a self-test and leaves the output relays open on all channels. Programmed output modes are restored following the self-test.
Triggering

To synchronize outputs to external events, backplane events, or software events use the TRIGger subsystem commands. Triggering an output from the module involves four steps:

1. Set the trigger source.
2. Set one or more channels for triggered output.
3. Put the trigger system in the wait-for-trigger state.
4. Send the trigger event.

The TRIGger:SOURce <source> command sets the trigger source. One of four trigger sources can be specified:

- VXIbus backplane trigger — one of the eight TTL trigger lines defined in the VXIbus P2 connector. The lines are named *TTLTRG0 through *TTLTRG7. Any one of these trigger lines may be used as a trigger source.
- Software trigger — generated within the controlling program.
- Immediate trigger — places the trigger system in the wait-for-trigger state and then immediately triggers the output.
- External Trigger — an input on the terminal module (see page 35). Use this source to synchronize the outputs to an external event.

The SOURce:n:VOLTage[:LEVEL]:TRIGgered[:AMPLitude] and SOURce:n:CURRent[:LEVEL]:TRIGgered[:AMPLitude] commands program a channel output value when the trigger conditions are met.

The INITiate:IMMediate command places the trigger system in the wait-for-trigger state. The trigger event depends upon the trigger source set.

The trigger system is common to all channels in the module. That is, a single trigger event triggers the output on all channels that are waiting for the trigger. The SOURCE subsystem contains commands to put each channel in the wait-for-trigger state.

/* Set the trigger source for software trigger */
TRIGger:SOURce HOLD

/* Set channels 1 and 2 for triggered output */
SOURce1:VOLTage:TRIGgered 1.5000
SOURce2:VOLTage:TRIGgered -2.5000

/* Close the output relays */
OUTPut1 ON
OUTPut2 ON

/* Put the trigger system in the wait-for-trigger state */
INITiate

/* Send the trigger event */

TRIGger:IMMediate

/* Channels 1 and 2 output the programmed voltages */

Note that the channels must be set for triggered output (using the SOURce subsystem) before the trigger system is changed to the wait-for-trigger state (using the INITiate command). If you send the SOURcen commands after the INITiate command, the following error is reported:

+3014 Illegal while initiated

Once the outputs have been triggered (using TRIGger:IMMediate in the previous example) the trigger system is set back to the trigger idle state. New triggered channel output values can be programmed and the trigger system put in the wait-for-trigger state. The triggering process is illustrated below.

Note

Once an output is enabled and a voltage or current output, that value remains on the output. Sending subsequent SOURn:VOLT:TRIG or SOURn:CURR:TRIG commands will not change the output value until the trigger event is received. The output may be disabled (output relay opened) with the OUTPn OFF command.

The trigger source set using the TRIGger:SOURce command remains in effect until it is changed or a reset occurs. Following a reset (*RST) the trigger source is set to HOLD.
Using *OPC?

As shown, the examples have made no attempt to coordinate the program execution with the Agilent E1418A module. In some cases, you may need to pause program execution until the module has completed executing the commands.

The IEEE-488 common command *OPC? can be used to keep the program and the module synchronized. The *OPC? query returns a 1 when all programmed operations are complete. The program can wait for the response before executing additional statements. The returned value is unimportant (always a 1).

/* Set channel 1 voltage mode */
SOURce1:FUNCtion:MODE VOLTage

/* Set channel 1 voltage output */
SOURce1:VOLTage 5.000

/* Turn on the output */
OUTPut1 ON

*OPC?

/* enter the response */

*OPC? is used to synchronize the program with the module since program execution waits for the response. The command may be combined using the ; as described under “Linking Commands” on page 62. For example,

/* Set channel 1 voltage mode */
SOURce1:FUNCtion:MODE VOLTage:*OPC?

/* enter the response */
Combining Output Channels

As described on page 34, multiple outputs may be combined to obtain higher voltage or current outputs. A triggered output is recommended for combined channels. The general sequence used to control combined channels is:

1. Set the trigger source.
2. Close the output relays.
3. Set the desired output on all combined channels.
4. Trigger the output.

For example, when three current channels are combined in parallel as shown on page 34, the following commands can be used.

```plaintext
/* Set the trigger source for external trigger */
TRIGger:SOURce EXT

/* Close the output relays */
OUTPut9 ON
OUTPut10 ON
OUTPut11 ON

/* Set channels 9, 10, and 11 for triggered output */
SOURce9:CURRent:TRIGgered MAX
SOURce10:CURRent:TRIGgered MAX
SOURce11:CURRent:TRIGgered .0100

/* Put the trigger system in the wait-for-trigger state */
INITiate

/* Wait for the trigger event */

/* When the trigger occurs… */

/* …output 50 mA */
```

When combining channels in parallel, for increased current output, channels may be configured with either isolated or non-isolated plug-on modules. When combining channels in series, for increased voltage output, all combined channels **MUST** be configured with isolated plug-on modules.

---

**CAUTION**

When combining output voltage channels (series connections) you must ensure that the output does not exceed the maximum isolation rating of ±42 Vdc/42 Vpeak. Up to three channels may be combined, but the controlling program must ensure that all three channels together are **NEVER** set beyond ±42 Vdc.
Using This Chapter

This chapter describes Standard Commands for Programmable Instrumentation (SCPI) and summarizes IEEE 488.2 Common (*) Commands applicable to the Agilent E1418A D/A Converter Module. This chapter contains the following sections:

- Command Types ........................................... Page 59
- SCPI Command Reference ................................. Page 62
- ABORt Subsystem ........................................ Page 63
- APPLy Subsystem ......................................... Page 64
- CALibration Subsystem .................................... Page 66
- DIAGnostic Subsystem .................................... Page 76
- INITiate Subsystem ....................................... Page 80
- OUTPut Subsystem ....................................... Page 81
- SOURce Subsystem ....................................... Page 84
- STATus Subsystem ....................................... Page 95
- SYSTem Subsystem ....................................... Page 100
- TEST Subsystem ......................................... Page 101
- TRIGger Subsystem ....................................... Page 104
- IEEE 488.2 Common Command Quick Reference .... Page 106
- Agilent E1418A Command Quick Reference .......... Page 107

Command Types

Commands are separated into two types: IEEE 488.2 Common Commands and SCPI Commands.

**Common Command Format**

The IEEE 488.2 standard defines the common commands that perform functions like reset, self-test, status byte query, etc. Common commands are four or five characters in length, always begin with the asterisk character (*), and may include one or more parameters. The command keyword is separated from the first parameter by a space character. Common commands are not documented, except in a general manner, in this manual. Some examples of common commands are:

- *RST
- *ESR 32
- *STB?
SCPI Command Format

SCPI commands perform functions like setting outputs, querying instrument states, or retrieving data. The command structure is a hierarchical structure that usually consists of a top level (or root) command, one or more lower level commands, and their parameters. The following example shows part of a typical subsystem:

```
SOURce n:
 FUNCtion:
 MODE <CURRent | VOLTage>
```

SOURce n: is the root command (where n is replaced by the channel number in the range of 1 to 16), FUNCtion: is a second level command, MODE is a third level command, and <CURRent | VOLTage> is an input parameter.

**Command Separator**

A colon (:) always separates one command from the next lower level command. This is illustrated as follows:

```
SOURce n:FUNCtion:MODE VOLT
```

Colons separate the root command from the second level (SOURce n:FUNCtion) and the second from third level (FUNCtion:MODE), and so forth.

**Abbreviated and Short Commands**

The command syntax shows most commands as a mix of upper and lower case letters. The upper case letters indicate an abbreviated spelling for the command. For shorter program lines, send only the abbreviated form. For better program readability use the entire command. The instrument will accept either the abbreviated form or the entire command.

For example, if the command reference syntax shows the command TRIGger, then TRIG and TRIGGER are both acceptable forms. Other forms of TRIGger, such as TRIGG or TRIGGE will generate an error.

The instrument does not distinguish between upper case and lower case characters. Therefore TRIGGER, trigger, and TrigGeR are all acceptable.

Command keywords can be entered in their full form, as shown above, or can be entered in their short form. In this manual, the entry required in short form commands is always capitalized. The short form is generally used for examples in this manual.
Implied Commands

Implied commands appear in square brackets ([ ]) in the command syntax. (Note that the brackets are not part of the command and are not sent to the instrument.) Suppose you send a second level command but do not send the preceding implied command. In this case, the instrument assumes you intend to use the implied command and it responds as if you had sent it. Examine this excerpt from the STATus subsystem shown below:

```
STATus:
OPERation
[:EVENt]?
```

The third level command, EVENt, is implied. To read the value of the Event Register, you can use either:

```
STATus:OPERation?
```

or

```
STATus:OPERation:EVENt?
```

Parameters

Parameters are enclosed in greater than/less than symbols (< >) in the command syntax. When more than one parameter is allowed, the parameters are separated by a vertical line ( | ).

Parameter Types. The following table contains explanations and examples of parameter types you might see later in this chapter. Parameters must always be separated from the keywords by a space.

<table>
<thead>
<tr>
<th>Parameter Type</th>
<th>Explanations and Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numeric</td>
<td>Accepts all commonly used decimal representations of numbers including optional signs, decimal points, and scientific notation. 123, 123E2, -123, -1.23E2, .123, 1.23E-2, 1.23000E-01. Special cases include MIN, MAX, and DEF.</td>
</tr>
<tr>
<td>Boolean</td>
<td>Represents a single binary condition that is either true or false. ON, OFF, 1, 0.</td>
</tr>
<tr>
<td>Discrete</td>
<td>Selects from a finite number of values. These parameters use mnemonics to represent each valid setting. An example is the SOURCE:FUNCTION:MODE &lt;mode&gt; command where the &lt;mode&gt; parameter can be either CURRent or VOLTage.</td>
</tr>
</tbody>
</table>

Optional Parameters. Parameters shown within square brackets ([ ]) are optional parameters. (Note that the brackets are not part of the command and are not sent to the instrument.) If you do not specify a value for an optional parameter, the instrument chooses a default value.


**Linking IEEE 488.2 Common Commands with SCPI Commands.** Use a semicolon between the commands. For example:

```
*RST;APPLy2:VOLT 10 or INIT:IMM:*IDN?
```

**Linking Multiple SCPI Commands.** Use both a semicolon and a colon between the commands. For example:

```
SOURce2:FUNCTION:MODE VOLT;:SOURce2:VOLTage 10
```

---

**SCPI Command Reference**

The following sections describe the Standard Commands for Programmable Instruments (SCPI) commands for the Agilent E1418A D/A Converter Module. Commands are listed alphabetically by subsystem and within each subsystem. A command guide is printed in the top margin of each page. The guide indicates the current subsystem on that page.
The ABORt subsystem disables the trigger system and places the trigger system in the trigger idle state.

**Subsystem Syntax**

```
ABORt
```

**Parameters**  None.

**Comments**

- Following this command, the trigger system is in the idle state. Sending an INITiate command after ABORt returns the trigger system to the wait-for-trigger state.

- Triggering is described in more detail on page 54.

- **Related Commands**: INITiate[:IMMediate]
The \texttt{APPLy} subsystem enables and outputs a current or voltage on the specified channel.

\textbf{Subsystem Syntax}  
\begin{verbatim}
APPLyn
    :CURRent <value | MIN | MAX | DEF>
    :VOLTage <value | MIN | MAX | DEF>
\end{verbatim}

\textbf{APPLyn:CURRent} 
\begin{verbatim}
APPLyn:CURRent <value | MIN | MAX | DEF> outputs a current on the specified channel, \textit{n}. 
\end{verbatim}

\textbf{Parameters} 

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPLyn</td>
<td>keyword</td>
<td>1 to 8 or 1 to 16</td>
<td>1</td>
</tr>
<tr>
<td>&lt;value&gt;</td>
<td>numeric (float 32) or discrete</td>
<td>-0.02 Amps to +0.02 Amps or MIN</td>
<td>MAX</td>
</tr>
</tbody>
</table>

\textbf{Comments}  
- In the keyword, \texttt{APPLyn}, the valid range of \textit{n} is:
  1 to 8 for E1418A, E1418A Option 002
  1 to 16 for E1418A Option 001, E1418A Option 003.
  Values of \textit{n} outside these ranges will generate an error.

- The \texttt{<value>} parameter can range from -0.02 to +0.02 Amps.
  MIN sets -0.02 Amps output.
  MAX sets +0.02 Amps output.
  DEF sets 0 Amps output.

- This command is affected by the state of the P/J jumper for this channel on the terminal module. To use the \texttt{APPLyn:CURRent} command:
  - the P/J jumper must be set to program selectable or, if set to jumper selectable,
  - the V/I jumper must be set to the current mode.
  These jumpers are described on page 31.

- \textbf{Equivalent Commands}: \texttt{SOURce\textit{n}:FUNCTION:MODE CURR}, \texttt{SOURce\textit{n}:CURRent[:LEVEL][:IMMediate][:AMPLitude], OUTPut\textit{n}[:STATE] ON}

- \textbf{*RST Condition}:
  - If the P/J jumper is set to program selectable:
    output mode is set to voltage, 0 volts output, output relay open.
  - If the P/J jumper is set to jumper selectable:
    output mode is set by the V/I jumper, 0 volts or amps, output relay open.
**APPLy**:VOLTage

**APPLy**:VOLTage `<value | MIN | MAX | DEF>` outputs a voltage on the specified channel, `n`.

**Parameters**

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPLyn</td>
<td>keyword</td>
<td>1 to 8 or 1 to 16</td>
<td>1</td>
</tr>
<tr>
<td><code>&lt;value&gt;</code></td>
<td>numeric (float 32) or discrete</td>
<td>-16 V to +16 V or MIN</td>
<td>DEF</td>
</tr>
</tbody>
</table>

**Comments**

- In the keyword, APPLyn, the valid range of `n` is:
  - 1 to 8 for E1418A, E1418A Option 002
  - 1 to 16 for E1418A Option 001, E1418A Option 003.

- Values of `n` outside these ranges will generate an error.

- The `<value>` parameter can range from -16 Volts to +16 Volts.
  - MIN sets -16 Volts output.
  - MAX sets +16 Volts output.
  - DEF sets 0 Volts output.

- This command is affected by the state of the program jumper on the terminal module for this channel. To use the APPLyn:VOLT command:
  - the P/J jumper must be set to program selectable or, if set to jumper selectable,
  - the V/I jumper must be set to the voltage mode.

  This jumper is described on page 31.

- **Equivalent Commands:** SOURce<n>:FUNCTION:MODE VOLT,
  SOURce<n>:VOLTage[:LEVel][:IMMediate][:AMPLitude], OUTPut<n>[:STATe] ON

- **RST Condition:**
  - If the P/J jumper is set to program selectable:
    - output mode is set to voltage, 0 volts output, output relay open.
  - If the P/J jumper is set to jumper selectable:
    - output mode is set by the V/I jumper, 0 volts or amps, output relay open.
The CALibration commands are used during periodic calibration of the module. Calibration is described in Appendix D of this manual, beginning on page 155. You should review Appendix D before using any of these commands.

Subsystem Syntax

```
CALibration
 :CONDition?
 :CONFigure
 :RESistance?
 :RESet
 :STORe
 :TEST?
 :VALue
 :RESistance <value>

CALibration
 :CONFigure
 :CURRent?
 :VOLTage?
 :VALue
 :CURRent? <value>
 :VOLTage? <value>
```
**CALibration:CONDition?**

**CALibration:CONDition?** queries the module type and calibration status. The query returns four 16-bit unsigned integers.

**Parameters**  
**Returns:** four unsigned 16-bit integers (uint16).

**Comments**  
• The integers returned indicate the module configuration and status at the last calibration, not the current configuration of the module. The first and second integers returned from this query can be compared to the first and third integers returned from the **DIAGnostic:CONFigure?** query to determine if the module configuration has changed since the last calibration.

<table>
<thead>
<tr>
<th>Integer Returned</th>
<th>Meaning</th>
</tr>
</thead>
</table>
| 1                | Expansion Board ID in the form:  
0 = present, 7 = none  
(expansion board contains channels 9–16) |
| 2                | 2nd 16-bit value indicates how the channels are configured (isolated or non-isolated). A bit set to 0 indicates an isolated channel, a bit set to 1 indicates a non-isolated channel. Bits 0–15 correspond to channels 1–16, respectively. |
| 3                | 3rd 16-bit value indicates the current calibration status for each channel. A bit set to 0 indicates the channel is not calibrated for current, a bit set to 1 indicates the channel has been calibrated for current. Bits 0–15 correspond to channels 1–16, respectively. |
| 4                | 4th 16-bit value indicates the voltage calibration status for each channel. A bit set to 0 indicates the channel is not calibrated for voltage, a bit set to 1 indicates the channel has been calibrated for voltage. Bits 0–15 correspond to channels 1–16, respectively. |
CALibration

CALibration:CONFigure:RESistance?

**CALibration:CONFigure:RESistance?** configures the module to perform calibration of the internal calibration resistor and returns a 0 or 1 indicating the readiness of the module.

**Parameters**  
**Returns:** signed 16-bit integer (int16). 1 = ready, 0 = not ready.

**Comments**  
- The internal calibration resistor should be calibrated before calibrating the channels in current mode.
- This query configures the module for a 4-wire resistance measurement at the CAL output terminals when the calibration point is set to CALB (following a *RST or DIAgnostic:CALibration:OUTPut[:MODE] CALBus command).
- This query may also be used to set an external calibration resistor value when calibrating at each channel output.
- This query is used together with the CALibration:VALue:RESistance command to calibrate the current calibration resistor.
- Refer to Appendix D, “Voltage/Current Output Adjustment”, starting on page 155, for additional information about this command.

**Related Commands:** CALibration:VALue:RESistance

CALibration:RESet

**CALibration:RESet** reloads, for module use, the calibration constants stored in non-volatile memory.

**Parameters**  
- None.

**Comments**  
- This command, with respect to the calibration constants, performs the same action as power-on.
- At power-on, or following this command, calibration constants stored in non-volatile memory are loaded into the module where they are used during output operations.
- If the trigger system is waiting for a trigger when this command is received, an error is generated.
- This command opens all output relays.

**Related Commands:** CALibration:STOrE
CALibration:STORe

CALibration:STORe loads the stored non-volatile memory calibration constants with the calibration constants currently in use by the module.

Parameters  None.

Comments  • This command sets the calibration constants in non-volatile memory if the CAL Store Enable Jumper is properly set (see page 157). Non-volatile memory has finite life, based upon the number of writes. Use this command sparingly.

• At power-on, calibration constants stored in non-volatile memory are loaded into the module where they are used during output operations.

• When this command is received, the checksum is verified using the constants currently in use by the module. If the checksum does not verify, the non-volatile memory is not updated and an error is generated.

• Refer to Appendix D, “Voltage/Current Output Adjustment”, starting on page 155, for additional information about this command.

• Related Commands: CALibration:RESet

CALibration:TEST?

CALibration:TEST? performs an internal rough check of the calibration of each channel and returns an integer indicating the channel calibration condition. Calibration is checked to approximately ±2%.

Parameters  Returns: unsigned 16-bit integer (uint16).

Comments  • Following the completion of this query all outputs are disabled and set to 0 Volts or 0 Amps based on the channel mode.

• This query returns a 16-bit integer indicating the calibration status of each channel.
  – Bits set to 0 indicate no calibration errors were found.
  – Bits set to 1 indicate a channel with questionable calibration.
  – Bits 0–15 correspond to channels 1–16, respectively.

• If the trigger system is waiting for a trigger when this command is received, an error is generated.
CALibration

CALibration:VALue:RESistance

**CALibration:VALue:RESistance** `<value>` enters a new measured value to be used as the internal calibration resistor constant by the module.

**Parameters**

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>&lt;value&gt;</code></td>
<td>numeric (float 32)</td>
<td>Must be &gt; 0 ohms</td>
<td>none</td>
</tr>
</tbody>
</table>

**Comments**

- The new calibration constant is used by the module but not stored in non-volatile memory.
- This command is used together with the **CALibration:CONFigure:RESistance?** query to calibrate the internal current calibration resistor.
- The internal calibration resistor should be calibrated before calibrating channels in current mode. When calibrating at the CAL connections and using the internal calibration resistor, the value need only be entered once to calibrate all channels.
- If using an external resistor to calibrate current mode, you must calibrate at each channel output. External resistances in the range of 50 Ω to 500 Ω are recommended.
- Refer to Appendix D, “Voltage/Current Output Adjustment”, starting on page 155, for additional information about this command.

**Related Commands:** CALibration:STORe, CALibration:CONFigure:RESistance?
CALibration\(n\):CONFigure:CURRent?

**CALibration\(n\):CONFigure:CURRent?** configures the channel for current mode calibration and returns a 0 or 1 to indicate the channel’s readiness for calibration.

### Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALibration(n)</td>
<td>keyword</td>
<td>1 to 8 or 1 to 16</td>
<td>1</td>
</tr>
</tbody>
</table>

**Returns:** an unsigned 16-bit integer (uint16). 1 = ready, 0 = not ready.

### Comments

- In the keyword, CALibration\(n\), the valid range of \(n\) is:
  - 1 to 8 for E1418A, E1418A Option 002
  - 1 to 16 for E1418A Option 001, E1418A Option 003.
  Values of \(n\) outside these ranges will generate an error.

- This command is used together with the CALibration\(n\):VALue:CURRent? <value> query to perform current mode calibration.

- The calibration is performed either at the CAL output terminals or at an individual channel. The choice is made using the DIAGnostic:CALibration:OUTPut[:MODE] command.
  - When the DIAG:CAL:OUTP:MODE CALBus command (also the reset state) is used, the output relay routes the calibration current to the CAL output terminals (and opens all channel output terminals).
  - When the DIAG:CAL:OUTP:MODE CHAnnel command is used, the output relay routes the calibration current to the channel terminals (the CAL terminals are not connected).

  The DIAG:CAL:OUTP:MODE command must be sent to the module before the CALibration\(n\):CONFigure:CURRent? query.

- This query will generate an error if the trigger system is waiting for a trigger event when this command is received.

- This query returns a 0 to indicate that the channel is not ready for calibration, and a 1 to indicate the channel is ready for calibration.

- This query is affected by the state of the program jumper for this channel on the terminal module. To use this command:
  - the P/J jumper must be set to program selectable or, if set to jumper selectable,
  - the V/I jumper must be set to the current mode. The jumpers are described on page 31.

- Refer to Appendix D, “Voltage/Current Output Adjustment”, starting on page 155, for additional information about this command.

- **Related Commands:** CALibration\(n\):VALue:CURRent?, DIAGnostic:CALibration:OUTPut[:MODE]
CALibration

CALibration\textsubscript{n}:CONFigure:VOLTage?

\texttt{CALibration}\textsubscript{n}:CONFigure:VOLTage? \textit{configures} the channel for voltage mode calibration and returns a 0 or 1 to indicate the channel’s readiness for calibration.

**Parameters**

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALibration\textsubscript{n}</td>
<td>keyword</td>
<td>1 to 8 or 1 to 16</td>
<td>1</td>
</tr>
</tbody>
</table>

**Returns:** an unsigned 16-bit integer (uint16). 1 = ready, 0 = not ready.

**Comments**

- In the keyword, \texttt{CALibration}\textsubscript{n}, the valid range of \textit{n} is:
  - 1 to 8 for E1418A, E1418A Option 002
  - 1 to 16 for E1418A Option 001, E1418A Option 003.
  Values of \textit{n} outside these ranges will generate an error.

- This command is used together with the \texttt{CALibration}\textsubscript{n}:VALue:VOLTage? query to perform voltage mode calibration.

- The calibration is performed either at the CAL output terminals or at an individual channel. The choice is made using the DIAGnostic:CALibration:OUTPut[:MODE] command.
  - When the DIAG:CAL:OUTP:MODE CALBus command (also the reset state) is used, the output relay routes the calibration voltage to the CAL output terminals (and opens all channel output terminals).
  - When the command DIAG:CAL:OUTP:MODE CHANnel is used, the output relay routes the calibration voltage to the channel terminals (the CAL terminals are not connected).

  The DIAGnostic:CALibration:OUTPut[:MODE] command must be sent to the module before the CALibration\textsubscript{n}:CONFigure:VOLTage? query.

- This query will generate an error if the trigger system is waiting for a trigger event when this command is received.

- This query returns a 0 to indicate that the channel is not ready for calibration, and a 1 to indicate the channel is ready for calibration.

- This command is affected by the state of the program jumper for this channel on the terminal module. To use this command:
  - the P/J jumper must be set to program selectable or, if set to jumper selectable,
  - the V/I jumper must be set to the voltage mode.
  The jumpers are described on page 31.

- Refer to Appendix D, “Voltage/Current Output Adjustment”, starting on page 155, for additional information about this command.

- **Related Commands:** CALibration\textsubscript{n}:VALue:VOLTage?,
  DIAGnostic:CALibration:OUTPut[:MODE]
**CALibration**:VALue:CURRent?

`CALibration<n>:VALue:CURRent? <value>` enters a measured calibration value and returns a value indicating the present state of the current calibration process.

### Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALibration&lt;n&gt;</td>
<td>keyword</td>
<td>1 to 8 or 1 to 16</td>
<td>1</td>
</tr>
<tr>
<td>&lt;value&gt;</td>
<td>numeric (float 32)</td>
<td>0.0 to 6.0 V</td>
<td>none</td>
</tr>
</tbody>
</table>

**Returns:** unsigned 16-bit integer (uint16).

### Comments

- In the keyword, `CALibration<n>`, the valid range of `n` is:
  - 1 to 8 for E1418A, E1418A Option 002
  - 1 to 16 for E1418A Option 001, E1418A Option 003.

Values of `n` outside these ranges will generate an error.

- This command is used together with the `CALibration<n>:CONFigure:CURRent?` query to perform voltage mode calibration. Following the `CAL<n>:CONF:CURR?` query, this command is used repetitively until the return value indicates that the calibration is complete.

- The `<value>` parameter is the measured output voltage. A minimum of 9 measurements must be taken to calibrate a channel for current mode output (a maximum of 50 measurements may be required).

- This query returns one of the following values:

<table>
<thead>
<tr>
<th>Return Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Calibration is complete. New constants are in RAM. Resistance is calibrated.</td>
</tr>
<tr>
<td>1</td>
<td>More measurements are needed. Resistance is calibrated.</td>
</tr>
<tr>
<td>2</td>
<td>Calibration is complete. New constants are in RAM. Resistance is not calibrated.</td>
</tr>
<tr>
<td>3</td>
<td>More Measurements are needed. Resistance is not calibrated.</td>
</tr>
<tr>
<td>5</td>
<td>Calibration aborted.</td>
</tr>
</tbody>
</table>
A returned value of 5 (calibration aborted) is given if either:
   a. The command is received when the module is in voltage calibration or resistance calibration mode, or
   b. The calibration in process has entered more than 50 values without a successful calibration.

If the internal calibration resistor is not calibrated, the channel is not marked as calibrated following the completion of calibration (see the CALibration:CONDition? query). The new calibration constants are used, however.

