Operating and Programming Manual

HP 8560A and HP 8561B
Spectrum Analyzers

COPYRIGHT © 1989 HEWLETT-PACKARD COMPANY
1212 VALLEY HOUSE DRIVE, ROHNERT PARK, CALIFORNIA 94928-4999, USA

Manual Part Number: 5958-6940
Microfiche Part Number: 5958-6941
Printed: July 1989
Certification

Hewlett-Packard Company certifies that this product met its published specifications at the time of shipment from the factory. Hewlett-Packard further certifies that its calibration measurements are traceable to the United States National Institute of Standards and Technology, to the extent allowed by the Institute's calibration facility, and to the calibration facilities of other International Standards Organization members.

Warranty

This Hewlett-Packard instrument product is warranted against defects in material and workmanship for a period of one year from date of shipment. During the warranty period, Hewlett-Packard Company will, at its option, either repair or replace products which prove to be defective.

For warranty service or repair, this product must be returned to a service facility designated by HP. Buyer shall prepay shipping charges to HP and HP shall pay shipping charges to return the product to Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for products returned to HP from another country.

HP warrants that its software and firmware designated by HP for use with an instrument will execute its programming instructions when properly installed on that instrument. HP does not warrant that the operation of the instrument, or software, or firmware will be uninterrupted or error-free.

LIMITATION OF WARRANTY

The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by Buyer, Buyer-supplied software or interfacing, unauthorized modification or misuse, operation outside of the environmental specifications for the product, or improper site preparation or maintenance.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. HP SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

EXCLUSIVE REMEDIES

THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES. HP SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL THEORY.

Assistance

Product maintenance agreements and other customer assistance agreements are available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and Service Office.
DOCUMENTATION OUTLINE

Manuals Shipped with Your Instrument

Installation and Verification Manual
• Tells you how to install the spectrum analyzer.
• Tells you how to verify analyzer operation.
• Tells you what to do in case of a failure.

Operating and Programming Manual
• Describes spectrum analyzer features and functions.
• Tells you how to make measurements with your spectrum analyzer.
• Tells you how to program your spectrum analyzer.
• Provides you with a listing of all remote programming commands.

Quick Reference Guide
• Is an abbreviated version of the HP 8560A/8561B Operating and Programming Manual.

Options

Service Manual (Option 915)
• Describes troubleshooting and repair of the analyzer.

Extra Manual Set (Option 910)
• Doubles all documentation shipped with a standard instrument.

Quick Reference Guide (Option 916)
• Adds an extra Quick Reference Guide to the document package.
How to Use This Manual

If you are familiar with spectrum analyzers:

- Skim Chapter 1, Instrument Overview, for a brief introduction to the HP 8560A and HP 8561B Spectrum Analyzers
- Analyzer function descriptions and menus are discussed in Chapter 2, Function Descriptions. To find a description of a particular analyzer function, consult the index at the end of this manual.

If you are not familiar with spectrum analyzers (and your spectrum analyzer has already been unpacked and installed):

- Read Chapter 1, Instrument Overview, which introduces you to the HP 8560A and HP 8561B analyzers, leads you through a simple spectrum analyzer measurement, and shows you how to make more accurate measurements.
- After successfully making your first measurement, continue to Chapter 3, Common Measurements, to gain experience with spectrum analyzer measurements.

Caution

To prevent damage to your spectrum analyzer:

1. **DO NOT EXCEED THE MAXIMUM INPUT POWER.** Both the HP 8560A and HP 8561B spectrum analyzers are ac/dc coupled, with ac coupling being the default setting. AC coupling provides a block capacitor which protects the analyzer against damaging DC signals; so if dc coupling is selected, extra care must be taken by the user. The maximum input power is:

 ac coupled: +30 dBm (1 watt) continuous; 50 volts dc
 dc coupled: +30 dBm (1 watt) continuous; 0 volts dc

2. **DO NOT USE THE SERVICE FUNCTIONS UNLESS YOU HAVE ACCESS TO THE CORRECT CALIBRATION DATA.**
Contents

1. Instrument Overview
 The Front Panel ... 1-1
 Display Annotation 1-4
 The Rear Panel ... 1-5
 Introducing Menus and Softkeys 1-8
 Making a Basic Measurement 1-10
 Reference-Level Calibration 1-12

2. Function Descriptions
 Fundamental Functions 2-2
 Frequency ... 2-3
 Span ... 2-5
 Amplitude .. 2-7
 Hold .. 2-12
 Instrument State Functions 2-13
 Preset ... 2-14
 Configuration ... 2-15
 Calibration ... 2-18
 Auxiliary Control 2-21
 HP 8560A Option 002 2-24
 [AUX_CTRL] Softkey Menus continued 2-29
 Copy ... 2-38
 Module ... 2-39
 Save ... 2-40
 Recall ... 2-42
 Measure ... 2-45
 Single Sweep ... 2-47
 Marker Functions 2-48
 Marker Priority 2-48
 Marker ... 2-49
 Marker -> ... 2-51
 Normal Marker Functions 2-52
 Delta Marker Functions 2-52
 Frequency Counter 2-53
 Peak Search ... 2-55
 Control Functions 2-57
 Sweep ... 2-58
 Bandwidth .. 2-59
 Trigger ... 2-61
 Auto Couple .. 2-62
 Trace ... 2-64
 Display .. 2-67
3. Common Measurements
 Example 1: HARMONIC DISTORTION 3-1
 What Is Harmonic Distortion? 3-1
 Spectrum Analyzer Functions Used 3-1
 Stepping through the Fast Harmonic Measurements 3-2
 Alternative Measurement Method 3-4
 Percent of Harmonic Distortion 3-6
 Example 2: THIRD-ORDER INTERMODULATION DISTORTION 3-7
 What Is Intermodulation Distortion? 3-7
 Spectrum Analyzer Functions Used 3-7
 Stepping through the Measurement 3-7
 Example 3: AM AND FM DEMODULATION 3-11
 Introduction .. 3-11
 Spectrum Analyzer Functions Used 3-12
 Stepping Through the Measurement 3-12
 Example 4: STIMULUS-RESPONSE MEASUREMENTS 3-14
 What are stimulus-response measurements? 3-14
 Spectrum Analyzer Functions Used 3-15
 Stepping Through the Measurement 3-15
 Example 5: EXTERNAL MILLIMETER MIXERS 3-24
 Spectrum Analyzer Functions Used 3-25
 Stepping Through the Measurement 3-25

4. Programming
 Setup Procedure .. 4-2
 Communication with the System 4-3
 Executing Remote Commands 4-3
 Syntax Requirements 4-4
 Local and Remote Control 4-5
 Initial Program Considerations 4-6
 Program Timing ... 4-7
 Data Transfer to Computer 4-11
 Parameter vs Measurement Units 4-12
 Position Units and Trace Elements 4-13
 Trace-Data Formatting 4-13
 TDF P: Return Decimal Numbers in Parameter Units 4-13
 TDF M (M-format): Return Decimal Numbers in Measurement Units
 (output only) .. 4-15
 TDF B (B-Format): Return Binary Numbers in Measurement Units
 (output only) .. 4-16
 TDF A (A-block format): Return Absolute Block-Data Fields in
 Measurement Units 4-18
 TDF I (I-block format): Return Indefinite Block-Data Fields in
 Measurement Units 4-20
 Transmission Sequence of Data on HP-IB 4-21
 Input and Output Buffers 4-22
 Benefits of an Output Buffer 4-22
 Buffer Space ... 4-23
 Preventing Timeouts 4-23
 Synchronizing Your Program 4-23
 Clearing the Buffers 4-24
Summary 4-24
Math Functions 4-25
Variables and Traces 4-25
 Variables 4-25
 Traces 4-25
Math Commands 4-25
 Two Rules for Trace Math 4-25
Adding and Subtracting in dBm 4-26
Use AMBPL to Correct Data 4-26
Adding and Subtracting in Volts 4-27
Trace Data Limits 4-27
Creating Screen Titles 4-29
No-Format Method 4-29
Format Methods 4-30
 Making a Title in A-Block Format 4-30
 Making a Title in I-Block Format 4-30
Generating Plots and Prints Remotely 4-31
 Plotter Requirements 4-31
Making a Basic Plot 4-32
Plotting Options 4-33
Printer Requirements 4-34
Making a Basic Print 4-34
Monitoring System Operation 4-35
 Interrupt Process 4-35
 Analyzer Status Byte 4-36
 The Service-Request Mask 4-36
Computer Interrupt Statements 4-37
Reading Service Request Data 4-38
 Reading Service Requests From More Than One Instrument 4-39
Testing Service Request Routines ... 4-39
Summary 4-40

5. Language Reference
Introduction 5-1
Syntax Diagram Conventions 5-2
 Pictorial Notation 5-2
Command Sequence 5-2
Command Sequence Summary 5-2
Query Responses 5-3
Secondary Keywords 5-5
Programming Codes (functional index) 5-8
Programming Commands 5-14
A. Instrument Preset State
B. Softkey Cross Reference
C. Error Messages
D. Key versus Programming Command Cross Reference
E. Programming Commands vs. Key
G. Resolution Bandwidth
 Input Signals of Equal Amplitude

Index
Figures

1-1. HP 8560A Front Panel ... 1-1
1-2. Display Annotation ... 1-4
1-3. HP 8560A Rear Panel ... 1-6
1-4. Softkey Menu .. 1-8
1-5. 300 MHz Center Frequency .. 1-10
1-6. 20 MHz Frequency Span .. 1-11
1-7. Activated Normal Marker .. 1-11
1-8. –10 dBm Reference Level ... 1-12
1-9. Peaked Signal to Reference Level 1-13
2-1. CRT Alignment Pattern ... 2-19
2-2. Tracking Error ... 2-28
2-3. PEAK EXCURSN Defines the Peaks on a Trace 2-56
3-1. Input Signal and Harmonics 3-2
3-2. Peak of signal is positioned at reference level for maximum accuracy ... 3-3
3-3. Harmonic distortion measured in dBC. Marker threshold set to –70 dB. .. 3-3
3-4. Percentage of Distortion vs. Harmonic Amplitude 3-4
3-5. Input signal displayed in a 1 MHz span 3-5
3-6. Second harmonic displayed in dBC 3-6
3-7. Third-Order Intermodulation Test Setup 3-7
3-8. Signals centered on spectrum analyzer display 3-8
3-9. Signal peak set to reference level 3-9
3-10. Intermodulation distortion measured in dBC. 3-10
3-11. Display with title ... 3-10
3-12. Recall menu with a previously saved title 3-11
3-13. AM and FM Demodulation Test Setup 3-12
3-14. FM Band .. 3-13
3-15. Place a marker on the signal of interest, then demodulate. 3-13
3-16. Block diagram of a spectrum analyzer/tracking generator measurement system .. 3-14
3-17. Transmission Measurement Test Setup 3-15
3-18. Tracking-generator output power activated 3-16
3-19. Adjust spectrum analyzer settings according to the measurement requirement 3-17
3-20. Decrease the resolution bandwidth to improve sensitivity. 3-17
3-21. Manual tracking adjustment compensates for tracking error .. 3-18
3-22. Guided calibration routines prompt the user 3-19
3-23. The thru trace is displayed in trace B 3-19
3-24. Normalized Trace .. 3-20
3-25. Measure the rejection range with delta markers 3-21
3-26. NORM REF LVL adjusts the trace without changing analyzer settings ... 3-21
3-27. Increase the dynamic measurement range by using RANGE LVL .. 3-22
3-28. Normalized frequency response trace of a preamplifier 3-23
3-29. NORM REF POSN is a trace function 3-23

Contents-5
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-30</td>
<td>RANGE LVL adjusts analyzer settings for compression-free measurements.</td>
<td>3-24</td>
</tr>
<tr>
<td>3-31</td>
<td>External mixer setup (a) without bias; (b) with bias.</td>
<td>3-25</td>
</tr>
<tr>
<td>3-32</td>
<td>Select the band of interest.</td>
<td>3-26</td>
</tr>
<tr>
<td>3-33</td>
<td>Store and correct for conversion loss.</td>
<td>3-27</td>
</tr>
<tr>
<td>3-34</td>
<td>Signal responses produced by a 50 GHz signal in U band.</td>
<td>3-28</td>
</tr>
<tr>
<td>3-35</td>
<td>Response for invalid signals.</td>
<td>3-29</td>
</tr>
<tr>
<td>3-36</td>
<td>Response for valid signals.</td>
<td>3-29</td>
</tr>
<tr>
<td>3-37</td>
<td>SIG ID AT MKR performed on an image signal.</td>
<td>3-30</td>
</tr>
<tr>
<td>3-38</td>
<td>SIG ID AT MKR performed on a true signal.</td>
<td>3-30</td>
</tr>
<tr>
<td>4-1</td>
<td>HP 8560A connected to an HP 9000 Series 300 computer.</td>
<td>4-2</td>
</tr>
<tr>
<td>4-2</td>
<td>Invalid Trace Information</td>
<td>4-8</td>
</tr>
<tr>
<td>4-3</td>
<td>Updated Trace Information</td>
<td>4-9</td>
</tr>
<tr>
<td>4-4</td>
<td>Update trace information with TS before executing marker commands.</td>
<td>4-10</td>
</tr>
<tr>
<td>4-5</td>
<td>Data Transferred in TDF M Format</td>
<td>4-16</td>
</tr>
<tr>
<td>4-6</td>
<td>Buffer Summary</td>
<td>4-24</td>
</tr>
<tr>
<td>4-7</td>
<td>Display Units</td>
<td>4-28</td>
</tr>
<tr>
<td>4-8</td>
<td>Screen Titles Appear in the Upper-Right Corner of the Graticule</td>
<td>4-29</td>
</tr>
<tr>
<td>4-9</td>
<td>P1 and P2 Coordinates</td>
<td>4-31</td>
</tr>
<tr>
<td>5-1</td>
<td>Numeric Value Query Response</td>
<td>5-3</td>
</tr>
<tr>
<td>5-2</td>
<td>Binary State Query Response</td>
<td>5-3</td>
</tr>
<tr>
<td>5-3</td>
<td>CRT Alignment Pattern</td>
<td>5-3</td>
</tr>
<tr>
<td>5-4</td>
<td>MKPX Determines Which Signals are Considered Peaks</td>
<td>5-104</td>
</tr>
<tr>
<td>G-1</td>
<td>1 kHz Signal Separation</td>
<td>G-1</td>
</tr>
<tr>
<td>G-2</td>
<td>2 kHz Signal Separation</td>
<td>G-2</td>
</tr>
<tr>
<td>G-3</td>
<td>Bandwidth Shape Factor</td>
<td>G-2</td>
</tr>
<tr>
<td>G-4</td>
<td>100 kHz Bandwidth Resolution</td>
<td>G-3</td>
</tr>
<tr>
<td>G-5</td>
<td>300 kHz Bandwidth Resolution</td>
<td>G-3</td>
</tr>
</tbody>
</table>
Tables

