Mainframes
HP E1300A and E1301A
Service Manual

Enclosed is the Service Manual for HP E1300A mainframes with serial numbers prefixed 3034A and above and for HP E1301A mainframes with serial numbers prefixed 3035A and above. Insert this manual, plus any other VXIbus manuals that you have, into the binder that came with your Hewlett-Packard mainframe.
Mainframes
HP E1300A and E1301A
Service Manual

SERIAL NUMBERS
Attached to the backplane connector of the instrument is a serial number plate. The serial number is in the form: 0000A00000. The first four digits and the letter are the serial number prefix. The last five digits are the suffix. The prefix is the same for identical units and changes only when a configuration change is made to the instrument. The suffix, however, is assigned sequentially and is different for each instrument.

This manual applies directly to HP E1300A instruments with serial numbers prefixed 3034A and above and to HP E1301A instruments with serial numbers prefixed 3035A and above.

HEWLETT PACKARD

Copyright © Hewlett-Packard Company, 1991
CERTIFICATION

Hewlett-Packard Company certifies that this product met its published specifications at the time of shipment from the factory. Hewlett-Packard further certifies that its calibration measurements are traceable to the United States National Institute of Standards and Technology (formerly National Bureau of Standards), to the extent allowed by that organization’s calibration facility, and to the calibration facilities of other International Standards Organization members.

WARRANTY

This Hewlett-Packard product is warranted against defects in materials and workmanship for a period of three years from date of shipment. Duration and conditions of warranty for this product may be superseded when the product is integrated into (becomes a part of) other HP products. During the warranty period, Hewlett-Packard Company will, at its option, either repair or replace products which prove to be defective.

For warranty service or repair, this product must be returned to a service facility designated by Hewlett-Packard (HP). Buyer shall pay shipping charges to HP and HP shall pay shipping charges to return the product to Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for products returned to HP from another country.

HP warrants that its software and firmware designated by HP for use with a product will execute its programming instructions when properly installed on that product. HP does not warrant that the operation of the product, or software, or firmware will be uninterrupted or error free.

LIMITATION OF WARRANTY

The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by Buyer, Buyer-supplied products or interfacing, unauthorized modification or misuse, operation outside of the environmental specifications for the product, or improper site preparation or maintenance.

The design and implementation of any circuit on this product is the sole responsibility of the Buyer. HP does not warrant the Buyer’s circuitry or malfunctions of HP products that result from the Buyer’s circuitry. In addition, HP does not warrant any damage that occurs as a result of the Buyer’s circuit or any defects that result from Buyer-supplied products.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. HP SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

EXCLUSIVE REMEDIES

THE REMEDIES PROVIDED HEREIN ARE BUYER’S SOLE AND EXCLUSIVE REMEDIES. HP SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL THEORY.

NOTICE

The information contained in this document is subject to change without notice. HEWLETT-PACKARD (HP) MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. HP shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance or use of this material. This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this document may be photocopied, reproduced, or translated to another language without the prior written consent of Hewlett-Packard Company. HP assumes no responsibility for the use or reliability of its software on equipment that is not furnished by HP.

Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subdivision (b)(3)(ii) of the Rights in Technical Data and Computer Software clause at 52.227-7013. Hewlett-Packard Company: 3000 Hanover Street; Palo Alto, California 94304

Herstellerbescheinigung

Zusatzinformation für Mess- und Testgeräte:
Wenden Mess- und Testgeräte mit ungeschirmten Kabeln und/oder in offenen Messaufbauten verwendet, so ist vom Betreiber sicherzustellen, dass die Funk-Entstörbestimmungen unter Betriebsbedingungen an seiner Grundstücksgrenze eingehalten werden.

Manufacturer's Declaration

This is to certify that the equipment HP E1300A/E1301A meets the radio frequency interference requirements of Directive 1999/5/EC. The German Bundespost has been notified that this equipment was put into circulation and has been granted the right to check the product type for compliance with these requirements.

Additional Information for Test and Measurement Equipment:
If test and measurement equipment is operated with unscreened cables and/or used for measurements on open set-ups, the user has to assure that under operating conditions the Radio Interference Limits are still met at the border of the user's premises.
Printing History
The Printing History shown below lists all Editions and Updates of this manual and the printing date(s). The first printing of the manual is Edition 1. The Edition number increments by 1 whenever the manual is revised. Updates, which are issued between Editions, contain replacement pages to correct the current Edition of the manual. Updates are numbered sequentially starting with Update 1. When a new Edition is created, it contains all the Update information for the previous Edition. Each new Edition or Update also includes a revised copy of this printing history page. Many product updates or revisions do not require manual changes and, conversely, manual corrections may be done without accompanying product changes. Therefore, do not expect a one-to-one correspondence between product updates and manual updates.
Edition 1 (Part Number E1300-90015) August 1991

Trademark Information

Safety Symbols

Instruction manual symbol affixed to product. Indicates that the user must refer to the manual for specific Warning or Caution information to avoid personal injury or damage to the product.

Alternating current (AC).

Direct current (DC).

Indicates hazardous voltages.

WARNING

Calls attention to a procedure, practice, or condition that could cause bodily injury or death.

CAUTION

Calls attention to a procedure, practice, or condition that could possibly cause damage to equipment or permanent loss of data.

WARNINGS

The following general safety precautions must be observed during all phases of operation, service, and repair of this product. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and intended use of the product. Hewlett-Packard Company assumes no liability for the customer's failure to comply with these requirements.

Ground the equipment: For Safety Class 1 equipment (equipment having a protective earth terminal), an uninterrupted safety earth ground must be provided from the mains power source to the product input wiring terminals or supplied power cable.

DO NOT operate the product in an explosive atmosphere or in the presence of flammable gases or fumes.

For continued protection against fire, replace the line fuse(s) only with fuse(s) of the same voltage and current rating and type.

DO NOT use repaired fuses or short-circuited fuseholders.

Keep away from live circuits: Operating personnel must not remove equipment covers or shields. Procedures involving the removal of covers or shields are for use by service-trained personnel only. Under certain conditions, dangerous voltages may exist even with the equipment switched off. To avoid dangerous electrical shock, DO NOT perform procedures involving cover or shield removal unless you are qualified to do so.

DO NOT operate damaged equipment: Whenever it is possible that the safety protection features built into this product have been impaired, either through physical damage, excessive moisture, or any other reason, REMOVE POWER and do not use the product until safe operation can be verified by service-trained personnel. If necessary, return the product to a Hewlett-Packard Sales and Service Office for service and repair to ensure that safety features are maintained.

DO NOT service or adjust alone: Do not attempt internal service or adjustment unless another person, capable of rendering first aid and resuscitation, is present.

DO NOT substitute parts or modify equipment: Because of the danger of introducing additional hazards, do not install substitute parts or perform any unauthorized modification to the product. Return the product to a Hewlett-Packard Sales and Service Office for service and repair to ensure that safety features are maintained.
Suggested Sequence to Use Manuals

Manual Descriptions

Installation and Getting Started Guide. Contains step-by-step instructions for all aspects of plug-in module and mainframe installation. This guide also contains introductory programming information and examples.

HP E1300A/E1301A Mainframe User's Manual. Contains programming information for the mainframe, front panel operation information (for the HP E1301A mainframe), and general programming information for instruments installed in the mainframe.

Plug-In Module User's Manuals. Contains plug-in module programming and configuration information. These manuals contain examples for the most-used module functions, and a complete SCPI command reference for the plug-in module.

HP E1300A/E1301A Mainframe Service Manual. Contains service information for the mainframe. This manual contains information for ordering replaceable parts and exchanging assemblies. Also contains information and procedures for performance verification, adjustment, preventive maintenance, troubleshooting, and repair.

Plug-In Module Service Manuals. Contains plug-in module service information. These manuals contain information for exchanging the module or ordering replaceable parts. Depending on the module, information and procedures for functional verification, operation verification, performance verification, adjustment, preventive maintenance, troubleshooting, and repair is also provided.
What's in this Manual

Manual Overview

This manual shows how to service the HP E1300A and HP E1301A Mainframes. Additional manuals which may be required for servicing the mainframes include the *HP E1300A/E1301A Mainframe and Plug-In Modules Installation and Getting Started Guide* and the *Mainframes HP E1300A and E1301A User's Manual* which contains mainframe operation, installation, and configuration information.

Manual Content

<table>
<thead>
<tr>
<th>Chap</th>
<th>Title</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>General Information</td>
<td>Provides a basic description, and lists available options and accessories. Also lists the tools and test equipment required for service.</td>
</tr>
<tr>
<td>2</td>
<td>Installation</td>
<td>Procedures to install modules into the mainframes, perform initial inspection, prepare for use, and store and ship the mainframes.</td>
</tr>
<tr>
<td>3</td>
<td>Operating Instructions</td>
<td>Procedures to operate the mainframes and to perform the operator's check.</td>
</tr>
<tr>
<td>4</td>
<td>Verification Tests</td>
<td>Functional verification, operation verification, and performance verification tests to test the mainframes.</td>
</tr>
<tr>
<td>5</td>
<td>Adjustments</td>
<td>Procedures to adjust the mainframes to within rated specifications.</td>
</tr>
<tr>
<td>6</td>
<td>Replaceable Parts</td>
<td>Lists part numbers for user replaceable parts in the mainframes. Provides information on ordering spare parts and module/assembly exchange.</td>
</tr>
<tr>
<td>7</td>
<td>Manual Changes</td>
<td>Information to adapt this manual to instruments whose serial numbers are lower than those listed on the title page.</td>
</tr>
<tr>
<td>8</td>
<td>Service</td>
<td>Procedures to aid in fault isolation and repair of the mainframes.</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Chapter 1</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENERAL INFORMATION</td>
<td>1-1</td>
</tr>
<tr>
<td>Introduction</td>
<td>1-1</td>
</tr>
<tr>
<td>Specifications</td>
<td>1-1</td>
</tr>
<tr>
<td>Safety Considerations</td>
<td>1-1</td>
</tr>
<tr>
<td>Manual Updates</td>
<td>1-1</td>
</tr>
<tr>
<td>Description</td>
<td>1-3</td>
</tr>
<tr>
<td>Instruments Covered by This Manual</td>
<td>1-3</td>
</tr>
<tr>
<td>Options/Field Installation Kits</td>
<td>1-3</td>
</tr>
<tr>
<td>Accessories Supplied</td>
<td>1-5</td>
</tr>
<tr>
<td>Equipment Available</td>
<td>1-5</td>
</tr>
<tr>
<td>Recommended Test Equipment</td>
<td>1-5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 2</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSTALLATION</td>
<td>2-1</td>
</tr>
<tr>
<td>Introduction</td>
<td>2-1</td>
</tr>
<tr>
<td>Initial Inspection</td>
<td>2-1</td>
</tr>
<tr>
<td>Preparation for Use</td>
<td>2-1</td>
</tr>
<tr>
<td>Operating Environment</td>
<td>2-2</td>
</tr>
<tr>
<td>Storage and Shipment</td>
<td>2-2</td>
</tr>
<tr>
<td>Environment</td>
<td>2-2</td>
</tr>
<tr>
<td>Packaging</td>
<td>2-2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 3</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPERATING INSTRUCTIONS</td>
<td>3-1</td>
</tr>
<tr>
<td>Introduction</td>
<td>3-1</td>
</tr>
<tr>
<td>Safety Considerations</td>
<td>3-1</td>
</tr>
<tr>
<td>Operation</td>
<td>3-2</td>
</tr>
<tr>
<td>Operator's Checks</td>
<td>3-2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 4</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>VERIFICATION TESTS</td>
<td>4-1</td>
</tr>
<tr>
<td>Introduction</td>
<td>4-1</td>
</tr>
<tr>
<td>Equipment Required</td>
<td>4-1</td>
</tr>
<tr>
<td>Test Record</td>
<td>4-1</td>
</tr>
<tr>
<td>Calibration Cycle</td>
<td>4-1</td>
</tr>
<tr>
<td>Test Procedures</td>
<td>4-1</td>
</tr>
<tr>
<td>Functional Verification Tests</td>
<td>4-2</td>
</tr>
<tr>
<td>HP-IB Communications and Self-Test Procedure</td>
<td>4-2</td>
</tr>
<tr>
<td>Read System Configuration Test Procedure</td>
<td>4-2</td>
</tr>
<tr>
<td>Read System Time and Date Test Procedure</td>
<td>4-3</td>
</tr>
<tr>
<td>Pacer Out Test Procedure</td>
<td>4-3</td>
</tr>
<tr>
<td>Trigger Test Procedure</td>
<td>4-4</td>
</tr>
<tr>
<td>Operation Verification Tests</td>
<td>4-5</td>
</tr>
<tr>
<td>Performance Verification Test</td>
<td>4-5</td>
</tr>
<tr>
<td>Power Supply Test Procedure</td>
<td>4-5</td>
</tr>
<tr>
<td>Performance Test Record</td>
<td>4-6</td>
</tr>
</tbody>
</table>
Chapter 5
ADJUSTMENTS ... 5-1
Introduction ... 5-1

Chapter 6
REPLACEABLE PARTS .. 6-1
Introduction ... 6-1
Exchange Assemblies ... 6-1
Field Installation Kits .. 6-1
Ordering Information ... 6-1
Reference Designators/Manufacturer Codes 6-2
Replaceable Parts List ... 6-3
Replaceable Parts Component Locators 6-9

Chapter 7
MANUAL CHANGES ... 7-1
Introduction ... 7-1

Chapter 8
SERVICE ... 8-1
Introduction ... 8-1
Safety Considerations ... 8-1
Equipment Required ... 8-2
Principles of Operation .. 8-3
 General ... 8-3
 A1 Backplane PCA .. 8-5
 A2 Controller PCA .. 8-5
 A3 Power Supply Auxiliary PCA 8-6
 A4 Power Supply PCA 8-6
 Front Panel .. 8-7
 Rear Panel .. 8-7
Troubleshooting .. 8-8
 General ... 8-8
 Service Aids ... 8-8
 Visual Inspection .. 8-9
 Troubleshooting Test 8-10
Disassembly and Reassembly 8-13
 Cover ... 8-14
 Brace ... 8-15
 A1 Backplane Printed Circuit Assembly 8-16
 A2 Controller Printed Circuit Assembly 8-17
 A3 Power Supply Auxiliary Printed Circuit Assembly 8-18
 A4 Power Supply Assembly 8-19
 B1 Fan Assembly ... 8-20
 BT1 Battery Assembly 8-21
 PNL1 Front Panel Assembly 8-22
 Front Panel Display Printed Circuit Assembly 8-22
 (HP E1301A only) ... 8-23
 Front Panel Keyboard Printed Circuit Assembly and Flubber Keys (HP E1301A only) 8-24
 Memory Printed Circuit Assembly (Optional) 8-25
 "B" Size Modules Installed in Internal Slots (Optional) 8-26
 DC Power Supply PCA (Optional) 8-27
Chapter 8

SERVICE (Cont'd)

<table>
<thead>
<tr>
<th>Component</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disassembly and Reassembly (Cont'd)</td>
<td></td>
</tr>
<tr>
<td>Disk Controller PCA (Optional)</td>
<td>8-28</td>
</tr>
<tr>
<td>3.5 Inch Floppy Drive Assembly (Optional)</td>
<td>8-29</td>
</tr>
<tr>
<td>20 Mbyte Hard Disk Drive Assembly (Optional)</td>
<td>8-30</td>
</tr>
<tr>
<td>Repair</td>
<td>8-31</td>
</tr>
<tr>
<td>Etched Circuits (Printed Circuit Boards)</td>
<td>8-31</td>
</tr>
<tr>
<td>Electrostatic Discharge (ESD) Precautions</td>
<td>8-31</td>
</tr>
<tr>
<td>Post Repair Safety Checks</td>
<td>8-32</td>
</tr>
</tbody>
</table>
General Information

Introduction

This HP E1300A/E1301A Service Manual contains information required to test, adjust, troubleshoot, and repair the Hewlett-Packard Model E1300A and E1301A B Size VXI Mainframes. Figure 1-1 shows the HP E1300A and E1301A mainframes and externally supplied accessories.

Note

This manual applies to HP E1300A mainframes with serial prefixes 3034A and above and to HP E1301A mainframes with serial prefixes 3035A and above.

See the HP E1300A/E1301A Mainframes Service Manual (E1300-90010) for information on HP E1300A mainframes with serial prefixes 2935A and below and HP E1301A mainframes with serial prefixes 2934A and below.

Specifications

Instrument specifications are listed in Appendix A of the HP E1300A/E1301A User's Manual. These specifications are the performance standards or limits against which the instrument may be tested. Typical system speed and accuracy characteristics are also listed. These characteristics are not warranted specifications, but are typical characteristics included as additional information for the user.

Safety Considerations

This product is a Safety Class I instrument, that is, one provided with a protective earth terminal. The mainframe and all related documentation should be reviewed for familiarization with safety markings and instructions before operation or service. Refer to the Safety Summary page found at the beginning of this manual for a summary of the safety information. Safety information for preventive maintenance, testing, adjusting, or service is found in appropriate places throughout this manual.

Manual Updates

Manual Updates provide information necessary to update the manual. The Manual Update is identified by the manual print date and part number, both of which appear on the manual title page.
Figure 1-1. HP E1300A/E1301A Mainframes Accessories Supplied
Description

The HP E1300A/E1301A mainframe accommodates up to three A-size and seven B-size VXI modules that can operate as individual instruments. In addition, three internal slots are provided that can accommodate up to two additional B-size VXI modules (one slot is reserved for the Controller PCA.) The mainframe provides each module with:

- necessary power requirements
- language translation of IEEE-488.2 Common Commands and SCPI (Standard Commands for Programmable Instruments) commands
- module-to-module synchronization
- memory management

Both mainframes provide rear panel connectors for external controller connection, terminal connection, and various input/output trigger ports. The HP E1301A mainframe contains a front panel keyboard and display, providing local operation of the modules. The HP E1300A has no keyboard or display, and must be instructed using an external controller connected to the rear panel HP-IB port, or a terminal connected to the RS-232 port. A number of electrical and mechanical options are available for both mainframes.

Instruments Covered by this Manual

Instruments covered by this manual are identified by a serial number prefix listed on the title page. Hewlett-Packard uses a two part serial number in the form XXXXYYYYY, where XXXX is the serial prefix, A is the country of origin (A=USA) and YYYY is the serial suffix. The serial number prefix identifies a series of identical instruments. The serial number suffix is assigned sequentially and is unique to each instrument.

If the serial number prefix of your instrument is greater than the one listed on the title page, a Manual Changes (as required) will explain how to adapt this manual to your instrument. If the serial number prefix of your instrument is lower than the one listed on the title page, information contained in Chapter 7 (Manual Changes) will explain how to adapt this manual to your instrument.

Options/Field Installation Kits

Table 1-1 shows available upgrades to the HP E1300A/E1301A mainframes. Upgrades installed via options are factory installed. If you want to order an upgrade not installed in your mainframe, order the Field Installation Kit part number shown in Table 1-1. See the HP 75000 Family of VXI Products catalog for complete ordering information.
<table>
<thead>
<tr>
<th>Upgrade</th>
<th>Option Number</th>
<th>Field Installation Kit Part Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBASIC only</td>
<td></td>
<td>E1300-80001 [a]</td>
</tr>
<tr>
<td>512 kbytes add1 memory</td>
<td>010</td>
<td>E1300-80002</td>
</tr>
<tr>
<td>1 Mbyte add1 memory</td>
<td>011</td>
<td>E1300-80003</td>
</tr>
<tr>
<td>2 Mbyte add1 memory</td>
<td>012</td>
<td>2 ea E1300-80003</td>
</tr>
<tr>
<td>IBASIC w/512 kbyte memory</td>
<td>020</td>
<td>E1300-80001 + E1300-80002</td>
</tr>
<tr>
<td>IBASIC w/1 Mbyte memory</td>
<td>021</td>
<td>E1300-80001 + E1300-80003</td>
</tr>
<tr>
<td>IBASIC w/2 Mbyte memory</td>
<td>022</td>
<td>E1300-80001 + (2) E1300-80003</td>
</tr>
<tr>
<td>Update to A.07 (no IBASIC)</td>
<td></td>
<td>E1300-80070</td>
</tr>
<tr>
<td>Update to A.07 (w/BASIC)</td>
<td></td>
<td>E1300-81070</td>
</tr>
<tr>
<td>Disk Storage Options (Requires IBASIC)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5" Floppy Disk Drive</td>
<td>005</td>
<td>E1300-80005 + E1300-80011 [b]</td>
</tr>
<tr>
<td>20 Mbyte Hard Disk Drive</td>
<td>006</td>
<td>E1300-80006 + E1300-80011 [b]</td>
</tr>
<tr>
<td>3.5" and 20 Mbyte Drives Disk Controller</td>
<td>007</td>
<td>E1300-80005 + E1300-80011 [b]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E1300-80011 [b]</td>
</tr>
<tr>
<td>HP E1326B DMM Internal Installation Options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E1326A DMM Installation</td>
<td></td>
<td>E1326-80002</td>
</tr>
<tr>
<td>E1326B DMM Installation</td>
<td>009</td>
<td>E1326-80009 [c]</td>
</tr>
<tr>
<td>E1326B Fnt Pnl w/o posts</td>
<td></td>
<td>E1326-80004 [d]</td>
</tr>
<tr>
<td>E1326B Fnt Pnl w/posts</td>
<td></td>
<td>E1326-80005 [d]</td>
</tr>
<tr>
<td>Electrical/Mechanical Options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>External DC Power</td>
<td>008</td>
<td>E1300-80008</td>
</tr>
<tr>
<td>Front Handle Kit</td>
<td>907</td>
<td>5062-5367</td>
</tr>
<tr>
<td>Rack Mount w/o Handles</td>
<td>906</td>
<td>E1300-80908</td>
</tr>
<tr>
<td>Rack Mount w/Handles</td>
<td>909</td>
<td>E1300-80909</td>
</tr>
<tr>
<td>Rack Slide Kit</td>
<td></td>
<td>1494-0059</td>
</tr>
</tbody>
</table>

Notes

[a] = At least 512 kbytes of memory required.

[b] = 3.5" Floppy Disk Drive and 20 Mbyte Hard Drive require Disk Controller (E1300-80011). Only one Disk Controller is required per mainframe.

[c] = If the HP E1326B is used without a multiplexer, also order Field Installation Kit E1326-80005 Front Panel with binding posts.

[d] = If you have an HP E1326B not installed internally, you can order Field Installation Kits E1326-80004 and (if desired) E1326-80005 and then install the existing HP E1326B internally.
Accessories Supplied The accessories supplied with the mainframe are shown in Figure 1-1.

- **Power Cable.** The line power cable is supplied in several configurations, depending on the destination of the original shipment. Refer to the "HP E1300A/E1301A Installation and Getting Started Guide" for more information on the line power cable.

- **230Vac Operation Line Fuse.** An additional fuse is shipped with instruments that are factory configured for 115 Vac operation. This fuse has a 1.5A at 250 V rating for 230 Vac operation.

Equipment Available A number of A-size and B-size modules are available for installation in the HP E1300A/E1301A mainframe. Available modules include:

- Digital Multimeters
- Frequency Counters
- D/A Converters
- Digital Input/Outputs
- Switches and Multiplexers
- Breadboards

For a complete list of VXI modules currently available, contact your nearest Hewlett-Packard sales office.

Recommended Test Equipment Table 1-2 lists the test equipment recommended for testing, adjusting and servicing the mainframe. Essential requirements for each piece of test equipment are described in the Requirements column. Other equipment can be substituted if it meets or exceeds the requirements specified.
<table>
<thead>
<tr>
<th>Instrument</th>
<th>Requirements</th>
<th>Recommended Model(s)</th>
<th>Use*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controller, HP-IB</td>
<td>HP-IB compatibility as defined by IEEE Standard 488-1978 and the identical ANSI Standard MC1.1: SH1, AH1, T2, TE0, L2, LE0, SR0, RL0, PP0, DC0, DT0, and C1, 2, 3, 4, 5.</td>
<td>HP 9000 Series 300</td>
<td>F,P,T</td>
</tr>
<tr>
<td>Digital Multimeter</td>
<td>Voltage Range: ± 12 Vdc</td>
<td>HP 3458A</td>
<td>P,T</td>
</tr>
<tr>
<td></td>
<td>Accuracy: ± 1%</td>
<td>HP 3478A</td>
<td></td>
</tr>
<tr>
<td>Oscilloscope</td>
<td>Bandwidth: 2 MHz</td>
<td>HP 54111D</td>
<td>F,T</td>
</tr>
<tr>
<td></td>
<td>Vertical Sensitivity: 1V/div</td>
<td>HP 54501A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vertical Input: 5V</td>
<td>HP 54502A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>External Trigger Capability</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* F = Functional Verification Tests, O = Operation Verification Tests, P = Performance Verification Tests, A = Adjustments, T = Troubleshooting
Introduction

This chapter provides the information needed to install the mainframe. Included is information pertinent to initial inspection, preparation for use, environment, storage and shipment.

Initial Inspection

Warning

To avoid possible hazardous electrical shock, do not perform electrical tests when there are signs of shipping damage to any portion of the outer enclosure (covers, panels, etc).

Inspect the shipping container for damage. If the shipping container or cushioning material is damaged, it should be kept until the contents of the shipment have been checked for completeness and the instrument has been checked mechanically and electrically. The contents of the shipment should be as shown in Figure 1-1. Procedures for checking electrical performance are given in Chapter 4.

If the contents are incomplete, if there is mechanical damage or defect, or if the instrument does not pass the electrical performance test, notify the nearest Hewlett-Packard office. If the shipping container is damaged or the cushioning material shows signs of stress, notify the carrier as well as the Hewlett-Packard office. Keep the shipping materials for the carrier's inspection.

Preparation for Use

Complete instructions for preparing the mainframe and modules for use are provided in the HP E1300A/E1301A Mainframe and Plug-In Modules Installation and Getting Started Guide. Procedures include:

- AC Power Selection and Connection
- Interface Cable Connection
- Rack Mounting (optional)
- Addressing the Plug-In Modules
- Module Installation
- Mainframe Configuration
Operating Environment

The operating environment should be within the following limitations:

- Temperature: 0 to +55°C
- Humidity: 0 to 65% relative (0 to +40°C)

Storage and Shipment

Environment

The instrument should be stored in a clean, dry environment. The following environmental limitations apply to both storage and shipment:

- Temperature: -40 to +75°C
- Humidity: 0 to 65% relative (0 to +40°C)

Packaging

Preparation for Packaging. Remove handles and/or rack mount flanges before packaging instrument for shipping.

Tagging for Service. If the instrument is being returned to Hewlett-Packard for service, please indicate the required service and observed symptoms/problems, and place it with the instrument.

Original Packaging. Containers and materials identical to those used in factory packaging are available through Hewlett-Packard offices. Mark the container "FRAGILE" to assure careful handling.

Other Packaging. The following general instructions should be used for re-packaging with commercially available materials:

a. Wrap the instrument in heavy paper or plastic. (If shipping to a Hewlett-Packard office or service center, attach a tag indicating the service desired.)

b. Use a strong shipping container. A double-wall carton made of 2.4 MPa (350 psi) test material is adequate.

c. Use enough shock-absorbing material (75 to 100 mm layer; 3 to 4 inches) around all sides of the instrument to provide firm cushion and prevent movement in the container. Protect the front panel with cardboard.

d. Seal the shipping container securely.

e. Mark the shipping container "FRAGILE" to assure careful handling.
Operating Instructions

Introduction

This chapter provides operating information for the HP E1300A/E1301A mainframe. Included are operating instructions and operator’s checks.

Safety Considerations

This paragraph contains information, cautions, and warnings which must be followed for your protection and/or to avoid damage to the equipment when performing preventive maintenance.

Before applying power, verify that the product is set to match the available line voltage and the correct fuse is installed. An uninterruptible safety earth ground must be provided from the main power source to the product input wiring terminals, power cord, or supplied power cord set.

Warning

Any interruption of the protective (grounding) conductor (inside or outside the instrument) or disconnecting the protective earth terminal will cause a potential shock hazard that could result in personal injury. (Grounding one conductor of a two conductor outlet is not sufficient protection.) In addition, verify that a common ground exists between the unit under test and this instrument prior to energizing either unit.

Whenever it is likely that the protection has been impaired, the instrument must be made inoperative and be secured against any unintended operation.

If this instrument is to be energized via an autotransformer (for voltage reduction) make sure the common terminal is connected to neutral (that is, the grounded side of the mains supply).

Servicing instructions are for use by service-trained personnel only. To avoid dangerous electric shock, do not perform any servicing unless qualified to do so.

Maintenance described in the manual is performed with power supplied to the instrument while protective covers are removed. Energy available at many points may, if contacted, result in personal injury. Where maintenance can be performed without power applied, the power should be removed.

Capacitors inside the instrument may still be charged even if the instrument has been disconnected from its source of supply.
For continued protection against fire hazard, replace the line fuse(s) only with 250V fuse(s) of the same current rating and type (for example, normal blow, time delay, etc.). Do not use repaired fuses or short circuited fuseholders.

Caution

Static electricity is a major cause of component failure. To prevent damage to the electrical components in the mainframe, observe anti-static techniques whenever working on the mainframe.

Operation

Complete instructions for operation of the mainframe are provided in the HP E1300A/E1301A User’s Manual. Information includes:

- Getting Started
- Using the Front Panel (E1301A only)
- Using the Mainframe
- System Instrument Command Reference
- Controlling Instruments using HP-IB

Operator’s Checks

The operator’s checks can be performed any time to verify that the mainframe is connected properly and is responding to the simplest commands.

Note

If necessary, refer to the HP E1300A/E1301A Installation and Getting Started Guide for information on address selection and external cabling guidelines, and to the HP E1300A/E1301A User’s Manual for information on SCPI commands.

1. If the mainframe is the HP E1300A, or if external control of the HP E1301A is desired:
 - connect a computer to the mainframe rear panel HP-IB connector using an HP-IB Interconnect cable OR connect a terminal to the mainframe rear panel RS-232 connector using an RS-232 Interconnect cable
 - set the rear panel SYS CONTROL TALK/LISTEN switch to the TALK/LISTEN position
 - set the computer/terminal power to ON
2. On the mainframe, connect a power cable to the rear panel and set the Power Switch to ON. Allow approximately 10 seconds for the mainframe to perform a turn-on test.
3. Execute the functional test using the \texttt{*TST?} command.
 - On an HP E1300A, the command must be sent by computer/terminal.
 - On an HP E1301A the command can be sent by computer/terminal (if connected) or entered on front panel.

\begin{itemize}
\item \textbf{Example}
\end{itemize}

This example uses:
\begin{itemize}
\item an HP-IB select code of 7, primary address of 09, and secondary address of 00 for the mainframe
\item an HP 9000 Series 200/300 computer with HP BASIC
\end{itemize}

\begin{verbatim}
10 OUTPUT 70900;"*TST?" ! SEND THE SELFTEST COMMAND
20 ENTER 70900:A ! ENTER THE TEST RESULT
30 DISP A
40 END
\end{verbatim}

4. Allow approximately 5 seconds for the test to complete.
 - If +0 is returned, then no failure was encountered.
 - If +1 is returned, then a failure was detected. See "Troubleshooting Test" in Chapter 8 for troubleshooting information.

\begin{itemize}
\item \textbf{Note}
\end{itemize}

Startup and functional test failures can be caused by improper cabling, or improper selection of the interface select code, primary address setting, and/or secondary address setting. Verify proper connection and address selection using the HP E1300A/E1301A Installation and Getting Started Guide before troubleshooting.
Verification Tests

Introduction

Three levels of test procedures are provided in this chapter, and are used to verify that the mainframe is:

- fully functional (Functional Verification)
- meeting selected specifications (Operation Verification)
- meeting all published specifications (Performance Verification)

Note

To consider the tests valid, the following conditions must be met:

- The mainframe must have a 15 minute warm-up (except for Functional Verification)
- The line voltage must be 115/230 Vac ±10%
- The ambient temperature must be +0°C to +55°C for all tests

Equipment Required

Equipment required for the verification tests is listed in Table 1-1, Recommended Test Equipment. Any equipment that satisfies the requirements given in the table may be substituted.

Test Record

Results of the verification tests may be tabulated in Table 4-1, Performance Test Record for the HP E1300A/E1301A. The Performance Test Record lists all of the verification test specifications and the acceptable limits for each specification. If verification test results are recorded during an incoming inspection of the instrument, they can be used for reference during troubleshooting. The test results may also prove useful in verifying operation after repairs are made.

Calibration Cycle

This instrument requires periodic verification of performance to ensure that it is operating within specified tolerances. The performance tests described in this chapter should be performed at least once each year. Under conditions of heavy usage or severe operating environments, the tests should be more frequent.

Test Procedures

It is assumed that the person performing the verification tests understands how to operate the mainframe and specified test equipment. Equipment settings, other than those for the mainframe, are stated in general terms. For example, a test might require that a voltage of +5 Vdc be measured. However, the Digital Multimeter instructions as to mode and range would not be specified and the operator would be expected to set that control and other controls as required to obtain a measurement. It is also assumed that the technician will select the cables, adapters, and probes required to complete the test setups illustrated in this chapter.
Functional Verification Tests

The procedures in this section are used to verify that the mainframe functions are working, or that a system problem is not being caused by the mainframe. These tests should be performed any time the user wants to verify that the mainframe is connected properly and is responding to basic commands. All tests can be performed without accessing the interior of the instrument.

HP-IB Communications and Self-Test Procedure

The purpose of this test is to verify the mainframe is communicating with the front panel (HP E1301A) and external controller (if connected) by performing a self-test.

Instructions for performing a self-test are provided in Chapter 3, "Operator's Checks".

The purpose of this test is to read the mainframe system configuration information using the VXI:CONFigure:DLIS? command. This information is analyzed to determine current address selections and the presence of turn-on/self test errors.

1. Execute the VXI:CONFigure:DLIS? command.
 - On the HP E1300A, the command must be sent by the computer or terminal.
 - On the HP E1301A, the command can be sent by the computer/terminal, or entered on the front panel.

Note

When operating using an external computer, set the rear panel SYS CONTROL TALK/LISTEN switch to the TALK/LISTEN position.

Example

This example uses:

- an HP-IB select code of 7, primary address of 09, and secondary address of 00 for the mainframe
- an HP 9000 Series 200/300 computer with HP BASIC

```plaintext
10 DIM BS [1000]  ; DECLARE VARIABLE BS SYSTEM CONFIG RESULT
20 OUTPUT 70900;"VXI:CONF:DLIS?"  ; SEND THE SYSTEM CONFIG COMMAND
30 ENTER 70900;BS  ; ENTER THE QUERY RESULTS
40 DISP BS
50 END
```

2. Returns logical address, identification, and test error information. See the HP E1300A/E1301A User's Manual for information on the returned data.
Read System Time and Date Test Procedure

The purpose of this test is to read the mainframe system time and date using the SYSTem:TIME? and SYSTem:DATE? commands. Used to verify that the system clock is functioning.

 - On the HP E1300A, the command must be sent by the computer or terminal.
 - On the HP E1301A, the command can be sent by the computer/terminal, or entered on the front panel.

Note

When operating using an external computer, set the rear panel SYS CONTROL TALK/LISTEN switch to the TALK/LISTEN position.

Example

This example uses:

- an HP-IB select code of 7, primary address of 09, and secondary address of 00 for the mainframe
- an HP 9000 Series 200/300 computer with HP BASIC

```plaintext
10 OUTPUT 70900;"SYST:TIME?" : SEND THE SYSTEM TIME COMMAND
20 ENTER 70900; Time$ : ENTER THE QUERY RESULTS
30 OUTPUT 70900;"SYST:DATE?" : SEND THE SYSTEM DATE COMMAND
40 ENTER 70900; Date$ : ENTER THE QUERY RESULTS
40 DISP Time$;Date$
50 END
```

3. Returns current time (HH,MM,SS) and date (YYYY,MM,DD). See the HP E1300A/E1301A User's Manual for more information on the returned data.

Pacer Out Test Procedure

The purpose of this test is to verify the functionality of the Pacer Output signal on the rear panel of the mainframe.

1. Connect the equipment as shown in Figure 4-1.

![Figure 4-1. Pacer Out Test Equipment Set-up](image-url)
2. Set the Oscilloscope controls as follows:
 - Vertical Sensitivity ... 5 V/DIV
 - Coupling DC
 - Sweep Time 1 μsec/DIV

3. Instruct the mainframe as follows:
 - Pulse Count INF
 - Initiate Immediate INIT

Note

When operating using an external computer, set the rear panel SYS CONTROL TALK/LISTEN switch to the TALK/LISTEN position.

Example

This example uses:
- an HP-IB select code of 7, primary address of 09, and secondary address of 00 for the mainframe
- an HP 9000 Series 200/300 computer with HP BASIC

```
10 OUTPUT 70900;"SOUR:PULS:COUNT INF" ! Pulse Count to Infinite
20 OUTPUT 70900;"INIT"
30 END
```

4. Verify that the Oscilloscope displays a pulse train from 0 V to +5 V with 1 μsec period.

Trigger Test Procedure

The purpose of this test is to verify the functionality of triggering the Pacer Output signal on the rear panel of the mainframe.

1. Verify the equipment is connected as shown in Figure 4-1.

2. Set the Oscilloscope controls as follows:
 - Vertical Sensitivity ... 5 V/DIV
 - Coupling DC
 - Sweep Time 1 μsec/DIV

3. Instruct the mainframe as follows:
 - Trigger Source HOLD
 - Pulse Count INF
 - Initiate Immediate INIT
 - Trigger Immediate TRIG

Note

When operating using an external computer, set the rear panel SYS CONTROL TALK/LISTEN switch to the TALK/LISTEN position.
Example

This example uses:

- an HP-IB select code of 7, primary address of 09, and secondary address of 00 for the mainframe
- an HP 9000 Series 200/300 computer with HP BASIC

10 OUTPUT 70900;"TRIG:SOUR HOLD" ! Hold for Trigger
20 OUTPUT 70900;"SOUR:PULS:COUN INF" ! Pulse Count to Infinite
30 OUTPUT 70900;"INIT" ! Wait for trigger

100 OUTPUT 70900;"TRIG" ! Trigger pacer output
110 END

4. Verify that the Oscilloscope displays a pulse train only after TRIGger command executed.
5. Remove power and disconnect test equipment.

Operation Verification Tests

There are no operation verification procedures for the mainframe. Use the Performance verification test procedures for post-repair checkout.

Performance Verification Test

Power Supply Test Procedure

The procedure in this section is used to test the mainframe's electrical performance using the specifications in Appendix A of the HP E1300A/E1301A User's Manual as the performance standards.

The purpose of this test is to verify the mainframe internal power supply voltages are within specified limits.

1. Remove power, then remove any B-size covers or modules installed in the mainframe. Reapply power to the mainframe.

2. Using a Digital Multimeter, verify that the power supply voltages are as follows (measured from ground). See Figure 4-2 for measurement locations.

- +5V +5 Vdc ±0.355 Vdc
- +12V +12 Vdc ±0.60 Vdc
- -12V -12 Vdc ±0.60 Vdc
Figure 4-2. Power Supply Test Measurement Locations

3. Remove power and disconnect test equipment.
4. Reinstall all B-size covers or modules removed in step 1.

Performance Test Record

The Performance Test Record in table 4-1 lists all of the verification test specifications and the acceptable limits for each specification.

Table 4-1. Performance Test Record for the HP E1300A/E1301A

<table>
<thead>
<tr>
<th>Test</th>
<th>Min.</th>
<th>Results Actual</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUNCTIONAL VERIFICATION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HP-IB Communications and Self Test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test passes (+0 returned)</td>
<td></td>
<td>Pass []</td>
<td></td>
</tr>
<tr>
<td>Read System Configuration Test</td>
<td></td>
<td>Pass []</td>
<td></td>
</tr>
<tr>
<td>Test passes (data returned without errors)</td>
<td></td>
<td>Pass []</td>
<td></td>
</tr>
<tr>
<td>Read System Time and Date Test</td>
<td></td>
<td>Pass []</td>
<td></td>
</tr>
<tr>
<td>Test passes (correct data returned)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pacer Out Test</td>
<td></td>
<td>Pass []</td>
<td></td>
</tr>
<tr>
<td>Test passes (pulses displayed on oscilloscope)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trigger Test</td>
<td></td>
<td>Pass []</td>
<td></td>
</tr>
<tr>
<td>Test passes (pulses displayed on oscilloscope when triggered)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PERFORMANCE VERIFICATION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Supply Test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+5V</td>
<td>+4.845</td>
<td></td>
<td>+5.355</td>
</tr>
<tr>
<td>+12V</td>
<td>+11.40</td>
<td></td>
<td>+12.60</td>
</tr>
<tr>
<td>-12V</td>
<td>-11.40</td>
<td></td>
<td>-12.60</td>
</tr>
</tbody>
</table>

4-6 Verification Tests
Introduction

No adjustments are required for the HP E1300A and HP E1301A mainframes.
Replaceable Parts

Introduction

This chapter contains information to order replaceable parts for HP E1300A Mainframes with serial number prefixes 3034A and above and for HP E1301A Mainframes with serial number prefixes 3035A and above.

Note

See the HP E1300A/E1301A Mainframes Service Manual (part number E1300-90010) for replaceable parts for HP E1300A Mainframes with serial number prefixes 2935A and below and for HP E1301A Mainframes with serial number prefixes 2934A and below.

Exchange Assemblies

Table 6-3 lists assemblies that may be replaced on an exchange basis (EXCHANGE). Exchange assemblies are available only on a trade-in basis. Defective assemblies must be returned for credit. Assemblies required for spare parts stock must be ordered by the new assembly part number. Contact your nearest Hewlett-Packard Sales and Service Office for details.

Field Installation Kits

Table 1-1 in Chapter 1 lists field installation kits available for the HP E1300A/E1301A mainframes. Order kits desired from your nearest Hewlett-Packard Sales and Service Office.

Ordering Information

To order a part listed in Table 6-3, specify the Hewlett-Packard part number and the quantity required. Send the order to your nearest Hewlett-Packard Sales and Service Office.
Reference Designators/Manufacturer Codes

Table 6-1 shows reference designators for parts listed in Table 6-3, while Table 6-2 shows the manufacturer code list for these parts.

Table 6-1. HP E1300A/E1301A Mainframes – Reference Designators

<table>
<thead>
<tr>
<th>HP E1300A/E1301A Reference Designators</th>
</tr>
</thead>
<tbody>
<tr>
<td>A assembly</td>
</tr>
<tr>
<td>B fan, motor</td>
</tr>
<tr>
<td>BT battery</td>
</tr>
<tr>
<td>CHS chassis</td>
</tr>
<tr>
<td>CVR cover</td>
</tr>
<tr>
<td>F fuse</td>
</tr>
<tr>
<td>J electrical connector (jack)</td>
</tr>
<tr>
<td>JM electrical connector (jumper)</td>
</tr>
<tr>
<td>KYC keycap</td>
</tr>
<tr>
<td>LF line module (filtered)</td>
</tr>
</tbody>
</table>

Table 6-2. HP E1300A/E1301A Mainframes - Code List of Manufacturers

<table>
<thead>
<tr>
<th>Mfr Code</th>
<th>Manufacturer Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000</td>
<td>Any satisfactory supplier</td>
<td>Harrisburg, PA 17111</td>
</tr>
<tr>
<td>00779</td>
<td>Amp, Inc</td>
<td>Burbank, CA 91505</td>
</tr>
<tr>
<td>05791</td>
<td>Lyn-Tron, Inc</td>
<td>Naperville, IL 60540</td>
</tr>
<tr>
<td>12014</td>
<td>Chicago Rivet & Machine Co</td>
<td>Houston, TX 77210</td>
</tr>
<tr>
<td>16428</td>
<td>Cooper Industries, Inc</td>
<td></td>
</tr>
<tr>
<td>24931</td>
<td>Specialty Connector Co</td>
<td>Franklin, IN 46131</td>
</tr>
<tr>
<td>27264</td>
<td>Molex, Inc</td>
<td>Lisle, IL 60532</td>
</tr>
<tr>
<td>28480</td>
<td>Hewlett-Packard Co</td>
<td>Palo Alto, CA 94304</td>
</tr>
<tr>
<td>28520</td>
<td>Heyco Molded Products</td>
<td>Kentworth, NJ 07033</td>
</tr>
<tr>
<td>59730</td>
<td>Thomas & Betts Corp</td>
<td>Raritan, NJ 08869</td>
</tr>
<tr>
<td>71468</td>
<td>ITT Corp</td>
<td>New York, NY 10022</td>
</tr>
<tr>
<td>74970</td>
<td>E. F. Johnson Co</td>
<td>Waseca, MN 56093</td>
</tr>
<tr>
<td>75915</td>
<td>Littlefuse, Inc</td>
<td>Des Plaines, IL 60016</td>
</tr>
<tr>
<td>76381</td>
<td>3M Co</td>
<td>St. Paul, MN 55144</td>
</tr>
<tr>
<td>78189</td>
<td>Ill Tool Works, Inc Shakeproof</td>
<td>Elgin, IL 60126</td>
</tr>
<tr>
<td>79963</td>
<td>Zierick Mfg Co</td>
<td>Mt. Kisco, NY 10549</td>
</tr>
<tr>
<td>81073</td>
<td>Grayhill, Inc</td>
<td>La Grange, IL 60525</td>
</tr>
<tr>
<td>81312</td>
<td>Winchester Electronics</td>
<td>Oakville, CT 06779</td>
</tr>
<tr>
<td>82639</td>
<td>Switchcraft, Inc</td>
<td>Chicago, IL 60630</td>
</tr>
</tbody>
</table>
Table 6-3 lists replaceable parts for HP E1300A Mainframes with serial number prefixes 3034A and above and HP E1301A Mainframes with serial number prefixes 3035A and above.

<table>
<thead>
<tr>
<th>Reference Designator</th>
<th>HP Part Number</th>
<th>Qty</th>
<th>Description</th>
<th>Mfr** Code</th>
<th>Mfr Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>PNL1</td>
<td>E1300-60211</td>
<td>1</td>
<td>Front Panel With Label (E1300A)</td>
<td>28480</td>
<td>E1300-90211</td>
</tr>
<tr>
<td>PNL1</td>
<td>E1301-60211</td>
<td>1</td>
<td>Front Panel Assembly (E1301A) [a]</td>
<td>28480</td>
<td>E1301-60211</td>
</tr>
<tr>
<td>PNL1A1</td>
<td>1690-1331</td>
<td>1</td>
<td>Disp-VAC-FLR 40-Char 2-H Gm</td>
<td>28480</td>
<td>1990-1331</td>
</tr>
<tr>
<td>PNL1A2</td>
<td>E1301-26501</td>
<td>1</td>
<td>Keyboard PCA</td>
<td>28480</td>
<td>E1301-26501</td>
</tr>
<tr>
<td>PNL1CVR2</td>
<td>E1300-04102</td>
<td>1</td>
<td>Cover-Fnt Slot Disc Opening (E1301A)</td>
<td>28480</td>
<td>E1300-04102</td>
</tr>
<tr>
<td>PNL1KYC1</td>
<td>5641-0565</td>
<td>1</td>
<td>Keycap-Pushbutton White Power Switch</td>
<td>28480</td>
<td>5041-0565</td>
</tr>
<tr>
<td>PNL1MP1</td>
<td>E1301-60211</td>
<td>1</td>
<td>Front Fnt Keyboard/Opening for Disk Opt</td>
<td>28480</td>
<td>E1301-60211</td>
</tr>
<tr>
<td>PNL1MP2</td>
<td>E1300-81901</td>
<td>1</td>
<td>Keyboard Plugboard Assy</td>
<td>28480</td>
<td>E1300-81901</td>
</tr>
<tr>
<td>PNL1MP3</td>
<td>E1301-82101</td>
<td>2</td>
<td>Display Retention Clip</td>
<td>28480</td>
<td>E1301-82101</td>
</tr>
<tr>
<td>PNL1MP17</td>
<td>5001-0540</td>
<td>2</td>
<td>Side Trim-Front Panel</td>
<td>28480</td>
<td>5001-0540</td>
</tr>
<tr>
<td>PNL1MP18</td>
<td>5001-0540</td>
<td>2</td>
<td>Side Trim-Front Panel</td>
<td>28480</td>
<td>5001-0540</td>
</tr>
<tr>
<td>PNL1W1</td>
<td>E1301-61601</td>
<td>1</td>
<td>CB1-64P CTLR/2C Display, 2C Keybrd</td>
<td>28480</td>
<td>E1301-61601</td>
</tr>
</tbody>
</table>

Mainframe Chassis Parts (Fig 6-2 and 6-3)

<table>
<thead>
<tr>
<th>Reference Designator</th>
<th>HP Part Number</th>
<th>Qty</th>
<th>Description</th>
<th>Mfr** Code</th>
<th>Mfr Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>3-60-0592</td>
<td>1</td>
<td>Fan-Tube Axial 31.8-CFM 12 VDC</td>
<td>28480</td>
<td>3160-0592</td>
</tr>
<tr>
<td>BT1</td>
<td>E1300-86401</td>
<td>1</td>
<td>Battery Pack 3.6 Volt</td>
<td>28480</td>
<td>E1300-86401</td>
</tr>
<tr>
<td>F1</td>
<td>2-10-0003</td>
<td>3</td>
<td>Fuse 3.0A 250V NTD FE UL (115V Operation)</td>
<td>75915</td>
<td>312 003</td>
</tr>
<tr>
<td>F1</td>
<td>2-10-0043</td>
<td>3</td>
<td>Fuse 3.0A 250V NTD FE UL (230V Operation)</td>
<td>75915</td>
<td>312 015</td>
</tr>
<tr>
<td>J1</td>
<td>1250-0083</td>
<td>3</td>
<td>Conn-RF BNC FEM SGL-Hole-FR 50-Ohm</td>
<td>24951</td>
<td>25JR130-1</td>
</tr>
<tr>
<td>J2</td>
<td>1250-0083</td>
<td>3</td>
<td>Conn-RF BNC FEM SGL-Hole-FR 50-Ohm</td>
<td>24931</td>
<td>25JR130-1</td>
</tr>
<tr>
<td>J3</td>
<td>1250-0083</td>
<td>1</td>
<td>Conn-RF BNC FEM SGL-Hole-FR 50-Ohm</td>
<td>24931</td>
<td>25JR130-1</td>
</tr>
<tr>
<td>J4</td>
<td>1510-0038</td>
<td>1</td>
<td>Binding Post Assy SGL THD-Stud</td>
<td>74970</td>
<td>111-2223-001</td>
</tr>
<tr>
<td>LF1</td>
<td>9-35-0203</td>
<td>1</td>
<td>Line Module-Filtered Op Voltage</td>
<td>28480</td>
<td>9125-0203</td>
</tr>
<tr>
<td>SW1</td>
<td>3-01-2700</td>
<td>1</td>
<td>SW-Slide DPDT Miniature 5A 125VAC/DC</td>
<td>92359</td>
<td>11P-1111</td>
</tr>
<tr>
<td>W1</td>
<td>E1300-61601</td>
<td>1</td>
<td>Cable Assembly Main Power</td>
<td>28480</td>
<td>E1300-61601</td>
</tr>
<tr>
<td>W2</td>
<td>E1300-61602</td>
<td>1</td>
<td>Cable Assembly Pwr Supply to Backplane</td>
<td>28480</td>
<td>E1300-61602</td>
</tr>
<tr>
<td>W3</td>
<td>E1300-61603</td>
<td>1</td>
<td>Cable Assembly Pwr Aux to Backplane</td>
<td>28480</td>
<td>E1300-61603</td>
</tr>
<tr>
<td>W4</td>
<td>E1300-61604</td>
<td>1</td>
<td>Cable Assy Controller to HP-18 and RS-232</td>
<td>28480</td>
<td>E1300-61604</td>
</tr>
<tr>
<td>W5</td>
<td>8120-1378</td>
<td>1</td>
<td>Power Cord, 90 Inch 3-Cond, 110V (U.S.)</td>
<td>16428</td>
<td>CH7081</td>
</tr>
<tr>
<td>W5</td>
<td>8120-0698</td>
<td>1</td>
<td>Power Cord, 19-AWG 3-Cond, 240V (U.S.)</td>
<td>28480</td>
<td>KH8810</td>
</tr>
<tr>
<td>W5</td>
<td>8120-1369</td>
<td>1</td>
<td>Power Cord, 2-M-LG 3-Cond, 250V (Australia)</td>
<td>28480</td>
<td>8120-1369</td>
</tr>
<tr>
<td>W5</td>
<td>8120-2956</td>
<td>1</td>
<td>Power Cord, 2-M-LG 3-Cond, 250V (Denmark)</td>
<td>28480</td>
<td>8120-2956</td>
</tr>
<tr>
<td>W5</td>
<td>8120-1689</td>
<td>1</td>
<td>Power Cord, 2-M-LG 3-Cond, 250V (Europe)</td>
<td>28480</td>
<td>8120-1689</td>
</tr>
<tr>
<td>W5</td>
<td>8120-1351</td>
<td>1</td>
<td>Power Cord, 2-M-LG 3-Cond, 250V (U.K.)</td>
<td>28480</td>
<td>8120-1351</td>
</tr>
<tr>
<td>W5</td>
<td>8120-2104</td>
<td>1</td>
<td>Power Cord, 2-M-LG 3-Cond, 250V (Switzerland)</td>
<td>28480</td>
<td>8120-2104</td>
</tr>
<tr>
<td>CHS1</td>
<td>E1300-00101</td>
<td>1</td>
<td>Chassis Assembly</td>
<td>28480</td>
<td>E1300-00101</td>
</tr>
<tr>
<td>CVR1</td>
<td>E1300-04101</td>
<td>1</td>
<td>Cover-Mainframe</td>
<td>28480</td>
<td>E1300-04101</td>
</tr>
<tr>
<td>CVR3</td>
<td>E1300-04103</td>
<td>2</td>
<td>Cover-Rear Slot B-Size Single</td>
<td>28480</td>
<td>E1300-04103</td>
</tr>
<tr>
<td>CVR4</td>
<td>E1300-04103</td>
<td>2</td>
<td>Cover-Rear Slot B-Size Single</td>
<td>28480</td>
<td>E1300-04103</td>
</tr>
<tr>
<td>CVR5</td>
<td>E1300-04104</td>
<td>1</td>
<td>Cover-Rear Slot B-Size Single</td>
<td>28480</td>
<td>E1300-04104</td>
</tr>
<tr>
<td>CVR6</td>
<td>E1300-04015</td>
<td>1</td>
<td>Cover-Rear Slot B-Size Triple</td>
<td>28480</td>
<td>E1300-04015</td>
</tr>
<tr>
<td>CVR7</td>
<td>E1300-04106</td>
<td>1</td>
<td>Cover-Rear Slot A-Size Single</td>
<td>28480</td>
<td>E1300-04106</td>
</tr>
<tr>
<td>CVR8</td>
<td>E1300-04107</td>
<td>1</td>
<td>Cover-Rear Slot A-Size Double</td>
<td>28480</td>
<td>E1300-04107</td>
</tr>
</tbody>
</table>

a See Table 6-1 for Reference Designator definitions
** See Table 6-2 for Code List of Manufacturers
[a] Repair limited to replacement of parts listed - see Introduction for ordering information

Replaceable Parts 6-3
<table>
<thead>
<tr>
<th>Reference Designator</th>
<th>HP Part Number</th>
<th>Qty</th>
<th>Description</th>
<th>Mfr** Code</th>
<th>Mfr Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP1</td>
<td>E1300-01201</td>
<td>1</td>
<td>Bracket-Top</td>
<td>28480</td>
<td>E1300-01201</td>
</tr>
<tr>
<td>MP2</td>
<td>E1300-04701</td>
<td>1</td>
<td>Support-Controller Front</td>
<td>28480</td>
<td>E1300-04701</td>
</tr>
<tr>
<td>MP3</td>
<td>E1300-04702</td>
<td>1</td>
<td>Support-Controller Rear</td>
<td>28480</td>
<td>E1300-04702</td>
</tr>
<tr>
<td>MP4</td>
<td>E1300-64703</td>
<td>1</td>
<td>Support-PC Board Right (B-Size)</td>
<td>28480</td>
<td>E1300-64703</td>
</tr>
<tr>
<td>MP5</td>
<td>E1300-64704</td>
<td>1</td>
<td>Support-PC Board Left (B-Size)</td>
<td>28480</td>
<td>E1300-64704</td>
</tr>
<tr>
<td>MP6</td>
<td>E1300-64705</td>
<td>1</td>
<td>Support-PC Board Right (A-Size)</td>
<td>28480</td>
<td>E1300-64705</td>
</tr>
<tr>
<td>MP7</td>
<td>E1300-64706</td>
<td>1</td>
<td>Support-PC Board Left (A-Size)</td>
<td>28480</td>
<td>E1300-64706</td>
</tr>
<tr>
<td>MP8</td>
<td>0383-0643</td>
<td>2</td>
<td>Standoff-Hex .255-INS-LG 6-32-THD</td>
<td>28480</td>
<td>0380-0643</td>
</tr>
<tr>
<td>MP9</td>
<td>0383-0643</td>
<td></td>
<td>Standoff-Hex .255-INS-LG 6-32-THD</td>
<td>28480</td>
<td>0380-0643</td>
</tr>
<tr>
<td>MP10</td>
<td>0403-0282</td>
<td>3</td>
<td>Bumper-FOOT-ADH MOUNT 12.7-MM-OD</td>
<td>76831</td>
<td>SJ-5018-BLACK</td>
</tr>
<tr>
<td>MP11</td>
<td>0403-0282</td>
<td></td>
<td>Bumper-FOOT-ADH MOUNT 12.7-MM-OD</td>
<td>76831</td>
<td>SJ-5018-BLACK</td>
</tr>
<tr>
<td>MP12</td>
<td>0403-0282</td>
<td></td>
<td>Bumper-FOOT-ADH MOUNT 12.7-MM-OD</td>
<td>76831</td>
<td>SJ-5018-BLACK</td>
</tr>
<tr>
<td>MP13</td>
<td>1403-0507</td>
<td>2</td>
<td>Cable Tie .062-2-DIA. .095-WD Nylon</td>
<td>59730</td>
<td>TY-223M</td>
</tr>
<tr>
<td>MP14</td>
<td>1403-0507</td>
<td>2</td>
<td>Tilt Stand-Stainless Steel</td>
<td>28480</td>
<td>1460-1345</td>
</tr>
<tr>
<td>MP15</td>
<td>1463-1345</td>
<td>2</td>
<td>Tilt Stand-Stainless Steel</td>
<td>28480</td>
<td>1460-1345</td>
</tr>
<tr>
<td>MP16</td>
<td>1463-1345</td>
<td></td>
<td>Tilt Stand-Stainless Steel</td>
<td>28480</td>
<td>1460-1345</td>
</tr>
<tr>
<td>MP19</td>
<td>5041-8801</td>
<td>4</td>
<td>Foot</td>
<td>28480</td>
<td>5041-8801</td>
</tr>
<tr>
<td>MP20</td>
<td>5041-8801</td>
<td></td>
<td>Foot</td>
<td>28480</td>
<td>5041-8801</td>
</tr>
<tr>
<td>MP21</td>
<td>5041-8801</td>
<td></td>
<td>Foot</td>
<td>28480</td>
<td>5041-8801</td>
</tr>
<tr>
<td>MP22</td>
<td>5041-8801</td>
<td></td>
<td>Foot</td>
<td>28480</td>
<td>5041-8801</td>
</tr>
<tr>
<td>MP23</td>
<td>5041-8819</td>
<td>2</td>
<td>Cap-Strap Handle Front</td>
<td>28480</td>
<td>5041-8819</td>
</tr>
<tr>
<td>MP24</td>
<td>5041-8819</td>
<td></td>
<td>Cap-Strap Handle Front</td>
<td>28480</td>
<td>5041-8819</td>
</tr>
<tr>
<td>MP25</td>
<td>5041-8820</td>
<td>2</td>
<td>Cap-Strap Handle Rear</td>
<td>28480</td>
<td>5041-8820</td>
</tr>
<tr>
<td>MP26</td>
<td>5041-8820</td>
<td></td>
<td>Cap-Strap Handle Rear</td>
<td>28480</td>
<td>5041-8820</td>
</tr>
<tr>
<td>MP27</td>
<td>5062-3704</td>
<td>2</td>
<td>Strap Handle-18 Inch</td>
<td>28480</td>
<td>5062-3704</td>
</tr>
<tr>
<td>MP28</td>
<td>5062-3704</td>
<td></td>
<td>Strap Handle-18 Inch</td>
<td>28480</td>
<td>5062-3704</td>
</tr>
<tr>
<td>MP29</td>
<td>0383-1958</td>
<td>2</td>
<td>Standoff-Hex .312-IN-LG 4-40-THD</td>
<td>05791</td>
<td>ST3592-36</td>
</tr>
<tr>
<td>MP30</td>
<td>0380-1958</td>
<td></td>
<td>Standoff-Hex .312-IN-LG 4-40-THD</td>
<td>05791</td>
<td>ST3592-36</td>
</tr>
<tr>
<td>MP31</td>
<td>0403-0347</td>
<td>1</td>
<td>Grommet-Snap BSHG Shorty .406-IN-ID</td>
<td>28480</td>
<td>2224 (BLACK)</td>
</tr>
<tr>
<td>MP32</td>
<td>1403-0719</td>
<td>1</td>
<td>Cable Tie .062-1.125-DIA. .14-WD Nylon</td>
<td>28480</td>
<td>1403-0719</td>
</tr>
<tr>
<td>MP33</td>
<td>6920-0084</td>
<td>1</td>
<td>Plug-Hole Dome-HD for .375-D Hole NY</td>
<td>28480</td>
<td>2617 (BLACK)</td>
</tr>
<tr>
<td>MP40</td>
<td>E1300-02101</td>
<td>6</td>
<td>Clip-Spring (Cover Grounding)</td>
<td>28480</td>
<td>E1300-02101</td>
</tr>
<tr>
<td>SHD1</td>
<td>E1300-00502</td>
<td>1</td>
<td>Shield-Safety Power Supply</td>
<td>28480</td>
<td>E1300-00502</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Attaches</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(A1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(A1J1-J13)</td>
<td>0515-0372</td>
<td>1</td>
<td>Scr-Mach M3 X 0.58MM-LG TX SQ CN Whr</td>
<td>28480</td>
<td>0515-0372</td>
</tr>
<tr>
<td>(A1JMP1)</td>
<td>0361-0661</td>
<td>20</td>
<td>Rivet-Semibul Oval-HD .096Dia .25LG</td>
<td>42838</td>
<td>TBC1-8-ST</td>
</tr>
<tr>
<td>(A2)</td>
<td>0515-0372</td>
<td>3</td>
<td>Scr-Mach M3 X 0.58MM-LG TX SQ CN Whr</td>
<td>28480</td>
<td>0515-0372</td>
</tr>
<tr>
<td>(A3)</td>
<td>0515-0372</td>
<td>1</td>
<td>Scr-Mach M3 X 0.58MM-LG TX SQ CN Whr</td>
<td>28480</td>
<td>0515-0372</td>
</tr>
<tr>
<td>(A4)</td>
<td>0515-0372</td>
<td>4</td>
<td>Scr-Mach M3 X 0.58MM-LG TX SQ CN Whr</td>
<td>28480</td>
<td>0515-0372</td>
</tr>
<tr>
<td>(B1)</td>
<td>0515-0415</td>
<td>2</td>
<td>Scr-Mach M4 X 0.712MM-LG Pan-HD Pozi</td>
<td>28480</td>
<td>0515-0415</td>
</tr>
<tr>
<td>(CVR1)</td>
<td>0515-0415</td>
<td>2</td>
<td>Nut-Hex-Dbl-Chat 3/8-32 Thd.094-IN-THK</td>
<td>28480</td>
<td>0535-0006</td>
</tr>
<tr>
<td>(CVR3-8)</td>
<td>0515-1968</td>
<td>12</td>
<td>Scr-Mach M4 X 0.712MM-LG Pan-HD Pozi</td>
<td>28480</td>
<td>0515-0415</td>
</tr>
<tr>
<td>(J1-J3)</td>
<td>0360-1632</td>
<td>1</td>
<td>Term-Solder Lug LX-MTG Icr-#3-8-Src</td>
<td>79863</td>
<td>761-3B</td>
</tr>
<tr>
<td>(J1-J3)</td>
<td>2190-0006</td>
<td>2</td>
<td>Washer-Lock Internal T 3/8 In .377-IN-HD</td>
<td>78189</td>
<td>1920-02</td>
</tr>
<tr>
<td>(J1-J3)</td>
<td>2190-0006</td>
<td>3</td>
<td>Washer-Lock Internal T 1/4 In .256-IN-HD</td>
<td>78189</td>
<td>1920-02</td>
</tr>
<tr>
<td>(J4)</td>
<td>0515-1102</td>
<td>2</td>
<td>Scr-Mach M3 X 0.58MM-LG 90-DEG-FLT-HD</td>
<td>28480</td>
<td>0515-1102</td>
</tr>
<tr>
<td>(LG1)</td>
<td>0515-1102</td>
<td>2</td>
<td>Nut-Hex-Dbl-Cham 1/4-32 Thd 094-IN-THK</td>
<td>28480</td>
<td>0515-1102</td>
</tr>
<tr>
<td>(MP1)</td>
<td>0515-0372</td>
<td>1</td>
<td>Scr-Mach M3 X 0.58MM-LG TX SQ CTN Whr</td>
<td>28480</td>
<td>0515-0372</td>
</tr>
<tr>
<td>(MP2)</td>
<td>0515-0372</td>
<td>2</td>
<td>Scr-Mach M3 X 0.58MM-LG TX SQ CTN Whr</td>
<td>28480</td>
<td>0515-0372</td>
</tr>
</tbody>
</table>

*See Table 6-1 for Reference Designator definitions
**See Table 6-2 for Code List of Manufacturers
[a] Repair limited to replacement of parts listed - see Introduction for ordering information