When the channel current calibration is completed, the new calibration constants are used by the module, but not stored in non-volatile memory.

If a calibration is interrupted before completion (that is, by another command being received), no constants will be changed.

Refer to Appendix D, “Voltage/Current Output Adjustment”, starting on page 155, for additional information about this command.

Related Commands: CALibration:STORe, CALibrationn:CONFigure:CURRen?

CALibrationn:VALue:VOLTage?

CALibrationn:VALue:VOLTage? <value> enters a measured calibration value and returns a value indicating the present state of the voltage calibration process.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALibrationn</td>
<td>keyword</td>
<td>1 to 8 or 1 to 16</td>
<td>1</td>
</tr>
<tr>
<td>&lt;value&gt;</td>
<td>numeric (float 32)</td>
<td>0 to 19.2 V</td>
<td>none</td>
</tr>
</tbody>
</table>

Returns: unsigned 16-bit integer (uint16).

Comments

- In the keyword, CALibrationn, the valid range of n is:
  1 to 8 for E1418A, E1418A Option 002
  1 to 16 for E1418A Option 001, E1418A Option 003.
  Values of n outside these ranges will generate an error.

- This command is used together with the CALibrationn:CONFigure:VOLTage? query to perform voltage mode calibration. Following the CALn:CONF:VOLT? query, this command is used repetitively until the return value indicates that the calibration is complete.

- The <value> parameter is the measured output voltage. A minimum of 9 measurements must be taken to calibrate a voltage output channel (a maximum of 50 measurements may be required).
• This query returns one of the following values:

<table>
<thead>
<tr>
<th>Return Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Calibration is complete. New constants are in RAM.</td>
</tr>
<tr>
<td>1</td>
<td>More measurements are needed.</td>
</tr>
<tr>
<td>5</td>
<td>Calibration aborted.</td>
</tr>
</tbody>
</table>

• A return value of 5 (calibration aborted) is given if either:
  a. The command is received when the module is in current calibration or resistance calibration mode, or
  b. The calibration in process has entered more than 50 values without a successful calibration.

• When the channel voltage calibration is completed, the new calibration constants are used by the module, but not stored in non-volatile memory.

• If a voltage calibration is interrupted before completion (that is, by another command being received), no constants are changed.

• Refer to Appendix D, “Voltage/Current Output Adjustment”, starting on page 155, for additional information about this command.

• **Related Commands:** `CALibration:STORe`, `CALibration
n:CONFigure:VOLTage?`
The DIAGnostic subsystem contains commands used to check the module configuration, enable or disable all outputs simultaneously, change a channel’s mode without opening and closing the output relay, and check the state of the trigger on all channels.

**Subsystem Syntax**

```plaintext
DIAGnostic
:CALibration
 :OUTPut
 [:MODE] <path>
 [:MODE]?
 :CONFigure?
 :OUTPut
 :ALL
 [:STATE] <state>
 :SOURcen
 :FUNCtion
 :MODE <mode>
 :TRIGgered?
```

**DIAGnostic:CALibration:OUTPut[:MODE]**

`DIAGnostic:CALibration:OUTPut[:MODE] <path>` sets the voltage calibration path for the module to either the CAL output terminals or at each output channel.

**Parameters**

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;path&gt;</td>
<td>discrete</td>
<td>CALBus or CHANnel</td>
<td>none</td>
</tr>
</tbody>
</table>

**Comments**

- The typical calibration mode for the module is through the CAL output terminals. Following *RST or power-on, the default calibration mode is through the CAL output terminals (and this command is not needed).

- This command with the CHANnel parameter, sets calibration to be performed at each channel’s output terminals (and so includes the channel output relay contacts).

- This command must be sent before any CALibrationn:CONFigure:VOLTage? or CALibrationn:CONFigure:CURRent? query.

- *RST State: Calibration paths set to use the CAL output terminals.
**DIAGnostic:CALibration:OUTPut[:MODE]?**

**DIAGnostic:CALibration:OUTPut[:MODE]?** queries the voltage calibration path for the module.

**Parameters**

**Returns:** string.

**Comments**

- The returned string will be one of CALB or CHAN.

**DIAGnostic:CONFigure?**

**DIAGnostic:CONFigure?** returns six 16-bit words indicating the present settings of the module.

**Parameters**

**Returns:** six unsigned 16-bit integers (uint16).

**Comments**

- This query returns six 16-bit words with the following meanings:

<table>
<thead>
<tr>
<th>Integer Returned</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Expansion Board ID in the form: 0 = present, 7 = none (expansion board contains channels 9–16).</td>
</tr>
<tr>
<td>2nd</td>
<td>Terminal Module ID in the form: 0 = screw type, 7 = none or other.</td>
</tr>
</tbody>
</table>
| 3rd              | Isolated/Non-Isolated Channel Status  

  A bit set to 0 indicates an isolated channel.  
  A bit set to 1 indicates a non-isolated channel or no plug-on module installed (DO NOT operate the module without a plug-on module).  

  Bits 0–15 correspond to channels 1–16, respectively*.
| 4th              | Channel Mode  

  A bit set to 0 indicates a current output channel.  
  A bit set to 1 indicates a voltage output channel.  

  Bits 0–15 correspond to channels 1–16, respectively*.
| 5th              | Channel Output State  

  A bit set to 0 indicates the channel output relay is closed.  
  A bit set to 1 indicates the channel output relay is open.  

  Bits 0–15 correspond to channels 1–16, respectively*.
| 6th              | Channel Mode Programmable State (P/J Jumper)  

  A bit set to 0 indicates a channel is not programmable.  
  A bit set to 1 indicates a channel is programmable.  

  Bits 0–15 correspond to channels 1–16, respectively*.

* For 8 channel configurations, the upper 8 bits of integers 3, 4, 5, and 6 are set to 1’s.
**DIAGnostic:OUTPut:ALL[:STATe]**

DIAGnostic:OUTPut:ALL[:STATe]  \(<state>\) opens or closes all channel output relays at once.

**Parameters**

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>(&lt;state&gt;)</td>
<td>boolean</td>
<td>OFF</td>
<td>ON</td>
</tr>
</tbody>
</table>

**Comments**

- This command performs the same function as the OUTPut\(n\)[;STATe] command, but enables or disables all outputs simultaneously.

- **Related Commands:** OUTPut\(n\)[;STATe]

**DIAGnostic:SOURcen:FUNCtion:MODE**

DIAGnostic:SOURcen:FUNCtion:MODE  \(<mode>\) changes the output mode of the channel without disabling the channel output.

**Parameters**

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOURcen</td>
<td>keyword</td>
<td>1 to 8 or 1 to 16</td>
<td>1</td>
</tr>
<tr>
<td>(&lt;mode&gt;)</td>
<td>discrete</td>
<td>CURRent or VOLTage</td>
<td>none</td>
</tr>
</tbody>
</table>

**Comments**

- In the keyword, SOURcen, the valid range of \(n\) is:
  - 1 to 8 for E1418A, E1418A Option 002
  - 1 to 16 for E1418A Option 001, E1418A Option 003.

- Values of \(n\) outside these ranges will generate an error.

- **Use this command with caution. The output voltage or current is not predictable during the mode change and transients will occur.**

- This command performs the same function as the SOURcen:FUNCtion:MODE command, but does not disable the output during the mode change. This command can reduce the settling time required to disable and enable the outputs.

- Following a mode change with this command, the appropriate calibration constants are used, the channel mode is changed, and the output is set to either 0 V or 0 A.

- This command will generate an error if the trigger system is waiting for a trigger event when this command is received.

- This command is affected by the state of the P/J jumper on the terminal module. If the P/J jumper is not set to Program Selectable, this command will generate an error. This jumper is described on page 31.

- **Related Commands:** SOURcen:FUNCtion:MODE
DIAGnostic:TRIGgered?

DIAGnostic:TRIGgered? returns a 16-bit word indicating the current trigger status of the module.

Parameters

Returns: unsigned 16-bit integer (uint16).

Comments

• This query returns a 16-bit word indicating the trigger status of each channel.
  – A bit is set to 0 to indicate the channel is not waiting for a trigger.
  – A bit is set to 1 to indicate the channel is in the wait-for-trigger state.
  – Bits 0–15 correspond to channels 1–16, respectively.

• Related Commands: TRIGger:SOURce
The INITiate subsystem changes the trigger state from idle to wait-for-trigger.

Subsystem Syntax

INITiate [:IMMediate]

INITiate[:IMMediate]

Changes the trigger system from the idle state to the wait-for-trigger state.

Parameters None.

Comments

- If this command is received and the trigger system is not idle, an error is generated.

- If this command is received and no channels are waiting for a trigger event, an error is generated.

- Triggering is described in more detail on page 54.

- Related Commands: TRIGger:SOURce, SOURcen:VOLTage:TRIGgered, SOURcen:CURRent:TRIGgered, ABORt
The OUTPut subsystem provides commands to open or close the output relay on each channel and to enable the module to output the selected trigger source on one of the VXIbus TTL trigger lines.

### Subsystem Syntax

```
OUTPut
 :TTLTrg
 [:STATe] <state>
 [:STATe]?

OUTPutn
 [:STATe] <state>
 [:STATe]?
```

### OUTPut:TTLTrg[n][:STATe]

**OUTPut:TTLTrg[n][:STATe]** <state> specifies which VXIbus TTLTRG line is enabled to source a VXIbus trigger when the module is triggered.

#### Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTLTrg</td>
<td>keyword</td>
<td>0 to 7</td>
<td>none</td>
</tr>
<tr>
<td>&lt;state&gt;</td>
<td>boolean</td>
<td>OFF</td>
<td>ON</td>
</tr>
</tbody>
</table>

#### Comments

- VXIbus TTLTRG lines are numbered from 0 to 7. Only one line can be enabled at a time.
- If a different line is already enabled when this command is received, a settings conflict error is reported.
- This command sources a trigger from the module. The TRIGger:SOURce TTLTrg command programs the module to accept triggers from the VXIbus TTLTRG lines. The module can be programmed to both accept and source triggers on the VXIbus TTLTRG lines but the source TTLTRG line and the accepted TTLTRG line must be different.
- This command should be sent before the TRIGger:SOURce TTLTrg command.
- *RST Condition: All lines disabled.
- **Related Commands:** TRIGger:SOURce TTLTrg, OUTPut:TTLTrg[n][:STATe]?
OUTPut

OUTPut:TTLTrgn[:STATe]?

OUTPut:TTLTrgn[:STATe]? queries if the specified VXIbus TTLTRG line is set to be a source of trigger from the module.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTLTrgn</td>
<td>keyword</td>
<td>0 to 7</td>
<td>none</td>
</tr>
</tbody>
</table>

Returns: unsigned 16-bit integer (uint16).

Comments

• This query returns a 1 if the specified VXIbus TTLTRG line is enabled as a trigger source. This query returns a 0 if the specified VXIbus TTLTRG line is disabled as a trigger source.

• Related Commands: OUTPut:TTLTrgn[:STATe]

OUTPutn[:STATe]

OUTPutn[:STATe] <state> opens or closes the specified channel output relay.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTPutn</td>
<td>keyword</td>
<td>1 to 8 or 1 to 16</td>
<td>none</td>
</tr>
<tr>
<td>&lt;state&gt;</td>
<td>boolean</td>
<td>OFF</td>
<td>ON</td>
</tr>
</tbody>
</table>

Comments

• In the keyword, OUTPutn, the valid range of n is:
  1 to 8 for E1418A, E1418A Option 002
  1 to 16 for E1418A Option 001, E1418A Option 003.
  Values of n outside these ranges will generate an error.

• This command sets the output state of individual channel output relays. Use the DIAGnostic:OUTPut:ALL[:STATe] command to set all channels with a single command.

• *RST Condition: All output relays open.

• Related Commands: OUTPutn[:STATe]?, DIAGnostic:OUTPut:ALL[:STATe]
OUTPutn[:STATe]?

OUTPutn[:STATe]? queries the state of the specified channel output relay and returns a 0 or 1.

**Parameters**

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTPutn</td>
<td>keyword</td>
<td>1 to 8 or 1 to 16</td>
<td>none</td>
</tr>
</tbody>
</table>

**Returns**: unsigned 16-bit integer (uint16).

**Comments**

- In the keyword, OUTPutn, the valid range of n is:
  1 to 8 for E1418A, E1418A Option 002
  1 to 16 for E1418A Option 001, E1418A Option 003.
  Values of n outside these ranges will generate an error.

- The query returns a 0 if the specified channel output relay is open. The query returns a 1 if the specified channel output relay is closed.

- **Related Commands**: OUTPutn[:STATe]
The SOURce subsystem provides commands used to output a voltage or current at each channel.

Subsystem Syntax

SOURcen
  :CURRent
    [:LEVEL]
    [:IMMediate]
    [:AMPLitude] <value | MIN | MAX | DEF>
    [:AMPLitude]?
  :TRIGgered
    [:AMPLitude] <value | MIN | MAX | DEF>
    [:AMPLitude]?
  :FUNCTION
    :MODE <mode>
    :MODE?
  :VOLTage
    [:LEVEL]
    [:IMMediate]
    [:AMPLitude] <value | MIN | MAX | DEF>
    [:AMPLitude]?
  :TRIGgered
    [:AMPLitude] <value | MIN | MAX | DEF>
    [:AMPLitude]?
**SOURce**

---

**SOURce**:CURRent[:LEVel][:IMMediate][:AMPLitude]** value | MIN | MAX | DEF**

Immediatley outputs the current set in **value** at channel **n** when the output relay is closed.

### Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOURcen</td>
<td>keyword</td>
<td>1 to 8 or 1 to 16</td>
<td>1</td>
</tr>
<tr>
<td>&lt;value&gt;</td>
<td>numeric (float 32) or discrete</td>
<td>-0.02 Amps to +0.02 Amps or MIN</td>
<td>MAX</td>
</tr>
</tbody>
</table>

### Comments

- In the keyword, SOURcen, the valid range of **n** is:
  - 1 to 8 for E1418A, E1418A Option 002
  - 1 to 16 for E1418A Option 001, E1418A Option 003.

Values of **n** outside these ranges will generate an error.

- The **<value>** parameter is a floating point 32-bit number in the range of -0.02 A to +0.02 A.
  - MIN sets -0.02 Amps.
  - MAX sets +0.02 Amps.
  - DEF sets 0 Amps.

- This command immediately programs the specified current on channel **n**. The output state of the channel must be enabled for the current to appear at the output terminals.

- If the channel is in the voltage mode when this command is received, an error is generated.

- **Related Commands**: SOURcen:CURRent[:LEVel][:IMMediate][:AMPLitude]?, SOURcen:FUNCTION:MODE CURRent, OUTPutn[:STATe]
SOURce

SOURce{n}:CURRent[:LEVel][:IMMediate][:AMPLitude]?

SOURce{n}:CURRent[:LEVel][:IMMediate][:AMPLitude]? [<MIN | MAX | DEF>
queries the last output value written by
SOURce{n}:CURRent[:LEVel][:IMMediate][:AMPLitude].

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOURce{n}</td>
<td>keyword</td>
<td>1 to 8 or 1 to 16</td>
<td>1</td>
</tr>
<tr>
<td>&lt;MIN</td>
<td>MAX</td>
<td>DEF&gt;</td>
<td>discrete (optional)</td>
</tr>
</tbody>
</table>

Returns: 32-bit floating point number (float 32).

Comments

- In the keyword, SOURce{n}, the valid range of n is:
  1 to 8 for   E1418A, E1418A Option 002
  1 to 16 for  E1418A Option 001, E1418A Option 003.
Values of n outside these ranges will generate an error.

- If no parameter is given, this query returns the source current set on channel n by
  the last SOURce{n}:CURRent[:LEVel][:IMMediate][:AMPLitude] command. The
  value returned is the value last programmed on that channel, not an actual
  measurement of the hardware output value.

- If a parameter is given,
  MIN returns -0.02 Amps.
  MAX returns +0.02 Amps.
  DEF returns 0 Amps.

- This command generates an error if channel n is in the voltage output mode.

- Related Commands: SOURce{n}:CURRent[:LEVel][:IMMediate][:AMPLitude],
  SOURce{n}:FUNCTION:MODE CURRent
SOURce

SOURcen:CURRent[:LEVel]:TRIGgered[:AMPLitude]

SOURcen:CURRent[:LEVel]:TRIGgered[:AMPLitude] <value | MIN | MAX | DEF>
outputs the current set in value at channel n when the trigger conditions are satisfied and
the output relay is closed. Use this command to synchronize multiple channel outputs.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOURcen</td>
<td>keyword</td>
<td>1 to 8 or 1 to 16</td>
<td>1</td>
</tr>
<tr>
<td>&lt;value&gt;</td>
<td>numeric (float 32) or discrete</td>
<td>-0.02 Amps to +0.02 Amps or MIN</td>
<td>MAX</td>
</tr>
</tbody>
</table>

Comments

• In the keyword, SOURcen, the valid range of n is:
  1 to 8 for E1418A, E1418A Option 002
  1 to 16 for E1418A Option 001, E1418A Option 003.
Values of n outside these ranges will generate an error.

• The <value> parameter is a floating point 32-bit number in the range of -0.02 A to +0.02 A.
  MIN sets -0.02 Amps.
  MAX sets +0.02 Amps.
  DEF sets 0 Amps.

• This command sets channel n to output the current specified following a valid
  trigger condition. Following this command, the trigger system must be enabled
  using an INITiate command. See the TRIGger subsystem discussion on page 54
  for additional information.

• If the module is in a wait-for-trigger state (INIT has been received) when this
  command is received, an error is generated.

• The output state of the channel must be enabled and the trigger event satisfied for
  the current to appear at the output terminals.

• If the channel is in the voltage mode when this command is received, an error is
  generated.

• Related Commands: SOURcen:CURRent[:LEVel]:TRIGgered[:AMPLitude]?,
  SOURcen:FUNCTION:MODE CURRent, OUTPutn[:STATE]
SOURce

SOURce\text{n}:CURRent[:LEVEL]:TRIGgered[:AMPLitude]? \[<\text{MIN} | \text{MAX} | \text{DEF}>\]

queries the last value written by either
SOURce\text{n}:CURRent[:LEVEL]:TRIGgered[:AMPLitude] or
SOURce\text{n}:CURRent[:LEVEL]:IMMediate[:AMPLitude].

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOURc\text{n}</td>
<td>keyword</td>
<td>1 to 8 or 1 to 16</td>
<td>1</td>
</tr>
<tr>
<td>(&lt;\text{MIN}</td>
<td>\text{MAX}</td>
<td>\text{DEF}&gt;)</td>
<td>discrete (optional)</td>
</tr>
</tbody>
</table>

Returns: 32-bit floating point number (float 32).

Comments

- In the keyword, SOURc\text{n}, the valid range of \(n\) is:
  - 1 to 8 for E1418A, E1418A Option 002
  - 1 to 16 for E1418A Option 001, E1418A Option 003.

Values of \(n\) outside these ranges will generate an error.

- If no parameter is given, this query returns the last value set on channel \(n\) by the last SOURc\text{n}:CURRent[:LEVEL]:TRIGgered[:AMPLitude] or SOURc\text{n}:CURRent[:LEVEL]:IMMediate[:AMPLitude] command. The value returned is the value last programmed on that channel, not an actual measurement of the hardware output value.

- If a parameter is given,
  - \text{MIN} returns -0.02 Amps.
  - \text{MAX} returns +0.02 Amps.
  - \text{DEF} returns 0 Amps.

- This command generates an error if channel \(n\) is in the voltage output mode.

- Related Commands: SOURc\text{n}:CURRent[:LEVEL]:TRIGgered[:AMPLitude], SOURc\text{n}:FUNCtion:MODE CURRent
**SOURce**:FUNCTION:MODE

`SOURce:FUNCTION:MODE <mode>` configures channel n for either current or voltage output.

### Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOURce n</td>
<td>keyword</td>
<td>1 to 8 or 1 to 16</td>
<td>1</td>
</tr>
<tr>
<td>&lt;mode&gt;</td>
<td>discrete</td>
<td>CURRent or VOLTage</td>
<td>none</td>
</tr>
</tbody>
</table>

### Comments

- In the keyword, SOURce n, the valid range of n is:
  - 1 to 8 for E1418A, E1418A Option 002
  - 1 to 16 for E1418A Option 001, E1418A Option 003.
Values of n outside these ranges will generate an error.

- Following this command, the output is disabled and set to either 0 A or 0 V.

- If the module is in the wait-for-trigger state when this command is received, an error is generated.

- This command is affected by the state of the P/J jumper for this channel on the terminal module. If the P/J jumper is not set to program selectable this command will return an error. This jumper is described on page 31.

- **RST Condition:**
  - If the P/J jumper is set to program selectable:
    output mode is set to voltage, 0 volts output, output relay open.
  - If the P/J jumper is set to jumper selectable:
    output mode is set by the V/I jumper, 0 volts or amps, output relay open.

- **Related Commands:** SOURce:FUNCTION:MODE?, SOURce:CURRent… commands, SOURce:VOLTage… commands
SOURce

SOURce{n}:FUNCTION:MODE?

SOURce{n}:FUNCTION:MODE? queries channel n for current or voltage output mode. The query returns a string.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOURce{n}</td>
<td>keyword</td>
<td>1 to 8 or 1 to 16</td>
<td>1</td>
</tr>
</tbody>
</table>

Returns: string.

Comments

- In the keyword, SOURce{n}, the valid range of n is:
  
  1 to 8 for E1418A, E1418A Option 002
  1 to 16 for E1418A Option 001, E1418A Option 003.
  
  Values of n outside these ranges will generate an error.

- This query returns CURR or VOLT.

- Related Commands: SOURce{n}:FUNCTION:MODE
SOURce

SOURce[n]:VOLTage[:LEVel][:IMMediate][:AMPLitude]

SOURce[n]:VOLTage[:LEVel][:IMMediate][:AMPLitude] <value | MIN | MAX | DEF>
immediately outputs the voltage set in value at channel n when the output relay is closed.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOURce[n]</td>
<td>keyword</td>
<td>1 to 8 or 1 to 16</td>
<td>1</td>
</tr>
<tr>
<td>&lt;value&gt;</td>
<td>numeric (float 32) or discrete</td>
<td>-16 V to +16 V or MIN</td>
<td>MAX</td>
</tr>
</tbody>
</table>

Comments

- In the keyword, SOURce[n], the valid range of n is:
  1 to 8 for E1418A, E1418A Option 002
  1 to 16 for E1418A Option 001, E1418A Option 003.
  Values of n outside these ranges will generate an error.

- The <value> parameter is a floating point 32-bit number in the range of -16 Volts to +16 Volts.
  MIN sets -16 Volts.
  MAX sets +16 Volts.
  DEF sets 0 Volts.

- This command immediately programs the specified voltage on channel n. The output relay for that channel must be closed for the voltage to appear at the output terminals.

- This command generates an error if channel n is in the current output mode.

- Related Commands: SOURce[n]:FUNCtion:MODE VOLTage,
  SOURce[n]:VOLTage[:LEVel][:IMMediate][:AMPLitude]?, OUTPut[n]:STATe
SOURce

SOURce$n:VOLTage[:LEVel][:IMMediate][:AMPLitude]?

queries the last output value written by SOURce$n:VOLTage[:LEVel][:IMMediate][:AMPLitude].

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOURce$n</td>
<td>keyword</td>
<td>1 to 8 or 1 to 16</td>
<td>1</td>
</tr>
<tr>
<td>&lt;MIN</td>
<td>MAX</td>
<td>DEF&gt;</td>
<td>discrete (optional)</td>
</tr>
</tbody>
</table>

Returns: 32-bit floating point number (float 32).

Comments

- In the keyword, SOURce$n, the valid range of $n$ is:
  
  1 to 8 for E1418A, E1418A Option 002
  1 to 16 for E1418A Option 001, E1418A Option 003.

  Values of $n$ outside these ranges will generate an error.

- If no parameter is given, this query returns the last value set on channel $n$ with the last SOURce$n:VOLTage[:LEVel][:IMMediate][:AMPLitude] command. The value returned is the value last programmed on that channel, not an actual measurement of the hardware output value.

- If a parameter is given,
  MIN returns -16.000.
  MAX returns +16.000.
  DEF returns 0.0000.

- This command generates an error if channel $n$ is in the current output mode.

- Related Commands: SOURce$n:VOLTage[:LEVel][:IMMediate][:AMPLitude], SOURce$n:FUNCTION:MODE VOLTage
**SOURce**:VOLTage[:LEVel]:TRIGgered[:AMPLitude]**

`SOURcenn:VOLTage[:LEVel]:TRIGgered[:AMPLitude] <value | MIN | MAX | DEF>`

outputs the voltage set in `value` at channel `n` when the trigger conditions are satisfied and the channel output relay is closed. Use this command to synchronize multiple channel outputs.

**Parameters**

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOURcenn</td>
<td>keyword</td>
<td>1 to 8 or 1 to 16</td>
<td>1</td>
</tr>
<tr>
<td><code>&lt;value&gt;</code></td>
<td>numeric (float 32) or discrete</td>
<td>-16 V to +16 V or MIN</td>
<td>MAX</td>
</tr>
</tbody>
</table>

**Comments**

- In the keyword, SOURcenn, the valid range of `n` is:
  
  1 to 8 for E1418A, E1418A Option 002
  
  1 to 16 for E1418A Option 001, E1418A Option 003.

Values of `n` outside these ranges will generate an error.

- The `<value>` parameter is a floating point 32-bit number in the range of -16 Volts to +16 Volts.
  
  MIN sets -16 Volts.
  
  MAX sets +16 Volts.
  
  DEF sets 0 Volts.

- This command sets channel `n` to output the voltage specified following a valid trigger condition. Following this command, the trigger system must be enabled using an INITiate command. See the TRIGger subsystem discussion, page 54, for additional information.

- The channel output relay must be closed for the voltage to appear at the output terminals.

- If the module is in a wait-for-trigger state (INIT has been received) when this command is received, an error is generated.

- If the channel is in the current mode when this command is received, an error is generated.

- **Related Commands**: SOURcenn:VOLTage[:LEVel]:TRIGgered[:AMPLitude]?, SOURcenn:FUNCTION:MODE VOLTage
SOURce

SOURce\textsubscript{n} : VOLTage[:LEVel]:TRIGgered[:AMPLitude]?

SOURce\textsubscript{n} : VOLTage[:LEVel]:TRIGgered[:AMPLitude]? [<MIN | MAX | DEF>
queries the latest value written by either
SOURce\textsubscript{n} : VOLTage[:LEVel]:TRIGgered[:AMPLitude] or
SOURce\textsubscript{n} : VOLTage[:LEVel][:IMMediate][:AMPLitude].

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOURce\textsubscript{n}</td>
<td>keyword</td>
<td>1 to 8 or 1 to 16</td>
<td>1</td>
</tr>
<tr>
<td>&lt;MIN</td>
<td>MAX</td>
<td>DEF&gt;</td>
<td>discrete (optional)</td>
</tr>
</tbody>
</table>

Returns: 32-bit floating point number (float 32).