1-1. Front-Panel Connector Data ... 1-3
1-2. Fundamental Functions Softkey Menus 1-14
1-3. Instrument State Functions Softkey Menus 1-15
1-4. Marker Functions Softkey Menus 1-20
1-5. Control Functions Softkey Menus 1-21
2-1. Frequency Bands and Their Minimum Reference Levels 2-7
2-2. Mixing Harmonics for Frequencies above 18 GHz 2-31
2-3. Flatness Points and Conversion Losses for Frequencies above 18 GHz 2-32
3-1. External Mixer Frequency Ranges 3-26
4-1. Units for Returned Data ... 4-12
4-2. HP-IB Transmission Sequence for Different Trace-Data Formats (TDF) 4-21
4-3. Scaling Points for Various Plotters 4-32
4-4. Status Register ... 4-56
5-1. Syntax Elements .. 5-4
5-2. Secondary Keyword Summary .. 5-5
5-3. External-Mixer Frequency Bands 5-69
5-4. Frequency Bands and the Corresponding LO Harmonic 5-73
5-5. HP 8560A/61B Preset State .. 5-80
5-6. Frequency Ranges and Minimum Reference Level 5-142
5-7. HP 8560A/61B Status Register 5-146
5-8. Special Printing Characters .. 5-186
A-1. HP 8560A Instrument State After (PRESSET) is Executed A-1
A-2. HP 8561B Instrument State After (PRESSET) is Executed A-3
A-3. HP 8563A Instrument State After (PRESSET) is Executed A-5
Instrument Overview

This chapter introduces the front- and rear-panel keys and connectors on the HP 8560A and HP 8561B Spectrum Analyzers. Complete descriptions of each front-panel function appear in Chapter 2.

The Front Panel

The following paragraphs briefly describe the groups of front-panel keys shown in Figure 1-1.

Figure 1-1. HP 8560A Front Panel

1. FREQUENCY, SPAN, and AMPLITUDE are the fundamental functions for most measurements. The HOLD key freezes the active function and holds it at a set value until a function key is pressed again. HOLD also blanks the softkey menu and expands the graticule display horizontally to fill the full CRT.
2. INSTRUMENT STATE functions generally affect the state of the entire spectrum analyzer, not just the state of a single function.

3. MARKER functions read out frequencies and amplitudes along the spectrum analyzer trace; allow you to make relative measurements; automatically locate the signal of highest amplitude on a trace; and tune the analyzer to track a signal automatically.

4. CONTROL functions allow you to adjust the resolution and video bandwidths, the sweep time, and the display, and to vary other functions that control spectrum analyzer measurement capabilities.

5. DATA keys, STEP keys, and the knob allow you to change the numeric value of an active function. Use the data keys to enter an exact value or to move quickly from one end of the frequency range to the other. The step keys vary a value in predefined increments or, for some functions, in increments that you choose. The knob allows you to fine-tune most numeric values.

6. The front-panel connectors include an RF input, an active-probe power, a 300 MHz calibrator signal, a 310.7 MHz IF input, and a first LO output. A short specification summary of these connectors is outlined in Table 1-1 below. The IF input is not available with an HP 8560A Option 002. A volume knob is provided for making adjustments to the volume of the built-in speaker. The LINE button turns the spectrum analyzer on and off. The LED above the LINE button indicates whether or not ac power is applied to the spectrum analyzer.

Caution

The maximum input level to the INPUT 50Ω is +30 dBm with a minimum of 10 dB input attenuation. Both the HP 8560A and HP 8561B are ac/dc coupled. When ac coupled, the maximum dc voltage to the RF input is 50 V. When dc coupled, the maximum dc voltage is 0 V. Default power-up mode is ac coupled. It is best to leave the analyzer in ac-coupled mode for maximum protection. Exceeding the maximum safe input levels can damage the input attenuator and the input mixer.

1-2 Instrument Overview
<table>
<thead>
<tr>
<th>Connector</th>
<th>Frequency Range</th>
<th>Amplitude/Voltage Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT 50Ω</td>
<td>HP 8560A: 50 Hz—2.9 GHz (dc coupled) 100 kHz—2.9 GHz (ac coupled) HP 8561B: 50 Hz—6.5 GHz (dc coupled) 100 kHz—6.5 GHz (ac coupled)</td>
<td>+30 dBm Max 0 Vdc Max (dc coupled) 50 Vdc Max (ac coupled) +30 dBm Max 0 Vdc Max (dc coupled) 50 Vdc Max (ac coupled)</td>
</tr>
<tr>
<td>PROBE POWER</td>
<td>—</td>
<td>+15V, −12.6V (150 mA max)</td>
</tr>
<tr>
<td>CAL OUTPUT</td>
<td>300 MHz</td>
<td>−10 dBm</td>
</tr>
<tr>
<td>IF INPUT* (for use with external mixers)</td>
<td>310.7 MHz</td>
<td>0 Vdc Max</td>
</tr>
<tr>
<td>1ST LO OUTPUT</td>
<td>3.00 GHz—6.81 GHz</td>
<td>+16.5 dBm ±2.0 dB</td>
</tr>
<tr>
<td>RF OUT 50Ω† (tracking generator output)</td>
<td>300 kHz—2.9 GHz</td>
<td>−10 dBm to +1 dBm</td>
</tr>
</tbody>
</table>

* Not available with an HP 8560A Option 002.
† Available only with an HP 8560A Option 002.
‡ LO output of an HP 8560A Option 002.
Display Annotation

Figure 1-2 illustrates the display annotation.

1. Number of video averages.
2. Logarithmic or linear amplitude scale per division.
3. Marker amplitude and frequency.
4. Title area.
5. Data invalid indicator, displayed when analyzer settings are changed before completion of a full sweep.
6. Menu title and softkey menu.
7. Error message area.
8. Frequency span or stop frequency.
9. Sweep time.
10. Indicator of uncoupled function for sweep time, resolution bandwidth, video bandwidth, or input attenuation.
11. Video bandwidth.
12. Resolution bandwidth.
13. Center or start frequency.
14. Active special functions: the following characters appear in a vertical line alongside the graticule. This information is also available by pressing **HELP** under the **DISPLAY** key.

- A = IF adjust turned OFF
- C = DC coupling selected (ac coupling is default)
- D = Detector mode set to sample, negative peak, or positive peak
- E = Special sweep-time equations in use (refer to tracking generator menus)
- F = Frequency offset is less than or greater than 0 Hz
- G = Internal tracking generator is ON
- K = Signal track is ON
- M = Trace math is ON
- N = Normalization is ON
- R = Reference level offset is less than or greater than 0 dB
- S = Single-sweep mode
- T = Trigger mode set to line, video, or external
- X = 10 MHz reference is external
- + = External mixer bias is greater than 0 mA
- - = External mixer bias is less than 0 mA

15. Active function area

16. Message area

17. Marker indicator

18. Indicator of reference-level position when in normalized mode

19. Reference level

20. Input attenuator value (internal mixing) or conversion loss (external mixing)

The Rear Panel

The following paragraphs describe the functions available from the rear panel, as shown in Figure 1-3.
Figure 1-3. HP 8560A Rear Panel

Caution

To prevent damage to the instrument, be sure to set the voltage selector to the appropriate value for your local line-voltage output. For more information, refer to the *Installation and Verification Manual*.

The LINE input operates at nominally 115 V (47—440 Hz) or at nominally 230 V (47—66 Hz).

J1 provides a 4 Ω impedance earphone jack.

J2 is the Hewlett-Packard Interface Bus (HP-IB) connector.

J3 allows connection of option modules, such as the HP 85629B Test and Adjustment Module or the HP 85620A Mass Memory Module.

J4 provides a detected video signal that is proportional to the vertical deflection of the CRT trace. The output range is 0—1 V when terminated in 50 Ω, and can be used when the display is in 10 dB/div or LINEAR mode. For resolution bandwidth settings less than 300 Hz, a 4.8 kHz IF signal with a dc offset is present at J4.

J5 provides an external trigger input. The input signal range is 0—5 V (TTL). When the trigger is in external mode, the instrument sweep triggers on the rising, positive edge of the signal (about +1.5 V).

J6 provides a blanking output from 0—5 V (TTL) that is low (0 V) during spectrum analyzer sweeps. The output is high (5 V) during retrace and when the instrument is between bands in multiband sweeps. Use this output for pen lift when plotting with nondigital plotters. This output is also useful for synchronizing instruments.
J8 provides a selectable 0—10 V ramp corresponding to the sweep ramp that tunes the local oscillator or a sweeping dc output of 0.5 V/GHz from 0—2.9 GHz for an HP 8560A and 0—6.5 GHz for an HP 8561B. The output can be selected from the softkeys 0 -> 10V LO SWP and .5 V/GHz (FAV), respectively, which are in the REAR PANEL softkey menu under the (AUX CTRL) key. External tracking generators, such as the HP 85640A, require the 0.5 V/GHz output for operation.

J9 provides a 10 MHz, 0 dBm minimum, time-base reference signal. This connector can be switched to an input, in order to connect an external reference. An external reference must be 10 MHz at a minimum of 0 dBm. To select the external reference mode, use the softkey 10 MHZ EXT INT in the REAR PANEL softkey menu under the (AUX CTRL) key.

J10 is the output for the an HP 8560A and HP 8561B Option 001, 310.7 MHz IF output.

J11 is an external leveling input for use with an HP 8560A Option 002 (built-in tracking generator).

X POSN, Y POSN, and TRACE ALIGN allow you to align the spectrum analyzer CRT using a special CRT pattern. Refer to the softkey CRT ADJ PATTERN under the (CAL) menu, or consult the Installation and Verification Manual.
Introducing Menus and Softkeys

Pressing a front-panel key allows access to menus of softkeys that appear along the right-hand side of the display screen. These softkeys provide additional functions, depending on the front-panel key selected. The single, dedicated front-panel keys can be used for simple measurements, along with menus of additional functions for more complex measurements.

Softkeys are designated by shading on the key label, for example **FULL SPAN**; front-panel keys are designated by a box around the key label, for example **SPAN**. The softkeys that are displayed depend on which front-panel key is pressed, which menu level is enabled, and whether the softkeys are applicable to the currently-defined measurement parameters. For example, press **FREQUENCY**. This calls up the menu of related frequency functions shown in Figure 1-4. Note on the menu the function labeled **CENTER FREQ**. **CENTER** also appears in the active function block, indicating that it is the active frequency function and can now be changed using any of the data entry controls.

For some softkey functions, data values are required. These may be entered using one of the following three methods: the data keys, the step keys, and the RPG (rotary pulse generator) knob. If applicable, the use of each method is described in the softkey description.

| Note | When entering some data values, such as unitless entries, the **ENTER** key must be used to terminate the data entry. |

![Softkeys Diagram](image)

Figure 1-4. Softkey Menu

To activate a different frequency function—for example, the start frequency—press the key to the right of the **START FREQ** annotation. **START** now appears in the active function block, indicating its currently active status. At the bottom of some menus, a **MORE** softkey allows access to additional, related softkeys; the number of pages are also indicated on this softkey. At the top of the menu, a menu title names the front-panel key pressed to obtain the current menu. To activate other frequency functions, press the appropriate softkeys. To select a different softkey menu, press another front-panel key.

1-8 Instrument Overview
When using softkey functions that can either be turned on and off or auto-coupled and manually controlled, the underline indicates which part of the function is enabled. For example, the \textit{ATTEN AUTO MAN} function is auto-coupled when \textit{AUTO} is underlined.

For a complete listing of all the front-panel keys and their softkeys, refer to softkey menu Tables 2-4 through 2-7 at the end of this chapter.

To become more familiar with softkeys, review the following basic measurement example.
Making a Basic Measurement

A basic measurement involves tuning the spectrum analyzer to place a signal on the screen then measuring the frequency and amplitude of the signal with a marker.

We can measure an input signal in four simple steps.

1. Set the center frequency.
2. Set the frequency span.
3. Activate the marker.
4. Set the amplitude.

As an example, we will measure the 300 MHz calibration signal. First, switch on the spectrum analyzer (for maximum accuracy, if the analyzer has just been powered up, allow for a 5-minute warm-up). Next, connect the analyzer’s CAL OUTPUT to the INPUT 50Ω on the front panel and complete the four steps as described below.

1. Set the center frequency.

Press [FREQUENCY]. This activates the center frequency function, indicated by CENTER appearing in the active function block on the left side of the display (see Figure 1-5). To set the center frequency to 300 MHz, use the keys in the DATA section of the front panel and enter 300 MHz. These data keys allow you to select the exact numeric value of the active function, which, in this case, is the center frequency. The step keys and knob also allow you to select function values.

![Image of 300 MHz Center Frequency](image)

Figure 1-5. 300 MHz Center Frequency

2. Set the frequency span.

Press [SPAN]. Note that SPAN is now displayed in the active function block, identifying it as the current active function. To reduce the frequency span—for example, to 20 MHz—either key in 20 MHz or use the ▼ key to “step down” to this value. (Like data keys, step keys can also be used to change the numeric value of the active function.) The resulting display
is shown in Figure 1-6. Note that the resolution and video bandwidths are coupled to the frequency span; they are automatically adjusted to appropriate values for a given span. Sweep-time is also a coupled function.

![Figure 1-6. 20 MHz Frequency Span](image)

3. Activate the marker.

Press **MKR**, which is located in the MARKER section of the front panel. This activates the normal marker and places it at the center of the trace (in this case, at or near the peak of the signal). The marker reads both the frequency and the amplitude, and displays these values in the active function block. In this case, the marker reads 300.00 MHz and -10.00 dBm, as shown in Figure 1-7.

![Figure 1-7. Activated Normal Marker](image)
4. Set the amplitude.