6-4 Replaceable Parts
<table>
<thead>
<tr>
<th>Reference* Designator</th>
<th>HP Part Number</th>
<th>Qty</th>
<th>Description</th>
<th>Mfr** Code</th>
<th>Mfr Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attaches</td>
<td></td>
<td></td>
<td>Mainframe Common Hardware Parts – cont’d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(MP3)</td>
<td>0515-0372</td>
<td>1</td>
<td>Scr-Mach M3 X 0.5 BMH-LG TX SQ CTN Wsbr</td>
<td>28480</td>
<td>0515-0372</td>
</tr>
<tr>
<td>(MP23-24)</td>
<td>0515-1132</td>
<td>2</td>
<td>Scr-Mach M5 X 0.8 10MM-LG 90-Deg</td>
<td>28480</td>
<td>0515-1132</td>
</tr>
<tr>
<td>(MP25-28)</td>
<td>0615-1132</td>
<td>2</td>
<td>Scr-Mach M5 X 0.8 10MM-LG 90-Deg</td>
<td>28480</td>
<td>0515-1132</td>
</tr>
<tr>
<td>(PUL1)</td>
<td>0515-0372</td>
<td>2</td>
<td>Scr-Mach M3 X 0.5 BMH-LG TX SQ CTN Wsbr</td>
<td>28480</td>
<td>0515-0372</td>
</tr>
<tr>
<td>(SW1)</td>
<td>0361-0161</td>
<td>2</td>
<td>Rivet-Semilub O/VH 089Dia .125LG</td>
<td>12014</td>
<td>R3718 X 1/8 TIN</td>
</tr>
<tr>
<td>A1 Backplane PCA Parts (Fig 6-4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1J1</td>
<td>1251-7796</td>
<td>13</td>
<td>Conn-Post Type 2.54-Pin-SPCG 96-Cont</td>
<td>00779</td>
<td>534854-1</td>
</tr>
<tr>
<td>A1J2</td>
<td>1251-7796</td>
<td></td>
<td>Conn-Post Type 2.54-Pin-SPCG 96-Cont</td>
<td>00779</td>
<td>534854-1</td>
</tr>
<tr>
<td>A1J3</td>
<td>1251-7796</td>
<td></td>
<td>Conn-Post Type 2.54-Pin-SPCG 96-Cont</td>
<td>00779</td>
<td>534854-1</td>
</tr>
<tr>
<td>A1J4</td>
<td>1251-7796</td>
<td></td>
<td>Conn-Post Type 2.54-Pin-SPCG 96-Cont</td>
<td>00779</td>
<td>534854-1</td>
</tr>
<tr>
<td>A1J5</td>
<td>1251-7796</td>
<td></td>
<td>Conn-Post Type 2.54-Pin-SPCG 96-Cont</td>
<td>00779</td>
<td>534854-1</td>
</tr>
<tr>
<td>A1J6</td>
<td>1251-7796</td>
<td></td>
<td>Conn-Post Type 2.54-Pin-SPCG 96-Cont</td>
<td>00779</td>
<td>534854-1</td>
</tr>
<tr>
<td>A1J7</td>
<td>1251-7796</td>
<td></td>
<td>Conn-Post Type 2.54-Pin-SPCG 96-Cont</td>
<td>00779</td>
<td>534854-1</td>
</tr>
<tr>
<td>A1J8</td>
<td>1251-7796</td>
<td></td>
<td>Conn-Post Type 2.54-Pin-SPCG 96-Cont</td>
<td>00779</td>
<td>534854-1</td>
</tr>
<tr>
<td>A1J9</td>
<td>1251-7796</td>
<td></td>
<td>Conn-Post Type 2.54-Pin-SPCG 96-Cont</td>
<td>00779</td>
<td>534854-1</td>
</tr>
<tr>
<td>A1J10</td>
<td>1251-7796</td>
<td></td>
<td>Conn-Post Type 2.54-Pin-SPCG 96-Cont</td>
<td>00779</td>
<td>534854-1</td>
</tr>
<tr>
<td>A1J11</td>
<td>1251-7796</td>
<td></td>
<td>Conn-Post Type 2.54-Pin-SPCG 96-Cont</td>
<td>00779</td>
<td>534854-1</td>
</tr>
<tr>
<td>A1J12</td>
<td>1251-7796</td>
<td></td>
<td>Conn-Post Type 2.54-Pin-SPCG 96-Cont</td>
<td>00779</td>
<td>534854-1</td>
</tr>
<tr>
<td>A1J13</td>
<td>1251-7796</td>
<td></td>
<td>Conn-Post Type 2.54-Pin-SPCG 96-Cont</td>
<td>00779</td>
<td>534854-1</td>
</tr>
<tr>
<td>A1J14</td>
<td>1252-3390</td>
<td>1</td>
<td>Conn-Post Type 155-Pin-SPCG 14-Cont</td>
<td>27264</td>
<td>26-50-3154</td>
</tr>
<tr>
<td>A1J15</td>
<td>1252-1553</td>
<td>2</td>
<td>Conn-Post Type 100-Pin-SPCG 7-Cont</td>
<td>00779</td>
<td>643606-3</td>
</tr>
<tr>
<td>A1J16</td>
<td>1252-1553</td>
<td></td>
<td>Conn-Post Type 100-Pin-SPCG 7-Cont</td>
<td>00779</td>
<td>643606-3</td>
</tr>
<tr>
<td>A1MP1</td>
<td>5180-6635</td>
<td>1</td>
<td>Bracket-Right Angle</td>
<td>28480</td>
<td>5180-6635</td>
</tr>
<tr>
<td>A1SP1</td>
<td>3101-2063</td>
<td>3</td>
<td>Switch-Dip Rocker 4-1A 0.05A 30VDC</td>
<td>81073</td>
<td>76Y20745S</td>
</tr>
<tr>
<td>A1SP2</td>
<td>3101-2063</td>
<td></td>
<td>Switch-Dip Rocker 4-1A 0.05A 30VDC</td>
<td>81073</td>
<td>76Y20745S</td>
</tr>
<tr>
<td>A1SP3</td>
<td>3101-2063</td>
<td></td>
<td>Switch-Dip Rocker 4-1A 0.05A 30VDC</td>
<td>81073</td>
<td>76Y20745S</td>
</tr>
<tr>
<td>A2 Controller PCA Parts (Fig 6-5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>1300-69502</td>
<td>1</td>
<td>Controller PCA (STD) (Exchange)</td>
<td>28480</td>
<td>E1300-69502</td>
</tr>
<tr>
<td>A2</td>
<td>1300-69505</td>
<td>1</td>
<td>Controller PCA (IBASIC) (Exchange)</td>
<td>28480</td>
<td>E1300-69505</td>
</tr>
<tr>
<td>A2</td>
<td>1300-66502</td>
<td>1</td>
<td>Controller PCA (STD) (New) [a]</td>
<td>28480</td>
<td>E1300-66502</td>
</tr>
<tr>
<td>A2</td>
<td>1300-66505</td>
<td>1</td>
<td>Controller PCA (IBASIC) (New) [a]</td>
<td>28480</td>
<td>E1300-66505</td>
</tr>
<tr>
<td>A2F1</td>
<td>2100-0712</td>
<td>3</td>
<td>Fuse-Subminiature 4A 125V NTD AX</td>
<td>75915</td>
<td>R251004T1</td>
</tr>
<tr>
<td>A2F2</td>
<td>2100-0712</td>
<td></td>
<td>Fuse-Subminiature 4A 125V NTD AX</td>
<td>75915</td>
<td>R251004T1</td>
</tr>
<tr>
<td>A2F3</td>
<td>2100-0712</td>
<td></td>
<td>Fuse-Subminiature 4A 125V NTD AX</td>
<td>75915</td>
<td>R251004T1</td>
</tr>
<tr>
<td>A2J1</td>
<td>1251-8860</td>
<td>1</td>
<td>Conn-Post Type 100-Pin-SPCG 40-CONT</td>
<td>76381</td>
<td>3432-5302</td>
</tr>
<tr>
<td>A2J2</td>
<td>1251-8863</td>
<td>1</td>
<td>Conn-Post Type 100-Pin-SPCG 50-CONT</td>
<td>76381</td>
<td>3432-5302</td>
</tr>
<tr>
<td>A2J3</td>
<td>1252-3237</td>
<td>2</td>
<td>Connector-Socket 50-Cont</td>
<td>27264</td>
<td>15-44-4125</td>
</tr>
<tr>
<td>A2J4</td>
<td>1252-3237</td>
<td></td>
<td>Connector-Socket 50-Cont</td>
<td>27264</td>
<td>15-44-4125</td>
</tr>
<tr>
<td>A2P1</td>
<td>1252-1596</td>
<td>1</td>
<td>Conn-Post Type 2.54-Pin-SPCG 96-CONT</td>
<td>06776</td>
<td>DIN-96CPC-SPI-TR</td>
</tr>
<tr>
<td>A2XU21</td>
<td>1220-1314</td>
<td>4</td>
<td>Socket-I.C 32-CONT DIP</td>
<td>00779</td>
<td>2-644018-1</td>
</tr>
<tr>
<td>A2XU22</td>
<td>1220-1314</td>
<td></td>
<td>Socket-I.C 32-CONT DIP</td>
<td>00779</td>
<td>2-644018-1</td>
</tr>
<tr>
<td>A2XU33</td>
<td>1220-1314</td>
<td></td>
<td>Socket-I.C 32-CONT DIP</td>
<td>00779</td>
<td>2-644018-1</td>
</tr>
<tr>
<td>A2XU34</td>
<td>1220-1314</td>
<td></td>
<td>Socket-I.C 32-CONT DIP</td>
<td>00779</td>
<td>2-644018-1</td>
</tr>
</tbody>
</table>

*See Table 6-1 for Reference Designator definitions
**See Table 6-2 for Code List of Manufacturers
[a] Repair limited to replacement of parts listed - see Introduction for ordering information
Table 6-3. HP E1300A/E1301A Mainframes Replaceable Parts (cont'd)

<table>
<thead>
<tr>
<th>Reference Designator</th>
<th>HP Part Number Qty</th>
<th>Description</th>
<th>Mfr** Code</th>
<th>Mfr Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>A3</td>
<td></td>
<td>A3 Power Supply Auxiliary PCA Parts (Fig 6-6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3F101</td>
<td>E1300-66503 1</td>
<td>Power Supply Auxiliary PCA [a]</td>
<td>28480</td>
<td>E1300-66503</td>
</tr>
<tr>
<td>A3J1</td>
<td>211C-0665 1</td>
<td>Fuse-Subminiature 1A 125V NTD Axial Leads</td>
<td>75915</td>
<td>R251001T1</td>
</tr>
<tr>
<td>A3J101</td>
<td>1252-3213 1</td>
<td>Connector Post-Type 16-CONT</td>
<td>27264</td>
<td>26-48-1166</td>
</tr>
<tr>
<td>A3J102</td>
<td>1252-2518 1</td>
<td>Connector Post-Type .100-Pin-SPCG 7-Cont</td>
<td>00779</td>
<td>643606-2</td>
</tr>
<tr>
<td>A3J105</td>
<td>1252-3447 1</td>
<td>Connector Post-Type 2-CONT</td>
<td>27264</td>
<td>703-89-0071</td>
</tr>
<tr>
<td>A3J103</td>
<td>1252-2518 2</td>
<td>Connector Post-Type 2-CONT</td>
<td>27264</td>
<td>703-89-0071</td>
</tr>
<tr>
<td>A3SP1</td>
<td>3101-2899 1</td>
<td>Switch-Push Button 4PST 6A 250VAC</td>
<td>71468</td>
<td>190251</td>
</tr>
<tr>
<td>A4</td>
<td></td>
<td>A4 Power Supply Assembly Parts (Fig 6-7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A4F1</td>
<td>0950-1898 1</td>
<td>Power Supply Assembly 100W [a]</td>
<td>28480</td>
<td>0950-1898</td>
</tr>
<tr>
<td>A4F1</td>
<td>2110-0010 1</td>
<td>Fuse (inch) 5A 250V NTD FE UL</td>
<td>75915</td>
<td>312 005</td>
</tr>
<tr>
<td>3.5 Inch Disk Drive Assembly Parts [a]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9164-0348</td>
<td>1</td>
<td>3.5 Inch Disk Drive (New)</td>
<td>28480</td>
<td>9164-0348</td>
</tr>
<tr>
<td>0361-1336</td>
<td>4</td>
<td>Eyelet-Flanged</td>
<td>28480</td>
<td>0361-1336</td>
</tr>
<tr>
<td>0400-0285</td>
<td>4</td>
<td>Grommet-Round .18 ID</td>
<td>28480</td>
<td>0400-0285</td>
</tr>
<tr>
<td>0515-0372</td>
<td>4</td>
<td>Scr-Pan M3 X 5 TX SC</td>
<td>28480</td>
<td>0515-0372</td>
</tr>
<tr>
<td>0515-0564</td>
<td>4</td>
<td>Scr-Pan M3 X 12 TX</td>
<td>28480</td>
<td>0515-0564</td>
</tr>
<tr>
<td>E1300-01204</td>
<td>1</td>
<td>BRKT-Floppy Disk</td>
<td>28480</td>
<td>E1300-01204</td>
</tr>
<tr>
<td>E1300-61607</td>
<td>1</td>
<td>Floppy Disk Cbl</td>
<td>28480</td>
<td>E1300-61607</td>
</tr>
<tr>
<td>E1300-90022</td>
<td>1</td>
<td>Installation Note</td>
<td>28480</td>
<td>E1300-90022</td>
</tr>
<tr>
<td>20 Mb Hard Disk Assembly Parts [a]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45816-69111</td>
<td>1</td>
<td>20 Mbyte Hard Disk Drive (Exchange)</td>
<td>28480</td>
<td>45816-69111</td>
</tr>
<tr>
<td>97500-85631</td>
<td>1</td>
<td>20 Mbyte Hard Disk Drive (New)</td>
<td>28480</td>
<td>97500-85631</td>
</tr>
<tr>
<td>0361-1336</td>
<td>3</td>
<td>Eyelet-Flanged</td>
<td>28480</td>
<td>0361-1336</td>
</tr>
<tr>
<td>0400-0285</td>
<td>3</td>
<td>Grommet-Round .218 ID</td>
<td>28480</td>
<td>0400-0285</td>
</tr>
<tr>
<td>0515-0372</td>
<td>2</td>
<td>Scr-Pan M3 X 5 TX SC</td>
<td>28480</td>
<td>0515-0372</td>
</tr>
<tr>
<td>0515-0564</td>
<td>3</td>
<td>Scr-Pan M3 X 16MM</td>
<td>28480</td>
<td>0515-0564</td>
</tr>
<tr>
<td>E1300-00601</td>
<td>1</td>
<td>Shield-Hard Disk</td>
<td>28480</td>
<td>E1300-00601</td>
</tr>
<tr>
<td>E1300-61608</td>
<td>1</td>
<td>Hard Disk CBL</td>
<td>28480</td>
<td>E1300-61608</td>
</tr>
<tr>
<td>E1300-90022</td>
<td>1</td>
<td>Installation Note</td>
<td>28480</td>
<td>E1300-90022</td>
</tr>
<tr>
<td>Disk Controller Assembly Parts [a]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09153-66521</td>
<td>1</td>
<td>Disk Controller PCA (New)</td>
<td>28480</td>
<td>09153-66521</td>
</tr>
<tr>
<td>0403-0282</td>
<td>3</td>
<td>Bumper FT-ADH MTG</td>
<td>28480</td>
<td>0403-0282</td>
</tr>
<tr>
<td>0515-0372</td>
<td>4</td>
<td>Scr-Pan M3 X 5 TX SC</td>
<td>28480</td>
<td>0515-0372</td>
</tr>
<tr>
<td>125-4467</td>
<td>1</td>
<td>Bail Lock</td>
<td>28480</td>
<td>125-4467</td>
</tr>
<tr>
<td>2360-0042</td>
<td>2</td>
<td>Scr-Mach 6-32</td>
<td>28480</td>
<td>2360-0042</td>
</tr>
<tr>
<td>A1300-03040</td>
<td>1</td>
<td>HP-IB Power (SP3)</td>
<td>28480</td>
<td>A1300-03040</td>
</tr>
<tr>
<td>E1300-01205</td>
<td>1</td>
<td>BRACKET-DISC CTLR</td>
<td>28480</td>
<td>E1300-01205</td>
</tr>
<tr>
<td>E1300-90022</td>
<td>1</td>
<td>Installation Note</td>
<td>28480</td>
<td>E1300-90022</td>
</tr>
</tbody>
</table>

*See Table 6-1 for Reference Designator definitions

**See Table 6-2 for Code List of Manufacturers

[a] Repair limited to replacement of parts listed - see introduction for ordering information

6-6 Replaceable Parts
<table>
<thead>
<tr>
<th>Reference* Designator</th>
<th>I-P Part Number</th>
<th>Qty</th>
<th>Description</th>
<th>Mfr** Code</th>
<th>Mfr Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>EXT DC Power Assembly Parts (Fig 6-8) [a]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0360-2519</td>
<td>1 Barrier Strip 2 PO</td>
<td></td>
<td></td>
<td>28480</td>
<td>0360-2519</td>
</tr>
<tr>
<td>0403-0282</td>
<td>3 BMPR FT. ACH MT</td>
<td></td>
<td></td>
<td>28480</td>
<td>0403-0282</td>
</tr>
<tr>
<td>0515-0372</td>
<td>4 SCR-PAN M3 X 5 TX</td>
<td></td>
<td></td>
<td>28480</td>
<td>0515-0372</td>
</tr>
<tr>
<td>0515-0664</td>
<td>2 SCR PH M3.0 X 12 TX</td>
<td></td>
<td></td>
<td>28480</td>
<td>0515-0664</td>
</tr>
<tr>
<td>3-05-0263</td>
<td>1 CKT BKR 1P 4A</td>
<td></td>
<td></td>
<td>28480</td>
<td>3105-0263</td>
</tr>
<tr>
<td>E1300-04108</td>
<td>1 CVR-DC CKT BKR</td>
<td></td>
<td></td>
<td>28480</td>
<td>E1300-04108</td>
</tr>
<tr>
<td>E1300-61610</td>
<td>1 Cbl Assy 3-Wire</td>
<td></td>
<td></td>
<td>28480</td>
<td>E1300-61610</td>
</tr>
<tr>
<td>E1300-90023</td>
<td>1 Installation Note</td>
<td></td>
<td></td>
<td>28480</td>
<td>E1300-90023</td>
</tr>
<tr>
<td>A1</td>
<td></td>
<td></td>
<td>DC Power Option PCA (New) [a]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1J1</td>
<td>1252-3209</td>
<td>1</td>
<td>Connector-16-Pin Header</td>
<td>28480</td>
<td>E1300-66504</td>
</tr>
<tr>
<td>A1J2</td>
<td>1251-5153</td>
<td>3</td>
<td>Connector-Single Contact</td>
<td>28480</td>
<td>1252-3209</td>
</tr>
<tr>
<td>A1J3</td>
<td>1251-5153</td>
<td>3</td>
<td>Connector-Single Contact</td>
<td>28480</td>
<td>1251-5153</td>
</tr>
<tr>
<td>A1J4</td>
<td>1251-4682</td>
<td>1</td>
<td>Connector-3-Pin Male Post</td>
<td>28480</td>
<td>1251-4682</td>
</tr>
<tr>
<td>A1J5</td>
<td>1251-5153</td>
<td></td>
<td>Connector-Single Contact</td>
<td>28480</td>
<td>1251-5153</td>
</tr>
<tr>
<td>A1P2</td>
<td>1252-3208</td>
<td>2</td>
<td>Connector-8-Pin Right Angle</td>
<td>28480</td>
<td>1252-3208</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Connector-8-Pin Right Angle</td>
<td>28480</td>
<td>1252-3208</td>
</tr>
<tr>
<td>Internal HP E1326A DMM Install Parts [a], [b]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E1326-00202</td>
<td>1 FRONT PANEL</td>
<td></td>
<td></td>
<td>28480</td>
<td>E1326-00202</td>
</tr>
<tr>
<td>E1326-61602</td>
<td>1 CABLE ASSEMBLY - 4-WIRE</td>
<td></td>
<td></td>
<td>28480</td>
<td>E1326-61602</td>
</tr>
<tr>
<td>E1326-61603</td>
<td>1 CABLE ASSEMBLY - BNC</td>
<td></td>
<td></td>
<td>28480</td>
<td>E1326-61603</td>
</tr>
<tr>
<td>E1326-61604</td>
<td>1 CABLE ASSEMBLY - RIBBON</td>
<td></td>
<td></td>
<td>28480</td>
<td>E1326-61604</td>
</tr>
<tr>
<td>E1326-90002</td>
<td>1 INSTALLATION NOTE</td>
<td></td>
<td></td>
<td>28480</td>
<td>E1326-90002</td>
</tr>
<tr>
<td>Internal HP E1326B DMM Install Parts [a], [c]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E1326-00206</td>
<td>1 FRONT PANEL W/O BINDING POSTS</td>
<td></td>
<td></td>
<td>28480</td>
<td>E1326-00206</td>
</tr>
<tr>
<td>E1326-00207</td>
<td>1 FRONT PANEL W/BINDING POSTS</td>
<td></td>
<td></td>
<td>28480</td>
<td>E1326-00207</td>
</tr>
<tr>
<td>E1326-61608</td>
<td>1 CABLE-DIGITAL PANEL/FET MUX</td>
<td></td>
<td></td>
<td>28480</td>
<td>E1326-61608</td>
</tr>
<tr>
<td>E1326-61609</td>
<td>1 CABLE-ANALOG VM/PANEL</td>
<td></td>
<td></td>
<td>28480</td>
<td>E1326-61609</td>
</tr>
<tr>
<td>E1326-61610</td>
<td>1 CABLE-ANALOG BJ/PANEL</td>
<td></td>
<td></td>
<td>28480</td>
<td>E1326-61610</td>
</tr>
<tr>
<td>E1326-61611</td>
<td>1 CABLE-ANALOG PANEL/PANEL</td>
<td></td>
<td></td>
<td>28480</td>
<td>E1326-61611</td>
</tr>
<tr>
<td>E1326-61612</td>
<td>1 CABLE-DIGITAL BUS INTR</td>
<td></td>
<td></td>
<td>28480</td>
<td>E1326-61612</td>
</tr>
<tr>
<td>E1326-90004</td>
<td>1 INSTALLATION NOTE</td>
<td></td>
<td></td>
<td>28480</td>
<td>E1326-90004</td>
</tr>
<tr>
<td>HP IBASIC Parts [a]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E1300-90020</td>
<td>1 INSTALLATION NOTE</td>
<td></td>
<td></td>
<td>28480</td>
<td>E1300-90020</td>
</tr>
<tr>
<td>E1300-90100</td>
<td>1 IBASIC MANUAL SET</td>
<td></td>
<td></td>
<td>28480</td>
<td>E1300-90100</td>
</tr>
<tr>
<td>512 KByte Memory Parts [a]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E1320-69501</td>
<td>1 512 KByte RAM PCA (EXCHANGE)</td>
<td></td>
<td></td>
<td>28480</td>
<td>E1320-69501</td>
</tr>
<tr>
<td>E1320-66501</td>
<td>1 512 KByte RAM PCA (NEW)</td>
<td></td>
<td></td>
<td>28480</td>
<td>E1320-66501</td>
</tr>
<tr>
<td>E1320-90021</td>
<td>1 INSTALLATION NOTE</td>
<td></td>
<td></td>
<td>28480</td>
<td>E1320-90021</td>
</tr>
<tr>
<td>1 MByte Memory Parts [a]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E1321-69501</td>
<td>1 1 MByte RAM PCA (EXCHANGE)</td>
<td></td>
<td></td>
<td>28480</td>
<td>E1321-69501</td>
</tr>
<tr>
<td>E1321-66501</td>
<td>1 1 MByte RAM PCA (NEW)</td>
<td></td>
<td></td>
<td>28480</td>
<td>E1321-66501</td>
</tr>
<tr>
<td>E1321-90021</td>
<td>1 INSTALLATION NOTE</td>
<td></td>
<td></td>
<td>28480</td>
<td>E1321-90021</td>
</tr>
</tbody>
</table>

*See Table 6-1 for Reference Designator definitions
**See Table 6-2 for Codes List of Manufacturers
[a] Repair limited to replacement of parts listed below - see Introduction for ordering information
[b] See HP E1326A DMM Service Manual (E1326-90010) for E1326A DMM parts
[c] See HP E1326B DMM Service Manual (E1326-90015) for E1326B DMM parts
<table>
<thead>
<tr>
<th>Reference* Designator</th>
<th>HP Part Number</th>
<th>Qty</th>
<th>Description</th>
<th>Mfr** Code</th>
<th>Mfr Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5062-5367</td>
<td>1</td>
<td>FRONT HANDLE KIT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E1300-80908</td>
<td>1</td>
<td>RACK MOUNT KIT</td>
<td>28480</td>
<td>E1300-80908</td>
</tr>
<tr>
<td></td>
<td>E1300-80909</td>
<td>1</td>
<td>RACK MOUNT w/HANDLES</td>
<td>28480</td>
<td>E1300-80909</td>
</tr>
</tbody>
</table>

*See Table 6-1 for Reference Designator definitions
**See Table 6-2 for Code List of Manufacturers
[a] Repair limited to replacement of parts listed below - see Introduction for ordering information
[b] See HP E1326A DMM Service Manual (E1326-90010) for E1326A DMM parts
[c] See HP E1326B DMM Service Manual (E1326-90015) for E1326B DMM parts
Replaceable Parts
Component Locators

Figures 6-1 through 6-8 show locations of selected replaceable parts for the HP E1300A/E1301A Mainframes and Printed Circuit Assemblies (PCAs).

NOTES:

1. Panel PNL1 (E1301A) is shipped with CVR2 (blank disk panel) installed. If 3.5 inch disk drive (Option 005) is installed, remove (snap out) CVR2 before installing front panel.

2. Panel PNL1 (E1301A) is shipped with BASIC keys installed. However, unless IBASIC is installed, the BASIC keys are INOPERATIVE.

Figure 6-1. Front Panel Parts
Figure 6-4. A1 Backplane PCA Parts
Figure 6-6. A3 Power Supply Auxiliary PCA Parts
Figure 6-7. A4 Power Supply Assembly Parts
Introduction

This section normally contains information for adapting this manual to instruments for which the content does not apply directly. Since this manual does apply directly to instruments having serial numbers listed on the title page, no change information is given here. Refer to Instruments Covered By This Manual in Chapter 1 for additional important information about serial number coverage.

Note

This manual applies to HP E1300A mainframes with serial prefixes 3034A and above and to HP E1301A mainframes with serial prefixes 3035A and above.

See the HP E1300A/E1301A Mainframes Service Manual (E1300-90010) for information on HP E1300A mainframes with serial prefixes 2935A and below and HP E1301A mainframes with serial prefixes 2934A and below.
Introduction
This chapter contains information for troubleshooting and repairing HP E1300A (serial prefix 3034A and above) and HP E1301A (serial prefix 3035A and above) mainframes. Included are block diagrams, principles of operation, and procedures for troubleshooting, repair, disassembly, and reassembly.

Safety Considerations
This paragraph contains information, cautions, and warnings which must be followed for your protection and to avoid damage to the equipment when repairing the mainframe.

Before applying power, verify that the product is set to match the available line voltage and the correct fuse is installed. An uninterruptible safety earth ground must be provided from the main power source to the product input wiring terminals, power cord, or supplied power cord set.

Warning
Any interruption of the protective (grounding) conductor (inside or outside the instrument) or disconnecting the protective earth terminal will cause a potential shock hazard that could result in personal injury. (Grounding one conductor of a two conductor outlet is not sufficient protection.) In addition, verify that a common ground exists between the unit under test and this instrument prior to energizing either unit.

Whenever it is likely that the protection has been impaired, the instrument must be made inoperative and be secured against any unintended operation.

If this instrument is to be energized via an autotransformer (for voltage reduction) make sure the common terminal is connected to neutral (that is, the grounded side of the mains supply).

Servicing instructions are for use by service-trained personnel only. To avoid dangerous electric shock, do not perform any servicing unless qualified to do so.

Maintenance described in the manual is performed with power supplied to the instrument while protective covers are removed. Energy available at many points may, if contacted, result in personal injury. Where maintenance can be performed without power applied, the power should be removed.

Capacitors inside the instrument may still be charged even if the instrument has been disconnected from its source of supply.
For continued protection against fire hazard, replace the line fuse(s) only with 250V fuse(s) of the same current rating and type (for example, normal blow, time delay, etc.). Do not use repaired fuses or short circuited fuseholders.

Caution

Do not disconnect or remove any boards in the mainframe unless the instrument is unplugged. Some boards contain devices that can be damaged if the board is removed when the power is on. Several components, including MOS devices, can be damaged by electrostatic discharge. Use conductive foam and grounding straps when servicing is required on sensitive components. Use care when unplugging ICs from high-grip sockets.

Equipment Required

Equipment required for troubleshooting and repair of the mainframe is listed in Table 1-1, Recommended Test Equipment. Any equipment that satisfies the requirements in the table may be substituted.

Pozidriv Screwdrivers

Many screws in the mainframe appear to be Phillips type, but are not. To avoid damage to the screw head slots, Pozidriv screwdrivers should be used. HP P/N 8710-0899 is No. 1 Pozidriv and HP P/N 8710-0900 is No. 2 Pozidriv.

Torx Screwdrivers

Some screws in the mainframe appear to be Hex type, but are not. To avoid damage to the screw heads, Torx screwdrivers must be used. HP P/N 8710-1673 is size T-8, HP 8710-1284 is size T-10, and HP 8710-1816 is size T-15. HP 8710-1543 is a set of eight "L" shaped Torx drivers (T7, 8, 10, 15, 20, 25, 27, and 30).
Principles of Operation

General
The mainframe has six major assemblies, each of which perform a specific task. See Figure 8-1 for a block diagram of the mainframe.

- A1 Backplane Printed Circuit Assembly — provides routing of control signals, power, etc to the modules.
- A2 Controller Printed Circuit Assembly — provides overall control of internal operations in the mainframe.
- A3 Power Supply Auxiliary Printed Circuit Assembly — provides power for all mainframe assemblies, and generates the system reset and AC fail signals.
- A4 Power Supply Printed Circuit Assembly — provides power to the modules installed in the mainframe.
- PNL1 Front Panel Assembly (HP E1301A only) — provides operator interface to the mainframe using keyboard and display.
- Rear Panel — provides AC line connection, trigger/pacer inputs and outputs, and the computer interface with the mainframe using the HP-IB or RS-232 port.

In addition to the six major assemblies within the mainframe, a number of electrical options are also available. Optional assemblies are illustrated in Figure 8-1.

- 3.5 inch Floppy Disk Drive Assembly — provides 360 kbyte, 720 kbyte, or 1.44 Mbyte of storage on removable 3.5 inch floppy disks.
- 20 Mbyte Hard Disk Drive Assembly — provides 20 Mbyte of storage on a fixed hard disk.
- Disk Controller PCA — controls both the 3.5 inch floppy and the 20 Mbyte hard disk drives.
- External DC power operation — provides the mainframe with DC power back-up in the event of AC power loss. See rear panel description in this chapter.
- Internal HP E1326A/B DMM — mounts a 5.5 digit multimeter inside the mainframe. Rear panel A-size panel contains connection points. Refer to the HP E1326A or HP E1326B Service manuals for principles of operation on these items.
- Memory PCA — provides 512 kbytes, 1 Mbyte, or 2 Mbytes of additional memory for the A2 Controller PCA. See A2 Controller PCA description in this chapter.
- IBASIC ROM's — provides the A2 Controller PCA with HP Instrument BASIC language. See A2 Controller PCA description in this chapter.
A1 Backplane PCA

Provides the interconnection and signal routing between the installed modules and the mainframe. J1 to J13 (labeled as slot 0 to 12) accommodate 7 B-size, 3 A-size, and 3 internal B-size modules. Figure 8-21 (page 8-36) contains the component locator and connector diagram for the A1 Backplane PCA. The following signals are routed to/from the A2 Controller PCA over the backplane bus:

- Control signals are sent over the backplane bus from the A2 Controller PCA to operate the installed modules.
- Signals are received over the backplane bus from the installed modules to provide the A2 Controller PCA with measurement information, module status, and configuration data.
- Operating voltages from the A4 Power Supply Assembly at J14 are distributed to the internal assemblies within the mainframe and to the installed modules.

J15 connected to the A3 Power Supply Auxiliary PCA:

- Provides the A3 PCA with operating voltages (+5 V and +12 V), and the power on signal.
- Receives from the A3 PCA, the AC fail and system RESET signals, and the ~3.3 V battery voltage.

J16 provides the optional Disk Controller PCA with operating voltages (+5V and +12V) and receives the SYSTEM RESET signal.

SP1 - SP3 are set to match module occupancy in slots 0 to 11.

A2 Controller PCA

Provides overall control of internal operations within the mainframe. Figure 8-22 (page 8-38) contains the component locator and connector diagram for the A2 Controller PCA. Operating instructions are received one of three ways:

- The Front Panel Assembly keyboard (HP E1301A only).
- An external controller connected to the rear panel HP-IB connector, when the SYS CONTROL TALK/LISTEN switch is set to the TALK/LISTEN position.
- An external terminal connected to the rear panel RS-232 connector, when the SYS CONTROL TALK/LISTEN switch is set to the TALK/LISTEN position.

The A2 Controller PCA is physically installed in slot 0 (A1J3). Data and control signals are sent to/received from all the mainframe assemblies and installed modules.

- Modules installed in slots 1 to 12 are connected via the backplane bus. Control signals are sent to and status/measurement information is received from the installed modules.
- PNL1 Front Panel Assembly (HP E1301A only) is connected via A2J2. Operator selections are received from the Keyboard PCA and display indications are sent to the Display PCA.
• Optional Disk Controller PCA is connected via HP-IB bus A2J1 (pins 7-31). Data and instructions are sent to/received from the Floppy Disk drive and Hard Disk Drive via the Disk Controller PCA. System reset is provided by A1J16 (pin 5).

• Optional Memory PCAs are connected via A2J3 and A2J4. The A2 Controller PCA uses the available memory (512 kbytes, 1 Mbyte, or 2 Mbytes) for measurement and working storage.

The Memory is comprised of both RAM and ROM. RAM (250k) is nonvolatile and stores the module measurements, and any other information required for current operation. A RAM keep-alive battery assembly (BT1) is provided to prevent the loss of data when power is turned off. Optional Memory PCA's when connected to A2J4-J5, provide an additional 512 kbytes, 1 Mbyte, or 2 Mbytes of nonvolatile storage. ROM's (A2U21, U22, U33, and U34) contain the operating system instructions. When optional disk drives are installed, these ROMs must contain IBASIC operating instructions.

The input operating voltages are fuse protected: F1 for the +5 V, F2 for the +12 V, and F3 for the −12 V. All fuses are rated at 4 A. In addition to overall control, the A2 Controller PCA contains trigger circuits for external trigger operation and a user-defined pacer for TTL level outputs.

A3 Power Supply Auxiliary PCA

Provides ON/OFF control of the mainframe. Also contains the circuitry for fan operation, keep alive battery voltage distribution, and overvoltage protection. Switches AC line voltage of 90-132 Vac or 198-264 Vac to the A4 Power Supply Assembly (or if installed, the optional DC Power PCA).

Figure 8-23 (page 8-40) contains the component locator and connector diagram for the A3 Power Supply Auxiliary PCA.

Caution

Always set the power switch to OFF before connecting or disconnecting the battery. Failure to due so may cause fuse A3F101 to open.

A4 Power Supply PCA

Provides the DC voltages required to operate all internal assemblies and modules installed in the mainframe. Figure 8-23 (page 8-40) contains the component locator and connector diagram for the A4 Power Supply Assembly and optional DC Power PCA.

• Provides operating voltages of 5.1 Vdc at 12 amps, +12 V at 5 amps, and −12 V at 1 amp.

• Provides a Power ON (Pon) signal to indicate power supply status. A logic level "1" indicates power on.
The input voltage is dependent on whether the DC Power Option is installed.

- When the DC Power option is not installed, the input to the A4 Power Supply is 90-132 Vac or 198-264 Vac connected to the rear panel AC power line connector. The input voltage is fuse protected by A4F1, then routed to the AC input (L) and (N) connectors. On/Off switching is provided by the A3 Power Supply Auxiliary PCA. Voltage selection is determined by the rear panel AC power line connector selection wheel. When 115 Vac is selected, the 100/120 terminal is shorted to the white wire connector. When 230 Vac is selected, the 100/120 terminal on the line connector is open.

Caution

When the DC Power option is not installed, voltage selection for the instrument is determined by the rear panel AC power line connector selection wheel and NOT by switching the wire from the 100/120 terminal to the 220/240 V terminal on the A4 Power Supply Assembly. **NEVER** connect anything to the 220/240 V terminal on the A4 Power Supply Assembly when the DC Power option is not installed.

- When the DC Power option is installed, both the 90-132/198-264 Vac at the rear panel AC power line connector, and the DC input at the rear panel DC power connector are routed to the Optional DC Power PCA. These inputs are converted to ~250Vdc and routed to the AC input (L) and (N) connectors. On/Off switching is provided by the A3 Power Supply Auxiliary PCA.

Front Panel

Provides an operator interface (HP E1301A only) to the mainframe (via the A2 Controller PCA). Contains the necessary circuits that allow the operator to input commands, and displays to the operator the various measurement parameters and mainframe status. This assembly contains two major subassemblies:

- **Display PCA.** A dot matrix vacuum fluorescent solid state display has 80 characters (two rows of 40) to inform the operator of various mainframe parameters. Requires +5 V for operation.

- **Keyboard PCA.** Consists of 78 push buttons that provide the mainframe with the commands necessary for operation. Consists of a printed printed circuit with 82 etched contacts, and a flubber keyboard.

Rear Panel

Provides the various connections and selections required for mainframe operation.

- **AC Input line voltage connection.** Acceptable line voltage of 115/230 Vac is routed to the A4 Power Supply Assembly, or if installed, the optional DC Power PCA. Provides fuse protection (F1), line filtering and voltage selection.

- **Optional DC input connection.** Accepts DC voltage of from 10 to 30Vdc at up to 20 A (~200W). Provides both current and overvoltage circuit protection (CB1).
- Also provides connections for trigger inputs and outputs, pacer output, HP-IB Interface, and RS-232 interface.
- Operation. Selections for SYStem CONTROL (IBASIC) or TALK/LISTEN (using an external computer) are also provided.

Troubleshooting

General
Instrument problems usually fall into four general categories: turn-on errors, operator errors, instrument performance out of specification, and catastrophic failures. The troubleshooting strategy is different for each category.

- **Turn-on Errors**: An error message displayed on the front panel when the mainframe is turned on or after indicates that the built-in diagnostic routine has detected some problem. Turn the instrument off, then on again. If the error repeats, use the troubleshooting procedures in "Troubleshooting Test".

- **Operator Errors**: Apparent failures often result from operator errors. Refer to the "HP E1300A/E1301A Users Manual", Appendix B for additional information on these errors.

- **Instrument Performance Out of Specification**: If a parameter is out of limits, use the troubleshooting procedures in "Troubleshooting Test".

- **Catastrophic Failure**: When a catastrophic failure occurs, begin troubleshooting using the procedures in "Troubleshooting Test". The information there can be used to isolate the problem to one of the major assemblies in the instrument.

Service Aids
The following information is provided to assist the technician when performing maintenance on the mainframe.

Assembly, Parts and Cable Locations
For specific assembly/component descriptions and ordering information, refer to Table 6-3, "Replaceable parts", in Chapter 6. Chassis and frame parts, as well as mechanical parts (MP's) and cables (W), are identified on Figures 6-2 through 6-3.

Test Points and Adjustment Locations
Test points within the mainframe are the connector pins located on the assemblies. Connector pin numbers for the various assemblies are identified on Figure 8-20 (page 8-34). There are no user adjustments for the mainframe.

Service Aids on Printed Circuit Boards
Service aids on printed circuit boards include pin numbers, some reference designations, and assembly part numbers.
Other Service Documents

Service Notes, Manual Updates, and other service literature may be available through Hewlett-Packard. For further information, contact your nearest Hewlett-Packard office.

Visually inspect interior of instrument for any signs of abnormal internally generated heat, such as discolored printed circuit boards or components, damaged insulation, or evidence of arcing. Determine and remedy the cause of any such condition.

Switch Settings

Verify the line voltage selection is set for the correct voltage available in your area.

Verify the "SYS CONTROL - TALK/LISTEN" switch on the rear panel of the HP E1301A is set correctly:

- Select SYS CONTROL if the unit is the system controller for printers, discs, or other devices.
- Select TALK/LISTEN if the unit is operating under commands from a controller.

Verify the "Interrupt Bypass switches" are set correctly (on A1 Backplane PCA). Refer to the "HP E1300A/E1301A Installation and Getting Started Guide" for more information on switch selection.

Note

If these switches are set incorrectly, then interrupts sent to/received from the A2 Controller PCA will be incorrect, or missing.

Connections

Verify that all connector contacts are not damaged, and that all cable connectors are making positive contact. Do not overtighten connector screws.

- HP-IB connector (screws should be finger tight)
- All other externally connected cables
- All assembly connectors and contacts
- All internal cables and harnesses

Cover Plates

Verify that a cover plate is installed over any empty slot to maintain proper airflow within the mainframe.

Note

During troubleshooting, the mainframe can be operated for a short period of time with the modules and covers removed. Reinstall the modules and/or cover plates before normal operation.
Troubleshooting Test

Perform the following steps to isolate a malfunction within the mainframe to the assembly level.

Warning

Maintenance described in this section is performed with power supplied to the instrument while protective covers are removed. Energy available at many points may, if contacted, result in personal injury. Where maintenance can be performed without power applied, the power should be removed.

Note

The following information is provided to aid in troubleshooting the mainframe.

- Principles of Operation at the beginning of this chapter.
- Wiring diagram and assembly locator (see Figure 8-1).
- A listing of replaceable parts and a list of exchange assemblies in Chapter 6.
- Component location diagrams and connector diagrams (see Figures 8-21 through 8-23).

1. Remove the cover and brace (see "Disassembly and Reassembly"), and perform a visual inspection as previously described in this chapter. Replace any defective items.

2. Remove all modules installed in the A-size and B-size slots of the mainframe. Remove any modules (other than the A2 Controller PCA) installed in the internal slots of the mainframe (see Figure 8-15). See "Disassembly and Reassembly" for removal information.

Note

If a module is removed, change the corresponding "Interrupt Bypass switch" on the A1 Backplane PCA to "SLOT EMPTY" position.

3. When testing an HP E1300A, or an HP E1301A with front panel/control problems, connect a computer to the mainframe rear panel HP-IB connector using an HP-IB Interconnect cable. Set the computer power to ON. Set the rear panel SYS CONTROL-TALK/LISTEN switch to TALK/LISTEN.
4. On the mainframe, connect a power cable to the rear panel and set the Power Switch to ON. Allow approximately 60 seconds for the mainframe to perform the turn-on test.
 - If malfunction is no longer present, troubleshoot the individual modules using module service manuals.
 - If the mainframe power-up is incorrect (see "Operator’s Checks" in Chapter 3), proceed with step 6.
 - If the mainframe does not power-up, verify rear panel fuse is not open, then proceed with step 5.

5. Using a Digital Multimeter, verify that the power supply voltages are as follows (measured from ground):
 - Battery >3.3 Vdc
 - +5 V +5 Vdc ±0.355 Vdc
 - +12 V +12 Vdc ±0.60 Vdc
 - −12 V −12 Vdc ±0.60 Vdc

![Figure 8-2. Power Supply Voltage Measurement Location](image)

- If incorrect, check A3F1, A4F1, A4 Power Supply Assembly, A3 Power Supply Auxiliary PCA, interconnecting cables/wires, and rear panel AC Connector. Troubleshoot using Figure 8-20 and information presented in Principles of Operation.
- If correct, proceed with step 6.

6. Execute the functional test using the *TST? command. Allow approximately 30 seconds for the test to complete.
 - If +0 is returned, then no failure was encountered. If problem still exists, proceed with step 7.
 - If nothing or a +1 is returned, then check the A2 Controller PCA and interconnecting cables. Troubleshoot using Figure 8-20 and information presented in Principles of Operation.

7. If HP E1301A front panel is suspect, disconnect interconnecting cable PNL1W1 from A2 Controller PCA (A2J2) and execute the function test using the computer. If +0 is returned with the front panel disconnected, check PNL1 Display PCA, Keyboard PCA, or interconnecting cable.
8. Troubleshoot all other malfunctions using Figures 8-20 through 8-23, the information presented in Principles of Operation, and the following information as required:
 • For problems with the battery assembly, check the battery and charger circuit voltage.
 • Before replacing the battery assembly, check A3F101, charge (charger functional and cable connected to A3J102 with power to on) for a minimum of 16 hours, then recheck battery voltage.

Note

A functional battery assembly will be able to supply memory (optional Memory PCA's) and the real time clock with current for at least 72 hours while maintaining a voltage of > 3.3 Vdc.

• For problems with the optional DC Power and additional memory assemblies, isolate the option and then repeat the troubleshooting test. If test passes, suspect isolated assembly. Troubleshoot using Figure 8-20, the information presented in principles of operation.

• For problems with the optional disk drives and controller, isolate the drive(s) and/or the Disk Controller PCA and then repeat the troubleshooting test. If test passes, suspect isolated assembly.

9. Reinstall all modules removed in step 2. Install the cover and brace (see "Disassembly and Reassembly").

Note

If a module is installed, change the corresponding "Interrupt Bypass switch" on the A1 Backplane PCA to "SLOT FULL" position.
Disassembly and Reassembly

Procedures are provided for disassembly and reassembly of the following items:

- Cover.
- Brace.
- A1 Backplane Printed Circuit Assembly
- A2 Controller Printed Circuit Assembly
- A3 Power Supply Auxiliary Printed Circuit Assembly
- A4 Power Supply Assembly
- B1 Fan Assembly
- BT1 Battery Assembly
- PNL1 Front Panel Assembly
- Front Panel Display Printed Circuit Assembly (HP E1301A only)
- Front Panel Keyboard Printed Circuit Assembly (HP E1301A only)
- Memory Printed Circuit Assemblies (Optional)
- B-size Modules Installed in Internal Slots (Optional)
- DC Power Supply Printed Circuit Assembly (Optional)
- Disk Controller Printed Circuit Assembly (Optional)
- 3.5 Inch Floppy Drive Assembly (Optional)
- 20 Mbyte Hard Disk Drive Assembly (Optional)

Warning

Capacitors inside the instrument may still be charged even if the instrument has been disconnected from its source of supply.
Cover

1. Set power to OFF, and remove the power cable.
2. Remove both screws, then the front cap, rear cap, and strap handle from both sides of the cover (see Figure 8-3).
3. Remove both Torx T10 screws from the rear of the mainframe.
4. Slide the cover towards the rear and remove.

Note

Take care not to catch the cover on the spring clips mounted to the chassis when removing.

5. Reverse order to reinstall the cover.

Note

When reinstalling the cover, verify the spring clips are in place and not damaged. These clips cause the cover to fit snug, with positive electrical contact. DO NOT FORCE the cover into place.

Figure 8-3. Remove and Replace Cover
Brace

1. Remove the cover (see Figure 8-3).
2. Remove the Torx T10 screw from the top rear. Lift and remove the brace (see Figure 8-4).
3. Reverse order to reinstall the brace.

Note

When reinstalling the brace, verify slots on the front and center are properly aligned.

![Figure 8-4. Remove and Replace Brace](image-url)
1. Remove all A-size and B-size modules from the mainframe.

2. Remove the cover (see Figure 8-3) and brace (see Figure 8-4).

3. If installed, remove the optional B-size modules installed inside the mainframe (see Figure 8-15).

4. Remove the A2 Controller PCA (see Figure 8-6).

5. Disconnect the following wires/cables:
 - 15 pin ribbon cable W3 at A1J14 (from A4 Power Supply Assembly)
 - 8 pin ribbon cable W2 at A1J15 (from A3 Power Supply Auxiliary PCA)
 - 8 pin ribbon cable W2 at A1J16 (from optional Disk Controller PCA)

6. Remove the Torx T10 screw from the side. Lift and rotate A1 Backplane forward to unhook from the card guide posts, then lift and remove.

7. Reverse order to reinstall the A1 Backplane PCA.
 - Align A1 Backplane PCA guide holes with card guide posts, then hook into place.
 - Align A1 Backplane PCA tabs with chassis slots and push down to engage tabs into slots.

Figure 8-5. Remove and Replace A1 Backplane PCA
1. Remove the cover (see Figure 8-3) and brace (see Figure 8-4).

2. If installed, remove the optional B-size modules installed inside the mainframe (see Figure 8-15).

3. Disconnect the following wires/cables (see Figure 8-6):
 - 50 pin ribbon cable PNL1W1 at A2J2 (from PNL1 Front Panel Assembly)
 - 40 pin ribbon cable W4 at A2J1 (from Rear Panel)

4. Remove three Torx T10 screws from the corners.

Note

One of the screws may be a combination of threaded standoffs if a B-size module was installed in one of the internal slots.

5. Carefully lift up the free edge of the A2 Controller PCA and slide it forward to disconnect A2P1 from the A1 Backplane PCA, then lift and remove.

Caution

Disconnecting the A2 Controller PCA from the A1 Backplane PCA will cause the current contents in non-volatile RAM to be lost. This includes stored preset states and HP-IB primary address (defaults to 9 on power-up). See DIAGnostic:BOOT:COLD and *SAV commands in the HP E1300A/E1301A User’s manual for more information.

6. Reverse order to reinstall the A2 Controller PCA.

Figure 8-6. Remove and Replace A2 Controller PCA
A3 Power Supply Auxiliary Printed Circuit Assembly

1. Remove the cover (see Figure 8-3) and brace (see Figure 8-4).

2. If installed, remove the optional DC Power PCA (see Figure 8-16).

Warning

AC line voltage is present on this printed circuit assembly. Verify the power cable is disconnected before proceeding with this procedure.

Note

If mainframe is an HP E1301A, first remove cable PNL1W1 from the front panel to the A2 Controller PCA.

3. Disconnect the following wires/cables (see Figure 8-7):
 - 16 pin connector (P/O W1) from A3J1
 - 8 pin ribbon cable W2 from A3J101
 - 2 pin connector (P/O B1) from A3J103 (from fan)
 - 2 pin connector (P/O BT1) from A3J102 (from battery)

Caution

Removing the cable connected to A3J101 and/or A3J102 disconnects the battery voltage to the A2 Controller PCA, and will cause the current contents in non-volatile RAM to be lost. This includes stored preset states and HP-IB primary address (defaults to 9 on power-up). See DIAGnostic:BOOT:COLD and *SAVE commands in the HP E1300A/E1301A User's manual for more information.

Always set the power switch to OFF before connecting or disconnecting the battery. Failure to do so may cause fuse A3F101 to open.

4. Remove the Torx T10 screw, slide the A3 Power Supply Auxiliary PCA to the rear, lift from the retaining studs and remove. Setting power switch ON will aid in removing the PCA.

5. Reverse order to reinstall the A3 Power Supply Auxiliary PCA.

Caution

Observe polarity when reconnecting the cables to A3J102 and A3J103 (red to +, black to −).

Figure 8-7. Remove and Replace A3 Power Supply Auxiliary PCA
A4 Power Supply Assembly

1. Remove all A-size modules from the mainframe.
2. Remove the cover (see Figure 8-3) and brace (see Figure 8-4).
3. If installed, remove the optional 3.5 inch disk drive (see Figure 8-18).
4. Remove plastic shield from card guide (see Figure 8-8).
5. Disconnect the following wires/cables:
 - 3 pin connector from rear of A4 Power Supply Assembly
 - 15 pin ribbon cable W3 from front of A4 Power Supply Assembly
 - Red (or black) terminal from A4 Power Supply Assembly 100/120 terminal
 - White terminal from A4 Power Supply Assembly loose terminal
6. Remove four Torx T10 screws from the corners, slide A4 Power Supply Assembly forward and remove.
7. Reverse order to reinstall the A4 Power Supply Assembly.

Figure 8-8. Remove and Replace A4 Power Supply Assembly
B1 Fan Assembly

1. Remove the cover (see Figure 8-3).

Note

If mainframe is an HP E1301A, remove front panel cable assembly (PNL1W1) from the A2 Controller PCA.

2. Disconnect the following wires/cables (see Figure 8-9):
 - 2 pin connector from A3J103

3. Remove the two Torx T15 screws and nuts (or clips), then B1 Fan Assembly.

4. Reverse order to reinstall the B1 Fan Assembly.
 - Install so that air flow is the direction illustrated.

Figure 8-9. Remove and Replace B1 Fan Assembly
BT1 Battery Assembly

1. Remove the cover (see Figure 8-3).

Note

If mainframe is an HP E1301A, remove front panel cable assembly (PNL1W1) from the A2 Controller PCA.

2. Disconnect the following wires/cables (see Figure 8-10):
 - 2 pin connector from A3J102

Caution

Removing the cable connected to A3J102 disconnects the battery voltage to the A2 Controller PCA, and will cause the current contents in non-volatile RAM to be lost. This includes stored preset states and HP-IB primary address (defaults to 9 on power-up). See DIAGnostic:BOOT:COLD and *SAV commands in the HP E1300A/E1301A User’s manual for more information.

Always set the power switch to OFF before connecting or disconnecting the battery. Failure to due so may cause fuse A3F101 to open.

3. Cut two tie wraps holding the battery to the chassis and remove.
4. Reverse order to reinstall the BT1 Battery Assembly.
 - Replace tie wraps (HP P/N 1400-0507)

Figure 8-10. Remove and Replace BT1 Battery Assembly
1. Remove the cover (see Figure 8-3).

2. Disconnect the following wires/cables (see Figure 8-11):
 - 50 pin ribbon cable PNL1W1 from A2J2 (HP E1301A only)

3. Carefully remove trim strips from both sides.

Note

Trim strips are mounted with adhesive and may be damaged when removed. Replace when necessary (HP P/N 5001-0540).

4. Remove two Torx T10 screws from side.

5. Working from one side at a time, depress the two leaf springs while pulling Front Panel Assembly forward. Repeat for the other side and remove Front Panel Assembly.

6. Reverse order to reinstall the PNL1 Front Panel Assembly.
 - Align power switch button with front panel hole.

Figure 8-11. Remove and Replace PNL1 Front Panel Assembly
Front Panel Display Printed Circuit Assembly (HP E1301A only)

1. Remove the cover (see Figure 8-3).
2. Remove PNL1 Front Panel Assembly (see Figure 8-11).
3. Disconnect the following wires/cables (see Figure 8-12):
 - 20 pin ribbon cable (P/O PNL1W1)
4. Remove two PCA retaining clips (if installed).
5. Carefully move tabs and rotate Display PCA out of front panel.

Caution

Bend tabs only enough to remove the PCA. Tabs will break if bent too far.

Figure 8-12. Remove and Replace Front Panel Display PCA

5. Reverse order to reinstall the Display PCA.
 - If tabs are bent, straighten before installing the PCA
 - Install bottom of card first with display toward panel window
 - See diagram for sequence when reinstalling clips (if required)
Front Panel Keyboard Printed Circuit Assembly and Flubber Keys (HP E1301A only)

1. Remove the cover (see Figure 8-3).

2. Remove PNL1 Front Panel Assembly (see Figure 8-11).

3. Carefully disconnect the following wires/cables (see Figure 8-13):
 - 16 pin ribbon cable (P/O PNL1W1) from J1 (with stripe)
 - 16 pin ribbon cable (P/O PNL1W1) from J2

4. Carefully lift tab and move card to right to unhook from the locking tabs. Lift and remove Keyboard PCA.

5. Remove keypad flubber.

6. Reverse order to reinstall the Keyboard PCA.
 - Install flubber into front panel. Verify that keys align with holes in the front panel.
 - Verify that contact etchings on the Keyboard PCA are clean and dry. Install Keyboard PCA on front panel and align locating tabs.

Figure 8-13. Remove and Replace Front Panel Keyboard PCA and Flubber Keys
1. Remove the cover (see Figure 8-3) and brace (see Figure 8-4).
2. Remove the A2 Controller PCA (see Figure 8-6).
3. Remove four Torx T10 screws (see Figure 8-14).
4. Carefully lift Memory PCA from connector and remove.
5. Repeat for second Memory PCA (if installed).
6. Reverse order to reinstall the Memory PCA.

Figure 8-14. Remove and Replace Optional Memory PCAs
B-Size Modules Installed in Internal Slots (Optional)

1. Remove the cover (see Figure 8-3) and brace (see Figure 8-4).
2. Disconnect any cables connected to the module (see Figure 8-15).
3. Remove two Torx T8 screws and spacers from front of module.

Note

T8 screws (HP P/N 0515-2007) and spacers (HP P/N 0380-1111) are very hard to retrieve if dropped.

4. Remove one Torx T10 screw from the top.
5. Carefully slide the module forward to disconnect the connector from the A1 Backplane PCA, then lift and remove.
6. Reverse order to reinstall.

Figure 8-15. Remove and Replace Optional Internal PCAs
DC Power Supply PCA (Optional)

1. Remove the cover (see Figure 8-3).
2. Remove PNL1 Front panel Assembly (see Figure 8-11).
3. Carefully disconnect the following wires/cables (see Figure 8-16):
 - 16 pin cable (P/O W1) from A4
 - White wire at J3 on the PCA (from rear panel circuit breaker)
 - Red wire at J2 on the PCA (from rear panel circuit breaker)
 - Black wire at J5 on the PCA (from rear panel terminal block)
4. Remove two Torx T10 screws, then pull the DC Power PCA from the A3 Power Supply Auxiliary PCA connectors. Lift and remove DC Power PCA.
5. Reverse order to reinstall the DC Power Supply PCA.
 - Verify three bumpers are in place for the DC Power Supply PCA to sit on.

Figure 8-16. Remove and Replace Optional DC Power PCA
Disk Controller PCA
(Optional)

1. Remove the cover (see Figure 8-3) and brace (see Figure 8-4).
2. If installed, remove the optional B-size modules installed inside the mainframe (see Figure 8-15).
3. Remove the A2 Controller PCA (see Figure 8-6).
4. Remove three Torx T10 screws, then lift and remove Disk Controller PCA and bracket (position to remove cables).
5. Carefully disconnect the following wires/cables (see Figure 8-16):
 - 25 pin ribbon cable P/O W4 at J1 (from rear panel)
 - 34 pin cable at J3 (from Floppy Disk Drive)
 - 40 pin ribbon cable at J2 (from Hard Disk Drive)
 - 8 pin ribbon cable at P1 (from A1 Backplane PCA)
6. Reverse order to reinstall the Disk Controller PCA.
7. Verify that both 10 position rotary switches are set to "0".

Figure 8-17. Remove and Replace Optional Disk Controller PCA
3.5 Inch Floppy Drive Assembly (Optional)

1. Remove the cover (see Figure 8-3).

2. Carefully disconnect the following wires/cables (see Figure 8-16):
 - 34 pin cable at Disc Controller PCA J3

3. Remove four Torx T10 screws from the side, then lift and remove the Disk Drive.

4. Reverse order to reinstall the Disk Drive Assembly.
 - Verify that Disk Drive aligns with front panel slot before tightening screws.

Figure 3-18. Remove and Replace Optional 3.5 Inch Disk Drive Assembly
20 Mbyte Hard Disk Drive (Optional)

1. Remove the cover (see Figure 8-3) and brace (see Figure 8-4).
2. If installed, remove the optional B-size modules installed inside the mainframe (see Figure 8-15).
3. Remove the A2 Controller PCA (see Figure 8-6).
4. Remove the Disk Controller PCA (see Figure 8-17).
5. Remove three Torx T10 screws, then lift and remove Disk Drive Assembly (see Figure 8-19).
6. Reverse order to reinstall the Disk Drive Assembly.
 - Verify that rubber grommets are installed.

Figure 8-19. Remove and Replace Optional 20 Mbyte Hard Disk Drive Assembly
Repair

Etched Circuits
(Printed Circuit Boards)

The following information is provided to assist in repairing the mainframe:

The etched circuit boards in the mainframe have plated through holes which make a solder path through to both sides of the insulating material. Soldering can be done from either side of the board with equally good results. When soldering to any circuit board:

1. Avoid unnecessary component unsoldering and soldering. Excessive replacement can result in damage to the circuit board and/or adjacent components.
2. Do not use a high power soldering iron on etched circuit boards. Excessive heat may lift a conductor or damage the board.

Caution

Do not use a sharp metal object such as an awl or twist drill in step 3. Sharp objects may damage the plated through conductor.

Electrostatic Discharge (ESD) Precautions

Electrostatic discharge (ESD) can cause damage to certain assemblies in the mainframe. The damage can range from slight degradation of a parameter to catastrophic failures.

MOS, CMOS, and other static sensitive devices are used in this instrument. They are prone to damage from both static electricity and transient signals and must be handled carefully. When working on the mainframe assemblies:

1. Use a static-free work station with a pad of conductive rubber or similar material.
2. Do not remove any assembly unless the mainframe has been unplugged.
3. After removing assemblies from the mainframe, be sure that they are placed on a conductive surface to guard against ESD damage. Do not stack boards.
4. When removing a MOS or CMOS device from a high grip socket, be careful not to damage it. Avoid removing devices from these sockets with pliers. Instead, use a small screwdriver to pry the device up from one end, slowly pulling it up one pair of pins at a time.
5. Once a MOS or CMOS device has been removed from an assembly, immediately stick the device into a pad of conductive foam or other suitable holding medium.

6. When replacing a MOS or CMOS device, ground the foam on which it resides to the instrument before removing it. If a device requires soldering, make sure that the assembly is lying on a pad of conductive material, and that the pad, soldering iron tip, and personnel, are grounded to the assembly. Apply as little heat as possible.

7. Before turning the instrument off, remove any large ac or dc sources that may be driving MOS switches.

Post Repair Safety Checks

Visually inspect the interior of the instrument for any signs of abnormal internally generated heat, such as discolored printed circuit boards or components, damaged insulation, or evidence of arcing. Determine and remedy the cause of any such condition.

Check resistance from the mainframe enclosure to ground (center) pin on AC power connector using the Digital Multimeter. Verify the reading is less than one ohm.

Check resistance from mainframe enclosure to line and neutral (tied together) on the rear panel AC power connector using the Digital Multimeter. With the power switch on, verify the resistance is < 2MΩ.

Verify that the correct fuse is installed. Refer to the "HP E1300A/E1301A Installation and Getting Started Guide" for more information on fuse selection.
Figure 8-20. Mainframe Assembly Locator and Wiring Diagram (Sheet 1 of 2)
Figure 8-21. A1 Backplane PCA Component Locator and Connector Diagram (Sheet 2 of 2)
Figure 8-22. A2 Controller PCA Component Locator and Connector Diagram (Sheet 1 of 2)
Figure 8-23. A3 Power Supply Auxiliary PCA/A4 Power Supply Assembly/Optional DC Power PCA Component Locator and Connector Diagram (Sheet 1 of 2)
Figure 3-23. A3 Power Supply Auxiliary PCA/A4 Power Supply Assembly/Optional DC Power PCA Component Locator and Connector Diagram (Sheet 2 of 2)
SALES & SUPPORT OFFICES
Arranged alphabetically by country
Mainframes
HP E1300A and E1301A
User's Manual
CERTIFICATION

Hewlett-Packard Company certifies that this product met its published specifications at the time of shipment from the factory. Hewlett-Packard further certifies that its calibration measurements are traceable to the United States National Institute of Standards and Technology (formerly National Bureau of Standards), to the extent allowed by that organization's calibration facility, and to the calibration facilities of other International Standards Organization members.

WARRANTY

This Hewlett-Packard product is warranted against defects in materials and workmanship for a period of three years from date of shipment. Duration and conditions of warranty for this product may be superseded when the product is integrated into (becomes a part of) other HP products. During the warranty period, Hewlett-Packard Company will, at its option, either repair or replace products which prove to be defective.

For warranty service or repair, this product must be returned to a service facility designated by Hewlett-Packard (HP). Buyer shall pay shipping charges to HP and HP shall pay shipping charges to return the product to Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for products returned to HP from another country.

HP warrants that its software and firmware designated by HP for use with a product will execute its programming instructions when properly installed on that product. HP does not warrant that the operation of the product, or software, or firmware will be uninterrupted or error free.

LIMITATION OF WARRANTY

The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by Buyer, Buyer-supplied products or interfacing, unauthorized modification or misuse, operation outside of the environmental specifications for the product, or improper site preparation or maintenance.

The design and implementation of any circuit on this product is the sole responsibility of the Buyer. HP does not warrant the Buyer's circuitry or malfunctions of HP products that result from the Buyer's circuitry. In addition, HP does not warrant any damage that occurs as a result of the Buyer's circuitry or any defects that result from Buyer-supplied products.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. HP SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

EXCLUSIVE REMEDIES

THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES. HP SHALL NOT BE LIABLE FOR AND DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL THEORY.

NOTICE

The information contained in this document is subject to change without notice. HEWLETT-PACKARD (HP) MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. HP shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance or use of this material. This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this document may be photocopied, reproduced, or translated to another language without the prior written consent of Hewlett-Packard Company. HP assumes no responsibility for the use or reliability of its software on equipment that is not furnished by HP.

Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subdivision (b)(3)(ii) of the Rights in Technical Data and Computer Software clause at 52.227-7013. Hewlett-Packard Company, 3000 Hanover Street, Palo Alto, California 94304

Herstellerbescheinigung

Zusatzinformation für Mess- und Testgeräte:
Wurden Mess- und Testgeräte mit ungeschirmten Kabeln und/oder in offenen Messaufbauten verwendet, so ist vom Betreiber sicherzustellen, dass die Funk-Einstörfeststellungen unter Betriebsbedingungen an seiner Grundstücksgrenze eingehalten werden.

Manufacturer's Declaration

This is to certify that the equipment HP E1300A/E1301A meets the radio frequency interference requirements of Directive 904/84. The German Bundespost has been notified that this equipment was put into circulation and has been granted the right to check the product type for compliance with these requirements.

Additional Information for Test and Measurement Equipment:
If test and measurement equipment is operated with unscreened cables and/or used for measurements on open set-ups, the user has to assure that under operating conditions the Radio Interference Limits are still met at the border of the user's premises.
MANUAL COMMENT SHEET

Manual Part Number E1300-90005

Edition 3 (November 1991)

You can help us improve our manuals by sharing your comments and suggestions. Please complete this questionnaire after becoming familiar with the manual and then return it to us. In appreciation of your time, we will enter your name in a quarterly drawing for a Hewlett-Packard calculator.

Please describe the system configuration, programming language, and plug-in modules you are using with your HP E1300 Aor E1301A Mainframe.

__

__

__

__

Please circle one number for each statement below as it applies to the manual listed at the top of this page:
(1 = Strongly Disagree; 5 = Strongly Agree)

- The manual is well organized
- Instructions are easy to understand
- The manual is clearly written
- Examples are clear and useful
- The manual contains enough examples
- Illustrations are clear and helpful
- The manual meets my overall expectations

1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5

Please write any comments and/or suggestions in the space provided below. Use additional pages if you wish. The more specific your comments, the more useful they are to us.

__

__

__

__

Your Name: ____________________________ Company: ____________________________

Address: ____________________________ Job Title: ____________________________

City/State: ____________________________ Telephone: ____________________________

Zip/Postal Code: ____________________________ Country: ____________________________
Mainframes
HP E1300A and E1301A
User's Manual

Enclosed is the User's Manual for the HP E1300/E1301 Mainframes. Insert this manual into the binder that comes with your HP 75000 Series B mainframe
Printing History

The Printing History shown below lists all Editions and Updates of this manual and the printing date(s). The first printing of the manual is Edition 1. The Edition number increments by 1 whenever the manual is revised. Updates, which are issued between Editions, contain replacement pages to correct the current Edition of the manual. Updates are numbered sequentially starting with Update 1. When a new Edition is created, it contains all the Update information for the previous Edition. Each new Edition or Update also includes a revised copy of this printing history page. Many product updates or revisions do not require manual changes and, conversely, manual corrections may be done without accompanying product changes. Therefore, do not expect a one-to-one correspondence between product updates and manual updates.

Edition 1 (Part Number E1300-90001) September 1989
Edition 2 (Part Number E1300-90002) September 1990
Edition 3 (Part Number E1300-90003) November 1991

Trademark Information

Microsoft® and MS-DOS® are U.S. registered trademarks of Microsoft Corporation.
IBM® and PC-DOS® are U.S. registered trademarks of International Business Machines Corporation.
DEC® , VAX® , and VAX-11™ are registered trademarks of Digital Equipment Corporation.
WYSE® is a registered trademark of WYSE Technology
WY-30™ is a trademark of WYSE Technology.
Macintosh® is a registered trademark of Apple Computer Inc.

Safety Symbols

⚠️ Instruction manual symbol affixed to product. Indicates that the user must refer to the manual for specific Warning or Caution information to avoid personal injury or damage to the product.

↓ Indicates the field wiring terminal that must be connected to earth ground before operating the equipment. Protects against electrical shock in case of fault.

Frame or chassis ground terminal typically connects to the equipment's metal frame.

Alternating current (AC).

Direct current (DC).

Indicates hazardous voltages.

WARNING Calls attention to a procedure, practice, or condition that could cause bodily injury or death.

CAUTION Calls attention to a procedure, practice, or condition that could possibly cause damage to equipment or permanent loss of data.

WARNINGS

The following general safety precautions must be observed during all phases of operation, service, and repair of this product. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and intended use of the product, Hewlett-Packard Company assumes no liability for the customer's failure to comply with these requirements.

Ground the equipment: For Safety Class I equipment (equipment having a protective earth terminal), an uninterruptible safety earth ground must be provided from the mains power source to the product input wiring terminals or supplied power cable.

DO NOT operate the product in an explosive atmosphere or in the presence of flammable gases or fumes.