Comments

- In the keyword, SOURce\textsubscript{n}, the valid range of \textit{n} is:
  1 to 8 for E1418A, E1418A Option 002
  1 to 16 for E1418A Option 001, E1418A Option 003.
  Values of \textit{n} outside these ranges will generate an error.

- If no parameter is given, this query returns the last value set on channel \textit{n} by the\nSOURce\textsubscript{n} : VOLTage[:LEVel][:IMMediate][:AMPLitude] or
SOURce\textsubscript{n} : VOLTage[:LEVel]:TRIGgered[:AMPLitude] command. The value
returned is the value last programmed on that channel, not an actual measurement
of the hardware output value.

- If a parameter is given,
  MIN returns -16.000.
  MAX returns +16.000.
  DEF returns 0.000.

- This command generates an error if channel \textit{n} is in the current output mode.

- Related Commands: SOURce\textsubscript{n} : VOLTage[:LEVel]:TRIGgered[:AMPLitude],
SOURce\textsubscript{n} : FUNCTION:MODE   VOLTage
The STATus subsystem controls the SCPI-defined Operation and Questionable Status Registers and the Standard Event Register. Each is comprised of a Condition Register, an Event Register, and an Enable mask. The SCPI Status System is shown in the figure below.

Subsystem Syntax

```
:OPERation
 :CONDition?
 :ENABLE <mask>

:OPERation
 :CONDition?
 :ENABLE <mask>

[:EVENT]?

:PRESet

:QUESTIONable
 :CONDition?
 :ENABLE <mask>

[:EVENT]?
```

![Diagram of STATus subsystem](image-url)
**STATus:OPERation:CONDition?**

**STATus:OPERation:CONDition?** returns the contents of the Operation Status Condition Register. Reading the register does not affect its contents.

**Parameters**  
**Returns:** 16-bit signed integer (int16).

**Comments**
- Bit 0 of this register (decimal 1) is the Calibrating bit. This bit is set when:
  - the CALibration:CONFigure:RESistance?, CALibration<sub>n</sub>:CONFigure:VOLTage?, or CALibration<sub>n</sub>:CONFigure:CURRent? command has been received and,
  - measurements with the corresponding CALibration:VALue:RESistance, CALibration<sub>n</sub>:VALue:VOLTage?, or CALibration<sub>n</sub>:VALue:CURRent? commands are not complete.
- **:*RST Condition:** clears all conditions.
- **:*CLS and STATus:PRESet do not affect bits in the Status Operation Condition Register.

**STATus:OPERation:ENABLE**

**STATus:OPERation:ENABLE <mask>** specifies which bits of the Operational Status Event Register are OR’d together to create the Operational Status bit (bit 7) in the Summary Register of the Status Byte.

**Parameters**

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;mask&gt;</td>
<td>numeric (int16) or non-decimal numeric</td>
<td>-32768 to +32767 or #H0000 to #HFFFF</td>
<td>none</td>
</tr>
</tbody>
</table>

**Comments**
- Only bit 0 (decimal 0) is used or defined in the Operation Register. Bit 0 is defined as the Calibrating bit. A 1 in this bit indicates the module is currently in the calibration mode.
- The non-decimal numeric forms are the #H, #Q, or #B formats specified by IEEE-488.2.
- **:*RST clears all conditions.
- **:*CLS and STATus:PRESet do not affect bits in the Operation Status Condition Register.
STATus:OPERation:ENABLE?

STATus:OPERation:ENABLE? returns the value of the mask set for the Operation Status Register.

Parameters

Returns: 16-bit signed integer (int16).

STATus:OPERation[:EVENT]?

STATus:OPERation[:EVENT]? returns the value of the contents of the Operation Status Event Register. Reading the register clears all bits in the register.

Parameters

Returns: 16-bit signed integer (int16).

Comments

• Bit 0 of this register (decimal 1) is the only defined bit in this register.

• This bit is set if the CALibration:CONFigure:RESistance?, CALibration:CONFigure:VOLTage?, or CALibration:CONFigure:CURRent? command has been received and the calibration process is not yet complete.

• *RST Condition: no effect.

• *CLS clears the contents of the Operation Status Register.

• STATus:PRESet does not affect the contents of the Operation Status Register, but does disable reporting the Summary bit to the Status Byte Register.

STATus:PRESet

STATus:PRESet presets all Enable Registers to 0 (zero). The command has no effect on Condition or Event Registers.
STATus

STATus:QUESTionable:CONDition?

STATus:QUESTionable:CONDition? returns the value of the Questionable Status Condition Register. Reading the register does not affect its contents. Since only two bits are used in the Agilent E1418A and both those bits are defined to be events, this command always returns 0 and is included for compatibility purposes.

Parameters

Returns: 16-bit signed integer (int16).

Comments

- Bit 8 of this register (decimal 256) indicates the calibration condition. Bit 9 of this register (decimal 512) indicates the trigger-ignored event.

- *RST Condition: clears all conditions.

- *CLS and STATus:PRESet do not affect bits in the Questionable Status Condition Register.

STATus:QUESTionable:ENABle

STATus:QUESTionable:ENABle <mask> specifies which bits of the Questionable Event Register are OR’d together to create the Questionable Data bit (bit 3) in the Status Byte Summary Register.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;mask&gt;</td>
<td>numeric (int16) or</td>
<td>-32768 to +32767 or #H0000 to</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>non-decimal numeric</td>
<td>#HFFFF</td>
<td></td>
</tr>
</tbody>
</table>

Comments

- Only bits 8 and 9 of the Questionable Data Register are used or defined. Bit 8 indicates a questionable calibration and bit 9 indicates a trigger was ignored.

- Either bit 8 or bit 9 can be used to generate an SRQ interrupt. Use the *SRE <mask> common command to set the enable mask for the Status Byte Register to include the Questionable Data bit (bit 3) in the Request for Service bit (bit 6). The request for Service bit (bit 6) is used to generate the SRQ interrupt.

- The non-decimal numeric forms are the #H, #Q, or #B formats specified by IEEE-488.2.

- *RST clears all conditions.

- *CLS and STATus:PRESet do not affect bits in the Questionable Status Condition Register.
STATus:QUESTIONable:ENABLE?

STATus:QUESTIONable:ENABLE? returns the mask set for the Questionable Status Enable Register.

Parameters

Returns: 16-bit signed integer (int16).

STATus:QUESTIONable[:EVENT]?

STATus:QUESTIONable[:EVENT]? returns the value of the Questionable Status Event Register. Reading the register clears all bits in the register.

Parameters

Returns: 16-bit signed integer (int16).

Comments

• Bit 8 of this register (decimal 256) is set when either:
  – A channel is set to an output mode that has not been calibrated, or
  – A channel fails the CALibration:TEST? query.

• Bit 9 of this register (decimal 512) is set when a trigger-ignored event occurs.

• *RST Condition: no effect.

• *CLS clears the contents of the Questionable Status Register.

• STATus:PRESet does not affect the contents of the Questionable Status Register, but does disable reporting the Summary bit to the Status Byte Register.
The SYSTem subsystem returns information about the module.

### Subsystem Syntax

```
SYSTem
 :ERRor?
 :VERSion?
```

### SYSTem:ERRor?

SYSTem:ERRor? returns an error number and message from the instrument’s error queue.

**Parameters**

- **Returns**: 16-bit signed integer (int16) and a string.

**Comments**

- Each query returns an error number and error string from the queue. When no errors are in the error buffer, the query returns +0, "No error".

- `*CLS` clears the error queue.

- `*RST` has no effect on the error queue.

### SYSTem:VERSion?

SYSTem:VERSion? returns the SCPI version the driver complies with (not the driver version).

**Parameters**

- **Returns**: string or float32.

**Comments**

- Returns a decimal value in the form: `YYYY.R`; where `YYYY` is the year, and `R` is the revision number within that year. Return value can be input as a string.
The TEST subsystem provides commands used to run individual self-tests and to query the results of previous self-tests. To run the complete set of self-tests, use the *TST? common command.

**Subsystem Syntax**

```
TEST
 :NUMBer? <number>
 :TST [:RESults]? *TST?
```

**TEST:NUMBer?**

TEST:NUMBer? <number> performs a single internal self-test on the module and returns a 16-bit integer indicating the results of the self-test.

**Parameters**

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;number&gt;</td>
<td>numeric</td>
<td>1 to 75</td>
<td>none</td>
</tr>
</tbody>
</table>

**Comments**

- Following the completion of this command, all outputs are disabled and set to either 0 A or 0 V.

- If the module is in the wait-for-trigger state when this command is received, an error is generated.

- Complete descriptions of each test and specific codes returned in the Test Info field are contained in the *Agilent E1418A Service Manual*.

- A successful self-test returns 0.

- A failure of a self-test returns a non-zero 16-bit integer. The integer returned has a binary coding of the form:

<table>
<thead>
<tr>
<th>BIT</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Test Number</td>
</tr>
<tr>
<td>14</td>
<td>A24</td>
</tr>
<tr>
<td>13</td>
<td>Test Info</td>
</tr>
</tbody>
</table>

- The description of *TST provides a brief listing of the test numbers.
TEST:TST[:RESULTS]?

**TEST:TST[:RESULTS]?** returns an array showing the result of all self-tests performed by the *TST?* query.

**Parameters**  None.

**Comments**  • The *TST?* query returns the result of the first failure found, if any. This query provides a means to check all test failure codes.

• This command may be used if the value returned by the *TST?* query is other than 0 and complete self-test results are needed.

• Complete descriptions of each test and specific codes returned in the Test Info and A24 fields are contained in the Agilent E1418A Service Manual.

• This query returns an array of 100 16-bit integers (int16). The first array element corresponds to test 1. Array elements above 75 are unused. Each 16-bit integer in the array is in the form:

<table>
<thead>
<tr>
<th>BIT</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meaning</td>
<td>Test Number</td>
<td>A24</td>
<td>Test Info</td>
<td></td>
</tr>
</tbody>
</table>

• The description of *TST?* provides a brief listing of the test numbers.

• **Related Commands:** *TST?
*TST?  

*TST? performs all internal self-tests on the module and returns a 16-bit integer indicating the results of the self-test. All circuits on the module are tested up to the output relay.

**Parameters**  
None.

**Comments**  
- Following the completion of this query, all outputs are disabled and set to either 0 A or 0 V.
- If the module is in the wait-for-trigger state when this query is received, an error is generated.
- The returned value indicates the first failure found. Complete test results (all failures found) are reported by the query TEST:TST[:RESults]?.
- A successful self-test returns +0.
- A failure of a self-test returns a non-zero 16-bit integer. The integer returned has a binary coding of the form:

<table>
<thead>
<tr>
<th>BIT</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Test Number</td>
</tr>
<tr>
<td>14</td>
<td>A24</td>
</tr>
<tr>
<td>13</td>
<td>Test Info</td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

- Test number is the internal self-test number of the first failure found. The Test Info and A24 fields contain information related to the failure in Test Number.

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Tested Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–25</td>
<td>Register Read and Writes.</td>
</tr>
<tr>
<td>26–41</td>
<td>Trigger Control for each Channel. (test 26 corresponds to channel 1, test 41 corresponds to channel 16)</td>
</tr>
<tr>
<td>42–43</td>
<td>VXIbus Interrupt Control.</td>
</tr>
<tr>
<td>44–59</td>
<td>Channel Voltage Output. (test 44 corresponds to channel 1, test 59 corresponds to channel 16)</td>
</tr>
<tr>
<td>60–75</td>
<td>Channel Current Output. (test 60 corresponds to channel 1, test 75 corresponds to channel 16)</td>
</tr>
</tbody>
</table>

- Complete descriptions of each test and specific codes returned in the Test Info field are contained in the Agilent E1418A Service Manual.

- A subset of self-test is automatically run at power-on.

**Related Commands:** TEST:TST[:RESults]?
The TRIGger subsystem controls when and how the outputs are enabled. Other commands, designed for use with the TRIGger subsystem are ABORt and INITiate[:IMMediate].

Subsystem Syntax

```
TRIGger
[:IMMediate]
:SOURce <source>
:SOURce?
```

**TRIGger[:IMMediate]**

TRIGger[:IMMediate] triggers all channels waiting for trigger when the trigger source has been set to either BUS or HOLD.

**Parameters** None.

**Comments**

- To use this command to trigger outputs, the trigger source must be set to either BUS or HOLD. An error is generated if other trigger sources are set.

- If this command is received and the module is not in the wait-for-trigger state, an error is generated.

- Triggering is described in more detail on page 54.

- **Related Commands:** TRIGger:SOURce, SOURce<n>:VOLTage[:LEVel][:IMMediate]:TRIGgered[:AMPLitude], SOURce<n>:CURRent[:LEVel][:IMMediate]:TRIGgered[:AMPLitude]
TRIGger:SOURce

TRIGger:SOURce sets the trigger source for the module.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;source&gt;</td>
<td>discrete</td>
<td>TTLT0, TTLT1, TTLT2, TTLT3, TTLT4, TTLT5, TTLT6, TTLT7, BUS, HOLD, IMM, or EXT</td>
<td>none</td>
</tr>
</tbody>
</table>

Comments • The <source> parameter defines the following trigger conditions:

<table>
<thead>
<tr>
<th>Trigger</th>
<th>String</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTLT0–TTLT7</td>
<td>Sets the trigger source to one of the VXIbus backplane trigger lines.</td>
</tr>
<tr>
<td>BUS or HOLD</td>
<td>Sets software trigger. A *TRG, TRIG:IMM, or GET will trigger the output.</td>
</tr>
<tr>
<td>IMMEDIATE</td>
<td>Places the trigger system in the wait-for-trigger state and then triggers the output.</td>
</tr>
<tr>
<td>EXTERNAL</td>
<td>Sets the trigger source to the EXTERNAL trigger line on the terminal module.</td>
</tr>
</tbody>
</table>

- If this command is received when the module is in the wait-for-trigger state, an error is generated.
- This command sets the source for the trigger in to the module. The module can also output a trigger on the VXIbus TTLTrg lines using the OUTPut:TTLTrg command.
- Triggering is described in more detail on page 54.

- Related Commands: TRIGger:SOURce?
- *RST Condition: Trigger source set to HOLD.

TRIGger:SOURce?

TRIGger:SOURce? queries the trigger source for the module.

Parameters Returns: string.

Comments • The query returns one of the following unquoted strings:

<table>
<thead>
<tr>
<th>String</th>
<th>Trigger Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTLTn</td>
<td>VXIbus backplane trigger line n</td>
</tr>
<tr>
<td>BUS</td>
<td>Software trigger</td>
</tr>
<tr>
<td>HOLD</td>
<td>Trigger hold (reset state)</td>
</tr>
<tr>
<td>IMM</td>
<td>Immediate trigger</td>
</tr>
<tr>
<td>EXT</td>
<td>External trigger</td>
</tr>
</tbody>
</table>
The following table lists the IEEE-488.2 Common (*) Commands that can be executed by the Agilent E1418A D/A module. For more information about Common Commands, consult ANSI/IEEE Standard 488.2-1987.

**Note** These commands apply to many instruments and are not documented in detail here.

<table>
<thead>
<tr>
<th>Command</th>
<th>Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*CLS</td>
<td>Clear status registers</td>
<td>Clears the event registers and request for OPC flag.</td>
</tr>
<tr>
<td>*ESE &lt;mask&gt;</td>
<td>Event status enable</td>
<td>Sets bits in the Event Status Enable Register.</td>
</tr>
<tr>
<td>*ESE?</td>
<td>Event status enable query</td>
<td>Queries the Event Status Enable Register.</td>
</tr>
<tr>
<td>*ESR?</td>
<td>Event status register query</td>
<td>Queries and clears the contents of the Standard Event Status Register.</td>
</tr>
<tr>
<td>*IDN?</td>
<td>Identification query</td>
<td>Returns the identification string of the module.</td>
</tr>
<tr>
<td>*OPC</td>
<td>Operation complete</td>
<td>Sets the Request for OPC flag when all pending operations have been completed. Also sets the OPC bit in the Standard Event Register.</td>
</tr>
<tr>
<td>*OPC?</td>
<td>Operation complete query</td>
<td>Returns a 1 to the output queue when all pending operations are complete.</td>
</tr>
<tr>
<td>*RST</td>
<td>Reset</td>
<td>Disables all outputs. Rewrites calibration data from FLASH to RAM. Sets all outputs to 0. Sets, if not jumpered, all outputs to voltage mode. Enables trigger with source IMM.</td>
</tr>
<tr>
<td>*SRE &lt;mask&gt;</td>
<td>Service request enable</td>
<td>Sets the Service Request Enable bits and corresponding Serial Poll Status Byte Register bits to generate a service request.</td>
</tr>
<tr>
<td>*SRE?</td>
<td>Service request enable query</td>
<td>Queries the Service Request Enable Register.</td>
</tr>
<tr>
<td>*STB?</td>
<td>Read status byte query</td>
<td>Queries the Status Byte Register.</td>
</tr>
<tr>
<td>*TST?</td>
<td>Self-test query</td>
<td>Performs the internal self-test. Disables all outputs. Sets all outputs to 0. Returns the first error found in a 16-bit integer. See page 103.</td>
</tr>
<tr>
<td>*WAI</td>
<td>Wait to continue</td>
<td>Waits until all relays are settled and the idle trigger state is reached.</td>
</tr>
<tr>
<td>*TRG</td>
<td>Trigger</td>
<td>Causes an immediate trigger.</td>
</tr>
<tr>
<td>*DMC</td>
<td>Define macro</td>
<td>Defines a macro.</td>
</tr>
<tr>
<td>*GMC?</td>
<td>Menu query</td>
<td>Gets the results of a menu query.</td>
</tr>
<tr>
<td>*PMC</td>
<td>Purge macros</td>
<td>Purges all macros from memory.</td>
</tr>
<tr>
<td>*LMC?</td>
<td>List macros</td>
<td>Lists macros by name.</td>
</tr>
<tr>
<td>*EMC &lt;n&gt;</td>
<td>Enable macro</td>
<td>Enables execution of macro n.</td>
</tr>
<tr>
<td>*EMC? &lt;n&gt;</td>
<td>Enable macro query</td>
<td>Queries execution state of macro n.</td>
</tr>
<tr>
<td>*RMC</td>
<td>Remove macros</td>
<td>Removes all macros.</td>
</tr>
</tbody>
</table>
The following table summarizes commands for the Agilent E1418A.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPLyn</td>
<td>Closes the output relay and outputs a current on the specified channel, ( n ).</td>
</tr>
<tr>
<td>:CURRent &lt;value</td>
<td>MIN</td>
</tr>
<tr>
<td>:VOLTage &lt;value</td>
<td>MIN</td>
</tr>
<tr>
<td>CALibration :CONDition?</td>
<td>Configures the module to perform calibration of the internal calibration resistor and returns a 0 or 1 indicating the readiness of the module.</td>
</tr>
<tr>
<td>:CONFigure:RESistance?</td>
<td>Reloads, for module use, the calibration constants stored in non-volatile memory.</td>
</tr>
<tr>
<td>:RESet</td>
<td>Loads the non-volatile memory with the calibration constants presently in use by the module.</td>
</tr>
<tr>
<td>:STORe</td>
<td>Performs an internal check of the calibration of each channel and returns an integer indicating the channel calibration condition.</td>
</tr>
<tr>
<td>:VALue:RESistance &lt;value&gt;</td>
<td>Sets a new internal calibration resistor constant used by the module for current output.</td>
</tr>
<tr>
<td>CALibrationn :CONFigure:CURRent?</td>
<td>Configures the channel for current mode calibration and returns a 0 or 1 to indicate the channel’s readiness for calibration.</td>
</tr>
<tr>
<td>:CONFigure:VOLTage?</td>
<td>Configures the channel for voltage mode calibration and returns a 0 or 1 to indicate the channel’s readiness for calibration.</td>
</tr>
<tr>
<td>:VALue:CURRent? &lt;value&gt;</td>
<td>Enters a measured calibration value and returns a value indicating the current state of the calibration.</td>
</tr>
<tr>
<td>:VALue:VOLTage? &lt;value&gt;</td>
<td>Enters a measured calibration value and returns a value indicating the current state of the calibration.</td>
</tr>
<tr>
<td>DIAGnostic :CALibration:OUTPut[:MODE] &lt;CALBus</td>
<td>CHANnel&gt;</td>
</tr>
<tr>
<td>:CALibration:OUTPut[:MODE]?</td>
<td>Queries the voltage calibration path for the module.</td>
</tr>
<tr>
<td>:CONFigure?</td>
<td>Returns six 16-bit words indicating the present settings of the module.</td>
</tr>
<tr>
<td>:OUTPut:ALL[:STATE] &lt;OFF</td>
<td>ON&gt;</td>
</tr>
<tr>
<td>:SOURcen:FUNCTION:MODE &lt;CURRent</td>
<td>VOLTage&gt;</td>
</tr>
<tr>
<td>:TRIGgered?</td>
<td>Returns a 16-bit word indicating the present trigger status of the module.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>OUTPut TTLTrgn[:STATe] &lt;OFF</td>
<td>ON&gt;</td>
</tr>
<tr>
<td>OUTPut TTLTrgn[:STATe]?</td>
<td>Queries the state of the specified VXIbus TTLTRG line for use as a trigger output line.</td>
</tr>
<tr>
<td>OUTPutn [:STATe] &lt;OFF</td>
<td>ON&gt;</td>
</tr>
<tr>
<td>OUTPutn [:STATe]?</td>
<td>Queries the state of the specified channel output relay and returns a 0 or 1.</td>
</tr>
<tr>
<td>SOURcen :CURRent[:LEVel][:IMMediate][:AMPLitude]&lt;value</td>
<td>MIN</td>
</tr>
<tr>
<td>SOURcen :CURRent[:LEVel][:IMMediate][:AMPLitude]? [&lt;MIN</td>
<td>MAX</td>
</tr>
<tr>
<td>SOURcen :CURRent[:LEVel]:TRIGgered[:AMPLitude]&lt;value</td>
<td>MIN</td>
</tr>
<tr>
<td>SOURcen :CURRent[:LEVel]:TRIGgered[:AMPLitude]? [&lt;MIN</td>
<td>MAX</td>
</tr>
<tr>
<td>SOURcen :FUNCTION:MODE &lt;CURRent</td>
<td>VOLTage&gt;</td>
</tr>
<tr>
<td>SOURcen :FUNCTION:MODE?</td>
<td>Queries channel n for current or voltage output mode. The query returns a string.</td>
</tr>
<tr>
<td>SOURcen :VOLTage[:LEVel][:IMMediate][:AMPLitude]&lt;value</td>
<td>MIN</td>
</tr>
<tr>
<td>SOURcen :VOLTage[:LEVel][:IMMediate][:AMPLitude]? [&lt;MIN</td>
<td>MAX</td>
</tr>
<tr>
<td>SOURcen :VOLTage[:LEVel]:TRIGgered[:AMPLitude]&lt;value</td>
<td>MIN</td>
</tr>
<tr>
<td>SOURcen :VOLTage[:LEVel]:TRIGgered[:AMPLitude]? [&lt;MIN</td>
<td>MAX</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>STATus :OPERation:CONDition?</td>
<td>Returns the contents of the Operation Status Condition Register. Reading the register does not affect its contents.</td>
</tr>
<tr>
<td>:OPERation:ENABle &lt;mask&gt;</td>
<td>Specifies which bits of the associated Event Register are included in bit 7 of the Status Byte Register. The Summary bit is the bit-for-bit logical AND of the Event Register and the unmasked bit(s).</td>
</tr>
<tr>
<td>:OPERation:ENABle?</td>
<td>Returns the value of the mask set for the Operation Status Register.</td>
</tr>
<tr>
<td>:OPERation[:EVENt]?</td>
<td>Returns the value of the contents of the Operation Status Event Register. Reading the register clears all bits in the register.</td>
</tr>
<tr>
<td>:PRESet</td>
<td>Presets all Enable Registers to 0. The command has no effect on Condition or Event Registers.</td>
</tr>
<tr>
<td>:QUEStionable:CONDition?</td>
<td>Returns the value of the Questionable Status Condition Register. Reading the register does not affect its contents.</td>
</tr>
<tr>
<td>:QUEStionable:ENABle &lt;mask&gt;</td>
<td>Specifies which bits of the associated Event Register are included in bit 3 of the Status Byte Register. The Summary bit is the bit-for-bit logical AND of the Event Register and the unmasked bits.</td>
</tr>
<tr>
<td>:QUEStionable:ENABle?</td>
<td>Returns the mask set for the Questionable Status Enable Register.</td>
</tr>
<tr>
<td>:QUEStionable[:EVENt]?</td>
<td>Returns the value of the Questionable Status Event Register. Reading the register clears all bits in the register.</td>
</tr>
<tr>
<td>SYSTem :ERRor?</td>
<td>Returns an error number and message from the instrument’s error queue.</td>
</tr>
<tr>
<td>:VERSion?</td>
<td>Returns the SCPI version with which the driver complies.</td>
</tr>
<tr>
<td>TEST :NUMBer? &lt;number&gt;</td>
<td>Performs a single internal self-test on the module and returns a 16-bit integer indicating the results of the self-test.</td>
</tr>
<tr>
<td>:TST[:RESults]?</td>
<td>Returns an array showing the result of all self-tests performed by the *TST? query.</td>
</tr>
<tr>
<td>*TST?</td>
<td>Performs all internal self-tests on the module and returns a 16-bit integer indicating the results of the self-test.</td>
</tr>
<tr>
<td>TRIGger [:IMMediate]</td>
<td>Triggers any channels waiting for trigger when the trigger source is set to either BUS or HOLD.</td>
</tr>
<tr>
<td>:SOURce &lt;source&gt;</td>
<td>Sets the trigger source for the module.</td>
</tr>
<tr>
<td>:SOURce?</td>
<td>Queries the trigger source for the module.</td>
</tr>
<tr>
<td>ABORT</td>
<td>Disables the trigger system and places the module in the idle state.</td>
</tr>
<tr>
<td>INITiate[:IMMediate]</td>
<td>Changes the trigger system from the idle state to the wait-for-trigger state.</td>
</tr>
</tbody>
</table>
### DC Voltage

**Range:**
- ±16 V

**Resolution:**
- 16 bits (488 µV steps)
- Monotonic to 2.0 mV

**Accuracy:**
- ±(% of value + volts)
  - After calibration and at a temperature within ±5 °C of calibration temperature.
  - **90 day:** ±(0.05% + 3.0 mV)

**Output Current:**
- **Compliance Current:** >20 mA, 0 to ±12 Volts,
  - derate linearly to 5 mA at ±16 Volts
- **Short Circuit Current:** <60 mA

**Differential Ripple and Noise:**
- < 2 mV rms, 20 Hz to 250 kHz into 10 kΩ load

### DC Current

**Range:**
- -0.02 Amps to +0.02 Amps

**Resolution:**
- 16 bits (610 nA steps)
- Monotonic to 2.5 µA

**Accuracy:**
- ±(% of value + amps)
  - After calibration and at a temperature within ±5 °C of calibration temperature.
  - **90 day:** ±(0.09% + 5.0 µA)

**Output Voltage:**
- **Compliance Voltage:** ±12 V
- **Maximum Open Circuit Voltage:** < 18 V

**Differential Ripple and Noise:**
- < 2 µA rms, 20 Hz to 250 kHz into a 250 Ω load
General Characteristics

Settling Time:
300 µS (+full scale to –full scale step, single channel, to accuracy listed previously)

Isolation (for isolated channels):
42 Vdc/42 V peak (channel-to-chassis or channel-to-channel)

Synchronization:
Software commands, External TTL trigger, or VXIbus TTL Trigger lines
Single channel or multiple channel

VXI Specification:
Device Type: A16 or A24, D16, slave only, register-based

Power Requirements

<table>
<thead>
<tr>
<th>Configuration</th>
<th>+ 5 V DC</th>
<th>+ 5 V Dynamic</th>
<th>+ 12 V DC</th>
<th>+ 12 V Dynamic</th>
<th>+ 24 V DC</th>
<th>+ 24 V Dynamic</th>
<th>– 24 V DC</th>
<th>– 24 V Dynamic</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 Channel Non-Isolated</td>
<td>0.70</td>
<td>0.01</td>
<td>0.04</td>
<td>0.01</td>
<td>0.44</td>
<td>0.01</td>
<td>0.44</td>
<td>0.01</td>
</tr>
<tr>
<td>8 Channel Isolated</td>
<td>0.75</td>
<td>0.01</td>
<td>0.04</td>
<td>0.01</td>
<td>0.88</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>16 Channel Non-Isolated</td>
<td>1.25</td>
<td>0.01</td>
<td>0.04</td>
<td>0.01</td>
<td>0.88</td>
<td>0.01</td>
<td>0.88</td>
<td>0.01</td>
</tr>
<tr>
<td>16 Channel Isolated</td>
<td>1.40</td>
<td>0.01</td>
<td>0.04</td>
<td>0.01</td>
<td>1.60</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Cooling Requirements

For a 10°C rise

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Air Flow</th>
<th>∆ P</th>
<th>Avg Watts/slot</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 Channel configurations</td>
<td>2.0 liters/second</td>
<td>0.10 mm H₂O</td>
<td>25.4</td>
</tr>
<tr>
<td>16 Channel configurations</td>
<td>3.9 liters/second</td>
<td>0.18 mm H₂O</td>
<td>49.0</td>
</tr>
</tbody>
</table>
The Agilent E1418A 8/16 Channel D/A Module is a register-based module. It does not support the VXIbus word serial protocol. The module may be controlled at the register level or, with appropriate drivers, controlled by higher level commands.