Generally, placing the signal peak at the reference level provides the best measurement accuracy. To adjust the signal peak to the reference level (Figure 1-8), press [AMPLITUDE], then key in -10 dBm, or use either the step keys or the knob. Using the knob is the easiest way to fine-tune the signal peak to the reference level, which is located at the top of the graticule. Since the marker is active, a faster method to fine-tune the signal peak to the reference level is to use MARKER \rightarrow REF LVL, which is located under the [MKR \rightarrow] key. This function sets the reference level equal to the marker amplitude value.

![Figure 1-8. –10 dBm Reference Level](image)

Reference-Level Calibration

The reference-level calibration function REF LVL ADJ allows the analyzer’s internal gain to be adjusted so that when the calibrator signal is connected to the input, a reference level equal to the calibrator amplitude displays the signal at top-screen. The procedure below uses the previous basic measurement to calibrate the instrument.

Turn the markers off by pressing [MKR], then [MARKERS OFF]. Press [CAL]. This accesses a menu of calibration routines. The fifth function on this new list, labeled REF LVL ADJ, allows you to calibrate the amplitude of the instrument. Press REF LVL ADJ to activate the function. To calibrate the spectrum analyzer, use the knob on the front panel and adjust the peak of the signal to the reference level, as shown in Figure 1-9. Note the number that appears in the active function block. In this example, the number 5 appears when the signal is adjusted. This number, which ranges from -33 to $+33$, is a relative value indicating how much amplitude correction was required to calibrate the spectrum analyzer. The number is usually around 0. If the amplitude is at either end of the range, or if it cannot be adjusted to a value within this range, consult the Installation and Verification Manual. To store the value, press the STORE REF LVL softkey. When entering or storing a value using the data keys, the entry must be terminated with the [ENTER] key, located in the lower right-hand corner of the analyzer.
Recalibrating the reference level is usually necessary only when the ambient temperature changes more than 10 degrees Celsius. Because the HP 8560A and HP 8561B continually monitor and reduce any IF errors, executing the reference-level calibration is seldom necessary.
<table>
<thead>
<tr>
<th>FREQUENCY</th>
<th>SPAN</th>
<th>AMPLITUDE</th>
<th>HOLD</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTER FREQ</td>
<td>SPAN</td>
<td>REF LVL</td>
<td></td>
</tr>
<tr>
<td>START FREQ</td>
<td>SPAN ZOOM</td>
<td>NORM REF LVL*</td>
<td></td>
</tr>
<tr>
<td>STOP FREQ</td>
<td>FULL SPAN</td>
<td>ATTEN AUTO MAN</td>
<td></td>
</tr>
<tr>
<td>CF STEP AUTO MAN</td>
<td>ZERO SPAN</td>
<td>LOG dB/DIV</td>
<td></td>
</tr>
<tr>
<td>FREQ OFFSET</td>
<td>LAST SPAN</td>
<td>LINEAR</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RANGE LVL*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MORE 1 OF 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>REF LVL OFFSET</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAX MIXR LEVEL</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMPTD UNITS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UNITS AUTO MAN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>dBm</td>
<td>dBμV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>dBmV</td>
<td>VOLTS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>watts</td>
<td>WATTS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COUPLING AC</td>
<td>DC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MORE 2 OF 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NORM REF POSW</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PRESEL AUTO PK†</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PRESEL MAN ADI†</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MORE 3 OF 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Appears only when NORMIZE ON OFF is set to ON.
† Available only with an HP 8501B.
Table 1-3. Instrument State Functions Softkey Menus

<table>
<thead>
<tr>
<th>PRESET</th>
<th>CONFIG</th>
<th>CAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAST STATE</td>
<td>COPY DEV PRNT PLT</td>
<td>REALIGN LO & IF</td>
</tr>
<tr>
<td>PRINTER CONFIG</td>
<td>COLOR</td>
<td>IF ADJ ON OFF</td>
</tr>
<tr>
<td>B & W</td>
<td>PRINT ADDRESS</td>
<td>ADJ CURR IF STATE</td>
</tr>
<tr>
<td>PREV MENU</td>
<td>PLOTTER CONFIG</td>
<td>FULL IF ADJ</td>
</tr>
<tr>
<td>PLOT TRACE A</td>
<td>PLOT TRACE B</td>
<td>REF LVL ADJ</td>
</tr>
<tr>
<td>PLOT GRATICUL</td>
<td>PLOT ANNOT</td>
<td>MORE 1 OF 2</td>
</tr>
<tr>
<td>PLOT ORG DSP GRAT</td>
<td>PLOTTER ADDRESS</td>
<td>CRT ADJ PATTERN</td>
</tr>
<tr>
<td>ANALYZER ADDRESS</td>
<td>DATECODE & OPTIONS</td>
<td>FREQ DIAGNOSIS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LO FREQ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SAMPLER FREQ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SAMPLER HARMONIC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAIN ROLLER</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OFFSET ROLLER</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TRANSFER ROLLER</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MORE 2 OF 2</td>
</tr>
</tbody>
</table>
Table 1-3. Instrument State Functions Softkey Menus (continued)

<table>
<thead>
<tr>
<th>TRACKING GENERATOR*</th>
<th>EXTERNAL MIXER †</th>
<th>AM/FM DEMOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOURCE CAL MENU</td>
<td>FULL BAND</td>
<td>AM DEMOD ON</td>
</tr>
<tr>
<td>CAL THRU</td>
<td>LOCK HARMONIC</td>
<td>FM DEMOD ON</td>
</tr>
<tr>
<td>CAL OPN/SHRT</td>
<td>LOCK ON OFF</td>
<td>MARKER NORMAL</td>
</tr>
<tr>
<td>RECALL THRU</td>
<td>AMP TD CORRECT</td>
<td>PEAK SEARCH</td>
</tr>
<tr>
<td>RECALL OPN/SHRT</td>
<td>AVERAGE CNV LOSS</td>
<td>NEXT PEAK</td>
</tr>
<tr>
<td>PREV MENU</td>
<td>CNV LOSS VS FREQ</td>
<td></td>
</tr>
<tr>
<td>SWP CPL SR SA</td>
<td>PREV MENU</td>
<td>MORE 1 OF 2</td>
</tr>
<tr>
<td>RANGE LVL</td>
<td>SIGNAL IDENT</td>
<td>DEMOD TIME</td>
</tr>
<tr>
<td>NORMALIZE ON OFF</td>
<td>SIG ID AT MKR</td>
<td>SQUELCH ON</td>
</tr>
<tr>
<td>NORM REF POSW</td>
<td>SIG ID -> CF</td>
<td>AGC ON OFF</td>
</tr>
<tr>
<td>INTERNAL MIXER †</td>
<td>SIG ID ON OFF</td>
<td>MORE 2 OF 2</td>
</tr>
<tr>
<td>SIG ID AT MKR</td>
<td>MARKER NORMAL</td>
<td></td>
</tr>
<tr>
<td>SIG ID -> CF</td>
<td>PEAK SEARCH</td>
<td></td>
</tr>
<tr>
<td>SIG ID ON OFF</td>
<td>PREV MENU</td>
<td></td>
</tr>
<tr>
<td>PRESEL MAN ADJ</td>
<td>BIAS</td>
<td>REAR PANEL</td>
</tr>
<tr>
<td>PRESEL AUTO PK</td>
<td>BIAS OFF</td>
<td>O -> 10V,</td>
</tr>
<tr>
<td>PREV MENU</td>
<td>POSITIVE BIAS</td>
<td>.5 V/</td>
</tr>
<tr>
<td></td>
<td>NEGATIVE BIAS</td>
<td>10 MHz EXT</td>
</tr>
<tr>
<td></td>
<td>PREV MENU</td>
<td></td>
</tr>
</tbody>
</table>

* Softkey menu only for use with an external tracking generator. Refer to the following page for the softkey menu of a built-in tracking generator (HP 8560A Option 002).

† The INTERNAL MIXER softkey and its lower-level softkeys are not available with an HP 8560A Option 002. However, only the INTERNAL MIXER softkey is available with an HP 8560A; its softkey menus are not.

‡ Not available with an HP 8560A Option 002.
Table 1-3. Instrument State Functions Softkey Menus (continued)

Tracking Generator Softkey Menu for an HP 8560A Option 002

```
TRACKING GENERATOR

SRC PWR ON OFF

SOURCE CAL MENU

CAL TERU
CAL OPN/SHRT

RECALL THRU
RECALL OPN/SHRT

PREV MENU

RANGE LVL

NORMLIZE ON OFF
NORM REF POSN

MORE 1 OF 3

MORE 2 OF 3

MORE 3 OF 3

TRACKING PEAK

MAN TRK ADJ

ALC INT EXT

SWP CPL SR SA

MORE 2 OF 3

PWR SWP ON OFF

SRC PWR STP SIZE
SRC PWR OFFSET

MORE 3 OF 3
```
Table 1-3. Instrument State Functions Softkey Menus (continued)

<table>
<thead>
<tr>
<th>COPY</th>
<th>MODULE</th>
<th>SAVE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SAVE STATE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STATE 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STATE 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STATE 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STATE 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STATE 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MORE 1 OF 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STATE 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STATE 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STATE 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STATE 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STATE 9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MORE 2 OF 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PWR ON STATE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SAVE TRACES A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TRACE 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TRACE 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TRACE 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TRACE 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TRACE 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MORE 1 OF 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TRACE 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TRACE 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TRACE 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MORE 2 OF 2</td>
</tr>
</tbody>
</table>

* Available only with an HP 8561B.
Table 1-3. Instrument State Functions Softkey Menus (continued)

<table>
<thead>
<tr>
<th>RECALL</th>
<th>MEAS/USER</th>
<th>SGL SWP</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWER ON</td>
<td>RECALL TO TR. B</td>
<td>FFT MEAS</td>
</tr>
<tr>
<td>LAST STATE</td>
<td>TRACE 0</td>
<td>POWER BANDWIDTH</td>
</tr>
<tr>
<td>RECALL STATE</td>
<td>TRACE 1</td>
<td></td>
</tr>
<tr>
<td>STATE 0</td>
<td>TRACE 2</td>
<td></td>
</tr>
<tr>
<td>STATE 1</td>
<td>TRACE 3</td>
<td></td>
</tr>
<tr>
<td>STATE 2</td>
<td>TRACE 4</td>
<td></td>
</tr>
<tr>
<td>STATE 3</td>
<td>MORE 1 OF 2</td>
<td></td>
</tr>
<tr>
<td>STATE 4</td>
<td>TRACE 5</td>
<td></td>
</tr>
<tr>
<td>MORE 1 OF 2</td>
<td>TRACE 6</td>
<td></td>
</tr>
<tr>
<td>STATE 5</td>
<td>TRACE 7</td>
<td></td>
</tr>
<tr>
<td>STATE 6</td>
<td>MORE 2 OF 2</td>
<td></td>
</tr>
<tr>
<td>STATE 7</td>
<td>MORE 1 OF 2</td>
<td></td>
</tr>
<tr>
<td>STATE 8</td>
<td>RECALL ERRORS</td>
<td></td>
</tr>
<tr>
<td>STATE 9</td>
<td>ELAPSED TIME</td>
<td></td>
</tr>
<tr>
<td>MORE 2 OF 2</td>
<td>FACTORY PRSEL PK*</td>
<td></td>
</tr>
<tr>
<td>RECALL TO TR. A</td>
<td>RECALL PRSEL PK*</td>
<td></td>
</tr>
<tr>
<td>TRACE 0</td>
<td>MORE 2 OF 2</td>
<td></td>
</tr>
<tr>
<td>TRACE 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRACE 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRACE 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRACE 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MORE 1 OF 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRACE 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRACE 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRACE 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MORE 2 OF 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Available only with an HP 8561B.
Table 1-4. Marker Functions Softkey Menus

<table>
<thead>
<tr>
<th>MKR</th>
<th>MKR ->*</th>
<th>FREQ COUNT</th>
<th>PEAK SEARCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARKER NORMAL</td>
<td>MARKER -> CF</td>
<td>COUNTER ON/OFF</td>
<td>MARKER -> CF</td>
</tr>
<tr>
<td>MARKER DELTA</td>
<td>MARKER -> REF LVL</td>
<td>COUNTER RES</td>
<td>MARKER DELTA</td>
</tr>
<tr>
<td>MARKER 1/DELTA</td>
<td>MARKER -> CF STEP</td>
<td>MARKER NORMAL</td>
<td>NEXT PEAK</td>
</tr>
<tr>
<td>MKRNOISE ON/OFF</td>
<td></td>
<td>MARKER DELTA</td>
<td>NEXT PEAK</td>
</tr>
<tr>
<td>SIG TRK ON/OFF</td>
<td></td>
<td>PEAK SEARCH</td>
<td>NEXT PK RIGHT</td>
</tr>
<tr>
<td>MARKERS OFF</td>
<td></td>
<td>NEXT PEAK</td>
<td>NEXT PK LEFT</td>
</tr>
</tbody>
</table>

* Softkey menu depends on the marker mode selected and the frequency span. Refer to softkey descriptions under “Marker ->” in Chapter 2.
Table 1-5. Control Functions Softkey Menus

<table>
<thead>
<tr>
<th>SWEEP</th>
<th>BW</th>
<th>TRIG</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWP TIME AUTO MAN</td>
<td>RES BW AUTO MAN</td>
<td>CONT</td>
</tr>
<tr>
<td>CONT</td>
<td>VIDEO BW AUTO MAN</td>
<td>SINGLE</td>
</tr>
<tr>
<td>SINGLE</td>
<td>VBW/RBW RATIO</td>
<td>FREE RUN</td>
</tr>
<tr>
<td></td>
<td>RBW/SPAN RATIO</td>
<td>VIDEO</td>
</tr>
<tr>
<td></td>
<td>VID AVG ON OFF</td>
<td>LINE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EXTERNAL</td>
</tr>
</tbody>
</table>
Table 1-5. Control Functions Softkey Menus (continued)

<table>
<thead>
<tr>
<th>AUTO COUPLE</th>
<th>TRACE</th>
<th>DISPLAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
<td>CLEAR WRITE A</td>
<td>DSPL LIN ON OFF</td>
</tr>
<tr>
<td>RES BW AUTO MAN</td>
<td>MAX HOLD A</td>
<td>THRESHLD ON OFF</td>
</tr>
<tr>
<td>VIDEO BW AUTO MAN</td>
<td>VIEW A</td>
<td>SCREEN TITLE</td>
</tr>
<tr>
<td>SWP TIME AUTO MAN</td>
<td>BLANK A</td>
<td>SELECT CHAR</td>
</tr>
<tr>
<td>ATTEN AUTO MAN</td>
<td>TRACE A-B</td>
<td>SPACE</td>
</tr>
<tr>
<td>MORE 1 OF 2</td>
<td>MORE 1 OF 3</td>
<td>BACK SPACE</td>
</tr>
<tr>
<td>CF STEP AUTO MAN</td>
<td>VID AVG ON OFF</td>
<td>ERASE TITLE</td>
</tr>
<tr>
<td>UNITS AUTO MAN</td>
<td>DETECTOR MODES</td>
<td>CHAR SET 1 2</td>
</tr>
<tr>
<td>MORE 2 OF 2</td>
<td>DETECTOR NORMAL</td>
<td>TITLE DONE</td>
</tr>
<tr>
<td></td>
<td>DETECTOR SAMPLE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DETECTOR POS PEAK</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DETECTOR NEG PEAK</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PREV MENU</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A EXCH B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NORMIZE ON OFF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NORM REF POSN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MORE 2 OF 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A-B->A ON OFF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A+B->A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B-DL->B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A-B+DL->A ON OFF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MORE 3 OF 3</td>
<td></td>
</tr>
</tbody>
</table>
Function Descriptions

This chapter describes the functions that are available from the front panel of HP 8560A and HP 8561B Portable Spectrum Analyzers. Descriptions are organized by the front-panel keys in each of the four groups listed below. For an alphabetical listing of all functions, refer to Appendix D.