For continued protection against fire, replace the line fuse(s) only with fuse(s) of the same voltage and current rating and type.

DO NOT use repaired fuses or short-circuited fuseholders.

Keep away from live circuits: Operating personnel must not remove equipment covers or shields. Procedures involving the removal of covers or shields are for use by service-trained personnel only. Under certain conditions, dangerous voltages may exist even with the equipment switched off. To avoid dangerous electrical shock, DO NOT perform procedures involving cover or shield removal unless you are qualified to do so.

DO NOT operate damaged equipment: Whenever it is possible that the safety protection features built into this product have been impaired, either through physical damage, excessive moisture, or any other reason, REMOVE POWER and do not use the product until safe operation can be verified by service-trained personnel. If necessary, return the product to a Hewlett-Packard Sales and Service Office for service and repair to ensure that safety features are maintained.

DO NOT service or adjust alone: Do not attempt internal service or adjustment unless another person, capable of rendering first aid and resuscitation, is present.
HP 75000 Series B Documentation

Manual Descriptions

Installation and Getting Started Guide. Contains step-by-step instructions for all aspects of plug-in module and mainframe installation. This guide also contains introductory programming information and examples.

HP E1300A/E1301A Mainframe User's Manual. Contains programming information for the mainframe, front panel operation information (for the HP E1301A mainframe), and general programming information for instruments installed in the mainframe.

Plug-In Module User's Manuals. Contains plug-in module programming and configuration information. These manuals contain examples for the most-used module functions, and a complete TMSL command reference for the plug-in module.

Suggested Sequence for Using the Manuals

- **Installation and Getting Started Guide**
 - **Instrument Applications**
 - Using the Mainframe front panel or pacer
 - **Plug-in Module User's Manuals**
 - **Mainframe User's Manuals**

For Scanning Voltmeter Applications, refer to the HP E1326A/E1411A 5 1/2 Digit Multimeter User's Manual.
Related Documents

Using HP Instrument BASIC with the E1405. Contains information on the version of HP Instrument Basic which can be installed in ROM in your E1405B Command Module.

Beginner's Guide to SCPI. Explains the fundamentals of programming instruments with Standard Commands for Programmable Instruments (SCPI). We recommend this guide to anyone who is programming TMSL for the first time.

Tutorial Description of the Hewlett-Packard Interface Bus. Describes the technical fundamentals of the Hewlett-Packard Interface Bus (HP-IB). This book also includes general information on IEEE 488.2 Common Commands. We recommend this book to anyone who is programming with IEEE 488.2 for the first time.

IEEE Standard 488.2-1987, IEEE Standard Codes, Formats, Protocols, and Common Commands. Describes the underlying message formats and data types used in TMSL and defines Common Commands. You may find this document useful if you need to know the precise definition of certain message formats, data types, or Common Commands. Available from: The Institute of Electrical and Electronic Engineers, Inc.; 345 East 47th Street; New York, NY 10017; USA

VXIbus System Specifications. Hewlett-Packard part number E1400-90006.

The VMEbus Specification. Available from: VMEbus International Trade Association; 10229 N. Scottsdale Road, Suite E; Scottsdale, AZ 85253; U.S.A.
About this Manual

Manual Content

This manual shows how to use the HP E1300/E1301 Mainframe and how to operate and program instruments within the mainframe using SCPI (Standard Commands for Programmable Instruments) commands and IEEE 488.2 Common Commands. For installation and configuration information refer to the "HP 75000 Series B Installation and Getting Started Guide".

Chapter 1: Getting Started
This chapter contains a mainframe description, discusses the instrument concept, and contains introductory programming examples.

Chapter 2: Using the Front Panel
This chapter describes how to use the HP E1301A mainframe's front panel keyboard and display to operate instruments in the mainframe.

Chapter 3: Using the Display Terminal Interface
This chapter describes how to use a display terminal to operate instruments in the mainframe.

Chapter 4: Using the Mainframe
This chapter shows how to use the mainframe's Pacer, how to change the primary HP-IB address, and how to synchronize internal and external instruments using the mainframe's Trigger In and Event Out ports.

Chapter 5: Downloading Device Drivers
This chapter contains information on downloading device drivers into non-volatile memory using both HP-IB and RS-232 connections.

Chapter 6: Controlling Instruments using HP-IB
This chapter shows some general concepts for operating instruments in the mainframe using IEEE 488.2 Common Commands and the HP-IB interface.

Chapter 7: Command Reference
The command reference contains a detailed description of each System Instrument command. It includes information on the choice of settings and examples showing the context in which the command is used. It also contains command references for the supported IEEE 488.2 Common Commands and IEEE 488.1 HP-IB Messages.

Appendix A: Specification
This appendix contains a list of the Mainframe's operating specifications.

Appendix B: Error Messages
This appendix lists SCPI error codes and messages for the System Instrument, and possible causes.

Appendix C: Connecting & Configuring a Terminal
This appendix shows how to set-up a terminal for use with the Display Terminal Interface described in Chapter 3.

Appendix D: Using the D.C. Power Option
This chapter shows you how to connect and operate the optional D.C. Power module (E1300A Option 008).

Appendix E: Sending Binary Data Over RS-232
This Appendix contains information on transferring binary files over an RS-232 interface. It includes information on how these files are coded for transmission.
Table of Contents

1. Getting Started
 - Using This Chapter .. 1-1
 - Mainframe Description 1-1
 - Optional Mainframe Memory 1-1
 - Instrument Definition 1-3
 - Instrument Logical Addresses 1-4
 - Instrument Secondary Addresses 1-4
 - Unassigned Modules 1-4
 - Introductory Programming Examples 1-4

2. Using the Front Panel
 - Using this Chapter 2-1
 - Front Panel Features 2-1
 - Using Menus ... 2-2
 - A 60-Second Menu Tutorial 2-2
 - Using the System Instrument Menu 2-3
 - Using the Other Instrument Menus 2-5
 - Monitor Mode 2-8
 - Executing Commands 2-9
 - Editing ... 2-9
 - Key Descriptions 2-10
 - Menu Keys ... 2-10
 - Display Control & Editing Keys 2-10
 - Instrument Control Keys 2-11
 - Other Keys .. 2-11
 - In Case of Difficulty 2-12
 - Instrument Menus 2-13

3. Using the Display Terminal Interface
 - Using this Chapter 3-1
 - Terminal Interface Features 3-2
 - Using Menus .. 3-3
 - A 60-Second Menu Tutorial 3-3
 - Using the System Instrument Menu 3-5
 - Using the Other Instrument Menus 3-8
 - Monitor Mode .. 3-11
 - Executing Commands 3-13
 - Editing ... 3-13
 - General Key Descriptions 3-14
 - Menu and Menu Control Keys 3-14
 - Editing Keys 3-14
 - Instrument Control Keys 3-15
 - Other Keys ... 3-15

Table of Contents - 1
Using Supported Terminals .. 3-16
 The Supported Terminals .. 3-16
 Using the HP 700/22 ... 3-17
 Using the WYSE WY-30c .. 3-19
Using Other Terminals ... 3-19
 What "Not Supported" Means ... 3-20
 Testing Terminals for Compatibility 3-20
 Using a Terminal Without Menus 3-21
In Case of Difficulty ... 3-22
Instrument Menus .. 3-25

4. Using the Mainframe

Using this Chapter ... 4-1
Using the Pacer .. 4-1
Changing the Primary HP-IB Address 4-3
Synchronizing Internal and External Instruments 4-3
Mainframe Data Memory ... 4-6
 Using Mainframe Data Memory ... 4-6
Non-Volatile User Memory .. 4-7
 Allocating a User Memory Segment 4-7
 Locating the NRAM segment ... 4-7
 Using :DOWNLOAD and :UPLOAD? to Access Data 4-9
 Data Formats for :DOWNLOAD ... 4-9

5. Downloading Device Drivers

About this Chapter .. 5-1
What You Will Need ... 5-1
Memory Configuration ... 5-3
Download Program Configuration ... 5-4
 Editing the Configuration File ... 5-4
Downloading Drivers in MS-DOS Systems 5-6
 Downloading Drivers in HP-IB Systems with IBASIC 5-7
 Downloading Drivers in HP-IB Systems with HP BASIC 5-8
Downloading Multiple Drivers .. 5-9
Checking Driver Status .. 5-9
Manually Downloading a Driver down manual 5-10
 Preparing Memory for Manual Downloading 5-10
 Manually Downloading Over HP-IB 5-11
 Manually Downloading Over RS-232 5-11

6. Controlling Instruments Using HP-IB

About this Chapter .. 6-1
Programming Hints .. 6-1
Status System Structure .. 6-2
 The Status Byte Register ... 6-3
 Reading the Status Byte Register 6-4
 Service Request Enable Register 6-5
The Service Request Bit .. 6-5
Clearing the Service Request Enable Register 6-5
Standard Event Status Register 6-6
Unmasking Standard Event Status Bits 6-6
Reading the Standard Event Status Enable Register Mask 6-7
Reading the Standard Event Status Register 6-7
Operation Status Group 6-7
Reading the Condition Register 6-8
Unmasking the Operation Event Register Bits 6-8
Clearing the Operation Event Register Bits 6-9
Using the Operation Status Group Registers 6-9
Clearing Status ... 6-10
Interrupting an External Computer 6-10
Synchronizing an External Computer and Instruments ... 6-12

7. System Instrument Command Reference

About This Chapter ... 7-1
Command Types .. 7-1
 Common Command Format 7-1
 SCPI Command Format 7-1
 Linking Commands .. 7-3
SCPI Command Reference 7-4
ABORT ... 7-4
DIAGnostic ... 7-5
INITiate .. 7-29
[SOURce] .. 7-30
STATus .. 7-32
SYSTem ... 7-35
TRIGger ... 7-51
VXI 7-54

Common Command Reference 7-65
 *CLS .. 7-66
 *DMC <name_string>, <command_block> 7-66
 *EMC <enable> .. 7-66
 *EMC? .. 7-66
 *ESE <mask> .. 7-66
 *ESE? .. 7-67
 *ESR? .. 7-67
 *GMC? <name_string> .. 7-67
 *IDN? .. 7-68
 *LMC? .. 7-68
 *LRN? .. 7-68
 *OPC ... 7-69
 *OPC? .. 7-69
 *PMC .. 7-69
 *PSC <flag> ... 7-69
 *PSC? .. 7-69
 *RCL <state_number> .. 7-70
 *RMC <name_string> ... 7-70
 *RST .. 7-70
 *SAV <state_number> ... 7-70
Table of Contents

- **SRE < mask >** ... 7-70
- **SRE?** .. 7-71
- **STB?** .. 7-71
- **TRG** ... 7-71
- **TST?** ... 7-71
- **WAI** .. 7-71

HP-IB Message Reference 7-72
- Go To Local (GTL) 7-72
- Group Execute Trigger (GET) 7-72
- Interface Clear (IFC) 7-72
- Device Clear (DCL) or Selected Device Clear (SDC) 7-73
- Local Lockout (LLO) 7-73
- Remote .. 7-74
- Serial Poll (SPOLL) 7-74

Command Quick Reference 7-75

A. Specifications

Mainframe Specifications A-1
- Pacer (50% duty cycle): A-1
- Real-time Clock: A-1
- Trigger Input: .. A-1
- Non-volatile added memory storage lifetime: A-1
- Slots: .. A-1
- EMC, RFI, Safety: A-1
- Size: .. A-2
- Weight: ... A-2
- Power: ... A-2
- Cooling: .. A-2
- Humidity: ... A-2
- Operating temperature: A-2
- Storage temperature: A-2

SCPI Conformance Information A-3
- Switchbox Configuration A-3
- Multimeter Commands A-4
- Counter Commands A-6
- D/A Converter Commands A-8
- Digital I/O Commands A-9
- System Instrument Commands A-10

B. Error Messages

Using This Appendix B-1
Reading an Instrument's Error Queue B-1

Error Types .. B-2
- Command Errors B-2
- Execution Errors B-2
- Device-Specific Errors B-2
- Query Errors ... B-2

Start-up Error Messages B-5
C. Connecting and Configuring a Display Terminal
 C. Using this Appendix .. C-1
 Overview ... C-1
 Connecting a Terminal to the Mainframe C-1
 Configuring a Terminal for the Mainframe C-3
 Starting with Default Mainframe Settings C-3
 Restoring the Default Configuration C-3
 Configuring the Terminal C-3
 Trying it .. C-4
 Configuring the Mainframe with Menus C-4

D. Using The DC Power Option
 D. Chapter Contents and Purpose D-1
 DC Power Option Description D-1
 Connecting the Battery to the DC Power Option D-2
 DC Power Option Operation D-2
 Powerdown Operation D-2
 DC Power Option Trickle Charge Currents D-3
 DC Power Option Specifications D-3
 Selecting the Trickle Charge Current and Latched Switches D-4

E. Sending Binary Data Over RS-232
 E. About this Appendix E-1
 Formatting Binary Data for RS-232 Transmission E-1
 Sending Binary Data Over RS-232 E-2
 Setting Up the Mainframe E-2
Chapter 1

Getting Started

Using This Chapter
This chapter describes the HP E1300A/E1301A Mainframe, defines the instrument concept, and explains how plug-in modules are designated as instruments in the mainframe. This chapter also contains introductory programming examples showing how to read and set the mainframe's clock and calendar. This chapter contains the following sections:

- Mainframe Description 1-1
- Instrument Definition 1-3
- Introductory Programming Examples 1-4

Mainframe Description
The HP E1301A mainframe contains a front panel keyboard and display; the HP E1300A has no keyboard or display. Otherwise, there is no conceptual difference between the two mainframes. Both models provide a terminal based user interface (Display Terminal Interface) through the built-in, or optional plug-in serial interfaces. The front panel keyboard and display are discussed in Chapter 2 of this manual. The Display Terminal Interface is discussed in Chapter 3.

The mainframe handles such high level operations as language translation of IEEE-488.2 Common Commands and SCPI (Standard Commands for Programmable Instruments) commands; module-to-module synchronization; and memory management. When installed in the mainframe, SCPI-compatible register-based plug-in modules behave as independent instruments operating under control of SCPI commands and Common Commands. Plug-in modules that are not SCPI-compatible must be programmed at a register level (see the VXI:REG:WRITE and VXI:REG:READ? commands in Chapter 5 of this manual for more information). Figure 1-2 shows the HP E1300A/E1301A Mainframe’s A- and B-size plug-in module slots, HP-IB® connector, RS-232 port, and input/output ports.

Optional Mainframe Memory
The mainframe comes from the factory with 256 kBytes of non-volatile memory (RAM) for reading storage. You can install up to 2 MBytes of optional RAM. The HP E1320A provides 500 kBytes while the HP E1321A provides 1 MByte of memory. Optional RAM replaces the standard memory and is not in addition to it (e.g. the mainframe with an optional 1 Mbyte module has 1Mbyte available).

* HP-IB is Hewlett-Packard’s implementation of IEEE Std 488.1-1978.
Trig Out: Allows an instrument to output a negative-going pulse to indicate the occurrence of some event such as closing a channel on a Switchbox Instrument. The signal levels are standard TTL (0V to 5V). This pulse can be used to synchronize external equipment to the instrument (see Chapter 5 for examples). You direct the pulse from the appropriate instrument to the Trig Out port using the OUTP:STAT ON command.

Pacer Out: Allows you to output a square wave signal to trigger or pace external equipment such as scanners or voltmeters. You can control the period of the square wave signal and the number of periods output. The signal levels are standard TTL (0V to 5V). Refer to Chapters 4 and 5 for more information on the Pacer.

Event In: Allows an instrument to be armed or triggered from an external negative-going signal. The signal levels are standard TTL (0V to 5V). Use an instrument’s ARM:SOUR:EXT command or the TRIG:SOUR:EXT command to direct the Event In port to that instrument.

RS-232: Serial interface provides a user interface using a terminal or a computer running terminal emulator software. The user interface provides the functionality of the HP E1301’s keyboard and display. If present, the optional IBASIC interpreter can be configured to control the RS-232 port.

Figure 1-1. Mainframe Features
Instrument Definition

SCPI-compatible plug-in modules installed in the mainframe are treated as independent instruments each having a unique secondary HP-IB address. As shown in Figure 1-3, each instrument is assigned a dedicated error queue, input and output buffers, status registers and, if applicable, dedicated mainframe memory space for readings or data. An instrument may be composed of a single plug-in module (such as a counter) or multiple plug-in modules (for a Switchbox or Scanning Voltmeter Instrument). In addition, the mainframe contains a built-in instrument called the System Instrument which has a Pacer for timing external devices. The System Instrument also can control the built-in RS-232, as well as up to seven optional HP E1324A plug-in serial interfaces.

Figure 1-2. Instrument Concept
Instrument Logical Addresses

Instruments are identified by a logical address which directly relates to its HP-IB secondary address. Instruments come from the factory with a preset logical address. You can change the factory setting during installation (see the "HP 75000 Series B Installation and Getting Started Guide" for instructions).

A single-module instrument must have its logical address set to an integer multiple of 8 (0, 8, 16, 24, ... 240). In a multiple-module instrument, only one of the modules has a logical address that is an integer multiple of 8. The other modules in the multiple-module instrument must have consecutive logical addresses. For example, in a Scanning Voltmeter, if the voltmeter module has a logical address of 16, the other modules in that instrument must have logical addresses of 17, 18, 19 and so on. The same applies to the System Instrument who's logical address fixed at 0. An HP E1324A plug-in serial interface controlled by the System Instrument would be set to logical address 1. A second HP E1324A would be set to logical address 2 and so on.

Instrument Secondary Addresses

An instrument’s HP-IB secondary address is simply the logical address divided by 8 (for a multiple-module instrument, the lowest logical address divided by 8). For example, an instrument with a logical address of 16 has a secondary address of 02. The secondary address allows access to a particular instrument when programming via HP-IB. (The System Instrument’s secondary address is 00 and is the only address that cannot be changed).

Unassigned Modules

An unassigned module in an HP E1300A/E1301A Mainframe is one that does not have a logical address that is a multiple of 8 (8, 16, 24...240) and is not part of a Scanning Voltmeter or Switchbox configuration. You can only program these modules at the register level using the VXI:WRITE and VXI:READ? commands (see Chapter 5 of this manual for more information on these commands).

Introductory Programming Examples

This section shows how to send SCPI and Common Commands to the mainframe’s System Instrument and how to read data back. The following assumes that you send the commands or read the data over HP-IB. To send SCPI commands or to read data, specify the:

- Computer’s HP-IB interface address
- Mainframe’s HP-IB primary address
- Instrument’s HP-IB secondary address
- SCPI command string or Common Command

For instruments in the mainframe, the primary address is the same as the mainframe address (i.e., the factory setting is 09). The instrument’s secondary address is simply the logical address divided by 8 (e.g., logical addresses of 8, 16, 24, or 32, result in secondary addresses of 01, 02, 03, or 04, respectively).
Example: Reading the Time

This program reads and prints the time from the System Instrument's internal clock. The computer used in the example is an HP Series 200/300 computer with HP BASIC as the program language. The computer interfaces to the mainframe using the Hewlett-Packard Interface Bus (HP-IB). The HP-IB interface select code is 7, the HP-IB primary address is 09, and the HP-IB secondary address is 00 (System Instrument). Resulting in a combined address of 70900.

```
10 OUTPUT 70900;"**RST*"
20 OUTPUT 70900;"SYST:TIME?"
30 ENTER 70900; H,M,S
40 PRINT H,M,S
50 END
```

Typical response: +16, +15, +30 (4:15:30 PM)

Example: Setting the Time

Set the clock using the 24 hour hour,minute,second format. Execute the following line to set the time to 14,00,00 (i.e., 2:00:00 PM).

```
SYST:TIME 14,00,00
```

Example: Reading the Date

This program reads and prints the date stored in the mainframe's internal calendar.

```
10 OUTPUT 70900;"SYST:DATE?"
20 ENTER 70900; Y,M,D
30 PRINT Y,M,D
40 END
```

Typical response: +1989, +9, +16 (September 16, 1989)

Example: Setting the Date

Set the date using the YYYY,MM,DD format. Executing the following line sets the date to 1990,1,13 (January 13, 1990).

```
SYST:DATE 1990,1,13
```
Chapter 2

Using the Front Panel

Using this Chapter
This chapter shows you how to use the HP E1301A Mainframe’s front panel keyboard and display to operate instruments in the mainframe. It contains the following sections:

- Front Panel Features .. 2-1
- Using Menus .. 2-2
- Executing Commands 2-9
- Key Descriptions ... 2-10
- In Case of Difficulty ... 2-12
- Instrument Menus ... 2-13

Front Panel Features
Figure 2-1 shows the front panel’s QWERTY keyboard and the dedicated key groupings. The tutorials in this chapter show how to use most of the dedicated keys. See “Key Descriptions” near the end of this chapter for a complete description of each dedicated key.

Figure 2-1. Front Panel Features
Using Menus

You can access a System Instrument menu and a variety of other instrument menus (depending on installed instruments) from the front panel. These menus incorporate the most used functions but do not provide access to all of the instrument commands. If a particular function is not available from a menu, you can type the corresponding command string and execute it from the front panel. See "Executing Commands" later in this chapter for more information.

When you select an instrument, you are assigning the keyboard and display to that instrument. This means that any menu operations, commands executed or recalled, errors displayed, etc. pertain only to that instrument. Front panel operation of an instrument is independent from other instruments and independent from the remote operation of the instrument. To operate another instrument from the front panel, you must select that instrument.

![Select an instrument menu](image)

Note: Typical instruments shown. Actual choices depend on installed instruments

![Select an instrument menu](image)

Figure 2-2. Select an Instrument Menu

A 60-Second Menu Tutorial

Following the power-on sequence or a system reset the display shows the Select an instrument menu (see Figure 2-2) which lets you select one of the instruments listed.

The menu keys are located directly below the display. To select a displayed menu choice, press the function key (F1 - F5) directly below the choice. This chapter shows key labels in bold text.

- When there are more than five menu choices, an arrow appears on the right side of the display. Press More to display the next group of choices. By repeatedly pressing More you can display all groups of choices. After you have displayed all groups of choices, pressing More again returns to the first group of choices.

- When the display is requesting information (input prompt) such as Enter the device's logical address, just type the information and press Return.

 If you press the wrong menu key and do not want to enter the requested information, you can escape the input prompt and stay at the same menu level by pressing ESC or Prev Menu.

 If you make an incorrect entry in response to an input prompt, the top line of the display will show an error message. When this happens, just select that menu choice again (F1 - F5 keys), re-type the correct information, and press Return.
• Press **Prev Menu** to return to the previous menu within an instrument menu or escape from an input prompt. Press **Select Instr** to return to the *Select an Instrument* menu. Note that when you leave an instrument and return later, you return to the same menu location you were when you left. In addition, any other displayed information (instrument responses or commands being entered) will also be displayed when you return.

• In addition to the menu keys, **Clear Instr** and **Reset Instr** are helpful when operating an instrument. **Clear Instr** clears the instrument's front panel input and output buffers (remote buffers are not cleared) and returns to the top level of the instrument menu. Press **Clear Instr** whenever an instrument is busy, is not responding to front panel control, or to abort a command being entered from the front panel. **Reset Instr** clears all front panel and remote input and output buffers and resets the instrument.

Using the System Instrument Menu

The System Instrument menu allows you to:

• Set or read the system HP-IB address
• Reset (reboot) the mainframe
• Display the logical addresses of installed instruments
• Display information about installed instruments

How to Set or Read the System HP-IB Address

1. Select an Instrument...
2. System

3. Config HP-IB

4. System
5. Read Set

Enter new HP-IB address, press RETURN (range=1-32, e.g. 03)

- Typical HP-IB address

- SCP1 command used: SYST:COMM:GPIB:ADDR?
How to Reset the System

SELECT AN INSTRUMENT...
SYSTEM

CONFIG HP-18

RESET

Note: The RESET menu selection is equivalent to the DIAG:BOOT command which has the same effect as cycling power to the mainframe. Pressing Reset Intr from the System Instrument menu is equivalent to executing the *RST command which resets the System Instrument.

How to Display Logical Addresses or Instrument Information

SELECT AN INSTRUMENT...
SYSTEM

CONFIG HP-18

SYSTEM: +0,+0,+0000,15,15,15
LATCH CONTACT

Typical Logical Address

SYSTEM: +0,+0,+0000,15,15,15
LATCH CONTACT

Enter device's logical address (e.g., 0)

SCPI command used:
VXI:CONF:LADD

Display #1 (typical)

SCPI command used:
VXI:CONF:ADD

Display #2 (typical)
(repeatedly press

Display #3 (typical)
(repeatedly press

4 to access)

2 to access)

+1 indicates the number is unknown
Using the Other Instrument Menus

The instrument menus allow you to access the most-used instrument functions or to monitor an instrument (monitor mode) while it is being controlled from remote. We'll use the Switchbox menu to show you how to use the instrument menus. Menus are available for many but not all instruments. See "Instrument Menus", later in this chapter, for more information on a particular instrument's menu. The Switchbox menu allows you to:

- Open and Close Channels
- Scan Channels
- Display Module Type and Description
- Monitor a Switchbox
- Reset a selected switch module

Selecting the Switchbox

To select the Switchbox, press the function key (f1 - f5) directly below the word SWITCH in the "Select an instrument" menu. (If the "Select an instrument" menu is not being displayed press Select Instr.)

Note

After you press the function key below the word SWITCH, the top line of the display may show: "Select SWITCH at logical address: " while the bottom line of the display lists two or more logical addresses. This means more than one Switchbox is installed in the mainframe. To select one of the Switchboxes, press the function key directly below the corresponding logical address.

The charts on the following pages show how to use the Switchbox menu. Keep the following points in mind when using the menu:

- The card number identifies a module within the Switchbox. The module with the lowest logical address is always card number 01. The module with the next successive logical address is card number 02 and so on.
- The @ character is required preceding a channel list when executing a Switchbox command from the front panel or remote. When entering a channel list in response to a menu prompt however, do not precede it with the @ character. Doing so causes a syntax error.
How to Open/Close Channels

SWITCH_16:
MONITOR OPEN CLOSE SCAN CARD →

SWITCH_16: ENTER CHANNEL LIST

ENTER CHANNEL LIST AND PRESS Return
(e.g., 102 for channel 02 on card #1)

SCPI command used:
OPEN <channel_list>

How to Scan Channels

SWITCH_16:
MONITOR OPEN CLOSE SCAN CARD →

SWITCH_16: ENTER CHANNEL LIST

ENTER CHANNEL LIST AND PRESS Return
(e.g., 100 1.5 to scan channels 00 to 15 on card #1)

SCPI commands used:
TRIG SOUR HOLD
SCAN(channel_list>
INIT

PRESS f2 TO ADVANCE TO NEXT CHANNEL
(i.e., trigger the instrument)

SCPI command used:
TRIG
Monitor Mode

Monitor mode displays the status of an instrument while it is being controlled from remote. Monitor mode is useful for debugging programs. You can place an instrument in monitor mode using front panel menus, or by executing the DISP:MON:STAT ON command from the front panel or by remote. (Executing the remote DISP:MON:STAT ON command is the only way to assign the display/keyboard to an instrument from remote.) Pressing most front panel keys will automatically exit monitor mode and return to the instrument menu. However, you can use the left and right arrow keys in monitor mode to view long displays.

Note

Enabling monitor mode slows instrument operations. If the timing or speed of instrument operations is critical (such as making multimeter readings at a precise time interval), you should not use monitor mode.

Table 2-8 shows the status annunciators that may appear in the bottom line of the display in monitor mode. Some instruments also have device-specific annunciators (see the plug-in module manual for more information).

<table>
<thead>
<tr>
<th>Annunciator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mon</td>
<td>The instrument is in monitor mode</td>
</tr>
<tr>
<td>bsy</td>
<td>The instrument is executing a command</td>
</tr>
<tr>
<td>err</td>
<td>An error has occurred (see “Reading Error Messages” below)</td>
</tr>
<tr>
<td>sqx</td>
<td>A service request has occurred</td>
</tr>
</tbody>
</table>

Reading Error Messages

Whenever the display is showing the err annunciator, an error has occurred for the instrument being monitored. You can read the error message, although doing so cancels monitor mode. To read an error message, press the following keys:

```
S T I E R R Shift Y Return
```

The error message will be displayed in the top line of the display. To see if another error was logged, repeat the above keystrokes or press:

```
Read All
Return
```

After you have read all the error messages, executing the SYST:ERR? command causes the display to show: +0 No error. After reading the error message(s), press fl to return to monitor mode.
Executing Commands

From the front panel, you can type and execute IEEE 488.2 Common Commands and SCPI Commands for the instrument presently selected by the Select an instrument menu. (However, you cannot execute a command when the display is requesting that you input information.) This is particularly useful for accessing functions not available in an instrument's menu. For example, the System Instrument contains a Pacer that can be programmed to output a square wave signal on the mainframe's Pacer Out port. From the System Instrument menu, you can program the Pacer to output 10 square wave cycles with a period of 1 second each by typing the following commands and pressing Return after each command (see Chapter 3 for more information on the Pacer).

```
SOUR:PULS:COUN 10
SOUR:PULS:PER 1
INIT:IMM
TRIG:SOUR IMM
```

As another example, after selecting the Switchbox, suppose you must set up and execute a scan list with automatic advance (automatic advance is not available from the menu). You can do this by typing the following command string and pressing Return (notice that by linking the commands together with a semicolon and colon you need press Return only once).

```
TRIG:SOUR IMM::SCAN (@100:105)::INIT
```

Editing

The display editing keys (shown on the following page) allow you to edit user-entered data or commands. When editing, the display is in insert mode. That is, typed characters will be inserted into the string at the present cursor position.
Key Descriptions

This section explains the function of each of the front panel's dedicated keys. If a key is not functional in a particular situation, pressing that key does nothing except to cause a beep. Users of the optional IBASIC interpreter should refer to their IBASIC manual set for additional editing functions.

Menu Keys

Selects the menu choice displayed directly above each key.

Returns to the Select an instrument menu.

Returns to the previous menu level within an instrument menu or escapes from an input prompt. When you reach the top of an instrument's menu, pressing Prev Menu does nothing except to cause a beep.

The display can show a maximum of five menu choices at a time. When there are more than five menu choices, an arrow appears on the right side of the display. Press More to display the next group of choices. By repeatedly pressing More you can display all groups of choices. After you have displayed all groups of choices, pressing More again returns to the first group of choices.

Recalls the last command entered from the front panel. After recalling a command, it can be edited or re-executed. You can recall from a stack of previously executed commands by repeatedly pressing Recall Prev. When you reach the bottom of the stack (the last line in the buffer), pressing Recall Prev does nothing except to cause a beep. Pressing Shift with Recall Prev recalls the last SCPI command generated by a menu operation. For example, reading the time using the menus (SYSTEM, TIME, READ) generates and executes the SCPI command SYST:TIME?. A recalled command can be executed by pressing the Return key. You can also edit a recalled command before you execute it.

Accesses commands in the opposite order to that of Recall Prev. Pressing Recall Next does nothing until you have pressed Recall Prev at least twice.

Performs the same function as Prev Menu.

Display Control & Editing Keys

(Right arrow key.) Moves the cursor one character space to the right while leaving characters intact. Use the right arrow key to scroll displays that are longer than the display size. Pressing Shift followed by the right arrow key moves the cursor to the end of the line. Pressing CTRL followed by the right arrow key moves the cursor 4 character spaces to the right.

(Left arrow key.) Moves the cursor one character space to the left while leaving characters intact. Use the left and right arrow keys to scroll displays that are longer than the display size. Pressing Shift followed by the left arrow key moves
the cursor to the beginning of the line. Pressing **CTRL** followed by the left arrow key moves the cursor 4 character spaces to the left.

- **Delete** Erases the character at the present cursor position (for user-entered data only).

- **Backspace** Erases the character to the left of the cursor (for user-entered data only).

- **End** (Clear-to-end key) Erases all characters from the present cursor position to the end of the input line (for user-entered data only). Pressing **Shift** followed by the clear-to-end key erases the entire line and moves the cursor to the beginning of the line.

- **Caps Lock** Selects the upper-case alphabetic characters or the character shown on the top half of a key. You can either hold down **Shift** while pressing another key or press and release **Shift** and then press another key.

- **Blank** Sets all alphabetic keys to uppercase (capitals); does not affect the other keys. To return to lowercase, press **Caps Lock** again.

Instrument Control Keys

- **Reset Instr** Resets only the selected instrument (equivalent of executing *RST*). **Reset Instr** also clears the instrument's front panel and remote input and output buffers. **Reset Instr** is the only front panel key that can affect an instrument being operated from remote.

- **Clear Instr** Clears the front panel input and output buffers (remote buffers are not cleared) of the selected instrument and returns to the top level of the instrument menu. Press **Clear Instr** whenever an instrument is busy, is not responding to front panel control, or to abort a command being entered from the front panel.

Other Keys

- **Return** End of line. Enters your responses to menu prompts. Executes commands entered from the front panel keyboard.

- **CTRL** Selects alternate key definitions. You can either hold down **CTRL** while pressing another key or press and release **CTRL** and then press another key. These **CTRL** key sequences provide short-cuts for some menu key sequences as well as additional functions not directly available from dedicated front panel keys. For a complete list of all **CTRL** key sequences see table 3-3 in the next chapter.
In Case of Difficulty

<table>
<thead>
<tr>
<th>Problem:</th>
<th>Problem Cause/Solution:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error -113 undefined header error occurs after entering data in response to a menu prompt.</td>
<td>For some commands used by the menus, the data entered is appended to a command header. For example, if you enter "1" as the port number for a digital I/O module, the command used is DIG:HAND1:MODE NONE where HAND1 indicates the port number. If your entry was invalid or incorrect, error -113 occurs.</td>
</tr>
<tr>
<td>Following the power-on sequence or system reset the display shows:</td>
<td>An unassigned device (incorrect logical address) was detected, or the contents of non-volatile memory may have been lost. If you cycle power or perform system reset, the display will show the logical address of the unassigned device. You can also check the logical addresses using the CONFIG? -- LADDS branch of the System Instrument menu. Refer to Chapter 1 of this manual for a discussion of logical addresses and unassigned devices.</td>
</tr>
<tr>
<td>Configuration errors. Select SYSTEM. Press any key to continue.</td>
<td>The display shows: "instrument in local lockout". Menus seem to work but nothing happens when I reach the bottom level or try to execute a command.</td>
</tr>
<tr>
<td>The display shows:</td>
<td>The front panel has been locked-out (HP-IB local lockout). You can re-enable menu operation by cancelling local lockout (from remote) or by cycling mainframe power.</td>
</tr>
<tr>
<td>The display shows:</td>
<td>Monitor mode was entered from remote (DISP:MON:STAT ON command) and the front panel has also been locked out (HP-IB local lockout). Either cancel the local lockout or execute DISP:MON:STAT OFF (from remote).</td>
</tr>
<tr>
<td>Display cannot be removed from monitor mode.</td>
<td>Display shows:</td>
</tr>
<tr>
<td>Can not connect to instrument. Press any key to continue.</td>
<td>After selecting an instrument the display shows:</td>
</tr>
<tr>
<td>busy.</td>
<td>Display shows:</td>
</tr>
<tr>
<td>Instrument in use by another display. Press any key to continue.</td>
<td></td>
</tr>
</tbody>
</table>
Instrument Menus

This section contains charts showing the structure and content for all front panel instrument menus. Also shown in the charts are the SCPI or Common Commands used and descriptions of menu-controlled instrument operations. This section contains the following charts:

- System Instrument Menu ... 2-14
- Switchbox Menu ... 2-16
- Scanning Voltmeter Menu ... 2-18
- HP E1326A 5 1/2 Digit Multimeter Menu 2-20
- HP E1328A 4-Channel D/A Converter Menu 2-21
- HP E1330A Quad 8-Bit Digital I/O Menu 2-22
- HP E1332A 4-Channel Counter/Totalizer Menu 2-24
- HP E1333A 3-Channel Universal Counter Menu 2-26
System Instrument Menu

Menu Levels and Content

<table>
<thead>
<tr>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
<th>Level 5</th>
<th>Level 6</th>
<th>User Entry</th>
<th>Command(s) Used</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSTEM</td>
<td>CONFIG?</td>
<td>LADDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VXI:CONF:DLAD?</td>
<td>Displays logical addresses of mainframe instruments</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>logical address</td>
<td>VXI:CONF:DLIS? <log_addr></td>
<td>Displays information about the device at the specified logical address (Refer to the Command Reference for details)</td>
</tr>
<tr>
<td></td>
<td>DEVICE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SYST:COMM:GPIO:ADDR?</td>
<td>Displays HP-IB address</td>
</tr>
<tr>
<td>HP-IB</td>
<td>READ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SYST:COMM:GPIO:ADDR: <address></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SET</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HP-IB address</td>
<td></td>
</tr>
<tr>
<td>RS232</td>
<td>BAUD</td>
<td>READ</td>
<td></td>
<td></td>
<td></td>
<td>card number</td>
<td>SYST:COMM:SER[n]:BAUD?</td>
<td>Read current baud rate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SET</td>
<td>300</td>
<td></td>
<td></td>
<td>card number</td>
<td>SYST:COMM:SER[n]:BAUD 300</td>
<td>Sets the serial interface baud rate to 300</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1200</td>
<td></td>
<td></td>
<td>card number</td>
<td>SYST:COMM:SER[n]:BAUD 1200</td>
<td>Sets the serial interface baud rate to 1200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2400</td>
<td></td>
<td></td>
<td>card number</td>
<td>SYST:COMM:SER[n]:BAUD 2400</td>
<td>Sets the serial interface baud rate to 2400</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9600</td>
<td></td>
<td></td>
<td>card number</td>
<td>SYST:COMM:SER[n]:BAUD 9600</td>
<td>Sets the serial interface baud rate to 9600</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>19200</td>
<td></td>
<td></td>
<td>card number</td>
<td>SYST:COMM:SER[n]:BAUD 19200</td>
<td>Sets the serial interface baud rate to 19200</td>
</tr>
<tr>
<td></td>
<td>PARITY</td>
<td>READ</td>
<td>EVEN</td>
<td></td>
<td></td>
<td>card number</td>
<td>SYST:COMM:SER[n]:PAR EVEN</td>
<td>Read current parity type</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SET</td>
<td></td>
<td>ODD</td>
<td></td>
<td>card number</td>
<td>SYST:COMM:SER[n]:PAR ODD</td>
<td>Sets the serial interface parity to odd</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ONE</td>
<td></td>
<td>card number</td>
<td>SYST:COMM:SER[n]:PAR ONE</td>
<td>Sets the serial interface parity to one</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ZERO</td>
<td></td>
<td>card number</td>
<td>SYST:COMM:SER[n]:PAR ZERO</td>
<td>Sets the serial interface parity to zero</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NONE</td>
<td></td>
<td>card number</td>
<td>SYST:COMM:SER[n]:PAR NONE</td>
<td>Sets the serial interface parity to none</td>
</tr>
<tr>
<td>BITS</td>
<td>READ</td>
<td>SET</td>
<td>7</td>
<td></td>
<td></td>
<td>card number</td>
<td>SYST:COMM:SER[n]:BITS 7</td>
<td>Read current data bit width</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td>card number</td>
<td>SYST:COMM:SER[n]:BITS 8</td>
<td>Sets the data width to 8 bits</td>
</tr>
<tr>
<td>PACE</td>
<td>READ</td>
<td>SET</td>
<td>XD'n' OFF</td>
<td></td>
<td></td>
<td>card number</td>
<td>SYST:COMM:SER[n]:PACE XD</td>
<td>Read current pacing type</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NONE</td>
<td></td>
<td></td>
<td>card number</td>
<td>SYST:COMM:SER[n]:PACE NONE</td>
<td>Enables XD'n' OFF software handshaking</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>card number</td>
<td>SYST:COMM:SER[n]:PACE NONE</td>
<td>Enables XD'n' OFF software handshaking</td>
</tr>
</tbody>
</table>

(continued on following page)
System Instrument Menu

Menu Levels and Content

<table>
<thead>
<tr>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
<th>Level 5</th>
<th>Level 6</th>
<th>User Entry</th>
<th>Command(s) Used</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>card number</td>
<td>SYST:COMM:SER[n]:CONT:DTR?</td>
<td>Read current setting for DTR line</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>card number</td>
<td>SYST:COMM:SER[n]:CONT:DTR ON</td>
<td>Set DTR line to static +V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>card number</td>
<td>SYST:COMM:SER[n]:CONT:DTR OFF</td>
<td>Set DTR line to static -V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>card number</td>
<td>SYST:COMM:SER[n]:CONT:DTR IBF</td>
<td>Set DTR for hardware handshaking</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>card number</td>
<td>SYST:COMM:SER[n]:CONT:DTR STAN</td>
<td>DTR operates to RS-232 standard</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>card number</td>
<td>SYST:COMM:SER[n]:CONT:RTS?</td>
<td>Read current setting for RTS line</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>card number</td>
<td>SYST:COMM:SER[n]:CONT:RTS ON</td>
<td>Set RTS line to static +V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>card number</td>
<td>SYST:COMM:SER[n]:CONT:RTS OFF</td>
<td>Set RTS line to static -V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>card number</td>
<td>SYST:COMM:SER[n]:CONT:RTS IBF</td>
<td>Set RTS for hardware handshaking</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>card number</td>
<td>SYST:COMM:SER[n]:CONT:RTS STAN</td>
<td>RTS operates to RS-232 standard</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>card number</td>
<td>VXI:READ? <laddr>,<reg></td>
<td>Store current serial communications settings into non-volatile storage.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>card number</td>
<td>VXI:WRIT? <laddr>,<reg>,<data></td>
<td>Read data to register A16 address space.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>laddr, reg_num, data</td>
<td>SYST:TIME?</td>
<td>Read the current system clock</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>time</td>
<td>SYST:TIME <time></td>
<td>Set the system clock</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>date</td>
<td>SYST:DATE <date></td>
<td>Read the current system calendar</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>date</td>
<td>SYST:DATE <date></td>
<td>Set the system calendar</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>date</td>
<td>DIAG:BOOT</td>
<td>Resets mainframe using the configuration stored in non-volatile memory</td>
</tr>
</tbody>
</table>
Switchbox Menu

Menu Levels and Content

<table>
<thead>
<tr>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>User Entry</th>
<th>Command(s) Used</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWITCH</td>
<td>MONITOR</td>
<td></td>
<td>card number ‡ or AUTO</td>
<td>DISP:MON:CARD <card_number>;STAT ON</td>
<td>Monitor instrument operations</td>
</tr>
<tr>
<td></td>
<td>OPEN</td>
<td></td>
<td>channel list †</td>
<td>OPEN (@channel_list)</td>
<td>Open channel(s)</td>
</tr>
<tr>
<td></td>
<td>CLOSE</td>
<td></td>
<td>channel list †</td>
<td>CLOS (@channel_list)</td>
<td>Close channel(s)</td>
</tr>
<tr>
<td>SCAN</td>
<td></td>
<td>SET_UP</td>
<td>channel list †</td>
<td>TRIG SOUR HOLD;SCAN <channel_list>;INIT</td>
<td>Set up channels to scan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STEP</td>
<td>channel list †</td>
<td>TRIG</td>
<td>Step to next channel in scan list</td>
</tr>
<tr>
<td>CARD</td>
<td>TYPE?</td>
<td></td>
<td>card number ‡</td>
<td>SYSE:CTYP? <card_number></td>
<td>Display module ID information</td>
</tr>
<tr>
<td></td>
<td>DESC?</td>
<td></td>
<td>card number ‡</td>
<td>SYST:CODE? <card_number></td>
<td>Display module description</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>card number ‡</td>
<td>SYST:CPON <card_number></td>
<td>Return module to power-on state</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*TST?</td>
<td>Runs self-test, displays results (±0 = pass; any other number = fail)</td>
</tr>
</tbody>
</table>

† Channel lists are of the form "ccnn" (single channel), "ccnn,ccnn" (two or more channels) or "ccnn:ccnn" (range of channels); where "cc" is the card number and "nn" is the channel number. For example, to access channel 2 on card number 1 specify 102.

‡ The card number identifies a module within the Switchbox. The switch module with the lowest logical address is always card number 01. The switch module with the next successive logical address is card number 02 and so on.
Scanning Voltmeter Menu

Menu Levels and Content

<table>
<thead>
<tr>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
<th>User Entry</th>
<th>Command(s) Used</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOLTMTR</td>
<td>MONITOR</td>
<td></td>
<td></td>
<td>channel list † or 0 for auto</td>
<td>DISP:MON:CHAN <channel_list>; STATION</td>
<td>Monitor instrument operations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VDC</td>
<td></td>
<td>channel list †</td>
<td>MEAS:VOLT:DC? <channel_list></td>
<td>Measure DC voltage on each channel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VAC</td>
<td></td>
<td>channel list †</td>
<td>MEAS:VOLT:AC? <channel_list></td>
<td>Measure AC voltage on each channel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OHM</td>
<td></td>
<td>channel list †</td>
<td>MEAS:RES? <channel_list></td>
<td>Measure 2-wire resistance on each channel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TEMP</td>
<td>TCOPPE</td>
<td>channel list †</td>
<td>MEAS:TEMP? TC,B, <channel_list></td>
<td>Measure °C of B thermocouple on each channel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E</td>
<td>channel list †</td>
<td>MEAS:TEMP? TC,E, <channel_list></td>
<td>Measure °C of E thermocouple on each channel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>J</td>
<td>channel list †</td>
<td>MEAS:TEMP? TC,J, <channel_list></td>
<td>Measure °C of J thermocouple on each channel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>K</td>
<td>channel list †</td>
<td>MEAS:TEMP? TC,K, <channel_list></td>
<td>Measure °C of K thermocouple on each channel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NI4</td>
<td>channel list †</td>
<td>MEAS:TEMP? TC,NI4, <channel_list></td>
<td>Measure °C of NI4 thermocouple on each channel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N28</td>
<td>channel list †</td>
<td>MEAS:TEMP? TC,N28, <channel_list></td>
<td>Measure °C of N28 thermocouple on each channel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>channel list †</td>
<td>MEAS:TEMP? TC,R, <channel_list></td>
<td>Measure °C of R thermocouple on each channel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td>channel list †</td>
<td>MEAS:TEMP? TC,S, <channel_list></td>
<td>Measure °C of S thermocouple on each channel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td>channel list †</td>
<td>MEAS:TEMP? TC,T, <channel_list></td>
<td>Measure °C of T thermocouple on each channel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>THERMIS</td>
<td>2252</td>
<td>channel list †</td>
<td>MEAS:TEMP? THER,2252, <channel_list></td>
<td>Measure °C of 2252 Ω thermistor on each channel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5K</td>
<td>channel list †</td>
<td>MEAS:TEMP? THER,5000, <channel_list></td>
<td>Measure °C of 5k Ω thermistor on each channel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10K</td>
<td>channel list †</td>
<td>MEAS:TEMP? THER,10000, <channel_list></td>
<td>Measure °C of 10k Ω thermistor on each channel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RTD</td>
<td>385</td>
<td>channel list †</td>
<td>MEAS:TEMP? RTD,85, <channel_list></td>
<td>Measure °C of 385 RTD on each channel (4-wire)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>392</td>
<td>channel list †</td>
<td>MEAS:TEMP? RTD,92, <channel_list></td>
<td>Measure °C of 392 RTD on each channel (4-wire)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STRAIN</td>
<td>QUARTER</td>
<td>channel list †</td>
<td>MEAS:STR:QUAR <channel_list></td>
<td>Measure strain with quarter bridge</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HALF</td>
<td>channel list †</td>
<td>MEAS:STR:HIBEN? <channel_list></td>
<td>Measure strain with bending half bridge</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>POISSON</td>
<td>channel list †</td>
<td>MEAS:STR:HPO? <channel_list></td>
<td>Measure strain with Poisson half bridge</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FULL</td>
<td>channel list †</td>
<td>MEAS:STR:FIBEN? <channel_list></td>
<td>Measure strain with bending full bridge</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>POISSON</td>
<td>channel list †</td>
<td>MEAS:STR:FHP? <channel_list></td>
<td>Measure strain with Poisson full bridge</td>
</tr>
</tbody>
</table>

(continued on following page)
Scanning Voltmeter Menu

Menu Levels and Content

<table>
<thead>
<tr>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
<th>User Entry</th>
<th>Command(s) Used</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>channel list †</td>
<td>MEAS:STR UNST? <channel_list></td>
<td>Measure bridge unstrained</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>channel list †</td>
<td>MEAS:STR QCOM? <channel_list></td>
<td>Compression shunt diagnostic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>channel list †</td>
<td>MEAS:STR QTM? <channel_list></td>
<td>Tension shunt diagnostic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>card number ‡</td>
<td>SYST:CTYP? <card_number></td>
<td>Displays module ID information</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>card number ‡</td>
<td>SYST:CDES? <card_number></td>
<td>Displays module description</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>†</td>
<td>*IST?</td>
<td>Runs self-test, displays results (+0 = pass; any other number = fail)</td>
</tr>
</tbody>
</table>

† Channel lists are of the form "cnn" (single channel), "cnn:ccnn" (two or more channels) or "ccnn:ccnn" (range of channels); where "cc" is the card number and "nn" is the channel number. For example, to access channel 2 on card number 1 specify 102.

‡ The card number identifies a module within the Switchbox. The switch module with the lowest logical address is always card number 01. The switch module with the next successive logical address is card number 02 and so on.
HP E1326B/E1411B 5 1/2 Digit Multimeter (Standalone) Menu

Menu Levels and Content

<table>
<thead>
<tr>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
<th>User Entry</th>
<th>Command(s) Used</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOLTMTR</td>
<td>MONITOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VDC</td>
<td></td>
<td>DISP:MON:STAT ON</td>
<td>Measure DC volts</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VAC</td>
<td></td>
<td>MEAS:VOLT:DC?</td>
<td>Measure AC volts</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>OHM</td>
<td></td>
<td>MEAS:VOLT:AC?</td>
<td>Measure 4-wire ohms</td>
<td></td>
</tr>
<tr>
<td>TEMP</td>
<td></td>
<td>THERMIS</td>
<td>2252</td>
<td>MEAS:FRIS?</td>
<td>Measure °C of 225Ω thermistor (4-wire measurement)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-5K</td>
<td>MEAS:TEMP? FTH,2252</td>
<td>Measure °C of 5kΩ thermistor (4-wire measurement)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-10K</td>
<td>MEAS:TEMP? FTH,5000</td>
<td>Measure °C of 10kΩ thermistor (4-wire measurement)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>385</td>
<td>MEAS:TEMP? FTH,10000</td>
<td>Measure °C of 100Ω RTD with alpha = 385 (4-wire measurement)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>392</td>
<td>MEAS:TEMP FRITD,85?</td>
<td>Measure °C of 100Ω RTD with alpha = 392 (4-wire measurement)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*TST?</td>
<td>Run self-test, display results (0=pass; any other number=fail)</td>
<td></td>
</tr>
</tbody>
</table>

† Channel lists are of the form "ccnn" (single channel), "ccnn,ccnn" (two or more channels) or "ccnn:ccnn" (range of channels); where "cc" is the card number and "nn" is the channel number. For example, to access channel 2 on card number 1 specify 102.

‡ The card number identifies a module within the Switchbox. The switch module with the lowest logical address is always card number 01. The switch module with the next successive logical address is card number 02 and so on.
<table>
<thead>
<tr>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
<th>User Entry</th>
<th>Command(s) Used</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D/A</td>
<td>MONITOR</td>
<td>CHAN1</td>
<td></td>
<td></td>
<td>DISP:MON:CHAN 1;STAT ON</td>
<td>Monitor instrument operations on channel 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHAN2</td>
<td></td>
<td></td>
<td>DISP:MON:CHAN 2;STAT ON</td>
<td>Monitor instrument operations on channel 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHAN3</td>
<td></td>
<td></td>
<td>DISP:MON:CHAN 3;STAT ON</td>
<td>Monitor instrument operations on channel 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHAN4</td>
<td></td>
<td></td>
<td>DISP:MON:CHAN 4;STAT ON</td>
<td>Monitor instrument operations on channel 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AUTO</td>
<td></td>
<td></td>
<td>DISP:MON:CHAN AUTO;STAT ON</td>
<td>Monitor instrument operations on active channel</td>
</tr>
<tr>
<td></td>
<td>OUTPUT</td>
<td>VOLTAGE</td>
<td>CHAN1</td>
<td>voltage †</td>
<td>VOLT1 <voltage></td>
<td>Output voltage on channel 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CHAN2</td>
<td>voltage †</td>
<td>VOLT2 <voltage></td>
<td>Output voltage on channel 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CHAN3</td>
<td>voltage †</td>
<td>VOLT3 <voltage></td>
<td>Output voltage on channel 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CHAN4</td>
<td>voltage †</td>
<td>VOLT4 <voltage></td>
<td>Output voltage on channel 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CURRENT</td>
<td>CHAN1</td>
<td>current ‡</td>
<td>CURR1 <current></td>
<td>Output current on channel 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CHAN2</td>
<td>current ‡</td>
<td>CURR2 <current></td>
<td>Output current on channel 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CHAN3</td>
<td>current ‡</td>
<td>CURR3 <current></td>
<td>Output current on channel 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CHAN4</td>
<td>current ‡</td>
<td>CURR4 <current></td>
<td>Output current on channel 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TEST</td>
<td></td>
<td>*TST?</td>
<td></td>
<td>Run self-test, display results (+0 = pass; any other number = fail)</td>
</tr>
</tbody>
</table>

†Enter voltage values in volts. Typical examples are: +3.5, -2, +500B3.
‡Enter current values in amps. Typical examples are: .05, +200B3.
<table>
<thead>
<tr>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
<th>User Entry</th>
<th>Command(s) Used</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIG I/O</td>
<td>MONITOR</td>
<td>PORT0</td>
<td></td>
<td></td>
<td>DISP:MON:CHAN 0;STAT ON</td>
<td>Monitor instrument operations on port 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PORT1</td>
<td></td>
<td></td>
<td>DISP:MON:CHAN 1;STAT ON</td>
<td>Monitor instrument operations on port 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PORT2</td>
<td></td>
<td></td>
<td>DISP:MON:CHAN 2;STAT ON</td>
<td>Monitor instrument operations on port 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PORT3</td>
<td></td>
<td></td>
<td>DISP:MON:CHAN 3;STAT ON</td>
<td>Monitor instrument operations on port 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AUTO</td>
<td></td>
<td>DISP:MON:CHAN AUTO;STAT ON</td>
<td>Monitor instrument operations on any active port</td>
</tr>
<tr>
<td>READ</td>
<td>R_BYTE</td>
<td>PORT0</td>
<td></td>
<td></td>
<td>DIG:HAND0:MODE NONE;MEAS:DIG:DATA0 <data></td>
<td>Reads port 0 after handshake</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PORT1</td>
<td></td>
<td></td>
<td>DIG:HAND1:MODE NONE;MEAS:DIG:DATA1 <data></td>
<td>Reads port 1 after handshake</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PORT2</td>
<td></td>
<td></td>
<td>DIG:HAND2:MODE NONE;MEAS:DIG:DATA2 <data></td>
<td>Reads port 2 after handshake</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PORT3</td>
<td></td>
<td></td>
<td>DIG:HAND3:MODE NONE;MEAS:DIG:DATA3 <data></td>
<td>Reads port 3 after handshake</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>bit (0-7)</td>
<td>DIG:HAND0:MODE NONE;MEAS:DIG:DATA0:BITm <value></td>
<td>Reads bit m on port 0 after handshake</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PORT1</td>
<td></td>
<td>bit (0-7)</td>
<td>DIG:HAND1:MODE NONE;MEAS:DIG:DATA1:BITm <value></td>
<td>Reads bit m on port 1 after handshake</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PORT2</td>
<td></td>
<td>bit (0-7)</td>
<td>DIG:HAND2:MODE NONE;MEAS:DIG:DATA2:BITm <value></td>
<td>Reads bit m on port 2 after handshake</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PORT3</td>
<td></td>
<td>bit (0-7)</td>
<td>DIG:HAND3:MODE NONE;MEAS:DIG:DATA3:BITm <value></td>
<td>Reads bit m on port 3 after handshake</td>
</tr>
<tr>
<td>WRITE</td>
<td>W_BYTE</td>
<td>PORT0</td>
<td></td>
<td></td>
<td>DIG:HAND0:MODE NONE;MEAS:DIG:DATA0 <data></td>
<td>Writes data to port 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PORT1</td>
<td></td>
<td></td>
<td>DIG:HAND1:MODE NONE;MEAS:DIG:DATA1 <data></td>
<td>Writes data to port 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PORT2</td>
<td></td>
<td></td>
<td>DIG:HAND2:MODE NONE;MEAS:DIG:DATA2 <data></td>
<td>Writes data to port 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PORT3</td>
<td></td>
<td></td>
<td>DIG:HAND3:MODE NONE;MEAS:DIG:DATA3 <data></td>
<td>Writes data to port 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>data (0-255)</td>
<td>DIG:HAND0:MODE NONE;MEAS:DIG:DATA0:BITm <value></td>
<td>Writes data to bit m on port 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PORT1</td>
<td></td>
<td>data (0-255)</td>
<td>DIG:HAND1:MODE NONE;MEAS:DIG:DATA1:BITm <value></td>
<td>Writes data to bit m on port 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PORT2</td>
<td></td>
<td>data (0-255)</td>
<td>DIG:HAND2:MODE NONE;MEAS:DIG:DATA2:BITm <value></td>
<td>Writes data to bit m on port 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PORT3</td>
<td></td>
<td>data (0-255)</td>
<td>DIG:HAND3:MODE NONE;MEAS:DIG:DATA3:BITm <value></td>
<td>Writes data to bit m on port 3</td>
</tr>
</tbody>
</table>
HP E1332A 4-Channel Counter/Totalizer Menu

Menu Levels and Content

<table>
<thead>
<tr>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
<th>Level 5</th>
<th>User Entry</th>
<th>Command(s) Used</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COUNTER</td>
<td>MONITOR</td>
<td>CHAN1</td>
<td>CHAN2</td>
<td>CHAN3</td>
<td>CHAN4</td>
<td>DISP:MON:CH 1; STAT ON</td>
<td>Monitor instrument operations on channel 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AUTO</td>
<td>DISP:MON:CH 2; STAT ON</td>
<td>Monitor instrument operations on channel 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CHAN3</td>
<td>DISP:MON:CH 3; STAT ON</td>
<td>Monitor instrument operations on channel 3</td>
</tr>
<tr>
<td></td>
<td>INPUT</td>
<td>LEVEL</td>
<td>CHAN1 & 2</td>
<td></td>
<td>CHAN3 & 4</td>
<td>DISP:MON:CH 4; STAT ON</td>
<td>Monitor instrument operations on channel 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>POS</td>
<td>CHAN1</td>
<td>POS</td>
<td>CHAN2</td>
<td>DISP:MON:CH AUTO; STAT ON</td>
<td>Monitor instrument operations on active channel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NEG</td>
<td>CHAN2</td>
<td>NEG</td>
<td>CHAN3</td>
<td>SENS1:EVN:LEV <value></td>
<td>Set level trigger voltage for channels 1 & 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>POS</td>
<td>CHAN3</td>
<td>NEG</td>
<td>CHAN4</td>
<td>SENS2:EVN:LEV <value></td>
<td>Set level trigger voltage for channels 3 & 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NEG</td>
<td>CHAN4</td>
<td>POS</td>
<td>SENS1:EVN:SLOPOS</td>
<td>Positive level trigger slope for channel 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SLOPE</td>
<td>POS</td>
<td>CHAN1</td>
<td>POS</td>
<td>SENS1:EVN:SLOPNEG</td>
<td>Negative level trigger slope for channel 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NEG</td>
<td>CHAN2</td>
<td>NEG</td>
<td>SENS2:EVN:SLOPOS</td>
<td>Positive level trigger slope for channel 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>POS</td>
<td>CHAN3</td>
<td>NEG</td>
<td>SENS2:EVN:SLOPNEG</td>
<td>Negative level trigger slope for channel 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NEG</td>
<td>CHAN4</td>
<td>POS</td>
<td>SENS3:EVN:SLOPOS</td>
<td>Positive level trigger slope for channel 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISOLATE</td>
<td>ON</td>
<td>CHAN1</td>
<td>POS</td>
<td>SENS3:EVN:SLOPNEG</td>
<td>Negative level trigger slope for channel 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>OFF</td>
<td>CHAN2</td>
<td>NEG</td>
<td>SENS4:EVN:SLOPOS</td>
<td>Positive level trigger slope for channel 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FILTER</td>
<td>ON</td>
<td>CHAN3</td>
<td>POS</td>
<td>SENS4:EVN:SLOPNEG</td>
<td>Negative level trigger slope for channel 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>OFF</td>
<td></td>
<td></td>
<td>INPUT:ISOL ON</td>
<td>Input isolation on</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>INPUT:ISOL OFF</td>
<td>Input isolation off</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>INP:FLT ON</td>
<td>Input filter on</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>INP:FLT OFF</td>
<td>Input filter off</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>INP:FLT:FREQ <value></td>
<td>Set input filter frequency</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FREQ</td>
<td>CHAN1</td>
<td>CHAN3</td>
<td>CHAN1</td>
<td>CHAN3</td>
<td>TRIG:SOUR:IMM:MEAS1:FREQ?</td>
<td>Frequency measurement on channel 1</td>
</tr>
<tr>
<td></td>
<td>PERIOD</td>
<td>CHAN1</td>
<td>CHAN3</td>
<td>CHAN1</td>
<td>CHAN3</td>
<td>TRIG:SOUR:IMM:MEAS3:FREQ?</td>
<td>Frequency measurement on channel 3</td>
</tr>
</tbody>
</table>

(continued on following page)
HP E1332A 4-Channel Counter/Totalizer Menu

Menu Levels and Content

<table>
<thead>
<tr>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
<th>Level 5</th>
<th>User Entry</th>
<th>Command(s) Used</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(continued from previous page)

- **TIMEINT**
 - CHAN1
 - CHAN3
 - CHAN2
 - CHAN4
- **POS_PW**
 - CHAN2
 - CHAN4
- **NEG_PW**
 - CHAN2
 - CHAN4
- **UDCOUN**
 - CHAN1
 - START
 - READ
 - CHAN3
 - START
 - READ
- **TOTALLZ**
 - CHAN1
 - START
 - READ
 - CHAN2
 - START
 - READ
 - CHAN3
 - START
 - READ
 - CHAN4
 - START
 - READ
- **TST**

- **TRIG:SOUR IMM; MEAS1: TINT?**
 - Time interval measurement on channel 1
- **TRIG:SOUR IMM; MEAS3: TINT?**
 - Time interval measurement on channel 3
- **TRIG:SOUR IMM; MEAS2: PWID?**
 - Positive pulse width measurement on channel 2
- **TRIG:SOUR IMM; MEAS4: PWID?**
 - Positive pulse width measurement on channel 4
- **TRIG:SOUR IMM; MEAS2: NWID?**
 - Negative pulse width measurement on channel 2
- **TRIG:SOUR IMM; MEAS4: NWID?**
 - Negative pulse width measurement on channel 4
- **TRIG:SOUR IMM; CONFI: UDC; INTI?**
 - Up/down count, subtract ch. 2 count from ch. 1 count
- **FEITCI?**
 - Get up/down count from channels 1 & 2
- **TRIG:SOUR IMM; CONFI: UDC; INTI3**
 - Up/down count, subtract ch. 4 count from ch. 3 count
- **FEITC3?**
 - Get up/down count from channels 3 & 4
- **TRIG:SOUR IMM; CONFI: TOT; INTI1**
 - Totalize on channel 1
- **FEITCI?**
 - Get totalize count on channel 1
- **TRIG:SOUR IMM; CONFI: TOT; INTI2**
 - Totalize on channel 2
- **FEITC2?**
 - Get totalize count on channel 2
- **TRIG:SOUR IMM; CONFI: TOT; INTI3**
 - Totalize on channel 3
- **FEITC3?**
 - Get totalize count on channel 3
- **TRIG:SOUR IMM; CONFI: TOT; INTI4**
 - Totalize on channel 4
- **FEITC4?**
 - Get totalize count on channel 4
- **"TST?"**
 - Run self-test, display results (+0 = pass, any other number = fail)

†Enter voltage values in volts. Typical examples are: +3.5, -2, +500E-3.