The SCPI commands described in this manual are parsed by an Agilent E1405/E1406 Command Module and turned into appropriate register reads and writes.

The same is true for Agilent Compiled SCPI programming in the C language. In this case, SCPI commands are pre-processed by C-SCPI and replaced with function calls to driver libraries that perform register-based programming.

---

**Note**

If SCPI commands (or other high level driver-based commands) are used to program this module with a command module, then register programming is not recommended. The SCPI driver maintains an image of the module state. The driver will be unaware of changes made to the module by register access.

---

Register-based programming is a series of reads and writes directly to the module registers. This appendix contains the information you need for register-based programming. The contents of this appendix are:

- Addressing the Registers ......................... Page 114
- Reset and Registers ................................. Page 119
- Register Maps ....................................... Page 120
- Register Descriptions .............................. Page 126
- Register Example .................................. Page 148
Addressing the Registers

To access a specific register for either read or write operations, the address of the register must be used. The Agilent E1418A uses both A16 and A24 register accesses.

**A16 Registers**

Register addresses for the VXI module are found in an address space known as VXI A16. The exact location of A16 within a VXIbus master’s memory map depends on the design of the VXIbus master you are using. For the Agilent E1405/E1406 Command Module, the A16 space location starts at 1F000016.

The A16 space is divided so that the VXI modules are addressed only at locations above 1FC00016 within A16. Every VXI module is allocated 64 bytes for register addresses (4016). The address of a module is determined by its logical address (set by the address switches on the module or by a write to the logical address register) times 64 (4016). In the case of the Agilent E1418A, the factory setting is 72 or 4816, so the addresses start at 1FD20016.

\[
E1418A_{\text{base}} = 1FC000_{16} + (\text{Logical Address} \times 40)_{16}
\]

\[
2080,768 + (\text{Logical Address} \times 64)_{10}
\]

Register Address = \(E1418A_{\text{base}} + \text{Register Offset}\)

**Figure B-1. Register Locations in A16 Address Space**

---

114 Agilent E1418A Register-Based Programming Appendix B
Note  Writing an address to the Logical Address Register is typically performed by the resource manager as a part of dynamic addressing. If the address is changed by a write to the Logical Address Register, later accesses must use the new address.

A24 Registers  The Agilent E1418A requires 256 kbytes of A24 address space. The resource manager determines the location in A24 space of the 256 kbytes assigned to the Agilent E1418A and writes the most significant address lines into the A16 VXI_Offset Register (base + 0616).

A16/A24 Windows  By using window addressing, you can control the A24 space registers by mapping them onto the upper 16 of the A16 registers. This allows full control of the Agilent E1418A using only A16 addressing. Figure B-3 shows the A24 mapping into A16 space.

Figure B-2. Register Locations in A24 Address Space
In practice, four bits (A24_Window Value) in the A16 Card Control Register (base + 1E16) control which A24 registers map to the A16 space. For example, if the A24_Window Value is set to 0010, the 16 Main_DAC Write Immediate Registers are mapped to the A16 space. The Card Control Register is described in more detail on page 137.

The Base Address

When reading or writing to a module register, a hexadecimal or decimal register address must be specified. This address consists of a base address plus a register offset. The base address used in register-based programming depends on whether the A16 address space is outside or inside the Agilent E1405/E1406 Command Module.

<table>
<thead>
<tr>
<th>A24 Window Value</th>
<th>A24 Registers Selected</th>
</tr>
</thead>
<tbody>
<tr>
<td>1111</td>
<td>UNDEFINED (16 Registers)</td>
</tr>
<tr>
<td>1110</td>
<td>UNDEFINED (16 Registers)</td>
</tr>
<tr>
<td>1101</td>
<td>UNDEFINED (16 Registers)</td>
</tr>
<tr>
<td>1100</td>
<td>UNDEFINED (16 Registers)</td>
</tr>
<tr>
<td>1011</td>
<td>CHANNEL_CURRENT_GAIN_CAL_REGISTERS (16 Registers)</td>
</tr>
<tr>
<td>1010</td>
<td>CHANNEL_CURRENT_OFFSET_CAL_REGISTERS (16 Registers)</td>
</tr>
<tr>
<td>1001</td>
<td>CHANNEL_VOLTAGE_GAIN_CAL_REGISTERS (16 Registers)</td>
</tr>
<tr>
<td>1000</td>
<td>CHANNEL_VOLTAGE_OFFSET_CAL_REGISTERS (16 Registers)</td>
</tr>
<tr>
<td>0111</td>
<td>UNDEFINED (16 Registers)</td>
</tr>
<tr>
<td>0110</td>
<td>UNDEFINED (16 Registers)</td>
</tr>
<tr>
<td>0101</td>
<td>CHANNEL_GAIN_DAC_REGISTERS (16 Registers)</td>
</tr>
<tr>
<td>0100</td>
<td>CHANNEL_OFFSET_DAC_REGISTERS (16 Registers)</td>
</tr>
<tr>
<td>0011</td>
<td>MAIN_DAC_TRIGGERED_REGISTERS (16 Registers)</td>
</tr>
<tr>
<td>0010</td>
<td>MAIN_DAC_IMMEDIATE_REGISTERS (16 Registers)</td>
</tr>
<tr>
<td>0001</td>
<td>A24_WINDOW_REGISTERS (16 Registers)</td>
</tr>
<tr>
<td>0000</td>
<td>CARD_CONTROL_REGISTERS (16 Registers)</td>
</tr>
</tbody>
</table>

Figure B-3. A24 Windowing into the A16 Registers
A16 Address Space
Outside the Command Module

When the Agilent E1405/E1406 Command Module is not part of your VXIbus system (Figure B-1), the Agilent E1418A’s base address is computed as:

\[
\text{Base Address} = \text{C000}_{16} + (\text{LADDR}_{16} \times 40_{16}) \\
\text{or (decimal)} \\
49,152 + (\text{LADDR} \times 64)
\]

where \( \text{C000}_{16} \) (49,152) is the starting location of the register addresses, LADDR is the module’s logical address (set either by the switches or using dynamic addressing), and 64 is the number of address bytes per VXI device. For example, the Agilent E1418A’s factory set logical address is 72 (4816), therefore it will have a base address of:

\[
\text{C000}_{16} + (48_{16} \times 40_{16}) = \text{C000}_{16} + 1200_{16} = \text{D200}_{16} \\
\text{or (decimal)} \\
49,152 + (72 \times 64) = 49,152 + 4608 = 53760
\]

A16 Address Space
Inside the Command Module or Mainframe

When the A16 address space is inside the Agilent E1405/E1406 Command Module (Figure B-2), the module’s base address is computed as:

\[
\text{Base Address} = \text{1FC000}_{16} + (\text{LADDR} \times 40)_{16} \\
\text{or} \\
2,080,768 + (\text{LADDR} \times 64)
\]

where \( \text{1FC000}_{16} \) (2,080,768) is the starting location of the VXI A16 addresses, LADDR is the module’s logical address (set either by the switches or using dynamic addressing), and 64 is the number of address bytes per register-based device. The Agilent E1418A’s factory set logical address is 72. If this address is not changed, the module will have a base address of:

\[
\text{1FC000}_{16} + (48_{16} \times 40_{16}) = \text{1FC000}_{16} + 1200_{16} = \text{1FD200}_{16} \\
\text{or} \\
2,080,768 + (72 \times 64) = 2,080,768 + 4608 = 2,085,376
\]
Register Offset

The register offset is the register’s location in the block of 64 bytes that belong to the module. For example, the module’s Status/Control Register has an offset of 0416. When you write a command to this register, the offset is added to the base address to form the register address:

\[ \text{register address} = \text{base address} + \text{register offset} \]

Outside the command module:

\[
\begin{align*}
\text{D200}_{16} + 04_{16} &= \text{D204}_{16} \\
53,760 + 4 &= 53,764
\end{align*}
\]

In the command module:

\[
\begin{align*}
\text{1FD200}_{16} + 04_{16} &= \text{1FD204}_{16} \\
2,085,376 + 4 &= 2,085,380
\end{align*}
\]

Table B-1 shows some general programming methods for accessing the Agilent E1418A registers using different computers.

<table>
<thead>
<tr>
<th>System</th>
<th>Typical Commands</th>
<th>Base Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>External Computer</td>
<td>VXI:READ? logical_address, offset</td>
<td>logical_address = LADDR</td>
</tr>
<tr>
<td>(over GPIB to E1405/E1406</td>
<td>VXI:WRITE logical_address, offset, data</td>
<td>offset = register number</td>
</tr>
<tr>
<td>Command Module)</td>
<td>DIAG:PEEK? Base_addr + offset, width</td>
<td>Base_addr = 1FC000_{16} + (LADDR_{16} * 40_{16}) or Base_addr = 2,080,768 + (LADDR * 64)</td>
</tr>
<tr>
<td></td>
<td>DIAG:POKE Base_addr + offset, width, data</td>
<td>offset = register number</td>
</tr>
<tr>
<td></td>
<td>(width must be either 8 or 16)</td>
<td></td>
</tr>
<tr>
<td>V/382 Embedded Computer</td>
<td>READIO (-18, Base_addr + offset)</td>
<td>Base_addr = C000_{16} + (LADDR_{16} * 40_{16}) or Base_addr = 49,152 + (LADDR * 64)</td>
</tr>
<tr>
<td></td>
<td>WRITEIO (-18, Base_addr + offset; data)</td>
<td>offset = register number</td>
</tr>
<tr>
<td></td>
<td>(positive select code = byte read or write negative</td>
<td></td>
</tr>
<tr>
<td></td>
<td>select code = word read or write)</td>
<td></td>
</tr>
<tr>
<td>SICL</td>
<td>iwpoke(Base_addr + offset, data)</td>
<td>imap(id,I_MAP_VXIDEV,0,0,NULL)</td>
</tr>
<tr>
<td></td>
<td>iwpeek(Base_addr + offset)</td>
<td></td>
</tr>
</tbody>
</table>

LADDR = Agilent E1418A Logical Address = 72 = 48_{16}
Reset and Registers

Following power-on or a *RST command, the registers are put into the following states:

- The Manufacturer ID and Device ID Registers remain unaffected.
- The Channel Mode Register (base + 1A_{16}) is set to voltage output for all channels (FFFF_{16}) or is set to the state set by the V/I jumper (described on page 31) if the P/J jumper is in the jumper selectable position.
- The Channel Program Jumper Register (base + 16_{16}) is set to program selectable for all channels (FFFF_{16}) or to the position of the P/J jumper (described on page 31).
- The Channel Relay Control Register (base + 1C_{16}) is set to open all channel relays (FFFF_{16}).
- The Isolation Status Register (base + 14_{16}) reflects the isolated/non-isolated configuration of each channel.
- The Calibration Control Register (base +08_{16}) is set to calibrate voltage with the cal mux disabled (2000_{16}).
- Channel Trigger Register (base + 18_{16}) is set to 0000_{16} if the module is a 16-channel configuration or FF00_{16} if an 8-channel configuration.

---

**Note**
The upper 8-bits of all channel related registers are set to 1’s (FF_{16}) for 8-channel configurations.
## Register Maps

### A16/A24 REGISTERS

<table>
<thead>
<tr>
<th>Address</th>
<th>Read Registers</th>
<th>Write Registers</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base + 00&lt;sub&gt;16&lt;/sub&gt;</td>
<td>ID Register</td>
<td>Logical Address Register</td>
<td>VXI Required Registers</td>
</tr>
<tr>
<td>Base + 02&lt;sub&gt;16&lt;/sub&gt;</td>
<td>Device Type Register</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 04&lt;sub&gt;16&lt;/sub&gt;</td>
<td>VXI Status Register</td>
<td>VXI Control Register</td>
<td></td>
</tr>
<tr>
<td>Base + 06&lt;sub&gt;16&lt;/sub&gt;</td>
<td></td>
<td>VXI Offset Register</td>
<td></td>
</tr>
<tr>
<td>Base + 08&lt;sub&gt;16&lt;/sub&gt;</td>
<td>Calibration Control Register</td>
<td></td>
<td>Card Control Registers</td>
</tr>
<tr>
<td>Base + 0A&lt;sub&gt;16&lt;/sub&gt;</td>
<td>Card Configuration Register</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 0C&lt;sub&gt;16&lt;/sub&gt;</td>
<td></td>
<td>Software Trigger Register</td>
<td></td>
</tr>
<tr>
<td>Base + 0E&lt;sub&gt;16&lt;/sub&gt;</td>
<td>Trigger Control Register</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 10&lt;sub&gt;16&lt;/sub&gt;</td>
<td>Interrupt Control Register (Not Supported)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 12&lt;sub&gt;16&lt;/sub&gt;</td>
<td>Interrupt Status Register (Not Supported)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 14&lt;sub&gt;16&lt;/sub&gt;</td>
<td>Isolation Status Register</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 16&lt;sub&gt;16&lt;/sub&gt;</td>
<td>Chan Prog_Jumper Register</td>
<td></td>
<td>Channel Control Registers</td>
</tr>
<tr>
<td>Base + 18&lt;sub&gt;16&lt;/sub&gt;</td>
<td>Chan_Trigger Register</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 1A&lt;sub&gt;16&lt;/sub&gt;</td>
<td>Chan_Mode Register</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 1C&lt;sub&gt;16&lt;/sub&gt;</td>
<td>Chan Relay Control Register</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 1E&lt;sub&gt;16&lt;/sub&gt;</td>
<td>Card Control Register</td>
<td></td>
<td>A24 Access Register</td>
</tr>
<tr>
<td>Base + 20&lt;sub&gt;16&lt;/sub&gt; through Base + 3E&lt;sub&gt;16&lt;/sub&gt;</td>
<td>Remapped A24 Registers</td>
<td></td>
<td>A24 Window Registers</td>
</tr>
<tr>
<td>Address</td>
<td>Read Registers</td>
<td>Write Registers</td>
<td>Type</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------------</td>
<td>--------------------------</td>
<td>-------------------------------------------</td>
</tr>
<tr>
<td>Base + 40\textsubscript{16}</td>
<td>Ch 01 Main_DAC Immediate</td>
<td>Channel Main DAC Immediate Registers</td>
<td></td>
</tr>
<tr>
<td>Base + 42\textsubscript{16}</td>
<td>Ch 02 Main_DAC Immediate</td>
<td>(New output values appear immediately when the output relay is closed)</td>
<td></td>
</tr>
<tr>
<td>Base + 44\textsubscript{16}</td>
<td>Ch 03 Main_DAC Immediate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 46\textsubscript{16}</td>
<td>Ch 04 Main_DAC Immediate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 48\textsubscript{16}</td>
<td>Ch 05 Main_DAC Immediate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 4A\textsubscript{16}</td>
<td>Ch 06 Main_DAC Immediate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 4C\textsubscript{16}</td>
<td>Ch 07 Main_DAC Immediate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 4E\textsubscript{16}</td>
<td>Ch 08 Main_DAC Immediate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 50\textsubscript{16}</td>
<td>Ch 09 Main_DAC Immediate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 52\textsubscript{16}</td>
<td>Ch 10 Main_DAC Immediate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 54\textsubscript{16}</td>
<td>Ch 11 Main_DAC Immediate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 56\textsubscript{16}</td>
<td>Ch 12 Main_DAC Immediate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 58\textsubscript{16}</td>
<td>Ch 13 Main_DAC Immediate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 5A\textsubscript{16}</td>
<td>Ch 14 Main_DAC Immediate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 5C\textsubscript{16}</td>
<td>Ch 15 Main_DAC Immediate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 5E\textsubscript{16}</td>
<td>Ch 16 Main_DAC Immediate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 60\textsubscript{16}</td>
<td>Ch 01 Main_DAC Triggered</td>
<td>Channel Main DAC Triggered Registers</td>
<td></td>
</tr>
<tr>
<td>Base + 62\textsubscript{16}</td>
<td>Ch 02 Main_DAC Triggered</td>
<td>(New output values appear after the next trigger event when the output relay is closed)</td>
<td></td>
</tr>
<tr>
<td>Base + 64\textsubscript{16}</td>
<td>Ch 03 Main_DAC Triggered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 66\textsubscript{16}</td>
<td>Ch 04 Main_DAC Triggered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 68\textsubscript{16}</td>
<td>Ch 05 Main_DAC Triggered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 6A\textsubscript{16}</td>
<td>Ch 06 Main_DAC Triggered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 6C\textsubscript{16}</td>
<td>Ch 07 Main_DAC Triggered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 6E\textsubscript{16}</td>
<td>Ch 08 Main_DAC Triggered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 70\textsubscript{16}</td>
<td>Ch 09 Main_DAC Triggered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 72\textsubscript{16}</td>
<td>Ch 10 Main_DAC Triggered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 74\textsubscript{16}</td>
<td>Ch 11 Main_DAC Triggered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 76\textsubscript{16}</td>
<td>Ch 12 Main_DAC Triggered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 78\textsubscript{16}</td>
<td>Ch 13 Main_DAC Triggered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 7A\textsubscript{16}</td>
<td>Ch 14 Main_DAC Triggered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 7C\textsubscript{16}</td>
<td>Ch 15 Main_DAC Triggered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 7E\textsubscript{16}</td>
<td>Ch 16 Main_DAC Triggered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td>Read Registers</td>
<td>Write Registers</td>
<td>Type</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Base + 80_{16}</td>
<td></td>
<td>Ch 01 Offset_DAC</td>
<td>Channel Offset DAC Registers</td>
</tr>
<tr>
<td>Base + 82_{16}</td>
<td></td>
<td>Ch 02 Offset_DAC</td>
<td></td>
</tr>
<tr>
<td>Base + 84_{16}</td>
<td></td>
<td>Ch 03 Offset_DAC</td>
<td></td>
</tr>
<tr>
<td>Base + 86_{16}</td>
<td></td>
<td>Ch 04 Offset_DAC</td>
<td></td>
</tr>
<tr>
<td>Base + 88_{16}</td>
<td></td>
<td>Ch 05 Offset_DAC</td>
<td></td>
</tr>
<tr>
<td>Base + 8A_{16}</td>
<td></td>
<td>Ch 06 Offset_DAC</td>
<td></td>
</tr>
<tr>
<td>Base + 8C_{16}</td>
<td></td>
<td>Ch 07 Offset_DAC</td>
<td></td>
</tr>
<tr>
<td>Base + 8E_{16}</td>
<td></td>
<td>Ch 08 Offset_DAC</td>
<td></td>
</tr>
<tr>
<td>Base + 90_{16}</td>
<td></td>
<td>Ch 09 Offset_DAC</td>
<td></td>
</tr>
<tr>
<td>Base + 92_{16}</td>
<td></td>
<td>Ch 10 Offset_DAC</td>
<td></td>
</tr>
<tr>
<td>Base + 94_{16}</td>
<td></td>
<td>Ch 11 Offset_DAC</td>
<td></td>
</tr>
<tr>
<td>Base + 96_{16}</td>
<td></td>
<td>Ch 12 Offset_DAC</td>
<td></td>
</tr>
<tr>
<td>Base + 98_{16}</td>
<td></td>
<td>Ch 13 Offset_DAC</td>
<td></td>
</tr>
<tr>
<td>Base + 9A_{16}</td>
<td></td>
<td>Ch 14 Offset_DAC</td>
<td></td>
</tr>
<tr>
<td>Base + 9C_{16}</td>
<td></td>
<td>Ch 15 Offset_DAC</td>
<td></td>
</tr>
<tr>
<td>Base + 9E_{16}</td>
<td></td>
<td>Ch 16 Offset_DAC</td>
<td></td>
</tr>
<tr>
<td>Base + A0_{16}</td>
<td></td>
<td>Ch 01 Gain_DAC</td>
<td>Channel Gain DAC Registers</td>
</tr>
<tr>
<td>Base + A2_{16}</td>
<td></td>
<td>Ch 02 Gain_DAC</td>
<td></td>
</tr>
<tr>
<td>Base + A4_{16}</td>
<td></td>
<td>Ch 03 Gain_DAC</td>
<td></td>
</tr>
<tr>
<td>Base + A6_{16}</td>
<td></td>
<td>Ch 04 Gain_DAC</td>
<td></td>
</tr>
<tr>
<td>Base + A8_{16}</td>
<td></td>
<td>Ch 05 Gain_DAC</td>
<td></td>
</tr>
<tr>
<td>Base + AA_{16}</td>
<td></td>
<td>Ch 06 Gain_DAC</td>
<td></td>
</tr>
<tr>
<td>Base + AC_{16}</td>
<td></td>
<td>Ch 07 Gain_DAC</td>
<td></td>
</tr>
<tr>
<td>Base + AE_{16}</td>
<td></td>
<td>Ch 08 Gain_DAC</td>
<td></td>
</tr>
<tr>
<td>Base + B0_{16}</td>
<td></td>
<td>Ch 09 Gain_DAC</td>
<td></td>
</tr>
<tr>
<td>Base + B2_{16}</td>
<td></td>
<td>Ch 10 Gain_DAC</td>
<td></td>
</tr>
<tr>
<td>Base + B4_{16}</td>
<td></td>
<td>Ch 11 Gain_DAC</td>
<td></td>
</tr>
<tr>
<td>Base + B6_{16}</td>
<td></td>
<td>Ch 12 Gain_DAC</td>
<td></td>
</tr>
<tr>
<td>Base + B8_{16}</td>
<td></td>
<td>Ch 13 Gain_DAC</td>
<td></td>
</tr>
<tr>
<td>Base + BA_{16}</td>
<td></td>
<td>Ch 14 Gain_DAC</td>
<td></td>
</tr>
<tr>
<td>Base + BC_{16}</td>
<td></td>
<td>Ch 15 Gain_DAC</td>
<td></td>
</tr>
<tr>
<td>Base + BE_{16}</td>
<td></td>
<td>Ch 16 Gain_DAC</td>
<td></td>
</tr>
<tr>
<td>Base + C0_{16} through Base + FE_{16}</td>
<td>Undefined</td>
<td>Not Used</td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td>Read Registers</td>
<td>Write Registers</td>
<td>Type</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>----------------------------------------------</td>
</tr>
<tr>
<td>Base + 100_{16}</td>
<td>Ch 01 Voltage Offset_Cal</td>
<td></td>
<td>Channel Voltage Offset Cal Storage Registers (non-volatile)</td>
</tr>
<tr>
<td>Base + 102_{16}</td>
<td>Ch 02 Voltage Offset_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 104_{16}</td>
<td>Ch 03 Voltage Offset_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 106_{16}</td>
<td>Ch 04 Voltage Offset_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 108_{16}</td>
<td>Ch 05 Voltage Offset_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 10A_{16}</td>
<td>Ch 06 Voltage Offset_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 10C_{16}</td>
<td>Ch 07 Voltage Offset_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 10E_{16}</td>
<td>Ch 08 Voltage Offset_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 110_{16}</td>
<td>Ch 09 Voltage Offset_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 112_{16}</td>
<td>Ch 10 Voltage Offset_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 114_{16}</td>
<td>Ch 11 Voltage Offset_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 116_{16}</td>
<td>Ch 12 Voltage Offset_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 118_{16}</td>
<td>Ch 13 Voltage Offset_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 11A_{16}</td>
<td>Ch 14 Voltage Offset_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 11C_{16}</td>
<td>Ch 15 Voltage Offset_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 11E_{16}</td>
<td>Ch 16 Voltage Offset_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 120_{16}</td>
<td>Ch 01 Voltage Gain_Cal</td>
<td></td>
<td>Channel Voltage Gain Cal Storage Registers (non-volatile)</td>
</tr>
<tr>
<td>Base + 122_{16}</td>
<td>Ch 02 Voltage Gain_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 124_{16}</td>
<td>Ch 03 Voltage Gain_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 126_{16}</td>
<td>Ch 04 Voltage Gain_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 128_{16}</td>
<td>Ch 05 Voltage Gain_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 12A_{16}</td>
<td>Ch 06 Voltage Gain_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 12C_{16}</td>
<td>Ch 07 Voltage Gain_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 12E_{16}</td>
<td>Ch 08 Voltage Gain_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 130_{16}</td>
<td>Ch 09 Voltage Gain_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 132_{16}</td>
<td>Ch 10 Voltage Gain_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 134_{16}</td>
<td>Ch 11 Voltage Gain_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 136_{16}</td>
<td>Ch 12 Voltage Gain_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 138_{16}</td>
<td>Ch 13 Voltage Gain_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 13A_{16}</td>
<td>Ch 14 Voltage Gain_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 13C_{16}</td>
<td>Ch 15 Voltage Gain_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 13E_{16}</td>
<td>Ch 16 Voltage Gain_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td>Read Registers</td>
<td>Write Registers</td>
<td>Type</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------------</td>
<td>--------------------------</td>
<td>-------------------------------------------</td>
</tr>
<tr>
<td>Base + 14016</td>
<td>Ch 01 Current Offset_Cal</td>
<td></td>
<td>Channel Current Offset_Cal Storage Registers (non-volatile)</td>
</tr>
<tr>
<td>Base + 14216</td>
<td>Ch 02 Current Offset_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 14416</td>
<td>Ch 03 Current Offset_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 14616</td>
<td>Ch 04 Current Offset_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 14816</td>
<td>Ch 05 Current Offset_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 14A16</td>
<td>Ch 06 Current Offset_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 14C16</td>
<td>Ch 07 Current Offset_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 14E16</td>
<td>Ch 08 Current Offset_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 15016</td>
<td>Ch 09 Current Offset_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 15216</td>
<td>Ch 10 Current Offset_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 15416</td>
<td>Ch 11 Current Offset_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 15616</td>
<td>Ch 12 Current Offset_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 15816</td>
<td>Ch 13 Current Offset_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 15A16</td>
<td>Ch 14 Current Offset_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 15C16</td>
<td>Ch 15 Current Offset_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 15E16</td>
<td>Ch 16 Current Offset_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 16016</td>
<td>Ch 01 Current Gain_Cal</td>
<td></td>
<td>Channel Current Gain_Cal Storage Registers (non-volatile)</td>
</tr>
<tr>
<td>Base + 16216</td>
<td>Ch 02 Current Gain_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 16416</td>
<td>Ch 03 Current Gain_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 16616</td>
<td>Ch 04 Current Gain_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 16816</td>
<td>Ch 05 Current Gain_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 16A16</td>
<td>Ch 06 Current Gain_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 16C16</td>
<td>Ch 07 Current Gain_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 16E16</td>
<td>Ch 08 Current Gain_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 17016</td>
<td>Ch 09 Current Gain_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 17216</td>
<td>Ch 10 Current Gain_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 17416</td>
<td>Ch 11 Current Gain_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 17616</td>
<td>Ch 12 Current Gain_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 17816</td>
<td>Ch 13 Current Gain_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 17A16</td>
<td>Ch 14 Current Gain_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 17C16</td>
<td>Ch 15 Current Gain_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 17E16</td>
<td>Ch 16 Current Gain_Cal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td>Read Registers</td>
<td>Write Registers</td>
<td>Type</td>
</tr>
<tr>
<td>----------</td>
<td>---------------------------------</td>
<td>-----------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Base + 18016</td>
<td>Calibration resistor value</td>
<td></td>
<td>Calibration Registers</td>
</tr>
<tr>
<td>Base + 18216</td>
<td>Calibration resistor value</td>
<td></td>
<td>(non-volatile)</td>
</tr>
<tr>
<td>Base + 18416</td>
<td>Voltage calibration status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 18616</td>
<td>Current calibration status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 18816</td>
<td>Calibration isolation status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 18A16</td>
<td>Calibration card configuration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 18C16</td>
<td>Calibration checksum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 18E16</td>
<td>SERIAL NUMBER</td>
<td></td>
<td>Module Serial Number</td>
</tr>
<tr>
<td>Base + 19016</td>
<td></td>
<td></td>
<td>Registers (10 byte serial</td>
</tr>
<tr>
<td>Base + 19216</td>
<td></td>
<td></td>
<td>number)</td>
</tr>
<tr>
<td>Base + 19416</td>
<td></td>
<td></td>
<td>(non-volatile)</td>
</tr>
<tr>
<td>Base + 19616</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 19816</td>
<td>Undefined calibration memory</td>
<td></td>
<td>Undefined Calibration</td>
</tr>
<tr>
<td>Base + 19A16</td>
<td></td>
<td></td>
<td>Storage Registers</td>
</tr>
<tr>
<td>Base + 19C16</td>
<td></td>
<td></td>
<td>(non-volatile)</td>
</tr>
<tr>
<td>Base + 19E16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 1A016</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 1A216</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 1A416</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 1A616</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 1A816</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 1AA16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 1AC16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 1AE16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 1B016</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 1B216</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 1B416</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 1B616</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 1B816</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 1BA16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 1BC16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base + 1BE16</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Calibration Registers 00100\(_{16}\) through 001BE\(_{16}\) are located in non-volatile (FLASH) memory. Writing to this memory requires a complicated sequence of register accesses not documented here. It is recommended that calibration be performed using the SCPI driver for the module, not register access.