Fundamental Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FREQUENCY</td>
<td>2-3</td>
</tr>
<tr>
<td>SPAN</td>
<td>2-5</td>
</tr>
<tr>
<td>AMPLITUDE</td>
<td>2-7</td>
</tr>
<tr>
<td>HOLD</td>
<td>2-12</td>
</tr>
</tbody>
</table>

Instrument State Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRESET</td>
<td>2-14</td>
</tr>
<tr>
<td>CONFIG</td>
<td>2-15</td>
</tr>
<tr>
<td>CAL</td>
<td>2-18</td>
</tr>
<tr>
<td>AUX CTRL</td>
<td>2-21</td>
</tr>
<tr>
<td>COPY</td>
<td>2-38</td>
</tr>
<tr>
<td>MODULE</td>
<td>2-39</td>
</tr>
<tr>
<td>SAVE</td>
<td>2-40</td>
</tr>
<tr>
<td>RECALL</td>
<td>2-42</td>
</tr>
<tr>
<td>MEAS/USER</td>
<td>2-45</td>
</tr>
<tr>
<td>SGL SWP</td>
<td>2-47</td>
</tr>
</tbody>
</table>

Marker Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>MKR</td>
<td>2-49</td>
</tr>
<tr>
<td>MKR-></td>
<td>2-51</td>
</tr>
<tr>
<td>FREQ COUNT</td>
<td>2-53</td>
</tr>
<tr>
<td>PEAK SEARCH</td>
<td>2-55</td>
</tr>
</tbody>
</table>

Control Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWEEP</td>
<td>2-57</td>
</tr>
<tr>
<td>BW</td>
<td>2-59</td>
</tr>
<tr>
<td>TRIG</td>
<td>2-61</td>
</tr>
<tr>
<td>AUTO COUPLE</td>
<td>2-62</td>
</tr>
<tr>
<td>TRACE</td>
<td>2-64</td>
</tr>
<tr>
<td>DISPLAY</td>
<td>2-67</td>
</tr>
</tbody>
</table>
Fundamental Functions

This section describes the functions available from FREQUENCY, SPAN, AMPLITUDE, and HOLD.
FREQUENCY accesses a menu of frequency-related functions, which are described below. FREQUENCY also activates the center frequency function when the spectrum analyzer is in the center-frequency/span mode. If the analyzer is in start-frequency/stop-frequency mode, the start frequency is activated.

CENTER FREQ activates the center frequency and sets the spectrum analyzer to the center-frequency/span mode. CENTER FREQ can be adjusted using the data keys, the step keys, or the knob. If a selected center frequency is not compatible with the current span, the span is adjusted to the nearest value that will accommodate the desired frequency.

START FREQ activates the start frequency and sets the spectrum analyzer to the start-frequency/stop-frequency mode. START FREQ can be adjusted using the data keys, the step keys, or the knob. When adjusting START FREQ, if the selected start frequency exceeds the stop frequency, the stop frequency increases to equal the start frequency plus the minimum swept span (100 Hz).

STOP FREQ activates the stop frequency and sets the spectrum analyzer to the start-frequency/stop-frequency mode. STOP FREQ can be adjusted using the data keys, the step keys, or the knob. When adjusting STOP FREQ, if the selected stop frequency is less than the start frequency, the stop frequency decreases to equal the stop frequency minus the minimum swept span (100 Hz).

CF STEP AUTO MAN adjusts the center-frequency step-size. When this function is in coupled (AUTO) mode and center frequency is the active function, pressing a step key yields a one-division shift (10% of span) in the center frequency for spans greater than 0 Hz. For zero span, pressing a step key when center frequency is the active function yields a center-frequency shift equal to 25%.
of the resolution bandwidth. For manual (MAN) mode, the step size can be adjusted using the data keys, the step keys, or the knob. After entering a step size and changing the active function to CENTER FREQ, use the step keys to adjust the center frequency by the step size selected. This function is useful for quickly tuning to the harmonics of an input signal. For example, to tune to the harmonics of a 300 MHz signal, set CF·STEP·AUTO·MAN to MAN and enter 300 MHz. If the center frequency is at 300 MHz, pressing the step key increases the center frequency to 600 MHz, which is equal to the second harmonic. Pressing the STEP key again increases the center frequency by another 300 MHz, to 900 MHz. CF·STEP·AUTO·MAN indicates whether the step size is in a coupled (AUTO) or manual (MAN) mode. When the step size is in manual mode, pressing CF·STEP·AUTO·MAN returns the function to coupled mode.

FREQ OFFSET adds an offset to the displayed frequency values, including marker frequency values. It does not affect the frequency range of the sweep. Enter the value using the data keys, the step keys, or the knob. When this function is active (that is, when the frequency offset is not equal to 0 Hz), an “F” appears on the left edge of the display.
Span

SPAN accesses the menu of span-related functions, which are described below. SPAN also activates the span function and sets the spectrum analyzer to center-frequency/span mode.

SPAN activates the span-width function and sets the spectrum analyzer to center-frequency/span mode. SPAN can be changed using the data keys, the step keys, or the knob. The span can be set to 0 Hz using either the data keys or ZERO SPAN.

SPAN tracks a marked signal and activates the span function. If no marker is active, an active marker is positioned at the highest peak, signal track is turned on, and SPAN is made the active function. Once the span is entered and the new span is reached, the marker and signal track both remain on with SPAN as the active function. Therefore, keying in consecutive frequency span values continue to activate the span-zoom algorithm. To deactivate the span-zoom algorithm, press [MKR], and then press MARKERS OFF, or set SIG TRK ON OFF to OFF.

FULL SPAN sets the spectrum analyzer to the center-frequency/span mode and sets the span to the maximum range. Full span for the HP 8560A is 2.9 GHz, and 6.5 GHz for the HP 8561B.

ZERO SPAN sets the span to 0 Hz. This effectively allows an amplitude versus time mode in which to view signals. This is especially useful for viewing modulation.

Note
Zero span is used with resolution bandwidths greater than 100 Hz. If zero span is activated when using a 10, 30, or 100 Hz resolution bandwidth, the message INCREASE BW TO > 100 Hz appears on-screen.

Function Descriptions 2-5
LAST SPAN sets the spectrum analyzer to the previously selected span, allowing you to toggle between two settings. For example, you can toggle between zero span and a larger span to view modulation in both the frequency and time domains.
AMPLITUDE accesses a menu of amplitude-related functions, which are described below. AMPLITUDE also activates the reference-level function.

REF LVL activates the reference-level function. The reference level can be adjusted using the data keys, the step keys, or the knob. The reference level is the top line of the graticule. For best measurement accuracy, place the peak of the signal of interest on the reference-level line. The spectrum analyzer input attenuator is coupled to the reference level and is automatically adjusted to avoid compression of the input signal. The function MAX MXR LEVEL, which is described below, is closely related to the reference level.

Table 2-1. Frequency Bands and Their Minimum Reference Levels

<table>
<thead>
<tr>
<th>Band</th>
<th>Minimum Reference Level 0 dB attenuation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Log Scale</td>
</tr>
<tr>
<td>50 Hz to 2.9 GHz (HP 8560A only)</td>
<td>-120.0 dBm</td>
</tr>
<tr>
<td>2.75 GHz to 6.46 GHz</td>
<td>-120.0 dBm</td>
</tr>
</tbody>
</table>

NORM REF LVL activates the normalized reference level. Adjustments may be made using the data keys, step keys, or knob. The units for the normalized reference level is dB. NORM REF LVL is not equivalent to REF LVL. When NORM REF LVL is adjusted, the input attenuator and IF step gains are not affected. This function is a trace-offset function, enabling the user to offset the displayed trace without introducing errors into the stimulus-response measurement.
ATTEN
AUTO MAN
adjusts the spectrum analyzer input attenuator. In AUTO mode, the input attenuator is coupled to the reference level. In manual (MAN) mode, the input attenuation can be adjusted using the data keys, the step keys, or the knob. The attenuator ranges from 0 dB to 70 dB in 10 dB increments; 0 dB attenuation can only be selected using the DATA keys.

Attenuation is normally a coupled function and is automatically adjusted when the reference level changes. The reference level, however, generally does not change when the attenuation changes. The attenuator is adjusted so that the maximum signal amplitude at the input mixer is \(-10\) dBm or less. For example, if the reference level is \(+23\) dBm, the attenuation is 40 dB for an input of \(-17\) dBm at the mixer (\(23 - 40 = -17\)). This prevents signal compression. Set ATTEN AUTO MAN to MAN to adjust the input attenuator. A line under AUTO or MAN indicates whether the attenuator is coupled (AUTO) or in manual mode (MAN). When the input attenuator is in manual mode, pressing ATTEN AUTO MAN again recouples the attenuator to the reference level.

Caution

Maximum input signal amplitude is \(+30\) dBm with at least 10 dB of input attenuation. Higher amplitude signals can result in damage to the input attenuator or to the input mixer.

LOG

db/DIV

selects a 1, 2, 5, or 10 dB logarithmic amplitude scale. The default value is 10 dB/division. 1 dB/division and 5 dB/division scales are not available in fast zero span (sweep times less than 30 ms). Any activated markers read out in dBm, and delta markers read the difference between the markers in dB. If desired, it is possible to select other units while in a log-scale mode (see UNITS, below).

LINEAR

selects a linear amplitude scale. Measurements using a linear scale are normally read in millivolts, but other units can be selected (see UNITS, below).

RANGE

LVL

Appears only when NORMIZE ON OFF is set to ON.

activates the dynamic-range-level function, which corresponds to the top of the display in dBm. RANGE LVL ensures that the displayed range is compression-free by adjusting the input attenuator and IF gain accordingly. RANGE LVL is equivalent to REF LVL, which is commonly used in signal-analysis measurements.

When in normalized mode NORM REF LVL and NORM REF POSN affect the value of the top of the display (that is, the top of screen does not necessarily represent the gain compression limit). If the actual measured signal is beyond the gain compression limit, or below the bottom line of the graticule, the error message ERR 903 A > DLM will appear. Adjusting RANGE LVL until the error message disappears assures the user that the measured signal level is no longer beyond the measurement limits of the instrument. If the signal of interest is both above the gain compression limit and below the bottom line of the graticule, changing RANGE LVL does not clear the error message. Refer to Chapter 3 for a measurement example using RANGE LVL.
ERR 904 B > DLMT appears in normalized mode only if any one of the following conditions occur:

- Any data point of the calibration trace is off-screen.
- No calibration has been performed after a preset.
- Trace B is blank.

To ensure valid calibration trace data, readjust analyzer settings, turn normalize off, and perform a CAL THRU or CAL OPN/SHRT operation.

RANGE LVL can be adjusted from +30 dBm to −120 dBm using the data keys, step keys, or the knob.

accesses additional softkeys, which are described below.

introduces an offset to all amplitude readouts (for example, reference level and marker amplitude). It does not change the position of the trace on-screen. The offset is in dB, regardless of the selected scale and units. The offset can be useful to account for gains or losses in accessories connected to the input of the analyzer. To enter an offset value use the data keys, the step keys, or the knob. When this function is active, an “R” appears on the left edge of the display.

selects the maximum signal amplitude seen at the input mixer. This value is always in dBm, regardless of the selected scale or units. **MAX MIXER LEVEL** is especially useful when distortion-free dynamic range is an important consideration.

The following procedure explains how to check for signal compression quickly. Press **MAX MIXER LEVEL** and increase the attenuation using the STEP key. If the signal peak shifts more than 1 dB, the signal is in compression. In this case, continue to increase the attenuation until the peak moves less than 1 dB between steps; then decrease the attenuation one step.
accesses additional amplitude functions, which are described below.

Note
Amplitude units are not available in normalize mode.

<table>
<thead>
<tr>
<th>UNITs</th>
<th>selects amplitude units automatically (AUTO) or manually (MAN). When in AUTO mode, the default units are dBm (in log scale) or VOLTS (in linear scale). The following units are available from this menu.</th>
</tr>
</thead>
<tbody>
<tr>
<td>dBM</td>
<td>(absolute decibel above 1 milliwatt)</td>
</tr>
<tr>
<td>dBµV</td>
<td>(absolute decibel above 1 microvolt)</td>
</tr>
<tr>
<td>dBMV</td>
<td>(absolute decibel above 1 millivolt)</td>
</tr>
<tr>
<td>VOLTS</td>
<td></td>
</tr>
<tr>
<td>WATTS</td>
<td></td>
</tr>
</tbody>
</table>

COUPLING
AC DC
| toggles the input between ac and dc coupling. The preset state of the analyzer is ac-coupled. This protects the input of the analyzer from damaging dc signals. It also limits the lower frequency-range response to 100 kHz (although the analyzer will tune down to 0 Hz with signal attenuation). |

MORE
2 OF 3
| accesses additional softkeys, which are described below. |

NORM REF POSN
| allows the user to adjust the normalized reference-position that corresponds to the position on the graticule where the difference between the measured and calibrated traces resides. The dB value of normalized reference-position is equal to the normalized reference level. The normalized reference-position may be adjusted between 0.0 and 10.0 (corresponding to the bottom and top graticule lines, respectively) using the data keys, step keys, or knob. |

The normalized-reference-position adjustment allows measured data to be compared to a reference position, where the difference between the measured data and the reference position represents the gain or loss of the device under test.