‡Enter frequency value in hertz. Typical examples are: 60, 120, 1E3.
HP E1333A 3-Channel Universal Counter Menu

Menu Levels and Content

<table>
<thead>
<tr>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
<th>Level 5</th>
<th>User Entry</th>
<th>Command(s) Used</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COUNTER</td>
<td>MONITOR</td>
<td>CHAN1</td>
<td></td>
<td></td>
<td>DISP: MON: CHAN 1, STAT ON</td>
<td></td>
<td>Monitor instrument operations on channel 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHAN2</td>
<td></td>
<td></td>
<td>DISP: MON: CHAN 2, STAT ON</td>
<td></td>
<td>Monitor instrument operations on channel 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHAN3</td>
<td></td>
<td></td>
<td>DISP: MON: CHAN 3, STAT ON</td>
<td></td>
<td>Monitor instrument operation on channel 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AUTO</td>
<td></td>
<td></td>
<td>DISP: MON: CHAN AUTO, STAT ON</td>
<td></td>
<td>Monitor instrument operations on active channel</td>
</tr>
<tr>
<td>INPUT</td>
<td>LEVEL</td>
<td>CHAN1</td>
<td></td>
<td></td>
<td></td>
<td>SENS1: EVEN: LEV <value ></td>
<td>Set trigger level voltage for channel 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHAN2</td>
<td></td>
<td></td>
<td></td>
<td>SENS2: EVEN: LEV <value ></td>
<td>Set trigger level voltage for channel 2</td>
</tr>
<tr>
<td></td>
<td>SLOPE</td>
<td>CHAN1</td>
<td></td>
<td></td>
<td></td>
<td>SENS1: EVEN: SLOP POS</td>
<td>Positive trigger slope for channel 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>POS</td>
<td></td>
<td></td>
<td>SENS1: EVEN: SLOP NEG</td>
<td>Negative trigger slope for channel 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHAN2</td>
<td></td>
<td></td>
<td></td>
<td>SENS2: EVEN: SLOP POS</td>
<td>Positive trigger slope for channel 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>POS</td>
<td></td>
<td></td>
<td>SENS2: EVEN: SLOP NEG</td>
<td>Negative trigger slope for channel 2</td>
</tr>
<tr>
<td></td>
<td>COUPLE</td>
<td>AC</td>
<td></td>
<td></td>
<td></td>
<td>INP: COUP AC</td>
<td>AC-coupled input (channels 1 & 2 only)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DC</td>
<td></td>
<td></td>
<td></td>
<td>INP: COUP DC</td>
<td>DC-coupled input (channels 1&2)</td>
</tr>
<tr>
<td></td>
<td>IMPED</td>
<td>50_OHM</td>
<td></td>
<td></td>
<td></td>
<td>INP: IMP 50</td>
<td>50Ω input resistance (channels 1 & 2 only)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1_MOHM</td>
<td></td>
<td></td>
<td></td>
<td>INP: IMP 100</td>
<td>1MΩ input resistance (channels 1 & 2 only)</td>
</tr>
<tr>
<td></td>
<td>ATTEN</td>
<td>0dB</td>
<td></td>
<td></td>
<td></td>
<td>INP: ATT 0</td>
<td>No input attenuation (channels 1 & 2 only)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20dB</td>
<td></td>
<td></td>
<td></td>
<td>INP: ATT 20</td>
<td>20dB input attenuation (channels 1 & 2 only)</td>
</tr>
<tr>
<td></td>
<td>FILTER</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
<td>INP: FILT ON</td>
<td>Input filter on (channels 1 & 2 only)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
<td>INP: FILT OFF</td>
<td>Input filter off (channels 1 & 2 only)</td>
</tr>
<tr>
<td></td>
<td>FREQUENCY</td>
<td>CHAN1</td>
<td></td>
<td></td>
<td>TRIG:SOUR IMM.; MEAS1: FREQ?</td>
<td></td>
<td>Frequency measurement on channel 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHAN2</td>
<td></td>
<td></td>
<td>TRIG:SOUR IMM.; MEAS2: FREQ?</td>
<td></td>
<td>Frequency measurement on channel 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHAN3</td>
<td></td>
<td></td>
<td>TRIG:SOUR IMM.; MEAS3: FREQ?</td>
<td></td>
<td>Frequency measurement on channel 3</td>
</tr>
<tr>
<td></td>
<td>PERIOD</td>
<td>CHAN1</td>
<td></td>
<td></td>
<td>TRIG:SOUR IMM.; MEAS1: PER?</td>
<td></td>
<td>Period measurement on channel 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHAN2</td>
<td></td>
<td></td>
<td>TRIG:SOUR IMM.; MEAS2: PER?</td>
<td></td>
<td>Period measurement on channel 2</td>
</tr>
</tbody>
</table>

(continued on following page)
HP E1333A 3-Channel Universal Counter
Menu

Menu Levels and Content

<table>
<thead>
<tr>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
<th>Level 5</th>
<th>User Entry</th>
<th>Command(s) Used</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(continued from previous page)

- **TIMEINT**
 - **CHAN1**
 - **CHAN2**
 - **POS_PW**
 - **CHAN1**
 - **CHAN2**
 - **NEG_PW**
 - **CHAN1**
 - **CHAN2**
 - **RATIO**
 - **CHAN1**
 - **CHAN2**
 - **TOTALIZ**
 - **CHAN1**
 - **START**
 - **READ**
 - **CHAN2**
 - **START**
 - **READ**

- **TEST**

 - **TRIG SOUR IMM**: **MEAS1**: **TINT**
 - **TRIG SOUR IMM**: **MEAS2**: **TINT**
 - **TRIG SOUR IMM**: **MEAS1**: **PWID**
 - **TRIG SOUR IMM**: **MEAS2**: **PWID**
 - **TRIG SOUR IMM**: **MEAS1**: **NWID**
 - **TRIG SOUR IMM**: **MEAS2**: **NWID**
 - **TRIG SOUR IMM**: **MEAS1**: **RAT**
 - **TRIG SOUR IMM**: **MEAS2**: **RAT**
 - **TRIG SOUR IMM**: **CONF1**: **TOT**: **INT1**
 - **FETC1**
 - **TRIG SOUR IMM**: **CONF2**: **TOT**: **INT2**
 - **FETC2**
 - **TST**

Time interval measurement on channel 1
Time interval measurement on channel 2
Positive pulse width measurement on channel 1
Positive pulse width measurement on channel 2
Negative pulse width measurement on channel 1
Negative pulse width measurement on channel 2
Ratio of channel 1/channel 2
Ratio of channel 2/channel 1
Totalize on channel 1
Display totalize count
Totalize on channel 2
Display totalize count
Run self-test, display results (+0 = pass; any other number = fail)

†Enter voltage values in volts. Typical examples are: +3.5, -2, +500E-3.
Notes
Chapter 3

Using the Display Terminal Interface

Using this Chapter

This chapter shows you how to use the HP E1300A and HP E1301A Mainframes' Display Terminal Interface (terminal interface) to operate instruments in the mainframe. The terminal interface uses the built-in RS-232 and/or the optional HP E1324A Datacomm Module to provide all of the features of the HP E1301A's front panel, plus comfortable keyboard position and full screen display. It contains the following sections:

- Terminal Interface Features ... 3-2
- Using Menus ... 3-3
- Executing Commands ... 3-13
- General Key Descriptions .. 3-14
- Using Supported Terminals ... 3-16
- Using Other Terminals ... 3-19
- In Case of Difficulty ... 3-23
- Instrument Menus ... 3-25

Note

This chapter discusses using the display terminal interface. It assumes that you have already connected your terminal and configured it to communicate with your mainframe. For information on connecting and configuring your terminal, refer to Appendix C in this manual.
Terminal Interface Features

Figure 3-2 shows a typical terminal interface display with its function labels across the bottom of the screen. The first five function keys (f1 through f5) select instrument menu choices. Function keys f6 through f8 provide menu control and access to utility functions. The tutorials in this chapter show how to use most of the menu control and utility function keys. See "General Key Descriptions" near the end of this chapter for a complete description of each of these key functions.

![Typical Terminal Interface Display](image)

Notes:
1. Example screens are from HP AdvanceLink terminal emulator.
2. Later screen examples are shown compressed (only 4 lines tall) and may show only part of the screen width.

Figure 3-1. Typical Terminal Interface Display
Using Menus

A System Instrument menu and a variety of other instrument menus (depending on installed instruments) are available from the terminal interface. These menus incorporate the most used functions but do not provide access to the complete functionality of an instrument. If a particular function is not available from a menu, you can type the corresponding Common Command or SCPI command string and execute it from the terminal interface. See “Executing Commands” later in this chapter for more information.

When you select an instrument, you are assigning the terminal interface to that instrument. This means that any menu operations, commands executed or recalled, errors displayed, etc. pertain only to that instrument. Terminal interface operation of an instrument is independent from other instruments and independent from the remote operation of the instrument. To operate another instrument from the terminal interface, you must select that instrument.

![Select an instrument menu](image)

Note: Typical instruments shown. Actual choices depend on installed instrument

Figure 3-2. "Select an instrument" Menu

A 60-Second Menu Tutorial

Following the power-on sequence or a system reset, the screen shows the Select an instrument menu (see Figure 3-2). This menu allows you to select one of the instruments listed.

The menu select and menu control function keys (usually labeled F1 - F8 on their key caps) are defined by eight function labels located across the bottom of the terminal screen. Once you learn how these keys operate, using the menus is easy (key labels are shown in bold text in this chapter):

To select a displayed menu choice, press the function key (F1 - F8) which corresponds to the function key label:

- When there are more than five menu choices, function key F8 becomes labeled MORE. Press MORE to display the next group of choices. By repeatedly pressing MORE you can display all groups of choices. After you have displayed all groups of choices, pressing MORE again returns to the first group of choices.

- Whenever the screen is requesting information (input prompt) such as Enter the device’s logical address, just type the information and press Return (may be Enter on a terminal emulator).

If you pressed the wrong menu key and do not want to enter the requested information, you can escape the input prompt and stay at the same menu level by pressing ESC or PRV_MENU.
If you make an incorrect entry in response to an input prompt, the bottom line of the Text Output Area will show an error message. When this happens, just select that menu choice again (F1 - F5 keys), re-type the correct information, and press Return.

- Press PRV_MENU or ESC to return to the previous menu within an instrument menu or escape from an input prompt. Press SEL_INST to return to the Select an Instrument menu (see next item). Note that when you leave an instrument and return later, you return to the same menu location you were when you left. In addition, any information below the Text Output Area will also be re-displayed when you return.

- In addition to the instrument menu keys, CLR_INST, RST_INST and SEL_INST are helpful when operating instruments. These and other utility keys are accessed by pressing the UTILS key. See “Executing Commands” for information on the RCL_... keys in this menu.

CLR_INST clears the instrument’s terminal interface input and output buffers (remote buffers are not cleared) and returns to the top level of the instrument menu. Press CLR_INST whenever an instrument is busy, is not responding to terminal interface control, or to abort a command being entered from the terminal interface.

RST_INST clears all terminal interface and remote input and output buffers and resets the instrument.

SEL_INST returns you to the Select an Instrument menu. Note that SEL_INST is the key “under” the UTILS key. You can easily return to the Select an Instrument menu by pressing F8 twice.
Using the System Instrument Menu

The System Instrument menu allows you to:

- Set or read the system HP-IB address
- Reset (reboot) the mainframe
- Display the logical addresses of installed instruments
- Display information about installed instruments

How to Set or Read the System HP-IB Address

Select an instrument:

1 SYSTEM 2 VOLTMTR 3 SWITCH 4 IBASIC

SYSTEM_0:

1 CONFIG? 2 HP-IB 3 RS-232 4 TIME

SYSTEM_0:

1 READ 2 SET 3 4

Enter new HP-IB address, press Return (range = 1 through 30)

SCPI command used:
SYST:COMM:GPIB:ADDR <addr>

SYSTEM_0:
+9

Typical HP-IB address

1 READ 2 SET 3 4

SCPI command used:
SYST:COMM:GPIB:ADDR?
How to Reset the System

Select an instrument:

SYSTEM 1: VOLTMTR 3 SWITCH 4 IB6SIG 21 22 5 UTILS

SYSTEM 0:

1 CONFIG: 2 HP-1B 3 RS-232 4 TIME 23 1 5 DATE 6 MORE 7 UTILS

SYSTEM 0: Press F1 to Reset

1 RESET 2 3 4 23 1 5 MORE 7 UTILS

Note: The RESET menu selection is equivalent to executing the DIAG:BOOT command which has the same effect as cycling the mainframe's power. Pressing RST_INST from the System Instrument menu is the equivalent to sending the *RST command to the System Instrument.
How to Display Logical Addresses and Instrument Information

Select an instrument...

SYSTEM_0:

SYSTEM_0:

- 1: LADDS 2: DEVICE 3

Enter device's logical address and press Return for individual instrument information, or just enter one space and Return, for information on all instruments.

(In this case, 8 was entered)

SYSTEM_0:

+8,+8,+32,+248

1: LADDS 2: DEVICE 3

Logical address of selected device

Instrument name

SYSTEM_0:

+8,+8,+4895,+65344,-1,+0,REG,A16,#H0000000,#H0000000,READY,"","","","VOLTMTR INSTALLED AT SECONDARY ADDR 1"

1: LADDS 2: DEVICE 3

HP-IB secondary address

Note: For a description of each field of the instrument information, see VXI:CONF:DLIS? in the SCPI Command Reference section.
Using the Other Instrument Menus

The instrument menus allow you to access the most-used instrument functions or to monitor an instrument (monitor mode) while it is being controlled from remote. We'll use the Switchbox menu to show you how to use the instrument menus. Menus are available for many but not all instruments. See "Instrument Menus", later in this chapter, for more information on a particular instrument’s menu. The Switchbox menu allows you to:

- Open and Close Channels
- Scan Channels
- Display Module Type and Description
- Monitor a Switchbox
- Reset a selected switch module

Selecting the Switchbox

To select the Switchbox, press the function key (f1 - f5) corresponds to the label SWITCH in the “Select an instrument” menu. (If the “Select an instrument” menu is not being displayed press UTILS then SEL_INST.)

Note

After you press the function key for SWITCH, the screen may show: “Select SWITCH at logical address: _” while the screen labels show two or more logical addresses. This means more than one Switchbox is installed in the mainframe. To select one of the Switchboxes, press the function key for the logical address key label.

The charts on the following pages show how to use the Switchbox menu. Keep the following points in mind when using the menu:

- The card number identifies a module within the Switchbox. The module with the lowest logical address is always card number 01. The module with the next successive logical address is card number 02 and so on.
- The @ character is required preceding a channel list when executing a Switchbox command from the terminal interface or remote. When entering a channel list in response to a menu prompt however, do not precede it with the @ character. Doing so causes a syntax error.
How to Open/Close Channels

Switchbox instrument at logical address 32
(secondary address = 04)

```
SWITCH_32:
  1 MONITOR 2 OPEN 3 CLOSE 4 SCAN
```

- **SWITCH_32:**
 Enter channel list
  ```
  1 2 3 4
  ```

 SCPI command used:
 OPEN <channel_list>

- **SWITCH_32:**
 Enter channel list
  ```
  1 2 3 4
  ```

 Enter Channel List and press Return
 (e.g., 102 for channel 2 on card #1)

 SCPI command used:
 CLOSE <channel_list>

How to Scan Channels

```
SWITCH_32:
  1 MONITOR 2 OPEN 3 CLOSE 4 SCAN
```

- **SWITCH_32:**
  ```
  SET UP 2 STEP 3 4
  ```

 Press f2 to advance to the next channel in
 the Scan List (i.e., to trigger the instrument.)

- **SWITCH_32:**
 Enter channel list
  ```
  1 2 3 4
  ```

 Enter Channel List and press Return
 (e.g., 100:115 to scan channels 00 to 15 on card #1)
How to Display Module Type, Description, or Reset Module

SWITCH_32:

- MONITOR 2 OPEN 3 CLOSE 4 SCAN 23 15 CARD 3

SWITCH_32:

1 TYPE? 2 DESCRT? 3 RESET? 4

SWITCH_32:
Enter card number

1 2 3 4

Enter Card Number and press Return

SWITCH_32:

HEWLETT-PACKARD,E1345A,8,A.03.00

1 TYPE? 2 DESCRT? 3 RESET? 4

SCPI command used:
SYST:CTYP? <card_number>

SWITCH_32:
Enter card number

1 2 3 4

Enter Card Number and press Return

SWITCH_32:

"16 Channel Relay Mix"

1 TYPE? 2 DESCRT? 3 RESET? 4

SCPI command used:
SYST:CDES? <card_number>
How to Select Monitor Mode

Monitor Mode

Monitor mode displays the status of an instrument while it is being controlled from remote. Monitor mode is useful for debugging programs. You can place an instrument in monitor mode using terminal interface menus, or by executing the DISP:MON:STAT ON command from the terminal interface. Pressing most terminal interface keys will automatically exit monitor mode and return to the instrument menu. However, you can use the left and right arrow keys in monitor mode to view long displays.
Note

Enabling monitor mode slows instrument operations. If the timing or speed of instrument operations is critical (such as making multimeter readings at a precise time interval), you should not use monitor mode.

Table 3-1 shows the status annunciators that may appear in the bottom line of the screen in monitor mode. Some instruments also have device-specific annunciators (see the plug-in module manual for more information).

Table 3-1. Monitor Mode Display Annunciators

<table>
<thead>
<tr>
<th>Annunciator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mon</td>
<td>The instrument is in monitor mode</td>
</tr>
<tr>
<td>bry</td>
<td>The instrument is executing a command</td>
</tr>
<tr>
<td>err</td>
<td>An error has occurred (see “Reading Error Messages” below)</td>
</tr>
<tr>
<td>src</td>
<td>A service request has occurred</td>
</tr>
</tbody>
</table>

Reading Error Messages

Whenever the screen is showing the err annunciator, an error has occurred for the instrument being monitored. You can read the error message, although doing so cancels monitor mode. To read an error message, type the following SCPI command (followed by the Return key):

SYST:ERR?

The error message will be displayed in the bottom line of the Text Output Area. To see if another error was logged, repeat the above command by pressing UTILS, RCL_PREV, then Return.

After you have read all the error messages, executing the SYST:ERR? command causes the screen to show: + 0 No error. After reading the error message(s), press fl to return to monitor mode.
From the terminal interface, you can type and execute IEEE 488.2 Common Commands and SCPI Commands for the instrument presently selected by the *Select an instrument* menu. (However, you cannot execute a command when the screen is requesting that you input information.) This is particularly useful for accessing functions not available in an instrument’s menu. For example, the System Instrument contains a Pacer that can be programmed to output a square wave signal on the mainframe’s Pacer Out port. From the System Instrument menu, you can program the Pacer to output 10 square wave cycles with a period of 1 second each by typing the following commands and pressing *Return* after each command (see Chapter 3 for more information on the Pacer).

```
SOUR:PULS:COUN 10
SOUR:PULS:PER 1
TRIG:SOUR IMM
INIT:IMM
```

As another example, after selecting the Switchbox, suppose you must set up and execute a scan list with automatic advance (automatic advance is not available from the menu). You can do this by typing the following command string and pressing *Return* (notice that by linking the commands together with a semicolon and colon you need press *Return* only once).

```
TRIG:SOUR IMM::SCAN (@100:105)::INIT
```

The screen editing keys (shown on the following page) allow you to edit user-entered data or commands. When editing, the screen is in insert mode. That is, typed characters will be inserted into the string at the present cursor position.

Note

The key labels shown are found on all HP terminals (except HP terminals supporting ANSI terminal protocol). See “Using Supported Terminals” for equivalent key functions on your terminal.
General Key Descriptions

This section explains the function of each of the terminal interface's menu, menu control, and editing keys. If a key is not functional in a particular situation, pressing that key does nothing except to cause a beep.

Menu and Menu Control Keys

<table>
<thead>
<tr>
<th>f1 through f5</th>
<th>SEL_INST</th>
<th>PRV_MENU</th>
<th>MORE</th>
</tr>
</thead>
</table>
Label menu choices for corresponding function keys.
Returns to the Select an instrument menu.
Returns to the previous menu level within an instrument menu or escapes from an input prompt. When you reach the top of an instrument's menu, the PRV_MENU label disappears.
The screen can show a maximum of five menu choices at a time. When there are more than five menu choices, function key f6 becomes labeled MORE. Press MORE to display the next group of choices. By repeatedly pressing MORE you can display all groups of choices. After you have displayed all groups of choices, pressing MORE again returns to the first group of choices.
Recalls the last command entered from the terminal interface. After recalling a command, it can be edited or re-executed. You can recall from a stack of previously executed commands by repeatedly pressing RCL_PREV. When you reach the bottom of the stack (the last line in the buffer), pressing RCL_PREV does nothing except to cause a beep.
Accesses commands in the opposite order to that of RCL_PREV. Pressing RCL_NEXT does nothing until you have pressed RCL_PREV at least twice.
Recalls the last SCPI command generated by a menu operation. For example, reading the time using the menus (SYSTEM, TIME, READ) generates and executes the SCPI command SYST:TIME?. A recalled command can be executed by pressing the Return key. You can also edit a recalled command before you execute it.
Performs the same function as PRV_MENU.

Editing Keys

| Right arrow key | Left arrow key | Delete |
(Right arrow key.) Moves the cursor one character space to the right while leaving characters intact.
(Left arrow key.) Moves the cursor one character space to the left while leaving characters intact.
Erases the character at the present cursor position (for user-entered data only).
Erases the character to the left of the cursor (for user-entered data only).

(Clear-to-end key.) Erases all characters from the present cursor position to the end of the input line (for user-entered data only).

Selects the upper-case alphabetic characters or the character shown on the top half of a key.

Sets all alphabetic keys to uppercase (capitals); does not affect the other keys. To return to lowercase, press Caps Lock again.

Instrument Control Keys

UTILS ➔ **RST INST**

Resets only the selected instrument (equivalent of executing *RST*). **RST INST** also clears the instrument’s terminal interface and remote input and output buffers. **RST INST** is the only terminal interface key that can affect an instrument being operated from remote.

UTILS ➔ **CLR INST**

Clears the terminal interface input and output buffers (remote buffers are not cleared) of the selected instrument and returns to the top level of the instrument menu. Press **CLR INST** whenever an instrument is busy, is not responding to terminal interface control, or to abort a command being entered from the terminal interface.

Other Keys

Return

End of line. Enters your responses to menu prompts. Executes commands entered from the terminal keyboard (may be labeled Enter on your terminal emulator).

CTRL

Selects alternate key definitions. These **CTRL** key sequences provide short-cuts to some of the menu sequences and also provide some functions not directly available from dedicated terminal keys. Some alternate key definitions are:

CTRL R = Instrument Reset
CTRL C = Clear Instrument
CTRL D = Select an instrument menu.

For a complete list of all **CTRL** Sequences, see Table 3-3 in this chapter. Users of the optional IBASIC interpreter should refer to their IBASIC manual set for additional editing functions.
Using Supported Terminals

The Display Terminal Interface supports several popular terminal brands and models. This chapter will show you how to access all of the terminal interface functions described previously using your supported terminal.

The Supported Terminals

The following list names the supported terminals and shows where to go for more information. If your terminal isn’t named in this list, see “Using Other Terminals” in the next section.

- HP 700/92 Menu tutorial
- HP 700/94 Menu tutorial
- HP 700/22 See page 3-17
- HP 700/43 and WYSE WY-30™ See page 3-19

The keyboard guides provided for the listed terminals may be removed or copied, and placed near your keyboard while you go through the menu tutorial sections.
Using the HP 700/22

The HP 700/22 terminal emulates the DEC® VT100® or VT220® terminals. Some functions of the Display Terminal Interface have been mapped into keys with other labels. A keyboard map is provided for each of the emulation models. Use these keyboard maps to help locate the terminal interface functions.

VT100® Key Map

The symbols shown in the upper left corner of key each are now mapped with the function labeled in the center of each key.

Selecting VT100® Mode

To use the HP 700/22 in VT100® mode, press the Set-Up key and set the following configuration:

<table>
<thead>
<tr>
<th>Fields</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal Mode</td>
<td>EM100, 7 bit Ctrlx</td>
</tr>
<tr>
<td>Columns</td>
<td>80</td>
</tr>
<tr>
<td>EM100 ID</td>
<td>EM100</td>
</tr>
<tr>
<td>Inhibit Auto Wrap</td>
<td>YES</td>
</tr>
</tbody>
</table>
VT220® Key Map
The function keys that are normally labeled f6 through f14 are now labeled:

```
  f1  f2  f3  f4  f4  f5  f6  f7  f8
```

Note

Because the HP 700/22 keyboard has nine function keys in the center of the keyboard, f4 is mapped twice.

The symbols shown in the upper left corner of key each are now mapped with the function labeled in the center of each key.

Selecting VT220® Mode
To use the HP 700/22 in VT220® mode, press the Set-Up key and set the following configuration:

<table>
<thead>
<tr>
<th>Fields</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal Mode</td>
<td>EM200, 7 bit Ctrl</td>
</tr>
<tr>
<td>Columns</td>
<td>80</td>
</tr>
<tr>
<td>EM100 ID</td>
<td>EM220</td>
</tr>
<tr>
<td>Inhibit Auto Wrap</td>
<td>YES</td>
</tr>
</tbody>
</table>
Using the WYSE® WY-30™

With the WYSE® WY-30™ terminal, some functions of the Display Terminal Interface have been assigned to keys with other labels. Use this keyboard map to help locate these functions.

The symbols shown in the upper left corner of key each are now mapped with the function labeled in the center of each key.

Where two function key labels are shown, the one following the "/" character is accessed by pressing and holding the CTRL key while pressing the desired function key (e.g. to access the f6 function, press CTRL-f2/f6).

Using Other Terminals

This section discusses using terminals which are not on the Supported Terminals list. Primarily this section is to help you use terminals which do not provide programmable soft keys (function keys). Without this capability, a terminal cannot access the Display Terminal Interface’s menus. Instead, the terminal interface provides a set of Terminal Interface Commands which allow you to select instruments by name or logical address. Once selected, you can type Common Commands or SCPI commands to the instrument. In addition, keyboard accessible control codes provide display control for terminals which may not have keys dedicated to those functions.
What “Not Supported” Means

Strictly speaking, a terminal is not supported if it has not been rigorously tested with the Display Terminal Interface. There are several HP terminals which may be compatible with the terminal interface. Terminals such as the DEC® VT100®, DEC® VT220®, and WYSE® WY-50™, or emulations of these may also work properly with the terminal interface. If you have one of these terminals, try it. Here is a list of terminals you should try.

- HP 2392A
- HP 2394A
- DEC® VT100®
- DEC® VT220®
- WYSE® WY-50™
- HP AdvanceLink terminal emulation software (configure as HP 2392A)

Testing Terminals for Compatibility

Here is how you test an unsupported terminal for compatibility with the Display Terminal Interface:

1. Connect your terminal and configure its communication parameters to match the mainframe’s serial interface (see Appendix C).

2. With your terminal turned on and set to “remote mode”, turn on the mainframe. After the mainframe power-on self-test, the display interface sends sequences of characters to your terminal which should cause it to return its identification. If the terminal ID matches one in a list kept by the terminal interface, it will send character sequences to program the function keys and their labels.

3. If you now see the “Select an instrument” prompt and the “Select an instrument” menu labels, your terminal is ready to try. Go to the beginning of this chapter and try the menus.

4. If you see only the “Select an instrument” prompt without the “Select an instrument” menu labels, your terminal did not return a recognized ID. To set the terminal type manually, type the Terminal Interface Command:

 ST HP (followed by Return for HP terminals)
 or
 ST VT100 (followed by Return for VT100® emulators)
 or
 ST VT220 (followed by Return for VT220® emulators)
 or
 ST WYSE30 (followed by Return for WY-30® emulators)
 or
 ST WYSE50 (followed by Return for WY-50™ emulators)

NOTE

You can type "ST" without arguments at the "Select an Instrument" menu. The display terminal will attempt to identify the terminal that is connected. This is particularly useful if you are hooking a terminal to a system which already has power, since you do not need to cycle power and wait for the system to reboot.
If you now see the "Select an instrument" menu labels:

Go to the beginning of this chapter and try the menus.
or

Turn the mainframe off and then on again.

Using a Terminal Without Menus

You can still control instruments installed in your mainframe without using the terminal interface menus. In this case you will send Common Commands and SCPI commands to your instruments by typing them on your terminal keyboard, or through a computer interface.

Selecting Instruments

To send commands to, and receive responses from an instrument, you must first select that instrument. Two commands are provided to select instruments. They are; SI (Select Instrument), and SA (Select Address). These commands only work from the "Select an instrument" prompt. The commands can be typed in upper case or lower case.

SI

SI selects an instrument by its name, exactly as it would appear in the "Select an instrument" menu (see Table 3-2). If your mainframe has more than one instrument with the same name, follow the name with a comma (,) and the desired instrument's logical address. Here are some examples of SI commands:

- `si voltmetr` (selects a voltmeter instrument)
- `si switch` (selects a switchbox instrument)
- `SI SWITCH` (same as above)
- `si switch,16` (selects switchbox at logical address 16)

Table 3-2. Instrument Names for the SI Command

<table>
<thead>
<tr>
<th>Menu Name</th>
<th>Instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSTEM</td>
<td>The System Instrument (built-in to the mainframe)</td>
</tr>
<tr>
<td>VOLTMTTR</td>
<td>HP E1326A Standalone, or HP E1326A Scanning Voltmeter Modules</td>
</tr>
<tr>
<td>SWITCH</td>
<td>Switchbox composed of one or more HP Multiplexer Modules</td>
</tr>
<tr>
<td>DIG I/O</td>
<td>HP E1330A Quad 8-Bit Digital Input/Output Module</td>
</tr>
<tr>
<td>IBASIC</td>
<td>Optional IBASIC interpreter</td>
</tr>
<tr>
<td>COUNTER</td>
<td>HP E1332A 4-Channel Counter/Totalizer, or HP E1333A Universal Counter Modules</td>
</tr>
<tr>
<td>D/A</td>
<td>HP E1328A Digital to Analog Converter Module</td>
</tr>
</tbody>
</table>

SA

SA selects an instrument by its logical address. For multiple module instruments, use the logical address of the first module in the instrument. For example; SA 8 selects the instrument at logical address 8. When you have selected an instrument, the terminal interface will respond with an instrument prompt which is the instrument's menu name followed by its logical address (e.g. VOLTMTTR_8).
To get a list of the logical addresses used in your mainframe, send the SCPI command VXI:CONF:DLAD? to the System Instrument. Then to determine what instrument is at each logical address, send the command VXI:CONF:DLIS? n for each logical address in the list (where n is a logical address).

To return to the “Select an instrument” prompt, press and hold the CTRL key then press D.

The terminal interface provides the keyboard control sequences listed in Table 3-3. These can be thought of as keyboard short-cuts for compatible terminals (those which provide menu capability). Only those functions in the table which are shaded, operate for “UNKNOWN” terminal types (those which do not support menus). An “UNKNOWN” terminal type has very limited editing capability. It will not support the EDIT mode for the optional IBASIC interpreter. In the following table, † = IBASIC only, ‡ = Front Panel only.

Table 3-3. Control Sequence Functions

<table>
<thead>
<tr>
<th>Del char</th>
<th>Delete character at the cursor position</th>
<th>CTRL-X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clr → end</td>
<td>Clears line from cursor position to end of line</td>
<td>CTRL-L</td>
</tr>
<tr>
<td>Clear line</td>
<td>Clears line regardless of cursor position</td>
<td>CTRL-U</td>
</tr>
<tr>
<td>Insert line †</td>
<td>Inserts a blank line at the cursor position</td>
<td>CTRL-O</td>
</tr>
<tr>
<td>Delete line † ‡</td>
<td>Deletes the line at the current cursor position</td>
<td>CTRL-DEL</td>
</tr>
<tr>
<td>End of line</td>
<td>Move cursor to the end of current line</td>
<td>CTRL-Z</td>
</tr>
<tr>
<td>Start of line</td>
<td>Move cursor to the beginning of current line</td>
<td>CTRL-A</td>
</tr>
<tr>
<td>Return</td>
<td>Terminates user entry</td>
<td>CTRL-M</td>
</tr>
<tr>
<td>RCL_MENU</td>
<td>Recalls the last command executed via the menu keys</td>
<td>CTRL-W</td>
</tr>
<tr>
<td>RCL_PREV</td>
<td>Recalls the last several commands executed via user input</td>
<td>CTRL-F</td>
</tr>
<tr>
<td>RCL_NEXT</td>
<td>After RCL_PREV; RCL_NEXT may be used to move forward through the recalled commands</td>
<td>CTRL-B</td>
</tr>
<tr>
<td>SEL INST</td>
<td>Return to “Select an instrument” menu</td>
<td>CTRL-D</td>
</tr>
<tr>
<td>CLR INST</td>
<td>Clear instrument’s input and output buffers</td>
<td>CTRL-C</td>
</tr>
<tr>
<td>RST INST</td>
<td>Like CLR INST plus clears</td>
<td>CTRL-R</td>
</tr>
<tr>
<td>Problem:</td>
<td>Problem Cause/Solution:</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Error -113 undefined header error occurs after entering data in response to a menu prompt.</td>
<td>For some commands used by the menus, the data entered is appended to a command header. For example, if you enter "1" as the port number for a digital I/O module, the command used is DIG:HAND1:MODE NONE where HAND1 indicates the port number. If your entry was invalid or incorrect, error -113 occurs.</td>
<td></td>
</tr>
<tr>
<td>Following the power-on sequence or system reset the display shows:</td>
<td>An unassigned device (incorrect logical address) was detected, or the contents of non-volatile memory may have been lost. If you cycle power or perform system reset, the display will show the logical address of the unassigned device. You can also check the logical addresses using the CONFIG? -- LADDS branch of the System Instrument menu. Refer to Chapter 1 of this manual for a discussion of logical addresses and unassigned devices.</td>
<td></td>
</tr>
<tr>
<td>Configuration errors. Select SYSTEM Press any key to continue.</td>
<td>The display shows: "instrument in local lockout". Menus seem to work but nothing happens when I reach the bottom level or try to execute a command. The terminal interface has been locked-out (HP-IB local lockout). You can re-enable menu operation by cancelling local lockout (from remote) or by cycling mainframe power.</td>
<td></td>
</tr>
<tr>
<td>Display cannot be removed from monitor mode.</td>
<td>Monitor mode was entered from remote (DISP:MON:STAT ON command) and the terminal interface has also been locked out (HP-IB local lockout). Either cancel the local lockout or execute DISP:MON:STAT OFF (from remote).</td>
<td></td>
</tr>
<tr>
<td>Display shows: Can not connect to instrument Press any key to continue.</td>
<td>A hardware or software problem has occurred in the instrument preventing it from responding to terminal interface control.</td>
<td></td>
</tr>
<tr>
<td>After selecting an instrument the display shows: "busy".</td>
<td>The instrument is busy performing an operation. Press Clear Instr to abort the instrument operations and allow the terminal interface to access the instrument.</td>
<td></td>
</tr>
<tr>
<td>Display shows: Instrument in use by another display. Press any key to continue.</td>
<td>The instrument has already been selected from the Front Panel. An instrument can only be "attached" to one display at a time. At the Front Panel, press Select Instr. The instrument can now be selected from the terminal interface.</td>
<td></td>
</tr>
</tbody>
</table>
Instrument Menus

This section contains charts showing the structure and content for all terminal interface instrument menus. Also shown in the charts are the SCPI or Common Commands used and descriptions of menu-controlled instrument operations. This section contains the following charts:

- System Instrument Menu 3-26
- Switchbox Menu 3-28
- Scanning Voltmeter Menu 3-30
- HP E1326A 5 1/2 Digit Multimeter Menu 3-32
- HP E1328A 4-Channel D/A Converter Menu 3-33
- HP E1330A Quad 8-Bit Digital I/O Menu 3-34
- HP E1332A 4-Channel Counter/Totalizer Menu 3-36
- HP E1333A 3-Channel Universal Counter Menu .. 3-38
System Instrument Menu

Menu Levels and Content

<table>
<thead>
<tr>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
<th>Level 5</th>
<th>Level 6</th>
<th>User Entry</th>
<th>Command(s) Used</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSTEM</td>
<td>CONFIG?</td>
<td>LADDR</td>
<td>DEVICE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HP-IB</td>
<td>READ</td>
<td>SET</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RS232</td>
<td>READ</td>
<td>SET</td>
<td>300</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2400</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PARITY</td>
<td>READ</td>
<td>EVEN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ODD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ONE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ZERO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BITS</td>
<td>READ</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PACE</td>
<td>READ</td>
<td>XON/ OFF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(continued on following page)
System Instrument Menu

Menu Levels and Content

<table>
<thead>
<tr>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
<th>Level 5</th>
<th>Level 6</th>
<th>User Entry</th>
<th>Command(s) Used</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>card number</td>
<td>SYST: COMM: SER[n]:-CON:T DTR?</td>
<td>Read current setting for DTR line</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>card number</td>
<td>SYST: COMM: SER[n]:-CON:T DTR ON</td>
<td>Set DTR line to static +5V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>card number</td>
<td>SYST: COMM: SER[n]:-CON:T DTR OFF</td>
<td>Set DTR line to static -5V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>card number</td>
<td>SYST: COMM: SER[n]:-CON:T DTR IBF</td>
<td>Set DTR for hardware handshaking</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>card number</td>
<td>SYST: COMM: SER[n]:-CON:T DTR STAN</td>
<td>DTR operates to RS-232 standard</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>card number</td>
<td>SYST: COMM: SER[n]:-CON:T RTS?</td>
<td>Read current setting for RTS line</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>card number</td>
<td>SYST: COMM: SER[n]:-CON:T RTS ON</td>
<td>Set RTS line to static +5V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>card number</td>
<td>SYST: COMM: SER[n]:-CON:T RTS OFF</td>
<td>Set RTS line to static -5V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>card number</td>
<td>SYST: COMM: SER[n]:-CON:T RTS IBF</td>
<td>Set RTS for hardware handshaking</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>card number</td>
<td>SYST: COMM: SER[n]:-CON:T RTS STAN</td>
<td>RTS operates to RS-232 standard</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>card number</td>
<td>DIAG: COMM: SER[n]:STORE</td>
<td>Store current serial communications settings into non-volatile storage.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>laddr, reg_num</td>
<td>VXI: READ? <laddr>, <reg></td>
<td>Read register in AI6 address space.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>laddr, reg_num, data</td>
<td>VXI: WRIT <laddr>, <reg>, <data></td>
<td>Write data to register in AI6 address space.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>time</td>
<td>SYST: TIME?</td>
<td>Read the current system clock.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SYST: TIME <time></td>
<td>Set the system clock.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>date</td>
<td>SYST: DATE?</td>
<td>Read the current system calendar.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SYST: DATE <date></td>
<td>Set the system calendar.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DIAG: BOOT</td>
<td>Resets mainframe using the configuration stored in non-volatile memory.</td>
<td></td>
</tr>
</tbody>
</table>
Switchbox Menu

Menu Levels and Content

<table>
<thead>
<tr>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>User Entry</th>
<th>Command(s) Used</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWITCH</td>
<td>MONITOR</td>
<td></td>
<td>card number ‡ or AUTO</td>
<td>DISP:MON;CARD <card_number> ; STATON</td>
<td>Monitor instrument operations</td>
</tr>
<tr>
<td></td>
<td>OPEN</td>
<td></td>
<td>channel list †</td>
<td>OPEN (@channel_list)</td>
<td>Open channel(s)</td>
</tr>
<tr>
<td></td>
<td>CLOSE</td>
<td></td>
<td>channel list †</td>
<td>CLOS (@channel_list)</td>
<td>Close channel(s)</td>
</tr>
<tr>
<td>SCAN</td>
<td>SET_UP</td>
<td></td>
<td>channel list †</td>
<td>TRIG:SOUR HOLD;SCAN <channel_list>; INIT</td>
<td>Set up channels to scan</td>
</tr>
<tr>
<td></td>
<td>STEP</td>
<td></td>
<td>channel list †</td>
<td>TRIG</td>
<td>Step to next channel in scan list</td>
</tr>
<tr>
<td>CARD</td>
<td>TYPE?</td>
<td></td>
<td>card number ‡</td>
<td>SYST:CTYP? <card_number></td>
<td>Display module ID information</td>
</tr>
<tr>
<td></td>
<td>DESCR?</td>
<td></td>
<td>card number ‡</td>
<td>SYST:CDES? <card_number></td>
<td>Display module description</td>
</tr>
<tr>
<td></td>
<td>RESET?</td>
<td></td>
<td>card number ‡</td>
<td>SYST:CPON <card_number></td>
<td>Return module to power-on state</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>*TST?</td>
<td></td>
<td>Runs self-test, displays results (+0 = pass; any other number = fail)</td>
</tr>
</tbody>
</table>

† Channel lists are of the form “ccnn” (single channel), “ccnn,ccnn” (two or more channels) or “ccnn:ccnn” (range of channels); where “cc” is the card number and “nn” is the channel number. For example, to access channel 2 on card number 1 specify 102.

‡ The card number identifies a module within the Switchbox. The switch module with the lowest logical address is always card number 01. The switch module with the next successive logical address is card number 02 and so on.
Scanning Voltmeter Menu

Menu Levels and Content

<table>
<thead>
<tr>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
<th>User Entry</th>
<th>Command(s) Used</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOLTMTR</td>
<td>MONITOR</td>
<td></td>
<td></td>
<td>channel list † or 0 for auto</td>
<td>DISP:MON:CHAN <channel_list>;STAT ON</td>
<td>Monitor instrument operations</td>
</tr>
<tr>
<td></td>
<td>VDC</td>
<td></td>
<td></td>
<td>channel list †</td>
<td>MEAS:VOLT:DC? <channel_list></td>
<td>Measure DC voltage on each channel</td>
</tr>
<tr>
<td></td>
<td>VAC</td>
<td></td>
<td></td>
<td>channel list †</td>
<td>MEAS:VOLT:AC? <channel_list></td>
<td>Measure AC voltage on each channel</td>
</tr>
<tr>
<td></td>
<td>OHM</td>
<td></td>
<td></td>
<td>channel list †</td>
<td>MEAS:RES? <channel_list></td>
<td>Measure 2-wire resistance on each channel</td>
</tr>
<tr>
<td>TEMP</td>
<td>TCOPPEL</td>
<td>B</td>
<td></td>
<td>channel list †</td>
<td>MEAS:TEMP? TC,B, <channel_list></td>
<td>Measure °C of B thermocouple on each channel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E</td>
<td></td>
<td>channel list †</td>
<td>MEAS:TEMP? TC,E, <channel_list></td>
<td>Measure °C of E thermocouple on each channel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J</td>
<td></td>
<td>channel list †</td>
<td>MEAS:TEMP? TC,J, <channel_list></td>
<td>Measure °C of J thermocouple on each channel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K</td>
<td></td>
<td>channel list †</td>
<td>MEAS:TEMP? TC,K, <channel_list></td>
<td>Measure °C of K thermocouple on each channel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N14</td>
<td></td>
<td>channel list †</td>
<td>MEAS:TEMP? TC,N14, <channel_list></td>
<td>Measure °C of N14 thermocouple on each channel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N28</td>
<td></td>
<td>channel list †</td>
<td>MEAS:TEMP? TC,N28, <channel_list></td>
<td>Measure °C of N28 thermocouple on each channel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R</td>
<td></td>
<td>channel list †</td>
<td>MEAS:TEMP? TC,R, <channel_list></td>
<td>Measure °C of R thermocouple on each channel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td>channel list †</td>
<td>MEAS:TEMP? TC,S, <channel_list></td>
<td>Measure °C of S thermocouple on each channel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T</td>
<td></td>
<td>channel list †</td>
<td>MEAS:TEMP? TC,T, <channel_list></td>
<td>Measure °C of T thermocouple on each channel</td>
</tr>
<tr>
<td>THERMS</td>
<td>2252</td>
<td></td>
<td></td>
<td>channel list †</td>
<td>MEAS:TEMP? THER,2252, <channel_list></td>
<td>Measure °C of 2252 Ω thermistor on each channel</td>
</tr>
<tr>
<td></td>
<td>5K</td>
<td></td>
<td></td>
<td>channel list †</td>
<td>MEAS:TEMP? THER,5000, <channel_list></td>
<td>Measure °C of 5k Ω thermistor on each channel</td>
</tr>
<tr>
<td></td>
<td>10K</td>
<td></td>
<td></td>
<td>channel list †</td>
<td>MEAS:TEMP? THER,10000, <channel_list></td>
<td>Measure °C of 10k Ω thermistor on each channel</td>
</tr>
<tr>
<td>R1D</td>
<td>385</td>
<td></td>
<td></td>
<td>channel list †</td>
<td>MEAS:TEMP? R1D,385, <channel_list></td>
<td>Measure °C of 385 Ω R1D on each channel (4-wire)</td>
</tr>
<tr>
<td></td>
<td>392</td>
<td></td>
<td></td>
<td>channel list †</td>
<td>MEAS:TEMP? R1D,392, <channel_list></td>
<td>Measure °C of 392 Ω R1D on each channel (4-wire)</td>
</tr>
<tr>
<td>STRAIN</td>
<td>QUARTER</td>
<td></td>
<td></td>
<td>channel list †</td>
<td>MEAS:STR:QUAR? <channel_list></td>
<td>Measure strain with quarter bridge</td>
</tr>
<tr>
<td></td>
<td>HALF</td>
<td>BENDING</td>
<td></td>
<td>channel list †</td>
<td>MEAS:STR:HBEN? <channel_list></td>
<td>Measure strain with bending half bridge</td>
</tr>
<tr>
<td></td>
<td></td>
<td>POISSON</td>
<td></td>
<td>channel list †</td>
<td>MEAS:STR:POISS? <channel_list></td>
<td>Measure strain with Poisson half bridge</td>
</tr>
<tr>
<td></td>
<td>FULL</td>
<td>BENDING</td>
<td></td>
<td>channel list †</td>
<td>MEAS:STR:FREN? <channel_list></td>
<td>Measure strain with bending full bridge</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BENPOSE</td>
<td></td>
<td>channel list †</td>
<td>MEAS:STR:HREN? <channel_list></td>
<td>Measure strain with Poisson half bridge</td>
</tr>
<tr>
<td></td>
<td></td>
<td>POISSON</td>
<td></td>
<td>channel list †</td>
<td>MEAS:STR:POISS? <channel_list></td>
<td>Measure strain with Poisson full bridge</td>
</tr>
</tbody>
</table>

(continued on following page)
Scanning Voltmeter Menu

Menu Levels and Content

<table>
<thead>
<tr>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
<th>User Entry</th>
<th>Command(s) Used</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>channel list †</td>
<td>MEAS: STR: UNST? <channel_list></td>
</tr>
<tr>
<td>UNSTRN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>channel list †</td>
<td>MEAS: STR: QCMT? <channel_list></td>
</tr>
<tr>
<td>DIAG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>channel list †</td>
<td>MEAS: STR: QTN? <channel_list></td>
</tr>
<tr>
<td>TENSION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MEAS: STR: CTYP? <card_number></td>
<td>Displays module ID information</td>
</tr>
<tr>
<td>CARD</td>
<td>TYPE?</td>
<td></td>
<td></td>
<td>card number ‡</td>
<td>SYST: CDES? <card_number></td>
<td>Displays module description</td>
</tr>
<tr>
<td>DESCR?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*IST?</td>
<td>Runs self-test, displays results (+0 = pass; any other number = fail)</td>
</tr>
</tbody>
</table>

† Channel lists are of the form “ccnn” (single channel), “ccnn:ccnn” (two or more channels) or “ccnn:ccnn” (range of channels), where “cc” is the card number and “nn” is the channel number. For example, to access channel 2 on card number 1 specify 102.

‡ The card number identifies a module within the Switchbox. The switch module with the lowest logical address is always card number 01. The switch module with the next successive logical address is card number 02 and so on.
<table>
<thead>
<tr>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
<th>User Entry</th>
<th>Command(s) Used</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOLTMTR</td>
<td>MONITOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VDC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OHM</td>
<td>TEMP</td>
<td>THERMIS</td>
<td>2252</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-5K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RTD</td>
<td>MEAS:TEMP FTH,2252</td>
<td>Measure °C of 2252Ω thermistor (4-wire measurement)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MEAS:TEMP FTH,5000</td>
<td>Measure °C of 5kΩ thermistor (4-wire measurement)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MEAS:TEMP FTH,10000</td>
<td>Measure °C of 10kΩ thermistor (4-wire measurement)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>385</td>
<td>MEAS:TEMP FRTD,85?</td>
<td>Measurement °C of 100Ω RTD with alpha = 385 (4-wire measurement)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>392</td>
<td>MEAS:TEMP FRTD,92?</td>
<td>Measurement °C of 100Ω RTD with alpha = 392 (4-wire measurement)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*TST?</td>
<td></td>
<td>Run self-test, display results (0 = pass; any other number = fail)</td>
</tr>
</tbody>
</table>

† Channel lists are of the form “cnn” (single channel), “cnn,cnn” (two or more channels) or “cnn:nnnn” (range of channels), where “c” is the card number and “nn” is the channel number. For example, to access channel 2 on card number 1 specify 102.

‡ The card number identifies a module within the Switchbox. The switch module with the lowest logical address is always card number 01. The switch module with the next successive logical address is card number 02 and so on.
HP E1328A 4-Channel D/A Converter Menu

Menu Levels and Content

<table>
<thead>
<tr>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
<th>User Entry</th>
<th>Command(s) Used</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D/A</td>
<td>MONITOR</td>
<td>CHAN1</td>
<td></td>
<td>DISP.MON:CHAN 1;STAT ON</td>
<td>Monitor instrument operations on channel 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHAN2</td>
<td></td>
<td>DISP.MON:CHAN 2;STAT ON</td>
<td>Monitor instrument operations on channel 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHAN3</td>
<td></td>
<td>DISP.MON:CHAN 3;STAT ON</td>
<td>Monitor instrument operations on channel 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHAN4</td>
<td></td>
<td>DISP.MON:CHAN 4;STAT ON</td>
<td>Monitor instrument operations on channel 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AUTO</td>
<td></td>
<td>DISP.MON:CHAN AUTO;STAT ON</td>
<td>Monitor instrument operations on active channel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OUTPUT</td>
<td>VOLTAGE</td>
<td>CHAN1</td>
<td>voltage †</td>
<td>VOLT1 <voltage></td>
<td>Output voltage on channel 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CHAN2</td>
<td>voltage †</td>
<td>VOLT2 <voltage></td>
<td>Output voltage on channel 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CHAN3</td>
<td>voltage †</td>
<td>VOLT3 <voltage></td>
<td>Output voltage on channel 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CHAN4</td>
<td>voltage †</td>
<td>VOLT4 <voltage></td>
<td>Output voltage on channel 4</td>
</tr>
<tr>
<td></td>
<td>CURRENT</td>
<td>CHAN1</td>
<td></td>
<td>current ‡</td>
<td>CURR1 <current></td>
<td>Output current on channel 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHAN2</td>
<td></td>
<td>current ‡</td>
<td>CURR2 <current></td>
<td>Output current on channel 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHAN3</td>
<td></td>
<td>current ‡</td>
<td>CURR3 <current></td>
<td>Output current on channel 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHAN4</td>
<td></td>
<td>current ‡</td>
<td>CURR4 <current></td>
<td>Output current on channel 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*TST?</td>
<td></td>
<td>Run self-test, display results (+0 =pass; any other number = fail)</td>
</tr>
</tbody>
</table>

†Enter voltage values in volts. Typical examples are: +3.5, -2, +500E-3.
‡Enter current values in amps. Typical examples are: .05, +200E-3.
HP E1330A Quad 8-Bit Digital Input/Output Menu

Menu Levels and Content

<table>
<thead>
<tr>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
<th>User Entry</th>
<th>Command(s) Used</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIG U/O</td>
<td>MONITOR</td>
<td>PORT0</td>
<td></td>
<td>DISP: MON; CHAN 0; STAT ON</td>
<td>Monitor instrument operations on port 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PORT1</td>
<td></td>
<td>DISP: MON; CHAN 1; STAT ON</td>
<td>Monitor instrument operations on port 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PORT2</td>
<td></td>
<td>DISP: MON; CHAN 2; STAT ON</td>
<td>Monitor instrument operations on port 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PORT3</td>
<td></td>
<td>DISP: MON; CHAN 3; STAT ON</td>
<td>Monitor instrument operations on port 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AUTO</td>
<td></td>
<td>DISP: MON; CHAN AUTO; STAT ON</td>
<td>Monitor instrument operations on any active port</td>
<td></td>
</tr>
<tr>
<td>READ</td>
<td>R_BYTE</td>
<td>PORT0</td>
<td></td>
<td>DIG: HAND0: MODE NONE; MEAS: DIG: DATA0?</td>
<td>Reads port 0 after handshake</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PORT1</td>
<td></td>
<td>DIG: HAND1: MODE NONE; MEAS: DIG: DATA1?</td>
<td>Reads port 1 after handshake</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PORT2</td>
<td></td>
<td>DIG: HAND2: MODE NONE; MEAS: DIG: DATA2?</td>
<td>Reads port 2 after handshake</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PORT3</td>
<td></td>
<td>DIG: HAND3: MODE NONE; MEAS: DIG: DATA3?</td>
<td>Reads port 3 after handshake</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R_BIT</td>
<td>PORT0</td>
<td></td>
<td>bit (0-7)</td>
<td>DIG: HAND0: MODE NONE; MEAS: DIG: DATA0: BITm?</td>
<td>Reads bit m on port 0 after handshake</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PORT1</td>
<td></td>
<td>bit (0-7)</td>
<td>DIG: HAND1: MODE NONE; MEAS: DIG: DATA1: BITm?</td>
<td>Reads bit m on port 1 after handshake</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PORT2</td>
<td></td>
<td>bit (0-7)</td>
<td>DIG: HAND2: MODE NONE; MEAS: DIG: DATA2: BITm?</td>
<td>Reads bit m on port 2 after handshake</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PORT3</td>
<td></td>
<td>bit (0-7)</td>
<td>DIG: HAND3: MODE NONE; MEAS: DIG: DATA3: BITm?</td>
<td>Reads bit m on port 3 after handshake</td>
</tr>
<tr>
<td>WRITE</td>
<td>W_BYTE</td>
<td>PORT0</td>
<td></td>
<td>data (0-255)</td>
<td>DIG: HAND0: MODE NONE; DIG: DATA0 <data></td>
<td>Writes data to port 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PORT1</td>
<td></td>
<td>data (0-255)</td>
<td>DIG: HAND1: MODE NONE; DIG: DATA1 <data></td>
<td>Writes data to port 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PORT2</td>
<td></td>
<td>data (0-255)</td>
<td>DIG: HAND2: MODE NONE; DIG: DATA2 <data></td>
<td>Writes data to port 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PORT3</td>
<td></td>
<td>data (0-255)</td>
<td>DIG: HAND3: MODE NONE; DIG: DATA3 <data></td>
<td>Writes data to port 3</td>
</tr>
<tr>
<td></td>
<td>W_BIT</td>
<td>PORT0</td>
<td></td>
<td>bit (0-7), value (0,1)</td>
<td>DIG: HAND0: MODE NONE; DIG: DATA0: BITm <value></td>
<td>Writes data to bit m on port 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PORT1</td>
<td></td>
<td>bit (0-7), value (0,1)</td>
<td>DIG: HAND1: MODE NONE; DIG: DATA1: BITm <value></td>
<td>Writes data to bit m on port 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PORT2</td>
<td></td>
<td>bit (0-7), value (0,1)</td>
<td>DIG: HAND2: MODE NONE; DIG: DATA2: BITm <value></td>
<td>Writes data to bit m on port 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PORT3</td>
<td></td>
<td>bit (0-7), value (0,1)</td>
<td>DIG: HAND3: MODE NONE; DIG: DATA3: BITm <value></td>
<td>Writes data to bit m on port 3</td>
</tr>
</tbody>
</table>
HP E1332A 4-Channel Counter/Totalizer Menu

Menu Levels and Content

<table>
<thead>
<tr>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
<th>Level 5</th>
<th>User Entry</th>
<th>Command(s) Used</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COUNTER</td>
<td>MONITOR</td>
<td>CHAN1</td>
<td></td>
<td></td>
<td>DISP: MON; CHAN 1; STAT: ON</td>
<td>Monitor instrument operations on channel 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHAN2</td>
<td></td>
<td></td>
<td>DISP: MON; CHAN 2; STAT: ON</td>
<td>Monitor instrument operations on channel 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHAN3</td>
<td></td>
<td></td>
<td>DISP: MON; CHAN 3; STAT: ON</td>
<td>Monitor instrument operations on channel 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHAN4</td>
<td></td>
<td></td>
<td>DISP: MON; CHAN 4; STAT: ON</td>
<td>Monitor instrument operations on channel 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AUTO</td>
<td></td>
<td></td>
<td>DISP: MON; CHAN AUTO; STAT: ON</td>
<td>Monitor instrument operations on active channel</td>
<td></td>
</tr>
<tr>
<td>INPUT</td>
<td></td>
<td>LEVEL</td>
<td></td>
<td></td>
<td></td>
<td>voltage †</td>
<td>Set level trigger voltage for channels 1 & 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHAN1 &2</td>
<td></td>
<td></td>
<td></td>
<td>†</td>
<td>Set level trigger voltage for channels 3 & 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHAN3 &4</td>
<td></td>
<td></td>
<td></td>
<td>voltage †</td>
<td>Set level trigger voltage for channels 3 & 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SLOPE</td>
<td></td>
<td></td>
<td></td>
<td>†</td>
<td>Set level trigger voltage for channels 3 & 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHAN1</td>
<td>POS</td>
<td></td>
<td>SET: SLOP POS</td>
<td>Positive level trigger slope for channel 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NEG</td>
<td></td>
<td>SET: SLOP NEG</td>
<td>Negative level trigger slope for channel 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHAN2</td>
<td>POS</td>
<td></td>
<td>SET: SLOP POS</td>
<td>Positive level trigger slope for channel 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NEG</td>
<td></td>
<td>SET: SLOP NEG</td>
<td>Negative level trigger slope for channel 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHAN3</td>
<td>POS</td>
<td></td>
<td>SET: SLOP POS</td>
<td>Positive level trigger slope for channel 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NEG</td>
<td></td>
<td>SET: SLOP NEG</td>
<td>Negative level trigger slope for channel 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHAN4</td>
<td>POS</td>
<td></td>
<td>SET: SLOP POS</td>
<td>Positive level trigger slope for channel 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NEG</td>
<td></td>
<td>SET: SLOP NEG</td>
<td>Negative level trigger slope for channel 4</td>
<td></td>
</tr>
<tr>
<td>ISOLATE</td>
<td></td>
<td>ON</td>
<td></td>
<td></td>
<td>INP: ISOL ON</td>
<td>Input isolation on</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>OFF</td>
<td></td>
<td></td>
<td>INP: ISOL OFF</td>
<td>Input isolation off</td>
<td></td>
</tr>
<tr>
<td>FILTER</td>
<td></td>
<td>ON</td>
<td></td>
<td></td>
<td>INP: FILT ON</td>
<td>Input filter on</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>OFF</td>
<td></td>
<td></td>
<td>INP: FILT OFF</td>
<td>Input filter off</td>
<td></td>
</tr>
<tr>
<td>frequenc†</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SET: FRQ</td>
<td>Set input filter frequency</td>
<td></td>
</tr>
<tr>
<td>FREQ</td>
<td></td>
<td>CHAN1</td>
<td></td>
<td></td>
<td>TRIG: SOUR IMM; MEAS: FREQ?</td>
<td>Frequency measurement on channel 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHAN3</td>
<td></td>
<td></td>
<td>TRIG: SOUR IMM; MEAS: FREQ?</td>
<td>Frequency measurement on channel 3</td>
<td></td>
</tr>
<tr>
<td>PERIOD</td>
<td></td>
<td>CHAN1</td>
<td></td>
<td></td>
<td>TRIG: SOUR IMM; MEAS: PER?</td>
<td>Frequency measurement on channel 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHAN3</td>
<td></td>
<td></td>
<td>TRIG: SOUR IMM; MEAS: PER?</td>
<td>Frequency measurement on channel 3</td>
<td></td>
</tr>
</tbody>
</table>

(continued on following page)
HP E1332A 4-Channel Counter/Totalizer Menu

Menu Levels and Content

<table>
<thead>
<tr>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
<th>Level 5</th>
<th>User Entry</th>
<th>Command(s) Used</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(continued from previous page)</td>
</tr>
</tbody>
</table>

- **TIMEINT**
 - **CHAN1**
 - **CHAN3**
- **POS_PW**
 - **CHAN2**
 - **CHAN4**
- **NEG_PW**
 - **CHAN2**
 - **CHAN4**
- **UDCOUNT**
 - **CHAN1**
 - START
 - READ
 - **CHAN3**
 - START
 - READ
- **TOTALIZ**
 - **CHAN1**
 - START
 - READ
 - **CHAN2**
 - START
 - READ
 - **CHAN3**
 - START
 - READ
 - **CHAN4**
 - START
 - READ

- **TST**

TRIG SOUR IMM.:: MEAS1: TINT?	Time interval measurement on channel 1
TRIG SOUR IMM.:: MEAS3: TINT?	Time interval measurement on channel 3
TRIG SOUR IMM.:: MEAS2: PWID?	Positive pulse width measurement on channel 2
TRIG SOUR IMM.:: MEAS4: PWID?	Positive pulse width measurement on channel 4
TRIG SOUR IMM.:: MEAS2: NWID?	Negative pulse width measurement on channel 2
TRIG SOUR IMM.:: MEAS4: NWID?	Negative pulse width measurement on channel 4
TRIG SOUR IMM.:: CONF1: UDC; INIT1	Up/down count, subtract ch. 2 count from ch. 1 count
FETC1?	Get up/down count from channels 1 & 2
TRIG SOUR IMM.:: CONF3: UDC; INIT3	Up/down count, subtract ch. 4 count from ch. 3 count
FETC3?	Get up/down count from channels 3 & 4
TRIG SOUR IMM.:: CONF1: TOT; INIT1	Totalize on channel 1
FETC1?	Get totalize count on channel 1
TRIG SOUR IMM.:: CONF2: TOT; INIT2	Totalize on channel 2
FETC2?	Get totalize count on channel 2
TRIG SOUR IMM.:: CONF3: TOT; INIT3	Totalize on channel 3
FETC3?	Get totalize count on channel 3
TRIG SOUR IMM.:: CONF4: TOT; INIT4	Totalize on channel 4
FETC4?	Get totalize count on channel 4
*TST?	Run self-test, display results (+0 = pass; any other number = fail)

†Enter voltage values in volts. Typical examples are: +3.5, -2, +500E-3.
‡Enter frequency value in hertz. Typical examples are: 60, 120, 1E3.
HP E1333A 3-Channel Universal Counter
Menu

Menu Levels and Content

<table>
<thead>
<tr>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
<th>Level 5</th>
<th>User Entry</th>
<th>Command(s) Used</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COUNTER</td>
<td>MONITOR</td>
<td>CHAN1</td>
<td></td>
<td></td>
<td></td>
<td>DISP:MON:CHAN 1;STAT ON</td>
<td>Monitor instrument operations on channel 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHAN2</td>
<td></td>
<td></td>
<td></td>
<td>DISP:MON:CHAN 2;STAT ON</td>
<td>Monitor instrument operations on channel 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHAN3</td>
<td></td>
<td></td>
<td></td>
<td>DISP:MON:CHAN 3;STAT ON</td>
<td>Monitor instrument operation on channel 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AUTO</td>
<td></td>
<td></td>
<td></td>
<td>DISP:MON:CHAN AUTO;STAT ON</td>
<td>Monitor instrument operations on active channel</td>
</tr>
<tr>
<td></td>
<td>INPUT</td>
<td>LEVEL</td>
<td></td>
<td></td>
<td></td>
<td>SENS1:EVEN:LEV<value></td>
<td>Set trigger level voltage for channel 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SENS2:EVEN:LEV<value></td>
<td>Set trigger level voltage for channel 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>COUPLE</td>
<td>SENS1:EVEN:SLOP POS</td>
<td>Positive trigger slope for channel 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SENS1:EVEN:SLOP NEG</td>
<td>Negative trigger slope for channel 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SLOPE</td>
<td>SENS2:EVEN:SLOP POS</td>
<td>Positive trigger slope for channel 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SENS2:EVEN:SLOP NEG</td>
<td>Negative trigger slope for channel 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IMPED</td>
<td>INP:COUP AC</td>
<td>AC-coupled input (channels 1 & 2 only)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50_OHM</td>
<td>INP:COUP DC</td>
<td>DC-coupled input (channels 1 & 2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1_MOHM</td>
<td>INP:IMP 50</td>
<td>50Ω input resistance (channels 1 & 2 only)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ATTEN</td>
<td>INP:IMP 1k6</td>
<td>1MΩ input resistance (channels 1 & 2 only)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FILTER</td>
<td>INP:ATT 0</td>
<td>No input attenuation (channels 1 & 2 only)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>INP:ATT 20</td>
<td>20dB input attenuation (channels 1 & 2 only)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>INP:FILT ON</td>
<td>Input filter on (channels 1 & 2 only)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>INP:FILT OFF</td>
<td>Input filter off (channels 1 & 2 only)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FREQUENCY</td>
<td>TRIG:SOUR IMM;:MEAS1:FREQ?</td>
<td>Frequency measurement on channel 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PERIOD</td>
<td>TRIG:SOUR IMM;:MEAS2:FREQ?</td>
<td>Frequency measurement on channel 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TRIG:SOUR IMM;:MEAS3:FREQ?</td>
<td>Frequency measurement on channel 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TRIG:SOUR IMM;:MEAS1:PER?</td>
<td>Period measurement on channel 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TRIG:SOUR IMM;:MEAS2:PER?</td>
<td>Period measurement on channel 2</td>
</tr>
</tbody>
</table>

(continued on following page)
HP E1333A 3-Channel Universal Counter
Menu Levels and Content

<table>
<thead>
<tr>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
<th>Level 5</th>
<th>User Entry</th>
<th>Command(s) Used</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(continued from previous page)</td>
<td>TRIG:SOUR IMM;:MEAS1:TINT?</td>
<td>Time interval measurement on channel 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TRIG:SOUR IMM;:MEAS1:TINT?</td>
<td>Time interval measurement on channel 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TRIG:SOUR IMM;:MEAS1:PWID?</td>
<td>Positive pulse width measurement on channel 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TRIG:SOUR IMM;:MEAS2:PWID?</td>
<td>Positive pulse width measurement on channel 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TRIG:SOUR IMM;:MEAS1:NWID?</td>
<td>Negative pulse width measurement on channel 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TRIG:SOUR IMM;:MEAS2:NWID?</td>
<td>Negative pulse width measurement on channel 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TRIG:SOUR IMM;:MEAS1:RAT?</td>
<td>Ratio of channel 1/channel 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TRIG:SOUR IMM;:MEAS2:RAT?</td>
<td>Ratio of channel 2/channel 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TRIG:SOUR IMM;:CONF1:TOT;:INIT1</td>
<td>Totalize on channel 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FETC1?</td>
<td>Display totalize count</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TRIG:SOUR IMM;:CONF2:TOT;:INIT2</td>
<td>Totalize on channel 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FETC2?</td>
<td>Display totalize count</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*TST?</td>
<td>Run self-test, display results (+0 = pass; any other number = fail)</td>
</tr>
</tbody>
</table>

†Enter voltage values in volts. Typical examples are: +3.5, -2, +500E-3.
Chapter 4

Using the Mainframe

Using this Chapter

This chapter shows how to use the mainframe's Pacer function, how to change the primary HP-IB address, and how to synchronize internal and external instruments using the mainframe's Event In and Trigger Out ports. This chapter also discusses how mainframe memory is used by installed instruments. Where possible, examples show only the command string sent to the instrument (no information about a computer language or interface is shown). Examples that require showing a computer language are written for HP 9000 Series 200/300 Computers using HP BASIC language and the HP-IB interface. This chapter contains the following sections:

- Using the Pacer .. 4-1
- Changing the Primary HP-IB Address 4-3
- Synchronizing Internal and External Instruments 4-3
- Mainframe Data Memory 4-6

Using the Pacer

The Pacer generates a square wave signal on the mainframe's rear panel Pacer Out connector. The signal levels are standard TTL levels (0V to 5V). The Pacer signal can be used to trigger or pace external equipment such as scanners or voltmeters. Figure 4-1 shows a single cycle of the Pacer output with a specified period of 1 second.

The following SCPI commands control the Pacer:

![Pacer Out Square Wave](image)

Figure 4-1. Pacer Out Square Wave

Using the Mainframe 4-1
- SOUR: PULS: COUN sets the number of Pacer cycles. Specify from 1 to 8388607 cycles or specify INF for a continuous output.
- SOUR: PULS: PER sets the period of each Pacer cycle. You can specify periods from 500ns to 8.3 seconds.
- TRIG: SOUR sets the trigger source. The Pacer signal is output whenever the trigger event occurs (specified by the TRIG:SOUR command) and the INIT: IMM command has been executed.

Example: Pacing an External Scanner This example pacers an external scanner connected to the mainframe’s Pacer Out port. Each negative-going transition of the square wave advances to the next channel in the scanner’s channel list. In this example, the Pacer outputs 10 periods of 1 second each.

```
ABORT
SOUR: PULS: COUN 10
SOUR: PULS: PER 1
TRIG: SOUR IMM
INIT: IMM
```

- **Set Pacer trigger system to Idle State**
- **Configure Pacer for 10 cycles**
- **Square wave period = 1 second**
- **Trigger Pacer (when INIT is executed)**
- **Place Pacer in Wait for Trigger State**

Example: Continuous Pacer Out Signal This example generates a continuous signal with a period of 250ms. The signal will begin when the trigger event (EXT) occurs (a negative-going transition on the mainframe’s Event In connector).

```
ABORT
SOUR: PULS: COUN INF
SOUR: PULS: PER 250E-3
TRIG: SOUR EXT
INIT: IMM
```

- **Set Pacer trigger system to Idle State**
- **Configure Pacer for continuous output**
- **Square wave period = 250 milliseconds**
- **Trigger Pacer on external signal**
- **Place Pacer in Wait for Trigger State**

Pacer Trigger States

Figure 4-2 shows that the Pacer’s trigger system has an Idle State, a Wait for Trigger State, and a Pacer Action State. When you apply power, reset the system, or execute the ABORT command, the trigger system goes to the Idle State. You can configure the Pacer (SOURce subsystem) and specify the trigger source (TRIG: SOUR command) while in the Idle State. Executing the INIT: IMM command places the Pacer in the Wait for Trigger State. Now when the trigger event occurs, the Pacer will move to the Pacer Action State and begin outputting the specified number of square wave cycles. Once the Pacer has begun outputting, the trigger system returns to the Idle State.
Changing the Primary HP-IB Address

You can set the mainframe’s primary HP-IB address to any integer value between 0 and 30. The address is set to 9 at the factory. (See Chapter 2 for instructions on setting/reading the HP-IB address from the front panel.) The following command sets the mainframe’s primary HP-IB address to 12.

SYST:COMM:GPIB:ADDR 12

Synchronizing Internal and External Instruments

The mainframe’s Trig Out and Event In ports allow you to synchronize external equipment to instruments operating within the mainframe. The Trig Out port allows an instrument in the mainframe to output a negative-going pulse to indicate the occurrence of some event such as a multiplexer channel closure. The signal levels are standard TTL (0V to 5V). You direct the pulse from the appropriate instrument to the Trig Out port by sending the OUTP:STAT ON command to that instrument.