### Register Descriptions

#### Manufacturer ID Register

The Manufacturer ID Register is a VXIbus required register. A read of this register returns CFF\(_{16}\) (-12289 decimal).

<table>
<thead>
<tr>
<th>Address Base + 00(_{16})</th>
<th>Bit Position</th>
<th>Setting</th>
<th>Device Class</th>
<th>Address Mode</th>
<th>Manufacturer's ID Code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00</td>
<td>1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1</td>
<td>Undefined</td>
<td>Undefined</td>
<td>00(<em>{16})–FF(</em>{16})</td>
</tr>
</tbody>
</table>

**Device Class:** The Agilent E1418A is a register-based device.

**Address Mode:** The Agilent E1418A uses the A16/A24 address mode.

**Manufacturer ID Code:** Identifies Agilent Technologies as the device manufacturer.

#### Logical Address Register

The module supports Dynamic Configuration. The module’s logical address is set in bits 0 through 7 of the Logical Address Register.

<table>
<thead>
<tr>
<th>Address Base + 00(_{16})</th>
<th>Bit Position</th>
<th>Setting</th>
<th>WRITE</th>
<th>Logical Address Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00</td>
<td>Undefined</td>
<td>Undefined</td>
<td>00(<em>{16})–FF(</em>{16})</td>
</tr>
</tbody>
</table>

**Logical Address Setting:** Bits 0 through 7 of this register is set by either:

- the logical address switch settings following power-up or system reset,

or

- by a write to this register during Dynamic Configuration.

When bits 0–7 are set to a value of 255 (FF\(_{16}\)) the device is available for selection via Dynamic Configuration, and when MODID is asserted the module will respond. Typically, this is only done once at power-up or system reset and the desired logical address is written into the register bits 0 through 7. With any other Logical Address Register setting, the module
will not be accessible via MODID. The content of this register is compared with address lines 6 through 13 from the backplane to determine module accesses in A16 space.

Note

Writes to this register can be made at any time and will change the logical address of the module for later accesses.

Device Type Register

The Device Type Register is a VXIbus required register. This register indicates the module's configuration as either an 8-channel DAC or a 16-channel DAC. A read of this register returns $\text{5230}_{16}$ (21040 decimal) if the module is configured as a 16-channel DAC, or $\text{5237}_{16}$ (21047 decimal) if the module is configured as an 8-channel DAC.

<table>
<thead>
<tr>
<th>Address Base + 02&lt;sub&gt;16&lt;/sub&gt;</th>
<th>Bit Position</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>09</th>
<th>08</th>
<th>07</th>
<th>06</th>
<th>05</th>
<th>04</th>
<th>03</th>
<th>02</th>
<th>01</th>
<th>00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting</td>
<td>5&lt;sub&gt;16&lt;/sub&gt;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>230&lt;sub&gt;16&lt;/sub&gt;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>READ</td>
<td>Required Memory</td>
<td></td>
<td>237&lt;sub&gt;16&lt;/sub&gt;</td>
</tr>
</tbody>
</table>

Required Memory: The Agilent E1418A requires 256 kbytes of A24 address space.

Model Codes: The model codes for the Agilent E1418A are shown in the table below.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Model-Code Value</th>
<th>Register Read Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>16-channel DAC</td>
<td>$230_{16}$</td>
<td>$5230_{16}$</td>
</tr>
<tr>
<td>8-channel DAC</td>
<td>$237_{16}$</td>
<td>$5237_{16}$</td>
</tr>
</tbody>
</table>

VXI Status/Control Register

The VXI Status/Control Register is a VXIbus required register. As a READ register, the value returned indicates the status of A24 memory access, the MODID* line, and module readiness. As a WRITE register, the value written can control the state of the A24 memory access, the control of the VXIbus SYSFAIL* line, and perform a module reset.

<table>
<thead>
<tr>
<th>Address Base + 04&lt;sub&gt;16&lt;/sub&gt;</th>
<th>Bit</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>09</th>
<th>08</th>
<th>07</th>
<th>06</th>
<th>05</th>
<th>04</th>
<th>03</th>
<th>02</th>
<th>01</th>
<th>00</th>
</tr>
</thead>
<tbody>
<tr>
<td>READ</td>
<td>A24 ACT</td>
<td>MODID*</td>
<td>Unused</td>
<td>Ready</td>
<td>Passed</td>
<td>Unused</td>
<td></td>
</tr>
<tr>
<td>WRITE</td>
<td>A24 EN</td>
<td>Unused</td>
<td>SYSINH</td>
<td>RESET</td>
<td></td>
</tr>
</tbody>
</table>

READ A24 ACT: A one (1) in this field indicates that A24 memory can be accessed (is active) via A24 addressing. A zero (0) indicates that A24

Appendix B  Agilent E1418A Register-Based Programming  127
memory cannot be accessed via A24 addressing (is inactive). This bit reflects the state of the write register A24 EN bit.

MODID*: A one (1) in this field indicates the module is not selected via the P2 MODID line. A zero (0) in this field indicates the module is selected by a high state on the P2 MODID line.

Ready: A one (1) in this field, together with a one (1) in the Passed bit, indicates the module is ready for operation. A zero (0) in this field, together with a 0 in the Passed bit, indicates the module failed initialization.

Passed: A one (1) in this field indicates the module has finished a reset or has completed module initialization. A zero (0) in this field indicates the module is executing a reset or has failed module initialization.

WRITE A24 EN: Writing a one (1) to this field enables access to the A24 address space via A24 addressing. Writing a zero (0) to this field disables access to the A24 address space.

SYSINH: Writing a one (1) to this field disables the module from driving the VXIbus SYSFAIL* line. Writing a zero (0) enables the module to drive SYSFAIL*.

RESET: Writing a one (1) and then a zero (0) to this field performs a module reset. Writing a one (1) to this field forces the module into the reset state. The module is held in the reset state until a zero (0) is written to this field.

**VXI Offset Register**

The VXI Offset Register is a VXIbus required register. The offset register defines the base address of the module’s A24 address space.

| Address Base + 0616 | Bit | 15 | 14 | 13 | 12 | 11 | 10 | 09 | 08 | 07 | 06 | 05 | 04 | 03 | 02 | 01 | 00 |
|---------------------|-----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| READ                | A24 Offset | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| WRITE               | A24 Offset | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |

**A24 Offset**: This field is the six most significant bits of the module’s A24 base address.

Bits 0 through 9 are always zero (0).
The Calibration Control Register sets and reports calibration conditions.

<table>
<thead>
<tr>
<th>Address Base + 0816</th>
<th>Bit</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>09</th>
<th>08</th>
<th>07</th>
<th>06</th>
<th>05</th>
<th>04</th>
<th>03</th>
<th>02</th>
<th>01</th>
<th>00</th>
</tr>
</thead>
<tbody>
<tr>
<td>READ</td>
<td>Cal Bus En</td>
<td>A/D Bsy</td>
<td>Cal Mode</td>
<td>Cal Mux En</td>
<td>Cal Mux Chan Address</td>
<td>A/D Reading Value</td>
<td></td>
</tr>
<tr>
<td>WRITE</td>
<td>Cal Bus En</td>
<td>A/D Trg</td>
<td>Cal Mode Sel</td>
<td>Cal Mux En</td>
<td>Cal Mux Chan Address</td>
<td>A/D Scale</td>
<td>Unused</td>
<td></td>
</tr>
</tbody>
</table>

**READ**

**Cal Bus En**: A one (1) in this field indicates the cal bus is connected. A zero (0) in this field indicates the cal bus is not connected. This bit reflects the state of the last write to Cal Bus En field.

**A/D Bsy**: A one (1) in this field indicates the A/D is taking a reading. A zero (0) in this field indicates a new reading is available.

**Cal Mode**: A one (1) in this field indicates the calibration system is set to calibrate voltage. A zero (0) in this field indicates the calibration system is set to calibrate current. This bit reflects the state of the last write to Cal Mode Sel field.

**Cal Mux En**: A one (1) in this field indicates the Cal Mux is enabled. A zero (0) in this field indicates the Cal Mux is disabled (high-impedance). This bit reflects the state of the last write to Cal Mux En field.

**Cal Mux Chan Address**: This field returns the channel selected for calibration. This bit reflects the state of the last write to Cal Mux Chan Address field. The channel address, expressed in hexadecimal, has values from 016 through F16 corresponding to channels 1 through 16, respectively.

**A/D Reading Value**: This field returns the latest reading taken by the A/D. When A/D Scale is set to 0, the actual voltage represented by the reading value is given as:

\[
\text{Voltage} = 16.8 \text{ V} - \frac{33.6 \text{ V}}{255 \text{ steps}} \times \text{AD Reading Value}
\]

When A/D Scale is set to 1, the actual voltage represented by the reading value is given as:

\[
\text{Voltage} = 16.8 \text{ V} - \frac{33.6 \text{ V}}{255 \text{ steps}} \times \frac{\text{AD Reading Value}}{13.7}
\]

**WRITE**

**Cal Bus En**: Writing a one (1) in this field connects the cal bus. Writing a zero (0) in this field disconnects the cal bus.
**A/D Trg:** Writing a one (1) in this field begins an A/D reading. Writing a zero (0) in this field during a reading in progress will corrupt the reading. Do not combine this bit setting with other bits in this register (write only this bit).

**Cal Mode Sel:** Writing a one (1) in this field sets the calibration system to calibrate voltage. Writing a zero (0) in this field sets the calibration system to calibrate current. This bit controls a relay that requires approximately 5 mS to change states.

**Cal Mux En:** Writing a one (1) in this field enables the Cal Mux. Writing a zero (0) in this field disables the Cal Mux.

**Cal Mux Chan Address:** The address of the channel selected is written to this field. The channel address, expressed in hexadecimal, has values from 0_{16} through F_{16} corresponding to channels 1 through 16, respectively. This field only has effect when the **Cal Mux En** field is set to one (1).

**A/D Scale:** This bit changes the A/D scaling. When set to 0, normal A/D scaling is used. When set to 1, A/D scaling is divided by 13.7. This bit is used by self-test to test gain and offset DACs.

### Card Configuration Register

The Card Configuration Register returns information about the module configuration and terminal module in use.

<table>
<thead>
<tr>
<th>Address Base + 0A16</th>
<th>Bit</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>09</th>
<th>08</th>
<th>07</th>
<th>06</th>
<th>05</th>
<th>04</th>
<th>03</th>
<th>02</th>
<th>01</th>
<th>00</th>
</tr>
</thead>
<tbody>
<tr>
<td>READ</td>
<td></td>
<td>Undefined</td>
<td></td>
</tr>
</tbody>
</table>

**Configuration:** When the module is configured as an 8-channel DAC, all bits in this field are set to one (1). When the module is configured as a 16-channel DAC, all bits in this field are set to zero (0).

**Terminal:** This field returns information about the terminal module.

<table>
<thead>
<tr>
<th>Terminal Installed</th>
<th>Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screw Type Terminal</td>
<td>0 0 0</td>
</tr>
<tr>
<td>No Terminal Installed</td>
<td>1 1 1</td>
</tr>
</tbody>
</table>

**Note**

The **Terminal** bits reflect the state of the of the TERMINAL ID 1, TERMINAL ID 2, and TERMINAL ID 3 lines in the output connector. If you are not using the screw-type terminal module, these bits may be set to any value desired by shorting the line to ground. Refer to the diagram on page 30 for the line locations.
Software Trigger Register

The Software Trigger Register provides a means to trigger the module when software trigger has been selected as the trigger source in the Trigger Control Register.

<table>
<thead>
<tr>
<th>Address Base + 0C16</th>
<th>Bit 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00</th>
</tr>
</thead>
<tbody>
<tr>
<td>WRITE Software Trigger</td>
<td></td>
</tr>
</tbody>
</table>

**Software Trigger:** When software trigger is selected as the trigger source in the Trigger Control Register, any write to this register generates the trigger (the value written is not important).

Trigger Control Register

The Trigger Control Register selects the sources, destinations, and modes used to synchronize channels programmed for triggered operation.

<table>
<thead>
<tr>
<th>Address Base + 0E16</th>
<th>Bit 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00</th>
</tr>
</thead>
<tbody>
<tr>
<td>READ Trig Syst En</td>
<td>Unused Trigger Out Trigger Mode Trigger Source</td>
</tr>
<tr>
<td>WRITE</td>
<td></td>
</tr>
</tbody>
</table>

**Trig Syst En:** Writing a one (1) to this field enables the trigger system. Writing a zero (0) disables the trigger system.

**Trigger Out:** This field selects which VXIbus trigger line will be driven when the trigger mode is set to Output. The trigger lines selected are shown below.

<table>
<thead>
<tr>
<th>Line Out Selected</th>
<th>Bits 08 07 06</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTLTRIG0*</td>
<td>0 0 0</td>
</tr>
<tr>
<td>TTLTRIG1*</td>
<td>0 0 1</td>
</tr>
<tr>
<td>TTLTRIG2*</td>
<td>0 1 0</td>
</tr>
<tr>
<td>TTLTRIG3*</td>
<td>0 1 1</td>
</tr>
<tr>
<td>TTLTRIG4*</td>
<td>1 0 0</td>
</tr>
<tr>
<td>TTLTRIG5*</td>
<td>1 0 1</td>
</tr>
<tr>
<td>TTLTRIG6*</td>
<td>1 1 0</td>
</tr>
<tr>
<td>TTLTRIG7*</td>
<td>1 1 1</td>
</tr>
</tbody>
</table>

**Trigger Mode:** This field selects the operating mode for trigger-enabled channels.

<table>
<thead>
<tr>
<th>Trigger Mode</th>
<th>Bits 05 04</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYNC</td>
<td>0 0</td>
</tr>
<tr>
<td>OUTPUT</td>
<td>1 1</td>
</tr>
</tbody>
</table>
**Trigger Source:** This field selects the trigger source for trigger-enabled channels.

<table>
<thead>
<tr>
<th>Trigger Source Selected</th>
<th>Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>03 02 01 00</td>
</tr>
<tr>
<td>TTLTRIG0*</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>TTLTRIG1*</td>
<td>0 0 0 1</td>
</tr>
<tr>
<td>TTLTRIG2*</td>
<td>0 0 1 0</td>
</tr>
<tr>
<td>TTLTRIG3*</td>
<td>0 0 1 1</td>
</tr>
<tr>
<td>TTLTRIG4*</td>
<td>0 1 0 0</td>
</tr>
<tr>
<td>TTLTRIG5*</td>
<td>0 1 0 1</td>
</tr>
<tr>
<td>TTLTRIG6*</td>
<td>0 1 1 0</td>
</tr>
<tr>
<td>TTLTRIG7*</td>
<td>0 1 1 1</td>
</tr>
<tr>
<td>SOFTWARE TRIGGER</td>
<td>1 0 0 0</td>
</tr>
<tr>
<td>EXTERNAL TRIGGER</td>
<td>1 0 0 1</td>
</tr>
</tbody>
</table>

**Using the Trigger Control Register**

To set up the Trigger Control Register for the VXIbus trigger types:

**SYNC mode:** This mode allows the card to receive a trigger from one of the VXI backplane TTL trigger lines. To set the VXIbus SYNC trigger mode, the Trigger Mode field is set to SYNC (00) and the Trigger Source field is set to one of the *TTLTRIG lines. The Trigger Out field is not used.

**OUTPUT mode:** This mode allows the card to receive a trigger from one TTL trigger line and also source a trigger on another TTL trigger line. The output mode is not a VXIbus defined trigger mode. The output mode is used to synchronize additional modules. The Trigger Mode field is set to OUTPUT (11), the Trigger Source field is set one of the *TTLTRIG lines, and the Trigger Out field is set to a different *TTLTRIG line.
Interrupt Status Register

The Interrupt Status Register shows the state of the trigger ignored interrupt condition. The bit is a strobed interrupt source.

<table>
<thead>
<tr>
<th>Address Base + 12_{16}</th>
<th>Bit</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>09</th>
<th>08</th>
<th>07</th>
<th>06</th>
<th>05</th>
<th>04</th>
<th>03</th>
<th>02</th>
<th>01</th>
<th>00</th>
</tr>
</thead>
<tbody>
<tr>
<td>READ</td>
<td>Unused</td>
<td></td>
</tr>
<tr>
<td>WRITE</td>
<td>TRG IGN</td>
<td></td>
</tr>
</tbody>
</table>

TRG IGN: This field is set to a one (1) if the trigger ignored condition exists.

Isolation Status Register

The Isolation Status Register reports the plug-on module isolated/non-isolated configuration for each channel.

<table>
<thead>
<tr>
<th>Address Base + 14_{16}</th>
<th>Bit</th>
<th>Ch 16</th>
<th>Ch 15</th>
<th>Ch 14</th>
<th>Ch 13</th>
<th>Ch 12</th>
<th>Ch 11</th>
<th>Ch 10</th>
<th>Ch 09</th>
<th>Ch 08</th>
<th>Ch 07</th>
<th>Ch 06</th>
<th>Ch 05</th>
<th>Ch 04</th>
<th>Ch 03</th>
<th>Ch 02</th>
<th>Ch 01</th>
</tr>
</thead>
</table>

Ch XX ISO: Each field will return a one (1) if the channel has a non-isolated plug-on installed. A zero (0) indicates an isolating plug-on is installed.

Notes

A channel will not function without a plug-on module installed. A one (1) indicates either a non-isolated plug-on is installed or that no plug-on module is installed. DO NOT operate the module without a plug-on module installed on every channel.

For 8-Channel configurations, the upper 8 bits (channels 09 through 16) are set to 1’s (FF_{16}).
Channel Program Jumper Register

The Channel Program Jumper Register returns the state of the P/J jumper on each channel. Additional information about these jumpers is given on page 31.

<table>
<thead>
<tr>
<th>Address Base + 16</th>
<th>Bit</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>09</th>
<th>08</th>
<th>07</th>
<th>06</th>
<th>05</th>
<th>04</th>
<th>03</th>
<th>02</th>
<th>01</th>
<th>00</th>
</tr>
</thead>
<tbody>
<tr>
<td>READ</td>
<td>Ch 16 Jmpr</td>
<td>Ch 15 Jmpr</td>
<td>Ch 14 Jmpr</td>
<td>Ch 13 Jmpr</td>
<td>Ch 12 Jmpr</td>
<td>Ch 11 Jmpr</td>
<td>Ch 10 Jmpr</td>
<td>Ch 09 Jmpr</td>
<td>Ch 08 Jmpr</td>
<td>Ch 07 Jmpr</td>
<td>Ch 06 Jmpr</td>
<td>Ch 05 Jmpr</td>
<td>Ch 04 Jmpr</td>
<td>Ch 03 Jmpr</td>
<td>Ch 02 Jmpr</td>
<td>Ch 01 Jmpr</td>
<td></td>
</tr>
</tbody>
</table>

**Ch XX Jmpr**: A one (1) in a field indicates that the P/J jumper is in the program selectable position. A zero (0) indicates the P/J jumper is set to the jumper selectable position.

When the P/J jumper is in the program selectable position (1), the channel can be programmed to either the voltage or current mode from the VXIbus backplane. When the P/J jumper is in the jumper selectable position (0), the voltage or current output mode is set via the V/I jumper on the terminal module and cannot be programmed from the VXIbus backplane.

**Note**: Channels 09 through 16 will return ones (1) if the module is configured as an 8-channel device.
The Channel Trigger Register reports the trigger status for each channel.

### Address

<table>
<thead>
<tr>
<th>Bit</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>09</th>
<th>08</th>
<th>07</th>
<th>06</th>
<th>05</th>
<th>04</th>
<th>03</th>
<th>02</th>
<th>01</th>
<th>00</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>READ</strong></td>
<td>Ch 16 TM</td>
<td>Ch 15 TM</td>
<td>Ch 14 TM</td>
<td>Ch 13 TM</td>
<td>Ch 12 TM</td>
<td>Ch 11 TM</td>
<td>Ch 10 TM</td>
<td>Ch 09 TM</td>
<td>Ch 08 TM</td>
<td>Ch 07 TM</td>
<td>Ch 06 TM</td>
<td>Ch 05 TM</td>
<td>Ch 04 TM</td>
<td>Ch 03 TM</td>
<td>Ch 02 TM</td>
<td>Ch 01 TM</td>
</tr>
</tbody>
</table>

**XX TM**: A one (1) in a field indicates a value has been written to the channel Main DAC Triggered Register, but the output is not enabled until the trigger is received. A zero (0) in a field indicates a trigger will have no effect on the channel. The trigger events are set in the Trigger Control Register.

---

**Notes**

You can output an immediate value on a channel that has been set for triggered operation by writing a value to the Main_DAC Immediate Register. The trigger mode for that channel is changed to the immediate write-thru mode.

You can set a value on a channel to be applied at the next trigger event by writing a value to the Main_DAC Triggered Register. The trigger status for that channel will be changed to triggered.

Channels 09 through 16 will return ones (1) if the module is configured as an 8-channel device.
Channel Mode Register

The Channel Mode Register reports or programs the voltage or current operating mode for each channel.

<table>
<thead>
<tr>
<th>Bit</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>09</th>
<th>08</th>
<th>07</th>
<th>06</th>
<th>05</th>
<th>04</th>
<th>03</th>
<th>02</th>
<th>01</th>
<th>00</th>
</tr>
</thead>
<tbody>
<tr>
<td>READ</td>
<td>Ch 16 Mode</td>
<td>Ch 15 Mode</td>
<td>Ch 14 Mode</td>
<td>Ch 13 Mode</td>
<td>Ch 12 Mode</td>
<td>Ch 11 Mode</td>
<td>Ch 10 Mode</td>
<td>Ch 09 Mode</td>
<td>Ch 08 Mode</td>
<td>Ch 07 Mode</td>
<td>Ch 06 Mode</td>
<td>Ch 05 Mode</td>
<td>Ch 04 Mode</td>
<td>Ch 03 Mode</td>
<td>Ch 02 Mode</td>
<td>Ch 01 Mode</td>
</tr>
<tr>
<td>WRITE</td>
<td>Ch 16 Mode</td>
<td>Ch 15 Mode</td>
<td>Ch 14 Mode</td>
<td>Ch 13 Mode</td>
<td>Ch 12 Mode</td>
<td>Ch 11 Mode</td>
<td>Ch 10 Mode</td>
<td>Ch 09 Mode</td>
<td>Ch 08 Mode</td>
<td>Ch 07 Mode</td>
<td>Ch 06 Mode</td>
<td>Ch 05 Mode</td>
<td>Ch 04 Mode</td>
<td>Ch 03 Mode</td>
<td>Ch 02 Mode</td>
<td>Ch 01 Mode</td>
</tr>
</tbody>
</table>

**Ch XY Mode:** Writing a one (1) to this field selects the voltage output mode for that channel. Writing a zero (0) to this field selects the current output mode for that channel.