When normalization is on, two indicators (→ and ←) appear on-screen to mark the location of the normalized reference position.

PRESEL
AUTO PK
| automatically peaks the preselector on the desired signal on a trace, when the start frequency is set equal to or above 2.9 GHz. Set the trace to clear-write mode, place a marker on the desired point, then press PRESEL AUTO PEAK. The peaking routine zooms to zero span, peaks the preselector tracking, then returns to the original span. To read the new preselector peaking number, press PRESEL MAN ADJ. |

2-10 Function Descriptions
Note

When [Preset] is pressed, the preselector data stored by the user does not change. However, the factory settings now become active.

Factory preselector data always takes precedence over user-activated preselected data, unless the user data is explicitly recalled using [Recall PreSEL PK]. For more information on storing and recalling preselector data, refer to the [Save PreSEL PK] and [Recall PreSEL PK] softkeys.

PRESEL

MAN ADJ

HP 8561B only

allows the user to adjust the preselector tracking, when the start frequency is set equal to or above 2.9 GHz. The HP 8561B is preselected from 2.75 GHz to 6.5 GHz. Place a marker on the desired signal on a trace, then press [PreSEL MAN ADJ]. The current preselector tracking number, which is displayed in the active function block, can be changed using the data keys, the step keys, or the knob. The value ranges from 0 to 255. Executing the function affects data in the current data table (which may be data from either the user or the factory data tables). To save this data, use [Save PreSEL PK] found under [Save].

MORE

3 OF 3

accesses the first menu of softkeys.
Hold

HOLD

- **FREQUENCY**
- **SPAN**
- **AMPLITUDE**
- **HOLD**

HOLD clears the active function and the current softkey menu from the display, and expands the display horizontally to the full width of the screen. The width of the trace and graticule increase to occupy the resulting blank space.
Instrument State Functions

This section describes the functions available from the INSTRUMENT STATE section of the front panel.
PRESET

(PRESET) sets the spectrum analyzer to a known, predefined state. (PRESET) does not affect the spectrum analyzer HP-IB address, the contents of any data or trace registers, stored preselector data, or any state and trace registers that are locked (SAVELOCK). (PRESET) also accesses the additional softkey function described below. Refer to Appendix A, “Instrument Preset State,” for a description of each analyzer’s predefined state which is stored in memory and cannot be changed.

Note

When (PRESET) is pressed, the preselector data stored by the user does not change. However, the factory settings now become active.

LAST STATE

recalls the state that existed before the last front-panel key function was activated. Since the last key activated was (PRESET), the recalled state will either be the one before (PRESET) was invoked, or the state that the instrument was in when power was turned off.
CONFIG accesses a menu of settings that allow the information on the CRT display to be copied to an external HP-IB printer or plotter. Under this menu, the HP-IB address of the analyzer can also be changed using **ANALYZER ADDRESS**.

COPY DEV designates the hardcopy device (printer or plotter) used when the **COPY** key is activated. The current copy selection is underlined.

PRINT PLT accesses printer configuration options, which are described below.

Note

If the printer is not connected when any of the print functions are executed, then the message **CONNECT PRINTER** appears in the active function block.

COLOR selects the HP PaintJet color printer (or compatible device) for use by the **COPY** key.

B & W selects operation with a monochrome printer, such as an HP ThinkJet, for use by the **COPY** key.

PRINTER ADDRESS displays the current HP-IB address of the designated printer. A new address can be entered by using the data keys (and pressing **ENTER**), the step keys, or the knob, and pressing **STORE HPIB ADR**. The new address is stored in nonvolatile memory and is recalled when the power is cycled. If the printer address is redefined without saving it with **STORE HPIB ADR**, the redefined address is only valid when **PRESET** is pressed, and not through a power cycle.

PLOTTER CONFIG accesses plotter configuration options, which are described below.

Function Descriptions 2-15
If the plotter is not connected when any of the plot functions are executed, then the message CONNECT PLOTTER appears in the active function block.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLOT TRACE A</td>
<td>plots only the contents of trace A and any markers associated with trace A. When PLOT TRACE A is active, STOP TRACE A appears in its place, allowing you to stop the plot before it is finished. If trace A is blanked, the message TRACE IS BLANKED will momentarily appear in the active function area, and no plotting will occur.</td>
</tr>
<tr>
<td>PLOT TRACE B</td>
<td>plots only the contents of trace B and any markers associated with trace B. When PLOT TRACE B is active, STOP TRACE B appears in its place, allowing you to stop the plot before it is finished. If trace B is blanked, the message TRACE IS BLANKED will momentarily appear in the active function area, and no plotting will occur.</td>
</tr>
<tr>
<td>PLOT GRATICUL</td>
<td>plots only the graticule. When PLOT GRATICUL is active, STOP GRATICUL appears in its place, allowing you to stop the plot before it is finished. If the graticule is turned off, no output will be plotted.</td>
</tr>
<tr>
<td>PLOT ANNOT</td>
<td>plots only the annotation (excluding the menu, trace markers, and error codes). When PLOT ANNOT is active, STOP ANNOT appears in its place, allowing you to stop the plot before it is finished. If the annotation is turned off, no output will be plotted.</td>
</tr>
<tr>
<td>PLOT ORG DSP GRAT</td>
<td>selects either the display (DSP) or the graticule (GRAT) origin mode. Hewlett-Packard plotters allow the user to define the size of the plot using P1 and P2 parameters. P1 defines the lower left-hand corner of the plot, while P2 defines the upper right-hand corner. When DSP is selected, the analyzer scales the full CRT display (excluding the softkey area), so that the corresponding hardcopy plot resides completely within the user-defined P1 and P2 limits. When GRAT is selected, P1 and P2 correspond to the lower-left and upper-right corners of the graticule. If a full plot is activated using COPY, the graticule will be scaled according to the P1 and P2 parameters; however, the annotation will be plotted outside the defined range. GRAT allows you to position the desired plot information on a preprinted graticule to save plotting time. This softkey function is locked out when any plot is in process or when any plot is pending.</td>
</tr>
<tr>
<td>PLOTTER ADDRESS</td>
<td>displays the current HP-IB address of the plotter. A new address can be entered by using the data keys (and</td>
</tr>
</tbody>
</table>
pressing \texttt{ENTER}, the step keys, or the knob, and pressing \texttt{STORE HPIB ADR}. The new address is stored in nonvolatile memory and is recalled when the power is cycled. If the plotter address is redefined without saving it with \texttt{STORE HPIB ADR}, the redefined address is only valid when \texttt{PRESET} is pressed, and not through a power cycle. This softkey is not displayed whenever a plot is pending or in progress.

\begin{tabular}{l}
\textbf{ANALYZER ADDRESS} \\
\end{tabular}

displays the current HP-IB address of the spectrum analyzer. A new address can be entered by using the data keys (and pressing \texttt{ENTER}), the step keys, or the knob, and pressing \texttt{STORE HPIB ADR}. If the analyzer address is redefined without saving it with \texttt{STORE HPIB ADR}, the redefined address is only valid when \texttt{PRESET} is pressed, and not through a power cycle.

\begin{tabular}{l}
\textbf{DATECODE} & \textbf{OPTIONS} \\
\end{tabular}

displays the analyzer’s firmware datecode, the instrument serial number, the model number, and any options present.

For the HP 8560A, valid options are:

- Option 001 Second IF Output
- Option 002 Built-In Tracking Generator
- Option 003 Precision Frequency Reference

For the HP 8561B, valid options are:

- Option 001 Second IF Output
- Option 003 Precision Frequency Reference
Calibration

CAL displays all menus related to calibration and diagnostic routines.

REALIGN LO & IF
activates the automatic local oscillator (LO) and intermediate frequency (IF) alignment routines. These are the same routines that occur when LINE is switched on. When REALIGN LO & IF is active, STOP REALIGN appears and all other softkeys are blank during this time. STOP REALIGN allows you to stop the IF adjustment routine before it is finished; however the routine is not stopped immediately. If STOP REALIGN is activated, the amplitude accuracy of measurements made by the instrument may not meet published specifications.

IF ADJ ON OFF
allows you to turn the automatic IF adjustment ON or OFF. This function is normally ON. When IF ADJ is ON, various parameters in the IF are adjusted during the retrace time of the sweep. Several minutes and several sweeps may be required to complete a cycle of all the adjustments. This function is automatically deactivated when the analyzer is set to zero span, the sweep time is less than 50 ms, or when the HP 85620A Mass Memory Module or HP 85629B Test and Adjustment Module is used. It is automatically reactivated when the analyzer is set to a span greater than 0 Hz or the sweep time is greater than or equal to 50 ms. When reactivated, several sweeps may need to be taken before automatic adjustment is completed.

When IF ADJ ON OFF is off, an “A” appears in the special functions area at the left-hand side of the display screen.

ADJ CURR IF STATE
executes a routine that adjusts only the current bandwidth’s state. During this adjustment, the message IF ADJUST STATUS: <text> appears in the active function area. Depending on which portion of the IF system is being adjusted, either “AMPLITUDE” or a specific resolution bandwidth (for example, 1 MHz) is displayed in the message.

FULL IF ADJ
executes a complete adjustment of the IF system. Once activated, the softkey changes to STOP ADJUST which, if pressed, stops the IF adjustment and returns the analyzer to its previous state. During this adjustment, the message IF ADJUST STATUS: <text> appears in the active function.
area. Depending on which portion of the IF system is being adjusted, either “AMPLITUDE” or the specific resolution bandwidth (for example, 300 Hz) is displayed in the message.

allows the analyzer’s internal gain to be adjusted so that when the calibrator signal is connected to the input, a reference level equal to the calibrator amplitude displays the signal at top-screen. When REF LVL ADJ is pressed, the STORE REF LVL softkey appears in its place and a unitless number appears in the active function area. The reference-level value can be changed by using the data keys, the step keys, or the knob. When the desired calibration level is reached, STORE REF LVL may be pressed to store the new value in nonvolatile memory. If STORE REF LVL is not pressed, the new value remains in use until a power-on occurs.

accesses additional calibration and diagnostic functions, which are described below.

displays a fixed pattern of lines and characters on the screen, each of which is used in setting the various adjustments in display hardware (such as vertical gain, blanking, and so on). Three of these adjustments—X POSN, Y POSN, and TRACE ALIGN—are available from the rear panel. Use the CRT alignment pattern and the above three adjustments to align the display. Refer to Figure 2-1. When this function is active, all front-panel keys are inactive except (PRESET). Press EXIT to remove the pattern and return the analyzer to its previous state. For other display adjustments, refer to the Installation and Verification Manual for your analyzer.

![CRT Alignment Pattern](image)

Figure 2-1. CRT Alignment Pattern
displays a menu of diagnostic functions, described below, which allow various internal parameters of the analyzer to be retrieved.

Note

For an HP 8561B in multiband sweeps, the frequency displayed corresponds to the local-oscillator start frequency of the band that was being swept when the key was pressed.

<table>
<thead>
<tr>
<th>Button</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO FREQ</td>
<td>displays the first local-oscillator frequency corresponding to the current start-frequency.</td>
</tr>
<tr>
<td>SAMPLER FREQ</td>
<td>displays the sampling-oscillator frequency corresponding to the current start frequency.</td>
</tr>
<tr>
<td>SAMPLER HARMONIC</td>
<td>displays the sampler harmonic number corresponding to the current start-frequency.</td>
</tr>
<tr>
<td>MAIN ROLLER</td>
<td>displays the main-roller-oscillator frequency corresponding to the current start-frequency.</td>
</tr>
<tr>
<td>OFFSET ROLLER</td>
<td>displays the offset-roller-oscillator frequency corresponding to the current start-frequency. In narrow resolution bandwidths (10, 30, and 100 Hz), the frequency displayed corresponds to the frequency of the offset-roller-oscillator.</td>
</tr>
<tr>
<td>TRANSFER ROLLER</td>
<td>displays the transfer-roller-oscillator frequency corresponding to the current start-frequency.</td>
</tr>
<tr>
<td>MORE 2 OF 2</td>
<td>accesses the previous menu of softkeys.</td>
</tr>
</tbody>
</table>
Auxiliary Control

AUX CTRL

AUX CTRL accesses a menu of auxiliary functions, such as tracking generator and demodulation, which are described below.

Note
The minimum resolution bandwidth that is supported in stimulus-response mode is 300 Hz. If a tracking generator is active and a resolution bandwidth less than 300 Hz is selected, then the error message TG/RE4 INCOMPATIBLE will flash in the message area.

Tracking Generator

Standard HP 8560A and HP 8561B only

Displays softkey menus only for use with an external tracking generator.

Source

Accesses a menu of softkeys that allow you to calibrate for frequency-response errors in test setups. Thru calibration is used when making transmission measurements, and open/short average calibration is used when making reflection measurements.

CAL Thru

Activates a procedure to store a thru calibration trace into trace B and into the nonvolatile memory of the spectrum analyzer (for future reference). When activated, the message **Connect Thru. Store when ready.** appears in the active function block. Once the thru is connected, press **STORE Thru**. The state of the thru information is stored in state register #9.

If the procedure needs to be interrupted at any time, press **ABORT**.

CAL OPN/SHRT

Activates a procedure to store the average of an open and a short calibration into trace B and into the nonvolatile memory of the spectrum analyzer (for future reference).
When activated, the message Connect OPEN. Store when ready. appears in the active function block. Once the open is connected, press STORE OPEN. Connect SHORT. Average with open when ready. will then appear in the active function block. Connect the short, then press AVERAGE SHORT. The state of the open/short average trace is stored in state register #8. However, it is necessary to have a directional device (for example, either a bridge or coupler) to perform return-loss measurements.

If this procedure needs to be interrupted at any time, press ABORT.

RECALL THRU

recalls the internally stored thru calibration trace into trace B. The instrument state is also set to the stored thru state.

RECALL OPN/SHRT

recalls the internally-stored open/short average calibration trace into trace B. The instrument state is also set to the stored open/short calibration state.

PREV MENU

accesses the previous menu of softkeys.