The Event In port allows an instrument in the mainframe to be armed or triggered from an external negative-going signal. The signal levels are standard TTL (0V to 5V). Send the ARM:SOUR:EXT command or the TRIG:SOUR:EXT command to an instrument to direct the signal on the Event In port to that instrument.

The following examples use an external HP 3457A Multimeter and an internal HP E1345A 16-Channel Multiplexer to demonstrate the use of the Trig Out and Event In ports.
Example: Synchronizing an Internal Instrument to an External Instrument

This example uses the mainframe's Trig Out and Event In ports to synchronize an external multimeter to a multiplexer installed in the mainframe. Connections are shown in Figure 4-3. The multimeter's Voltmeter Complete port outputs a pulse whenever the multimeter has finished a reading. The multimeter's External Trigger port allows the multimeter to be triggered by a negative going TTL pulse. Since the synchronization is independent of the HP-IB bus and the computer, readings must be stored in the multimeter's reading memory. The sequence of operation is:

1. INIT (line 50) closes channel number 100.
2. The channel closure causes a pulse on Trig Out which triggers the multimeter to take a reading.
3. When the reading is complete it is stored in multimeter memory and the multimeter outputs a pulse on its Voltmeter Complete port. This signals the multiplexer to advance to the next channel in the scan list.
4. Steps 2 and 3 are repeated until all channels have been scanned and readings taken.

```
10 OUTPUT 722;"TRIG EXT;DCV;MEM FIFO"
   Set multimeter to external trigger, DC volts, enable reading memory
20 OUTPUT 70914;"OUTP ON"       Enable Trig Out port
30 OUTPUT 70914;"TRIG:SOUR EXT"  Set multiplexer to advance scan on external signal
40 OUTPUT 70914;"SCAN (@100:115)" Specify scan list (channels 100 to 115)
50 OUTPUT 70914;"INIT"           Close first channel (starts scanning cycle)
60 END
```

Example: Synchronizing Internal/External Instruments and the Computer This example uses the mainframe's Trig Out port to synchronize an external
multimeter to an internal multiplexer. Connections are shown in Figure 4-4. This method synchronizes the computer to the instruments and relies on the computer to enter each reading and advance to the next channel in the scan list. The sequence of operation is:

1. INIT (line 50) closes channel number 100.
2. The channel closure causes a pulse on Trig Out which triggers the multimeter to take a reading.
3. When the reading is complete it is sent to the computer (lines 60 to 80).
4. The computer sends Group Execute Trigger to the multiplexer (line 90); this advances to the next channel in the scan list.
5. Steps 2 through 4 are repeated until all channels have been scanned and readings taken.

10 OUTPUT 722;"TRIG EXT;DCV"
 \textit{Set multimeter to external trigger, DC voltage measurements}
20 OUTPUT 70914;"OUTP ON" \hspace{1cm} \textit{Enable Trig Out port}
30 OUTPUT 70914;"TRIG:SOUR BUS"
 \textit{Set multiplexer to advance scan on Group Execute Trigger or *TRG}
40 OUTPUT 70914;"SCAN (@100:115)"
 \textit{Specify scan list (channels 100 to 115)}
50 OUTPUT 70914;"INIT"
 \textit{Close first channel (starts scanning cycle)}
60 FOR I = 1 TO 16
 \textit{Loop through following lines 16 times}
70 ENTER 722;A
 \textit{Enter reading (computer waits until reading taken & received)}
80 PRINT A
 \textit{Print reading}
90 TRIGGER 70914
 \textit{Trigger multiplexer; advances to next channel}
100 NEXT I
110 END
Mainframe Data Memory

When power is applied or the system rebooted (DIAG:BOOT command), mainframe memory is automatically configured to provide a predefined amount of memory for any installed instruments that require memory space. For example, each multimeter instrument within the mainframe is allocated enough memory to store 100 readings.

Mainframe memory is also automatically re-allocated upon demand while programming. For example, if greater than 100 readings are requested for a multimeter, the mainframe computes the amount of memory required for these extra readings. If enough memory space is available, an additional amount is allocated to the multimeter and the readings are stored. If enough memory is not available, an error message occurs and the command is aborted. The memory allocated to an instrument above the initial power-on amount remains dedicated to that instrument until that instrument is reset (*RST command) or until power is cycled. Once de-allocated, the memory is available to other instruments.

Using Mainframe Data Memory

Commands that generate data and do not have a question mark (?) in their syntax store the data in mainframe memory. Faster instrument reading rates are possible when using reading memory versus sending data directly to an external computer. Storing readings in memory can also help to ensure that the period between paced readings is maintained at a constant value. When instrument data is stored in memory, it overwrites any data previously stored by that instrument. You can retrieve data stored in mainframe memory using the FETCh? command.
Example: Storing and Retrieving Data From Mainframe Memory. This example shows how to use mainframe memory to store 15 readings made using an HP E1326A Multimeter. After the readings are stored, they are retrieved by the computer and displayed.

```
10 REAL OHM_RGS(1:15) Create computer array for 15 readings
20 OUTPUT 70903;"CONF:FRES (@105:109)"
Configure multimeter for 4-wire resistance, scan channels 105 - 109
30 OUTPUT 70903;"RES:OCOM ON"
Enable offset compensation
40 OUTPUT 70903;"TRIG:COUN 3"
Cycle through scan list 3 times
50 OUTPUT 70903;"INIT"
Trigger multimeter, store the readings in mainframe memory
60 OUTPUT 70903;"FETCH?"
Get readings from mainframe memory
70 ENTER 70903;OHM_RGS(*)
Enter readings into computer
80 PRINT OHM_RGS (*) Display readings on computer
90 END
```

Non-Volatile User Memory

The System Instrument provides a way to allocate a segment of its non-volatile memory for storage and retrieval of user data. The structure and content of the data you store in this memory segment is up to you. The commands provided for data access merely store or retrieve a specified number of bytes. Commands for allocating and accessing the memory segment are implemented by the System Instrument (logical address, and HP-IB secondary address 0).

Allocating a User Memory Segment

The SCPI command DIAGnostic:NRAM:CREate <size> is used to allocate a segment of User non-volatile RAM. The amount of memory allocated is controlled by the size parameter. The DIAG:NRAM:CRE command informs the system of your request for a User RAM segment. The segment is not allocated until the system is reset (DIAG:BOOT command, or RESET from the front panel). Once the NRAM segment is allocated, you can consider it part of your System Instrument’s configuration. It will remain through power interruptions and system resets. Only the DIAG:BOOT:COLD, or DIAG:NRAM:CRE 0 commands can de-allocate the NRAM segment.

Note: I BASIC Users

Allocating an NRAM segment will de-allocate a previously allocated RDISK segment. To include both types; allocate them both before a reset, or allocate the NRAM segment, reset the system, then allocate the RDISK segment and again reset the system.

Locating the NRAM Segment

Since the system decides where in memory to locate the NRAM segment, you must execute the DIAG:NRAM:ADDRess? query to determine its starting
address. You will then know the starting address, and (from the ...
... NRAM:CRE <size> command) the length of the NRAM segment.

Example: Allocating an NRAM segment and locating it. This example shows how to allocate a small 128 byte NRAM segment. In addition, it shows how to determine the starting address of that segment.

```
define variables
10  REAL Addr,Size

128 byte NRAM segment
20  OUTPUT 70900;"DIAG:NRAM:CRE 128"

reset the system
30  OUTPUT 70900;"DIAG:BOOT"

allow time for reset to begin
40  WAIT 5

wait for self-test to complete
50  ON TIMEOUT 7,.1 GOTO Complete
60  Complete:B = SPOLL(70900)

query starting addr
70  OUTPUT 70900;"DIAG:NRAM:ADDR?"

enter starting addr
80  ENTER 70900;Addr

print it
90  PRINT USING ""31X,""Addr = "",8D"":Addr
```
Using :DOWNLOAD and :UPLOAD? to Access Data

The command DIAG:DOWNLOAD <address>,<data_block> is used to store data into the NRAM segment. The command DIAG:UPLOAD? <address>,<byte_count> is used to retrieve data from the NRAM segment. The address parameter in ...DOWNLOAD and ...UPLOAD? can specify any address within the capability of the System Instrument's control processor. The system does not restrict you from storing or retrieving data which is outside of the NRAM segment.

Caution

This capability to store (DOWNLOAD) data to any location in mainframe memory means that you could inadvertently change the contents of memory being used by the mainframe control processor. This will occur if:

- you specify a starting address for DOWNLOAD which is outside the NRAM segment
- you specify a starting address for DOWNLOAD which is inside the NRAM segment, but the data block you send extends past the end of the NRAM segment.

If either of these occur, operation of the mainframe will be disrupted. To restore operation:

1. turn the mainframe off and then back on.
2. while the mainframe is “Testing ROM”, press the Reset Instr button on the front panel or, for terminal users, press the CTRL and R keys.

This operation is the same as executing DIAG:BOOT:COLD

Data Formats for :DOWNLOAD

Data stored into NRAM using :DOWNLOAD can be sent in either Definite, or Indefinite Length Arbitrary Block Program Data formats (see Parameter Types in the beginning of Chapter 5). The Definite Length block format is recommended since the format includes a data length count which positively terminates the :DOWNLOAD command when that count is reached. If the Indefinite Length format's termination sequence (<newline> with END) is not received correctly, commands sent after the :DOWNLOAD command will be interpreted as more data and sent to memory, possibly overwriting system memory and disrupting mainframe operation.

The following example program will use the small NRAM segment created in the previous example. It will show how to store and retrieve:

- 64 ASCII characters
- thirty-two, 8 bit data bytes
- sixteen, 16 bit data words
Example: Storing and Retrieving data using DOWNload and UPLOAD.

define variables for DOWNload and UPLOAD
90 DIM Chars$[84], Chars_back$[80]
100 INTEGER Words(1:16), Bytes(1:32), Words_back(1:16),
 Bytes_back(1:32)

create string of characters
110 Chars$ = "1234567890123456789012345678901234567890"
 "123456789012345678901234567890"

create array of 16 bit data words
120 FOR I = 1 TO 16
130 Words(I) = 32700 + I
140 NEXT I

create array of 8 bit data bytes
150 FOR I = 1 TO 32
160 Bytes(I) = 63 + I
170 NEXT I

DOWNLOAD 16 words to NRAM segment
180 OUTPUT 70900 USING """"DIAG:DOWN "",8D","",#232"",16(W)"";
 Addr + 96, Words(*)

DOWNLOAD 32 bytes to NRAM segment
190 OUTPUT 70900 USING """"DIAG:DOWN "",8D","",#232"",32(B)"";
 Addr + 64, Bytes(*)

Download 64 characters to NRAM segment
200 OUTPUT 70900 USING """"DIAG:DOWN "",8D","",#264"",64A"";
 Addr, Chars$

UPLOAD 64 characters from NRAM segment
210 OUTPUT 70900 USING """"DIAG:UPL? "",8D","",64"";Addr
220 ENTER 70900 USING ""4X,64A""; Chars_back$
230 PRINT TAB(5); Chars_back$

UPLOAD 32 data bytes from NRAM segment
240 OUTPUT 70900 USING """"DIAG:UPL? "",8D","",32"";Addr + 64
250 ENTER 70900 USING ""4X,32(B)""; Bytes_back(*)
260 PRINT Bytes_back(*)

UPLOAD 16 data words from NRAM segment
270 OUTPUT 70900 USING """"DIAG:UPL? "",8D","",32"";Addr + 96
280 ENTER 70900 USING ""4X,16(W)""; Words_back(*)
290 PRINT Words_back(*)
300 END
Chapter 5

Downloading Device Drivers

About this Chapter

This chapter describes the procedure for using downloadable device drivers with the E1405 Command Module. This functionality was added so that SCPI capability for new register based devices could be added to the Command Module without having to update an internal set of ROMs. This chapter contains the following sections:

- About this Chapter .. 5-1
- What You Will Need .. 5-1
- Memory Configuration 5-3
- Download Program Configuration 5-4
- Downloading Drivers in MS-DOS systems 5-6
- Downloading Drivers in HP IBASIC Systems 5-7
- Downloading Drivers from Other HP BASIC Systems 5-8
- Downloading Multiple Drivers 5-9
- Checking Driver Status 5-9
- Manually Downloading Drivers 5-10

What You Will Need

The downloadable device drivers and the software necessary to download the drivers into HP mainframes are provided on 3.5" floppy disks which ship with the device driver manual. Disks are provided in both LIF and DOS format for your convenience. Drivers and appropriate downloading software are provided for use in MS-DOS systems downloading over an RS-232 link and for use in systems using HP BASIC or HP IBASIC (Instrument BASIC) and downloading over an HP-IB (IEEE 488.2) link. The procedures for both types of downloaders are detailed later in this chapter.

Figure 5-1 shows the files and documents that will be needed for each type of download supported.

For RS-232 downloads you will need appropriate cables to connect your computer to the Command Module. If your computer has a 25 pin serial output connector, you can use an HP 24542G cable to make the connection. If your computer has a 9 pin serial output connector, you can use an HP 24542M and an HP 24542H cable (connected end to end) to make the connection.
Figure 5-1. Driver and Documentation Usage
Memory Configuration

Before attempting to download any device drivers you should understand how memory is affected when you specify a size for one or more types of RAM. There are three types of RAM that you can allocate in the mainframe:

- RAM disk (RDISK)
- Non-volatile RAM (NRAM)
- Driver RAM (DRAM)

Figure 5-2 shows the positioning of these areas in memory. User Non-volatile RAM and RAM Disk both occupy higher memory addresses than the Driver RAM. Because the actual size of these three areas is variable, they do not have a fixed starting position. At creation time, the lowest unused memory address becomes the starting address for the requested type of RAM. Memory areas set at higher addresses can be created without affecting any previously created lower memory areas, but creating a new memory area causes any areas above it to be removed.

NOTE

If you wish to use RDISK or NRAM, you can modify the configuration file so that the download program sets up the required memory segments.

```
<table>
<thead>
<tr>
<th>FFFFFFFh</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Non-volatile</td>
</tr>
<tr>
<td>Instrument Memory</td>
</tr>
<tr>
<td>Operating System memory</td>
</tr>
<tr>
<td>RAM Disk</td>
</tr>
<tr>
<td>Non-volatile User RAM</td>
</tr>
<tr>
<td>Driver RAM</td>
</tr>
</tbody>
</table>
```

The Low Address depends on the amount of memory installed. It is equal to the highest address plus 1 (1000000h) minus the size of memory installed. The boot time messages will tell you how much RAM you have installed in your system. In a system with 512Kbytes of memory the Low Address is low address = 1000000h - 80000h = F80000h, or 16,252,928 decimal.

Figure 5-2. Positioning of Allocatable RAM

Example

If you create a RAM Disk area without creating any User Non-volatile RAM or Driver RAM, the starting address for the RAM Disk will be at the lowest address (F80000h for a command module with 512Kbytes of memory). If you now create a Driver RAM area, the RAM Disk area will be removed since the new area has to be at a lower address than the RAM Disk area.
Download Program Configuration

If you will not be using the default configurations for downloading, you will need to edit the configuration file to match your system configuration. If the default values shown below are correct for your setup, you can proceed to the appropriate downloading instructions.

The configuration defaults for MS-DOS systems are:

- Download program searches for drivers in current directory.
- Execution Log is OFF (log to screen only).
- All drivers in current directory will be downloaded.
- COM1 is used for output.
- Baud rate is 9600.
- 1 stop bit is used
- NRAM size is zero.
- RDISK size is zero.

The configuration defaults for HP-IB systems are:

- Download program searches for drivers in current directory.
- Execution Log is OFF (log to screen only).
- All drivers in current directory will be downloaded.
- 80900 is used for the interface address when running from IBASIC. 70900 is used as the interface address when running in any HP BASIC environment other than IBASIC.
- NRAM size is zero.
- RDISK size is zero.

Editing the Configuration File

The configuration file (VXIDL.CFG or VXIDL.CFG) on your driver distribution disk is shipped with all entries commented out. In this state, the download programs will use the default values shown above. To activate or change an entry, you must edit the file manually. The file is set up so that it can be edited either by a standard text editor or word processor, or with a Basic language editor. Comments and instructions are included in the file.

- The beginning of the useful information on each line is the part following "linenumber REM" (the "linenumber REM" is ignored).
- All lines beginning with "#" are comments.
- Lines that start with "###" are intended to remain comments.
- Lines that start with "#" are example lines that you may wish to activate and/or modify. These are the actual configuration statements.
- Setting labels are not case sensitive, and should be separated from the associated value by an equal sign ("=").
- Unrecognized settings are ignored.
- If you activate more than one line for a setting that can take only one value, the first value found for the setting will be used.

DIRECTORY = specifies the directory where you store your drivers and where the driver programs will log information about their progress. The default is the current directory. The directory specified must be writable if you are doing downloads using IBASIC or logging progress.

EXECUTION LOG = specifies the place to log information about the program's progress. The default location for this function is the screen. If you
specify a file name here, the driver downloader will log to the screen and to the
specified file.

DRIVER FILE = specifies the driver file or files to download. The default is to
download all device driver files found in the directory specified by
DIRECTORY = . If the driver downloader finds one line in this format, it will
assume that you are specifying entries and will only download the listed entries.
This configuration item can have multiple lines.

ADDRESS = specifies the I/O interface that you will be using. The default
interface address when running in IBASIC over HP-IB is 80900. The default
address when running over HP-IB in any other HP BASIC environment is
70900. The default address when running in DOS is 1 (for COM1:).

The communication interface you will be using when running from any of
Hewlett-Packard’s BASIC environments is the "HP-IB" interface (also known as
IEEE 488.1). Selection of a specific HP-IB interface consists of an address in
the form "sspp00" where:

- **ss** is the select code of the HP-IB interface card.
- **pp** is the primary HP-IB address used for the VXI mainframe.
- **00** is the secondary HP-IB address used for the SYSTEM instrument.

The communication interface you will be using when running from DOS is the
"RS-232" interface. When Using the RS-232 interface the serial cable must be
connected to either the built-in RS-232 connection of the VXI mainframe or an
RS-232 module (HP E1324A) that is set to interrupt at the default interrupt
level (level 1). Selection of the address for the RS-232 interface consists of an
address that is 1 for COM1 or 2 for COM2:.

BAUD = specifies the baud rate of the transmission if you are using RS-232. The
default is 9600 (which is also the default for the VXI mainframe after a
DIAG:BOOT:COLD command). Allowed values are 300, 1200, 2400, 4800,
7200, or 9600 (19,200 is not supported by DOS).

STOP BITS = specifies the number of stop bits per byte if you are using RS-232.
The default is 1 (which is also the default for the VXI mainframe after a
DIAG:BOOT:COLD command). Allowed values are 1 or 2.

NRAM = specifies the size in bytes of the non-volatile user RAM area you wish
to set up. The default value is zero bytes. You may change this value later
independent of the downloaded drivers, but changing it will always affect any
RAM disk (RDISK) you have specified.

RDISK = specifies the size in bytes of the RAM disk segment you wish to set
up. The default value is zero bytes. You can change this value later without
affecting either the downloaded device drivers or the user non-volatile RAM
(NRAM).
The device driver download program VXIDLD.EXE provided on the disk with the driver files for use with an RS-232 interface must be run from MS-DOS. It will set up the device driver memory and any other memory partitions defined in the configuration file, reboot the system, and download the device driver. If there are device drivers present, or you already have memory allocated for NRAM (User Non-volatile RAM) or RDISK (RAM Disk), a warning will be issued and the downloading process aborted. You must first clear any existing drivers from the system, and then download all of the required drivers together. You may redefine any NRAM or RDISK areas after downloading the device drivers.

1. Make sure that your computer can talk to the E1405 Command Module. If you have changed the communications protocol for the Command Module or mainframe, you must change them back to 9600 BAUD, 8 data bits, 1 stop bit, and no parity before this download will work correctly.

These are the defaults after cold boot. If necessary, you can change the baud rate and number of stop bits in the configuration file, but since the special formatting required for downloading over RS-232 requires all 8 data bits in each byte, you must make sure that the data bits are set to 8 and parity checking is OFF. The download program handles its own pacing, so the setting for pacing does not matter.

2. Put the floppy disk into an appropriate drive.

3. Make sure that the floppy disk is your current drive (for example, type "A:" and press ENTER).

4. Execute the device downloader program (type "VXIDLD" and press ENTER).

5. The downloader program will check to make sure that there are no device drivers already loaded, and no memory has been allocated for NRAM or RDISK. If either condition exists, the program will issue a warning and abort. If not, it will create the required RAM partitions, reboot the system, and download the device driver on the supplied disk.

Any errors encountered while downloading will be reported.

6. The download program will check to make sure that the driver has been downloaded and is in memory.

WARNING

Terminate and Stay Resident programs in your MS-DOS system may interfere with the timing of RS-232 transfers and cause errors in the downloading. If you encounter errors indicating that the download program did not receive back what it expected, and the driver is not loaded, remove all of your TSRs from memory and try the download procedure again.
The device driver download program AUTOST provided on the disk with the driver files for use with HP-IB must be run from HP IBASIC (Instrument Basic). It will set up the required device driver memory and any other memory partitions defined in the configuration file, reboot the system, and download the device driver. This program will issue a warning and abort if any errors are encountered. If there are device drivers present, or if you already have memory allocated for NRAM (User Non-volatile RAM) or RDISK (RAM Disk), you must first clear any existing drivers from the system, and then download all of the required drivers together. You may redefine any NRAM or RDISK areas after downloading the device drivers.

NOTE

If you wish to see the messages that the download program generates, you need to have a terminal connected to the IBASIC display port. If you have not changed this from its default value of NONE, messages are sent to the built-in RS-232 port.

1. Make sure that your Command Module (E1405) is set to System Controller mode.

2. Put the floppy disk into an appropriate drive.

3. Make sure that the floppy disk is your current drive (for example, type 'MSI ",700,1" and press ENTER).

4. Load the device download program into IBASIC (type "GET "AUTOST" and press ENTER) and run the program (type "RUN" and press ENTER).

5. The download program will check to make sure that there are no device drivers already loaded, and no memory has been allocated for NRAM or RDISK. If either condition exists, the program will issue a warning and abort. If not, it will create the required RAM partitions, reboot the system, and download the device driver on the supplied disk.

 Any errors encountered while downloading will be reported and will cause the program to abort.

6. The download program will check to make sure that the driver has been downloaded and is in memory.

NOTE

If you are using IBASIC but controlling the system over the HP-IB, you must put all commands in quotes and prefix them with "PROG:EXEC". A typical command would be:

 PROG:EXEC 'MSI ",700,1"'
The device driver download program VXIDLD_GET provided on the disk with the driver files for use with HP-IB must be run from an HP BASIC other than IBASIC. It will set up the the required device driver memory and any other memory partitions defined in the configuration file, reboot the system, and download the device driver. If there are device drivers present, or you already have memory allocated for NRAM (User Non-volatile RAM) or RDISK (RAM Disk), a warning will be issued and the downloading process aborted. You must first clear any existing drivers from the system, and then download all of the required drivers together. You may redefine any NRAM or RDISK areas after downloading the device drivers.

1. Make sure that your Command Module (E1405) is not set to System Controller mode.

2. Put the floppy disk into an appropriate drive.

3. Make sure that the floppy disk is your current drive (for example, type 'MSI ";,700,1" and press ENTER).

4. Load the device download program into BASIC (type 'GET "VXIDLD_GET" and press ENTER) and run the program (type "RUN" and press ENTER).

5. The download program will check to make sure that there are no device drivers already loaded, and no memory has been allocated for NRAM or RDISK. If not, it will create the required RAM partitions, reboot the system, and download the device driver on the supplied disk.

Any errors encountered while downloading will be reported and will cause the program to abort.

6. The download program will check to make sure that the device driver was successfully downloaded.
Downloading Multiple Drivers

The driver downloader software automatically checks for the existence of other drivers when it is run. If there are device drivers present, it will abort the process and inform you that you must first clear the other device drivers out of the mainframe and then download all of the required drivers at once. The easiest way to accomplish this is to place copies of all of the device drivers into a single directory on your hard disk along with the downloader, or onto the same floppy disk. The download program will look in its own directory first, and download any device drivers it finds.

1. Move all of your device drivers into a single directory with the downloaders.

2. Clear the DRAM memory in the mainframe (send "DIAG:DRAM:CRE 0" and "DIAG:BOOT" to the System Instrument).

3. Execute or load and run the appropriate device driver software, as described above.

All device drivers in the directory or on the same floppy disk as the driver downloader will be downloaded automatically after the system checks to make sure that there are no other device drivers already loaded. You can change several aspects of the downloading procedure by editing the configuration file.

Checking Driver Status

Once your drivers are downloaded, you can use the System Instrument command DIAG:DRIV:LIST? to check their status. In the format shown, this command lists all types of drivers. You can specify the type (ALL, RAM or ROM) by using DIAG:DRIV:LIST:type?

NOTE:

- DIAG:DRIV:LIST? lists all drivers in the system.
- DIAG:DRIV:LIST:RAM? lists all drivers found in the RAM driver table DRAM. These are the drivers which you just downloaded into the system.
- DIAG:DRIV:LIST:ROM? lists all drivers found in the ROM driver table. These drivers are always present in the system. If one of these is meant for an instrument which also has a driver in RAM, the driver in RAM will be used by the system.
Manually Downloading a Driverdown Manual

Download programs are supplied for use with the system setups described earlier in this chapter. If you have a system setup that does not allow the use of one of the supplied download programs (for instance, if you are using a Macintosh® computer), you will need to manually download the driver. The details of this process will be different for different system setups, but the basic procedures are outlined below.

Preparing Memory for Manual Downloading

Before you can manually download any drivers using either RS-232 or HP-IB, you must define the DRAM (Driver RAM) into which the drivers will be transferred. DRAM memory is non-volatile.

1. Calculate the required total DRAM size. This is the total amount of memory required by the mainframe for all of the device drivers you are going to download.

Typical driver size will range from 40Kbytes to 100Kbytes. If you are in doubt about the amount of memory needed for downloading your device drivers, use the size of the HP-IB driver file (ends in "DU") on the driver disks. Remember that you must add the amount of memory necessary for all of the device drivers you plan to download. You can see how much RAM is available by using the DIAG:DRAM:CRE? MAX, DEF query.

NOTE

Each driver will need additional system RAM at run time. Although this is not part of the RAM necessary for the DRAM calculations, you should make sure that you have enough DRAM to download the drivers, and enough system RAM left after downloading to run the drivers. Most drivers will need less than 15Kbytes of additional RAM (per driver) at run time. If IBASIC is in the system, it will take at least 150Kbytes to 200Kbytes of system RAM in addition to the RAM used by the device drivers.

2. Create the appropriate DRAM partition using the DIAG:DRAM:CRE command. Unless you have more than eight drivers to download, you do not need to specify the second parameter.

WARNING

Creating this memory partition will delete any NRAM or RDISK partitions that you have defined, and any data in NRAM or RDISK memory. You must redefine any such memory blocks after you have defined the Driver RAM.

3. Reboot the system
Manually Downloading Over HP-IB

Manually downloading a driver over HP-IB is fairly straightforward. This discussion assumes that the downloadable device driver has been supplied by Hewlett-Packard. Drivers supplied by HP are formatted so that you just need to transfer the driver to command module memory. You must also have the driver on media that is accessible to the host computer that will be controlling the download.

You should send a *RST command and a *CLS command to the SYSTEM instrument to put it in a known state before beginning your download.

On most computers, a program will be required for the actual download process. Since the driver file contains the System Instrument command to start the downloading and the actual data to download, this program just needs to transfer the bytes in the driver file to the System Instrument, one byte at a time.

This file contains the SCPI command DIAG:DRIV:LOAD followed by the IEEE 488.2 arbitrary definite block header, and then the actual driver. The definite block starts with the #character, followed by a single digit that shows how many digits are in the length field, followed in turn by the length field. For instance, a block that is 1000 bytes long would have a block header of #800001000.

When your transfer program is complete you should send the SCPI query SYST:ERR? to make sure that there were no errors during the download, and reboot the system (send DIAG:BOOT). You can make sure that all of your drivers have been properly loaded into Driver RAM by sending the SCPI command DIAG:DRIV:LIST:RAM?

Manually Downloading Over RS-232

Manually downloading a driver over RS-232 is similar in concept to downloading over HP-IB. Drivers supplied by HP are formatted so that you just need to transfer them to command module memory. You must also have the driver on media that is accessible to the host computer that will be controlling the download.

However, the RS-232 interface of the E1405 uses special control characters (e.g., <CTRL-C> to implement the equivalent of the HP-IB "device clear" function) that would cause havoc in the download process if sent as part of the driver. The driver file on the distribution disk that ends in "DC" is specially formatted for RS-232 downloading to avoid this problem (see Appendix E "Formatting Binary Data for RS-232" for more information on the data format of these files).

Transmission Format

You need to make sure that the transmission format of your computer matches the format used at the System Instrument. The default configuration for the System Instrument after a DIAG:BOOT:COLD command has been issued is

- 9600 BAUD
- 8 data bits
- 1 stop bit
- Parity checking is OFF
- XON/XOFF pacing
If you are going to use any other setting, you must set up the appropriate settings in the System Instrument using the following commands:

```
COMM:SER[n]:REC:BAUD <rate>       sets BAUD rate
COMM:SER[n]:REC:SBITS <bits>      sets number of stop bits
DIAG:COMM:STOR                    saves settings so they will be kept through a reboot.
```

NOTE

Because the special formatting for binary files uses all 8 bits, the number of data bits must be set to 8 and parity checking must remain OFF for the driver files to transfer properly.

Pacing the Data

Since the RS-232 interface is asynchronous, it is possible for the computer that is doing the download to overrun the System Instrument. This would cause part of the driver to be lost. To prevent this from happening, you should enable hardware handshake (either RTS or DTR) or software handshake (XON/XOFF).

The default configuration for the E1405 Command Module is for software handshake enabled and hardware handshake disabled. To make sure that software handshake is enabled for the command module use the SYST:COMM:SER:PACE? query. To set up software handshake you can use the following commands:

```
  to find the maximum number of characters to fill the input buffer.
SYST:COMM:SER:PACE:THR:STOP <max-20>
  to set the threshold for stopping data to the maximum size of the input buffer minus 20 characters.
SYST:COMM:SER:PACE:THR:STAR 0
  to set the start buffer level to zero. This makes sure that the input buffer is completely flushed whenever transmissions are stopped.
SYST:COMM:SER:PACE:XON
  to enable the software handshake protocol.
```

The start threshold is not critical as long as it is less than the stop threshold. The stop threshold must be set low enough to handle the maximum number of characters that are likely to be received at the System Instrument after it sends the XOFF signal.

Hardware handshake can be set up to use either the DTR (Data Terminal Ready) line or the RTS (Ready to Send) line. These modes can be set with the SYST:COMM:SER:CONT:DTR IBFULL command (to set for DTR) or SYST:COMM:SER:CONT:RTS IBFULL command (to set for RTS). You may wish to turn software handshake OFF using the SYST:COMM:SER:PACE NONE command, though the system will operate with both protocols enabled. When the input buffer of the System Instrument is not full (number of characters in the input buffer is less than the high threshold), the specified hardware line will be asserted. When either hardware...
handshake mode is enabled, the System Instrument will not transmit characters when either the CTS (Clear to Send) or the DSR (Data Set Ready) lines are not asserted. This acts to pace the System Instrument output.

NOTE

The E1405 Command Module RS-232 interface is implemented as a DTE (Data Terminating Equipment). Since most computer RS-232 interfaces are also implemented as DTEs, a cable that does line swapping (null modem cable) is usually used to connect the computer to the instrument. This cable typically swaps the receive and transmit lines. It will usually connect the DTR line of one interface to the CTS and DSR lines of the other. It will connect the RTS line of one interface to the DCD (Data Carrier Detect) line of the other.

CAUTION

The RS-232 interface of the E1405 Command Module will echo any characters received with an ASCII value greater than 32 and less than 128. Carriage returns are echoed as carriage return/linefeed. When transferring the driver file, these echoes can fill up the RS-232 receive buffer of your computer if they are not read. If receive pacing is enabled for your computer this could cause the computer to send the "Stop Transmitting" signal to the System Instrument, which could block the remaining downloaded bytes or other commands sent after the download. Since the driver file contains command strings and many carriage returns that will be echoed by the system, your program should read the returning echo characters from the RS-232 line. This will also let you determine if there are any error messages coming back.

Transmitting Using a COPY Command

On some computers it is possible to use an RS-232 or HP-IB port and the copy command to transfer the device driver. Hardware or software handshake must be used by the copy command on the computer doing the downloading, and the same handshake mode must be enabled on the System Instrument.

1. Set the required handshake mode and data format (e.g., on DOS systems use the MODE command).
2. Type "COPY filename port" to transfer the file through the RS-232 port to the System Instrument (e.g., on a DOS system you might use "COPY /B filename.DC COM1: "). This command may be slightly different depending on the type of computer being used.

NOTE

Since errors are echoed immediately, this method of transfer has no means of trapping errors.
Transmitting Using a CAT Command

On HP-UX systems you can use the `cat` command to transfer the device driver. The appropriate device file must exist. All shell commands are assumed to be executed from either the `/bin/sh` or `/bin/ksh` shell.

1. Start a process that opens the device file to be used. This process should keep the device file open long enough for the transfer to begin. This step is done so that the following command to set the device file configurations will remain in effect for the transfer. A command that will do this is:

 (cat < device file > /dev/null; sleep 1000) &

2. Set the required configuration of the device file using the `stty` command. The following command will set the device file to work with the default System Instrument configuration.

 stty -post 9600 ixon -ixoff cs8 -estopb ignpar < device file

3. Transfer the file to the System instrument with the cat command.

 cat filename > device file

Transmitting Using Custom Software

If the COPY command on your computer cannot directly implement handshaking, or if you wish to trap errors and abort or otherwise modify the transmission process, you must use a program to handle the download process.

This procedure assumes that your computer has some means of looking at data being echoed from the System Instrument, and can check for a return character without having to have a character returned. Since the actual driver file bytes sent over the RS-232 interface are not echoed, the lack of ability to do this would put the system into an infinite wait at the first byte that was not echoed.

1. Set up the appropriate handshake mode and data format on your system, and the matching handshake mode in the System Instrument.

2. Transfer the driver file over the RS-232 interface using a program that follows the outline in figure 5-3.

Check Driver Status

Make sure that the drivers were properly downloaded by checking their status using the DIAG:DRV:LIST:RAM? command. This will give you a list of all the drivers currently found in DRAM.
Figure 5-3. Manually Downloading a Device Driver
Chapter 6

Controlling Instruments Using HP-IB

About this Chapter
This chapter shows how to control instruments in the mainframe from an external computer using IEEE 488.2 Common Commands and the HP-IB interface. This includes how to monitor instrument status, interrupt the computer, and synchronize one or more instruments to an external computer.

Command references for the supported IEEE 488.2 Common Commands and IEEE 488.2 HP-IB Messages are located near the end of this chapter. This chapter contains the following sections:

- Programming Hints .. 6-1
- Instrument Status ... 6-2
- Clearing Status .. 6-10
- Interrupting the External Computer 6-10
- Synchronizing an External Computer and Instruments .. 6-12

Note
Examples that require showing a computer language are written for HP 9000 Series 200/300 Computers using HP BASIC language.

Programming Hints
- Only one instrument in the mainframe can be the addressed listener (i.e., receiving commands) on the HP-IB at any one time.
- After executing a query command (any command that generates data), do not attempt to execute another command until you have read the data generated by the query command. Doing so causes the -410: Query INTERRUPTED error. You can however, send a command following a query command if they are combined in the same command string (joined by semicolon and colon).
- Instruments in the mainframe have 128 character input buffers. Do not send a command string containing a query command that is longer than 128 characters. Doing so may cause a deadlock situation which can only be resolved by setting a timeout on the computer's enter statements and then reading the error(s) after the timeout occurs.
Status System Structure

The instrument status structure monitors important events for an instrument such as when an error occurs or when a reading is available. All instruments have the following status groups and registers within those groups:

- Status Byte Status Group
 - status byte register
 - service request enable register
- Standard Event Status Group
 - standard event status register
 - standard event status enable register
- Operation Status Group
 - condition register
 - event register
 - enable register
- Questionable Data Status Group
 - condition register
 - event register
 - enable register

You read and configure the registers in the Status Byte and Standard Event groups using Common Commands. These are the most commonly used instrument registers. The registers in the Standard Operation Status group and Questionable Data status group are configured using the commands in the STATus subsystem.

NOTE

The Status Byte, Standard Event, and Operation Status groups are the only groups covered in this chapter. The Questionable Data status group is supported by the system instrument (Command Module) but is not used by the system instrument. Commands affecting this status group (Chapter 5) are accepted but have no effect.

Refer to the STATus subsystem in the Command Reference of the individual plug-in module manuals to determine how a module uses the Operation Status group and Questionable Data status groups. If the STAT:OPER or STAT:QUEES commands are not documented in the plug-in module manual, that module does not use the registers.
The Status Byte Register

As shown in Figure 4-1, the Status Byte register is the highest-level register in the status structure. This register contains bits which summarize information from the other status groups.

NOTE

The bits in the other status group registers must be specifically enabled to be reported in the Status Byte register. Refer to "Unmasking Standard Event Status Bits" (later in this chapter) for more information.

<table>
<thead>
<tr>
<th>Status Byte Register</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 0 Instrument Specific</td>
</tr>
<tr>
<td>Bit 1 Instrument Specific</td>
</tr>
<tr>
<td>Bit 2 Instrument Specific</td>
</tr>
<tr>
<td>Bit 3 Questionable Data Summary Bit</td>
</tr>
<tr>
<td>Bit 4 Message Available</td>
</tr>
<tr>
<td>Bit 5 Standard Event Summary Bit</td>
</tr>
<tr>
<td>Bit 6 Service Request</td>
</tr>
<tr>
<td>Bit 7 Operation Status Summary Bit</td>
</tr>
</tbody>
</table>

Figure 6-1. Status Structure
Table 4-1 shows each of the Status Byte register bits and describes the event that will set each bit.

Table 4-1. Status Byte Register

<table>
<thead>
<tr>
<th>Bit Number</th>
<th>Decimal Weight</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>Instrument Specific (not used by most instruments)</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>Instrument Specific (not used by most instruments)</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>Instrument Specific (not used by most instruments)</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>Questionable Data Status Group Summary Bit. One or more events in the Questionable Data Status group have occurred and set bit(s) in those registers.</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>Message Available. The instrument's output queue contains information. This bit can be used to synchronize data exchange with an external computer. For example, you can send a query command to the instrument and then wait for this bit to be set. The HP-IB is then available for other use while the program is waiting for the instrument to respond.</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>Standard Event Status Group Summary Bit. One or more enabled events in the Standard Event Status Register have occurred and set bit(s) in that register.</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>Service Request—Service is requested by the instrument and the HP-IB SRQ line is set true. This bit will be set when any other bit of the Status Byte Register is set and has been enabled to assert SRQ by the *SRE command.</td>
</tr>
<tr>
<td>7</td>
<td>128</td>
<td>Operation Status Group Summary Bit. One or more events in the Operation Status Group have occurred and set bit(s) in those registers.</td>
</tr>
</tbody>
</table>

You can read the Status Byte register using either the *STB? command or an HP-IB serial poll. Both methods return the decimal weighted sum of all set bits in the register. The difference between the two methods is that *STB? does not clear bit 6 (Service Request); serial poll does clear bit 6. No other status register bits are cleared by either method with the exception of the Message Available bit (bit 4) which may be cleared as a result of reading the response to *STB?. In addition, using an HP-IB serial poll lets you read the status byte without interrupting the instrument parser. The *STB? method requires the instrument to process the command. This can generate interrupt query errors if the instrument is executing another query.

The following program uses the *STB? command to read the contents of the system instrument's (Command Module's) Status Byte register.

```
10 OUTPUT 70900,"*STB?"  Read Status Byte Register
20 ENTER 70900, A         Enter weighted sum
30 PRINT A                Print weighted sum
40 END
```

For example, assume bit 3 (weight = 8) and bit 7 (weight = 128) are set. The above program returns the sum of the two weights (136).
The following program reads the system instrument’s Status Byte register using the HP-IB Serial Poll command.

\[10 \text{ } P = \text{SPOLL(70900)} \]

\[20 \text{ PRINT P} \]

\[30 \text{ END} \]

Read Status Byte Register using Serial Poll, place weighted sum in P

Print weighted sum

Service Request Enable Register

The Service Request Enable register is used to "unmask" bits in the Status Byte register. When an unmasked Status Byte register bit is set to ‘1’, a service request is sent to the computer over HP-IB.

The command used to unmask Status Byte register bits is:

\[*\text{SRE } <\text{mask}> \]

where \(<\text{mask}>\) is the decimal weight of the bit to be unmasked, or is the sum of the decimal weights if multiple bits are to be unmasked. For example, executing:

\[*\text{SRE 16} \]

unmasks the **message available (MAV)** bit in the Status Byte register. Sending:

\[*\text{SRE 48} \]

unmasks the **message available (MAV)** and **event status bit (ESB)**.

You can determine which bits in the Status Byte register are unmasked by sending the command:

\[*\text{SRE?} \]

This command returns the decimal weighted sum of all unmasked bits.

The Service Request Bit

Note that the Service Request bit (bit 6) in the Status Byte register does not have a mask. Bit 6 is set any time another Status Byte register bit is set. If the other bit which is set is unmasked, a service request is generated.

Clearing the Service Request Enable Register

The Service Request Enable register mask is cleared (each bit masked except bit 6) by sending the command:

\[*\text{SRE 0} \]

If \(*\text{PSC 1}\) has been executed, the Service Request Enable register mask is cleared when power is cycled. If \(*\text{PSC 0}\) has been executed, the mask is unchanged when power is cycled. (*PSC? queries the setting.)

Controlling Instruments Using HP-IB 6-5
The Standard Event Status Register in the Standard Event status group monitors the instrument status events shown in Table 4-2. When one of these events occurs, it sets a corresponding bit in the Standard Event Status Register.

NOTE

The Standard Event Status Register bits are not reported in the Status Byte Register unless unmasked by the Standard Event Status Enable Register. Refer to the section "Unmasking Standard Event Status Bits" for more information.

<table>
<thead>
<tr>
<th>Bit Number</th>
<th>Decimal Weight</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>Operation Complete. The instrument has completed all pending operations. This bit is set in response to the *OPC command.</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>Request Control. An instrument is requesting permission to become the active HP-IB controller.</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>Query Error. A problem has occurred in the instrument's output queue.</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>Device Dependent Error. An instrument operation did not complete possibly because of an abnormal hardware or firmware condition (overload occurred, self-test failure, loss of calibration or configuration memory, etc.).</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>Execution Error. The instrument cannot do the operation(s) requested by a command.</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>Command Error. The instrument cannot understand or execute the command.</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>User Request. The instrument is under local (front panel) control.</td>
</tr>
<tr>
<td>7</td>
<td>128</td>
<td>Power-On. Power has been applied to the instrument. You must execute the *PSC 0 command to the System Instrument to allow this bit to remain enabled when power is cycled. See the *PSC command later in this chapter for an example.</td>
</tr>
<tr>
<td>8-15</td>
<td></td>
<td>Reserved for future use (always return zero).</td>
</tr>
</tbody>
</table>

Unmasking Standard Event Status Bits

To allow any of the Standard Event Status register bits to set bit 5 (ESB) of the Status Byte register, you must first unmask the bit(s) using the Standard Event Status Enable register with the command:

*ESE

For example, suppose your application requires an interrupt whenever any type of error occurs. The error related bits in the Standard Event Status register are bits 2 through 5. The sum of the decimal weights of these bits is 60. You can enable any one of these bits to set bit 5 in the Status Byte Register by sending:

*ESE 60

If you want to generate a service request following any one of these errors, you can do so by unmasking bit 5 (ESB) in the Status Byte register:

*SRE 32
*ESE 60

Now, whenever an error occurs, it will set one of the bits 2 - 5 in the Standard Event Status register which will set bit 5 in the Status Byte register. Since bit 5 is
unmasked, an HP-IB service request (SRQ) will be generated. ('Interrupting the External Computer', later in this chapter contains an example program which demonstrates this sequence).

Note that the Standard Event Status Register bits that are not unmasked still respond to their corresponding conditions. They do not, however, set bit 5 in the Status Byte Register.

Reading the Standard Event Status Enable Register Mask

You can determine which bits in the Standard Event Status register are unmasked with the command:

```
*ESE?
```

This command returns the decimal weighted sum of all unmasked bits.

The Standard Event Status Enable register is cleared (all bits masked) by sending the command:

```
*ESE 0
```

Reading the Standard Event Status Register

You can determine which bits in the Standard Event Status register are set using the command:

```
*ESR?
```

This command returns the decimal weighted sum of all set bits. *ESR? clears the register. *CLS also clears the register.

Both of these commands return the decimal weighted sum of all set or enabled bits.

Operation Status Group

The registers in the Standard Operation Status Group provide information about the state of measurement functions within an instrument. These functions are represented by bits in the Condition register which is described in Table 4-3.

The System Instrument (Command Module) only uses bit 8 in the Condition register. Bit 8 (when set) indicates that an interrupt set up by the DIAGnostic:INTerrupt commands has occurred and has been acknowledged.

NOTE

The registers in the Operation Status Group and the DIAGnostic:INTerrupt commands are only used when, for a specific VXIbus interrupt line, it is necessary to replace the operating system’s interrupt service routine with the System Instrument’s service routine. Hewlett-Packard VXIbus devices used with the Command Module use the operating system service routine. The VXIbus interrupt line that is used by these devices (primarily line 1), should not be used with the DIAGnostic:INTerrupt commands. The DIAGnostic:INTerrupt commands are covered in Chapter 5.
<table>
<thead>
<tr>
<th>Bit Number</th>
<th>Decimal Weight</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>Calibrating</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>Settling</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>Ranging</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>Sweeping</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>Measuring</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>Waiting for TRG</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>Waiting for ARM</td>
</tr>
<tr>
<td>7</td>
<td>128</td>
<td>Correcting</td>
</tr>
<tr>
<td>8</td>
<td>256</td>
<td>Interrupts acknowledged (System Instrument)</td>
</tr>
<tr>
<td>9-12</td>
<td>Instrument Dependent</td>
<td></td>
</tr>
<tr>
<td>13-14</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Always zero</td>
<td></td>
</tr>
</tbody>
</table>

Reading the Condition Register

When an event monitored by the Condition register has occurred or is occurring, a corresponding bit in the register is set. The bit which is set can be determined with the command:

```
STATus:OPERation:CONDition?
```

The data which is returned is the decimal weighted sum of the set bit. Since bit 8 is the only bit used by system instrument, 256 is returned if the bit is set.

Bit 8 in the Condition register is cleared with the command:

```
DIAGnostic:INTerrupt:RESPonse?
```

Unmasking the Operation Event Register Bits

When a condition monitored by the condition register occurs, a corresponding bit in the Operation Status Group Event register is automatically set. In order for this condition to generate a service request, the bit in the Event register must be unmasked using the Operation Status Group Enable register. This is done using the command:

```
STATus:OPERation:ENABLE <event>
```

where `event` is the decimal weight of the bit to be unmasked. Since the system instrument only uses bit 8, the only useful value of `event` is 256.

When bit 8 is set and is unmasked, it sets bit 7 in the Status Byte register in the Status Byte Group.

Bits in the Operation Status Group Event register which are unmasked can be determined with the command:

```
STATus:OPERation:ENABLE?
```

The command returns the decimal weighted sum of the unmasked bit(s).
Bits in the Operation Status Group Event register which are set can be determined with the command:

```
STATus:OPERation:EVENt?
```

This command returns the decimal weighted sum of the set bit(s).

Clearing the Operation Event Register Bits

Bits in the Operation Status Group Event register are cleared with the command:

```
STATus:OPERation:EVENt?
```

or the bits can be cleared with the command:

```
*CLS
```

The Operation Status Group Enable register is cleared (all bits masked) by sending the command:

```
STATus:OPERation:ENABLE 0
```

Using the Operation Status Group Registers

The following example shows the sequence of commands used to setup and respond to an interrupt using the system instrument interrupt servicing routine.

NOTE

An interrupt handler must be assigned to handle the interrupt on the VXIbus backplane interrupt line specified. See "Interrupt Line Allocation" in Chapter 2 for more information.

```
!Call computer subprogram Intr_res when a service request ! is received due to an interrupt on a VXIbus backplane ! interrupt line.

ON INTR 7 CALL Intr_res

ENABLE INTR 7,2

!Unmask bit 7 in the Status Byte register so that a service ! request (SRQ) will occur when an interrupt occurs.
!Unmask bit 8 in the Operation Status Group Enable register ! so that when the interrupt occurs it will set bit 7 in the ! Status Byte register.

OUTPUT 70900; "*SRE 128"

OUTPUT 70900; "STAT:OPER:ENAB 256"

!Set up interrupt line 5 and enable interrupt response data ! to be generated.

OUTPUT 70900; "DIAG:INT:SETUP5 ON"

OUTPUT 70900; "DIAG:INT:ACT ON"

. (Program which executes until interrupt occurs)

!Computer service request routine which does an SPOll ! to determine the cause of the interrupt, then reads ! (and clears) the Operation Event register to determine which ! event occurred, and then reads the interrupt acknowledge ! response (which also clears condition register bit 8).
```
SUB intr_resp
B = SPOLL(70900)
OUTPUT 70900; "STAT:OPER:EVEN?"
ENTER 70900; E
OUTPUT 70900; "DIAG:INTR:RESP?"
ENTER 70900; R
.
.
SUBEND

Clearing Status

The *CLS command clears all status registers (Standard Event Status Register, Standard Operation Status Event Register, Questionable Data Status Event Register) and the error queue for an instrument. This clears the corresponding summary bits (bits 3, 5, & 7) and the instrument-specific bits (bits 0, 1, & 2) in the Status Byte Register. *CLS does not affect which bits are enabled to be reflected in the Status Byte Register or enabled to assert SRQ.

Interrupting an External Computer

When a bit in the status byte register is set and has been enabled to assert SRQ (*SRE command), the instrument sets the HP-IB SRQ line true. Interrupts can be used to alert an external computer to suspend its present operation and find out what service the instrument requires. (Refer to your computer/language manuals for information on how to program the computer to respond to the interrupt.)

To allow any of the status byte register bits to set the SRQ line true, you must first enable the bit(s) with the *SRE command. For example, suppose your application requires an interrupt whenever a message is available in the instrument's output queue (status byte register bit 4). The decimal weight of this bit is 16. You can enable bit 4 to assert SRQ by sending:

*SRE 16

NOTE

You can determine which bits are enabled in the Status Register using *SRE?. This command returns the decimal weighted sum of all enabled bits.
Example: Interrupting when an Error Occurs

This program shows how to interrupt an external computer whenever an error occurs for the instrument being programmed which, in this example, is a multimeter at secondary address 03.

10 OPTION BASE 1
20 ON INTR 7 CALL Errmsg
 !Array numbering starts with 1
 !When SRQ occurs on interface 7, call subprogram
30 ENABLE INTR 7:2
 !Enable SRQ interrupt, interface 7
40 OUTPUT 70903;"**SRE 32"
 !Enable bit 5 (Standard Event Status Bit) in Status Byte
 !Register
50 OUTPUT 70903;"**ESE 60"
 !Enable error bits (bits 2-5) in Standard Event Status Register
 !to be reflected
 !in Status Byte Register
60 OUTPUT 70903;"MEAS:TEMP? TC,T,(@104)"
 !Measure temperature with voltmeter
70 WAIT 2
80 ENTER 70903;Tmp_rdg
 !Enter temperature reading
90 PRINT Tmp_rdg
 !Print temperature reading
100 END
110 SUB Errmsg
120 DIM Message$[256]
 !Create array for error message
130 CLEAR 70903
 !Clear multimeter
140 B = SPOLL(70903)
 !Serial poll multimeter (clears SRQ)
150 REPEAT
 !Repeat next 3 lines until error number = 0
160 OUTPUT 70903;"SYST:ERR?"
 !Read error from queue
170 ENTER 70903;Code,Message$
 !Enter error number & message
180 PRINT Code,Message$
 !Print error number & message
190 UNTIL Code = 0
200 OUTPUT 70903;"**CLS"
 !Clear status structures
210 STOP
220 SUBEND
Synchronizing an External Computer and Instruments

The *OPC? and *OPC commands (operation complete commands) allow you to maintain synchronization between an external computer and an instrument. The *OPC? query places an ASCII character 1 into the instrument's output queue when all pending instrument operations are finished. By requiring the computer to read this response before continuing program execution, you can ensure synchronization between one or more instruments and an external computer.

The *OPC command sets bit 0 (Operation Complete Message) in the Standard Event Status Register when all pending instrument operations are finished. By enabling this bit to be reflected in the Status Byte Register, you can ensure synchronization using the HP-IB serial poll function.

Example: Synchronizing an External Computer and Two Instruments using the OPC? query.

This example uses a D to A Converter module (DAC) at secondary address 09 and a Scanning Voltmeter at secondary address 03. The application requires the DAC to output a voltage to a device under test. After the voltage is applied, the voltmeter measures the response from the device under test. The *OPC? command ensures that the voltage measurement will be made only after the voltage is applied by the DAC.

```
10 OUTPUT 70909;"SOUR\VOLT1 5;*OPC?"
   "Configure DAC to output 5 volts on channel 1; place 1 in output queue when done"
20 ENTER 70909;A
   "Wait for *OPC? response"
30 OUTPUT 70903;"MEAS\VOLT:DC? (@104)"
   "Measure DC voltage on device under test"
40 ENTER 70903;A
   "Enter voltage reading"
50 PRINT A
   "Print reading"
60 END
```

6-12 Controlling Instruments Using HP-IB
Example: Synchronizing an External Computer and Two Instruments using the *OPC command.

This example uses the *OPC command and serial poll to synchronize an external computer and two instruments (DAC at secondary address 09; Scanning Voltmeter at secondary address 03). The advantage to using this method over *OPC? query method is that the computer can do other operations while it is waiting for the instrument(s) to complete operations. When using this method, the Operation Complete bit (bit 0) must be the only enabled bit in the Standard Event Status Register (*ESE 1 command). If other bits (such as error bits) are enabled, you must make sure that bit 0 causes the interrupt.

10 OUTPUT 70909,"*CLS"
 "Clear all status structures on instrument at secondary address 09"
20 OUTPUT 70909,"*ESE 1"
 "Enable Operation Complete to be reflected in bit 5 of the Status Byte Register"
30 OUTPUT 70909,"SOUR:VOLT 1 *OPC"
 "Configure instrument #1, set Operation Complete bit when done"
40 WHILE NOT BIT(SPOLL(70909),5)
 "While waiting for bit 5 in instrument's Status Byte Register to be set, computer can do other operations"
50 !(Computer does other operations here)
60 END WHILE
70 OUTPUT 70903,"MEAS:VOLT:DC? (@104)"
 "Measure DC voltage using instrument #2"
80 END
Chapter 7

System Instrument Command Reference

About This Chapter

This chapter describes the Standard Commands for Programmable Instruments (SCPI) command set and the IEEE 488.2 Common Commands for the System Instrument. The System Instrument is part of the HP E1300/E1301 Mainframe's internal control processor and is therefore always present in a Mainframe. This chapter contains the following sections:

- Command Types ... 7-1
- SCPI Command Reference 7-4
- Common Command Reference 7-65
- HP-IB Message Reference 7-72
- Command Quick Reference 7-75

Command Types

Commands are separated into two types: IEEE 488.2 Common Commands and SCPI Commands.

Common Command Format

The IEEE 488.2 standard defines the Common commands that perform functions like reset, self-test, status byte query, etc. Common commands are four or five characters in length, always begin with the asterisk character (*), and may include one or more parameters. The command keyword is separated from the first parameter by a space character. Some examples of Common commands are shown below:

*RST, *ESE <mask>, *STB?

SCPI Command Format

The SCPI commands perform functions like closing switches, making measurements, and querying instrument states or retrieving data. A subsystem command structure is a hierarchical structure that usually consists of a top level (or root) command, one or more lower level commands, and their parameters. The following example shows part of a typical subsystem:

[ROUTe:]
 CLOSe <channel_list>
 SCAN <channel_list>
 :MODE?

ROUTe: is the root command, CLOSe and SCAN are second level commands with parameters, and :MODE? is a third level command.
Command Separator

A colon (:) always separates one command from the next lower level command as shown below:

```
ROUTE:SCAN:MODE?
```

Colons separate the root command from the second level command (ROUTE:SCAN) and the second level from the third level (SCAN:MODE?).

Abbreviated Commands

The command syntax shows most commands as a mixture of upper and lower case letters. The upper case letters indicate the abbreviated spelling for the command. For shorter program lines, send the abbreviated form. For better program readability, you may send the entire command. The instrument will accept either the abbreviated form or the entire command.

For example, if the command syntax shows MEASure, then MEAS and MEASURE are both acceptable forms. Other forms of MEASure, such as MEASU or MEASUR will generate an error. You may use upper or lower case letters. Therefore, MEASURE, measure, and MeASUre are all acceptable.

Implied Commands

Implicit commands appear in square brackets ([]) in the command syntax. (The brackets are not part of the command, and are not sent to the instrument.) Suppose you send a second level command but do not send the preceding implied command. In this case, the instrument assumes you intend to use the implied command and it responds as if you had sent it. Examine the SOURce subsystem shown below:

```
[SOURce:]
PULSe
 :COUNt
 :COUNt?
 :PERiod
 :PERiod?
```

The root command SOURce: is an implied command. To set the instrument's pulse count to 25, you can send either of the following command statements:

```
SOUR:PLS:COUN 25  or  PULS:COUN 25
```

Variable Command Syntax

Some commands have what appears to be a variable syntax. For example:

```
DIAG:INT:SETup[n]? and SYST:COMM:SERial[n]:BAUD?
```

In these commands, the "n" is replaced by a number. No space is left between the command and the number because the number is not a parameter. The number is part of the command syntax. The purpose of this notation is to save a great deal of space in the command reference. In the case of ...SETup[n], n could range from 1 through 7. In ...SERial[n]..., n can be from 0 through 7. You can send the command without the [n] and a default value will be used by the instrument. Some examples:

```
```

Parameters

Parameter Types. The following list contains explanations and examples of parameter types you will see later in this chapter.

- Numeric Parameters are commonly used decimal representations of numbers including optional signs, decimal points, and scientific notation
(e.g., 123, 123E2, -123, -1.23E2, .123, 1.23E-2, 1.23000E-01). Special cases include MIN, MAX, and INFINITY. The Comments section within the Command Reference will state whether a numeric parameter can also be specified in hex, octal, and/or binary. #H7B, #O173, #B1111011

- **Boolean parameters** represent a single binary condition that is either true or false (e.g., ON, OFF, 1, 0). Any non-zero value is considered true.

 Discreet parameters select from a finite number of values. These parameters use mnemonics to represent each valid setting. An example is the TRIGger:SOURce <source> command where source can be BUS, EXT, HOLD, or IMM.

- **Arbitrary Block Program Data parameters** are used to transfer blocks of data in the form of bytes. The block of data bytes is preceded by a preamble which indicates either 1) the number of data bytes which follow, or 2) that the following data block will be terminated upon receipt of a New Line message with the EOI signal true. The syntax is:

 * **Definite Length Block**

    ```
    # <non-zero digit> <digit(s)> <data byte(s)>
    ```

 Where the value of <non-zero digit> equals the number of <digit(s)>. The value of <digit(s)> taken as a decimal integer indicates the number of <data byte(s)> in the block.

 * **Indefinite Length Block**

    ```
    #0 <data byte(s)> <NL END>
    ```

 Examples of sending 4 data bytes:

    ```
    #14 <byte> <byte> <byte> <byte>
    #3004 <byte> <byte> <byte> <byte>
    #0 <byte> <byte> <byte> <byte> <NL END>
    ```

 Optional Parameters. Parameters shown within square brackets ([]) are optional parameters. (Note that the brackets are not part of the command, and are not sent to the instrument.) If you do not specify a value for an optional parameter, the instrument chooses a default value. For example, consider the ARM:COUNt? [MIN | MAX] command. If you send the command without specifying a parameter, the present ARM:COUNt value is returned. If you send the MIN parameter, the command returns the minimum count available. If you send the MAX parameter, the command returns the maximum count available. Be sure to place a space between the command and the parameter.

Linking Commands

Linking IEEE 488.2 Common Commands with SCPI Commands. Use a semicolon between the commands. For example:

```
*RST;OUTP ON  or  TRIG:SOUR HOLD:*TRG
```

Linking Multiple SCPI commands. Use both a semicolon and a colon between the commands. For example:

```
ARM:COUN 1;:TRIG:SOUR EXT
```
ABORT

SCPI Command Reference

This section describes the SCPI commands for the System Instrument. Commands are listed alphabetically by subsystem and also within each subsystem. A command guide is printed in the top margin of each page. The guide indicates the first command listed on that page.

ABORT

The ABORT subsystem is a part of the System Instrument’s trigger system. ABORT resets the trigger system from its Wait For Trigger state to its Idle state and aborts any pacer pulse train in progress. ABORT performs the opposite function of the INITiate:IMMediate command. INITiate enables the trigger system, while ABORT disables it.

Subsystem Syntax

ABORT

Comments

- ABORT does not affect any other settings of the trigger system. When the INITiate command is sent, the trigger system will respond just as it did before the ABORT command was sent.
- Related Commands: INITiate, TRIGger
- *RST Condition: ABORT

Example

Stopping Pacer pulses with ABORT

```
TRIG:SOUR HOLD

SOUR:PULS:COUN 1E3
SOUR:PULS:PER .1 S
INIT
TRIG

.
.

ABORT
```

trigger source is TRIG command
output 1000 Pacer pulses
pulse period set to .1 second
go to Wait For Trigger state
trigger the Pacer to output pulses
go to Trigger-Idle state and stop Pacer pulses
The DIAGnostic subsystem allows control over the System Instrument's internal processor system (:BOOT, and :INTerrupt), the allocation and contents of User RAM, and disc volume RAM (:NRM, and :RDISK), and allocation of the built-in serial interface (:COMM:SER:OWNer).

Subsystem Syntax

DIAGnostic

:BOOT
 :COLD
 [:WARM]

:COMMUnicate
 :SERial[0]
 [:OWNer] [SYSTem|IBASic|NONE]
 [:OWNer]?
 :SERial[n]
 :STORe

:DOWNload
 :CHECKed
 [:MADDRess] <address>,<data>
 :SADDRess <address>,<data>
 [:MADDRess] <address>,<data>
 :SADDRess <address>,<data>

:DRAM
 :AVAIlable?
 :CREate <size> <num_drivers>
 :CREate? <MIN|MAX>,<MIN|MAX|DEF>

:DRIVER
 :LOAD <driver_block>
 :CHECKed <driver_block>

:LIST
 :ALL?
 :RAM?
 :ROM?

:INTerrupt
 :ACTivate [ON|OFF|1|0]
 :SETUp[n] [ON|OFF|1|0]
 :SETUP[n]?
 :PRIOrity[n] [<priority> | MIN|MAX|DEF]
 :PRIOrity[n]? [MIN|MAX|DEF]
 :RESPonse?

:NRAM
 :ADDRess?
 :CREate <size> [MIN|MAX]
 :CREate? [MAX MIN]

:PEEK? <address>,<width>

:POKE <address>,<width>,<data>

:RDISK
 :ADDRess?
 :CREate <size> [MIN|MAX]
 :CREate? [MIN|MAX]

:UPLOAD
 [:MADDRess] <address>,<byte_count>
 :SADDRess <address>,<byte_count>
DIAGnostic:BOOT:COLD

:BOOT:COLD DIAGnostic:BOOT:COLD causes the System Instrument to restart (re-boot). Configurations stored in non-volatile memory and RS-232 configurations are reset to their default states:

- DRAM, NRAM, and RDISk memory segments are cleared
- Serial Interface parameters set to:
 - BAUD 9600
 - BITS 8
 - PARity NONE
 - SBITs 1
 - DTR ON
 - RTS ON
 - PACE XON
- Serial 0 Owner = system

NOTE

Resetting the serial interface parameters takes about 0.01 seconds for the built-in serial port and 0.75 seconds per serial plug-in card. While this is taking place the System Instrument will still respond to serial polls. If you are using a serial poll to determine when the cold boot cycle is complete, you should insert a delay of 1 second per plug-in serial card (E1324) before polling the system instrument. This will prevent incorrectly determining that the system instrument has completed its boot cycle.

Comments
- The System Instrument goes through its power-up self tests.
- Related Commands: DIAG:BOOT:WARM

Example
Re-booting the System Instrument (cold)

DIAG:BOOT:COLD force boot
:BOOT[:WARM] causes the System Instrument to restart (re-boot) using the current configuration stored in non-volatile memory. The effect is the same as cycling power.

Comments
- The System Instrument goes through its power-up self tests.
- The non-volatile system state is used for configuration wherever applicable.
- **Related Commands:** DIAG:BOOT:COLD

Example

Boot the System Instrument (warm)

```
DIAG:BOOT[:WARM] force boot
```

:COMMunicate:SERial[0][:OWNer]

:COMMunicate:SERial[0][:OWNer] <owner> Allocates the built-in serial interface to the System Instrument, the optional IBASIC interpreter, or to neither.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>owner</td>
<td>discrete</td>
<td>SYSTem</td>
<td>IBASic</td>
</tr>
</tbody>
</table>

Comments
- While the serial interface is allocated to the Command Module (SYSTem), it can function as the mainframe user interface when connected to a terminal or computer running terminal emulation software.
- When the built-in serial interface is allocated to IBASIC, it is controlled only by IBASIC. The serial interface is given a select code of 9, and any RS-232 device connected to the (Command Module) RS-232 port is programmed accordingly.
- If the built-in serial interface is not needed, specifying NONE will release memory for use by other instruments.
- Once the new serial interface owner has been specified (DIAG:COMM:SER:OWN), the change will not take effect until you re-boot (warm) the system.
- **Related Commands:** DIAGnostic:COMMunicate:SERial[:OWNer]

Example

Give the serial interface to IBASIC.

```
DIAG:COMM:SER IBAS
DIAG:BOOT:WARM
```

Note: :OWNer is implied

Complete the allocation
:COMMunicate :SERial[0]:OWNer?

DIAgnostic:COMMunicate:SERial[0]:OWNer? Returns the current "owner" of the built-in serial interface. The values returned will be; "SYST", "IBAS", or "NONE".

Comments
- Related Commands: DIAgnostic:SERial[:OWNer]

Example
Determine which instrument has the serial interface.

```
DIAG:COMM:SER?
```

Enter statement

Note: :OWNer is implied

Statement returns the string

```
SYST, IBAS, or NONE
```

:COMMunicate :SERial[n]:STORe

DIAgnostic:COMMunicate:SERial[n]:STORe Stores the serial communications parameters (e.g. BAUD, BITS, PARity etc.) into non-volatile storage for the serial interface specified by [n] in SERial[n].

Comments
- Until ...STORe is executed, communication parameter values are stored in *volatile* memory, and a power failure will cause the settings to be lost.

 - **DIAG:COMM:SER(1-7):STOR** causes an HP E1324A (B-size RS-232 card) to store its settings in an on-board EEROM. This EEROM write cycle takes nearly one second to complete. Wait for this operation to complete before attempting to use that serial interface.

 - The HP E1324A's EEROM used to store its serial communication settings has a finite lifetime of approximately ten thousand write cycles. Even if your application program sent the ...STORe command once every day, the lifetime of the EEROM would still be over 27 years. Be careful that your application program sends the ...STORe command to an HP E1324A no more often than is necessary.