The mode program jumpers on the terminal module override values written to this register. When the P/J jumper for a channel is set to jumper selectable, writing to this register has no effect.

Reading this register returns the channel mode. The channel mode is reported in this register for both VXIbus backplane programming and jumper programming on the terminal module.

---

**Note**

Channels 09 through 16 will return ones (1) if the module is configured as an 8-channel device.

---

Channel Relay Control Register

The Channel Relay Control Register programs and reports the state of each channel relay.

<table>
<thead>
<tr>
<th>Bit</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>09</th>
<th>08</th>
<th>07</th>
<th>06</th>
<th>05</th>
<th>04</th>
<th>03</th>
<th>02</th>
<th>01</th>
<th>00</th>
</tr>
</thead>
<tbody>
<tr>
<td>READ</td>
<td>Ch 16 Relay</td>
<td>Ch 15 Relay</td>
<td>Ch 14 Relay</td>
<td>Ch 13 Relay</td>
<td>Ch 12 Relay</td>
<td>Ch 11 Relay</td>
<td>Ch 10 Relay</td>
<td>Ch 09 Relay</td>
<td>Ch 08 Relay</td>
<td>Ch 07 Relay</td>
<td>Ch 06 Relay</td>
<td>Ch 05 Relay</td>
<td>Ch 04 Relay</td>
<td>Ch 03 Relay</td>
<td>Ch 02 Relay</td>
<td>Ch 01 Relay</td>
</tr>
<tr>
<td>WRITE</td>
<td>Ch 16 Relay</td>
<td>Ch 15 Relay</td>
<td>Ch 14 Relay</td>
<td>Ch 13 Relay</td>
<td>Ch 12 Relay</td>
<td>Ch 11 Relay</td>
<td>Ch 10 Relay</td>
<td>Ch 09 Relay</td>
<td>Ch 08 Relay</td>
<td>Ch 07 Relay</td>
<td>Ch 06 Relay</td>
<td>Ch 05 Relay</td>
<td>Ch 04 Relay</td>
<td>Ch 03 Relay</td>
<td>Ch 02 Relay</td>
<td>Ch 01 Relay</td>
</tr>
</tbody>
</table>

**Ch XY Relay:** Writing a one (1) to this field opens the channel relay. Writing a zero (0) to this field closes the channel relay. The write operation will complete before the relays change state. The relays take approximately 5 milliseconds to change state.

Reading this register returns a one (1) in each field if the channel relay is programmed open and a zero (0) if the channel relay is programmed closed.

---

**Note**

Channels 09 through 16 will return ones (1) if the module is configured as an 8-channel device.
Card Control Register

The Card Control Register allows for access to the A24 address space from the A16 address space. It also provides access to the non-volatile memory.

<table>
<thead>
<tr>
<th>Address Base + 1E16</th>
<th>Bit 15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>09</th>
<th>08</th>
<th>07</th>
<th>06</th>
<th>05</th>
<th>04</th>
<th>03</th>
<th>02</th>
<th>01</th>
<th>00</th>
</tr>
</thead>
<tbody>
<tr>
<td>READ</td>
<td>Unused</td>
<td></td>
</tr>
<tr>
<td>WRITE</td>
<td>VPPEN</td>
<td>A24 Window</td>
<td></td>
</tr>
</tbody>
</table>

VPPEN: Writing a one (1) to this field enables the non-volatile memory to be altered. Writing a zero (0) disables updates or erasures of the non-volatile memory. Non-volatile memory is located at base + 100_{16} to base + 200_{16}.

Note

The VPPEN field enables or disables the programming voltage needed to change the contents of the non-volatile memory. A physical jumper on the main printed circuit board must also be moved to the CAL position before the contents of the non-volatile memory can be altered.

A24 Window: Writing a value to this field sets which 16 register-wide portion of A24 registers can be accessed via A16 registers 20_{16} to 3E_{16}. The registers mapped for each value are shown below and in Figure B-3 on page 116.

<table>
<thead>
<tr>
<th>A24 Window Value</th>
<th>A24 Registers Mapped</th>
</tr>
</thead>
<tbody>
<tr>
<td>0_{16}</td>
<td>A16 00_{16} through 1E_{16}</td>
</tr>
<tr>
<td>1_{16}</td>
<td>A16 20_{16} through 3E_{16}</td>
</tr>
<tr>
<td>2_{16}</td>
<td>Main_DAC Immediate Registers</td>
</tr>
<tr>
<td>3_{16}</td>
<td>Main_DAC Triggered Registers</td>
</tr>
<tr>
<td>4_{16}</td>
<td>Offset_DAC Registers</td>
</tr>
<tr>
<td>5_{16}</td>
<td>Gain_DAC Registers</td>
</tr>
<tr>
<td>6_{16}</td>
<td>Undefined</td>
</tr>
<tr>
<td>7_{16}</td>
<td>Undefined</td>
</tr>
<tr>
<td>8_{16}</td>
<td>Voltage Offset Cal Memory (non-volatile)</td>
</tr>
<tr>
<td>9_{16}</td>
<td>Voltage Gain Cal Memory (non-volatile)</td>
</tr>
<tr>
<td>A_{16}</td>
<td>Current Offset Cal Memory (non-volatile)</td>
</tr>
<tr>
<td>B_{16}</td>
<td>Current Gain Cal Memory (non-volatile)</td>
</tr>
<tr>
<td>C_{16}</td>
<td>Cal and Configuration Registers (non-volatile)</td>
</tr>
<tr>
<td>D_{16}</td>
<td>Undefined Cal Memory (non-volatile)</td>
</tr>
<tr>
<td>E_{16}</td>
<td>Undefined Cal Memory (non-volatile)</td>
</tr>
<tr>
<td>F_{16}</td>
<td>Undefined Cal Memory (non-volatile)</td>
</tr>
</tbody>
</table>
Notes

Each incremental value of the A24 Window offsets the window by 32 bytes. Up to 512 bytes of A24 space can be pointed to.

A24 Window values 8₁₆ through F₁₆ point to Calibration Registers. Calibration Registers 00100₁₆ through 001BE₁₆ are located in non-volatile (FLASH) memory. Writing to this memory requires a complicated sequence of register accesses not documented here. It is recommended that calibration be performed using the SCPI driver for the module, not register access.

Main_DAC Immediate Registers

The Main_DAC Immediate Registers are used to program the next output value on a channel. There are 16 registers, one for each output channel. The register at base + 40₁₆ programs channel 1, base + 42₁₆ programs channel 2, up to base +5E₁₆ to program channel 16. Values loaded in these registers are applied to the output immediately (no trigger condition is required).

<table>
<thead>
<tr>
<th>Address</th>
<th>Bit 15</th>
<th>Bit 14</th>
<th>Bit 13</th>
<th>Bit 12</th>
<th>Bit 11</th>
<th>Bit 10</th>
<th>Bit 09</th>
<th>Bit 08</th>
<th>Bit 07</th>
<th>Bit 06</th>
<th>Bit 05</th>
<th>Bit 04</th>
<th>Bit 03</th>
<th>Bit 02</th>
<th>Bit 01</th>
<th>Bit 00</th>
</tr>
</thead>
<tbody>
<tr>
<td>WRITE</td>
<td>Output Value</td>
<td></td>
</tr>
</tbody>
</table>

**Output Value:** Writing a 16-bit value to this field outputs the value on the channel selected by the base address. The 16-bit value is a 2’s complement number. Scaling is based upon 16 V maximum for voltage mode and .020 Amps for current mode.

Main_DAC Triggered Registers

The Main_DAC Triggered Registers are used to program the next output value on a channel. There are 16 registers, one for each output channel. The register at base + 60₁₆ programs channel 1, base + 62₁₆ programs channel 2, up to base +7E₁₆ to program channel 16. Values loaded in these registers are applied to the output(s) following the next trigger event.

<table>
<thead>
<tr>
<th>Address</th>
<th>Bit 15</th>
<th>Bit 14</th>
<th>Bit 13</th>
<th>Bit 12</th>
<th>Bit 11</th>
<th>Bit 10</th>
<th>Bit 09</th>
<th>Bit 08</th>
<th>Bit 07</th>
<th>Bit 06</th>
<th>Bit 05</th>
<th>Bit 04</th>
<th>Bit 03</th>
<th>Bit 02</th>
<th>Bit 01</th>
<th>Bit 00</th>
</tr>
</thead>
<tbody>
<tr>
<td>WRITE</td>
<td>Output Value</td>
<td></td>
</tr>
</tbody>
</table>

**Output Value:** Writing a 16-bit value to this field outputs the value on the channel selected by the base address. The 16-bit value is a 2’s complement number. Scaling is based upon 16 V maximum for voltage mode and .020 Amps for current mode.
The Main_DAC Triggered Registers, together with the Trigger Control Register, can be used to provide synchronized output changes on multiple channels.

**Offset_DAC Registers**

The Offset_DAC Registers are used to program the next offset value on a channel. There are 16 registers, one for each output channel. The register at base + 8016 programs channel 1, base + 8216 programs channel 2, up to base +9E16 to program channel 16. Values loaded in these registers are applied to the output immediately (no trigger condition is required).

<table>
<thead>
<tr>
<th>Address Base + 8016 through Base + 9E16</th>
<th>Bit 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00</th>
<th>WRITE Unused</th>
<th>msb</th>
<th>Output Value</th>
<th>lsb</th>
</tr>
</thead>
</table>

**Output Value:** Writing a 12-bit value to this field outputs the value on the channel selected by the base address. Values are in the range:

- 000<sub>16</sub> maximum positive offset
- 800<sub>16</sub> nominal (zero) offset
- FFF<sub>16</sub> maximum negative offset

A different offset value is required for voltage and current output operation.

**Gain_DAC Registers**

The Gain_DAC Registers are used to program the next gain value on a channel. There are 16 registers, one for each output channel. The register at base + A016 programs channel 1, base + A216 programs channel 2, up to base BE16 to program channel 16. Values loaded in these registers are applied to the output immediately (no trigger condition is required).

<table>
<thead>
<tr>
<th>Address Base + A016 through Base + BE16</th>
<th>Bit 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00</th>
<th>WRITE Unused</th>
<th>msb</th>
<th>Output Value</th>
<th>lsb</th>
</tr>
</thead>
</table>

**Output Value:** Writing a 12-bit value to this field outputs the value on the channel selected by the base address. Values are in the range:

- 000<sub>16</sub> minimum gain
- 800<sub>16</sub> nominal gain
- FFF<sub>16</sub> maximum gain
A different gain value is required for voltage and current output operation.

Undefined Registers
The registers from $C0_{16}$ through $FE_{16}$ are undefined.

Channel Voltage Offset Calibration Registers
The Channel Voltage Offset Calibration Registers store voltage offset calibration constants in non-volatile memory. There are 16 registers, one for each output channel. The register at base $+100_{16}$ stores channel 1, base $+102_{16}$ stores channel 2, up to base $11E_{16}$ which stores channel 16. This register is non-volatile.

<table>
<thead>
<tr>
<th>Address</th>
<th>Bit</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>09</th>
<th>08</th>
<th>07</th>
<th>06</th>
<th>05</th>
<th>04</th>
<th>03</th>
<th>02</th>
<th>01</th>
<th>00</th>
</tr>
</thead>
<tbody>
<tr>
<td>WRITE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>msb</td>
<td></td>
<td>lsb</td>
</tr>
<tr>
<td>WRITE</td>
<td>Unused</td>
<td></td>
</tr>
</tbody>
</table>

Voltage Offset Calibration Constant: Writing a 12-bit value to this field stores a new constant used to calibrate the channel output. Values are in the range:

- $000_{16}$: maximum positive offset
- $800_{16}$: nominal (zero) offset
- $FFF_{16}$: maximum negative offset

Notes
Registers $00100_{16}$ through $001BE_{16}$ are located in non-volatile (FLASH) memory. Writing to this memory requires a complicated sequence of register accesses not documented here. It is recommended that calibration be performed using the SCPI driver for the module, not register access.

Non-volatile memory has finite life, based upon the number of writes. Use care when writing to this memory.

The contents of this register are loaded into volatile memory at power-on and not used on an on-going basis.
Channel Voltage Gain Calibration Registers

The Channel Voltage Gain Calibration Registers store voltage gain calibration constants in non-volatile memory. There are 16 registers, one for each output channel. The register at base + 120_{16} stores channel 1, base + 122_{16} stores channel 2, up to base 13E_{16} which stores channel 16. This register is non-volatile.

<table>
<thead>
<tr>
<th>Address Base + 120_{16} through Base + 13E_{16}</th>
<th>Bit 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00</th>
</tr>
</thead>
<tbody>
<tr>
<td>WRITE Unused Voltage Gain Calibration Constant</td>
<td>msb unused voltage gain calibration constant</td>
</tr>
</tbody>
</table>

Voltage Gain Calibration Constant: Writing a 12-bit value to this field stores a new constant used to calibrate the channel output. The 16-bit value is a 2’s compliment number. Values are in the range:

- 000_{16} minimum gain
- 800_{16} nominal gain
- FFF_{16} maximum gain

Notes

Registers 00100_{16} through 001BE_{16} are located in non-volatile (FLASH) memory. Writing to this memory requires a complicated sequence of register accesses not documented here. It is recommended that calibration be performed using the SCPI driver for the module, not register access.

Non-volatile memory has finite life, based upon the number of writes. Use care when writing to this memory.

The contents of this register are loaded into volatile memory at power-on and not used on an on-going basis.
The Channel Current Offset Calibration Registers store current offset calibration constants in non-volatile memory. There are 16 registers, one for each output channel. The register at base + 14016 stores channel 1, base + 14216 stores channel 2, up to base 15E16 to store channel 16. This register is non-volatile.

<table>
<thead>
<tr>
<th>Address</th>
<th>Bit</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>09</th>
<th>08</th>
<th>07</th>
<th>06</th>
<th>05</th>
<th>04</th>
<th>03</th>
<th>02</th>
<th>01</th>
<th>00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base + 14016</td>
<td>WRITE</td>
<td>Unused</td>
<td>msb</td>
<td>Current Offset Calibration Constant</td>
<td>lsb</td>
<td></td>
</tr>
<tr>
<td>through Base + 15E16</td>
<td></td>
</tr>
</tbody>
</table>

**Current Offset Calibration Constant:** Writing a 16-bit value to this field sets a new constant used to calibrate the channel output. Values are in the range:

- 000₁₆: maximum positive offset
- 800₁₆: nominal (zero) offset
- FFF₁₆: maximum negative offset

**Notes**

Registers 00100₁₆ through 001BE₁₆ are located in non-volatile (FLASH) memory. Writing to this memory requires a complicated sequence of register accesses not documented here. It is recommended that calibration be performed using the SCPI driver for the module, not register access.

Non-volatile memory has finite life, based upon the number of writes. Use care when writing to this memory.

The contents of this register are loaded into volatile memory at power-on and not used on an on-going basis.
The Channel Current Gain Calibration Registers store current gain calibration constants in non-volatile memory. There are 16 registers, one for each output channel. The register at base + 160_{16} stores channel 1, base + 162_{16} stores channel 2, up to base 17E_{16} to store channel 16. This register is non-volatile.

<table>
<thead>
<tr>
<th>Address</th>
<th>Bit</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>09</th>
<th>08</th>
<th>07</th>
<th>06</th>
<th>05</th>
<th>04</th>
<th>03</th>
<th>02</th>
<th>01</th>
<th>00</th>
</tr>
</thead>
<tbody>
<tr>
<td>WRITE</td>
<td></td>
</tr>
<tr>
<td>Unused</td>
<td></td>
</tr>
<tr>
<td>Current Gain Calibration Constant:</td>
<td>msb</td>
<td></td>
<td>lsb</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

**Current Gain Calibration Constant:** Writing a 16-bit value to this field sets a new constant used to calibrate the channel output. Values are in the range:

- 000_{16} minimum gain
- 800_{16} nominal gain
- FFF_{16} maximum gain

**Notes**

Registers 00100_{16} through 001BE_{16} are located in non-volatile (FLASH) memory. Writing to this memory requires a complicated sequence of register accesses not documented here. It is recommended that calibration be performed using the SCPI driver for the module, not register access.

Non-volatile memory has finite life, based upon the number of writes. Use care when writing to this memory.

The contents of this register are loaded into volatile memory at power-on and not used on an on-going basis.
Calibration Resistor Value Registers

The Calibration Resistor Value Registers store the value of the resistor used to calibrate current output. The Calibration resistor value is a 32-bit value and requires two 16-bit registers. These registers are non-volatile.

<table>
<thead>
<tr>
<th>Address</th>
<th>Bit</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>09</th>
<th>08</th>
<th>07</th>
<th>06</th>
<th>05</th>
<th>04</th>
<th>03</th>
<th>02</th>
<th>01</th>
<th>00</th>
</tr>
</thead>
<tbody>
<tr>
<td>READ</td>
<td>2nd Least Significant Byte</td>
<td></td>
</tr>
<tr>
<td>WRITE</td>
<td></td>
</tr>
</tbody>
</table>

Value: The 32-bit resistor value (in ohms) is written to two adjacent 16-bit registers. The value is a float 32 format.

Voltage Calibration Status Register

The Voltage Calibration Status Register provides a non-volatile record of the voltage calibration status for each channel. This register is non-volatile.

<table>
<thead>
<tr>
<th>Address</th>
<th>Bit</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>09</th>
<th>08</th>
<th>07</th>
<th>06</th>
<th>05</th>
<th>04</th>
<th>03</th>
<th>02</th>
<th>01</th>
<th>00</th>
</tr>
</thead>
<tbody>
<tr>
<td>READ</td>
<td>Most Significant Byte</td>
<td></td>
</tr>
<tr>
<td>WRITE</td>
<td></td>
</tr>
</tbody>
</table>

Ch XX Cal Stat: This field is set to a one (1) when the channel has been successfully voltage calibrated. This field is set to a zero (0) when the channel is not voltage calibrated.

Notes

This register is not set or used by the hardware. The Agilent E1418A SCPI driver, if used to calibrate the module, automatically sets the bits in this register. If you use register programming to calibrate this module, you may wish to use this register to record the calibration status.

The Voltage Calibration Status Register, the Current Calibration Status Register, the Calibration Isolation Status Register, and the Calibration Card Configuration Register are used together to store the overall calibration status of the module.
**Current Calibration Status Register**

The Current Calibration Status Register provides a non-volatile record of the current calibration status for each channel. This register is non-volatile.

<table>
<thead>
<tr>
<th>Address</th>
<th>Bit</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>09</th>
<th>08</th>
<th>07</th>
<th>06</th>
<th>05</th>
<th>04</th>
<th>03</th>
<th>02</th>
<th>01</th>
<th>00</th>
</tr>
</thead>
</table>

**Ch XX Curr Cal Stat:** This field is set to a one (1) when the channel has been successfully current calibrated. This field is set to a zero (0) when the channel is not current calibrated.

**Notes**

This register is not set or used by the hardware. The Agilent E1418A SCPI driver, if used to calibrate the module, automatically sets the bits in this register. If you use register programming to calibrate this module, you may wish to use this register to record the calibration status.

The Voltage Calibration Status Register, the Current Calibration Status Register, the Calibration Isolation Status Register, and the Calibration Card Configuration Register are used together to store the overall calibration status of the module.
The Calibration Isolation Status Register provides a non-volatile record of the isolation status of each channel at the last calibration. This register is non-volatile.

<table>
<thead>
<tr>
<th>Address</th>
<th>Bit</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>09</th>
<th>08</th>
<th>07</th>
<th>06</th>
<th>05</th>
<th>04</th>
<th>03</th>
<th>02</th>
<th>01</th>
<th>00</th>
</tr>
</thead>
<tbody>
<tr>
<td>READ</td>
<td>Ch 16</td>
<td>Iso</td>
<td>Ch 15</td>
<td>Iso</td>
<td>Ch 14</td>
<td>Iso</td>
<td>Ch 13</td>
<td>Iso</td>
<td>Ch 12</td>
<td>Iso</td>
<td>Ch 11</td>
<td>Iso</td>
<td>Ch 10</td>
<td>Iso</td>
<td>Ch 09</td>
<td>Iso</td>
<td>Ch 08</td>
</tr>
<tr>
<td></td>
<td>Cal</td>
</tr>
<tr>
<td>WRITE</td>
<td>Ch 07</td>
<td>Iso</td>
<td>Ch 06</td>
<td>Iso</td>
<td>Ch 05</td>
<td>Iso</td>
<td>Ch 04</td>
<td>Iso</td>
<td>Ch 03</td>
<td>Iso</td>
<td>Ch 02</td>
<td>Iso</td>
<td>Ch 01</td>
<td>Iso</td>
<td>Ch 00</td>
<td>Iso</td>
<td>Ch 00</td>
</tr>
</tbody>
</table>

**Ch XX Iso Cal Stat:** This field is set to a one (1) when the last calibration of the channel was performed with the channel configured as non-isolated. This field is set to a zero (0) when the channel was last calibrated in the isolated configuration.

**Notes**

This register is not set or used by the hardware. The Agilent E1418A SCPI driver, if used to calibrate the module, automatically sets the bits in this register. If you use register programming to calibrate this module, you may wish to use this register to record the calibration status.

The Voltage Calibration Status Register, the Current Calibration Status Register, the Calibration Isolation Status Register, and the Calibration Card Configuration Register are used together to maintain the overall calibration status of the module.

Changes in the values of these fields indicate a change in the module configuration and may indicate the need to recalibrate the module.
**Calibration Card Configuration Register**

The Calibration Card Configuration Register provides a non-volatile record of the module configuration as either an 8-channel device or a 16-channel device when the module was last calibrated.

<table>
<thead>
<tr>
<th>Address Base + 18A16</th>
<th>Bit</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>09</th>
<th>08</th>
<th>07</th>
<th>06</th>
<th>05</th>
<th>04</th>
<th>03</th>
<th>02</th>
<th>01</th>
<th>00</th>
</tr>
</thead>
<tbody>
<tr>
<td>READ</td>
<td></td>
</tr>
<tr>
<td>WRITE</td>
<td></td>
</tr>
<tr>
<td>Configuration</td>
<td></td>
</tr>
<tr>
<td>Undefined</td>
<td></td>
</tr>
</tbody>
</table>

**Configuration:** When the module was configured as an 8-channel DAC during the last calibration, all bits in this field are set to one (1). When the module was configured as a 16-channel DAC at the last calibration, all bits in this field are set to zero (0).

**Notes**

This register is not set or used by the hardware. The Agilent E1418A SCPI driver, if used to calibrate the module, automatically sets the bits in this register. If you use register programming to calibrate this module, you may wish to use this register to record the calibration status.

The Voltage Calibration Status Register, the Current Calibration Status Register, the Calibration Isolation Status Register, and the Calibration Card Configuration Register are used together to maintain the overall calibration status of the module.

Changes in the values of the configuration field indicate a change in the module configuration and may indicate the need to recalibrate the module. This register is non-volatile and the field can be compared to the volatile Configuration Register to determine if the module configuration has changed.

Changes in the terminal module do not affect the contents of this register.

---

**Calibration Checksum Register**

The Calibration Checksum Register provides a non-volatile record of the checksum computed from all non-volatile calibration memory locations. The checksum computed is a 32-bit value but only the least significant 16-bits are available.

<table>
<thead>
<tr>
<th>Address Base + 18C16</th>
<th>Bit</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>09</th>
<th>08</th>
<th>07</th>
<th>06</th>
<th>05</th>
<th>04</th>
<th>03</th>
<th>02</th>
<th>01</th>
<th>00</th>
</tr>
</thead>
<tbody>
<tr>
<td>READ</td>
<td></td>
</tr>
<tr>
<td>WRITE</td>
<td></td>
</tr>
<tr>
<td>2nd Least Significant Byte</td>
<td></td>
</tr>
<tr>
<td>Least Significant Byte</td>
<td></td>
</tr>
</tbody>
</table>

**Value:** The 16 least significant bits of the Checksum Register.
Module Serial Number Registers

The Module Serial Number Registers provides a 10-byte module serial number stored in non-volatile memory.

<table>
<thead>
<tr>
<th>Address Base + 18E16</th>
<th>Bit 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00</th>
<th>READ</th>
<th>2nd Least Significant Byte</th>
<th>Least Significant Byte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address Base + 19016</td>
<td>Bit 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00</td>
<td>READ</td>
<td>4th Least Significant Byte</td>
<td>3rd Least Significant Byte</td>
</tr>
<tr>
<td>Address Base + 19216</td>
<td>Bit 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00</td>
<td>READ</td>
<td>6th Least Significant Byte</td>
<td>5th Least Significant Byte</td>
</tr>
<tr>
<td>Address Base + 19416</td>
<td>Bit 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00</td>
<td>READ</td>
<td>8th Least Significant Byte</td>
<td>7th Least Significant Byte</td>
</tr>
<tr>
<td>Address Base + 19616</td>
<td>Bit 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00</td>
<td>READ</td>
<td>Most Significant Byte</td>
<td>9th Least Significant Byte</td>
</tr>
</tbody>
</table>

Register Example

This example demonstrates using direct register access to set a calibrated voltage output. The example is in BASIC and uses a command module controlled via GPIB.

- 679 Reg_offset(0) = 0 ! ID / Logical Address Register.
- 680 Reg_offset(1) = 2 ! Device Type Register.
- 681 Reg_offset(2) = 4 ! Status/Control Register.
- 682 Reg_offset(3) = 6 ! VXI Offset Register.
- 683 Reg_offset(4) = 8 ! Calibration Control Register.
- 684 Reg_offset(5) = 10 ! Card Configuration Register.
- 685 Reg_offset(6) = 12 ! Software Trigger Register.
- 686 Reg_offset(7) = 14 ! Trigger Control Register.
- 687 Reg_offset(8) = 16 ! Interrupt Control Register.
- 688 Reg_offset(9) = 18 ! Interrupt Status Register.
- 689 Reg_offset(10) = 20 ! Isolation Status Register.
- 690 Reg_offset(11) = 22 ! Program Jumper Register.
- 691 Reg_offset(12) = 24 ! Channel Trigger Register.
- 692 Reg_offset(13) = 26 ! Channel Mode Register.
- 693 Reg_offset(14) = 28 ! Relay Control Register.
- 694 Reg_offset(15) = 30 ! Card Control A24 Window Register.
- 695 Reg_offset(16) = 32 ! A_24 Window Register (Channel 1 DAC and CAL).
- 696 Reg_offset(17) = 34 ! A_24 Window Register (Channel 2 DAC and CAL).
Reg_offset(18) = 36 ! A_24 Window Register (Channel 3 DAC and CAL).
Reg_offset(19) = 38 ! A_24 Window Register (Channel 4 DAC and CAL).
Reg_offset(20) = 40 ! A_24 Window Register (Channel 5 DAC and CAL).
Reg_offset(21) = 42 ! A_24 Window Register (Channel 6 DAC and CAL).
Reg_offset(22) = 44 ! A_24 Window Register (Channel 7 DAC and CAL).
Reg_offset(23) = 46 ! A_24 Window Register (Channel 8 DAC and CAL).
Reg_offset(24) = 48 ! A_24 Window Register (Channel 9 DAC and CAL).
Reg_offset(25) = 50 ! A_24 Window Register (Channel 10 DAC and CAL).
Reg_offset(26) = 52 ! A_24 Window Register (Channel 11 DAC and CAL).
Reg_offset(27) = 54 ! A_24 Window Register (Channel 12 DAC and CAL).
Reg_offset(28) = 56 ! A_24 Window Register (Channel 13 DAC and CAL).
Reg_offset(29) = 58 ! A_24 Window Register (Channel 14 DAC and CAL).
Reg_offset(30) = 60 ! A_24 Window Register (Channel 15 DAC and CAL).
Reg_offset(31) = 62 ! A_24 Window Register (Channel 16 DAC and CAL).