SWP CPL SR SA

allows the user to choose a stimulus-response (SR) or spectrum-analyzer (SA) auto-coupled sweep time. In stimulus-response mode, auto-coupled sweep times are usually much faster for swept-response measurements. Stimulus-response auto-coupled sweep times are typically valid in stimulus-response measurements when the system’s frequency span is less than 20 times the bandwidth of the device under test. When a stimulus-response sweep time is chosen, an “E” appears in the special functions area at the left-hand side of the display screen.

RANGE LVL

activates the dynamic-range-level function which corresponds to the top of the display in dBm. RANGE LVL ensures that the displayed range is compression-free by adjusting the input attenuator and IP gain accordingly. RANGE LVL is equivalent to REF LVL, which is commonly used in signal-analysis measurements.

When in normalized mode NORM REF LVL and NORM REF POSN affect the value of the top of the display (that is, the top of screen does not necessarily represent the gain compression limit). If the actual measured signal is beyond the gain compression limit, or below the bottom line of the graticule, the error message ERR 903 A > DLMT will appear. Adjusting RANGE LVL until the error message
disappears assures the user that the measured signal level is no longer beyond the measurement limits of the instrument. If the signal of interest is both above the gain compression limit and below the bottom graticule line, changing \texttt{RANGE LVL} does not clear the error message. Refer to Chapter 3 for a measurement example using \texttt{RANGE LVL}.

\texttt{ERR 904 B > DLMT} appears in normalized mode only if any of the following conditions occur:

- Any data point of the calibration trace is off-screen.
- No calibration has been performed after a preset.
- Trace B is blank.

To correct any of the above conditions, turn normalize off, and perform a \texttt{CAL THRU} or \texttt{CAL OPN/SHRT} operation.

\texttt{RANGE LVL} can be adjusted from +30 dBm to -120 dBm using the data keys, step keys, or the knob.

\texttt{NORMIZE OFF} activates (ON) or deactivates (OFF) the normalization routine for stimulus-response measurements. The routine subtracts the calibration trace stored in trace B from the active trace, trace A. The result is then offset by the normalized reference position. Results are displayed in trace A. The reference level value is displayed in dB when normalization is active.

When normalization is activated, an “N” appears in the special functions area at the left-hand side of the display screen. The \texttt{REF LVL} softkey under \texttt{AMPLITUDE} is replaced by \texttt{NORM REF LVL} in addition to \texttt{RANGE LVL} now being available.

| Note | If a trace math function has been previously activated, turning normalize mode on deactivates the trace math function. |

If a thru or open/short calibration state does not correspond to the current state when normalization is active (that is, have the same center frequency, start frequency, stop frequency, frequency span, or amplitude scale), the error message \texttt{ERR 902 BAD NORM} appears.

\texttt{NORM REF POSN} allows the user to adjust the normalized reference position that corresponds to the position on the graticule where the difference between the measured and calibrated traces resides. The normalized reference position may be adjusted between 0.0 and 10.0 using the data keys, step keys, or knob.

The normalized reference position adjustment allows measured data to be compared to a reference position, where
the difference between the measured data and the reference position represents the gain or loss of the device under test.

When normalization is on, two indicators (→ and ←) appear on-screen to mark the location of the normalized reference position.

HP 8560A Option 002

Listed below are the function descriptions for the built-in tracking generator of an HP 8560A Option 002.

<table>
<thead>
<tr>
<th>Note</th>
<th>The minimum resolution bandwidth that is supported in stimulus-response mode is 300 Hz. If a tracking generator is active and a resolution bandwidth less than 300 Hz is selected, then the error message TG/RBW INCOMPATIBLE will flash in the message area.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>TRACKING GENERATOR</th>
<th>HP 8560A Option 002 only displays softkey menus only for use with a built-in tracking generator. When selected, TRACKING GENERATOR also displays the RF power level of the tracking generator in the active function block.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>SRC PWR. ON OFF</th>
<th>activates (ON) or deactivates (OFF) the output power of the tracking generator. The power level can then be adjusted using the data keys, step keys, or knob. The output power level can be varied from −10 dBm to +2.8 dBm, with 0.1 dB resolution.</th>
</tr>
</thead>
</table>

When source power is on, a “G” appears in the special functions area at the left-hand side of the display screen.

<table>
<thead>
<tr>
<th>Note</th>
<th>The tracking generator warm-up period begins when the source power is set to ON and the “G” is displayed in the special functions area. The tracking generator is not turned on automatically when the analyzer is turned on, unless the power-on state is specified as having the source power set to ON.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>SOURCE CAL MENU</th>
<th>accesses a menu of softkeys that allow the user to calibrate for frequency-response errors in test setups. Thru calibration is used when making transmission measurements, and open/short average calibration is used when making reflection measurements.</th>
</tr>
</thead>
</table>

| CAL THRU | activates a procedure to store a thru calibration trace into trace B and into the nonvolatile memory of the spectrum analyzer (for future reference). When activated, the message Connect THRU, Store when ready, appears in the active function block. Once the thru is connected, press STORE THRU. The state of the thru information is stored in state register #9. |

2-24 Function Descriptions
If the procedure needs to be interrupted, press ABORT.

activates a procedure to store the average of an open and a short calibration into trace B and into the nonvolatile memory of the spectrum analyzer (for future reference). When activated, the message Connect OPEN. Store when ready. appears in the active function block. Once the open is connected, press STORE OPEN. Connect SHORT. Average with open when ready. will then appear in the active function block. Connect the short, then press AVERAGE SHORT. The state of the open/short average trace is stored in state register #8.

If this procedure needs to be interrupted at any time, press ABORT.

recalls the internally stored thru calibration trace into trace B. The instrument state is also set to the stored thru state.

recalls the internally stored open/short average calibration trace into trace B. The instrument state is also set to the stored open/short calibration state.

accesses the previous menu of softkeys.

activates the dynamic-range-level function which corresponds to the top of the display in dBm. RANGE LVL ensures that the displayed range is compression-free by adjusting the input attenuator and IF gain accordingly. RANGE LVL is equivalent to REF LVL which is commonly used in signal-analysis measurements.

When in normalized mode, NORM REF LVL and NORM REF POSN affect the value of the top of the display (that is, the top of screen does not necessarily represent the gain compression limit). If the actual measured signal is beyond the gain compression limit, or below the bottom line of the graticule, the error message ERR 903 A > DLMT will appear. Adjusting RANGE LVL until the error message disappears assures the user that the measured signal level is no longer beyond the measurement limits of the instrument. If the signal of interest is both above the gain compression limit and below the bottom graticule line, changing RANGE LVL does not clear the error message. Refer to Chapter 3 for a measurement example using RANGE LVL.
ERR 904 B > DLMT appears in normalized mode only if any of the following conditions occur:

- Any data point of the calibration trace is off-screen.
- No calibration has been performed after a preset.
- Trace B is blank.

To correct any of the above conditions, turn normalize off, and perform a CAL THRU or CAL OPN/SHRT operation.

RANGE_LVL can be adjusted from +30 dBm to −120 dBm using the data keys, step keys, or the knob.

activates (ON) or deactivates (OFF) the normalization routine for stimulus-response measurements. The routine subtracts the calibration trace stored in trace B from the active trace, trace A. The result is then offset by the normalized reference position. Results are displayed in trace A. The reference level value is displayed in dB when normalization is active.

When normalization is activated, an "N" appears in the special functions area at the left-hand side of the display screen. The REF_LVL softkey under AMPLITUDE is replaced by NORM REF_LVL.

Note: If a trace math function has been previously activated, turning normalize mode on deactivates the trace math function.

If a thru or open/short calibration state does not correspond to the current state when normalization is active (that is, have the same center frequency, start frequency, stop frequency, frequency span, or amplitude scale), the error message ERR 902 BAD NORM appears.

allows the user to adjust the normalized reference-position that corresponds to the position on the graticule where the difference between the measured and calibrated traces resides. The normalized reference-position may be adjusted between 0.0 and 10.0 using the data keys, step keys, or knob.

The normalized-reference-position adjustment allows measured data to be compared to a reference position, where the difference between the measured data and the reference position represents the gain or loss of the device under test.

When normalization is on, two indicators (→ and ←) appear on-screen to mark the location of the normalized reference position.

accesses additional tracking-generator functions, which are described below.
Before making a stimulus-response measurement, care must be taken to maximize the tracking adjustment of the tracking generator to ensure amplitude accuracy.

Note: The tracking generator must be connected to the spectrum analyzer in order for tracking peak to function properly.

| **MAN TRK ADJ** | allows the user to adjust the frequency of the tracking-generator oscillator manually using the step keys or knob. The tracking adjust is tuned to maximize the amplitude of the trace. Once activated, either the coarse or fine adjustment can be made. **COARSE TRACK ADJ** can be adjusted in digital-to-analog-converter (DAC) values from 0 to 255 using the step keys or data keys. **FINE TRACK ADJ** can be adjusted from 0 to 255 (DAC values) using the knob. Tracking error occurs when the output frequency of the tracking generator is not exactly matched to the input frequency of the spectrum analyzer. The resulting mixing product from the spectrum analyzer input mixer is not at the center of the IF bandwidth. Any tracking errors may be compensated for through manual adjustments of the tracking generator's oscillator, or through an automatic tracking routine, **TRACKING PEAK**. |
Figure 2-2. Tracking Error

ALC activates internal (INT) leveling or external (EXT) leveling. The external leveling input is located on the rear panel of the analyzer. Negative-polarity detectors are supported. External leveling increases the amplitude accuracy by improving the effective source match.

INT

EXT

SWP allows the user to choose a stimulus-response (SR) or spectrum-analyzer (SA) auto-coupled sweep time. In stimulus-response mode, auto-coupled sweep times are usually much faster for swept-response measurements. Stimulus-response auto-coupled sweep times are typically valid in stimulus-response measurements when the system’s frequency span is less than 20 times the bandwidth of the device under test. When a stimulus-response sweep time is chosen, an “E” appears in the special functions area at the left-hand side of the display screen.

CPL

SR

SA

MORE accesses additional tracking-generator functions, which are described below.

2 OF 3

PWR activates (ON) or deactivates (OFF) the power-sweep function, where the output power of the tracking generator is swept over the power-sweep range chosen. The value of the power-sweep range is displayed in the active function block, when **PWR SWP ON OFF** is turned on. The power-sweep range can be set from 0 to 12.8 dB; however, the power-sweep range specified under warranty is 10 dB. It can be adjusted using the data keys, step keys, or knob.

SWP

ON

OFF The output power of the tracking generator is swept according to the sweep rate of the spectrum analyzer.

Power-sweep measurements are particularly useful in making gain compression or output power versus frequency measurements.
allows the user to set the step size of the source power level, source power offset, and power-sweep range functions. The step size may be values from 0.1 dB to 12.8 dB.

SRC PWR OFFSET allows the user to offset the displayed power of the tracking generator. Offset values may range from −100 dB to +100 dB.

Using the source-power-offset capability of the tracking generator allows you to take system losses into account, thereby displaying the actual power delivered to the device under test.

MORE accesses the previous menu of softkeys.

AUX CTRL Softkey Menus continued

Note

The **INTERNAL MIXER** softkey and its lower-level softkeys are not available with an HP 8560A Option 002. However, the **INTERNAL MIXER** softkey is available with an HP 8560A; its softkey menus are not.

INTERNAL MIXER

displays the internal mixer softkey menu, which is described below, when using an HP 8561B. With both a standard HP 8560A and an HP 8561B, this softkey returns the spectrum analyzer to its internal frequency coverage, when using external mixers.

SIG ID AT MKR

activates a signal-identification function that locates the frequency and harmonic number of the mixer response. Place a marker on the desired signal, then activate **SIG ID AT MKR**. The frequency of the signal and the LO harmonic mixing number appear in the active function block. If the function cannot identify the signal, either one of two messages, **NOT FOUND** or **LOST SIGNAL**, is displayed in the active function block.

If the analyzer traces are in states other than clear-write, then no action takes place and the message **ACTIVATE TRACE** appears.

SIG ID -> CF

sets the center frequency to the frequency obtained from the softkey **SIG ID AT MKR**. If the frequency is outside the range of the analyzer, no action takes place. If no signal identification has previously been performed, the message **DO: SIG ID AT MKR** momentarily appears in the active function block, and no other action takes place. Use this function only after executing **SIG ID AT MKR**.

SIG ID ON OFF

switches the manual signal-identification function ON and OFF. When ON, this function employs a frequency-shift method of identifying signals. Displayed signals are shifted horizontally and vertically on alternate sweeps. Signals that
are correct for the selected harmonic band are shifted less than 50 kHz. In addition, all signals are shifted downward in amplitude by approximately one division, regardless of scale. This routine is only effective for signal identification in certain spans; the user must ensure that a proper span is selected. (To ensure accuracy, limit the frequency span to less than 20 MHz.)

Note

When **PRESET** is pressed, the preselector data stored by the user does not change. However, the factory settings now become active.

Factory preselector data always takes precedence over user-activated preselected data, unless the user data is explicitly recalled using **RECALL PRSEL PK**. For more information on storing and recalling preselector data, refer to the **SAVE PRSEL PK** and **RECALL PRSEL PK** softkeys.

PRESEL MAN ADJ allows the user to adjust the preselector tracking. The HP 8561B is preselected from 2.75 GHz to 6.5 GHz. Place a marker on the desired signal on a trace, then press **PRESEL MAN ADJ**. The current preselector tracking number, which is displayed in the active function block, can be changed using the data keys, the step keys, or the knob. The value ranges from 0 to 255. If no marker is active, pressing **PRESEL MAN ADJ** automatically activates a marker at the peak. Executing the function affects data in the current data table (which may be data from either the user or the factory data tables). To save this data, use the **SAVE PRSEL PK** softkey found under **SAVE**.

PRESEL AUTO PK automatically peaks the preselector on a desired signal on a trace, when tuned above band 0. Set the trace to clear-write mode, place a marker on the desired point, then press **PRESEL AUTO PEAK**. The peaking routinezooms to zero span, peaks the preselector tracking, then returns to the original span. To read the new preselector peaking number, press **PRESEL MAN ADJ**.

PREV MENU accesses the previous menu of softkeys.

EXTERNAL MIXER accesses a menu of functions that allow you to extend the frequency range using external mixers. These functions are described below.

Note

No external mixing capabilities are available with an HP 8560A Option 002.

FULL BAND allows you to select a commonly used frequency band above 18 GHz. These bands are shown in Table 2-3. Use the step
keys or the knob to select a desired frequency band; the selected band appears in the active function block. Activating FULL BAND also activates the harmonic-lock function, which is described below.