- Related Commands: all SYST:COMM:SER[n]... commands

Example
Store the serial communications settings in the third HP E1324A.

```
DIAG:COMM:SER3:STOR
```
:DIAGnostic:DOWNload:CHECked [:MADDress]

<address>, <data> writes data into a non-volatile User RAM segment starting at address using error correction. The User RAM segment is allocated by the DIAG:NRAM:CREate or DIAG:DRAM:CREate command.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>address</td>
<td>numeric</td>
<td>0 to 16,777,215 (#FFFFFFE)</td>
<td>none</td>
</tr>
<tr>
<td>data</td>
<td>arbitrary block program data</td>
<td>See "Parameter Types", in the beginning of this chapter</td>
<td>none</td>
</tr>
</tbody>
</table>

Comments

- This command is typically used to send a block of data to a block of user RAM. It is the only way to send binary data to multiple addresses over a serial (RS232C) line.

- **CAUTION**: Be certain that all of the data you download will be contained entirely within the allocated NRAM segment. Writing data outside of the NRAM segment will disrupt the operation of the Command Module. Most computers terminate an OUTPUT, PRINT, or WRITE statement with a carriage return or carriage return and line feed. These End-Of-Line characters must be either accounted for (NRAM segment sized to accommodate them), or suppressed using an appropriate IMAGE or FORMAT statement. Some helpful methods:
 - Size the NRAM segment a little larger than the expected data block
 - Control the End-Of-Line characters with format statements.
 - Use the Definite Length Arbitrary Block Program Data format (see example) to send your data rather than the Indefinite Length Arbitrary Block Program Data format.

- **Address** may be specified in decimal, hex (#H), octal (#O), or binary (#B) formats. **DOWNLOAD** is done by word (16 bit) access so **address** must be even.

- **Be certain that address**: specifies a location within the User RAM segment allocated using DIAG:NRAM:CREate if you are downloading a configuration table. **DOWNLOAD** can change the contents of System RAM causing unpredictable results.

- This command can also be used to write data to a device with registers in the A16 address space. See :DOWNLOAD:SAADDress.

Each byte sent with this command is expected to be in the following format:

<table>
<thead>
<tr>
<th>Bit #</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control Bit</td>
<td>Check Bits</td>
<td>Data Bits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Control Bit** is used to indicate the serial driver information such as clear, reset, or end of transmission. This bit is ignored by the regular 488.2 driver. The control bit should be one for regular data.

- **Check Bits** are used to detect and correct a single bit error. The control bit is not included in the check. The check bits are a Hamming single bit error correction code, as specified by the following table:

<table>
<thead>
<tr>
<th>Data Value</th>
<th>Check Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>7</td>
</tr>
</tbody>
</table>

- **Data bits** are the actual data being transferred (four bits at a time). Each word to be written requires four data bytes for transmission. The significance of the data is dependant on the order received. The first data byte received contains the most significant nibble of the 16 bit word to be written (bits 15-12). The next data byte received contains the least significant nibble of the most significant byte of the word (bits 11-8). The third data byte received contains the most significant nibble of the least significant byte of the word (bits 7-4). The fourth data byte received contains the least significant nibble of the least significant byte of the word to be written (bits 3-0). Once all four bytes have been received the word will be written.
Diagnostic: Download: Checked: SADdress

:DOWNLOAD: CHECKed :SADDress

Diagnostic: CHECKed: DOWNLOAD: SADdress <address>, <data> writes data to non-volatile User RAM at a single address specified by address using error correction. It can also write to devices with registers in the A16 address space.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>address</td>
<td>numeric</td>
<td>0 to 16,777,215 (#HFFFFFE)</td>
<td>none</td>
</tr>
<tr>
<td>data</td>
<td>arbitrary block program data</td>
<td>See "Parameter Types", in the beginning of this chapter</td>
<td>none</td>
</tr>
</tbody>
</table>

Comments

- This command is typically used to send data to a device which accepts data at a single address. It is the only way to send binary data to single addresses over a serial (RS232C) line.

- Most computers terminate an OUTPUT, PRINT, or WRITE statement with a carriage return or carriage return and line feed. These End-Of-Line characters must be either accounted for (NRAM segment sized to accommodate them), or suppressed using an appropriate IMAGE or FORMAT statement. Some helpful methods:
 - Control the End-Of-Line characters with format statements.
 - Use the Definite Length Arbitrary Block Program Data format (see example) to send your data rather than the Indefinite Length Arbitrary Block Program Data format.

- A register address in A16 address space can be determined by:
 1FC0016 + (LADDR * 64) + register_number

 where 1FC00016 is the base address in the System Instrument A16 space, LADDR is the device logical address, 64 is the number of address bytes per device, and register_number is the register to which the data is written.

 If the device is an A24 device, the address can be determined using the VXI:CONF:DLIST command to find the base address in A24, and then adding the register_number to that value. A24 memory between address 20000016 and address E0000016 is directly addressable by the Controller.

- Address may be specified in decimal, hex (#H), octal (#O), or binary (#B) formats. Download is done by word (16 bit) access so address must be even.

- Related Commands: DIAG:Upload:SADdress?
Byte Format Each byte sent with this command is expected to be in the following format:

<table>
<thead>
<tr>
<th>Bit #</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Control Bit** is used to indicate the serial driver information such as clear, reset, or end of transmission. This bit is ignored by the regular 488.2 driver. The control bit should be one for regular data.

- **Check Bits** are used to detect and correct a single bit error. The control bit is not included in the check. The check bits are a Hamming single bit error correction code, as specified by the following table:

<table>
<thead>
<tr>
<th>Data Value</th>
<th>Check Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>7</td>
</tr>
</tbody>
</table>

- **Data bits** are the actual data being transferred (four bits at a time). Each word to be written requires four data bytes for transmission. The significance of the data is dependant on the order received. The first data byte received contains the most significant nibble of the 16 bit word to be written (bits 15-12). The next data byte received contains the least significant nibble of the most significant byte of the word (bits 11-8). The third data byte received contains the most significant nibble of the least significant byte of the word (bits 7-4). The fourth data byte received contains the least significant nibble of the least significant byte of the word to be written (bits 3-0). Once all four bytes have been received the word will be written.
DIAGnostic:DOWNLOAD [:MADDRess]

Downloads data into a non-volatile User RAM segment starting at address. The User RAM segment is allocated by the DIAG:NRAM:CREate command.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>address</td>
<td>numeric</td>
<td>0 to 16,777,215 (#FFFFFFFF)</td>
<td>none</td>
</tr>
<tr>
<td>data</td>
<td>arbitrary block program data</td>
<td>See "Parameter Types", in the beginning of this chapter</td>
<td>none</td>
</tr>
</tbody>
</table>

Comments

- **CAUTION:** Be certain that all of the data you download will be contained entirely within the allocated NRAM segment. Writing data outside of the NRAM segment will disrupt the operation of the Command Module.

Most computers terminate an OUTPUT, PRINT, or WRITE statement with a carriage return or carriage return and line feed. These End-Of-Line characters must be either accounted for (NRAM segment sized to accommodate them), or suppressed using an appropriate IMAGE or FORMAT statement. Some helpful methods:

- Size the NRAM segment a little larger than the expected data block
- Control the End-Of-Line characters with format statements.
- Use the **Definite Length Arbitrary Block Program Data** format (see example) to send your data rather than the **Indefinite Length Arbitrary Block Program Data** format.

- This command is generally used to download data into User Configuration Tables. These tables allow the user to control the system's dynamic configuration. Download uses word writes.

- **Address** may be specified in decimal, hex (#H), octal (#O), or binary (#B) formats. Download is done by word (16 bit) access so **address** must be even.

- **Be certain that address** specifies a location within the User RAM segment allocated using DIAG:NRAM:CREate if you are downloading a configuration table. DIAG:DOWNLOAD can change the contents of System RAM causing unpredictable results.

- This command can also be used to write data to a device with registers in the A16 address space. See :DOWNLOAD:SADDRess.

Example Loading Dynamic Configuration information into an allocated RAM segment.

DIAG:NRAM:CRE 6 Allocate a segment of user RAM
DIAG:BOOT:WARM Re-boot system to complete allocation
DIAG:NRAM:ADDR? query starting address
enter value to variable X get starting address into X
DIAG:DOWN <value of X>,table data download table data
VXI:CONF:DCTAB <value of X> link configuration table to configuration algorithm
DIAG:BOOT:WARM Re-boot to set new configuration

:DOWNLOAD:SADDress DIAGnostic:DOWNLOAD:SADDress <address>,<data> writes data to non-volatile User RAM at a single address specified by address, and writes data to devices with registers in A16 address space.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>address</td>
<td>numeric</td>
<td>0 to 16,777,215 (#HFFFFFFE)</td>
<td>none</td>
</tr>
<tr>
<td>data</td>
<td>arbitrary block program data</td>
<td>See "Parameter Types", in the beginning of this chapter</td>
<td>none</td>
</tr>
</tbody>
</table>

Comments

• Most computers terminate an OUTPUT, PRINT, or WRITE statement with a carriage return or carriage return and line feed. These End-Of-Line characters must be accounted for or suppressed using an appropriate IMAGE or FORMAT statement. Some helpful methods:
 - Control the End-Of-Line characters with format statements.
 - Use the Definite Length Arbitrary Block Program Data format to send your data rather than the Indefinite Length Arbitrary Block Program Data format.

• A register address in A16 address space can be determined by:

 $1FC000_{16} + (LADDR \times 64) + \text{register_number}$

 where $1FC000_{16}$ is the base address in the System Instrument A16 address space, LADDR is the device logical address, 64 is the number of address bytes per device, and register_number is the register to which the data is written.

If the device is an A24 device, the address can be determined using the VXI:CONF:DLIST command to find the base address in A24, and then adding the register_number to that value. A24 memory between address 200000_{16} and address $E00000_{16}$ is directly addressable by the Controller.

• Address may be specified in decimal, hex (#H), octal (#O), or binary (#B) formats. DOWNLOAD is done by word (16 bit) access so address must be even.

• Related Commands: DIAG:UPLOAD:SADDress?
Example: Downloading Data to a Single Address Location

This program downloads an array with the data 1, 2, 3, 4, 5 to register 32 on a device with logical address 40 in VXIbus A16 address space.

```
DIM Dnl_data(1:5)  \(\text{Dimension controller array}\)
DATA 1,2,3,4,5
READ Dnl_data(*)  \(\text{Load data into controller array}\)
"DIAG:DOWN:SADD #1FCA20,#210";
This line is sent without termination.
Send Dnl_data as 16-bit words \(\text{Terminate after last word with EOI or LF and EOI}\)
```

:DRAM:AVAILABLE?

DIAGnostic:DRAM:AVAILABLE? Returns the amount of RAM remaining (available) in the DRAM (Driver RAM) segment, which is the amount of RAM in the segment minus any previously loaded drivers.

Comments:
- DIAG:DRAM:CREATE does not allocate the RAM segment until after a subsequent re-boot.

Example: Determine amount of space left for drivers in the DRAM segment.

```
DIAG:DRAM:AVA?
enter statement \(\text{statement returns available DRAM in bytes}\)
```

System Instrument Command Reference 7-15
DIAGnostic:DRAM:CREate

DIAGnostic:DRAM:CREate `<size> <num_drivers>` creates a non-volatile RAM area for loading instrument drivers. **DIAGnostic:DRAM:CREate** 0 removes the RAM segment when the system is re-booted.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>size</td>
<td>numeric</td>
<td>0 to available RAM or MIN</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>num_drivers</td>
<td>numeric</td>
<td>0 to available RAM or MIN</td>
<td>8</td>
</tr>
</tbody>
</table>

Comments

- `size` is the number of bytes to be allocated to DRAM use. A size of zero will remove the DRAM segment.
- `num_drivers` is the maximum number of drivers to be loaded.
- The DRAM segment will be created only after the System Instrument has been re-booted (cycle power or execute DIAG:BOOT).
- Based on the `size` specified, DIAG:DRAM:CRE rounds the `size` up to an even value.
- DRAM will de-allocate previously allocated NRAM and RDISk segments.
- Using all of the available RAM (MAX) for the DRAM segment will limit some functions such as IBASIC program space, instrument reading storage space, and full functionality of the Display Terminal Interface.
- Use DIAG:DRIVER:LOAD... and, DIAG:DRIVER:LIST...? to load and manage DRAM.
- **Related Commands:** DIAG:DRAM:AVAilable?, DIAG:DRIVER:LOAD..., DIALG:DRIVER:LIST...?.

Example

Allocate a 15 Kbyte non-volatile Driver Ram segment.

DIAG:DRAM:CREate 15360
allocate 15 Kbyte segment of Driver Ram.

DIAGnostic:DRAM:CREate?

DIAGnostic:DRAM:CREate? `[<MIN|MAX>, <MIN|MAX|DEF>]` returns the size (in bytes) of a previously created non-volatile RAM area for loading instrument drivers, and the number of drivers currently loaded.

- `size` is the number of bytes currently allocated to DRAM use.
- `num_drivers` is the number of drivers currently loaded.
DIAGnostic :DRIver:LOAD <driver_block>

:DRIver:LOAD <driver_block> loads the instrument driver contained in the driver_block into a previously created DRAM segment.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>driver_block</td>
<td>arbitrary block program data</td>
<td>See 'Parameter Types' at the beginning of this chapter.</td>
<td>none</td>
</tr>
</tbody>
</table>

Comments

- driver_block is the actual binary driver data to be transferred.
- Related Commands: DIAG:DRAM:AVAilable?, DIAG:DRAM:CREate, DIAG:DRIver:LIST...?.

Example

Download a driver block.

```
DIAG:DRIV:LOAD
```

downloads the driver <driver_block> to DRAM memory.

:DRIver:LOAD:CHECked <driver_block>

DIAGnostic:DRIver:LOAD:CHECked <driver_block> loads the instrument driver contained in the driver_block into a previously created DRAM segment. The driver_block is formatted in the same data byte format used by DOWNload:CHECked.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>driver_block</td>
<td>arbitrary block program data</td>
<td>See 'Parameter Types' at the beginning of this chapter.</td>
<td>none</td>
</tr>
</tbody>
</table>

Comments

- driver_block is the actual binary driver data to be transferred.
- This is the only way to download a device driver over a serial (RS232C) line.
- Related Commands: DIAG:DRAM:AVAilable?, DIAG:DRAM:CREate, DIAG:DRIver:LIST...?.

Example

Download the driver named DIGITAL.DC.

```
DIAG:DRIV:LOAD:CHEC
```

downloads the driver <driver_block> to DRAM memory.
DIAGnostic:DRIVer :LIST[:type]?

:DRIVer :LIST[:type]?

DIAGnostic:DRIVer:LIST[:type]? lists all drivers from the specified table found on the system. If no parameter is specified, all driver tables are searched and the data from each driver table is separated from the others by a semicolon.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>type</td>
<td>discrete</td>
<td>ALL</td>
<td>RAM</td>
</tr>
</tbody>
</table>

For each driver listed, the following items are returned:

NAME, IDN_MODEL, REV_CODE, TABLE

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td>The instrument name. This is the same label that appears on the instrument selection menu.</td>
</tr>
<tr>
<td>IDN_MODEL</td>
<td>The model name. This is the same model name as used in the response to the *IDN? command.</td>
</tr>
<tr>
<td>REV_CODE</td>
<td>The revision code. It is in the form A.nn.nn where A as an alpha character</td>
</tr>
<tr>
<td>TABLE</td>
<td>The name of the table the driver was found in. This will be RAM or ROM.</td>
</tr>
</tbody>
</table>

Comments

- DIAGnostic:DRIVer:LIST? lists all drivers found in the system.
- DIAGnostic:DRIVer:LIST:RAM? lists all drivers found in the RAM driver table DRAM.
- DIAGnostic:DRIVer:LIST:ROM? lists all drivers found in the ROM driver table.
- Related Commands: DIAG:DRAM:AVAilable?, DIAG:DRAM:CREate, DIAG:DRIVer:LOAD...

Example

List all drivers in the system.

DIAG:DRIV:LIST? lists all drivers currently loaded.

Example

List all drivers in ROM.

DIAG:DRIV:LIST:ROM? lists all of the drivers currently loaded in ROM.
DIAGnostic :INTerrupt:ACTivate

:INTerrupt:ACTivate <mode> enables an interrupt on the VXI backplane interrupt line specified by DIAG:INT:SET[n] to be acknowledged.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode</td>
<td>boolean</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Comments

- When an interrupt occurs and has been acknowledged, the response is read with the DIAGnostic:INTerrupt:RESPonse? command.
- If an interrupt occurs on a VXIbus backplane interrupt line and the interrupt acknowledgement has not been enabled, there is no interrupt acknowledgement response. The interrupt will be held off until the interrupt acknowledge is enabled by either the DIAG:INT:ACT command or DIAG:INT:RESP? command.
- ON or 1 enable interrupt acknowledgement. OFF or 0 disables interrupt acknowledgement.
- Bit 8 in the Operation Status register can be used to indicate when an interrupt has been acknowledged. See chapter 6 for more details about this register.
- Interrupt acknowledgement must be re-enabled every time an interrupt is acknowledged.
- *RST Condition: DIAG:INT:ACTivate OFF (for all lines)

Example

Enable an Interrupt Acknowledgement on Line 2.

```
DIAG:INT:SET2
DIAG:INT:ACT ON
```

Set up interrupt line 2
Enable interrupt to be acknowledged

:INTerrupt:SETup[n]

DIAGnostic:INTerrupt:SETup[n] <mode> specifies that an interrupt on VXI backplane interrupt line [n] will be serviced by the System Instrument service routine (DIAGnostic:INTerrupt commands) rather than the operating system service routine.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode</td>
<td>boolean</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Comments

- ...SETup1 through ...SETup7 specify the VXI interrupt lines 1 through 7.
- Sending SETup without an [n] value specifies VXI interrupt line 1.
DIAGnostic:INTerrupt:SETup[n]?

- ON or 1 specify that interrupt handling is to be set up for the specified interrupt line. OFF or 0 indicate that interrupt handling of the specified line is to be done by the operating system.

- Related Commands: DIAG:INT:ACT, DIAG:INT:PRIority[n], DIAG:INT:RESP?

- *RST Condition: DIAG:INT:SETup[n] OFF (for all lines)

Example

Setup and wait for VXI interrupt response on line 2.

```
DIAG:INT:PRI2 5
DIAG:INT:SETUP2 ON
.
.
.
DIAG:INT:RESP?
```

- set priority to 5 on line 2
- handle interrupt on line 2
- code which will
- initiate an action
- resulting in an interrupt
- Read the acknowledge response

:INTerrupt:SETup[n]?

DIAGnostic:INTerrupt:SETup[n]? Returns the current state set by DIAG:INT:SETUP[n] <mode>, for the VXI interrupt line specified by [n] in ...SETup[n]?

Comments

- ...SETup1? through ...SETup?? specify the VXI interrupt lines 1 through 7.

- Sending SETup? without an [n] value specifies VXI interrupt line 1.

- If 1 is returned, interrupt handling is set up for the specified interrupt line using the System Instrument (DIAGnostic:INTerrupt commands). If 0 is returned, interrupt handling is done by the operating system.

- Related Commands: DIAG:INT:SETup[n], DIAG:INT:PRIority[n], DIAG:INT:ACT, DIAG:INT:RESP?

Example

Determine interrupt setup for line 4.

```
DIAG:INT:SETUP4?
```

enter statement

statement returns 0 or 1
DIAGnostic :INTerrupt:PRIority[n]

:INTerrupt:PRIority[n]
DIAGnostic:INTerrupt:PRIority[n] [</level>] gives a priority level to the VXI interrupt line specified by [n] in ...PRIority[n].

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>level</td>
<td>numeric</td>
<td>1 through 7</td>
<td>MIN</td>
</tr>
</tbody>
</table>

Comments

- The priority of an interrupt line determines which line will be acknowledged first in the event that more than one line is interrupting.
- For level, lower values have lower priority (level 1 is lower priority than level 2).
- No parameter, or DEF (default) sets priority to 1.
- ...PRIority1 through ...PRIority7 specify the VXI interrupt lines 1 through 7.
- Sending PRIority without an [n] value specifies VXI interrupt line 1.
- This command has no effect if only one interrupt is to be set up.
- Related Commands: DIAG:INT:ACT, DIAG:INT:SETup[n], DIAG:INT:RESP?

Example
Setup, set a priority, and wait for VXI interrupt response on line 2.

```
DIAG:INT:PRI2 5
DIAG:INT:PRI2 5
handle interrupt on line 2
set priority to 5 on line 2
code which will
initiate an action
resulting in an interrupt
Read the acknowledge response
```

:INTerrupt:PRIority[n]?
DIAGnostic:INTerrupt:PRIority[n]? Returns the current priority level set for the VXI interrupt line specified by [n] in ...PRIority[n]?

Comments

- ...PRIority1 through ...PRIority7 specify the VXI interrupt lines 1 through 7.
- Sending PRIority? without an [n] value specifies VXI interrupt line 1.
- Related Commands: DIAG:INT:PRIority[n], DIAG:INT:SETup[n], DIAG:INT:RESP?

Example
Determine interrupt priority for line 4.

```
DIAG:INT:PRI4?
enter statement
statement returns 1 through 7
```
DIAGnostic:INTerrupt:RESPonse?

:INTerrupt:RESPonse?

DIAGnostic:INTerrupt:RESPonse? Returns the interrupt acknowledge response (STATUS/ID word) from the highest priority VXI interrupt line.

Comments

- The value returned is the response from the interrupt acknowledge cycle (STATUS/ID word) of a device interrupting on one of the interrupt lines set up with the DIAG:INT:SET[n] command.

- Bits 0 through 7 of the STATUS/ID word are the interrupting device's logical address. Bits 8 through 15 are Cause/Status bits. Bits 16 through 31 (D32 Extension) are not read by the System Instrument.

- If only bits 0 through 7 are used by the device (bits 8 - 15 are FF), the logical address can be determined by adding 256 to the value returned by DIAG:INT:RESP?. If bits 0 - 15 are used, the logical address address is determined by adding 65536 to the value returned (if the number returned is negative).

- Only the interrupt lines previously configured with the DIAG:INT:SET[n] commands generate responses for this command.

- If there are interrupts on multiple lines when this command is received, or when the acknowledgement was enabled with DIAG:INT:ACT, the response data returned will be from the line with the highest priority set using the DIAG:INT:PRI[n] command.

- If interrupt acknowledge has not been enabled with DIAG:INT:ACT, then it will be enabled by DIAG:INT:RESP?. System Instrument execution is halted until the interrupt acknowledgement response is received.

- DIAG:INT:WAIT? can also be used to wait for the interrupt response.

- **Related Commands:** DIAG:INT:ACT, DIAG:INT:SETup[n], DIAG:INT:PRIority[n]

Example

Setup and wait for VXI interrupt response on line 2.

```
DIAG:INT:PRI2 5
DIAG:INT:SETUP2 ON
.
.
.
DIAG:INT:RESP?
```

- set priority to 5 on line 2
- handle interrupt on line 2
- code which will initiate an action
- resulting in an interrupt
- read the acknowledge response

7-22 System Instrument Command Reference
:NRAM:ADDRess?

Comments
- DIAG:NRAM:CREate does not allocate the RAM segment until after a subsequent re-boot. To get accurate results, execute DIAG:NRAM:ADDRess? after the re-boot.
- Related Commands: DIAG:NRAM:CREate, DIAG:NRAM:CREate?, DIAG:DOWNLOAD, DIAG:UPLOAD?

Example
Determine address of the most recently created User RAM segment

```
DIAG:NRAM:ADDR?
```

statement returns decimal numeric address

:NRAM:CREate

DIAGnostic:NRAM:CREate <size> allocates a segment of non-volatile User RAM for a user-defined table.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>size</td>
<td>numeric</td>
<td>0 to available RAM or MIN [MAX]</td>
<td>none</td>
</tr>
</tbody>
</table>

Comments
- The RAM segment will be created only after the System Instrument has been re-booted (cycle power or execute DIAG:BOOT).
- Based on the size specified, DIAG:NRAM:CRE rounds the size up to an even value.
- NRAM will de-allocate a previously allocated RDISk segment.
- Using all of the available RAM (MAX) for the NRAM segment will limit some functions such as IBASIC program space, instrument reading storage space, and full functionality of the Display Terminal Interface.
- Use DIAG:NRAM:ADDR? to determine the starting address of the RAM segment.
- Use DIAG:DOWNLOAD, DIAG:UPLOAD?, DIAG:PEEK, or DIAG:POKE to store and retrieve information in the non-volatile RAM segment.
- Use DIAG:NRAM:CRE? MAX to find maximum available segment size.
- Related Commands: DIAG:NRAM:CREate?, DIAG:DOWNLOAD, DIAG:UPLOAD?

Example
Allocate a 15 Kbyte User Non-volatile Ram segment.

```
DIAG:NRAM:CREate 15360
```

allocate 15 Kbyte segment of User Ram.
DIAGnostic:NRAM:CREate?

:NRAM:CREate? DIAGnostic:NRAM:CREate? [MIN | MAX] Returns the current or allowable (MIN | MAX) size of the User non-volatile RAM segment.

Comments
- DIAG:NRAM:CRE does not allocate driver RAM until a subsequent re-boot. To get accurate results, execute DIAG:NRAM:CRE? after the re-boot.
- Related Commands: DIAG:NRAM:ADDRESS?, DIAG:NRAM:CREate

Example
Check the size of the User RAM segment.

DIAG:NRAM:CREate?
enter statement

statement enters size in bytes

:PEEK? DIAGnostic:PEEK? <address>,<width> reads the data (number of bits given by width) starting at address.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>address</td>
<td>numeric</td>
<td>0 to 16,777,215 (#FFFFFF)</td>
<td>none</td>
</tr>
<tr>
<td>width</td>
<td>numeric</td>
<td>8</td>
<td>16</td>
</tr>
</tbody>
</table>

Comments
- Address specifies a location within the range of the control processor's addressing capability.
- Address may be specified in decimal, hex (#H), octal (#O), or binary (#B) formats.
- Related Commands: DIAG:POKE

Example
Read byte from User non-volatile RAM

DIAG:PEEK? 16252928,8
enter statement

ask for byte

return value of byte
DIAGnostic :POKE

:POKE DIAGnostic:POKE <address>,<width>,<data> writes data (number of bits given by width) starting at address.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>address</td>
<td>numeric</td>
<td>0 to 16,777,215 (#FFFFFF)</td>
<td>none</td>
</tr>
<tr>
<td>width</td>
<td>numeric</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>data</td>
<td>numeric</td>
<td>8 to 32 bit integer</td>
<td>none</td>
</tr>
</tbody>
</table>

Comments
- *Address* specifies a location within the range of the control processor's addressing capability.
- *Address* and *data* may be specified in decimal, hex (#H), octal (#Q), or binary (#B) formats.
- **CAUTION:** DIAG:POKE can change the contents of any address in RAM. Changing the contents of RAM used by the Command Module's control processor can cause unpredictable results.
- **Related Commands:** DIAG:PEEK?

Example
Store byte in User non-volatile RAM

```
DIAG:POKE 16252928,8,255
```

:RDISk:ADDRESS?

DIAGnostic:RDISk:ADDRESS? Returns the starting address of the RAM disc volume previously defined with the DIAG:RDISk:CREate command. The RAM disc volume is defined for use only by the IBASIC option.

Comments
- DIAG:RDISk:CREate does not allocate the RAM volume segment until after a subsequent re-boot. To get accurate results, execute DIAG:RDISk:ADDRESS? after the re-boot.
- **Related Commands:** DIAG:RDISk:CREate, DIAG:RDISk:CREate?

Example
Return the starting address of the IBASIC RAM volume.

```
DIAG:RDIS:ADDR?
```

Statement returns decimal numeric address

System Instrument Command Reference 7-25
:RDIsk:CREate

DIAGnostic:RDIsk:CREate <size> Allocates memory for a RAM disc volume. The RAM disc volume is defined for use only by the IBASIC option.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>size</td>
<td>numeric</td>
<td>0 to available RAM or MIN</td>
<td>MAX</td>
</tr>
</tbody>
</table>

Comments

- The RAM disc segment will only be created after the System Instrument has been re-booted (cycle power or execute DIAG:BOOT).
- Based on the size specified, DIAG:RDIsk:CRE rounds the size up to an even value.
- Using all of the available RAM (MAX) for the disc volume segment will limit some functions such as IBASIC program space, instrument reading storage space, and full functionality of the Display Terminal Interface.
- Related Commands: DIAG:RDIsk:ADDRess?, DIAG:RDIsk:CREate?

Example

Allocate a 64 Kbyte segment for the IBASIC option's RAM volume.

DIAG:RDIsk:CRE 65536

:RDIsk:CREate?

DIAGnostic:RDIsk:CREate? [MIN | MAX] Returns the current or allowable (MIN | MAX) size of the RAM disc volume segment.

Comments

- DIAG:RDIsk:CRE does not allocate driver RAM until a subsequent re-boot. To get accurate results, execute DIAG:RDIsk:CRE? after the re-boot.
- Related Commands: DIAG:RDIsk:CREate, DIAG:RDIsk:ADDR?

Example

Return the size of the current RAM disc volume.

DIAG:RDIsk:CRE?
enter statement

returns numeric size
DIAGnostic:Upload[:MADAddress]?

:UPLOAD[:MADAddress]?

DIAGnostic:UPLOAD[:MADAddress]? <address>,<byte_count> Returns the number of bytes specified by byte_count, starting at address.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>address</td>
<td>numeric</td>
<td>0 to 16,777,215 (#HFFFFFE)</td>
<td>none</td>
</tr>
<tr>
<td>byte_count</td>
<td>numeric</td>
<td>0 to (999,999,998)</td>
<td>none</td>
</tr>
</tbody>
</table>

Comments

- Address may be specified in decimal, hex (#H), octal (#O), or binary (#B) formats.
- Upload is done by word (16 bit) access so address and byte_count must be even.
- Data is returned in the Definite Block Response Data format:

 `# < non-zero digit > < digit(s) > < data byte(s) >`

 Where the value of `< non-zero digit >` equals the number of `< digit(s) >`. The value of `< digit(s) >` taken as a decimal integer indicates the number of `< data byte(s) >` to expect in the block.
- This command can also be used to retrieve data from a device with registers in A16 address space. See DIAG:Upload:SADAddress?
- Related Commands: DIAG:NRAM:ADDR?, DIAG:NRAM:CREate, DIAG:DOWNload

Example

Upload data stored on non-volatile User RAM.

```plaintext
DIM HEADERS$6,DATA(1024)
  6 chars for "#41024" header
  1024 chars for data bytes
DIAG:NRAM:ADDR?
  get starting address of NRAM
enter ADD
  address into ADD
OUTPUT "DIAG:UPL? <value of ADD>,1024"
  request 1 Kbyte from address in ADD
enter HEADERS$
  strip "#41024" from data
enter DATA
  get 1024 data bytes into string; use enter format so statement
  won't terminate on CRs or LFs etc. Line Feed (LF) and EOI
  follow the last character retrieved.
```
DIAGnostic:UPLOAD:SADDress?

:UPLOAD:SADDress?

DIAGnostic:UPLOAD:SADDress? `<address>,<byte_count>` Returns the number of bytes specified by `byte_count`, at `address`.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>address</td>
<td>numeric</td>
<td>0 to 16,777,215 (#FFFFFFFF)</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>byte_count</td>
<td>numeric</td>
<td>0 to (999,999,998)</td>
<td>none</td>
</tr>
</tbody>
</table>

Comments

- *Address* may be specified in decimal, hex (#H), octal (#O), or binary (#B) formats.
- UPLOAD is done by word (16 bit) access so `address` and `byte_count` must be even.
- The register address in A16 address space can be determined by:

 \[1FC0000_{16} + (\text{LADDR} \times 64) + \text{register_number}\]

 where `1FC0000_{16}` is the base address in the VXIbus A16 address space, `LADDR` is the device logical address, 64 is the number of address bytes per device, and `register_number` is the register from which data is retrieved.

 If the device is an A24 device, the address can be determined using the VXI:CONF:DLIST command to find the base address in A24, and then adding the `register_number` to that value. A24 memory between address 20000000_{16} and address 1E000000_{16} is directly accessible by the Controller.

- Data is returned in the Definite Block Response Data format:

 \[
 \# <\text{non-zero digit}> <\text{digit(s)}> <\text{data byte(s)}> \\
 \]

 Where the value of `<non-zero digit>` equals the number of `<digit(s)>`. The value of `<digit(s)>` taken as a decimal integer indicates the number of `<data byte(s)>` to expect in the block.

- **Related Commands:** DIAG:DOWNLOAD:SADDress

Example

Upload data stored in non-volatile User RAM.

This program reads 1024 data bytes from register 32 on a device with logical address 40 in Command Module A16 address space.

```
DIM HEADER$[6], DATA(1024)
  6 chars for "#41024" header
  1024 chars for data bytes
OUTPUT 'DIAG:UPL:SADD? #H1FCA20,1024"'
  request 1 Kbyte from device
  register 32
enter HEADER$
  strip "#41024" from data
enter DATA
  get 1024 data bytes into string; use enter format so statement
  won't terminate on CRs or LFs etc. Line Feed (LF) and EOI
  follow the last character retrieved.
```
INItiate [::MMMediate]

The INItiate command subsystem controls the initiation of the trigger system for one or more trigger cycles. INItiate enables while ABORT disables the trigger system. The TRIGger command subsystem controls the behavior of the trigger system while it is enabled.

Subsystem Syntax

```
INItiate

[::MMMediate]
```

::MMMediate

INItiate::MMMediate changes the trigger system from the Idle state to the Wait For Trigger state.

Comments

- If TRIGger:SOURce is IMMEDIATE, the Pacer starts. If TRIGger:SOURce is BUS, EXT, or HOLD, the Pacer will start when that trigger condition is satisfied.
- Sending the ABORT command will reset the trigger system back to its Idle state and terminate any pacer pulse train in progress.
- Sending INIT while the system is still in the Wait for Trigger state (already INITIated) will cause an error -213, "Init ignored".
- Related Commands: ABORT, TRIGger
- *RST Condition: Trigger system is in the Idle state.

Example

Initiating the trigger system (Wait For Trigger state).

```
TRIG:SOUR HOLD
SOUR:PULS:COUN 1E3
SOUR:PULS:PER .1 S
INIT
TRIG
.
.
INIT
TRIG
.
.
```

*trigger source is TRIG command
*output 1000 Pacer pulses
*pulse period set to .1 second
*go to Wait For Trigger state
*trigger the Pacer to output pulses

*must re-initiate system before each trigger cycle
[SOURce]:PULSe:COUNt

The System Instrument contains a Pacer which produces TTL level pulses. The SOURCE command subsystem controls the number and period of these pulses. The output of the Pacer is available at the rear-panel BNC connector labeled “Pacer Out”.

Subsystem Syntax

[SOURce]
:PUlse
 :COUNt <count>
 :COUNt? [MIN | MAX]
 :PERiod <period>
 :PERiod? [MIN | MAX]

:SULPe:COUNt SOURce:PULSe:COUNt <count> sets the number of Pacer pulses that are generated when the trigger condition is satisfied.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>numeric</td>
<td>1 to 8,388,607</td>
<td>Infinity</td>
<td>MIN</td>
</tr>
</tbody>
</table>

Comments
- When count is set to INfinity or 9.9E37, pulses are continuous.
- Related Commands: ABORT, INIT, TRIG
- *RST Condition: SOUR:COUN 1

Example
Setting the Pacer pulse count.

TRIG:SOUR HOLD
SOUR:PULE:COUN 1E3
SOUR:PULE:PER .1 S
INIT
TRIG

:SUle:COUN? SOURce:PULSe:COUNt? [MIN | MAX] returns:

- The current count if no parameter is sent.
- The maximum allowable count if MAX is sent.
- The minimum allowable count if MIN is sent.

Example
Querying the pulse count.

SOUR:PULE:COUN 1E3
SOUR:PULE:COUN?
retrieve value
:PULSe:PERiod

SOURce:PULSe:PERiod <period> sets the period of the pulse(s) to be generated by the Pacer.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>period</td>
<td>numeric</td>
<td>500E-9 to 8.388607 or MIN</td>
<td>MAX</td>
</tr>
</tbody>
</table>

Comments

- The resolution of period is 500E-9 seconds.
- The Pacer waveform is a square wave with the output high for the first half of the period, and low for the final half.
- **Related Commands:** SOUR:PULS:COUN, ABORT, INIT,TRIG
- **RST Condition:** SOUR:PULS:PER 1E-6

Example

Setting the Pacer pulse period.

```
TRIG:SOUR HOLD
SOUR:PULS:COUN 1E3
SOUR:PULS:PER .1 S
INIT
TRIG
```

:PULSe:PERiod?

SOURce:PULSe:PERiod? [MIN | MAX] returns:

- The current period if no parameter is sent.
- The maximum allowable period if MAX is sent.
- The minimum allowable period if MIN is sent.

Example

Querying the Pacer pulse period.

```
SOUR:PULS:PER?
```

ask for pulse period statement to enter value of period
STATus :OPERation :CONDition?

STATus

The STATus subsystem commands access the condition, event, and enable registers in the Operation Status group and the Questionable Data group.

Subsystem Syntax

```
STATus
 :OPERation
  :CONDition?
  :ENABle < event >
  :ENABle?
  [:EVENt]?
 :PRESet
 :QUEStionable
  :CONDition?
  :ENABle < event >
  :ENABle?
  [:EVENt]?
```

:OPERation :CONDition?

STATus:OPER:COND? returns the state of the condition register in the Operation Status group. The state represents conditions which are part of an instrument's operation.

Comments

- Bit 8 in the register is used by the System Instrument (Command Module) to indicate when an interrupt set up by the DIAG:INTerrupt commands has been acknowledged.
- Reading the condition register does not change the setting of bit 8. Bit 8 is cleared by the DIAG:INT:RESP? command.
- Related Commands: STAT:OPER:ENABle, STAT:OPER:EVENt?

Example

```
Reading the contents of the condition register

STAT:OPER:COND?
```

:OPERation:ENABle < event >

STATus:OPER:ENABle < event > sets an enable mask to allow events monitored by the condition register and recorded in the event register, to send a summary bit to the Status Byte register (bit 7).

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>event</td>
<td>numeric</td>
<td>256</td>
<td>none</td>
</tr>
</tbody>
</table>

Comments

- Bit 8 in the condition register is used by the system instrument (Command Module) to indicate when an interrupt set up by the DIAG:INTerrupt commands has been acknowledged.
STATus :OPERation:ENABLE?

- Bit 8 is the only bit used in the condition register (by the System Instrument), therefore, it is the only bit which needs to be unmasked in the event register. Specifying the "bit weight" for the event unmask the bit. The bit weight is 256 and can be specified in decimal, hexadecimal (#H), Octal (#O) or binary (#B).
- When the summary bit is sent, it sets bit 7 in the Status Byte register.
- Related Commands: STAT:OPER:ENABLE?

Example Unmasking bit 8 in the Event Register

STAT:OPER:ENAB 256
unmask bit 8

:OPERation:ENABLE?

STATus:OPER:ENABLE? returns which bits in the event register (standard operation status group) are unmasked.

Comments
- Bit 8 in the condition register is used by the system instrument (Command Module) to indicate when an interrupt set up by the DIAG:INTerrupt commands has been acknowledged.
- Bit 8 in the event register generally is the only bit which will be unmasked. If this bit is unmasked when STAT:OPER:ENAB? is sent, 256 is returned.
- Reading the event register mask does not change the mask setting (STAT:OPER:ENAB < event >).
- Related Commands: STAT:OPER:ENABLE

Example Reading the Event Register Mask

STAT:OPER:ENAB?
query register mask

enter statement

:OPERation[:EVENT]?

STATus:OPER:EVENT? returns which bits in the event register (standard operation status group) are set. The event register indicates when there has been a positive transition in the condition register.

Comments
- Bit 8 in the condition register is used by the system instrument (Command Module) to indicate when an interrupt set up by the DIAG:INTerrupt commands has been acknowledged.
- Bit 8 in the event register generally is the only bit which is used. If this bit is set when STAT:OPER:EVENT? is sent, 256 is returned.
- Reading the event register clears the contents of the register. If the event register is to be used to generate a service request (SRQ), you should clear the register before enabling the SRQ (*SRQ). This prevents an SRQ from occurring due to a previous event.
- Related Commands: STAT:OPER:ENABLE, STAT:OPER:ENABLE?
STATus :PRESet

Example Reading the Event Register

STAT:OPER:EVEN?
enter statement

query if bit(s) is set

:PRESet STATus:PRESet sets each bit in the enable register (standard operation status group) to '0'.

Example Presetting the Enable Register

STAT:PRE

preset enable register

:QUESTionable The STATus:QUESTionable commands are supported by the system instrument, however, they are not used by the System Instrument. Queries of the Questionable Data condition and event registers will always return +0.
The SYSTEM command subsystem for the System Instrument provides for:

- Configuration of the RS-232 interface
- Control and access of the System Instrument's real time clock/calendar (SYST:TIME, SYST:TIME?, SYST:DATE, SYST:DATE?).
- Access to the System Instrument's error queue (SYST:ERR?).
- Configuring the communication ports (HP-IB and serial).

Subsystem Syntax

```plaintext
SYSTem
 :BEEPer[:IMMediate]
 :COMManicate
 :GPIB
   :ADDRess <address>[MIN]MAX
   :ADDRess? [MIN][MAX]
   :SERial[n]
     :CONTROL
       :DTR ON | OFF | STANdard | IBFull
       :DTR?
       :RTS ON | OFF | STANdard | IBFull
       :RTS?
     [:RECeive]
       :BAUD <baud_rate> | MIN | MAX
       :BAUD? [MIN | MAX]
       :BITS 7 | 8 | MIN | MAX
       :BITS? [MIN | MAX]
       :PACE
         [:PROTocol] XON | NONE
         [:PROTocol]?
       [:THReashold]
         :START <characters> | MIN | MAX
         :START? [MIN | MAX]
         :STOP <characters> | MIN | MAX
         :STOP? [MIN | MAX]
       :PARity
         :CHECK 1 | 0 | ON | OFF
         :CHECK?
         [:TYPE] EVEN | ODD | ZERO | ONE | NONE
         [:TYPE]?
       :SBITS 1 | 2 | MIN | MAX
       :SBITS? [MIN | MAX]
     [:TRANsmit]
       :AUTO 1 | 0 | ON | OFF
       :AUTO?
       :PACE
         [:PROTocol] XON | NONE
         [:PROTocol]?
     [:DATE <year>, <month>, <day>
     [:DATE? [MIN][MAX],MIN][MAX]
     [:ERROR?]
     [:TIME <hour>, <minute>, <second>
     [:TIME? [MIN | MAX],MIN | MAX]
     [:VERsion]
```

Example

```
SYST:BEEPer:IMMediate
```

causes the system beeper to sound momentarily.

Example Sound the Beep

```
SYST:BEEP:IM
```

System Instrument Command Reference 7-35
SYSTem:COMMunicate :GPIB:ADDRes

:COMMunicate :GPIB:ADDRes

SYSTem:COMMunicate:GPIB:ADDRess <address> sets the primary address of the Instrument's HP-IB port.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>address</td>
<td>numeric</td>
<td>must round to 0 to 30</td>
<td>none</td>
</tr>
</tbody>
</table>

Comments
- The value of <address> is effective after the System Instrument has received a <new line> following the SYST:COMM:GPIB:ADDR command. <new line> can be a line-feed or END (EOI signal).
- *RST Condition: *RST does not change the System Instrument's primary HP-IB address.

Example
Set the HP-IB port's primary address

SYST:COMM:GPIB:ADDR 9

sets the primary address to 9

SYSTem:COMMunicate:GPIB:ADDRes?

Example

Read the Primary HP-IB Address.

SYST:COMM:GPIB:ADDR?

enter statement

Read the HP-IB address

Enter the HP-IB address

SYSTem:COMMunicate:SERial[n]: ...

The SYSTem:COMMunicate:SERial[n]: ... commands set and/or modify the configuration of the serial interface(s) that are under control of the System Instrument. The interface to be affected by the command is specified by a number (zero through seven) which replaces the [n] in the :SERial[n] command. The number is the interface's card number. Card number zero specifies the E1300/E1301 mainframe's built-in interface while one through seven specify one of up to seven E1324 B-size plug-in serial interface modules. The serial interface installed at logical address 1 becomes card number 1, the serial interface installed at the next sequential logical address becomes card number 2 and so on. The logical addresses used by plug-in serial interfaces must start at 1 and be contiguous (no unused logical addresses).

Comments
- Serial communication commands take effect after the end of the program message containing the command.
- Serial communication settings for the built-in RS-232 interface can be stored in its non-volatile RAM only after the DIAG:COMM:SER[n]:STORe command is executed. These settings are used at power-up and DIAG:BOOT[:WARM].

- Serial communication settings for the HP E1324A Datacomm interface can be stored in its on-board non-volatile EEROM only after the DIAG:COMM:SER[n]:STORe command is executed. These settings are used at power-up and DIAG:BOOT[:WARM].

- DIAG:BOOT:COLD will set the serial communication parameters to the following defaults:
 - BAUD 9600
 - BITS 8
 - PARity NONE
 - SBITs 1
 - DTR ON
 - RTS ON
 - PACE XON

Example Setting baud rate for plug-in card 2.

SYST:COMM:SER2:BAUD 9600

!:COMMunicate :SERial[n] :CONTRol :DTR

SYSTem:COMMunicate:SERial[n]:CONTRol:DTR <dtr cntrl> controls the behavior of the Data Terminal Ready output line. DTR can be set to a static state (ON | OFF), can operate as a modem control line (STANdard), or can be used as a hardware handshake line (IBFull).

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>dtr cntrl</td>
<td>discrete</td>
<td>ON</td>
<td>OFF</td>
</tr>
</tbody>
</table>

Comments
- The following table defines each value of dtr cntrl:

<table>
<thead>
<tr>
<th>Value</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>DTR line is asserted</td>
</tr>
<tr>
<td>OFF</td>
<td>DTR line is unasserted</td>
</tr>
<tr>
<td>STANdard</td>
<td>DTR will be asserted when the serial interface is ready to send output data. Data will be sent if the connected device asserts DSR and CTS.</td>
</tr>
<tr>
<td>IBFull</td>
<td>While the input buffer is not yet at the :STOP threshold, DTR is asserted. When the input buffer reaches the :STOP threshold, DTR will be unasserted.</td>
</tr>
</tbody>
</table>

- DIAG:BOOT:COLD will set ...DTR to ON.

- Related Commands: SYST:COMM:SER[n]:CONTR:RTS,
 SYST:COMM:SER[n]:PACE:THR:STANdard,
 SYST:COMM:SER[n]:PACE:THR:STOP

- *RST Condition: No change

Example Asserting the DTR line.

SYST:COMM:SER0:CONTR:DTR ON
SYSTem:COMMunicate :SERial[n] :CONTrol :DTR?

:COMMunicate :SERial[n] :CONTrol :DTR? returns the current setting for DTR line control.

Example Checking the setting of DTR control.

```
SYST:COMM:SER0:CONTR:DTR?
```

statement enters the string "ON", "OFF", "STAN", or "IBF"

SYSTem:COMMunicate:SERial[n]:CONTrol:RTS < Rts_cnltr> controls the behavior of the Request To Send output line. RTS can be set to a static state (ON | OFF), can operate as a modem control line (STANdard), or can be used as a hardware handshake line (IBFull).

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>rts_cnltr</td>
<td>discrete</td>
<td>ON</td>
<td>OFF</td>
</tr>
</tbody>
</table>

Comments

- The following table defines each value of *rts_cnltr*:

<table>
<thead>
<tr>
<th>Value</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>RTS line is asserted</td>
</tr>
<tr>
<td>OFF</td>
<td>RTS Line is unasserted</td>
</tr>
<tr>
<td>STANdard</td>
<td>RTS will be asserted when the serial interface is ready to send output data. Data will be sent if the connected device asserts CTS and DSR.</td>
</tr>
<tr>
<td>IBFull</td>
<td>While the input buffer is not yet at the :STOP threshold, RTS is asserted. When the input buffer reaches the :STOP threshold, RTS will be unasserted.</td>
</tr>
</tbody>
</table>

- **DIAG:BOOT:COLD** will set ...RTS to ON.

- **+RST Condition**: No change

Example Unasserting the RTS line.

```
SYST:COMM:SER0:CONTR:RTS OFF
```
:COMMunicate
:SERial[n] :CONTrol
:RTS?

SYS:COMM:SER:CON:RTS?

Example Checking the setting of RTS control.

SYS:COMM:SER0:CON:RTS?

Statement enters the string
"ON", "OFF", "STAN", or "IBF"

:COMMunicate
:SERial[n] [:RECeive]
:BAUD

SYS:COMM:SERial[n]:RECeive:BAUD < baud_rate> Sets the baud rate for the serial port.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>baud</td>
<td>numeric</td>
<td>300</td>
<td>1200</td>
</tr>
</tbody>
</table>

Comments

- Attempting to set baud to other than those values shown will result in an error -222.
- DIAG:BOOT:COLD will set ..BAUD to 9600.
- *RST condition: No change.

Example Setting the baud rate to 1200.

SYS:COMM:SER0:BAUD 1200

:COMMunicate
:SERial[n] [:RECeive]
:BAUD?

SYS:COMM:SERial[n]:RECeive:BAUD? [MIN | MAX] returns:

- The current baud rate setting if no parameter is sent.
- The maximum allowable setting if MAX is sent.
- The minimum allowable setting if MIN is sent.

Example Querying the current baud rate.

SYS:COMM:SER0:BAUD?

Statement enters a numeric value

SYS:CMN:SERRial[n] [:REC]:BITS < bits> Sets the number of bits to be used to transmit and receive data.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>bits</td>
<td>numeric</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

Comments
- Attempting to set bits to other than those values shown will result in an error -222.
- While this command operates independently of either the ...PARity:TYPE or ...SBITS commands, there are two combinations which are disallowed because of their data frame bit width. The following table shows the possible combinations:

<table>
<thead>
<tr>
<th>...BITS</th>
<th>...PARity:TYPE</th>
<th>...SBITS</th>
<th>Frame Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>NONE</td>
<td>1</td>
<td>9 - disallowed</td>
</tr>
<tr>
<td>7</td>
<td>NONE</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>Yes</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>Yes</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>NONE</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>NONE</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>Yes</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>Yes</td>
<td>2</td>
<td>12 - disallowed</td>
</tr>
</tbody>
</table>

- DIAG:BOOT:COLD will set ...BITS to 8.
- Related Commands: SYS:CMN:SERRial[n]:PARity
- *RST Condition: No change

Example
Configuring data width to 7 bits.

SYS:CMN:SERRial[0]:BITS 7

SYS:CMN:SERRial[n] [:REC]:BITS? [MIN | MAX] returns:
- The current data width if no parameter is sent.
- The maximum allowable setting if MAX is sent.
- The minimum allowable setting if MIN is sent.

Example
Querying the current data width.

SYS:CMN:SERRial[0]:BITS?
enter statement

Statement enters 7 or 8

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>protocol</td>
<td>discrete</td>
<td>XON</td>
<td>NONE</td>
</tr>
</tbody>
</table>

Comments

- While ...PROT is XON, the serial interface will send XOFF when the buffer reaches the ...STOP threshold, and XON when the buffer reaches the ...STARt threshold.
- For an HP E1324A, AUTO is always ON. In this case ...[:RECeive]:PACE will also set ...TRAN:PACE
- The XON character is control Q (ASCII 1710, 1116), The XOFF character is control S (ASCII 1910, 1316).
- DIAG:BOOT:COLD will set ...PACE to XON.
- Related Commands: ...PROTo:col:THReshold:STARt, ...PROTo:col:THReshold:STOP, ...TRAN:AUTO
- *RST Condition: No change

Example

Enabling XON/XOFF handshaking.

SYS:COMM:SER0:PACE:PROT XON

SYSTe:m COMMunicate :SERial[n] [:RECeive] :PACE [:PROTo:col]?

Example

See if XON/XOFF protocol is enabled.

SYS:COMM:SER0:PACE:PROT?

enter statement

statement enters the string "XON" or "NONE"

<char_count> configures the input buffer level at which the specified interface may send the XON character (ASCII 11), assert the DTR line, and/or assert the RTS line.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>char_count</td>
<td>numeric</td>
<td>1 through 99 for built-in</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 through 8191 for HP E1324A</td>
<td></td>
</tr>
</tbody>
</table>

Comments

- To determine the size of the input buffer of the serial interface you are using, send SYS:COMM:SER[n]:PACE:THR:START? MAX. The returned value will be the buffer size less one.
- ...STARt must be set to less than ...STOP.
- The ...THR:STAR command has no effect unless ...
 ...PACE:PROT XON, ...
 ...CONT:DTR IBF, or ...
 ...CONT:DTR IBF has been sent.
- Related Commands: ...
 ...
 ...
 ...
 ...
 *
 RST Condition: No change

Example

Set interface to send XON when input buffer contains 10 characters.

SYS:COMM:SER0:PACE:PROT XON
SYS:COMM:SER0:PACE:THR:STAR 10

[MIN | MAX] returns:

- The current start threshold if no parameter is sent.
- The maximum allowable setting if MAX is sent.
- The minimum allowable setting if MIN is sent.

Comments

- To determine the size of the input buffer of the serial interface you are using, send SYS:COMM:SER[n]:PACE:THR:START? MAX. The returned value will be the buffer size.

Example

Return current start threshold

SYS:COMM:SER0:PACE:THR:STAR?
query for threshold value
enter statement
statement enters a numeric value

7-42 System Instrument Command Reference

<char_count> configures the input buffer level at which the specified interface may send the XOFF character (ASCII 13), de-assert the DTR line, and/or de-assert the RTS line.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>char_count</td>
<td>numeric</td>
<td>1 through 99 for built-in</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 through 8191 for HP E1324A</td>
<td></td>
</tr>
</tbody>
</table>

- To determine the size of the input buffer of the serial interface you are using, send SYST:COMM:SER[n]:PACE:TH:STOP? MAX. The returned value will be the buffer size.
- ...STOP must be set to greater than ...START.
- The ...TH:STOP command has no effect unless ...PACE:PROT XON, ...CON:INT: IBF, or ...CON:INT: IBF has been sent.
- Related Commands: ...PACE:PROT XON | NONE, ...CON:INT, ...CON:RTS
- *RST Condition: No change

Example
Set interface to send XOFF when input buffer contains 80 characters.

```
SYST:COMM:SER0:PACE:TH:STOP 80
```


- The current stop threshold if no parameter is sent.
- The maximum allowable setting if MAX is sent.
- The minimum allowable setting if MIN is sent.

Comments
To determine the size of the input buffer of the serial interface you are using, send SYST:COMM:SER[n]:PACE:TH:STOP? MAX. The returned value will be the buffer size.

Example
Return current stop threshold

```
SYST:COMM:SER0:PACE:TH:STOP? query for threshold
ter statement statement enters a numeric value
```


SYSTem:COMMunicate:SERial[n]:RECEive:PARity:CHECK < check ctrl>
controls whether or not the parity bit in received serial data frames will be
considered significant.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>check ctrl</td>
<td>boolean</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Comments

- When check ctrl is set to 0 or OFF, received data is not checked for
correct parity. Transmitted data still includes the type of parity
configured with ...PARity:TYPE.
- DIAG:BOOT:COLD will set ...CHECK to OFF.
- Related Commands: SYST:COMM:SER[n]:PARity:TYPE
- *RST Condition: No change

Example

Set parity check to ON

SYST:COMM:SER0:PAR:CHECK ON

SYSTem:COMMunicate:SERial[n]:RECEive:PARity:CHECK? returns the
state of parity checking.

Example

Is parity checking on or off?

SYST:COMM:SER0:PAR:CHECK?

enter statement

statement enters 0 or 1

:COMMunicate:SERial[n] [:RECeive] :PARity [:TYPE]

Configures the type of parity to be checked for received data, and generated for
transmitted data.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>type</td>
<td>discrete</td>
<td>EVEN</td>
<td>ODD</td>
</tr>
</tbody>
</table>

Comments

- Attempting to set type to other than those values shown will result in an
error -222.

- The following table defines each value of type:

<table>
<thead>
<tr>
<th>Value</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVEN</td>
<td>If ...PARity:CHECK is ON, the received parity bit must maintain even parity. The transmitted parity bit will maintain even parity.</td>
</tr>
<tr>
<td>ODD</td>
<td>If ...PARity:CHECK is ON, the received parity bit must maintain odd parity. The transmitted parity bit will maintain odd parity.</td>
</tr>
<tr>
<td>ZERO</td>
<td>If ...PARity:CHECK is ON, the received parity bit must be a zero. The transmitted parity bit will be a zero.</td>
</tr>
<tr>
<td>ONE</td>
<td>If ...PARity:CHECK is ON, the received parity bit must be a logic one. The transmitted parity bit will be a logic one.</td>
</tr>
<tr>
<td>NONE</td>
<td>A parity bit must not be received in the serial data frame. No parity bit will be transmitted.</td>
</tr>
</tbody>
</table>

- While this command operates independently of either the ...BITS or ...SBITS commands, there are two combinations which are disallowed because of their data frame bit width. The following table shows the possible combinations:

<table>
<thead>
<tr>
<th>...BITS</th>
<th>...PARity:TYPE</th>
<th>...SBITS</th>
<th>Frame Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>NONE</td>
<td>1</td>
<td>9 - disallowed</td>
</tr>
<tr>
<td>7</td>
<td>NONE</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>Yes</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>Yes</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>NONE</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>NONE</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>Yes</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>Yes</td>
<td>2</td>
<td>12 - disallowed</td>
</tr>
</tbody>
</table>

- Received parity will not be checked unless ...PAR:CHEC ON is has been sent. Transmitted data will include the specified parity whether ...PAR:CHEC is ON or OFF.

- DIAG:BOOT:COLD will set ...PARity to NONE.

- Related Commands: ...PAR:CHEC 1 | 0 | ON | OFF, ...SER[n]:BITS 7 | 8, ...SER[n]:SBITS 1 | 2

- *RST Condition: No change

Example Set parity check/generation to ODD.

SYST:COMM:SER0:PAR ODD Set parity type
SYST:COMM:SER0:PAR:CHEC ON Enable parity check/gen.
:COMMunicate :SERial[n] [:RECeive] :PARity [:TYPE]

SYS:COMM:S:#[:REceive]:PARity[:TYPE]? returns the type of parity checked and generated.

Example

What type of parity checking is set?

```
SYS:COMM:S#? PAR
```

- ask for parity type
- returns the string EVEN, ODD, ZERO, ONE, or NONE

:COMMunicate :SERial[n] [:RECeive] :SBITs

SYS:COMM:S:#[:REceive]:SBITs <sbits> Sets the number of stop bits to be used to transmit and receive data.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>sbits</td>
<td>numeric</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Comments

- Attempting to set `sbits` to other than those values shown will result in an error -222.
- While this command operates independently of either the ...BITS or ...PARity:TYPE commands, there are two combinations which are disallowed because of their data frame bit width. The following table shows the possible combinations:

<table>
<thead>
<tr>
<th>...BITS</th>
<th>...PARity:TYPE</th>
<th>...SBITs</th>
<th>Frame Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>NONE</td>
<td>1</td>
<td>9 - disallowed</td>
</tr>
<tr>
<td>7</td>
<td>NONE</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>Yes</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>Yes</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>NONE</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>NONE</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>Yes</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>Yes</td>
<td>2</td>
<td>12 - disallowed</td>
</tr>
</tbody>
</table>

- DIAG:BOOT:COLD will set ...SBITS to 1.
- Related Commands: SYST:COMM:S#[:BAUD]
- *RST Condition: No change

Example

Configuring for 2 stop bits.

```
SYS:COMM:S# SBITS 2
```
:COMMunicate :SERial[n] [:RECeive] :SBITs?

SYSTem:COMMunicate:SERial[n] [:RECeive]:SBITs? [MIN | MAX] returns:
- The current stop bit setting if no parameter is sent.
- The maximum allowable setting if MAX is sent.
- The minimum allowable setting if MIN is sent.

Example
Querying the current stop bit configuration.

SYST:COMM:SER0:SBITs?
enter statement

:COMMunicate :SERial[n] :TRANsmit :AUTO

SYSTem:COMMunicate:SERial[n]:TRANsmit:AUTO <auto_entr> when ON, sets the transmit pacing mode to be the same as that set for receive pacing. When OFF, the transmit pacing mode may be set independently of the receive pacing mode.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>auto_entr</td>
<td>boolean</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Comments
- For an HP E1324A, AUTO is always ON. Trying to set OFF or 0 will generate an error.
- DIAG:BOOT:COLD will set ...AUTO to ON.
- *RST Condition: ...TRAN:AUTO ON

Example
Link transmit pacing with receive pacing

SYST:COMM:SER0:TRAN:AUTO ON

:COMMunicate :SERial[n] :TRANsmit :AUTO?

SYSTem:COMMunicate:SERial[n]:TRANsmit:AUTO? returns the current state of receive to transmit pacing linkage.

Comments
- For an HP E1324A, AUTO is always ON. In this case ...AUTO? will always return a 1.

Example
Is AUTO ON or OFF?

SYST:COMM:SER0:TRAN:AUTO?
enter statement

statement enters the number 1 or 0
:COMMunicate
:SERial[n]:TRANsmit
:PACE [:PROTOCOL]

SYStem:COMMunicate:SERial[n]:TRANsmit:PACE[:PROTOCOL]
<protocol> enables or disables the transmit pacing (XON/XOFF) protocol.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>protocol</td>
<td>discrete</td>
<td>XON</td>
<td>NONE</td>
</tr>
</tbody>
</table>

Comments

- For an HP E1324A, AUTO is always ON. In this case ...TRAN:PACE will also set ...[RECeive]:PACE
- Receipt of an XOFF character (ASCII 19, 13) will hold off transmission of data until an XON character (ASCII 17, 11) is received.
- DIAG:BOOT:COLD will set ...PACE to XON.
- Related Commands: SYST:COMM:SER[a]:TRAN:AUTO
- *RST Condition: No change

Example

Set XON/XOFF transmit pacing

SYST:COMM:SER0:TRAN:PACE:PROT XON

:COMMunicate
:SERial[n]:TRANsmit
:PACE [:PROTOCOL]?

SYStem:COMMunicate:SERial[n]:TRANsmit:PACE[:PROTOCOL]? returns the current transmit pacing protocol.

Example

Check transmit pacing protocol

SYST:COMM:SER0:TRAN:PACE:PROT?

Enter statement

statement enters the string
"XON" or "NONE"

:DATE

SYStem:DATE <year>, <month>, <day> sets the E1300/E1301 mainframe's internal calendar.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>year</td>
<td>numeric</td>
<td>must round to 1980 to 2079</td>
<td>none</td>
</tr>
<tr>
<td>month</td>
<td>numeric</td>
<td>must round to 1 to 12</td>
<td>none</td>
</tr>
<tr>
<td>day</td>
<td>numeric</td>
<td>must round to 1 through last day of month</td>
<td>none</td>
</tr>
</tbody>
</table>

Comments

- The upper limit on the day parameter is dependent on the month parameter and may be dependent on the year parameter in the case of a leap year.
SYSTem :DATE?

- Related Commands: SYST:TIME, SYST:TIME?, SYST:DATE?
- *RST Condition: *RST does not change the setting of the calendar.

Example

Setting the system Date

SYST:DATE 1991,09,08 set SEP 8, 1991

:DATE? SYSTem:DATE? [MIN][MAX][MIN][MAX][] returns:

- **When no parameter is sent:** the current system date in the form
 + YYYY, + MM, + DD, where YYYY can be the year 1980 through
 2079, MM can be the month 1 through 12, and DD can be the day 1
 through 31.

- **When parameters are sent:** the minimum or maximum allowable values
 for each of the three parameters. The parameter count must be three.

Example

Querying the system date

SYST:DATE? ask for current date
input values of year,month,day
read back date

:ERROR? SYSTem:ERR? queries the system's error queue. The response format is:
"<error number>,"<error description string>".

Comments

- As system errors are detected, they are placed in the System Instrument
 error queue. The error queue is first in, first out. This means that if
 several error messages are waiting in the queue, each SYST:ERR? query
 will return the oldest error message, and that message will be deleted
 from the queue.

- If the error queue fills to 30 entries, the last error in the queue is replaced
 with error -350,"Too many errors". No further errors are accepted by the
 queue until space becomes available using SYST:ERR?, or the queue is
 cleared using *CLS.

- The SYST:ERR? command can be used to determine if any
 configuration errors occurred during the power-on sequence.

- When SYST:ERR? is sent while the error queue is empty, the System
 Instrument responds with +0,"No error".

- Related Commands: *ESE, *ESR?, *SRE
- *RST Condition: Error queue is cleared

Example

Read all error messages from, and empty the error queue.

```
loop statement
SYST:ERR?
enter statement
until statement
```

```
loop to read all errors
ask for error message
input the error (a number), and
error message (a string)
until error number is 0
```
:TIME

SYSTem:TIME <hour>, <minute>, <second> sets the E1300/E1301 mainframe's internal clock.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>hour</td>
<td>numeric</td>
<td>must round to 0 to 23</td>
<td>none</td>
</tr>
<tr>
<td>minute</td>
<td>numeric</td>
<td>must round to 0 to 59</td>
<td>none</td>
</tr>
<tr>
<td>second</td>
<td>numeric</td>
<td>must round to 0 to 60</td>
<td>none</td>
</tr>
</tbody>
</table>

Comments

- Related Commands: SYST:DATE, SYST:DATE?, SYST:TIME?
- *RST Condition: *RST does not change the Command Module’s real time clock.

Example

Setting the system time

SYST:TIME 14,30,20
set 2:30:20 PM

:TIME?

SYSTem:TIME? [MAX|MIN|MAX|MIN,MAX|MIN] returns:

- When no parameter is sent; the current system time in the form +HH, +MM, +SS, where HH can be 0 through 23 hours, MM can be 0 through 59 minutes, and SS can be 0 through 60 seconds.
- When parameters are sent; the minimum or maximum allowable values for each of the three parameters. The parameter count must be three.

Example

Querying the system time

SYST:TIME?
ask for current time
input values of hour, min, sec
read back time

:VERSion?

SYSTem:VERSion? Returns the SCPI version for which this instrument compiles.

Comments

- The returned information is in the format: YYYY.R; where YYYY is the year, and R is the revision number within that year.
- Related Commands: *IDN?

Example

Determine compliance version for this instrument.

SYST:VERS?
enter statement
Statement enters 1990.0
The TRIGger command subsystem controls the behavior of the trigger system once it is initiated (see INITiate command subsystem). The trigger command subsystem controls:

- The delay between trigger and first Pacer pulse (TRIG:DELay)
- An immediate software trigger (TRIG:IMM)
- The source of the trigger (TRIG:SOUR BUS | EXT | HOLD | IMM)

Subsystem Syntax

```
:DELay < delay >
:DELay? [MIN | MAX]
[:IMMediate]
:SLOPe < slope >
:SLOPe?
:SOURce BUS | EXT | HOLD | IMM
:SOURce?
```

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>delay</td>
<td>numeric</td>
<td>250E-9s to 4.19430375s or MIN</td>
<td>second</td>
</tr>
</tbody>
</table>

Comments

- The resolution for delay is 250E-9 seconds.
- Related Commands: ABORT, INITiate
- *RST Condition: TRIG:DELay 2.5E-9

Example

Setting delay between trigger and Pacer output.

```
TRIG:SOUR HOLD
SOUR:PULS:COUN 100
SOUR:PULS:PER .1 S
TRIG:DELAY .75 S
INIT
TRIG
```

trigger is TRIG command
set Pacer to output 100 pulses
pulse period set to .1 second
start Pacer .75 sec after trigger
go to Wait For Trigger state
trigger Pacer to output pulses

:DELay?

TRIGger:DELay? [MIN | MAX] returns:

- The current delay if no parameter is sent.
- The maximum allowable delay if MAX is sent.
- The minimum allowable delay if MIN is sent.

Example

Querying the trigger delay setting.

```
TRIG:DEL .75 S
TRIG:DEL?
```

start Pacer .75 sec after trigger command System Instrument to send TRIG:DEL value.

enter statement

input value of trigger delay
[IMMediate]

TRIGger:IMMediate will cause a trigger cycle to occur immediately, provided that the trigger system has been initiated (INITiate).