Output a calibrated voltage on channel 3.

Write_a16(Reg_offset(15),8) ! Map A 24 voltage offset cal registers.
Off_con=FNRead_a16(Reg_offset(18)) ! Get the channel 3 voltage offset cal.
Write_a16(Reg_offset(15),4) ! Map A 24 channel offset registers.
Write_a16(Reg_offset(18),Off_con) ! Put in the offset constant.
Write_a16(Reg_offset(15),9) ! Map A 24 channel gain cal registers.
Gain_con=FNRead_a16(Reg_offset(18)) ! Get the channel 3 voltage gain cal.
Write_a16(Reg_offset(15),5) ! Map A 24 channel gain registers.
Write_a16(Reg_offset(18),Gain_con) ! Put in the gain constant.
Write_a16(Reg_offset(15),2) ! Map A 24 channel Main_DAC registers.
Write_a16(Reg_offset(18),Out_val) ! Program the output value.
Write_a16(Reg_offset(14),0) ! Close all output relays.

Write_a16:SUB Write_a16(INTEGER Register,INTEGER Value).

Read_a16:DEF FNRead_a16(INTEGER Register)
Error Types

Table C-2 lists the error messages generated by the Agilent E1418A 8/16-Channel D/A Converter Module firmware when programmed by SCPI. Errors with negative values are governed by the SCPI standard and are categorized in Table C-1. Error numbers with positive values are not governed by the SCPI standard.

Table C-1. Error Types Described

<table>
<thead>
<tr>
<th>Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>−199 to −100</td>
<td>Command Errors (syntax and parameter errors). See the Agilent E1405/E1406 Command Module User’s Manual for a description of these errors.</td>
</tr>
<tr>
<td>−299 to −200</td>
<td>Execution Errors (instrument driver detected errors). See Table C-2 for these values (also, see the Agilent E1405/E1406 Command Module User’s Manual for further details).</td>
</tr>
<tr>
<td>−399 to −300</td>
<td>Device Specific Errors (instrument driver errors that are not command or execution errors). See Table C-2 for these values (also, see the Agilent E1405/E1406 Command Module User’s Manual for further details).</td>
</tr>
<tr>
<td>−499 to −400</td>
<td>Query Errors (problem in querying an instrument). See the Agilent E1405/E1406 Command Module User’s Manual for a description of these errors.</td>
</tr>
</tbody>
</table>
## Error Messages

### Table C-2. Error Messages

<table>
<thead>
<tr>
<th>Code</th>
<th>Error Messages</th>
<th>Potential Cause(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>–141</td>
<td>Invalid character data</td>
<td>An invalid SCPI keyword was used.</td>
</tr>
<tr>
<td>–211</td>
<td>Trigger ignored</td>
<td>A trigger was received and no channels were in the wait for trigger state.</td>
</tr>
<tr>
<td>–213</td>
<td>Init ignored</td>
<td>An INITiate was received and one or more channels were already in the wait for trigger state.</td>
</tr>
<tr>
<td>–221</td>
<td>Setting Conflict</td>
<td>A command was received for a mode not set. For example, a SOUR(n):VOLT command was received and the channel is set to CURR mode.</td>
</tr>
<tr>
<td>–222</td>
<td>Data out of range</td>
<td>(&lt;n&gt;) in SCPI keyword is not in the range of 1 to 16.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(&lt;value&gt;) is out of range.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(&lt;mask&gt;) is out of range.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(&lt;number&gt;) is out of range.</td>
</tr>
<tr>
<td>–224</td>
<td>Illegal Parameter Value</td>
<td>Value received is not in the legal range for the parameter.</td>
</tr>
<tr>
<td>–240</td>
<td>Hardware Error</td>
<td>A hardware failure has been detected. The module may require replacement or repair.</td>
</tr>
<tr>
<td>+2001</td>
<td>Invalid Channel Number</td>
<td>(&lt;n&gt;) in SCPI keyword is not valid for the module configuration. For example (&lt;n&gt;) is set to 11 on an 8-channel configuration.</td>
</tr>
<tr>
<td>+3000</td>
<td>Trigger too fast</td>
<td>The trigger was received before the module completed the last command.</td>
</tr>
<tr>
<td>+3002</td>
<td>Self Test Failed</td>
<td>A hardware failure was detected during power up self-test. Additional self-test information is given in Appendix E, beginning on page 167.</td>
</tr>
<tr>
<td>+3004</td>
<td>Multiple attempts to erase non-volatile Memory</td>
<td>Attempts to erase non-volatile memory using the CAL:STOR command failed. May indicate a hardware failure or the CAL Store Enable Jumper is not in the correct position.</td>
</tr>
<tr>
<td>+3005</td>
<td>Multiple attempts to program non-volatile Memory</td>
<td>Attempts to write to non-volatile memory using the CAL:STOR command failed. May indicate a hardware failure or the CAL Store Enable Jumper is not in the correct position.</td>
</tr>
<tr>
<td>+3006</td>
<td>CAL Store Enable Jumper not set properly</td>
<td>A CAL:STOR command was received and the CAL Store Enable Jumper is not set to the CAL position.</td>
</tr>
<tr>
<td>+3007</td>
<td>Checksum error on non-volatile Memory</td>
<td>Calibration constants in non-volatile memory are corrupted. Recalibration is needed.</td>
</tr>
<tr>
<td>Code</td>
<td>Error Messages</td>
<td>Potential Cause(s)</td>
</tr>
<tr>
<td>------</td>
<td>---------------------------------------------------------------</td>
<td>--------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>+3008</td>
<td>Invalid Calibration State</td>
<td>An invalid sequence of calibration commands was received. For example, a CAL\text{n}:CONF:VOLT command followed by a CAL\text{n}:VAL:CURR command.</td>
</tr>
<tr>
<td>+3009</td>
<td>Invalid Calibration Channel</td>
<td>An invalid channel number, \text{n}, was requested in the CAL\text{n}:CONF or CAL\text{n}:VAL commands.</td>
</tr>
<tr>
<td>+3010</td>
<td>Calibration aborted</td>
<td>A command, other than one of the CALibration commands, was received during the calibration process.</td>
</tr>
<tr>
<td>+3011</td>
<td>Checksum error on Calibration Memory</td>
<td>Calibration constants in RAM are corrupted. Recalibration is needed.</td>
</tr>
<tr>
<td>+3012</td>
<td>Channel cannot be programmed to this mode, check jumpers</td>
<td>An attempt to set the channel output mode when the P/J jumper is set to Jumper selectable and the mode is set by the V/I jumper.</td>
</tr>
<tr>
<td>+3013</td>
<td>Waiting for Trigger</td>
<td>An attempt to change a channel output value or mode was made after the trigger system in the wait-for-trigger state.</td>
</tr>
<tr>
<td>+3014</td>
<td>Illegal while initiated</td>
<td>An attempt to program a channel was made when the channel is in the wait-for-trigger state.</td>
</tr>
<tr>
<td>+3015</td>
<td>Non-volatile memory write failed</td>
<td>Indicates a hardware failure in non-volatile memory.</td>
</tr>
</tbody>
</table>
Using This Appendix

This appendix describes adjustment procedures. The procedures in this appendix are intended for qualified service personnel.

Adjustment procedures are a part of calibration procedures. Calibration involves functional testing, performance testing, adjustment, and verification testing. These procedures are given in the Agilent E1418A 8/16-Channel DAC Service Manual.

To maintain the output accuracy shown in Appendix A (see page 111), adjustment should be performed at 90 day intervals. Agilent Technologies can perform calibration and adjustment for you. Contact the nearest Agilent Technologies Sales and Service Office for additional information.

The Agilent E1418A Specifications (Appendix A) require that the operation temperature is within ±5°C of the calibration temperature. The module temperature is affected by both the ambient temperature and the cooling performance of the mainframe. Because VXI mainframes have significantly different cooling capabilities, the most accurate calibration is achieved when the Output Adjustment is performed with the module in the same environment and mainframe as it will be operating in.

Adjustment may be performed at more frequent intervals, if required. The module can be adjusted for use without changing the permanent calibration settings.

Adjustments are performed electronically. There are no mechanical adjustments in the module.
Calibration Constants and Non-Volatile Memory

The accuracy of a channel output depends upon a number of calibration constants. Calibration constants are stored in two locations within the module; in non-volatile memory and in RAM. The constants in RAM are used by the module to adjust all outputs.

When the module is used with the SCPI driver, the RAM constants are loaded from the non-volatile memory at power-up. You can adjust the RAM calibration constants without disturbing the non-volatile memory constants (creating a temporary calibration).

Non-volatile memory has a finite number of writes. Writing the calibration constants to non-volatile memory, therefore, reduces the life of this memory. If you are calibrating the module at 90 day or 1 year intervals, write the new constants into non-volatile memory. The new constants will be used following power-up. If you are calibrating the module more frequently (daily, for example), write the new calibration constants into RAM, but do not write to non-volatile memory.

The adjustment procedures shown in this appendix demonstrate both methods of writing calibration constants.

Equipment Required

The following equipment is recommended for calibration and adjustment. Key specifications are listed to allow for equipment substitutions.

<table>
<thead>
<tr>
<th>Model</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Multimeter (DMM)</td>
<td>Voltage measurements to ±16.8 V</td>
</tr>
<tr>
<td>5½ or 6½ digit</td>
<td>Four-wire Resistance measurements from 50 Ω to 500 Ω</td>
</tr>
</tbody>
</table>

Making Connections

All adjustment can be performed using the CAL output terminals. The CAL output terminals provide one set of connections for both voltage and current adjustment.

Optionally, you can also perform the adjustment at each channel output (to include the output relay contacts in the path). Before beginning adjustment procedures, you must send the DIAgnostic:CALibration:OUTPut CHANnel command to set the adjustment point at the channels instead of the CAL output terminals. Adjustment at each channel output will require individual
connections. You must make a four-wire connections for the adjustment procedures.

**Adjustment Procedure**

Adjustment is performed on each channel, one at a time. Additionally, voltage output and current output each use unique calibration constants. If desired, you may adjust only voltage output or current output.

**Preparation**

Before performing any adjustments, determine if the adjustments are to be temporary or permanent (refer to the discussion on page 156).

**If Permanent**

1. Turn off the mainframe.
2. Remove the terminal module (see page 26).
3. Remove the module from the mainframe (see page 21).
4. Set the Cal Store Enable Jumper to the CAL position as shown in Figure D-1.
5. Reinstall the module in the mainframe.
6. Make the CAL output terminal connections on the terminal module.

**If Temporary**

1. Make the CAL output terminal connections on the terminal module.

**Figure D-1. CAL Store Enable Jumper**

Make the CAL output terminal connections on the terminal module.

7. Install the terminal module.
8. Apply power and allow a 15 minute warm-up.
2. Install the terminal module.

3. Apply power and allow a 15 minute warm-up.

**Voltage Adjustment**

Voltage output adjustment uses two of the CALibration subsystem queries.

```
CALibrationn:CONFigure:VOLTage?
CALibrationn:VALue:VOLTage?
```

The general procedure for channel voltage adjustment is:

1. Make the connections shown in Figure D-2 or D-3.

2. Send the `CALibrationn:CONFigure:VOLTage?` query to the module and read the response until a 1 is returned (typically the first query response).

3. Read the voltage output on the DMM.

4. Send the DMM value read with the `CALibrationn:VALue:VOLTage?` query.

5. Enter the query response.

6. Repeat steps 3, 4, and 5 until the `CALibrationn:VALue:VOLTage?` query returns a 0.

7. Repeat steps 1 through 6 for each channel.

The first query, `CALibrationn:CONFigure:VOLTage?`, sets the channel to the calibration mode and returns a 1 when the channel is ready for calibration. When a 1 is returned, the channel output voltage is set to the first adjustment point.

Read the output voltage on the DMM and return the value obtained using the `CALibrationn:VALue:VOLTage?` query. This query returns an integer indicating the calibration state of the channel. Any non-zero return from this query indicates additional values are needed.

Each channel will require multiple iterations of the `CALibrationn:VALue:VOLTage?` query. A minimum of 9 queries, to a maximum of 50 queries, will be required at each channel. During the process, the output voltage will range from +16 V to -16 V and the last values output will be at or near 0 volts.
Figure D-2. Voltage Calibration Connections (CAL)

Figure D-3. Voltage Calibration Connections (CHAN)
Current Adjustment

Current output uses an internal resistance value to calibrate all channels. This resistance value is approximately 244 Ω.

Note

You may also use an external resistance value on each channel for current output calibration. If you wish to specify an external resistor value, you must send the DIAGnostic:CALibration:OUTPut CHANnel command and perform the adjustment at each channel output. Any resistor value may be used but values in the range of 50 Ω to 500 Ω are recommended.

To set the internal resistance value use the following CALibration commands:

- CALibration:CONFigure:RESistance?
- CALibration:VALue:RESistance

The resistance value set, either internal or external, is not stored.

When using the **internal resistor value**, the general procedure is:

1. Make the connections shown in Figure D-4.
2. Send the CALibration:CONFigure:RESistance? query to the module and read the response until a 1 is returned (typically the first query response).
3. Read the resistance on the DMM.
4. Send the DMM value read to the module using the CALibration:VALue:RESistance command.

The resistor value is only set once for current calibration of all channels.

If you are using an **external resistor value, for each channel:**

1. Send the CALibration:CONFigure:RESistance? query to the module and read the response until a 1 is returned (typically the first query response).
2. Measure the channel’s external resistor value on the DMM.
3. Send the DMM value read to the module using the CALibration:VALue:RESistance command.
Current output adjustment uses two of the CALibration subsystem queries. Current adjustment requires voltage measurements.

CALibration:\n:CONFigure:CURRent?
CALibration:\n:VALue:CURRent? <value>

Once the calibration resistance value is set as described earlier, the general procedure for each channel current output adjustment is:

1. Make the connections shown in Figure D-5 or D-6.
2. Send the CAL:n:CONF:CURR? query to the module and read the response until a 1 is returned (typically the first query response).
3. Read the voltage output on the DMM.
4. Send the DMM value read with the CAL:n:VAL:CURR? <value> query.
5. Enter the query response.
6. Repeat steps 3, 4, and 5 until the CAL:n:VAL:CURR? <value> query returns a 0.
7. Repeat steps 1 through 6 for each channel.

The first query, CAL:n:CONF:CURR?, sets the channel to the calibration mode and returns a 1 when the channel is ready for calibration. When a 1 is returned, the channel output voltage is set to the first adjustment point.

Read the output voltage on the DMM and return the value obtained using the CAL:n:VAL:CURR? <value> query. This query returns an integer indicating the calibration state of the channel. A value other than 0 or 2 from this query indicates additional values are needed.
Each channel will require multiple iterations of the CALn:VAL:CURR? <value> query. A minimum of 9 queries, to a maximum of 50 queries, will be required at each channel. During the process, the output voltage will range from -5 to +5 V and the last values output will be at or near 0 volts.

Figure D-5. Current Calibration Connections (CAL)

Figure D-6. Current Calibration Connections (CHAN)
Storing the Adjustments

Once all adjustments have been made using the procedures outlined previously, you can store the new calibration constants in non-volatile memory by sending the following command:

```c
/* Store the new constants */
CALibration:STORe
```

This command will generate an error if the Cal Store Enable Jumper is not set to the CAL position (see page 157).

Note

The Agilent E1418A will be busy storing the new calibration constants following the CAL:STORe command. You should not perform any bus resets or module resets until the store is complete. You can use the *OPC? query as described on page 56, if needed.

Return the Module to Use

If you have changed the position of the Cal Store Enable Jumper (as described on page 157) and you wish to prevent writing calibration constants to non-volatile memory, set the jumper to the SECURE position.

Example Program

The following program, written in ANSI C illustrates a full calibration of all channels for both voltage and resistance. The internal calibration resistor is used. The SCPI drivers disk contains a calibration example file. This example uses function calls to the Agilent VISA Transition Library for I/O operations. Page 39 provides more details about this library.

```c
/* FUNCTION PROTOTYPES */
void main (void);
void err_handler(ViSession vi, ViStatus x); /* VTL error routine */
void sys_err(ViSession resource); /* Checks for SCPI programming errors */
void pause(); /* Waits for a keystroke to continue program execution */
int config_check (); /* Checks and reports the module configuration */
/* returns the number of channels in module */
float get_voltage (); /* Obtains the measured voltage */
float get_resistance (); /* Obtains the measured resistance */

void main (void)
{
 char cal_point [5],int_ext [4];
 int num_chan,result,compare,i,condition [4];
 float meas_volt,meas_res;
 /* other code */
}
```
Voltage/Current Output Adjustment

*** VOLTAGE OUTPUT ADJUSTMENT ***

```c
for (i=1;i<num_chan+1;i++)
{
 result = 0;
 while (result < 1)
 {
 err = viPrintf(dac, "CAL%d:CONF:VOLT?\n",i); /* Configure for calibration */
 if(err < VI_SUCCESS) err_handler(dac, err);
 err = viScanf(dac, "%d", &result); /* Enter integer returned */
 if(err < VI_SUCCESS) err_handler(dac, err);
 if(err < VI_SUCCESS) err_handler(dac, err);
 }
 result = 1;
 while (result !=0)
 {
 meas_volt = get_voltage(); /* Get the voltage measurement */
 err = viPrintf(dac, "CAL%d:VAL:VOLT? %f\n",i,meas_volt); /* Send the measurement */
 if(err < VI_SUCCESS) err_handler(dac, err);
 err = viScanf(dac, "%d", &result); /* Enter integer returned */
 if(err < VI_SUCCESS) err_handler(dac, err);
 if (result == 5) /* Calibration for this channel aborted */
 {
 printf("Calibration for channel %d aborted\n",i);
 result = 0;
 }
 }
 err = viPrintf(dac, "CAL%d:CONF:CURR\n",i); /* Configure for calibration */
 if(err < VI_SUCCESS) err_handler(dac, err);
 err = viScanf(dac, "%d", &result); /* Enter integer returned */
 if(err < VI_SUCCESS) err_handler(dac, err);
}
```

*** CURRENT OUTPUT ADJUSTMENT ***

```c
/// set the calibration resistor value
result = 0;
while (result < 1)
{
 err = viPrintf(dac, "CAL:CONF:RES?\n"); /* Configure for resistance calibration */
 if(err < VI_SUCCESS) err_handler(dac, err);
 err = viScanf(dac, "%d", &result); /* Enter integer returned */
 if(err < VI_SUCCESS) err_handler(dac, err);
 if(err < VI_SUCCESS) err_handler(dac, err);
}
```

```c
meas_res = get_resistance();
err = viPrintf(dac, "CAL:VAL:RES %f\n",meas_res); /* Send the resistance value */
if(err < VI_SUCCESS) err_handler(dac, err);
```
err=viScanf(dac, "%d", &result);  /* Enter integer returned */
    /*, returns a 1 when ready to calibrate */
    if(err < VI_SUCCESS) err_handler(dac, err);
}
result = 1;
while (result != 0 && result != 2)
{
    meas_volt=get_voltage (); /* Get the voltage measurement */
    err=viPrintf(dac, "CAL%d:VAL:CURR? %f\n", i, meas_volt);
    if(err < VI_SUCCESS) err_handler(dac, err);
    err=viScanf(dac, "%d", &result);  /* Enter integer returned */
    /* returns a 0 when calibration complete */
    if(err < VI_SUCCESS) err_handler(dac, err);
    if (result == 5) /* Calibration aborted */
    {
        printf ("Calibration for channel %d aborted\n\n", i);
        result = 0;
    }
}

/*** STORE THE NEW CALIBRATION CONSTANTS        ***/
err=viPrintf(dac, "CAL:STOR;*OPC?\n");  /* Store the new cal constants */
if(err < VI_SUCCESS) err_handler(dac, err);
err=(viScanf(dac,"%d",&result);
if(err < VI_SUCCESS) err_handler(dac, err);
sys_err(dac);
    ●
    ●
    ●
}
Using This Appendix

This appendix contains information about the mechanical and electrical layout of the module. Use this appendix to:

- Disassemble and reconfigure the module
- Perform assembly level troubleshooting

CAUTION

Procedures in this appendix should be performed by qualified service personnel at approved static safe workstations.

Configuration

The Agilent E1418A can be configured as either an 8-channel output device or a 16-channel output device. Each output channel can be configured as either an isolated output or a non-isolated output. The following sub-sections describe how to check or change this configuration.

Checking Configuration

Use the following SCPI command to check the configuration of a module. You can also use this command to verify changes you make to the configuration. Additional programming information is given Chapter 2 and Chapter 3. An example of checking the configuration is shown on page 40.

! Check the configuration by sending this query.
DIAG:CONF?
! Enter the returned values, the query returns six integers.

The query above returns six 16-bit integers. The first and third integer contain configuration information. The second, fourth, fifth, and sixth integers contain information about the terminal module, jumper settings, and output relays. The configuration information is shown on the next page.
1st Value Returned  Indicates an 8-channel or 16-channel configuration.

<table>
<thead>
<tr>
<th>Bit</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>Not Used</td>
<td>Channels</td>
<td></td>
</tr>
</tbody>
</table>

Channels can have one of two values; all 1’s (decimal 7) for an 8-channel configuration, and all 0’s (decimal 0) for a 16-channel configuration.

2nd Value Returned  Indicates the type of Terminal Module (if any) installed. See page 77 for additional information.

3rd Value Returned  Indicates isolated or non-isolated plug-on modules for each channel.

<table>
<thead>
<tr>
<th>Bit</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>Ch16</td>
<td>Ch15</td>
<td>Ch14</td>
<td>Ch13</td>
<td>Ch12</td>
<td>Ch11</td>
<td>Ch10</td>
<td>Ch9</td>
<td>Ch8</td>
<td>Ch7</td>
<td>Ch6</td>
<td>Ch5</td>
<td>Ch4</td>
<td>Ch3</td>
<td>Ch2</td>
<td>Ch1</td>
</tr>
</tbody>
</table>

When a bit is set to a 0 an isolated plug-on is present. A bit set to a 1 indicates a non-isolated plug-on. For 8-channel devices, channels 9 through 16 bits are set to 1.

4th Value Returned  Indicates the state of the V/I jumper on the terminal module as either current or voltage when the P/J jumper is in the jumper selectable position. See page 77 for additional information.

5th Value Returned  Indicates the state of the channel output relay. See page 77 for additional information.

6th Value Returned  Indicates the state of the P/J jumper on the terminal module. See page 77 for additional information.

Changing Configuration  Configuration changes are made using Agilent add-on kits. These procedures support the following add-on kits:

<table>
<thead>
<tr>
<th>Kit Part Number</th>
<th>Description</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agilent E1523A</td>
<td>1-Channel Isolation Plug-On Module</td>
<td>Change one or more channels from Non-Isolated to Isolated Output.</td>
</tr>
<tr>
<td>Agilent E1524A</td>
<td>8-Channel Non-Isolated Expansion Kit</td>
<td>Add 8 Channels of Non-Isolated Output.</td>
</tr>
<tr>
<td>Agilent E1525A</td>
<td>8-Channel Isolated Expansion Kit</td>
<td>Add 8 Channels of Isolated Output.</td>
</tr>
</tbody>
</table>
Adding 8 Channels

Use this procedure to install an 8-Channel expansion kit (Agilent E1524A or Agilent E1525A).

CAUTION

Almost all electrical components can be damaged by electrostatic discharge (ESD) during handling. Component damage can occur at electrostatic discharge voltages as low as 50 volts. Disassemble and reconfigure only in a static free work area. Minimize handling of assemblies and components. Keep all assemblies and replacement parts in the original static free packaging.

These procedures should be performed by qualified service personnel at approved static safe workstations.

Tools Needed

- T10 Torx Driver (one is provided in the kit).
- Static Safe Workstation.
- Static Wrist Strap.

Procedure

Refer to Figures E-1 and E-2 during these procedures.

1. Remove the top cover. Refer to Figure E-1.

2. Remove the screw holding the sheet metal spacer and save the screw. Remove and discard the sheet-metal spacer.

3. Place expansion board over the main board, component sides facing each other. Line up the three electrical connectors and carefully press into place. Install the hold down screw through the expansion board and secure with a T10 Torx Driver. Refer to Figure E-2.

4. Replace the top cover.

5. Perform the adjustment procedures on the module. See Appendix D, beginning on page 155.
Figure E-1. 8-Channel Disassembly
Figure E-2. 16-Channel Disassembly
Installing Isolated/Non-Isolated Plug-on Modules

Use this procedure to install the isolated plug-on kit (Agilent E1523A) or to change the channel isolation configuration.

CAUTION

Almost all electrical components can be damaged by electrostatic discharge (ESD) during handling. Component damage can occur at electrostatic discharge voltages as low as 50 volts. Disassemble and reconfigure only in a static free work area. Minimize handling of assemblies and components. Keep all assemblies and replacement parts in the original static free packaging.

Tools Needed

- T10 Torx Driver (one is provided with the kit)
- Static Safe Workstation
- Static Wrist Strap

Procedure

Refer to Figures E-1 and E-2 during these procedures

1. Remove the top cover.

2. Remove the screw holding the sheet-metal spacer (Figure E-1) or expansion board (Figure E-2). Remove the spacer or expansion board.

3. Refer to Figure E-3 for the locations of the isolated/non-isolated plug-on modules. Each channel must have a plug-on module. Remove the screw securing the plug-on module(s).

4. Use Figure E-4 to identify isolated or non-isolated plug-on modules. Install the new plug-on module as shown in Figure E-4. Note the locator pin on the main board or expansion board that ensures correct orientation. Replace the screw in the plug-on module.

5. Repeat steps 3 and 4 for each channel.

6. Reinstall the sheet metal spacer or expansion board (a complete procedure for the expansion board is given earlier in this chapter).