LOCK HARMONIC and LOCK ON OFF

displays the current harmonic number. A harmonic number refers to the local-oscillator harmonic that is used to sweep a specific frequency band. These numbers are shown in Table 2-3. When **LOCK ON OFF** is ON, only center frequencies and spans that fall within the frequency band of the current harmonic may be entered. When FULL SPAN under **SPAN** is activated, the span is limited to the frequency band of the selected harmonic.

When **LOCK ON OFF** is OFF, more than one harmonic can be used to sweep across a desired span. For example, with **LOCK ON OFF** set to OFF, sweep a span from 26.5 GHz to 60 GHz. In this case, the spectrum analyzer will automatically sweep first using 8× and then using 10×. When FULL SPAN is active and **LOCK HARMONIC** is OFF, the entire range of external mixing for the selected band appears on the display.

Table 2-2. Mixing Harmonics for Frequencies above 18 GHz

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Frequency Range (GHz)</th>
<th>Mixing Harmonic</th>
<th>Conversion Loss (Default)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>18.0—26.5</td>
<td>6×</td>
<td>30 dB</td>
</tr>
<tr>
<td>A</td>
<td>26.5—40.0</td>
<td>8×</td>
<td>30 dB</td>
</tr>
<tr>
<td>Q</td>
<td>33.0—50.0</td>
<td>10×</td>
<td>30 dB</td>
</tr>
<tr>
<td>U</td>
<td>40.0—60.0</td>
<td>10×</td>
<td>30 dB</td>
</tr>
<tr>
<td>V</td>
<td>50.0—75.0</td>
<td>14×</td>
<td>30 dB</td>
</tr>
<tr>
<td>E</td>
<td>60.0—90.0</td>
<td>16×</td>
<td>30 dB</td>
</tr>
<tr>
<td>W</td>
<td>75.0—110.0</td>
<td>18×</td>
<td>30 dB</td>
</tr>
<tr>
<td>F</td>
<td>90.0—140.0</td>
<td>24×</td>
<td>30 dB</td>
</tr>
<tr>
<td>D</td>
<td>110.0—170.0</td>
<td>30×</td>
<td>30 dB</td>
</tr>
<tr>
<td>G</td>
<td>140.0—220.0</td>
<td>36×</td>
<td>30 dB</td>
</tr>
<tr>
<td>Y</td>
<td>170.0—260.0</td>
<td>44×</td>
<td>30 dB</td>
</tr>
<tr>
<td>J</td>
<td>220.0—325.0</td>
<td>54×</td>
<td>30 dB</td>
</tr>
</tbody>
</table>

AMPTD displays a menu of functions that set conversion losses and flatness data.

CORRECT

AVERAGE CNV LOSS

displays the mean conversion loss for the current harmonic and allows you to enter new conversion loss data. In a full frequency
band (such as K band), the mean conversion loss is defined as the minimum loss plus the maximum loss for that band divided by two. To change the maximum and minimum values, use the **CNV LOSS VS. FREQ** softkey. Any change to the average conversion loss also affects the flatness data, which is described below.

The default conversion loss value for each band is 30 dB.

displays the stored conversion loss for a specific frequency in the current band. This allows amplitude correction to be entered to compensate for changes in conversion loss with frequency. To enter a new value, use the data keys. To change the displayed frequency, use the step keys. Any changes to the data also affect the mean conversion loss stored under **AVERAGE CNV LOSS**. Table 2-4 shows the number of flatness points for each band and the default flatness values. To view the correction, connect a 310.7 MHz signal of a known amplitude (approximately −30 dBm) to the IF input and set the analyzer to sweep the associated band.

Table 2-3.

Flatness Points and Conversion Losses for Frequencies above 18 GHz

<table>
<thead>
<tr>
<th>Frequency Band</th>
<th>Frequency Range (GHz)</th>
<th>Number of Flatness Points</th>
<th>Point Spacing</th>
<th>Conversion Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>18.0—26.5</td>
<td>6</td>
<td>2 GHz</td>
<td>30 dB</td>
</tr>
<tr>
<td>A</td>
<td>26.5—40.0</td>
<td>8</td>
<td>2 GHz</td>
<td>30 dB</td>
</tr>
<tr>
<td>Q</td>
<td>33.0—50.0</td>
<td>7</td>
<td>3 GHz</td>
<td>30 dB</td>
</tr>
<tr>
<td>U</td>
<td>40.0—60.0</td>
<td>6</td>
<td>4 GHz</td>
<td>30 dB</td>
</tr>
<tr>
<td>V</td>
<td>50.0—75.0</td>
<td>6</td>
<td>5 GHz</td>
<td>30 dB</td>
</tr>
<tr>
<td>E</td>
<td>60.0—90.0</td>
<td>7</td>
<td>5 GHz</td>
<td>30 dB</td>
</tr>
<tr>
<td>W</td>
<td>75.0—110.0</td>
<td>8</td>
<td>5 GHz</td>
<td>30 dB</td>
</tr>
<tr>
<td>F</td>
<td>90.0—140.0</td>
<td>6</td>
<td>10 GHz</td>
<td>30 dB</td>
</tr>
<tr>
<td>D</td>
<td>110.0—170.0</td>
<td>7</td>
<td>10 GHz</td>
<td>30 dB</td>
</tr>
<tr>
<td>G</td>
<td>140.0—220.0</td>
<td>9</td>
<td>10 GHz</td>
<td>30 dB</td>
</tr>
<tr>
<td>Y</td>
<td>170.0—260.0</td>
<td>7</td>
<td>15 GHz</td>
<td>30 dB</td>
</tr>
<tr>
<td>J</td>
<td>220.0—325.0</td>
<td>8</td>
<td>15 GHz</td>
<td>30 dB</td>
</tr>
</tbody>
</table>
SIGNAL IDENT

displays a menu of signal-identification functions, which are described below.

Note

No external mixing capabilities are available with an HP 8560A Option 002.

SIG ID AT MKR

activates a signal-identification function that locates the frequency and harmonic number of the mixer response. Place a marker on the desired signal, then activate SIG ID AT MKR. The frequency of the signal and the LO harmonic mixing number appear in the active function block. If the function cannot identify the signal, either one of two messages, NOT FOUND or LOST SIGNAL, is displayed in the active function block. If the analyzer traces are in states other than clear-write mode, then no action takes place and the message ACTIVATE TRACE appears. During the signal-identification routine, the SIG ID AT MKR softkey is replaced with the STOP SIG ID softkey.

SIG ID -> CF

sets the center frequency to the frequency obtained from the softkey SIG ID AT MKR. If the frequency is outside the range of the analyzer, no action takes place. If no signal identification has previously been performed, the message DO: SIG ID AT MKR momentarily appears in the active function block, and no other action takes place. Use this function only after executing SIG ID AT MKR.

SIG ID ON OFF

switches the manual signal identification function ON and OFF. When ON, this function employs a frequency shift method of identifying signals. Displayed signals are shifted horizontally and vertically on alternate sweeps. Signals that are correct for the selected harmonic band are shifted less than 50 kHz. In addition, all signals are shifted downward in amplitude by approximately one division, regardless of scale. This routine is only effective for signal identification in certain spans; the user must ensure that a proper span is selected. (To
ensure accuracy, limit the frequency span to less than 20 MHz.)

activates a single marker and places it at the center of the trace. This softkey is also annotated as MARKER DELTA, if delta-marker mode has been previously activated by the MARKER DELTA: softkey under the [MKR] menus.

If one marker is already on, no operation takes place. If two markers are on (as in MARKER DELTA: mode), MARKER NORMAL deletes the anchor marker and makes the active one the new, single marker. The marker reads the amplitude and the frequency (or the relative time, when the frequency span equals 0 Hz), and displays these values in the active function block and in the upper-right corner of the display. To move the marker, use either the knob, the step keys, or the data keys.

The marker reads data from the currently active trace. (An active trace is one in either the clear-write or max-hold mode; this may be either trace A or trace B.) If both traces are active, or if both traces are in view mode, the marker reads data from trace A.

places a marker on the highest point on a trace. The frequency and amplitude of the marker are displayed in the upper-right corner of the screen; PEAK SEARCH does not alter the active function.

PEAK SEARCH

PREV MENU: displays the previous menu of softkeys.

BIAS displays a menu of functions that allow you to select external-mixer bias. The bias is provided on the center conductor of the IF INPUT connector on the front panel. These functions are described below.

Caution

External mixers that require bias may be damaged by the open-circuit bias voltage that can be as great as ±3.5 V through a source resistance of 300 ohms. Such voltage may appear when recalling an instrument state in which an active bias has been stored.

Note

The bias value that appears on the spectrum analyzer display is expressed in terms of short-circuit current (that is, the amount of current that would flow if the center conductor of the IF INPUT were shorted to ground). The actual amount of current flowing into the mixer will be less.
BIAS
OFF

selects positive mixer bias for an external mixer. This value, which can be entered using the data keys, the step keys, or the knob, appears in the active function block and is expressed in milliams. When the bias is greater than 0 mA, a “+” appears on the left edge of the display.

NEGATIVE
BIAS

selects negative mixer bias for an external mixer. This value, which can be entered using the data keys, the step keys, or the knob, appears in the active function block and is expressed in milliams. When the bias is less than 0 mA, a “−” appears on the left edge of the display.

PREV MENU

accesses a menu of demodulation functions, which are described below. When demodulation is activated, the demodulated signal is output to the built-in speaker and phone jack whose output is on the rear panel.

AM DEMOD
ON OFF

Not available in normalized mode
turns AM demodulation ON or OFF. If no marker is active and the frequency span is greater than 0 Hz, pressing AM DEMOD ON OFF automatically places a marker at the center of the trace and demodulates the signal at that marker position. Activating AM demodulation turns off FM demodulation, if it is on. When the frequency span is greater than 0 Hz, a 10 kHz resolution bandwidth is used during demodulation, regardless of the bandwidth annotated on the screen. When the span is equal to 0 Hz, the displayed bandwidth is used. In either case the video bandwidth is not applied to the demodulation.

FM DEMOD
ON OFF

Not available in normalized mode
turns FM demodulation ON or OFF. If no marker is active and the frequency span is greater than 0 Hz, pressing FM DEMOD ON OFF automatically places a marker at the center of the trace and demodulates the frequency at that marker position. Turning FM demodulation on turns off AM demodulation, if it is active. When the frequency span is greater than 0 Hz, a 100 kHz bandwidth is used during the demodulation, regardless of the bandwidth annotated on the screen. When the span is equal to 0 Hz, the displayed bandwidth is used. In either case, the video bandwidth is not applied to the demodulation.

MARKER NORMAL

activates a single marker and places it at the center of the trace. If one marker is already on, no operation takes
place. If two markers are on (as in MARKER DELTA mode),
MARKER NORMAL deletes the anchor marker and makes the
active one the new, single marker. The marker reads the
amplitude and the frequency (or the relative time, when the
frequency span equals 0 Hz), and displays these values in the
active function block and in the upper-right corner of the
display. To move the marker, use either the knob, the step
keys, or the data keys.

The marker reads data from the currently active trace. (An
active trace is one in either the clear-write or max-hold mode;
this may be either trace A or trace B.) If both traces are
active, or if both traces are in view mode, the marker reads
data from trace A.

PEAK
SEARCH
places a marker on the highest point on a trace. The
frequency and amplitude of the peak-search marker are
displayed in the upper-right corner of the screen.

NEXT
PEAK
moves the active marker to the next highest trace point
relative to the current marker position. This function finds
successively lower peaks when the key is pressed repeatedly.

MORE
1 OF 2
accesses a menu of additional demodulation functions.

DEMOD
TIME
adjusts the duration of demodulation between successive
sweeps when the span is greater than 0 Hz. The time ranges
from 0.1 seconds to 60 seconds; the default value is 1 second.
When the frequency span equals 0 Hz, demodulation is
continuous, except for transients during retrace. To avoid
these transients, place the analyzer in single-trigger mode
with span equal to 0 Hz.

SQUELCH
ON OFF
adjusts the squelch level. The value is displayed in the active
function block, in dBm. The squelch level is also indicated by
dashed line across the display. A marker must be active
and located above the squelch line for demodulation to occur
when squelch is on. Note that in zero span, squelch for AM is
inactive.

AGC
ON OFF
switches automatic gain control (AGC) ON or OFF.
AGC keeps the volume relatively constant during AM
demodulation. AGC operates only during AM demodulation
and when the frequency span is greater than 0 Hz.

MORE
2 OF 2
displays the previous menu of softkeys.

REAR
PANEL
accesses the functions that choose which signal is present at the designated
rear-panel connectors. Selection of 0 -> 10 V or 0.5 V/GHz is not changed
with pressing [PRESET].
specifies the 0 to 10 volt ramp that corresponds to the sweep ramp that tunes the local oscillator at the rear-panel sweep output J8, LO SWP|0.5V/ GHz.

specifies a 0.5 volts per GHz sweep output, which is also referred to as the frequency analog voltage (FAV), at the rear-panel sweep output J8, LO SWP|0.5V/ GHz. When using the HP 8560A or HP 8561B with a tracking generator such as HP 85640A, this softkey must be activated.

allows you to select either an internal frequency reference or your own external frequency reference. An external reference must be 10 MHz ±100 Hz at a nominal amplitude of 0 dBm (limits are from −2 dBm to +10 dBm). The external reference must be connected to J9, 10 MHz REF IN/OUT, on the rear panel. An “x” displayed on the left edge of the display denotes external reference mode.

Note

If an external frequency reference is selected but not supplied to the rear panel, hardware error messages are displayed. Refer to the Installation and Verification Manual for more information.

displays the previous menu of softkeys.
COPY activates the function that transfers display data to an HP-IB device that has been selected with the COPY, DEV, PRNT, PLT softkey under the CONFIG key. Refer to softkey function descriptions under CONFIG for more information on how to plot or print an output.

COPY allows either a black and white or color print of the entire display screen, or a plot of the entire display screen. Softkeys cannot be printed or plotted.
MODULE gives access to additional functions of an option module, such as the HP 85629B Test and Adjustment Module or the HP 85620A Mass Memory Module, when the module is connected to J3, OPTION MODULE, on the rear of the spectrum analyzer. If an option module is not connected when the MODULE key is pressed, the MODULE NOT FOUND message appears. For specific information on operating an option module, refer to the operating manual for that module.
SAVE accesses a menu of softkeys that allow you to save instrument-state data and trace data. These functions are described below.