Comments

- **Related Commands**: ABORt, INITiate
- **RST Condition**: This command is an event and has no *RST condition.

Example

Triggering the Pacer.

```
TRIG:SOUR HOLD
SOUR:PULS:COUN 1E3
SOUR:PULS:PER .1 S
TRIG:DELAY .75 S
INIT
TRIG
```

*trigger source is TRIG command
*output 1000 Pacer pulses
*pulse period set to .1 second
*start Pacer .75 sec after trigger
*go to Wait For Trigger state
*trigger Pacer to output pulses.

[SLOPe]

TRIGger:SLOPe <slope> is for SCPI compatibility. The mainframe's "Event In" signal only triggers on a negative going edge.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>slope</code></td>
<td>discrete</td>
<td>NEGative</td>
<td>none</td>
</tr>
</tbody>
</table>

Comments

- Trying to set ...SLOPe to other than NEG will generate an error.
- Related Commands: ABORt, INITiate,

[SLOPe?]

TRIGger:SLOPe? returns the current trigger slope setting. Since the mainframe’s "Event In" signal only triggers on a negative going edge, TRIG:SLOP? will always return "NEG".

[SOURce]

TRIGger:SOURce <trig_source> configures the trigger system to respond to the specified source.

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>trig_source</code></td>
<td>character</td>
<td>BUS</td>
<td>EXT</td>
</tr>
</tbody>
</table>
TRIGger :SOURce?

Comments

- The following table explains the possible choices.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Source of Trigger</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS</td>
<td>Group Execute Trigger (GET) bus command, *TRG common command, or TRIGger command.</td>
</tr>
<tr>
<td>External</td>
<td>"Event In" signal at rear panel BNC connector, or TRIGger command.</td>
</tr>
<tr>
<td>HOLD</td>
<td>Only the TRIGger command will cause trigger.</td>
</tr>
<tr>
<td>IMMEDIATE</td>
<td>The trigger signal is always true (continuous triggering).</td>
</tr>
</tbody>
</table>

- While an instrument which uses the "Event In" signal has EXT set, no other instrument which uses the "Event In" signal may set EXT, or an error 1500 "External trigger source already allocated" will result.

- While TRIG:SOUR is IMM, you need only INITiate the trigger system to start the Pacer.

- Related Commands: ABORT, INITiate, *TRG

- *RST Condition: TRIG:SOUR IMM

Example

Specifying the Trigger Source.

TRIG:SOUR HOLD

SOUR:PULS:COUN 1E3
SOUR:PULS:PER .1 S
TRIG:DELAY .75 S
INIT
TRIG

trigger source is TRIG command
output 1000 Pacer pulses
pulse period set to .1 second
start Pacer .75 sec after trigger
go to Wait For Trigger state
trigger the Pacer to output pulses.

:SOURce?

TRIGger:SOURce? returns the current trigger source configuration. Response data can be one of: BUS, EXT, HOLD, or IMM. See the TRIG:SOUR command for more response data information.

Example

Querying the Trigger Source.

TRIG:SOUR HOLD

TRIG:SOUR?

trigger source is TRIG command
ask System Instrument to return trigger source configuration
input selection of trigger source

Enter statement
The VXI command subsystem provides for:

- Determining the number, type, and logical address of the devices (instruments) installed in the E1300/E1301 mainframe.
- Direct access to VXIbus A16 registers within devices installed in the Mainframe.

Subsystem Syntax

```
VXI
:CONFIGure
    :DeviceLADd?
    :DeviceLISSt?
    :DeviceNUMBer?
    :HEIRarchy
        :ALL?
        :INFormation?
            :ALL?
    :LADDress?
    :NUMBer?
:READ? <logical_addr>,<register_num>
:REGister
    :READ? <numeric_value>,<register_name>
    :WRITE <numeric_value>,<register_name>
:RESet?
:SELect <numeric_value>
:WRITE <logical_addr>,<register_num>,<data>
```
:CONFigure:DLIS? VXI:CONF:DLIS? [<logical_addr>] returns information about the device specified by logical_addr. Response data is in the form:

n1, n2, n3, n4, n5, n6, c1, c2, c3, c4, c5, s1, s2, s3, s4

Where the fields above are defined as:

n fields Indicate numeric data response fields.
c fields Indicate character data response fields.
s fields Indicate string data response fields.

n1 Device's Logical Address. A number from 0 to 255.
n2 Commander's Logical Address. A number from -1 to 255; -1 means this device has no commander.
n3 Manufacturer's ID. A number from 0 to 4095.
n4 Model Code. A number from 0 to 65535, chosen by the manufacturer to signify the model of this device.
n5 Slot Number. A number between -1 and the number of slots in this mainframe; -1 indicates that the slot associated with this device is unknown. This is always -1 for B size mainframes.
n6 Slot 0 Logical Address. A number from 0 to 255.
c1 Device Class. 3 data characters; EXT | HYB | MEM | MSG | REG | VME.
 EXT = Extended device, HYB = hybrid device (e.g. IBASIC),
 MEM = memory device, MSG = Message-based device,
 REG = Register-based device, VME = VME device

c2 Memory Space. Up to 4 data characters; A16 | A24 | A32 | NONE | RES.
 A16 = A16 addressing mode, A24 = A24 addressing mode, A32 =
 A32 addressing mode, NONE = no addressing mode, RES = reserved.
c3 Memory Offset. 10 data characters which define the base address of the
 A24 or A32 address space on the device. This value is expressed in hex
 format (first two characters are #H).
c4 Memory Size. 10 data characters which define the size of the A24 or
 A32 address space in bytes. This value is expressed in hex format (first
 two characters are #H).
c5 Pass/Failed. Up to 5 data characters which define the status of the
 device; FAIL | IFAIL | PASS | READY. FAIL = failed self-test,
 IFAIL = configuration register initialization fails,
 PASS = self-test passed, READY = ready to receive commands

s1 Extended Field 1. Not currently used; returns ""
s2 Extended Field 2. Not currently used; returns ""
s3 Extended Field 3. Not currently used; returns ""
s4 Manufacturer's Specific Comments. Up to 80 character string contains
 manufacturer specific data in string response data format. This field is
 sent with a 488.2 string response data format, and will contain the
 instrument name and its IEEE 488.1 secondary address unless a
 start-up error is detected. In that case, this field will contain one or
 more error codes in the form "CNFG ERROR: n, m, ...,z". See
 Appendix B, Table B-3 for a complete list of these codes.
VXI:CONFigure :DNUMber?

Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>logical addr</td>
<td>numeric</td>
<td>0-255 (or nothing)</td>
<td>none</td>
</tr>
</tbody>
</table>

Comments

- When logical addr is not specified, VXI:CONF:DLIS? returns information for each of the devices installed, separated by semicolons. If the Command Module is not the resource manager, it returns information on only the devices in its servant area.

- Cards which are part of a combined instrument such as a switchbox or scanning voltmeter always return the same manufacturer's comments as the first card in the instrument. Information in the other fields correspond to the card for which the Logical Address was specified.

- This command has been retained for compatibility with existing programs. For new programs you should use the VXI:CONF:INF? command.

Example

Querying the device list for the System Instrument

dimension string[1000]

VXI:CONF:DLIS? 0

enter string

Example response data (no error): +0, -1, +4095, +1301, +0, +0, HYB, NONE, #H00000000, #H00000000, READY, **, **, "SYSTEM INSTALLED AT SECONDARY ADDR 0"

Example response data (with error): +255, +0, +4095, +6380, -1, +0, REG, A16, #H00000000, #H00000000. READY, **, **, "CONF ERR0R: 11"

VXI:CONF:DNUM? returns the number of devices installed in the mainframe (including the System Instrument itself). If the Command Module is not the resource manager, it returns the number of devices in its servant area.

Comments

- Use the VXI:CONF:DNUM? command to determine the number of values which will be returned by VXI:CONF:DLAD?.

- This command has been retained for compatibility with existing programs. For new programs you should use VXI:CONF:NUMB?

- Related Commands: VXI:CONF:DLAD?, VXI:CONF:DLIS?

Example

Determining the number of devices within the system

VXI:CONF:DNUM?

enter statement

query the number of devices

input number of devices
:CONFigure :HIERarchy?

VXI:CONF:HIER? Returns current hierarchy configuration information about the selected logical address. The individual fields of the response are comma separated. If the information about the selected logical address is not available from the destination device (i.e., the requested device is not in the mainframe) then Error -224 ("parameter error") will be set and no response data will be sent.

NOTE

This command is included in the E1300/E1301 because it is a required SCPI command. Since there are no message based devices in the E1300/E1301, most of these fields will be null valued for the E1300/E1301.

Comments

- This command returns the following values:

Logical address: an integer between -1 and 255 inclusive. -1 indicates that the device has no logical address.

Commander's logical address: an integer between -1 and 255 inclusive. -1 indicates that the device has no commander or that the commander is unknown. This value is always 0 for the E1300/E1301.

Interrupt handlers: a comma separated list of seven integers between 0 and 7 inclusive. Interrupt lines 1–7 are mapped to the individual return values. 0 is used to indicate that the particular interrupt handler is not configured. A set of return values of 0,0,0,5,2,0,6 would indicate that:
 - handler 4 is configured to handle interrupts on line 5
 - handler 5 is configured to handle interrupts on line 2
 - handler 7 is configured to handle interrupts on line 6
 - handlers 1, 2, 3, and 6 are not configured

Interrupters: a comma separated list of seven integers between 0 and 7 inclusive. Interrupt lines 1–7 are mapped to the individual return values. 0 is used to indicate that the particular interrupter is not configured. A set of return values of 0,0,0,5,2,0,6 would indicate that:
 - interrupter 4 is configured to handle interrupts on line 5
 - interrupter 5 is configured to handle interrupts on line 2
 - interrupter 7 is configured to handle interrupts on line 6
 - interrupters 1, 2, 3, and 6 are not configured

Pass/Failed: an integer which contains the pass/fail status of the specified device encoded as follows:

 0 = FAIL, 1 = IFAIL, 2 = PASS, 3 = READY

Manufacturer's Specific Comments: Up to 80 character string contains manufacturer specific data in string response data format. This field is sent with a 488.2 string response data format, and will contain the instrument name and its IEEE 488.1 secondary address unless a start-up error is detected. In that case, this field will contain one or more error codes in the form "CNFG ERROR: n, m, .../z". See Appendix B, Table B-3 for a complete list of these codes.
VXI:CONFigure :HIERarchy:ALL?

- Cards which are part of a combined instrument such as a switchbox or scanning voltmeter always return the same manufacturer’s comments as the first card in the instrument. Information in the other fields correspond to the card for which the Logical Address was specified.

VXI:CONF:HEIR:ALL? Returns the configuration information about all logical addresses in the E1300/E1301 mainframe. The information is returned in the order specified in the response to VXI:CONF:LADD?. The information about multiple logical addresses will be semicolon separated and follow the IEEE 488.2 response message format. Individual fields of the output are comma separated.

NOTE

This command is included in the E1300/E1301 because it is a required SCPI command. Since there are no message based devices in the E1300/E1301, most of these fields will be null valued for this E1300/E1301.

Comments

VXI:CONF:INF? Returns the static information about the selected logical address (see VXI:SELect). The individual fields of the response are comma separated. If the information about the selected logical address is not available from the destination device (i.e., the requested device is not in the mainframe) then Error -224 ("parameter error") will be set and no response data will be sent. The command returns the following values:

- Logical address: an integer between -1 and 255 inclusive. -1 indicates that the device has no logical address.

- Manufacturer ID: an integer between -1 and 4095 inclusive. -1 indicates that the device has no Manufacturer ID.

- Model code: an integer between -1 and 65535 inclusive. -1 indicates that the device has no model code.

- Device class: an integer between 0 and 5 inclusive. 0 = VXIbus memory device, 1 = VXIbus extended device, 2 = VXIbus message based device, 3 = VXIbus register based device, 4 = Hybrid device, 5 = Non-VXIbus device.

- Address space: an integer between 0 and 15 inclusive, which is the sum of the binary weighted codes of the address space(s) occupied by the device. 1 = The device has A16 registers, 2 = The device has A24 registers, 4 = The device has A32 registers, 8 = The device has A64 registers.

- A16 memory offset: an integer between -1 and 65535 inclusive. Indicates the base address for any A16 registers (other than the VXIbus defined
registers) which are present on the device. -1 indicates that the device has no A16 memory.

- **A24 memory offset**: an integer between -1 and 16777215 inclusive. Indicates the base address for any A24 registers which are present on the device. -1 indicates that the device has no A24 memory.

- **A32 memory offset**: an integer between -1 and 4294967295 inclusive. Indicates the base address for any A32 registers which are present on the device. -1 indicates that the device has no A32 memory.

- **A16 memory size**: an integer between -1 and 65535 inclusive. Indicates the number of bytes reserved for any A16 registers (other than the VXIbus defined registers) which are present on the device. -1 indicates that the device has no A16 memory.

- **A24 memory size**: an integer between -1 and 16777215 inclusive. Indicates the number of bytes reserved for any A24 registers which are present on the device. -1 indicates that the device has no A24 memory.

- **A32 memory size**: an integer between -1 and 4294967295 inclusive. Indicates the number of bytes reserved for any A32 registers which are present on the device. -1 indicates that the device has no A32 memory.

- **Slot number**: an integer between -1 and the number of slots which exist in the cage. -1 indicates that the slot which contains this device is unknown.

- **Slot 0 logical address**: an integer between -1 and 255 inclusive. -1 indicates that the Slot 0 device associated with this device is unknown.

- **Subclass**: an integer representing the contents of the subclass register. -1 indicates that the subclass register is not defined for this device.

- **Attribute**: an integer representing the contents of the attribute register. -1 indicates that the attribute register is not defined for this device.

- **Manufacturer’s Specific Comments**: Up to 80 character string contains manufacturer specific data in string response data format. This field is sent with a 488.2 string response data format, and will contain the instrument name and its IEEE 488.1 secondary address unless a start-up error is detected. In that case, this field will contain one or more error codes in the form "CNFG ERROR: n, m, ...,z". See Appendix B, Table B-3 for a complete list of these codes.

Comments

Example
Query information on logical address 0.

```
VXI:SEL 0
VXI:CONF:INF?
```

select the logical address

ask for data

return data
VXI:CONF:INF:ALL?

:CONFigure
:INFormation:ALL?
VXI:CONF:INF:ALL? Returns the static information about all logical addresses. The information is returned in the order specified in the response to VXI:CONF:LADD?. The information about multiple logical addresses will be semicolon separated and follow the IEEE 488.2 response message format. Individual fields of the output are comma separated.

Comments

:CONFigure
:LADDRESS?
VXI:CONF:LADD? Returns a comma separated list of logical addresses of devices in the mainframe. This is an integer between 1 and 256 inclusive. The logical address of the device responding to the command will be the first entry in the list.

Comments
- Related Commands: VXI:CONF:NUMB?

:CONFigure:NUMBER?
VXI:CONF:NUMB? Returns the number of devices in the system. This is an integer between 1 and 256 inclusive.

Comments
- Related Commands: VXI:CONF:LADD?

:READ?
VXI:READ? <logical_addr>,<register_addr> allows access to the entire 64 byte A16 register address space for the device specified by logical_addr. Since the VXIbus system is byte-addressed, while the registers are 16 bits wide, registers are specified by even addresses only. This method of identifying registers follows the VXIbus standard format.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>logical_addr</td>
<td>decimal numeric</td>
<td>must round to 0 through 255</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>register_addr</td>
<td>numeric</td>
<td>must round to an even value from 0 through 62 (3E16)</td>
<td>none</td>
</tr>
</tbody>
</table>

Comments
- Specifying an odd register address will cause an error 2003,"Invalid word address".
- Specifying a logical address not currently in the system will cause an error 2005,"No card at logical address".
- Logical_addr must be specified in decimal. Register_addr may be specified in decimal, hcx (#H), octal (#Q), or binary (#B).
- This command has been retained for compatibility with existing programs. For new programs you should use the VXI:REG:READ? command.
- Accesses are 16-bit non-privileged data accesses.
Related Commands: VXI:WRITE, VXI:REG:READ?

Example Read from one of a device's configuration registers

VXI:READ? 8,0
read ID register on device at Logical Address 8

enter statement
enter value from device register

VXI:REG:READ? <register>
returns the contents of the specified 16 bit register at the selected logical address as an integer (see VXI:SELect). The register is specified as the byte address of the desired register or optionally as the register name.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter Name</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>register</td>
<td>even numbers from 0 to 62 or register name (see below)</td>
<td>none</td>
</tr>
</tbody>
</table>

Parameters

Comments

- The register parameter can be all even numbers from 0 to 62 inclusive (as a <numeric_value>) or the following (optional) words:
 A24Low: A24 Pointer Low register (18)
 A24High: A24 Pointer High register (16)
 A32Low: A32 Pointer Low register (22)
 A32High: A32 Pointer High register (20)
 ATTRIBUTE: Attribute register (8)
 DHIGH: Data High register (12)
 DLLOW: Data Low register (14)
 DTYPE: Device Type register (2)
 ICONtrol: Interrupt control register (28)
 ID: ID register (0)
 ISTatus: Interrupt Status register (26)
 MODid: MODID register (8)
 OFFSet: Offset register (6)
 PROTocol: Protocol register (8)
 RESPonse: Response register (10)
 SNHigh: Serial Number High register (10)
 SNLow: Serial Number Low register (12)
 STATUS: Status register (4)
 SUBClass: Subclass register (30)
 VNUMBER: Version Number register (14)

Related Commands: VXI:SEL, VXI:REG:WRIT

Example Read from a register on the currently selected device

VXI:READ? CONT
Read from the control register of the currently selected device

System Instrument Command Reference 7-61
VXI:REG:WRITE

VXI:REG:WRITE? <register>, <data> writes to the specified 16 bit register at the selected logical address (see VXI:SELECT). The data is a 16 bit value specified as a numeric value in the range of -32768 to 32767 or 0 to 65535. The register is specified as the byte address of the desired register or optionally as the register name.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>register</td>
<td>numeric</td>
<td>even numbers from 0 to 62 or</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>data</td>
<td>numeric</td>
<td>-32768 to 65535</td>
<td>none</td>
</tr>
</tbody>
</table>

Comments

- The register parameter can be all even numbers from 0 to 62 inclusive (as a `<numeric_value>`) or the following (optional) words:
 - CONTROL: Control Register (4)
 - DEXTended: Data Extended register (10)
 - DHIGH: Data High register (12)
 - DLOW: Data Low register (14)
 - ICONtrol: Interrupt Control register (28)
 - MODid: MODID register (8)
 - LADDRESS: Logical Address register (0)
 - OFFSET: Offset register (6)
 - SIGNAL: Signal register (8)

- **Related Commands:** VXI:SEL, VXI:REG:READ?

Example

Write to a register on the currently selected device

```
VXI:REG:WRIT? DHIG, 64
```

writes "64" to the Data High register

Reset?

VXI:RESET? resets the selected logical address. SYSFAIL generation is inhibited while the device is in the self test state. The command waits for 5 seconds or until the selected device has indicated passed (whichever occurs first). If the device passes its self test SYSFAIL generation is re-enabled. If the device fails its self test SYSFAIL generation remains inhibited. The return value from this command is the state of the selected device after it has been reset. The command returns an integer encoded as followed.

- 0 = FAIL
- 2 = PASS
- 3 = READY

The state of the A24/A32 enable bit is not altered by this command

Comments

- **Related Commands:** VXI:SEL
VXI :SELect

:SELect
VXI:SELect <logical_addr> specifies the logical address which is to be used by many subsequent commands in the VXI subsystem.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>logical_addr</td>
<td>numeric</td>
<td>0 through 255</td>
<td>none</td>
</tr>
</tbody>
</table>

Comments
- The *RST default value for logical_addr is that no logical address is selected (i.e., -1). All other commands which require a logical address to be selected will respond with Error -221 ("settings conflict") if no logical address is selected.
- When a command encounters an Error -240 ("Hardware Error") the equivalent of a *RST is executed. This will cause the selected logical address to be set to -1.
- **Related Commands:** VXI:CONF:LADD?

Example
Select a logical address

```
VXI:SEL 64
```
sets the logical address to be used by subsequent VXI subsystem commands to 64.

:SELect?
VXI:SELect? returns the logical address which will be used by many subsequent commands in the VXI subsystem. If no logical address has been selected, this query will return -1.
:WRIThese <logical_addr>,<register_addr>,<data> allows access to the entire 64 byte A16 register address space for the device specified by logical_addr. Since the VXIbus system is byte-addressed, while the registers are 16 bits wide, registers are specified by even addresses only. This method of identifying registers follows the VXIbus standard format.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Parameter Type</th>
<th>Range of Values</th>
<th>Default Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>logical_addr</td>
<td>decimal numeric</td>
<td>Must round to 0 through 255</td>
<td>none</td>
</tr>
<tr>
<td>register_addr</td>
<td>numeric</td>
<td>must round to an even value from 0 through 62 (3Eh)</td>
<td>none</td>
</tr>
<tr>
<td>data</td>
<td>numeric</td>
<td>must round to -32768 to 32767 (0 to FFFFh)</td>
<td>none</td>
</tr>
</tbody>
</table>

Comments

- Specifying an odd register address will cause an error 2003, "Invalid word address".
- Specifying a logical address not currently in use in the system will cause an error 2005, "No card at logical address".
- Logical_addr must be specified in decimal. Register_addr and data may be specified in decimal, hex (#H), octal (#Q), or binary (#B).
- This command has been retained for compatibility with existing programs. For new programs you should use the VXI:REG:WRI command.
- Accesses are 16-bit non-privileged data accesses.
- Related Commands: VXI:READ?, VXI:REG:WRI

Example

Write a value into a device's device dependent register.

VXI:WRIT 8,24,#H4200

write hex 4200 (16,896 decimal) to register 24 of device at Logical Address 8
This section describes the IEEE-488.2 Common Commands that can be used to program instruments in the mainframe. Commands are listed by command groups in the summary table below, and alphabetically in the rest of this section. Examples are shown when the command has parameters or returns a response; otherwise the command string is as shown in the headings in this section. For additional information on any Common Commands, refer to the IEEE Standard 488.2-1987 (see 'Related Documentation' in the front of this manual for more information on this standard).

<table>
<thead>
<tr>
<th>Category</th>
<th>Command</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>*IDN</td>
<td>Identification Query</td>
</tr>
<tr>
<td></td>
<td>*RST</td>
<td>Reset Command</td>
</tr>
<tr>
<td></td>
<td>*TST?</td>
<td>Self-Test Query</td>
</tr>
<tr>
<td>Instrument Status</td>
<td>*CLS</td>
<td>Clear Status Command</td>
</tr>
<tr>
<td></td>
<td>*ESE < mask ></td>
<td>Standard Event Status Enable Command</td>
</tr>
<tr>
<td></td>
<td>*ESE?</td>
<td>Standard Event Status Enable Command</td>
</tr>
<tr>
<td></td>
<td>*ESR?</td>
<td>Standard Event Status Register</td>
</tr>
<tr>
<td></td>
<td>*PSC</td>
<td>Query</td>
</tr>
<tr>
<td></td>
<td>*PSC?</td>
<td>Standard Event Status Register</td>
</tr>
<tr>
<td></td>
<td>*SRE < mask ></td>
<td>Query</td>
</tr>
<tr>
<td></td>
<td>*SRE?</td>
<td>Power-On Status Clear Command</td>
</tr>
<tr>
<td></td>
<td>*STB?</td>
<td>Power-On Status Clear Query</td>
</tr>
<tr>
<td>Macros</td>
<td>*DMC < name >, <cmds ></td>
<td>Service Request Enable Command</td>
</tr>
<tr>
<td></td>
<td>*EMC < state ></td>
<td>Service Request Enable Query</td>
</tr>
<tr>
<td></td>
<td>*EMC?</td>
<td>Status Byte Query</td>
</tr>
<tr>
<td></td>
<td>*GMC? < name ></td>
<td>Define Macro Command</td>
</tr>
<tr>
<td></td>
<td>*LMC?</td>
<td>Enable Macros Command</td>
</tr>
<tr>
<td></td>
<td>*PMC</td>
<td>Enable Macro Query</td>
</tr>
<tr>
<td></td>
<td>*RMC < name ></td>
<td>Get Macro Query</td>
</tr>
<tr>
<td>Synchronization</td>
<td>*OPC</td>
<td>Learn Macro Query</td>
</tr>
<tr>
<td></td>
<td>*OPC?</td>
<td>Purge all Macros Command</td>
</tr>
<tr>
<td></td>
<td>*WAI</td>
<td>Remove individual Macro Command</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Operation Complete Command</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Operation Complete Query</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wait-to-Continue Command</td>
</tr>
</tbody>
</table>
*CLS Clear Status Command. The *CLS command clears all status registers
(Standard Event Status Register, Standard Operation Event Status Register,
Questionable Data Event Register) and the error queue for an instrument. This
clears the corresponding summary bits (bits 3, 5, & 7) and the
instrument-specific bits (bits 0, 1, & 2) in the Status Byte Register. *CLS does
not affect the enabling of bits in any of the status registers (Status Byte Register,
Standard Event Status Register, Standard Operation Event Status Register, or
Questionable Data Event Status Register). (The SCPI command
STATUS:PRESet does clear the Standard Operation Status Enable and
Questionable Status Enable registers.) *CLS disables the Operation Complete
function (*OPC command) and the Operation Complete Query function
(*OPC? command).

*DMC < name_string >,
<command_block> Define Macro Command. Assigns one, or a sequence of commands to a macro
name.

The command sequence may be composed of SCPI and/or Common commands.

The name given to the macro may be the same as a SCPI command, but may not
be the same as a Common command. When a SCPI named macro is executed,
the macro rather than the SCPI command is executed. To regain the function of
the SCPI command, execute the *EMC 0 command.

Example

Create a macro to return the System Instrument's Device list.
OUTPUT 70900; '*DMC 'LIST', #0VXI:CONF:DLIS?'

Note that the name LIST is in quotes. The second parameter type is arbitrary
block program data. The characters that define a command message are prefixed
by the characters #0 (pound zero). For a more information on this parameter
type, see Parameter Types in the first part of this chapter.

*EMC < enable > Enable Macros Command. When enable is non-zero, macros are enabled. When
enable is zero, macros are disabled.

*EMC? Enable Macros Query. Returns either 1 (macros are enabled), or 0 (macros are
disabled) for the selected instrument.

*ESE < mask > Standard Event Status Enable Register Command. Enables one or more events
in the Standard Event Status Register to be reported in bit 5 (the Standard
Event Status Summary Bit) of the Status Byte Register. You enable an event by
specifying its decimal weight for < mask >. To enable more than one event,
specify the sum of the decimal weights. Refer to "Standard Event Status
Register" earlier in this chapter for a table showing the contents of the Standard
Event Status Register.

Example

OUTPUT 70900; '*ESE 60' Enables bits 2, 3, 4, & 5.
Respective weights are 4 + 8
+ 16 + 32 = 60
*ESE? Standard Event Status Enable Query. Returns the weighted sum of all enabled (unmasked) bits in the Standard Event Status Register.

Example
10 OUTPUT 70900;"*ESE?"
20 ENTER 70900;A
30 PRINT A
40 END

Sends status enable query
Places response in variable
Prints response

*ESR? Standard Event Status Register Query. Returns the weighted sum of all set bits in the Standard Event Status Register. After reading the register, *ESR? clears the register. The events recorded in the Standard Event Status Register are independent of whether or not those events are enabled with the *ESE command.

Example
10 OUTPUT 70900;"*ESR?"
20 ENTER 70900;A
30 PRINT A
40 END

Sends Standard Event Status Register query
Places response in variable
Prints response

*GMC? <name_string> Get Macro Query. Returns arbitrary block response data which contains the command or command sequence defined by name_string. The command sequence will be prefixed with characters which indicate the number of characters that follow the prefix.

Example
10 OUTPUT 70900;"*GMC? 'LIST"
20 ENTER 70900;Cmds$
30 PRINT Cmds$
40 END

ask for definition of macro from *DMC example
enter into Cmds$ the definition of the macro "LIST"

Cmds$ = #214VX1:CONF:DLIS?

In this case, the prefix consists of "+214". The 2 says to expect two character-counting digits. The 14 says that 14 characters of data follow. Had the returned macro been shorter, such as #15*EMC?, we would read this as 1 counting digit indicating 5 data characters.
*IDN? Identity. Returns the device identity. The response consists of the following four fields (fields are separated by commas):
 - Manufacturer
 - Model Number
 - Serial Number (returns 0 if not available)
 - Firmware Revision (returns 0 if not available)

The *IDN? command returns the following command string for the E1301A:

HEWLETT-PACKARD,E1301A,0,A,07.00

This command will return the following string for the E1300A:

HEWLETT-PACKARD,E1300A,0,A,07.00

NOTE

The revision will vary with the revision of the ROM installed in the system. This is the only indication of which version of ROM is in the box. The major number (01 in the examples) indicates whether there have been functional changes made in this ROM. The minor number (00 in the examples) indicates whether only bug fixes and minor changes were made.

Example

Get the ID fields from the system and print them.

10 DIM A$[50] // Dimension array for ID fields
20 OUTPUT 70900;"*IDN?"
30 ENTER 70900;A$
40 PRINT A$
50 END

*LMC? Learn Macros Query. Returns a quoted string name for each currently defined macro. If more than one macro is defined, the quoted strings are separated by commas (,). If no macro is defined, then a quoted null string (""") is returned.

*LRN? Learn query command. *LRN? causes the instrument to respond with a string of SCPI commands which define the instrument’s current state. Your application program can enter the *LRN? response data into a string variable, later to be sent back to the instrument to restore that configuration.

Example response from an HP E1326B voltmeter in the power-on state:

*RST;CAL:ZERO:AUTO 1; :CAL:LFR +60; VAL +0.0000000E +000; :DISP:MON:STAT 0; CHAN (@0); :FORM ASC, +7; :FUNC "VOLT", :MEM:VME:ADDR +2097152; SIZE +0; STAT 0; :RES:APER +1.666667E-002; OCOM 0; RANG +1.638400E +004; RANG:AUTO 1; :VOLT:APER +1.666667E-002; RANG +8.000000E +000; RANG:AUTO 1; :TRIG:COUN +1; DEL +0.0000000E +000; DEL:AUTO 1; :TRIG:SOUR IMM; :SAMP:COUN +1; SOUR IMM;TIM +5.000000E-002 S
NOTE

The System Instrument no longer implements the *LRN? command. Attempting to have the System Instrument execute this command will generate an error -113 "Undefined header".

*OPC
Operation Complete. Causes an instrument to set bit 0 (Operation Complete Message) in the Standard Event Status Register when all pending operations have been completed. By enabling this bit to be reflected in the Status Byte Register (*ESE 1 command), you can ensure synchronization between the instrument and an external computer or between multiple instruments. (Refer to "Synchronizing an External Computer and Instruments" earlier in this chapter for an example).

*OPC?
Operation Complete Query. Causes an instrument to place an ASCII 1 into the instrument's output queue when all pending instrument operations are finished. By requiring the computer to read this response before continuing program execution, you can ensure synchronization between one or more instruments and the computer. (Refer to "Synchronizing an External Computer and Instruments" earlier in this chapter for an example).

*PMC
Purge Macros Command. Purges all currently defined macros in the selected instrument.

*PSC <flag>
Power-on Status Clear Command. Controls the automatic power-on clearing of the Service Request Enable register and Standard Event Status Enable register. Executing *PSC 1 disables any previously enabled bits at power-on, preventing the System Instrument from requesting service when power is cycled. Executing *PSC 0 causes any previously enabled bits to remain enabled at power-on which allows the System Instrument to request service (if it has been enabled - *SRE) when power is cycled. The value of flag is stored in non-volatile memory.

Example
This example configures the System Instrument to request service from the external computer whenever power is cycled.

```
Status Byte register and Standard Event Status register bits remain enabled (unmasked) after cycling power
10 OUTPUT 70900;"*PSC 0"
Enable bit 5 (Standard Event Status Register Summary Bit) in the Status Byte Register
20 OUTPUT 70900;"*SRE 32"
Enable bit 7 (Power-on bit) in the Standard Event Status Register to be reflected as bit 5 in the Status Byte Register
30 OUTPUT 70900;"*ESE 128"
```

*PSC?
Power-on status clear query. Returns a response indicating whether an instrument's Status Byte Register and Standard Event Status Register bits remain enabled or become disabled at power-on. A "1" means the bits are disabled at power-on; a "0" means the bits remain enabled at power-on.
RCL <state number>
Recall stored state. Recalls a stored state from memory and configures the instrument to that state. States are stored using the *SAV command.

Example
OUTPUT 70900;"*RCL 4"
Recalls instrument state number 4

RMC <name_string>
Remove Individual Macro Command. Purges an individual macro identified by the name_string parameter.

Example
output 70900;"*RMC LIST"
remove macro command from *DMC example

NOTE: At printing time, *RMC is a command proposed for a revision and re-designation of ANSI/IEEE Std 488.2-1987.

RST
Reset. Resets an instrument as follows:
- Sets the instrument to a known state (usually the power-on state)
- Aborts all pending operations
- Disables the *OPC and *OPC? modes.

RST does not affect:
- The state of the HP-IB interface
- The HP-IB address
- The output queue
- The Service Request Enable Register
- The Standard Event Status Enable Register
- The power-on flag
- Calibration data
- Protected user data

SAV <state number>
Store state. Stores an instrument's present state in a numbered memory location (<state number> parameter). State numbers can range from 0 to 9.

Example
OUTPUT 70900;"*SAV 4"
Saves present instrument state as state number 4

SRE <mask>
Service Request Enable. When a service request event occurs, it sets a corresponding bit in the Status Byte Register (this happens whether or not the event has been enabled (unmasked) by *SRE). The *SRE command allows you to identify which of these events will assert an HP-IB service request (SRQ). When an event is enabled by *SRE and that event occurs, it sets a bit in the Status Byte Register and issues an SRQ to the computer (sets the HP-IB SRQ line true). You enable an event by specifying its decimal weight for <mask>. To enable more than one event, specify the sum of the decimal weights. Refer to "The Status Byte Register" earlier in this chapter for a table showing the contents of the Status Byte Register.

Example
OUTPUT 70900;"*SRE 160"
Enables bits 5 & 7. Respective weights are 32 + 128 = 160
*SRE? Status Register Enable Query. Returns the weighted sum of all enabled (unmasked) events (those enabled to assert SRQ) in the Status Byte Register.

Example

10 OUTPUT 70900;"*SRE?"
20 ENTER 70900:A
30 PRINT A
40 END

*SRE? Sends Status Register Enable query
Places response in variable
Prints response

*STB? Status Byte Register Query. Returns the weighted sum of all set bits in the Status Byte Register. Refer to "The Status Byte Register" earlier in this chapter for a table showing the contents of the Status Byte Register.

Comments You can read the Status Byte Register using either the *STB? command or an HP-IB serial poll (IEEE 488.1 message). Both methods return the weighted sum of all set bits in the register. The difference between the two methods is that *STB? does not clear bit 6 (Service Request); serial poll does clear bit 6. No other status byte register bits are cleared by either method with the exception of the Message Available bit (bit 4) which may be cleared as a result of reading the response to *STB?.

Example

10 OUTPUT 70900;"*STB?"
20 ENTER 70900:A
30 PRINT A
40 END

*STB? Sends Status Byte Register query
Places response in variable
Prints response

*TRG Trigger. Triggers an instrument when the trigger source is set to bus (TRIG:SOUR BUS command) and the instrument is in the Wait for Trigger state.

*TST? Self-Test. Causes an instrument to execute an internal self-test and returns a response showing the results of the self-test. A zero response indicates that self-test passed. A value other than zero indicates a self-test failure or error.

Example

10 OUTPUT 70900;"*TST?"
20 ENTER 70900:A
30 PRINT A
40 END

*TST? Execute self-test, return response
Places self-test response in variable
Prints response

*WAI Wait-to-continue. Prevents an instrument from executing another command until the operation caused by the previous command is finished (sequential operation). Since all instruments normally perform sequential operations, executing the *WAI command causes no change to the instrument’s operation.
HP-IB Message Reference

This section describes IEEE-488.1 defined messages and their affect on instruments installed in the mainframe. The examples shown are specifically for HP 9000 Series 200/300 computers using BASIC language. Any IEEE-488 controller can send these messages; however, the syntax may be different from that shown here.

Go To Local (GTL)

Places an instrument in local state.

Comments
- Refer to the Local Lockout message, later in this chapter, for information on how GTL affects front panel lockout.

Examples

| LOCAL 7 | Sets HP-IB remote enable line false (all instruments go to local). (You must now execute REMOTE 7 to return to remote mode). |
| LOCAL 70900 | Issues HP-IB GTL to System Instrument. (The instrument will return to remote mode when it is listen addressed). |

Group Execute Trigger (GET)

Executing a group execute trigger will trigger an instrument assuming the following conditions are true:

- The instrument's trigger source is set to Bus (TRIG:SOUR BUS command), and:
- The instrument is in the Wait For Trigger state, and:
- The instrument is addressed to listen (can be done by sending any command, the REMOTE 709ss (ss = secondary address) command, or with the LISTEN command).

Comments
- For instruments in an HP E1300A/E1301A Mainframe, only one instrument at a time can be programmed to respond to GET. This is because only one instrument can be addressed to listen at any one time.

Example

10 OUTPUT 70900;"TRIG:SOUR BUS"	Sets trigger source to bus
20 OUTPUT 70900;"INIT:IMM"	Places System Instrument's Pacer in Wait For Trigger state
30 TRIGGER 70900	Triggers Pacer
40 END	

Interface Clear (IFC)

Unaddresses all instruments in the mainframe and breaks any bus handshaking in progress.

Example

| ABORT 7 | |

7-72 System Instrument Command Reference
Device Clear (DCL) or Selected Device Clear (SDC)

DCL clears all instruments in the mainframe. SDC clears a specific instrument. The purpose of DCL or SDC is to prepare one or more instruments to receive and execute commands (usually *RST). DCL or SDC do the following to each instrument:

- Clear the input buffer and output queue.
- Reset the command parser.
- Disable any operation that would prevent *RST from being executed.
- Disable the Operation Complete and Operation Complete Query modes.

DCL or SDC do not affect:

- Any settings or stored data in the instrument (except the Operation Complete and Operation Complete Query modes)
- Front panel operation
- Any instrument operation in progress (except as stated above)
- The status byte (except for clearing the Message Available bit as a result of clearing the output queue).

Examples

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLEAR 7</td>
<td>Clears all instruments</td>
</tr>
<tr>
<td>CLEAR 70900</td>
<td>Clears the System Instrument</td>
</tr>
</tbody>
</table>

Local Lockout (LLO)

When an instrument is in remote mode, Local Lockout prevents an instrument from being operated from the mainframe’s front panel.

Comments

- Certain front panel operations such as menu control and display scrolling are still active in Local Lockout mode.
- If the instrument is in the local state when you send LOCAL LOCKOUT, it remains in local. If the instrument is in the remote state when you send LOCAL LOCKOUT, front panel control is disabled immediately for that instrument.
- After executing LOCAL LOCKOUT, you can enable the keyboard by sending the LOCAL 7 command or by cycling power. The LOCAL 709ss (ss = secondary address) command enables the front panel for that instrument but a subsequent remote command disables it. Sending the LOCAL 7 command removes lockout for all instruments and places them in the local state.

Examples

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 REMOTE 70900</td>
<td>Sets the System Instrument remote state</td>
</tr>
<tr>
<td>20 LOCAL LOCKOUT 7</td>
<td>Disables front panel control for the System Instrument and all other instruments that were in the remote state.</td>
</tr>
<tr>
<td>30 END</td>
<td></td>
</tr>
</tbody>
</table>
Remote
Sets the HP-IB remote enable line (REN) true which places an instrument in the remote state.

Comments
- The REMOTE 709ss (ss = secondary address) command places the instrument in the remote state. The REMOTE 7 command, does not, by itself, place the instrument in the remote state. After sending the REMOTE 7 command, the instrument will only go into the remote state when it receives its listen address.
- In most cases, you will only need the REMOTE command after using the LOCAL command. REMOTE is independent of any other HP-IB activity and toggles a single bus line called REN. Most controllers set the REN line true when power is applied or when reset.

Examples
REMOTE 7
REMOTE 70900
Sets HP-IB REN line true
Sets REN line true and addresses System Instrument

Serial Poll (SPOLL)
The SPOLL command, like the *STB? Common Command, returns the weighted sum of all set bits in an instrument’s Status Register (status byte). Refer to "The Status Register" earlier in this chapter for a table showing the contents of the Status Register.

Comments
- The SPOLL command differs from the *STB? command in that SPOLL clears bit 6 (RQS). Executing *STB? does not clear bit 6.

Examples
10 P = SPOLL (70900) Sends Serial Poll, places response into P
20 DISP P Displays response
30 END
The following tables summarize SCPI and IEEE 488.2 Common (*) commands for the HP E1300/E1031 Mainframe System Instrument.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>ABORt</td>
<td>Abort Fore output.</td>
</tr>
<tr>
<td>[IMMe diate]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>DIAGnostic</td>
<td>Reverts System processor, clears stored configurations.</td>
</tr>
<tr>
<td>:BOOT</td>
<td>Same as cycling power.</td>
</tr>
<tr>
<td>:WARM</td>
<td></td>
</tr>
<tr>
<td>:COM Municate</td>
<td>Allocates the built-in serial interface.</td>
</tr>
<tr>
<td>:SRIal[0]</td>
<td>Returns SYST, IBAS, or NONE.</td>
</tr>
<tr>
<td>[:OWNnet] [SYSTem</td>
<td>IBASic] [NONE]</td>
</tr>
<tr>
<td>[:OWNnet]?</td>
<td></td>
</tr>
<tr>
<td>:SRIal[n]</td>
<td>Stores serial communication parameters into non-volatile storage.</td>
</tr>
<tr>
<td>:STORc</td>
<td></td>
</tr>
<tr>
<td>:DOWNLOAD</td>
<td>Write data to non-volatile user RAM starting at the specified address</td>
</tr>
<tr>
<td>:CH Ecked</td>
<td>using error correction.</td>
</tr>
<tr>
<td>[:MADdress]</td>
<td>Write data to non-volatile user RAM at the specified address using error</td>
</tr>
<tr>
<td>:SADdress</td>
<td>correction.</td>
</tr>
<tr>
<td>[:MADdress] <address>, <data></td>
<td>Write data to non-volatile user RAM starting at the specified address.</td>
</tr>
<tr>
<td>:SADdress <address>, <data></td>
<td>Write data to non-volatile user RAM at the specified address.</td>
</tr>
<tr>
<td>:DRAM</td>
<td>Returns the amount of RAM remaining in the DRAM (Driver RAM) segment.</td>
</tr>
<tr>
<td>:AVAliable?</td>
<td>Creates a non-volatile RAM area for loading instrument drivers.</td>
</tr>
<tr>
<td>:CREATE <size>, <num_drivers></td>
<td>Loads the instrument driver contained in the specified driver_block into a previously created DRAM segment.</td>
</tr>
<tr>
<td>:DRVer</td>
<td>Loads the instrument driver contained in the specified driver_block into a previously created DRAM segment using error correction.</td>
</tr>
<tr>
<td>:LOAD < driver_block ></td>
<td>Lists all drivers from all driver tables (RAM and ROM)</td>
</tr>
<tr>
<td>:LOAD</td>
<td>Lists all drivers found in the RAM driver table.</td>
</tr>
<tr>
<td>:CH Ecked</td>
<td>Lists all drivers found in the ROM driver table.</td>
</tr>
<tr>
<td>:LIST</td>
<td>Enable VXIbus interrupt acknowledgement.</td>
</tr>
<tr>
<td>[:ALL]</td>
<td>Enables or disables System Instrument control of VXI interrupt line [n].</td>
</tr>
<tr>
<td>:RAM</td>
<td>Returns current state of SITup[n].</td>
</tr>
<tr>
<td>:ROM</td>
<td>Specifies the priority level of VXI interrupt line [n].</td>
</tr>
<tr>
<td>:INTerrupt</td>
<td>Returns priority level of VXI interrupt line [n].</td>
</tr>
<tr>
<td>:ACTivate [ON</td>
<td>OFF] [1</td>
</tr>
<tr>
<td>:SETup[n] [ON</td>
<td>OFF] [0</td>
</tr>
<tr>
<td>:SETup[n]?</td>
<td></td>
</tr>
<tr>
<td>:PRiority[n] [<priority> [MIN</td>
<td>MAX</td>
</tr>
<tr>
<td>:PRiority[n]? [MIN</td>
<td>MAX</td>
</tr>
<tr>
<td>:RESPonse?</td>
<td></td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>:NRAM :ADDRESS?</td>
<td>Returns starting address of the User non-volatile RAM.</td>
</tr>
<tr>
<td>:CRIate < size>[MIN\MAX]</td>
<td>Creates a User non-volatile RAM segment.</td>
</tr>
<tr>
<td>:CRIate? [MIN\MAX]</td>
<td>Returns the current or allowable size of User NVRAM.</td>
</tr>
<tr>
<td>:PEEK? < address>[MIN\MAX],[width></td>
<td>Returns an 8, 16, or 32 bit value from memory.</td>
</tr>
<tr>
<td>:POKE < address>[MIN\MAX],[<value>,<data></td>
<td>Stores an 8, 16, or 32 bit value to RAM.</td>
</tr>
<tr>
<td>:RDLY :ADDRESS?</td>
<td>Returns the starting address of an IBASIC RAM volume.</td>
</tr>
<tr>
<td>:CRIate < size>[MIN\MAX]</td>
<td>Allocates RAM for an IBASIC RAM volume.</td>
</tr>
<tr>
<td>:CRIate? [MIN\MAX]</td>
<td>Returns the current or allowable size of the RAM vol.</td>
</tr>
<tr>
<td>:UPLOAD [:MADDRESS]? < address>,<byte_count></td>
<td>Returns data from non-volatile user RAM.</td>
</tr>
<tr>
<td>:SADDRESS? < address>,<byte_count></td>
<td>Returns data from non-volatile user RAM starting at address.</td>
</tr>
<tr>
<td>INITiate [Immediate]</td>
<td>Enables trigger system to start Pacer.</td>
</tr>
<tr>
<td>[SOURCE]</td>
<td>Sets number of Pacer pulses per trigger.</td>
</tr>
<tr>
<td>:PULSe COUNT < numeric value></td>
<td>Sets Pacer pulse period in seconds.</td>
</tr>
<tr>
<td>COUNT [MIN\MAX]</td>
<td>Returns current count, or MIN\MAX allowed value.</td>
</tr>
<tr>
<td>:PERiod < numeric value</td>
<td>Returns the current or allowable period value.</td>
</tr>
<tr>
<td>:PERiod? [MIN\MAX]</td>
<td>Set Standard Operation Enable Register mask.</td>
</tr>
<tr>
<td>STATus :OPERation</td>
<td>Returns the state of the condition register.</td>
</tr>
<tr>
<td>:CONDITION?</td>
<td>Set Standard Operation Enable Register mask.</td>
</tr>
<tr>
<td>:ENABLe 256</td>
<td>Returns value of enable mask.</td>
</tr>
<tr>
<td>:PRESet</td>
<td>Presets status registers</td>
</tr>
<tr>
<td>:QUESTIONable</td>
<td>Always returns +0.</td>
</tr>
<tr>
<td>:CONDITION?</td>
<td>Set Questionable Status Register enable mask.</td>
</tr>
<tr>
<td>:ENABLe < mask></td>
<td>Returns value of enable mask.</td>
</tr>
<tr>
<td>:ENABLe? [EVENT]?</td>
<td>Always returns +0.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>SYSTem</td>
<td>Sound beeper (fixed duration and tone).</td>
</tr>
<tr>
<td>:BEEPPer</td>
<td>Sets the primary address of the communications port.</td>
</tr>
<tr>
<td>[:IMmediate]</td>
<td>Returns GPIB address or min</td>
</tr>
<tr>
<td>:COMMunicate</td>
<td>Sets mode for modem control line DTR.</td>
</tr>
<tr>
<td>:GPIB</td>
<td>Returns current mode of DTR line.</td>
</tr>
<tr>
<td>:ADDRess</td>
<td>Sets mode for modem control line RTS.</td>
</tr>
<tr>
<td>:ADRess?</td>
<td>Returns current mode of RTS line.</td>
</tr>
<tr>
<td>:CTRL</td>
<td>Sets transmit and receive baud rate of serial interface.</td>
</tr>
<tr>
<td>:ETR ON</td>
<td>OFF</td>
</tr>
<tr>
<td>:ETR?</td>
<td>Sets the number of data bits in the serial data frame.</td>
</tr>
<tr>
<td>:RTS ON</td>
<td>OFF</td>
</tr>
<tr>
<td>:RTS?</td>
<td>Sets the receive pacing protocol to XON/XOFF or none.</td>
</tr>
<tr>
<td>[:RECeive]</td>
<td>Returns the state of receive pacing protocol.</td>
</tr>
<tr>
<td>:EAUD < baud_rate></td>
<td>MIN</td>
</tr>
<tr>
<td>:EAUD? [MIN</td>
<td>MAX]</td>
</tr>
<tr>
<td>:ETS 7</td>
<td>8</td>
</tr>
<tr>
<td>:ETS? [MIN</td>
<td>MAX]</td>
</tr>
<tr>
<td>:FACE</td>
<td>Enables/disables receive parity checking.</td>
</tr>
<tr>
<td>[:PROTocel] XON</td>
<td>NONE</td>
</tr>
<tr>
<td>[:PROTocel]?</td>
<td>Returns the current parity type setting.</td>
</tr>
<tr>
<td>:THreshold</td>
<td>Sets the number of stop bits for receive and transmit.</td>
</tr>
<tr>
<td>:START < char_count></td>
<td>Returns the number of stop bits set.</td>
</tr>
<tr>
<td>:START? [MIN</td>
<td>MAX]</td>
</tr>
<tr>
<td>:STOP < char_count></td>
<td>Links/unlinks the transmit and receive pacing protocol.</td>
</tr>
<tr>
<td>:STOP? [MIN</td>
<td>MAX]</td>
</tr>
<tr>
<td>:PARity</td>
<td>Sets the transmit pacing protocol to XON/XOFF or none.</td>
</tr>
<tr>
<td>:CHECK 1</td>
<td>0</td>
</tr>
<tr>
<td>:CHECK?</td>
<td>Sets system calendar.</td>
</tr>
<tr>
<td>[:TYPE] EVEN</td>
<td>ODD</td>
</tr>
<tr>
<td>:SBITs 1</td>
<td>2</td>
</tr>
<tr>
<td>:SBITs? MIN</td>
<td>MAX</td>
</tr>
<tr>
<td>:TRANmit</td>
<td>Returns current time or min</td>
</tr>
<tr>
<td>:AUTO 1</td>
<td>0</td>
</tr>
<tr>
<td>:AUTO?</td>
<td></td>
</tr>
<tr>
<td>:PACE</td>
<td></td>
</tr>
<tr>
<td>[:PROTocel] XON</td>
<td>NONE</td>
</tr>
<tr>
<td>[:PROTocel]?</td>
<td></td>
</tr>
</tbody>
</table>
System Instrument

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRIGger
:DELay <numeric value></td>
<td>Sets delay between trigger and first Pacer pulse. Returns current trigger delay or MIN</td>
</tr>
<tr>
<td>:DELAY? [MIN</td>
<td>MAX]
[:IMMediate]</td>
</tr>
<tr>
<td>:SLOPe [NEGATIVE]</td>
<td></td>
</tr>
<tr>
<td>:SLOPe?</td>
<td></td>
</tr>
<tr>
<td>:SOURce EXTernal</td>
<td>IMMediate</td>
</tr>
<tr>
<td>:SOURce?</td>
<td></td>
</tr>
<tr>
<td>VXI
:CONFigure
:DeviceLIAD?</td>
<td>Returns a list of the logical addresses in the system. Returns information about one or all installed devices. Returns the number of installed devices. Gets the static information about the selected logical address (see VXI:SELect). Gets the static information about all logical addresses. Gets the current hierarchy configuration data for the selected logical address (see VXI:SELect) Gets the current hierarchy configuration data for all logical addresses. Gets the number of devices in the system when issued to a Resource Manager. Gets a comma separated list of all logical addresses of devices in the system when issued to a Resource Manager. Read the contents of the device register at register_num.</td>
</tr>
<tr>
<td>:DeviceLIS?</td>
<td></td>
</tr>
<tr>
<td>:DeviceNUMBER?</td>
<td></td>
</tr>
<tr>
<td>:INFormation</td>
<td></td>
</tr>
<tr>
<td>:ALL?</td>
<td></td>
</tr>
<tr>
<td>:HIERarchy</td>
<td></td>
</tr>
<tr>
<td>:ALL?</td>
<td></td>
</tr>
<tr>
<td>:NUMBER?</td>
<td></td>
</tr>
<tr>
<td>:ADDRess?</td>
<td></td>
</tr>
<tr>
<td>:READ? <logical_addr>,<register_num></td>
<td></td>
</tr>
<tr>
<td>:REGister</td>
<td>Returns the contents of the specified 16 bit register at the selected logical address (see VXI:SELect). Writes to the specified 16 bit register at the selected logical address (see VXI:SELect). Resets the device at the selected logical address (see VXI:SELect). Specifies the logical address to be used by all subsequent commands in the VXI subsystem. Write data to the device register at logical_addr.</td>
</tr>
<tr>
<td>:READ? <numeric_value</td>
<td><reg_name></td>
</tr>
<tr>
<td>:WRITE <numeric_value</td>
<td><reg_name>,<data></td>
</tr>
<tr>
<td>:RESet?</td>
<td></td>
</tr>
<tr>
<td>:SELect <numeric_value></td>
<td></td>
</tr>
<tr>
<td>:WRITE <logical_addr>,<register_num>,<data></td>
<td></td>
</tr>
</tbody>
</table>
System Instrument

<table>
<thead>
<tr>
<th>Category</th>
<th>Command</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>*IDN?</td>
<td>Identification Query</td>
</tr>
<tr>
<td></td>
<td>*RST</td>
<td>Reset Command</td>
</tr>
<tr>
<td></td>
<td>*TST?</td>
<td>Self Test Query</td>
</tr>
<tr>
<td>Instrument Status</td>
<td>*CLS</td>
<td>Clear Status Command</td>
</tr>
<tr>
<td></td>
<td>*ISE < mask></td>
<td>Standard Event Status Enable Register Command</td>
</tr>
<tr>
<td></td>
<td>*ISE?</td>
<td>Standard Event Status Enable Query</td>
</tr>
<tr>
<td></td>
<td>*ESR?</td>
<td>Standard Event Status Register Query</td>
</tr>
<tr>
<td></td>
<td>*PSC < flag></td>
<td>Power-on Status Clear Command</td>
</tr>
<tr>
<td></td>
<td>*PSC?</td>
<td>Power-on Status Clear Query</td>
</tr>
<tr>
<td></td>
<td>*SRE < mask></td>
<td>Service Request Enable Command</td>
</tr>
<tr>
<td></td>
<td>*SRE?</td>
<td>Service Request Enable Query</td>
</tr>
<tr>
<td></td>
<td>*STD?</td>
<td>Status Byte Register Query</td>
</tr>
<tr>
<td>Macros</td>
<td>*DMC < name>,<cmd_data></td>
<td>Define Macro Command</td>
</tr>
<tr>
<td></td>
<td>*EMC < enable></td>
<td>Enable Macro Command</td>
</tr>
<tr>
<td></td>
<td>*EMC?</td>
<td>Enable Macro Query</td>
</tr>
<tr>
<td></td>
<td>*GMC? < name></td>
<td>Get Macro Query</td>
</tr>
<tr>
<td></td>
<td>*LMC?</td>
<td>Learn Macro Query</td>
</tr>
<tr>
<td></td>
<td>*FMC</td>
<td>Purge all Macros Command</td>
</tr>
<tr>
<td></td>
<td>*RMC < name></td>
<td>Remove individual Macro Command</td>
</tr>
<tr>
<td>Synchronization</td>
<td>*OPC</td>
<td>Operation Complete Command</td>
</tr>
<tr>
<td></td>
<td>*OPC?</td>
<td>Operation Complete Query</td>
</tr>
<tr>
<td></td>
<td>*WAI</td>
<td>Wait-to-Continue Command</td>
</tr>
</tbody>
</table>
System Instrument
Appendix A

Specifications

Mainframe Specifications

Pacer (50% duty cycle): Programmable intervals: 500 nsec to 8.389 sec with 500 nsec resolution.
Accuracy:
First pulse after trigger: 0.01% of programmed time + 600 to 850 nsec.
Additional pulses: 0.01% of programmed time ± 50 nsec.
Number of pulses: 1 through 8388607 or continuous.
Drive capability:
\(V_{LO} \leq 0.75 \text{ V} @ 4 \text{ mA} \)
\(V_{HI} \geq 3.4 \text{ V} @ -4 \text{ mA} \)
Rise Time/Fall Time: 320 nsec/90 nsec.

Real-time Clock: Accuracy: 0.01% of elapsed time since last reset ±1 sec @ 25° C.
Temperature variation: ±0.01% of elapsed time since last set, over full temperature range.
Resolution: 1 sec.
Non-volatile lifetime: 60 days without additional RAM.
Battery life: 1 year typical, NiCd battery.

Trigger Input: TTL compatible, minimum pulse width 300 nsec.

Non-volatile added memory storage lifetime:
Non-volatile added storage is backed up by NiCd battery. The table below shows minimum and typical lifetimes, which vary according to the amount of memory installed.

<table>
<thead>
<tr>
<th>RAM (MBytes)</th>
<th>MIN Lifetime (hours)</th>
<th>Typical lifetime (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>240</td>
<td>320</td>
</tr>
<tr>
<td>1.0</td>
<td>130</td>
<td>180</td>
</tr>
<tr>
<td>1.5</td>
<td>90</td>
<td>120</td>
</tr>
<tr>
<td>2.0</td>
<td>72</td>
<td>90</td>
</tr>
</tbody>
</table>

Slots: 7 B-size and 3 A-size

Size:

<table>
<thead>
<tr>
<th></th>
<th>inches</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height without feet</td>
<td>6.97</td>
<td>177</td>
</tr>
<tr>
<td>Height with feet</td>
<td>7.44</td>
<td>189</td>
</tr>
<tr>
<td>Width</td>
<td>16.75</td>
<td>426</td>
</tr>
<tr>
<td>Depth</td>
<td>20.1</td>
<td>510</td>
</tr>
<tr>
<td>Depth with terminal blocks</td>
<td>22.38</td>
<td>569</td>
</tr>
</tbody>
</table>

Weight:

<table>
<thead>
<tr>
<th></th>
<th>E1300A</th>
<th>E1301A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net</td>
<td>7.4 kg</td>
<td>7.8 kg</td>
</tr>
<tr>
<td>Max per modules</td>
<td>1.3 kg</td>
<td>1.3 kg</td>
</tr>
</tbody>
</table>

Power:

- Line voltage: 115 or 230 Vac @ 50 to 400 Hz
- Fused at: 3 A @ 115 Vac
 1.5 A @ 230 Vac
- Consumption: E1300A (empty) 27 W, 52 VA
 E1301A (empty) 31 W, 57 VA

Any combination of HP Series B modules can be powered and cooled by the HP 75000 Series B mainframe. Configuration using non-HP modules (e.g., VME modules) should be checked to assure the power consumption does not exceed 12.25 A on +5 V, 4.65 A on +12 V, and 0.95 A on -12 V supplies. The HP 75000 Series B mainframe will provide ample cooling for configurations that stay within these limits.

Cooling:

80 Watts total

Note: HP Series B mainframes provide VXIbus connector P1. Modules may not be masters or use more than 10 Watts.

Humidity:

65% 0° to 40° C

Operating temperature:

0° to 55° C

Storage temperature:

-40° to 75° C
The HP E1300/1301A conforms to SCPI-1990.0

In documentation produced prior to June 1990, these SCPI commands are labeled as TMSL commands.

The following tables list all the SCPI conforming, approved, and non-SCPI commands that the HP E1300/1301A can execute. Individual commands may not execute without having the proper plug-in module installed in the HP E1300/1301A. Each plug-in module manual describes the commands that apply to that module.

Switchbox Configuration
The following plug-in modules can be configured as switchbox modules. Refer to the individual plug-in User's Manual for configuration information.

HP E1345A	HP E1353A	HP E1366A
HP E1346A	HP E1357A	HP E1367A
HP E1347A	HP E1358A	HP E1368A
HP E1351A	HP E1361A	HP E1369A
HP E1352A	HP E1364A	HP E1370A

Table A-1. Switchbox SCPI-1990.0 Confirmed Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABORT</td>
<td>STATus :QUEStionable</td>
</tr>
<tr>
<td>ARM</td>
<td>:CONDition?</td>
</tr>
</tbody>
</table>
| | [:EVEN]?
| INITiate| :ENABLE |
| | :ENABLE? |
| OUTPUT | :OPEration :CONDition? |
| | [:EVEN]? |
| | :ENABLE |
| | :ENABLE? |
| | :PRESet |
| | SYSTem :ERRor? |
| | :CPON |
| [ROUTE] | :CTyPe? |
| | :VERsion? |
| | TRIGger [:IMMediate] |
| | :SOURCE |
| | :SLOPe |

Table A-2. Switchbox Non-SCPI Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISPlay</td>
<td>[:MONitor [:STATe]</td>
</tr>
<tr>
<td></td>
<td>:CARD</td>
</tr>
<tr>
<td>SYSTem</td>
<td>:CDESC:ription?</td>
</tr>
<tr>
<td></td>
<td>[:LIST]</td>
</tr>
<tr>
<td></td>
<td>:MODE</td>
</tr>
<tr>
<td></td>
<td>:PORT</td>
</tr>
<tr>
<td></td>
<td>:SETTing [:TIME]</td>
</tr>
<tr>
<td></td>
<td>:TIME?</td>
</tr>
</tbody>
</table>
Multimeter Commands

The following tables apply to the HP E1326A and E1326B.

Table A-3. Multimeter SCPI-1990.0 Confirmed Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABORt</td>
<td>[SENSe]</td>
</tr>
<tr>
<td>CALibration</td>
<td>:FUNCTION</td>
</tr>
<tr>
<td>:ZERO</td>
<td>:RESistance</td>
</tr>
<tr>
<td>:AUTO</td>
<td>:APERTure</td>
</tr>
<tr>
<td>:AUTO?</td>
<td>:APERTure?</td>
</tr>
<tr>
<td>:VALUE</td>
<td>:RANGE</td>
</tr>
<tr>
<td>CONFIGure</td>
<td>:RANGE</td>
</tr>
<tr>
<td>:RESistance</td>
<td>:RESolution</td>
</tr>
<tr>
<td>:TEMPerture</td>
<td>:RESolution?</td>
</tr>
<tr>
<td>:VOLTage</td>
<td>:VOLTage</td>
</tr>
<tr>
<td>:AC</td>
<td>:AC</td>
</tr>
<tr>
<td>[:DC]</td>
<td>:RANGE</td>
</tr>
<tr>
<td>CONFIGure?</td>
<td>[:DC]</td>
</tr>
<tr>
<td>FETCH?</td>
<td>:RANGE</td>
</tr>
<tr>
<td>:RESolution</td>
<td>:RANGE?</td>
</tr>
<tr>
<td>FORMat</td>
<td>:RESolution</td>
</tr>
<tr>
<td>[:DATA]</td>
<td>:RANGE?</td>
</tr>
<tr>
<td>INITiate</td>
<td>STATus</td>
</tr>
<tr>
<td>[:IMMEDIATE]</td>
<td>:QUESTIONable</td>
</tr>
<tr>
<td>MEASURE</td>
<td>:CONDITION?</td>
</tr>
<tr>
<td>:RESistance?</td>
<td>[:EVENT]?</td>
</tr>
<tr>
<td>:RESistance?</td>
<td>:ENABLE</td>
</tr>
<tr>
<td>:TEMPerture?</td>
<td>:ENABLE?</td>
</tr>
<tr>
<td>:VOLTage</td>
<td>:OPERation</td>
</tr>
<tr>
<td>:AC?</td>
<td>:CONDITION?</td>
</tr>
<tr>
<td>[:DC]?</td>
<td>[:EVENT]?</td>
</tr>
<tr>
<td>READ?</td>
<td>:ENABLE</td>
</tr>
<tr>
<td>SYSTEM</td>
<td>:PREset</td>
</tr>
<tr>
<td>:ERROR?</td>
<td>:PREset</td>
</tr>
<tr>
<td>:CTYPE</td>
<td>:PREset</td>
</tr>
<tr>
<td>:VERSion</td>
<td>:PREset</td>
</tr>
<tr>
<td>TRIGger</td>
<td>STATus</td>
</tr>
<tr>
<td>:COUNt</td>
<td>:RANGE</td>
</tr>
<tr>
<td>:COUNt?</td>
<td>:RANGE?</td>
</tr>
<tr>
<td>:DELAY</td>
<td>:RANGE</td>
</tr>
<tr>
<td>:DELY?</td>
<td>:RANGE</td>
</tr>
<tr>
<td>:DELY?</td>
<td>[:IMMEDIATE]</td>
</tr>
<tr>
<td>:SOURce</td>
<td>SOURce</td>
</tr>
<tr>
<td>:SOURce?</td>
<td></td>
</tr>
</tbody>
</table>

Table A-4. Multimeter SCPI Approved (not confirmed) Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SENSe]</td>
<td>:RESistance</td>
</tr>
<tr>
<td>:NPLC</td>
<td>:NPLC</td>
</tr>
<tr>
<td>:NPLC?</td>
<td>:NPLC</td>
</tr>
<tr>
<td>:VOLTage</td>
<td>:NPLC</td>
</tr>
<tr>
<td>:NPLC?</td>
<td>:NPLC</td>
</tr>
<tr>
<td>CALibration</td>
<td>MEMory</td>
</tr>
<tr>
<td>:-----------</td>
<td>--------</td>
</tr>
<tr>
<td>.LFrequency</td>
<td>.VME</td>
</tr>
<tr>
<td>.LFrequency?</td>
<td>:ADDRess</td>
</tr>
<tr>
<td>.SRain</td>
<td>:ADDRess?</td>
</tr>
<tr>
<td>.SRain</td>
<td>:SIZE</td>
</tr>
<tr>
<td>.SRain</td>
<td>:SIZE?</td>
</tr>
<tr>
<td>.SRain</td>
<td>:STATE</td>
</tr>
<tr>
<td>.SRain</td>
<td>:STATE?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th align="left">CONFigure</th>
<th>[ROUTe]</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">.SRain</td>
<td>:FUNCTION</td>
</tr>
<tr>
<td align="left">.SRain</td>
<td>:SAMPLE</td>
</tr>
<tr>
<td align="left">.SRain</td>
<td>:COUNT</td>
</tr>
<tr>
<td align="left">.SRain</td>
<td>:COUNT?</td>
</tr>
<tr>
<td align="left">.SRain</td>
<td>:SOURce</td>
</tr>
<tr>
<td align="left">.SRain</td>
<td>:SOURce?</td>
</tr>
<tr>
<td align="left">.SRain</td>
<td>:TIMer</td>
</tr>
<tr>
<td align="left">.SRain</td>
<td>:TIMer?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th align="left">DISPlay</th>
<th>[SENSe]</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">.MONitor</td>
<td>:RESsistance</td>
</tr>
<tr>
<td align="left">.MONitor</td>
<td>:OOMpensated</td>
</tr>
<tr>
<td align="left">.MONitor</td>
<td>:OOMpensated?</td>
</tr>
<tr>
<td align="left">.MONitor</td>
<td>:STRain</td>
</tr>
<tr>
<td align="left">.MONitor</td>
<td>:GFACtor</td>
</tr>
<tr>
<td align="left">.MONitor</td>
<td>:POISson</td>
</tr>
<tr>
<td align="left">.MONitor</td>
<td>:UNSTTrained</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th align="left">MEASure</th>
<th>SYSTem</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">.STRain</td>
<td>:DESCRIPTION</td>
</tr>
<tr>
<td align="left">.STRain</td>
<td>:QMpression</td>
</tr>
<tr>
<td align="left">.STRain</td>
<td>:QMpression?</td>
</tr>
</tbody>
</table>
Counter Commands

The following tables apply to the HP E1332A 4 Channel Counter/Totalizer and the HP E1333A 3 Channel Universal Counter.