7. Replace the top cover.

8. Perform the adjustment procedures on the module. See Appendix D, beginning on page 155.
Figure E-3. Plug-on Channel Locations

Figure E-4. Installing Plug-on Modules
Troubleshooting

These procedures will help you isolate a failure to a particular assembly. The major assemblies of the Agilent E1418A are available on an exchange basis.

**Isolating an Assembly (Self-Test)**

Use the following SCPI Common Command query to initiate a module self-test.

```
! Start the Self-test.
*TST?
! Enter the 16-bit integer returned.
```

The query will return a +0 if no errors are encountered. The return value looks like:

<table>
<thead>
<tr>
<th>Bit 15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td></td>
</tr>
</tbody>
</table>

The Test Information bits are not described in this manual. The test number is the number of the first test to fail. This number can be used to isolate a failing assembly. The possible test numbers and probable failing assembly are shown below.

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Failing Assembly Indicated</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>None</td>
<td>All Self-tests passed</td>
</tr>
<tr>
<td>1</td>
<td>Main Board</td>
<td></td>
</tr>
<tr>
<td>2 through 9</td>
<td>Main Board or Plug-On Modules</td>
<td>Test 2 = channel 1, Test 3 = channel 2, etc.</td>
</tr>
<tr>
<td>10 through 17</td>
<td>Expansion Board or Plug-on Modules</td>
<td>Test 10 = channel 9, Test 11 = channel 10, etc.</td>
</tr>
<tr>
<td>18 through 25</td>
<td>Main Board</td>
<td></td>
</tr>
<tr>
<td>26 through 33</td>
<td>Main board</td>
<td></td>
</tr>
<tr>
<td>34 through 41</td>
<td>Expansion Board</td>
<td></td>
</tr>
<tr>
<td>42 through 43</td>
<td>Main Board</td>
<td></td>
</tr>
<tr>
<td>44 through 51</td>
<td>Main Board</td>
<td></td>
</tr>
<tr>
<td>52 through 59</td>
<td>Expansion Board</td>
<td></td>
</tr>
<tr>
<td>60 through 67</td>
<td>Main Board</td>
<td></td>
</tr>
<tr>
<td>68 through 75</td>
<td>Expansion Board</td>
<td></td>
</tr>
</tbody>
</table>
Note

Since the query returns only the first failure test number, additional failures are possible but not reported by this command.

Assembly Exchange

The following assemblies are available for exchange.

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Assembly</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1418-69201</td>
<td>Main board and all sheet metal. Does NOT include plug-on assemblies or expansion board.</td>
</tr>
<tr>
<td>E1418-69502</td>
<td>Expansion board. Does NOT include plug-on assemblies.</td>
</tr>
<tr>
<td>E1418-66503</td>
<td>Isolated plug-on module (replacement, not an exchange).</td>
</tr>
</tbody>
</table>

Notes

When exchanging either the main board or expansion board, you must disassemble the module and remove all plug-on assemblies before sending the exchange part. Keep all parts removed in a safe place.

If you are exchanging a main board from a module configured as a 16-channel device, you must remove the expansion board before sending the exchange part.

CAUTION

Almost all electrical components can be damaged by electrostatic discharge (ESD) during handling. Component damage can occur at electrostatic discharge voltages as low as 50 volts. Disassemble and reconfigure only in a static free work area. Minimize handling of assemblies and components. Keep all assemblies and replacement parts in the original static free packaging.

These procedures should be performed by qualified service personnel at approved static safe workstations.

To Exchange an Assembly

1. Contact the nearest Agilent Technologies Sales and Service Office for instructions on packaging and shipping.

2. Disassemble the module, using the procedures given earlier in this appendix, until just the exchange part is obtained. Remove the plug-on modules and expansion board, if any.
3. Keep all removed parts in a static-safe place. **Do not send plug-on modules with the exchange assembly.**

4. Package the assembly in static-safe packaging material.

5. Include a description of the problem encountered as well as your phone number and return address.
### A

- **A16**
  - address space, 117
  - registers, 114
- **A16/A24**
  - register map, 120
  - windows, 116
- **A24**
  - access from A16, 137
  - memory
    - access state, 127
    - required, 127
    - register map, 121–125
    - registers, 115
    - windows, 116, 137
- **Abbreviated SCPI Commands**, 60
- **ABORt Subsystem**, 63
- **Accuracy**, 111–112
- **Adding 8 Channels**, 169–171

### Address
- A16 address space, 114
- A24 address space, 115
  - base address, 117
  - dynamic configuration, 19
  - logical, 19, 114
  - registers, 114–118
  - space
    - defined, 114, 117
    - inside command module, 117
    - outside command module, 117
  - window addressing, 116

### Adjustments, 155–166
- current output, 160–162
- equipment required, 156
- procedure, 157
- voltage output, 158–159

### ANSI C, 39
- **APPLy Subsystem**, 45–46, 64–65
  - APPLy:CURRent, 45–46, 53, 64
  - APPLy:VOLTage, 45–46, 53, 65

### Assembly Exchange, 175
- **Attaching Terminal Module**, 25

### B

- **Backplane**
  - circuitry, 17
  - trigger, 54, 81–82, 132
- **Base Address**, 117
- **Bits**
  - clearing from register, 97, 99
  - questionable data bit, 98
- **Block Diagram**, 16
- **Boolean Command Parameters**, 61
C

CAL
  current calibration connections, 162
  output terminals, 36, 71–72, 76, 156
  resistance calibration connections, 161
  store enable jumper, 20, 157
  terminal connections, 36, 156
  voltage calibration connections, 159
Calibration
  card configuration register, 147
  checksum register, 147
  conditions, reporting, 129
  constants, 156
    loading stored, 69, 163
    reloading, 68
  control register, 119, 129
  current
    mode, 71
    process, 73–74
  equipment required, 156
  example program, 163–165
  interruption, 74–75
  isolation status register, 146
  memory, 156
  resistor
    internal, 68, 70, 144, 160
    value registers, 144
  test condition, 69
  voltage
    mode, 72
    path
      querying, 77
      setting, 76
      process, 74–75
  CALibration Subsystem, 66–75
  CAL:CONDition?, 67
  CAL:CONFigure:RESistance?, 68, 160
  CAL:RESet, 68
  CAL:STORe, 69, 163
  CAL:TEST?, 69
  CAL:VALue:RESistance, 70, 160
  CALn:CONFigure:CURRent?, 71, 161
  CALn:CONFigure:VOLTage?, 72, 158
  CALn:VALue:CURRent?, 73–74, 161–162
  CALn:VALue:VOLTage?, 74–75, 158
Card
  configuration register, 130
  control register, 137
Certification, 7

CHAN
  current calibration connections, 162
  voltage calibration connections, 159
Changing
  channel output modes, 46
  configuration, 168
  output
    mode, 51, 78
    value, 51
  trigger state, 80
Channel
  calibration
    path
      querying, 77
      setting, 76
      process, 73–75
      readiness, 71–72
  current
    gain calibration registers, 143
    mode calibration, 71, 73–74
    offset calibration registers, 142
    output connections, 33
      combining, 34
      querying, 86, 88
      specifying, 64, 85, 87
      output mode, 13, 45, 89, 136
    gain value, 139
  isolated
    output, 14–15
    plug-on module, 15, 17
  mode
    change, 46
    register, 119, 136
  non-isolated
    output, 14–15
    plug-on module, 17
  output
    lines, 33
    mode
      changing, 46, 51, 78
      configuring, 89
      querying, 90
      setting, 45
      relay, 53, 78, 82–83
      setting, 50
    program jumper register, 119, 134
    relay control register, 119, 136
  trigger
    register, 119, 135
    status report, 135
    triggering, 104
C (continued)

Channel (continued)

voltage
  gain calibration registers, 141
  mode calibration, 72, 74–75
  offset calibration registers, 140
  output connections, 33
    combining, 34
    querying, 92, 94
    specifying, 65, 91, 93
  output mode, 13, 45, 89, 136
See also Channels

Channels
  adding 8, 169–171
  calibration condition, 69
  combining, 34, 57
  isolation status, 146
  parallel connections, 34
  series connections, 34
See also Channel

Checking
  configuration, 167
  errors, 47
  SCPI errors, 47–49

Closing Output Relay, 45, 53, 78, 82
*CLS, 96–100, 106

Combining Channels, 34, 57

Command Module
  A16 address space, 114
    inside, 117
    outside, 117

Command Reference, 59–110
  ABORt subsystem, 63
  APPLy subsystem, 45–46, 64–65
  CALibration subsystem, 66–75
  *CLS, 96–100, 106
  Common (*) Commands, 106
  common format, 59
  DIAGnostic subsystem, 76–79
  *DMC, 106
  *EMC, 106
  *EMC?, 106
  *ESE, 106
  *ESE?, 106
  *ESR?, 106
  *GMC?, 106
  *IDN?, 40, 106
  INITiate subsystem, 80
    linking, 62
    *LMC?, 106
    *OPC, 106
    *OPC?, 56, 106, 163
    OUTPut subsystem, 46, 81–83
    *PMC, 106
    quick reference, 106–110
      IEEE common commands, 106
      SCPI commands, 107–110
    *RMC, 106
    *RST, 53, 106, 119
    SCPI format, 60–61
    SOURrce subsystem, 50–52, 84–94
    *SRE, 98, 106
    *SRE?, 106
    STATus subsystem, 95–99
    *STB?, 106
    SYSTem subsystem, 100
    TEST subsystem, 101–103
    *TRG, 106
    TRIGger subsystem, 104–105
    *TST?, 53, 103, 106, 174
    *WAI, 106

Commands
  ABORt, 63
  APPLy subsystem, 45–46, 64–65
  CALibration subsystem, 66–75
  *CLS, 96–100, 106
  Common (*) Commands, 106
  common format, 59
  DIAGnostic subsystem, 76–79
  *DMC, 106
  *EMC, 106
  *EMC?, 106
  *ESE, 106
  *ESE?, 106
  *ESR?, 106
  *GMC?, 106
  *IDN?, 40, 106
  INITiate subsystem, 80
    linking, 62
    *LMC?, 106
    *OPC, 106
    *OPC?, 56, 106, 163
    OUTPut subsystem, 46, 81–83
    *PMC, 106
    quick reference, 106–110
      IEEE common commands, 106
      SCPI commands, 107–110
    *RMC, 106
    *RST, 53, 106, 119
    SCPI format, 60–61
    SOURrce subsystem, 50–52, 84–94
    *SRE, 98, 106
    *SRE?, 106
    STATus subsystem, 95–99
    *STB?, 106
    SYSTem subsystem, 100
    TEST subsystem, 101–103
    *TRG, 106
    TRIGger subsystem, 104–105
C (continued)

Commands (continued)
*TST?, 53, 103, 106, 174
types, 59
*WAI, 106
Common (*) Commands, 106
*CLS, 96–100, 106
*DMC, 106
*EMC, 106
*EMC?, 106
*ESE, 106
*ESE?, 106
*ESR?, 106
format, 59
*GMC?, 106
*IDN?, 40, 106
linking, 62
*LMC?, 106
*OPC, 106
*OPC?, 56, 106, 163
*PMC, 106
quick reference, 106
*RMC, 106
*RST, 53, 106, 119
*SRE, 98, 106
*SRE?, 106
*STB?, 106
*TRG, 106
*TST?, 53, 103, 106, 174
*WAI, 106
Condition Register, 95–96, 98
Configuration
and disassembly, 167–176
changing, 168
checking, 40–44, 167
device ID, 40–44
dynamic addressing, 19, 126
mechanical, 167
terminal module, 31
Conformity, declaration, 9
Connections
CAL terminals, 36, 156
current
 calibration (CAL), 162
calibration (CHAN), 162
 output, 33
 combining, 34
external trigger, 35
resistance calibration (CAL), 161
sense leads, 33
Connections (continued)
terminal module, 33
voltage
calibration (CAL), 159
calibration (CHAN), 159
output, 33
 combining, 34
Connectors
crimp-and-insert, 27, 29
front panel, 18
pinout, 18
terminal module, 30
pinout, 30
Controlling Output Relay, 53
Cooling Requirements, 112
Crimp-and-Insert
accessories, 28
contacts, 28
option A3E, 27–28
accessories, 28
tools, 28
Current
adjustment, 160–162
calibration
calibration connections (CAL), 162
calibration connections (CHAN), 162
status register, 145
channel output
calibration connections, 33
calibration combining, 34
querying, 86, 88
specifying, 64, 85, 87
mode, 13, 45, 89
DC specifications, 111
gain calibration constant, 143
mode calibration, 71, 73–74
offset calibration constant, 142
output adjustment
D
DC Current Specifications, 111
DC Voltage Specifications, 111
Declaration of Conformity, 9
Description, 13
 functional, 16
 registers, 126–148
Device
driver, 37
ID register, 119
type register, 127
D (continued)

DIAGnostic Subsystem, 76–79
  DIAG:CAL:OUTPut[:MODE], 76, 156, 160
  DIAG:CAL:OUTPut[:MODE]? , 77
  DIAG:CONFigure?, 40–41, 77
  DIAG:OUTP:ALL[:STATe], 53, 78
  DIAG:SOURn:FUNC:MODE, 78
  DIAG:TRIGgered?, 79
Disabling
  outputs, 46
    simultaneously, 78
  trigger system, 63
Disassembly, 169
Discrete Command Parameters, 61
  *DMC, 106
Documentation History, 8
Driver, SCPI, 13, 37, 47, 100
Dynamic Addressing, 19, 126

E

E1523A, 15, 168, 172
E1524A, 15, 168–169
E1525A, 15, 168–169
  *EMC, 106
  *EMC?, 106
Enable Register, 99
  presetting to zero, 97
Enabling
  outputs, 45–46
    simultaneously, 78
Error
  buffer, 100
  checking, 47
  I/O routine, 47
  messages, 100, 151–154
  numbers, 100, 151–154
  queue, 47
    clearing, 100
  routines, 47
  SCPI driver, 47–49
  types, 151
  *ESE, 106
  *ESE?, 106
  *ESR?, 106
Event Register, 95–99
Example Program
  See Programming Examples
Exchange Assemblies, 175
Expansion Board, 17, 169
External Trigger, 35, 54

F

Field Kits, 15, 168
Four-wire Connections, 33
Front Panel Connectors, 18
Functional Description, 16

G

Gain_DAC Registers, 139
  *GMC?, 106
GPIB, 39

H

HI Channel Output Line, 33
HS Channel Output Line, 33

I

I/O Error Check, 47
  *IDN?, 40, 106
IEEE-488.2 Common Commands
  See Common (*) Commands
Immediate Trigger, 54
Implied SCPI Commands, 61
Initial Operation, 37
INITiate Subsystem
  INITiate[:IMMediate], 54, 80
Installation
  isolation plug-on modules, 172–173
  of module, 20
  verification, 37
int Data Type, 39
Internal
  calibration resistor, 68, 70, 144, 160
  self-test, 101, 103
Interrupt
  calibration, 74
  SRQ, 98
  status register, 133
  voltage calibration, 75
Isolated
  channel output, 14–15
  channel plug-on module, 15, 17
  output, 34
  plug-on modules, 172–173
Isolation
  for isolated channels, 112
  rating, maximum, 34, 57, 112
  status of each channel, 146
  status register, 119, 133
Module (continued)
    installation, 20
    in mainframe, 20
    isolation rating, maximum, 34, 57, 112
    options available, 15
    programming examples, 39–58
    query current
        settings, 77
        status, 79
    register-based programming, 113–150
    removing from mainframe, 21
    serial number, 38, 40
    registers, 148
    setup and installation, 13–38
    specifications, 111–112
    synchronizing with program, 56
    terminal, 17, 22
    module wiring, 23–24

Non-Isolated
    channel
    output, 14–15
    plug-on module, 17
Non-Volatile (FLASH) Memory, 140–143
    calibration constants, 68–69, 141–143, 156, 163
    storing calibration results, 20
Non-Volatile Memory, 156
Numeric Command Parameters, 61

Offset_DAC Registers, 139
*OPC, 106
*OPC?, 56, 106, 163
Opening Output Relay, 51, 78, 82
Operation Register, query contents, 96–97, 99
Operation Status
    condition register, 96
    event register, 96–97, 99
    register, 95, 97
Option
    A3E, 27–28
    A3H, 29
    135, 29
Optional Command Parameters, 61
Options
    option 001, 15
    option 002, 15
    option 003, 15
    option 135, 15, 29
OUTput Subsystem, 46, 81–83
OUTPut:TTLTrgn[:STATe], 81
OUTPut:TTLTrgn[:STATe]?., 82
OUTPutn[:STATe], 46, 53, 82
OUTPutn[:STATe]?., 83

P

P/J Jumper, 17, 31, 52, 119, 134
option A3E, 32
option A3H, 32
Parallel Connections, 34
Parameters
- boolean, 61
- defined, 61
- discrete, 61
- numeric, 61
- optional, 61
- SCPI Commands, 61
Pinout
- front panel connectors, 18
- terminal module connectors, 30
plug&play
- See VXIplug&play Online Help
Plug-On Module
- channel locations, 173
- configuration report, 133
- installing, 172–173
- isolated, 15, 17
- non-isolated, 17
*PMC, 106
Power Requirements, 112
Preset Enable Registers, 97
Problem Isolation, 174
Program
- channels gain value, 139
- selectable jumper, 31
- synchronizing with module, 56
Programming Examples, 39–58
- combining output channels, 57
- direct register access, 148–149
- driver list, 37
- full calibration, 163–165
- module configuration query, 40–44
- module ID, 38
- query, 40–44
- outputting
  - currents, 45–46
  - voltages, 45–46
- SCPI error checking, 47–49
- set calibrated voltage output, 148–149
**P (continued)**

Programming Examples (continued)

- setting
  - channel output, 50–51
  - output mode, 52
  - trigger, 54–55
- using *OPC?, 56

**Q**

Query
- calibration status, 67
- channel
  - calibration, 69
  - readiness, 71–72
  - output mode, 90
- condition register contents, 96, 98
- configuration, 40–44
- current
  - calibration process, 73–74
  - module settings, 77
  - trigger status, 79
- device identification, 40–44
- error queue, 47
- event register contents, 97, 99
- operation status register, 97
- output relay state, 83
- questionable status register, 99
- self-test results, 102
- trigger source, 105
- TTLTRG line state, 82
- voltage calibration
  - path, 77
  - process, 74–75

**R**

Reading
- calibration
  - card configuration register, 147
  - checksum register, 147
  - control register, 129
  - isolation status register, 146
  - resistor value registers, 144
- channel
  - mode register, 136
  - program jumper register, 134
  - relay control register, 136
  - trigger register, 135
- configuration, 42–44
- current calibration status register, 145
- device type register, 127
- interrupt status register, 133
- isolation status register, 133
- manufacturer ID register, 126
- module ID string, 42–44
- module serial number registers, 148
- trigger control register, 131–132
- voltage calibration status register, 144
- VXI status/control register, 127

Reducing Settling Time, 78

Register-Based Programming, 113–150

- addressing the registers, 114–118
- base address, 117
- register
  - descriptions, 126–148
  - example, 148–149
  - maps, 120–125
  - offset, 118
- reset and registers, 119

Registers
- A16 address space, 114
- A16/A24 register map, 120
- A24 address space, 115
- A24 register map, 121–125
- addressing, 114–118
- base address, 117
- calibration
  - card configuration, 147
  - checksum register, 147
  - control register, 119, 129
  - isolation status, 146
  - resistor value, 144
R (continued)

Registers (continued)

card
  configuration register, 130
  control register, 137

channel
  current
    gain calibration, 143
    offset calibration, 142
  mode register, 119, 136
  program jumper register, 119, 134
  relay control register, 119, 136
  trigger register, 119, 135

voltage
  gain calibration, 141
  offset calibration, 140

removing
  modules from mainframe, 21
  terminal module, 26

reset
  output relay, 53
  registers, 119
  states, 119

resistor, internal calibration, 68, 70, 144, 160

Ribbon Cable Connector
  option A3H, 29
  *RMC, 106
  *RST, 53, 106, 119

s

safety warnings, 8

schematic, simplified, 16

SCPI
  driver, 13, 37, 47, 100
  errors, 47–49
    checking, 47–49
    messages, 151
  parameters, 61

SCPI Commands
  abbreviated, 60
  ABORt subsystem, 63
  APPLy subsystem, 45–46, 64–65
  CALibration subsystem, 66–75
  command separator, 60
  DIAGnostic subsystem, 76–79
  format, 60–61
  implied, 61
  INITiate subsystem, 80
  linking, 62
  OUTPut subsystem, 46, 81–83
  parameters, 61
  quick reference, 107–110
  reference, 59–110
  short, 60
  SOURce subsystem, 50–52, 84–94
  STATus subsystem, 95–99
  SYSTem subsystem, 100
  TEST subsystem, 101–103
  TRIGger subsystem, 104–105

self-test, 53, 174
  internal, 103
  query results, 102
  single internal, 101

sense leads, 33

serial number, 40, 148

series connections, 34
Setting
CAL Store Enable Jumper, 20
calibrated voltage output, 148–149
calibration conditions, 129
channel output, 50
mode, 45
logical address
register, 126
switch, 19
output
mode, 52
value, 45
trigger, 54–55
source, 105
voltage calibration path, 76
Settling Time, 112
reducing, 78
Short SCPI Commands, 60
Single Internal Self-Test, 101
Soft Front Panel
See VXIplug&play Online Help
Software
trigger, 54
register, 131
SOURce Subsystem, 50–52, 84–94
SOURn:CURR[:LEV][:IMM][:AMPL], 50, 85
SOURn:CURR[:LEV][:IMM][:AMPL]?, 86
SOURn:CURR[:LEV]:TRIG[:AMPL], 50, 54, 87
SOURn:CURR[:LEV]:TRIG[:AMPL]?, 88
SOURn:FUNCTION:MODE, 52–53, 89
SOURn:FUNCTION:MODE?, 90
SOURn:VOLT[:LEV][:IMM][:AMPL], 50, 91
SOURn:VOLT[:LEV][:IMM][:AMPL]?, 92
SOURn:VOLT[:LEV]:TRIG[:AMPL], 50, 54, 93
SOURn:VOLT[:LEV]:TRIG[:AMPL]?, 94
Specifications, 111–112
*SRE, 98, 106
*SRE?, 106
SRQ Interrupt, 98
Standard Event Register, 95
Status Byte, 96
register, 98
summary register, 98
STATus Subsystem, 95–99
STAT:OPER:CONDition?, 96
STAT:OPER:ENABLE, 96
STAT:OPER:ENABLE?, 97
STAT:OPER[:EVENt]?, 97
STAT:PRESet, 97

STATus Subsystem (continued)
STAT:QUES:CONDition?, 98
STAT:QUES:ENABLE, 98
STAT:QUES:ENABLE?, 99
STAT:QUES[:EVENt]?, 99
*STB?, 106
Subsystems (SCPI Commands)
ABORt, 63
APPLY, 45–46, 64–65
CALibration, 66–75
DIAGnostic, 76–79
INITiate, 80
OUTPut, 46, 81–83
SOURce, 50–52, 84–94
STATus, 95–99
SYSTem, 100
TEST, 101–103
TRIGger, 104–105
Summary Register, 96, 98
Switches, logical address, 19
Synchronizing
outputs, 54
multiple channel, 87, 93
program and module, 56
SYSFAIL* Line, 127–128
SYSTem Subsystem, 100
SYSTem:ERRor?, 47, 100
SYSTem:VERSion?, 100

T
Terminal Module, 17, 22
attaching, 25
CAL output terminals, 36, 71–72, 76, 156
combining channels, 34, 57
configuring, 31
connections, 33
connectors, 30
crimp-and-insert option, 27–28
accessories, 28
current output connections, 33
external trigger connection, 35
option 135, 15, 29
option A3E, 15, 27–28
accessories, 28
option A3H, 15, 29
options, 27–29
available, 15
PIJ jumper, 17, 31, 52, 119, 134
removing, 26
ribbon cable connector option, 29
screw-type (standard), 22
T (continued)

Terminal Module (continued)
terminal housing option, 29
V/I jumper, 17, 31, 52
voltage output connections, 33
wiring, 23–24
TEST Subsystem, 101–103
TEST:NUMBer?, 101
TEST:TST[:RESults]? 102
*TST?, 103
*TRG, 106
Trigger
channels, 104
timeout register, 131–132
external, 54
connections, 80
idle state, 80
ignored interrupt condition, 133
immediate, 54
process, 55
query current status, 79
setting, 54–55
software, 54
source
querying, 105
setting, 105
status for channels, 135
system
ABORt command, 63
INITiate command, 80
TRIGger commands, 104–105
VXIbus backplane, 54, 81–82, 132
wait-for-trigger state, 80
TRIGger Subsystem, 104–105
TRIGger:SOURCe, 54–55, 105
TRIGger:SOURCe? 105
Triggering, 54–55
Troubleshooting, 174
*TST?, 53, 103, 106, 174
TTLTRG Line, 81–82, 131–132
Two-wire Connections, 33

U

Undefined Registers, 140
Using
*OPC?, 56
timeout register, 132

V

V/I Jumper, 17, 31, 52
option A3E, 32
option A3H, 32
VI_SUCCESS, 47
viPrintf, 40, 47
VISA Transition Library
See VTL
visa.h, 39
visScanf, 40
ViStatus, 47
Voltage
adjustment, 158–159
calibration
connections (CAL), 159
calibration (CHAN), 159
path
querying, 77
setting, 76
status register, 144
channel output
connections, 33
combining, 34, 57
setting, 92, 94
status register, 144
specifying, 65, 91, 93
mode, 13, 45, 89
DC specifications, 111
gain calibration constant, 141
mode calibration, 72, 74–75
offset calibration constant, 140
output adjustment, 155–166
VTL, 40, 47
VXI
offset register, 128
status/control register, 127–128
VXIplug&play Example Programs
See VXIplug&play Online Help
VXIplug&play Function Reference
See VXIplug&play Online Help
VXIplug&play Programming
See VXIplug&play Online Help
VXIplug&play Soft Front Panel
See VXIplug&play Online Help
VXIbus, 13
backplane circuitry, 17
backplane trigger, 54, 81–82, 132
SYSFAIL* line, 127–128
TTLTRG line, 81–82, 131–132
word serial protocol, 113
W

*WAI, 106
Wait-for-Trigger State, 80
WARNINGS, 8
Warranty, 7
Wiring Terminal Module, 23–24
Writing To
calibration
card configuration register, 147
checksum register, 147
control register, 129
isolation status register, 146
resistor value registers, 144
card control register, 137
channel
current gain calibration registers, 143
current offset calibration registers, 142
mode register, 136
relay control register, 136
voltage gain calibration registers, 141
voltage offset calibration registers, 140
current calibration status register, 145
Gain_DAC registers, 139
interrupt status register, 133
logical address register, 126
Main_DAC
immediate registers, 138
triggered registers, 138
non-volatile (FLASH) memory, 140–143, 156
Offset_DAC registers, 139
software trigger register, 131
trigger control register, 131–132
voltage calibration status register, 144
VXI
offset register, 128
status/control register, 128