Table A-6. HP E1332A SCPI-1990.0 Confirmed Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABORT</td>
<td>READ?</td>
</tr>
<tr>
<td>CONFIGure</td>
<td>[SENSe]</td>
</tr>
<tr>
<td>:FREQuency</td>
<td>:FUNCTION</td>
</tr>
<tr>
<td>:PERiod</td>
<td>:FREQuency</td>
</tr>
<tr>
<td>:PWIDth</td>
<td>:PERiod</td>
</tr>
<tr>
<td>:NWIDth</td>
<td>:FREQuency</td>
</tr>
<tr>
<td>CONFIGure?</td>
<td>:APERture</td>
</tr>
<tr>
<td>FETCH?</td>
<td>STATUs</td>
</tr>
<tr>
<td>:EVENt?</td>
<td>:QUESTionable</td>
</tr>
<tr>
<td>FORMat</td>
<td>[DATA]</td>
</tr>
<tr>
<td>:CONDition?</td>
<td>:ENABLE</td>
</tr>
<tr>
<td>INITiate</td>
<td>ENABLE?</td>
</tr>
<tr>
<td>[IMMediate]</td>
<td>:OPeration</td>
</tr>
<tr>
<td>INPut</td>
<td>[EVENt]?</td>
</tr>
<tr>
<td>:FILTER</td>
<td>:CONDition?</td>
</tr>
<tr>
<td>:XLOW</td>
<td>:ENABLE</td>
</tr>
<tr>
<td>:XHIGH</td>
<td>:ENABLE?</td>
</tr>
<tr>
<td>MEASURE</td>
<td>:PREset</td>
</tr>
<tr>
<td>:FREQency?</td>
<td>SYSTEM</td>
</tr>
<tr>
<td>:PERiod?</td>
<td>:ERRor?</td>
</tr>
<tr>
<td>:PWIDth?</td>
<td>:VERSION?</td>
</tr>
<tr>
<td>:NWIDth</td>
<td></td>
</tr>
</tbody>
</table>

Table A-7. HP E1332A Non-SCPI Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONF<channel></td>
<td>[SENSe<channel>]</td>
</tr>
<tr>
<td>:TOTALize</td>
<td>:PERiod</td>
</tr>
<tr>
<td>:TIMErval</td>
<td>:NPERiods</td>
</tr>
<tr>
<td>:UDCount</td>
<td>:NPERiods?</td>
</tr>
<tr>
<td>DISPLAY</td>
<td>:TOTALize</td>
</tr>
<tr>
<td>[STATE]</td>
<td>:GATE</td>
</tr>
<tr>
<td>:CHANnel</td>
<td>[STATE]</td>
</tr>
<tr>
<td>:CHANnel?</td>
<td>:POLarity</td>
</tr>
<tr>
<td>[:STATE]</td>
<td>:POLarity?</td>
</tr>
<tr>
<td>[:STATE]?</td>
<td>:EVENt?</td>
</tr>
<tr>
<td>INPut</td>
<td>:LEVEL?</td>
</tr>
<tr>
<td>:ISOLate</td>
<td>:SLOPe</td>
</tr>
<tr>
<td>:ISOLate?</td>
<td>:SLOPe?</td>
</tr>
<tr>
<td>MEASURE<channel></td>
<td></td>
</tr>
<tr>
<td>:TIMErval?</td>
<td></td>
</tr>
</tbody>
</table>
Table A-8. HP E1333A SCPI-1990.0 Confirmed Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABORT</td>
<td>READ?</td>
</tr>
<tr>
<td>FETCH?</td>
<td>[SENSe]</td>
</tr>
<tr>
<td>CONFIGure</td>
<td>:FUNCtion</td>
</tr>
<tr>
<td></td>
<td>:FREQuency</td>
</tr>
<tr>
<td></td>
<td>:PERiod</td>
</tr>
<tr>
<td></td>
<td>:PWIDth</td>
</tr>
<tr>
<td></td>
<td>:NWIDth</td>
</tr>
<tr>
<td>CONFIGure?</td>
<td>STATUs</td>
</tr>
<tr>
<td>FORMat</td>
<td>:QUESTionable</td>
</tr>
<tr>
<td>[DATA]</td>
<td>:EVENt?</td>
</tr>
<tr>
<td></td>
<td>:CONDition?</td>
</tr>
<tr>
<td></td>
<td>:ENABLE</td>
</tr>
<tr>
<td>INITiate</td>
<td>:OPERation</td>
</tr>
<tr>
<td>[IMMEDIATE]</td>
<td>:EVENt?</td>
</tr>
<tr>
<td></td>
<td>:CONDition?</td>
</tr>
<tr>
<td></td>
<td>:ENABLE</td>
</tr>
<tr>
<td></td>
<td>:ENABLE</td>
</tr>
<tr>
<td>INPut</td>
<td>:PREset</td>
</tr>
<tr>
<td></td>
<td>:ATTPutation</td>
</tr>
<tr>
<td></td>
<td>:ATTenuation?</td>
</tr>
<tr>
<td></td>
<td>:COUPling</td>
</tr>
<tr>
<td></td>
<td>:COUPling?</td>
</tr>
<tr>
<td></td>
<td>:FILTER</td>
</tr>
<tr>
<td></td>
<td>[:LPASS]</td>
</tr>
<tr>
<td></td>
<td>[:STATe]</td>
</tr>
<tr>
<td></td>
<td>[:STATe]?</td>
</tr>
<tr>
<td></td>
<td>[:IMPedance]</td>
</tr>
<tr>
<td></td>
<td>[:IMPedance]?</td>
</tr>
<tr>
<td></td>
<td>[:MEASURE]</td>
</tr>
<tr>
<td></td>
<td>:FREQuency?</td>
</tr>
<tr>
<td></td>
<td>:PERiod?</td>
</tr>
<tr>
<td></td>
<td>:PWIDth?</td>
</tr>
<tr>
<td></td>
<td>:NWIDth?</td>
</tr>
</tbody>
</table>

Table A-9. HP E1333A Non-SCPI Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONF[<channel>]</td>
<td>[SENSe[<channel>]]</td>
</tr>
<tr>
<td>:TOTALize</td>
<td>:PERiod</td>
</tr>
<tr>
<td>:TINTerval</td>
<td>:NPERiods</td>
</tr>
<tr>
<td>:RATio</td>
<td>:NPERiods?</td>
</tr>
<tr>
<td></td>
<td>:RARatio</td>
</tr>
<tr>
<td>DISPLAY</td>
<td>:NPERiods</td>
</tr>
<tr>
<td>:MONitor</td>
<td>:NPERiods?</td>
</tr>
<tr>
<td></td>
<td>:CHANNEL</td>
</tr>
<tr>
<td></td>
<td>:CHANnel?</td>
</tr>
<tr>
<td></td>
<td>[:STATe]</td>
</tr>
<tr>
<td></td>
<td>[:STATe]?</td>
</tr>
<tr>
<td></td>
<td>[:LEVEL]</td>
</tr>
<tr>
<td>MEASURE[<channel>]</td>
<td>[:LEVEL]?</td>
</tr>
<tr>
<td>:TINTerval?</td>
<td>:SLOPe</td>
</tr>
<tr>
<td>:RARatio?</td>
<td>:SLOPe?</td>
</tr>
</tbody>
</table>
D/A Converter Commands

The following tables apply to the HP E1328A 4 Channel D/A Converter.

Table A-10. HP E1328A SCPI-1990.0 Confirmed Commands

<table>
<thead>
<tr>
<th>CALibration</th>
<th>STATus</th>
</tr>
</thead>
<tbody>
<tr>
<td>:STATE</td>
<td>:QUEUEstionable</td>
</tr>
<tr>
<td>:STATE?</td>
<td>:CONDition?</td>
</tr>
<tr>
<td>:ENABLE</td>
<td>:ENABLE?</td>
</tr>
<tr>
<td>:OPERation</td>
<td>:CONDition?</td>
</tr>
<tr>
<td>:EVENT?</td>
<td>:ENABLE?</td>
</tr>
<tr>
<td>:ENABLE?</td>
<td>:ENABLE?</td>
</tr>
</tbody>
</table>

Table A-11. HP E1328A Non-SCPI Commands

<table>
<thead>
<tr>
<th>CALibration</th>
<th>SOURce</th>
</tr>
</thead>
<tbody>
<tr>
<td>:VOL.Tage</td>
<td>:VOL.Tage < channel ></td>
</tr>
<tr>
<td>:CURRent</td>
<td>:VOL.Tage < channel ></td>
</tr>
<tr>
<td>:CURRent?</td>
<td>:CURRent < channel ></td>
</tr>
<tr>
<td>:FUNCTION?</td>
<td>:CURRent < channel ></td>
</tr>
<tr>
<td>:MONitor</td>
<td>:MONitor</td>
</tr>
<tr>
<td>:CHANNEL</td>
<td>:CHANNEL</td>
</tr>
<tr>
<td>:CHANNEL?</td>
<td>:CHANNEL</td>
</tr>
<tr>
<td>[:STATe]</td>
<td>[:STATe]</td>
</tr>
<tr>
<td>:STRING?</td>
<td>:STRING?</td>
</tr>
</tbody>
</table>
Digital I/O Commands

The following tables apply to the HP E1330A Quad 8-bit Digital I/O Module.

Table A-12. HP E1330A SCPI-1990.0 Confirmed Commands

<table>
<thead>
<tr>
<th>STATTus</th>
<th>SYSTem</th>
</tr>
</thead>
<tbody>
<tr>
<td>:QUEStionable</td>
<td>:ERRor?</td>
</tr>
<tr>
<td>:CONDition?</td>
<td>:VERSion?</td>
</tr>
<tr>
<td>[:EVENt]?</td>
<td></td>
</tr>
<tr>
<td>:ENABle</td>
<td></td>
</tr>
<tr>
<td>:ENABle?</td>
<td></td>
</tr>
</tbody>
</table>

OPERATION	
:CONDition?	
[:EVENt]?	
:ENABle	
:ENABle?	
:PRUset	

Table A-13. HP E1330A Non-SCPI Commands

<table>
<thead>
<tr>
<th>DISPlay</th>
<th>SOURCe</th>
</tr>
</thead>
<tbody>
<tr>
<td>:MONitor</td>
<td>:DIGital</td>
</tr>
<tr>
<td>[STATe]</td>
<td>:TRACe</td>
</tr>
<tr>
<td>:PORT</td>
<td>:CATalog</td>
</tr>
<tr>
<td>:PORT?</td>
<td>[DATA]</td>
</tr>
<tr>
<td>:STRing?</td>
<td>[DATA]?</td>
</tr>
<tr>
<td></td>
<td>:DEFine</td>
</tr>
<tr>
<td></td>
<td>:DELete</td>
</tr>
</tbody>
</table>

MEASure	
:DIGital	
:DATA < port >	:CONTrol < port >
:BIT < number > ?	:POLarity
:BLOCK?	:POLarity?
:FLAG < port > ?	:VALUE

MEMory	
:DELete	
MACRO	:TRACe
VME	:HANDshake
:ADDRes	
ADDRes?	
:SIZE	:POLarity
:SIZE?	:POLarity?
:STATe	:POLarity
:STATe?	:POLarity?
:HANDshake < port >	
:DELY	
[:MODE]	
[:MODE]	
Table A-14. System Instrument SCPI-1990.0 Confirmed Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>SCPI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABORi</td>
<td>:SYSTem:BEEPer</td>
<td>[IMMediate]</td>
</tr>
<tr>
<td>INITiate</td>
<td>:SYSTem:COMMunicate :GPiB</td>
<td>[IMMediate]</td>
</tr>
<tr>
<td>:SOURCE</td>
<td>:PULSed :ADDr ess</td>
<td>:ADDr ess?</td>
</tr>
<tr>
<td>:COUNT</td>
<td>:SERial :RECEive</td>
<td>:BAUD</td>
</tr>
<tr>
<td>:PERiod</td>
<td>:BITS</td>
<td>:BITS?</td>
</tr>
<tr>
<td>STATUS</td>
<td>:QUEStionable :PARity</td>
<td>:PARity</td>
</tr>
<tr>
<td>:[EVEN]?</td>
<td>:ENABle :ENSAbled</td>
<td>:CHECK</td>
</tr>
<tr>
<td>:[EVEN]?</td>
<td>:ENSAbled</td>
<td>:TRANSmit</td>
</tr>
<tr>
<td>:ENSAbled?</td>
<td>:RSET</td>
<td>:AUTO</td>
</tr>
<tr>
<td>:RSET?</td>
<td>:ERROR</td>
<td>:TIME</td>
</tr>
<tr>
<td>TRIGger</td>
<td>:DATE</td>
<td>:DATE?</td>
</tr>
<tr>
<td>:IMMediate</td>
<td>:VERSion</td>
<td>:VERSion?</td>
</tr>
<tr>
<td>:SOURCE</td>
<td>:SLOPe</td>
<td>VXI</td>
</tr>
<tr>
<td>:SOURCE?</td>
<td>:SLOPe?</td>
<td>VXI:CONFigure</td>
</tr>
<tr>
<td>:SLOPe</td>
<td>:AUTO</td>
<td>:DNUMBer</td>
</tr>
</tbody>
</table>

Table A-15. System Instrument SCPI-1991.0 Confirmed Commands

<table>
<thead>
<tr>
<th>SCPI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>:SYSTem:COMMunicate</td>
<td>:SERial :RECEive</td>
</tr>
<tr>
<td>:PACE</td>
<td>[:PROTocol] :PACE</td>
</tr>
<tr>
<td>[:PROTocol]</td>
<td>:PACE</td>
</tr>
<tr>
<td>[:PROTocol]?</td>
<td>:PROTocol</td>
</tr>
<tr>
<td>:THReshold</td>
<td>:CONTrol</td>
</tr>
<tr>
<td>:STRT</td>
<td>:RTS</td>
</tr>
<tr>
<td>:STRT?</td>
<td>:DTR</td>
</tr>
<tr>
<td>:STOP</td>
<td>:STOP?</td>
</tr>
</tbody>
</table>

Table A-16. System Instrument SCPI-1992.0 Approved Commands

<table>
<thead>
<tr>
<th>VXI</th>
<th>SCPI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>:SELect</td>
<td>:CONFigure</td>
<td>:INFormation</td>
</tr>
<tr>
<td>:INFormation</td>
<td>:ALL</td>
<td>:HIERarchy</td>
</tr>
<tr>
<td>:HIERarchy</td>
<td>:ALL</td>
<td>:1:ADDReSS?</td>
</tr>
<tr>
<td>:READ?</td>
<td>:RSET</td>
<td>:RSET?</td>
</tr>
</tbody>
</table>
Table A-17. System Instrument Non-SCPI Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Command</th>
<th>Command</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIAGnostic</td>
<td>MEMory</td>
<td>TRIGger</td>
<td>VXI</td>
</tr>
<tr>
<td>:AUTstart</td>
<td>:DELeTe</td>
<td>:DELay</td>
<td>:CONFIGure</td>
</tr>
<tr>
<td>:AUTostart?</td>
<td>:MACRo</td>
<td>:MINimum</td>
<td>:MINimum]</td>
</tr>
<tr>
<td>:CHECKsum</td>
<td></td>
<td>[OWNer]</td>
<td></td>
</tr>
<tr>
<td>:COMMunicate</td>
<td></td>
<td>:MINimum</td>
<td></td>
</tr>
<tr>
<td>:SERial</td>
<td></td>
<td>[OWNer]?</td>
<td></td>
</tr>
<tr>
<td>:BOOT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:COLD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:WARM]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:UPLOAD?</td>
<td></td>
<td>:READ?</td>
<td></td>
</tr>
<tr>
<td>:DOWNLOAD</td>
<td></td>
<td>:WRITe</td>
<td></td>
</tr>
<tr>
<td>:INTerrupt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:ACT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:SETUp(n)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:SETUp(n)?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:PRiority(n)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:PRiority(n)?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:WAIT?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:JSR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:CALL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:DRIVer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:LOAD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:LIS?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:DRAM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:CREate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:CREate?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:AVAvailable?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:NRAM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:CREate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:CREate?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:AVAvailable?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:RDISK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:CREate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:CREate?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:ADDRes?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:PEEK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:POKE</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table A-18. Common Commands SCPI-1990.0 Confirmed

<table>
<thead>
<tr>
<th>Command</th>
<th>Command</th>
<th>Command</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>*IDN</td>
<td>*RCL</td>
<td>*RST</td>
<td>*SAV</td>
</tr>
<tr>
<td>*RST</td>
<td>*CLR</td>
<td>*SHT</td>
<td>*TRG</td>
</tr>
<tr>
<td>*SHT</td>
<td>*CLS</td>
<td>*GMC?</td>
<td>*DMC</td>
</tr>
<tr>
<td>*CLS</td>
<td>*ESE</td>
<td>*PMC</td>
<td>*ESE?</td>
</tr>
<tr>
<td>*ESE</td>
<td>*ISR</td>
<td>*LMC?</td>
<td>*ESE?</td>
</tr>
<tr>
<td>*ISR</td>
<td>*SRE</td>
<td>*EMC</td>
<td>*SRE?</td>
</tr>
<tr>
<td>*SRE</td>
<td>*STB</td>
<td>*EMC?</td>
<td>*STB?</td>
</tr>
<tr>
<td>*STB</td>
<td>*PSC</td>
<td>*OPC</td>
<td>*PSC?</td>
</tr>
</tbody>
</table>
| *PSC | *PSC | *OPC? | *PSC?
| | | | |

Specifications A-11
Appendix B

Error Messages

Using This Appendix

This appendix shows how to read an instrument's error queue, discusses the
types of command language-related error messages, and provides a table of all
of the System Instrument's error messages and their probable causes.

- Reading an Instrument's Error QueueB-1
- Error Types ...B-2
- Start-up Error MessagesB-5

Reading an Instrument's Error Queue

Executing the SYST:ERR? command reads the oldest error message from the
instrument's error queue and erases that error from the error queue. The
SYST:ERR? command returns response data in the form:

<error number>, "<error description string>".

Example error message: -113,"Undefined header"

Positive error numbers are specific to an instrument. Negative error numbers
are command language-related and discussed in the next section 'Error
Messages'. Command language-related errors also set a corresponding bit in the
Standard Event Status Register (refer to "Instrument Status" in Chapter 4 for
more information).

Example: Reading the Error Queue

This program reads all errors (one error at a time, oldest to newest) from the
System Instrument's error queue. After reading each error, that error is
automatically erased from the queue. When the error queue is empty, this
program returns: +0,"No error".

10 OPTION BASE 1
20 DIM Message$[256]
30 REPEAT
40 OUTPUT 70900;"SYST:ERR?"
50 ENTER 70900;Code,Message$
60 PRINT Code,Message$
70 UNTIL Code = 0
80 END

Create array for error message
Repeat next 3 lines until error number = 0
Read error number & message
Enter error number & message
Print error number & message
Error Types

Negative error numbers are language-related and categorized as shown below. Positive error numbers are instrument specific and for the System Instrument are summarized in Table B-2. For other instruments, refer to their own user's manual for a description of error messages.

<table>
<thead>
<tr>
<th>Error Number</th>
<th>Error Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>-199 to -100</td>
<td>Command Errors</td>
</tr>
<tr>
<td>-299 to -200</td>
<td>Execution Errors</td>
</tr>
<tr>
<td>-399 to -300</td>
<td>Device-Specific Errors</td>
</tr>
<tr>
<td>-499 to -400</td>
<td>Query Errors</td>
</tr>
</tbody>
</table>

Command Errors

A command error means the instrument cannot understand or execute the command. When a command error occurs, it sets the Command Error Bit (bit 5) in the Event Status Register. Command errors can be caused by:

- A syntax error was detected in a received command or message. Possible errors include a data element which violates the instrument's listening formats or is of the wrong type (binary, numeric, etc.) for the instrument.
- An unrecognizable command header was received. Unrecognizable headers include incorrect SCPI headers and incorrect or unimplemented Common Commands.
- A Group Execute Trigger (GET) was entered into the input buffer inside of a Common Command.

Execution Errors

An execution error indicates the instrument is incapable of doing the action or operation requested by a command. When an execution error occurs, it sets the Execution Error Bit (bit 4) in the Event Status Register. Execution errors can be caused by the following:

- A parameter within a command is outside the limits or inconsistent with the capabilities of an instrument.
- A valid command could not be executed because of an instrument failure or other condition.

Device-Specific Errors

A device-specific error indicates an instrument operation did not complete, possibly due to an abnormal hardware or firmware condition (self-test failure, loss of calibration or configuration memory, etc.). When a device-specific error occurs, it sets the Device-Specific Error Bit (bit 3) in the Event Status Register.

Query Errors

A query error indicates a problem has occurred in the instrument's output queue. When a query error occurs, it sets the Query Error Bit (bit 2) in the Event Status Register. Query errors can be caused by the following:

- An attempt was made to read the instrument's output queue when no output was present or pending.
- Data in the instrument's output queue has been lost for some reason.
<table>
<thead>
<tr>
<th>Code</th>
<th>Message</th>
<th>Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>-101</td>
<td>Invalid character</td>
<td>Unrecognized character in specified parameter.</td>
</tr>
<tr>
<td>-102</td>
<td>Syntax error</td>
<td>Command is missing a space or comma between parameters</td>
</tr>
<tr>
<td>-103</td>
<td>Invalid separator</td>
<td>Command parameter is separated by some character other than a comma.</td>
</tr>
<tr>
<td>-104</td>
<td>Data type error</td>
<td>The wrong data type (i.e. number, character, string expression) was used when specifying a parameter.</td>
</tr>
<tr>
<td>-108</td>
<td>Parameter not allowed</td>
<td>Parameter specified in a command which does not require one.</td>
</tr>
<tr>
<td>-109</td>
<td>Missing parameter</td>
<td>No parameter specified in the command in which a parameter is required.</td>
</tr>
<tr>
<td>-113</td>
<td>Undefined header</td>
<td>Command header was incorrectly specified.</td>
</tr>
<tr>
<td>-123</td>
<td>Numeric overflow</td>
<td>A parameter specifies a value greater than the command allows.</td>
</tr>
<tr>
<td>-128</td>
<td>Numeric data not allowed</td>
<td>A number was specified for a parameter when a letter is required.</td>
</tr>
<tr>
<td>-131</td>
<td>Invalid suffix</td>
<td>Parameter suffix incorrectly specified (e.g. SSECOND rather than SS or SSEC).</td>
</tr>
<tr>
<td>-138</td>
<td>Suffix not allowed</td>
<td>Parameter suffix is specified when one is not allowed.</td>
</tr>
<tr>
<td>-141</td>
<td>Invalid character data</td>
<td>The discrete parameter specified is not allowed (e.g. TRIG:SOUR:INT:INT is not a choice.)</td>
</tr>
<tr>
<td>-178</td>
<td>Expression data not allowed</td>
<td>A parameter other than the channel list is enclosed in parentheses.</td>
</tr>
<tr>
<td>-211</td>
<td>Trigger ignored</td>
<td>Trigger occurred while the Pacer is in the idle state, or a trigger occurred from a source other than the specified source.</td>
</tr>
<tr>
<td>-222</td>
<td>Data out of range</td>
<td>The parameter value specified is too large or too small.</td>
</tr>
<tr>
<td>-224</td>
<td>Illegal parameter value</td>
<td>The numeric value specified is not allowed.</td>
</tr>
<tr>
<td>-340</td>
<td>Hardware error</td>
<td>Hardware error detected during power-on cycle. Return multimeter to Heilwelett-Packard for repair.</td>
</tr>
<tr>
<td>-310</td>
<td>System error</td>
<td>If caused by *DMC, then macro memory is full.</td>
</tr>
<tr>
<td>-350</td>
<td>Too many errors</td>
<td>The error queue is full as more than 30 errors have occurred.</td>
</tr>
<tr>
<td>-410</td>
<td>Query interrupted</td>
<td>Data is not read from the output buffer before another command is executed.</td>
</tr>
<tr>
<td>-420</td>
<td>Query unterminated</td>
<td>Command which generates data not able to finish executing due to a multimeter configuration error.</td>
</tr>
<tr>
<td>-430</td>
<td>Query deadlocked</td>
<td>Command execution cannot continue since the mainframe's command input, and data output buffers are full. Clearing the instrument restores control.</td>
</tr>
<tr>
<td>1500</td>
<td>External trigger source</td>
<td>Event In signal already allocated to another instrument such as a Switchbox.</td>
</tr>
<tr>
<td>2002</td>
<td>Invalid logical address</td>
<td>A value less than 0 or greater than 255 was specified for logical address.</td>
</tr>
<tr>
<td>2003</td>
<td>Invalid word address</td>
<td>An odd address was specified for a 16 bit read or write. Always use even addresses for 16 bit (word) accesses.</td>
</tr>
<tr>
<td>2005</td>
<td>No card at logical address</td>
<td>A non-existent logical address was specified with the VXI:READ or VXI:WRITE command. VXI device failed its self test.</td>
</tr>
<tr>
<td>2101</td>
<td>Failed Device</td>
<td>VXI device failed its self test. Device type can not be combined into an instrument such as a scanning voltmeter or a switchbox.</td>
</tr>
<tr>
<td>2102</td>
<td>Unable to combine device</td>
<td>More A24 memory installed in the mainframe than can be configured into the available A24 memory space.</td>
</tr>
<tr>
<td>2103</td>
<td>Config warning, Device driver not found</td>
<td>1D of device does not match list of drivers available. Warning only.</td>
</tr>
<tr>
<td>2105</td>
<td>Config error 5, A24 memory overflow</td>
<td>A24 memory device overlaps memory space reserved by the mainframe's operating system.</td>
</tr>
<tr>
<td>Code</td>
<td>Message</td>
<td>Cause</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>2110</td>
<td>Config error 10, Insufficient system memory</td>
<td>Too many instruments installed for the amount of RAM installed in the mainframe. Cannot configure instruments. Only the system instrument is started.</td>
</tr>
<tr>
<td>2111</td>
<td>Config error 11, Invalid instrument address</td>
<td>A device’s logical address is not a multiple of 8 and the device is not part of a combined instrument.</td>
</tr>
<tr>
<td>2113</td>
<td>Config error 13, Logical address or IACK switch set wrong</td>
<td>Duplicate logical addresses set or interrupt bypass switches set improperly. Only the system instrument is started.</td>
</tr>
<tr>
<td>2129</td>
<td>Config warning, Sysfail detected</td>
<td>A device was asserting SYSFAIL on the backplane during startup.</td>
</tr>
<tr>
<td>2130</td>
<td>Config error 30, Pseudo instrument logical address unavailable</td>
<td>A physical device has the same logical address as IBASIC (240)</td>
</tr>
<tr>
<td>2131</td>
<td>Config error 32, File system start up failed</td>
<td>Insufficient system resources to allow the IBASIC file system to start.</td>
</tr>
<tr>
<td>2145</td>
<td>Config warning, Non-volatile RAM contents lost</td>
<td>NVRAM was corrupted or a cold boot was executed.</td>
</tr>
<tr>
<td>2148</td>
<td>Config warning, Driver RAM contents lost</td>
<td>Driver RAM was corrupted or a cold boot was executed.</td>
</tr>
<tr>
<td>2202</td>
<td>Unexpected interrupt from non-message based card</td>
<td>A register based card interrupted when an interrupt service routine had not been set up.</td>
</tr>
<tr>
<td>2809</td>
<td>Interrupt line has not been set up</td>
<td>A DIAG:INT:ACE or DIAG:INT:RESP command was executed before setting the interrupt with DIAG:INT:SET.</td>
</tr>
</tbody>
</table>
Start-up Error Messages

Start-up errors are most often generated just after the mainframe is powered-up or re-booted (DIAG:BOOT command). If you have an HP E1301A, or an HP E1300A with a terminal connected to the Display Terminal Interface (built-in RS-232 only), you can read these errors on the front panel or terminal. If you have an HP E1300A and no terminal, then you must access this error information by sending the VXI:CONF:DLIS? command over HP-IB. We recommend that users of either model include a routine at the beginning of their application program which checks for start-up errors before the program tries to access individual instruments. See your Installation and Getting Started Guide for an example program.

Table B-3. Start-up Error Messages and Warnings

<table>
<thead>
<tr>
<th>Code</th>
<th>Start-Up Error Messages and Warnings</th>
<th>Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Failed Device</td>
<td>VXI device failed its self test.</td>
</tr>
<tr>
<td>2</td>
<td>Unable to combine device</td>
<td>Device type can not be combined into an instrument such as a scanning voltmeter or a switchbox.</td>
</tr>
<tr>
<td>3</td>
<td>Config warning, Device driver not found</td>
<td>1D of device does not match list of drivers available. Warning only.</td>
</tr>
<tr>
<td>5</td>
<td>Config error 5, A24 memory overflow</td>
<td>More A24 memory installed in the mainframe than can be configured into the available A24 memory space.</td>
</tr>
<tr>
<td>8</td>
<td>Config error 8, Inaccessible A24 memory</td>
<td>An A24 memory device overlaps a memory space reserved by the mainframe’s operating system.</td>
</tr>
<tr>
<td>10</td>
<td>Config error 10, Insufficient system memory</td>
<td>Too many instruments installed for the amount of RAM installed in the mainframe. Cannot configure instruments. Only the system instrument is started.</td>
</tr>
<tr>
<td>11</td>
<td>Config error 11, Invalid instrument address</td>
<td>A device’s logical address is not a multiple of 8 and the device is not part of a combined instrument.</td>
</tr>
<tr>
<td>13</td>
<td>Config error 13, Logical address or IACK switch set wrong</td>
<td>Duplicate logical addresses set or interrupt bypass switches set improperly. Only the system instrument is started.</td>
</tr>
<tr>
<td>29</td>
<td>Config warning, Sysfail detected</td>
<td>A device was asserting SYSFAIL on the backplane during startup.</td>
</tr>
<tr>
<td>30</td>
<td>Config error 30, Pseudo instrument logical address unavailable</td>
<td>A physical device has the same logical address as IBASIC (240).</td>
</tr>
<tr>
<td>31</td>
<td>Config error 32, File system start up failed</td>
<td>Insufficient system resources to allow the IBASIC file system to start.</td>
</tr>
<tr>
<td>45</td>
<td>Config warning, Non-volatile RAM contents lost</td>
<td>NVRAM was corrupted or a cold boot was executed.</td>
</tr>
<tr>
<td>48</td>
<td>Config warning, Driver RAM contents lost</td>
<td>Driver RAM was corrupted or a cold boot was executed.</td>
</tr>
</tbody>
</table>
Appendix C

Connecting and Configuring a Display Terminal

Using this Appendix

This appendix shows you how to configure the mainframe and a supported terminal to operate with the Display Terminal Interface. Using the Display Terminal Interface is discussed in Chapter 3.

- Overview ...C-1
- Connecting a Terminal to the MainframeC-1
- Configuring a Terminal for the MainframeC-3
- Configuring the Mainframe with MenusC-4

Overview

The basic steps to configure a terminal to operate with the mainframe are:

1. Choosing the proper cable to connect the terminal to the mainframe. The cable connects the appropriate data and control signals from the terminal to the mainframe.

2. Configuring the terminal's serial interface parameters to match those of the mainframe. The terminal and mainframe can only communicate with each other when they are using the same data rate, data word width, error checking scheme, and overall data frame width.

3. Using the terminal interface menus to configure mainframe's serial interface parameters. Once the terminal is communicating with the mainframe, the terminal can be used to adjust (if necessary) the mainframe's serial interface parameters for best operation.

Connecting a Terminal to the Mainframe

The easiest way to connect the terminal to the mainframe is by using off-the-shelf cables which have been tested to work with your supported terminal. In the following figures you will find HP cables specified (by part number) for each of the supported terminals. If you plan to have the mainframe far from the terminal, you may need a custom built cable. The equivalent wiring diagram for each cable or cable combination is also provided.
Figure C-1 Connecting a Terminal to the Mainframe
Configuring a Terminal for the Mainframe

We'll first set the terminal's serial communication parameters to match the mainframe's default settings. If the mainframe is new and its factory default values are still set, the terminal will be ready to use. If the settings have been changed and you don't know what they are (HP E1300 with no front panel), you will restore them to their default values.

Starting with Default Mainframe Settings

The mainframe leaves the factory with these default serial communication settings:

- Baud rate; 9600
- Data word width; 8 bits
- Parity type; NONE
- Parity checking; OFF
- Number of stop bits; 1
- Pacing; XON (for both receive and transmit)
- DTR and RTS ON (signal level high)

If your mainframe is new, or you know these default settings are still in effect you can go on to "Configuring the Terminal". If you are unsure of the current settings, continue on with the following section "Restoring the Default Configuration".

Restoring the Default Configuration

There is an easy way to restore the factory default settings. While the mainframe is performing its power-up self-test, the built-in serial interface always uses the factory default settings listed above. With your terminal set to the default settings, turn on the mainframe. While the mainframe is "Testing ROM", press and hold the CTRL key and press the R key. The mainframe will reset its stored serial communication settings to the factory default values. It is important that you press CTRL-R during the "Testing ROM" portion of the self-test. The terminal should now display "Select an instrument".

Note

Restoring the default serial communication settings also clears both the User and System non-volatile RAM areas.

Configuring the Terminal

Using your terminal owner's manual, set the terminal's communication parameters to the values shown in the list above. For DTR and RTS, set your terminal to DTR or Hardware handshake OFF. In addition, make sure your terminal is configured to "Transmit Functions" or "Transmit Codes". This means that when you press one of the editing keys (e.g. right arrow key) the terminal will send to the mainframe, the code which corresponds to the key. If this not set properly, the cursor will appear to respond to the keys, but the mainframe will not know that you moved the cursor.
Trying it

Turn on the mainframe while watching the terminal’s display. After the mainframe finishes its self-test, the terminal should display “Select an instrument”. If not, the mainframe’s communication parameters are not set to the default values. Go back to “Restoring the Default Configuration”.

Configuring the Mainframe with Menus

After you have your terminal communicating with your mainframe at the default settings you may want to change to settings which are better for your installation. You can make these changes to the serial interface configuration using the Display Terminal Interface menus. Several of the changes you can make using the menus will cause communication between the terminal and mainframe to be lost. You will have to match each change in the mainframe configuration with a corresponding change in your terminal’s configuration. Use the following procedure:

1. Change the mainframe configuration (see the menu example on page C-5).

2. Change the terminal’s configuration to match the change from step one. Repeat steps one and two for each desired configuration change.

Any changes you make to the mainframe configuration are only temporary (lost when power is removed) until you put them into non-volatile storage. To store the current configuration, follow the menu example on page C-6.
How to Use the Serial Interface Menus

SYSTEM_0:
1 CONFIG 2 HP-IB 3 RS-232 4 TIME 23

SYSTEM_0:
1 BAUD 2 PARITY 3 BITS 4 PACE 22 5 CONTROL 6 MOR

Press READ to find out the current setting

SYSTEM_0:
1 READ 2 SET 3 33

Press SET to change the current setting

SYSTEM_0:
Enter card number
1 2 3

Enter Card Number press Return (0 for built-in, 1-7 for a plug-in)

SYSTEM_0:+9600
Read the BAUD rate
1 READ 2 SET 3

SYSTEM_0:
Enter card number
1 300 2 1200 3 2400 4 9600 33 5 19200 6

Each SET Menu will have two or more choices

SYSTEM_0:
Enter card number
1 2 3 4 24 1 5

Enter Card Number press Return (0 for built-in, 1-7 for a plug-in)

The setting is now in volatile RAM storage. See the "How to Store Interface Settings" Menu Chart for non-volatile storage which maintains settings through power cycles.
How to Store the Serial Interface Configuration

SYSTEM_0:

- 1 CONFI 3 2 HP-IB 3 RS-232 4 TIME 23

SYSTEM_0:

- 1 BAUD 2 FARITY 3 BITS 4 PAGE 22 1 5 CONTROL 6 MORE 7 PRV MENU 8 UTILS

SYSTEM_0:

- 1 STORE 2 3 4 22 1 5 6 MORE 7 8 UTILS

SYSTEM_0:
Enter card number

- 1 2 3 4

Enter Card Number press Return. Card Number 0 for built-in stores settings into non-volatile RAM. Card Number 1-7 for HP 1324A stores settings into its onboard EEROM.)
Appendix D

Using The DC Power Option

Chapter Contents and Purpose

This chapter describes the HP E1300A/E1301A Mainframe DC Power Option (E1300A Option 008; HP Part Number E1300-80008). This chapter contains the following sections:

- DC Power Option Description D-1
- Connecting the Battery to the DC Power Option D-2
- DC Power Option Operation D-2
- Powerdown Operation D-2
- DC Power Option Trickle Charge Currents D-3
- DC Power Option Specifications D-3
- Selecting the Trickle Charge Current/Latched Operation ... D-4

DC Power Option Description

The DC Power Option allows you to operate the mainframe from an externally connected battery without AC power connected. It also operates the mainframe if AC power goes below the operating level. The length of operation using battery power depends on the type of battery used. Transfer from AC to DC or DC to AC is transparent (i.e., bumpless transfer).

When operating with AC power (i.e., normal operation), the DC Power Option provides four selectable trickle charge currents for the externally connected battery (see “DC Power Option Trickle Charge Currents” section below).

The DC Power Option is circuit breaker protected from over-current, over-voltage, and reverse polarity inputs (see Figure 6-1 for circuit breaker location and settings). The circuit breaker is a magnetic breaker that cannot “held set” while faults are present.
Connecting the Battery to the DC Power Option

See Figure D-1 to connect the battery to the DC Power Option. Observe the correct battery polarity when connecting the battery.

Warning

To prevent possible electric shock hazard during battery operation, connect the HP E1300/E1301 Mainframe's chassis terminal to earth ground. If the ac power cord remains connected to the mainframe and is plugged into an ac power receptacle with a reliable earth ground, no additional connection is required.

DC Power Option Operation

Mainframe operation with AC power always takes precedence over DC power operation. With the mainframe at full power load, the power option switches to DC power if the AC power line voltage goes below 90 Vac or 180 Vac. This is for a mainframe power line voltage setting of 115 Vac or 230 Vac, respectively. If there is sufficient AC power to operate the mainframe at a given power load, the power option switches back to AC power operation. With the mainframe at full power load, AC operation starts at 100 V or 200 V, respectively. The above voltage values are lower with lighter mainframe power loads.

Powerdown Operation

The mainframe has two different selectable powerdown operations when operating on DC power: Non Latched or Latched. The factory sets the option to the “Non Latched” operation. Refer to the “Selecting the Trickle Charge Current and Latched Switches” section in this chapter to select the “Latched” operation, if needed. The following explains the two different operations.

1. **Non Latched Operation** - If the DC Power Option detects a low DC voltage (below 10 Vdc), the mainframe turns off. If the DC voltage returns to a normal level (11 Vdc to 30 Vdc), the mainframe turns on again.

2. **Latched Operation** - If the DC Power Option detects a low DC voltage (below 10 Vdc), the mainframe turns off. To turn the mainframe on, set the DC voltage to a normal level (11 Vdc to 30 Vdc) and then cycle the mainframe's power switch off and on.
DC Power Option

Trickle Charge Currents

The trickle charge currents are 0 mA, 50 mA, 100 mA, and 200 mA. The trickle charge keeps the battery from self-discharging when not in use. Refer to the "Selecting the Trickle Charge Current and Latched Switches" section below to select the different trickle charge currents. The factory sets the trickle charge current to 0 mA.

DC Power Option Specifications

DC Voltage Range: Operating 10 Vdc to Overprotection trip (30 Vdc)

DC Current: 20A maximum at approximately 10 Vdc

DC Starting Surge Current: 20A at approximately 12 Vdc for 100 msec (1/2 at 24 Vdc)

AC Voltage Range: same as HP E1300/E1301 Mainframe

Using The DC Power Option D-3
Selecting the Trickle Charge Current and Latched Switches

1. Remove handle/rear cover screws and top cover

WARNING
Remove AC power before removing the top cover

Tools Required
#1 Pozidriv screwdriver
#TX10 Torx driver

2. Set the trickle charge/latched switches

Figure D-2. Selecting Battery Options
Appendix E

Sending Binary Data Over RS-232

About this Appendix

This appendix describes the procedure for sending pure binary data over an RS-232 interface. The formatting described is used in the DIAG:DOW:CHEC:MADD, DIAG:DOW:CHEC:SADD, and DIAG:DRIV:LOAD:CHEC commands. This appendix contains the following main sections.

- About this Appendix .. E-1
- Formatting Binary Data for RS-232 Transmission E-1
- Sending Binary Data Over RS-232 E-2

Formatting Binary Data for RS-232 Transmission

The most straightforward way to send a block of data is to open the data file, read the next byte from the file, and send it to the System Instrument until you reach the end of file. However, binary data cannot be sent to the System Instrument as is. It must be converted into a format that will not conflict with the special characters that the RS-232 interface recognizes. This is done by sending only one half byte (a nibble) at a time. To prevent this nibble from being confused with a special character, bit 7 of the nibble is set to one. This gives all data bytes in the block values greater than 127 so they are not confused with ASCII characters. It also doubles the size of the file to be sent and the transmission time for the file. Since a transmission error that required retransmission of the entire data block would be very time consuming, a 3-bit error code (which allows for correction of single bit errors) is added to the transmission byte. The following format is sent for each nibble:

<table>
<thead>
<tr>
<th>Bit #</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Correction Code</td>
<td>Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The error correction code is based on the nibble of data sent. The easiest way to implement this code is to use table E-1. It is indexed based on the value of the nibble to send out, so there are 16 elements to the table.
Table E-1. Correction Codes for RS-232 Transmission

<table>
<thead>
<tr>
<th>Data Value</th>
<th>Correction Code</th>
<th>Byte in Hex</th>
<th>Byte in Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>80h</td>
<td>128</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>F1h</td>
<td>241</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>E2h</td>
<td>226</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>93h</td>
<td>147</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>D4h</td>
<td>212</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>A5h</td>
<td>165</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>B6h</td>
<td>182</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>C7h</td>
<td>199</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>B8h</td>
<td>184</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>C9h</td>
<td>201</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>DAh</td>
<td>218</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>ABh</td>
<td>171</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>ECh</td>
<td>236</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>9Dh</td>
<td>157</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>8Eh</td>
<td>142</td>
</tr>
<tr>
<td>15</td>
<td>7</td>
<td>FFh</td>
<td>255</td>
</tr>
</tbody>
</table>

Sending Binary Data Over RS-232

The RS-232 interface differs from the HP-IB interface in that there is no device addressing built into the interface definition. Device addressing must be done on top of the RS-232 functions. This addressing is done through the same mechanism as the terminal-based front panel, and must be done either by the transfer program or manually before starting the transfer program.

Setting Up the Mainframe

There are two commands (SI - Select and Instrument and SA - Select Address) that can be used at the "Select an Instrument" interface. The "Select an Instrument" interface can always be reached by sending the `<CTRL-D>` character (ASCII 4) over the RS-232 line. Once there, the System Instrument can be reached by sending the command "SI SYSTEM" followed by a carriage return. All output after this command will be directed to/from the System Instrument until another `<CTRL-D>` is received. The following sequence will make sure that the mainframe is set up and ready.

1. Send `<CTRL-D>` (ASCII 4) to get to the "Select and Instrument" interface.

2. Send "ST UNKNOWN" and a carriage return to insure that the terminal is set to dumb terminal mode.
3. Send "SI SYSTEM" and a carriage return to get the attention of the System Instrument.

4. Send <CTRL-C> to clear the system.

5. Send "*RST" and a carriage return to put the System Instrument in a known state.

The program must then send the binary data. This block of data should include the command "DIAG:DOWN:CHEC" followed by the address to download to and an IEEE 488.2 arbitrary block header. This block header can be either definite or indefinite. The advantage of using an indefinite block header is that you do not need to know the length of the data block. The indefinite block header is #0. With the DIAG:DOWN:CHEC command an indefinite block is terminated with the "!'" character followed by a carriage return. The "!'" character is not considered part of the block. A definite block only requires the ASCII carriage return character as terminator. The definite block starts with ". This is followed by a single digit that shows the number of digits in the length field, which is followed by the actual length of the block, not counting the header. For instance, a block of 1000 bytes would have a definite block header of "#41000. Due to the formatting required, the size of the block when using the DIAG:DOWN:CHEC command is twice the length of the data in bytes.

Once the block header has been sent, the actual data is sent. Since the buffer size of the System Instrument RS-232 Interface is limited to 79 bytes, the buffer must be flushed (passed to an instrument parser) before it reaches 79 bytes. This can be done by sending a carriage return. The first carriage return should be included in the binary file after the buffer header. Sending it before this would result in the parser determining that there are not enough parameters and producing an error condition. Once transmission of the actual data begins, a carriage return should be included after every 78 bytes.

NOTE

The carriage returns are not considered part of the block count.

After the last byte of data, there must be a carriage return to terminate the transmission for a definite block or a "!'" and carriage return for an indefinite block.
Index

3-Channel Universal Counter
 Menu (front panel), 2-26 - 2-27
 Menu (terminal interface), 3-38 - 3-39
4-Channel Counter/Totizer
 Menu (front panel), 2-24 - 2-25
 Menu (terminal interface), 3-36 - 3-37
4-Channel D/A Converter
 Menu (front panel), 2-21
 Menu (terminal interface), 3-33
5 1/2 Digit Multimeter
 Menu (front panel), 2-20
 Menu (terminal interface), 3-32
60-second menu tutorial
 front panel, 2-2
 terminal interface, 3-3
 :DRIVer:LOAD, 7-17
 :DRIVer:LOAD:CHECKed, 7-17

A
Abbreviated Commands, 7-2
ABORt subsystem, 7-4
Allocating a user memory segment, 4-7

B
Back Space key
 terminal interface, 3-15
Back Space key (front panel), 2-11
BEEPer:IMMediate, 7-35
BOOT
 :COLD, 7-6
 :WARM, 7-7

C
Cable
 RS-232, 5-1
Caps Lock key
 terminal interface, 3-15
Caps Lock key (front panel), 2-11
Changing the primary HP-IB address, 4-3
Clear-to-end key
 terminal interface, 3-15
Clear-to-end key (front panel), 2-11
Clearing Standard Operation Event Register Bits, 6-9
Clearing status, 6-10
Close channels
 terminal interface, 3-8
Close channels (front panel), 2-5
Command
 Abbreviated, 7-2
 Implied, 7-2
 Linking, 7-3
 Separator, 7-2
 Types, 7-1
Command Errors, B-2
Command Quick Reference, 7-75
Command Reference, SCPI
 ABORt subsystem, 7-4
 Common Commands, 7-65
 DIAGnostic subsystem, 7-5 - 7-28
 INITiate subsystem, 7-29
 INITiate:IMMediate, 7-29
 SOURce subsystem, 7-30 - 7-31
 SOURce:PULSe:COUNT?, 7-30
 SOURce:PULSe:COUNT?, 7-30
 SOURce:PULSe:PERiod?, 7-31
 SOURce:PULSe:PERiod?, 7-31
 STATus subsystem, 7-32 - 7-34
 SYSTEM subsystem, 7-35 - 7-50
 SYSTEM:BEEPer:IMMediate, 7-35
 SYSTEM:COMMunicate:GPIB:ADDRes, 7-36
 TRIGger subsystem, 7-51 - 7-53
 TRIGger:DELay, 7-51
 TRIGger:IMMediate, 7-52
 TRIGger:SLOPe, 7-52
 TRIGger:SLOPe?, 7-52
 TRIGger:SOURce, 7-52
 TRIGger:SOURce?, 7-53
 VXI subsystem, 7-54 - 7-64
Commands
 executing (front panel), 2-9
 executing (terminal interface), 3-13
 terminal interface, 3-19
Common Command Format, 7-1
Common Command reference, 7-65
Common Command reference, all instruments
 *CLS, 7-66
 *ESE, 7-66
 *ESE?, 7-67
 *ESR?, 7-67
 *IDN?, 7-68
 *IRN?, 7-68
 *OPC, 7-69
 *OPC?, 7-69
 *PSC, 7-69
 *PSC?, 7-69
 *RCL, 7-70
 *RST, 7-70
D

Data memory, mainframe, 4-6
DATE, 7-48
SYST:DATE, 7-48
SYST:DATE?, 7-49
Date, reading or setting, 1-5
DATE?, 7-49
DC Power Option, D-1 - D-4
Connecting Battery, D-2
Operation, D-2
Power Down Operation, D-2
Selecting the Latched switches, D-4
Trickle Charge Currents, D-3
DC Power Option Description, D-1
DC Power Option Operation, D-2
DC Power Option Specifications, D-3
DC Power Option Trickle Charge Currents, D-3
Selecting, D-4
DCL (device clear), 7-73
Definition, instrument, 1-3
Delay, 7-51
TRIG:DELAY, 7-51
TRIG:DELy?, 7-51
Delete key
terminal interface, 3-14
Delete key (front panel), 2-11
Description
DC Power Option, D-1
Device clear (DCL), 7-73
Device Driver
manual download over HP-IB, 5-11
manual download over RS-232, 5-11
preparing memory for download, 5-10
Device driver RAM, 5-3
Device Drivers
checking status, 5-9
Disks, 5-1
download program configuration, 5-4
downloading in HP-IB systems with HP BASIC, 5-8
downloading in HP-IB systems with IiASIC, 5-7
downloading in MS-DOS systems, 5-6
downloading multiple drivers, 5-9
editing the configuration file, 5-4
memory configuration, 5-3
Device-Specific Errors, B-2
DIAGnostic subsystem, 7-5 - 7-28
DIAG:BOOT:COLD, 7-6
DIAG:BOOT:WARM, 7-7
DIAG:COMM:SERR[0]:OWN, 7-7
DIAG:COMM:SERR[0]:OWN?, 7-8
DIAG:COMM:SERR[n]:STOR, 7-8
DIAG:DOWN:CHECK:SADD, 7-11 - 7-12
DIAG:DOWN:CHECK:[MADD], 7-9 - 7-10
DIAG:DOWN:SADD, 7-14
DIAG:DOWN:[MADD], 7-13

Index-2
DRAM, 5-3

Drivers
listing, 7-18

E

Editing

VXIDL.CFG, 5-4

Editing keys
front panel, 2-10
Editing keys (terminal interface), 3-14
Editing the configuration file, 5-4

Error
messages, reading, 3-12
messages, reading (front panel), 2-8
SYST:ERR?, 7-49

Error Messages, B-1 - B-6
Error Queue, reading, B-1
Error Types, B-2
ERRor?, 7-49

Errors
Command, B-2
Device-Specific, B-2
Execution, B-2
Query, B-2

Example
Storing and retrieving data from mainframe memory, 4-7
Allocating an NRAM segment, 4-8
Continuous pace out signal, 4-2
interrupting when an error occurs, 6-11
Pacing an external scanner, 4-2
reading the date, 1-5
reading the time, 1-5
setting the date, 1-5
setting the time, 1-5
Synchronizing an internal instrument to an external
instruments, 4-4
synchronizing computers using *OPC, 6-13
synchronizing computers using *OPC?, 6-12
Synchronizing internal/external instruments and the
computer, 4-4
Using the Operation Status Group Registers, 6-9
Using UPLOAD and DOWNLOAD, 4-10

Example: Reading Error Queue, B-1
Executing commands (front panel), 2-9
Executing commands (terminal interface), 3-13
Execution Errors, B-2
External computer, interrupting, 6-10
External computer/instruments, synchronizing, 6-12

Download device drivers
checking status, 5-9
hardware handshake, 5-12
in HP-IB systems with HP BASIC, 5-8
in HP-IB systems with IBASIC, 5-7
in MS-DOS systems, 5-6
manually over HP-IB, 5-11
manually over RS-232, 5-11
manually using hardware handshake, 5-13
manually using software handshake, 5-14
multiple device drivers, 5-9
pace data, 5-12
preparing memory, 5-10
software handshake, 5-12

Display
instrument information (terminal interface), 3-5
control/editing keys (front panel), 2-10
instrument information (front panel), 2-3
instrument logical addresses (front panel), 2-3
instrument logical addresses (terminal interface), 3-5
module type & description (front panel), 2-5
module type & description (term. interface), 3-8

DOWNLOAD
:CHECKed:SADDress, 7-11 - 7-12
:CHECKed:MADDress, 7-9 - 7-10
:SADDress, 7-14
:SADDress, 7-13

Download program, 3-4

DOWNLOAD, using, 4-9

Diagnostics
Pressing, 3-17

Drivers
listing, 7-18

E

Editing

VXIDL.CFG, 5-4

Editing keys
front panel, 2-10
Editing keys (terminal interface), 3-14
Editing the configuration file, 5-4

Error
messages, reading, 3-12
messages, reading (front panel), 2-8
SYST:ERR?, 7-49

Error Messages, B-1 - B-6
Error Queue, reading, B-1
Error Types, B-2
ERRor?, 7-49

Errors
Command, B-2
Device-Specific, B-2
Execution, B-2
Query, B-2

Example
Storing and retrieving data from mainframe memory, 4-7
Allocating an NRAM segment, 4-8
Continuous pace out signal, 4-2
interrupting when an error occurs, 6-11
Pacing an external scanner, 4-2
reading the date, 1-5
reading the time, 1-5
setting the date, 1-5
setting the time, 1-5
Synchronizing an internal instrument to an external
instruments, 4-4
synchronizing computers using *OPC, 6-13
synchronizing computers using *OPC?, 6-12
Synchronizing internal/external instruments and the
computer, 4-4
Using the Operation Status Group Registers, 6-9
Using UPLOAD and DOWNLOAD, 4-10

Example: Reading Error Queue, B-1
Executing commands (front panel), 2-9
Executing commands (terminal interface), 3-13
Execution Errors, B-2
External computer, interrupting, 6-10
External computer/instruments, synchronizing, 6-12

Download device drivers
checking status, 5-9
hardware handshake, 5-12
in HP-IB systems with HP BASIC, 5-8
in HP-IB systems with IBASIC, 5-7
in MS-DOS systems, 5-6
manually over HP-IB, 5-11
manually over RS-232, 5-11
manually using hardware handshake, 5-13
manually using software handshake, 5-14
multiple device drivers, 5-9
pace data, 5-12
preparing memory, 5-10
software handshake, 5-12

DRAM, 5-3

:AVAilable?, 7-15
:CREate, 7-16
:CREate?, 7-16
F
Files: VXIDLD.CFG, 5-4
Format
- Common Command, 7-1
- SCPI Command, 7-1
Front panel
- features, 2-1
- menu tutorial, 2-2
- menus, 2-2

G
GET (group execute trigger), 7-72
Go to local (GTL), 7-72
Group execute trigger (GET), 7-72
GTL (go to local), 7-72

H
Hints, programming, 6-1
How to
- display instrument information (front panel), 2-3
- display instrument information (terminal interface), 3-5
- display instrument label (terminal interface), 3-5
- display instrument label (front panel), 2-3
- reset (reboot) the mainframe (front panel), 2-3
- reset (reboot) the mainframe (terminal interface), 3-5
- set or read the system HP-IB address, 3-5
- set or read the system HP-IB address (front panel), 2-3
- HP-IB message reference, 7-72

I
IBASIC, Users Note, 4-7
IFC (interface clear), 7-72
IMMediate
- BEEP: IMM, 7-35
- INIT: IMM, 7-29
- TRIG: IMM, 7-52
Implied Commands, 7-2
In case of difficulty
- terminal interface, 3-23
- In case of difficulty (front panel), 2-12
- INITiate subsystem, 7-29
Instrument
- Control Keys (front panel), 2-11
- Control Keys (terminal interface), 3-15
- definition, 1-3
- logical addresses, 1-4
- menus (front panel), 2-13
- menus (terminal interface), 3-25
- menus, using, 3-8
- menus, using (front panel), 2-5
- Instrument secondary addresses, 1-4
- Instruments, synchronizing, 4-3
- Interface clear (IFC), 7-72
- Internal/external instruments, synchronizing, 4-3
- INTrrupt
 - :ACTivate, 7-19
 - :PRiority[n], 7-21
 - :PRiority[n], 7-21
 - :RESPoRe, 7-22
 - :SETup[n], 7-19
 - :SETup[n], 7-20
- Interrupting external computer, 6-10
- Introductory programming examples, 1-4

K
Key descriptions (front panel), 2-10
Key descriptions, General, 3-14
Keys
- editing (terminal interface), 3-14
- menu (front panel), 2-10
- menu (terminal interface), 3-14
- menu control (terminal interface), 3-14

L
Left arrow key
- terminal interface, 3-14
- Left arrow key (front panel), 2-10
- Linking Commands, 7-3
- LLO (local lockout), 7-73
- Local lockout (LLO), 7-73
- Logical addresses
 - displaying (front panel), 2-3
 - displaying (terminal interface), 3-5
 - instrument, 1-4

M
Mainframe
- data memory, 4-6
- description, 1-1
- memory, optional, 1-1
Mainframe Options
- DC Power, D-1 - D-4
Memory
- device driver RAM, 5-3
Memory, mainframe, 4-6
Menu
- using a terminal without, 3-21
Menu (front panel)
- 3-Channel Universal Counter, 2-26 - 2-27
- 4-Channel Counter/Totalizer, 2-24 - 2-25
- Quad 8-Bit Digital Input/Output, 2-22
- 4-Channel D/A Converter, 2-21
- 5 1/2 Digit Multimeter, 2-20
- instrument (front panel), 2-13
- keys, 2-10
- Scanning Voltmeter, 2-18 - 2-19
N
Non-volatile user memory, 4-7
NRAM, 5-5
:ADDRess?, 7-23
:CREate, 7-23
:CREate?, 7-24
address, 4-7
allocating a segment, 4-7
locating the segment, 4-7
user non-volatile memory, 4-7

O
Open and close channels
terminal interface, 3-8
Open and close channels (front panel), 2-5
OPERation
:CONDition?, 7-32
:ENABLE, 7-32
:ENABLE?, 7-33
[:EVENT?], 7-33
DC Power Option, D-2
Optional mainframe memory, 1-1
Options
DC Power, D-1-D-4
Other Terminals, non-supported, 3-19

P
Pacer, using, 4-1
Pacing data for manual download, 5-12
PEEK?, 7-24
POKE, 7-25
Power Down Operation, D-2
Powerdown Operation
DC Power Option, D-2
PRESet, 7-34
Primary HP-IB address, changing, 4-3
Programming examples, introductory, 1-4
Programming hints, 6-1
PULSe
:COUNT, 7-30
:COUNT?, 7-30
:PERiod, 7-31
:PERiod?, 7-31

Q
Quad 8-Bit Digital Input/Output
Menu (front panel), 2-22
Menu (terminal interface), 3-34
Query Errors, B-2
QUERYable, 7-34
Quick Reference, Command, 7-75

R
RDISK, 5-5
:ADDRess?, 7-25
:CREate, 7-26
:CREate?, 7-26
READ?, 7-60
Reading
error messages (front panel), 2-8
error messages (terminal interface), 3-12
the Condition register, 6-8
the Status Byte register, 6-4
the system HP-IB address, 3-5
the system HP-IB address (front panel), 2-3
Reading Instrument's Error Queue, B-1
Reading the date, 1-5
Reading the time, 1-5
Readings
retrieving from mainframe memory, 4-7
storing in mainframe memory, 4-7
Reboot the mainframe
terminal interface, 3-5
Reboot the mainframe (front panel), 2-3
Reference, Common Commands, 7-65
register
:READ?, 7-61
:WRITe?, 7-62
VXI:READ?, 7-60
VXI:WRIT, 7-64
Register, Status Byte, 6-4
Remote (HP-IB message), 7-74
Reset
 (reboot) the mainframe (front panel), 2-3
 (reboot) the mainframe (terminal interface), 3-5
 a switch module (front panel), 2-5
 a switch module (terminal interface), 3-8
Retrieving data from mainframe memory, 4-7
Right arrow key
 terminal interface, 3-14
RS-232 Cable, 5-1

S
SA, terminal interface command, 3-21
Scan channels
 (front panel), 2-5
 Switchbox, terminal interface, 3-8
Scanning
 Voltmeter Menu (front panel), 2-18 - 2-19
 Voltmeter Menu (terminal interface), 3-30 - 3-31
SCPI Commands, 7-1
 Format, 7-1
 Reference, 7-4
SDC (selected device clear), 7-73
Secondary addresses, instrument, 1-4
SELect, 7-63
Select Address command (terminal interface), 3-21
Select Instrument command (terminal interface), 3-21
SELect?, 7-63
Selected device clear (SDC), 7-73
Selecting
 instruments, without menus, 3-21
 the Switchbox (front panel), 2-5
 the Switchbox (terminal interface), 3-8
Selecting the Latched Switches, D-4
DC Power Option, D-4
Selecting the Tricks; Charge Currents, D-4
DC Power Option, D-4
Separator
 Command, 7-3
Serial poll (SPOll), 7-74
Service request
 enable register, 6-5
Service request enable register, 6-5
clearing, 6-5
Set or read the system HP-IB address
 terminal interface, 3-5
Set or read the system HP-IB address (front panel), 2-3
Setting the date, 1-5
Setting the time, 1-5
Shift key
 terminal interface, 3-15
Shift key (front panel), 2-11
SI, terminal interface command, 3-21
SLOPe, TRIGger:SLOPe, 7-52
SLOPe?, TRIGger:SLOPe?, 7-52
SOURce subsystem, 7-30 - 7-31
SOURce, TRIG: SOUR, 7-52
SOURce?, TRIG:SOUR?, 7-53
Specifications
 DC Power Option, D-3
SPOLL (serial poll), 7-74
ST, terminal interface command, 3-20
Standard Commands for Programmable Instruments,
 SCPI, 7-4
Standard Event Status bits, unmasking, 6-6
Standard Event Status Register, 6-6
 reading, 6-7
Standard Event Status Register (table), 6-6
Standard Operation Status Group
 Condition register, 6-7
 Condition register (table), 6-8
Status Byte register, 6-3 - 6-4
Status Byte Register, reading, 6-4
STATus subsystem, 7-32 - 7-34
 STAT:OPER:COND?, 7-32
 STAT:OPER:ENAB, 7-32
 STAT:OPER:ENAB?, 7-33
 STAT:OPER[:EVEN]?, 7-33
 STAT:PRE, 7-34
 STAT:QRS, 7-34
Status system structure, 6-2
Status, clearing, 6-10
Status, system structure, 6-2
Storing and retrieving data from mainframe memory, 4-7
Subsystem
 ABORT, 7-4
 DIAGnostic, 7-5 - 7-28
 INITiate, 7-29
 SOURce, 7-30 - 7-31
 STATus, 7-32 - 7-34
 SYStem, 7-35 - 7-50
 TRIGger, 7-51 - 7-53
 VXI, 7-54 - 7-64
Switchbox
 close channels (front panel), 2-5
 close channels (terminal interface), 3-8
 display module type & description (front panel), 2-5
 display module type & description (term. interface), 3-8
 Menu (front panel), 2-16
 Menu (terminal interface), 3-28
 monitoring (front panel), 2-5
 monitoring (terminal interface), 3-8
 open and close channels (front panel), 2-5
 open and close channels (terminal interface), 3-8
 scan channels (front panel), 2-5
 scan channels (terminal interface), 3-8
 selecting (front panel), 2-5
 selecting (terminal interface), 3-8
Synchronizing
 internal/external instruments, 4-3
Synchronizing external computer/instruments, 6-12
Syntax, Variable Command, 7-2
System Instrument, 7-1
Menu (front panel), 2-14 - 2-15
Menu (terminal interface), 3-26 - 3-27
System Instrument menu, 3-5
System Instrument menu (front panel), 2-3
SYSTem subsystem, 7-35 - 7-50

SYST:COMM:GPIB:ADDR?, 7-36
SYST:COMM:SER[n]:REC:PAR:TYPE, 7-44 - 7-45
SYST:COMM:SER[n]:CONT:DTR, 7-37
SYST:COMM:SER[n]:CONT:DTR?, 7-38
SYST:COMM:SER[n]:CONT:RTS?, 7-39
SYST:COMM:SER[n]:REC:BAUD, 7-39
SYST:COMM:SER[n]:REC:BAUD?, 7-39
SYST:COMM:SER[n]:REC:BITS, 7-40
SYST:COMM:SER[n]:REC:BITS?, 7-40
SYST:COMM:SER[n]:REC:PACE:PROT, 7-41
SYST:COMM:SER[n]:REC:PACE:PROT?, 7-41
SYST:COMM:SER[n]:REC:PACE:THR:STAR, 7-42
SYST:COMM:SER[n]:REC:PACE:THR:STOP, 7-43
SYST:COMM:SER[n]:REC:PACE:THR:STOP?, 7-43
SYST:COMM:SER[n]:REC:PAR:CHEC, 7-44
SYST:COMM:SER[n]:REC:PAR:CHEC?, 7-44
SYST:COMM:SER[n]:REC:PAR[:TYPE?], 7-46
SYST:COMM:SER[n]:REC:SBIT, 7-46
SYST:COMM:SER[n]:REC:SBIT?, 7-47
SYST:COMM:SER[n]:TRANSB, 7-47
SYST:COMM:SER[n]:TRANSB?, 7-47
SYST:COMM:SER[n]:TRANS:PROT, 7-48
SYST:COMM:SER[n]:TRANS:PROT?, 7-48
SYST:COMM:SER[n]:CONTR:RTS, 7-38
SYST:DATE, 7-48
SYST:DATE?, 7-49
SYST:ERRR?, 7-49
SYST:TIME, 7-50
SYST:TIME?, 7-50
SYST:VERS?, 7-50

T

Terminal
configuring, C-1 - C-5
connecting, C-1 - C-5

Terminal interface
commands, 3-19
commands, SA, 3-21
commands, SI, 3-21
commands, ST, 3-20
features, 3-2
menu tutorial, 3-3
menus, 3-3
TIME, 7-50
SYST:TIME, 7-50
SYST:TIME?, 7-50
Time, reading or setting, 1-5
TIME?, 7-50
Trickle Charge Currents
DC Power Option, D-3
TRIG:SOURce, 7-52
TRIG:SOURCE?, 7-53
TRIGger subsystem, 7-51 - 7-53
trigger system
ABORt subsystem, 7-4
INITiate subsystem, 7-29
TRIGger subsystem, 7-51 - 7-53
TRIGger:IMMediate, 7-52
TRIGger:SLOPe, 7-52
TRIGger:SLOPe?, 7-52

U

Unassigned modules, 1-4
Unmasking Standard Event Status bits, 6-6
Unmasking Standard Operation Event Register Bits, 6-8
UPLoad
:SADdress?, 7-28
[:MADdress]?, 7-27
UPLoad, using, 4-9
User memory, non-volatile, 4-7
Using
:DOWNload and :UPLOAD, 4-9
a terminal without menus, 3-21
instrument menus (front panel), 2-5
instrument menus (terminal interface), 3-8
menus, 2-2, 3-3
Operation Status Group Registers, 6-9
Other Terminals, 3-19
Supported Terminals, 3-16
the Pacer, 4-1

V

Variable Command Syntax, 7-2
VERSion?, 7-50
VXI subsystem, 7-54 - 7-64
VXI:CONF:DLAD?, 7-54
VXI:CONF:DLIS?, 7-55
VXI:CONF:DNUM?, 7-56
VXI:CONF:HIER:ALL?, 7-58
VXI:CONF:HIER?, 7-57
VXI:CONF:INF:ALL?, 7-60
VXI:CONF:INF?, 7-58 - 7-59
VXI:CONF:NUMB?, 7-60
VXI:READ?, 7-60
VXI:REG:READ?, 7-61
VXI:SEL, 7-63
VXI:SEL?, 7-63
VXI:WRIT, 7-64
VXI Subsystem, 7-62
VXIDLD.CFG, 5-4

W

WRITe, 7-64

INDEX