SAVE STATE displays a menu of 10 registers in which the current instrument state can be stored. The save-state registers appear on two menus: STATE 0 through STATE 4 on the first page, and STATE 5 through STATE 9 on the second page. To store the current instrument state in a desired register, press the softkey next to the register number, or enter the number using the data keys. Terminate the entry with any units key (Hz, kHz, etc.).

If a stored state has a title, the first sixteen characters of the title are used as the softkey annotation for that register. The register annotation appears in two rows of eight characters each. For example, if the data stored in register 0 has the title “Harmonic Test,” the softkey annotation STATE 0 is replaced with the text Harmonic Test.

Note State registers #8 and #9 are used to store normalization traces. Refer to tracking-generator softkey descriptions for more information.

PWR. ON STATE saves the current instrument state in the power-on register. The spectrum analyzer is then set to this state whenever LINE is switched on. The same state can be retrieved with POWER ON, available from the RECALL menu.

SAVE TRACE A displays a menu of eight registers in which the current contents of trace A can be stored. The save-trace registers appear on two menus: TRACE 0 through TRACE 4 on the first page, and TRACE 5 through TRACE 7 on the second page. To store current trace A data in a desired register, press the softkey next to the register number, or enter the number using the data keys. Terminate the entry with any units key (Hz, kHz, etc).
SAVE TRACE B displays a menu of eight registers in which the current contents of trace B can be stored. The save-trace registers appear on two menus: TRACE 0 through TRACE 4 on the first page, and TRACE 5 through TRACE 7 on the second page. To store current trace A data in a desired register, press the softkey next to the register number, or enter the number using the data keys. Terminate the entry with any units key (Hz, kHz, etc).

SAVELOCK ON OFF prevents storing any new data in the state or trace registers. When SAVELOCK ON OFF is ON, the registers are "locked"; the data in them cannot be erased or overwritten, although the data can be recalled. To "unlock" the registers and store new data, switch SAVELOCK ON OFF to OFF.

When PRESET is pressed, the preselector data stored by the user does not change. However, the factory settings now become active.

Factory preselector data always takes precedence over user-activated preselected data, unless the user data is explicitly recalled using RECALL PRSEL PK. For more information on storing and recalling preselector data, refer to the SAVE PRSEL PK and RECALL PRSEL PK softkeys.

SAVE PRSEL PK saves the current preselector-peak data in a user data table. This does not affect the preselector data that is set at the factory or by service personnel. To recall saved data, use either FACTORY PRSEL PK to recall the factory data table or RECALL PRSEL PK to recall the user data table. Both of these softkeys are located under RECALL. The three available tables of preselector data are described below.

Current Data Table contains the data used to tune the preselector. The data is obtained from either the user data table or the factory data table. Use either the PRESEL MAN ADJ or PRESEL AUTO PK softkey (located under either AMPLITUDE or the internal mixer softkey menu of AUX CTRL) to modify the data in the current table. To save the data, use SAVE PRSEL PK. If the current data is not saved, it is lost when the instrument is preset or turned off.

Factory Data Table is the default data table. This data is set at the factory and can only be changed by service personnel. This data is sent to the current data table when PRESET is pressed. The data in this table is sufficient for virtually all applications, since this is the table that allows the HP 8561B to meet its published specifications.

User Data Table is a previously saved current data table that is recalled using the RECALL PRSEL PK softkey.
Recall

RECALL accesses a menu of softkeys that allow you to recall stored instrument-state data and trace data. The softkeys are described below.

POWER ON
sets the instrument state to the state stored in the power-on register, which is the same state that occurs when **LINE** is switched on. This state must be saved initially under the **SAVE** key.

LAST STATE
recalls the instrument state that existed before **PRESET** was pressed or the power was turned off. This softkey function can also be accessed via the **PRESET** key.

RECALL STATE
displays a menu of 10 registers from which the stored instrument states can be recalled and displayed on the spectrum analyzer screen. The recall-state registers appear on two menus: **STATE 0** through **STATE 4** on the first page, and **STATE 5** through **STATE 9** on the second page. To recall the data, press the softkey next to the desired register number, or enter the number using the data keys. Terminate the entry with any units (**Hz**, **kHz**, etc.). If a recall-state register does not contain a previously-saved instrument state, the **NOT SAVED!** message appears.

If a stored state has a title, the first sixteen characters of the title are used as the softkey annotation for that register. The register annotation appears in two rows of eight characters each. For example, if the data previously stored in register 0 has the title “Harmonic Test,” the softkey annotation **STATE 0** is replaced with the text **Harmonic Test**.

Note
State registers #8 and #9 are used to store normalization traces. Refer to tracking-generator softkey descriptions for more information.

RECALL TO TR A
displays a menu of eight registers from which trace data can be recalled and placed in trace A. The recall-trace registers appear on two menus: **TRACE 0**
through TRACE 4 on the first page, and TRACE 5 through TRACE 7 on the second page. To recall trace data from a desired register into trace A (B), press the softkey next to the register number, or enter the number using the data keys. Terminate the entry with any units key (Hz, kHz, etc). If a recall-trace register does not contain previously-saved trace data, the NOT SAVED! message appears.

RECALL TO TR B

displays a menu of eight registers from which trace data can be recalled and placed in trace B. The recall-trace registers appear on two menus: TRACE 0 through TRACE 4 on the first page, and TRACE 5 through TRACE 7 on the second page. To recall trace data from a desired register into trace A (B), press the softkey next to the register number, or enter the number using the data keys. Terminate the entry with any units key (Hz, kHz, etc). If a recall-trace register does not contain previously-saved trace data, the NOT SAVED! message appears.

MORE 1 OF 2

RECALL ERRORS

accesses additional softkeys, which are described below.

displays the last error that has occurred. Use the step keys to cycle through accumulated errors. For a list of all error codes and additional error information, refer to “Error Messages” in Chapter 5 of the Installation and Verification Manual. Also, a list of all error codes and messages can be found in Appendix C.

Hint

If you are using an external frequency reference and are incurring errors, be sure your external reference meets the requirements listed under “Characteristics” in Chapter 1 of the Installation and Verification Manual.

ELAPSED TIME

displays the cumulative operating time of the spectrum analyzer. The value, which is expressed in hours, appears in the active function block.

FACTORY PRSEL PK

HP 8561B only

restores the factory preselector-peaking data and makes this data the current preselected data. This data is stored in the factory data table and can only be changed by service personnel. For more information on the preselector data tables, refer to the RECALL PRSEL PK softkey below.

Note

When PRESET is pressed, the preselector data stored by the user does not change. However, the factory settings now become active.

Factory preselector data always takes precedence over user-activated preselected data, unless the user data is explicitly recalled using RECALL PRSEL PK. For more information on storing and recalling preselector data, refer to the SAVE PRSEL PK and RECALL PRSEL PK softkeys.

RECALL PRSEL PK

HP 8561B only

recalls the preselector data that is stored by the user in the user data table. This data can be saved using the SAVE PRSEL PK softkey, found under the
SAVE menu. The three available tables of preselector data are described below.

- **Current Data Table** contains the data used to tune the preselector. The data is obtained from either the user data table or the factory data table. Use either the PRESEL MAN ADJ or PRESEL AUTO PK softkey (located under either AMPLITUDE or the internal mixer softkey menu of AUX CTRL) to modify the data in the current table. To save the data, use SAVE PRSEL PK. If the current data is not saved, it is lost when the instrument is preset or turned off.

- **Factory Data Table** is the default data table. This data is set at the factory and can only be changed by service personnel. This data is sent to the current data table when PRESET is pressed. The data in this table is sufficient for virtually all applications, since this is the table that allows the HP 8561B to meet its published specifications.

- **User Data Table** is a previously saved current data table that is recalled using the RECALL PRSEL PK softkey.

MORE

2 OF 2
MEAS/USER accesses the two softkey functions that perform immediate measurements, which are described below.

FFT
performs a discrete Fourier transform on the input signal. It is intended to convert zero-span information into the frequency domain, allowing the demodulated signal to be viewed as spectral data relative to the frequency of the modulation. However, performing a fast Fourier transform (FFT) on a frequency sweep will not provide time-domain results.

When **FFT MEAS** is pressed, the function sets the analyzer to sample-detection mode and takes a sweep to obtain a sample of the input signal. Then the spectrum analyzer executes a series of computations on the time-domain data to produce the frequency-domain results.

Note
Pressing **FFT MEAS** sets the analyzer into single-sweep mode. To leave the FFT measure mode, set the sweep to continuous by pressing **CONT** under either the **Sweep** or **TRIG** key.

The FFT results are displayed on the spectrum analyzer in a 10 dB/division logarithmic scale. For the horizontal dimension, the frequency at the left side of the graph is 0 Hz, and at the right side is 300/sweep-time. Also, peak search marker is activated.

The FFT function is commonly used to measure AM in the presence of incidental FM. In this case, performing an FFT on the demodulated, zero-span AM signal, will result in a component (shown at 0 Hz) that depicts the power in the carrier of an AM signal. Other components are shown at the power level of the AM sidebands, with FM sidebands rejected. The amplitude accuracy of these sidebands is affected by the effective filtering of the resolution bandwidth filter (equivalent to a low-pass filter with half the resolution bandwidth) and the video filter.

Aliasing can occur when modulation rates on the carrier are higher than one-half the sample rate for the zero-span signal, or 300 divided by the sweep...
time. The aliasing can be reduced by using a narrow resolution or video bandwidth.

Note

Video, line, or external trigger should not be used with FFT MEAS due to a possible sweep occurring once the FFT measurement has been taken.

POWER BANDWIDTH

integrates the power displayed and places the delta markers at the points containing 99% of the power. The power-bandwidth routine first computes the combined power of all signal responses contained in the trace. It then computes the bandwidth equal to the percentage of the total power and displays this value on-screen. For example, if the total power is specified as 100%, the power bandwidth equals the frequency range of the CRT display.
SGL SWP sets the sweep and trigger to single-sweep mode and triggers one sweep. An “S” appears at the left edge of the display to indicate the active function status. To return to continuous-sweep mode, press CONT under either the SLEEP or TRIG key.
Marker Functions

This section describes the functions available from the MARKER section of the front panel.

![Marker Functions Image]

Marker Priority

Markers can be activated on trace A or trace B. However, the current state of the two traces determines on which trace the markers will appear. The trace states are listed below, in order of highest marker priority to lowest priority:

- Trace A in Clear-Write Mode
- Trace B in Clear-Write Mode
- Trace A in Max-Hold Mode
- Trace B in Max-Hold Mode
- Trace A in View Mode
- Trace B in View Mode

2-48 Function Descriptions
Marker

MKR accesses a menu of softkeys, which are described below. MKR also activates the current marker mode (such as MARKER DELTA); if no mode is active, MKR activates MARKER NORMAL.

MARKER NORMAL activates a single marker and places it at the center of the trace. If one marker is already on, MARKER NORMAL becomes the active function. If two markers are on (as in marker-delta mode), MARKER NORMAL deletes the anchor marker and makes the active one the new, single marker. The marker reads the amplitude and the frequency (or the relative time, when the frequency span equals 0 Hz), and displays these values in the active function block and in the upper-right corner of the display. To move the marker, use either the knob, the step keys, or the data keys.

The marker reads data from the currently active trace, which is determined by the marker priority listed above (clear-write, max-hold, or view mode). If both traces are active, or if both traces are in view mode, the marker reads data from trace A.

MARKER DELTA reads the difference in amplitude and frequency (or time, when the frequency span equals 0 Hz) between two markers, and displays these values in the active function block and in the upper-right corner of the display. If a single marker is already on, MARKER DELTA places both an anchor marker and an active (movable) marker at the position of the original, single marker. To move the active marker, use either the knob, the step keys, or the data keys. If MARKER 1/DELTA has been activated and two markers are on, pressing MARKER DELTA once makes it the active function. However, if MARKER DELTA is already the active function, pressing MARKER DELTA again places the anchor marker at the same position as the active marker. The delta amplitude is displayed in dB, or as a ratio when linear units are selected. You can toggle between MARKER DELTA and MARKER 1/DELTA without changing the position of the markers.

MARKER 1/DELTA displays the reciprocal of the frequency or time difference between two markers in the active function block and in the upper-right corner of the
display. If two markers are on and the frequency span is greater than 0 Hz, **MARKER 1/DELTA** displays the difference between the two markers in time. If two markers are on and the frequency span is equal to 0 Hz, **MARKER 1/DELTA** reads the difference in frequency. You can toggle between **MARKER 1/DELTA** and **MARKER DELTA** without changing the position of the markers.

MKRNOISE ON OFF

turns the marker noise function ON or OFF. This softkey is not available when a tracking generator is active. When ON, this function normalizes the equivalent amplitude of the measured noise to a 1 Hz bandwidth. To do this, it sets the detector mode to sample and displays the average of 32 data points (16 data points on one side of the marker, the marker itself, and 15 data points on the other side). This average is corrected for effects of the log amplifier, bandwidth shape factor, RF detector, and resolution bandwidth. If two markers are on, **MKRNOISE ON OFF** works on the active marker and not on the anchor marker. When **MKRNOISE ON OFF** is ON, the sample detector mode is also initiated, which is the most appropriate detector mode for making noise measurements. Turning off the active marker also turns off **MKRNOISE ON OFF**, and returns the detector mode to its previous setting.

SIG TRK ON OFF

turns the signal-tracking function ON or OFF. This softkey is not available when a tracking generator is active. The signal-track function keeps the active marker on the peak of the signal where it has been initially placed, and sets the center frequency to its value. This is done after every sweep, thus maintaining the marked signal at the center frequency. This allows you to “zoom in” quickly from a wide span to a narrow one without losing the signal from the screen. Or, use **SIG TRK ON OFF** to keep a slowly drifting signal centered on the display. When this function is active, a “K” appears on the left edge of the display.

MARKERS OFF

turns off all markers, blanks the softkey menu, and expands the display screen. This softkey turns off all marker-related functions such as **SIG TRK ON OFF** and **MKRNOISE ON OFF**, if they are on.
MKR accesses a menu of marker functions that are described below. These marker functions allow the user to use the marker as a reference for changing analyzer settings.

The menu of marker functions that appear when MKR is pressed, depends on (1) the marker mode selected, either normal marker or delta marker, and (2) the frequency span. The softkey menus for these different modes are shown below.

Normal Marker
Span > 0 Hz
MARKER -> CF
MARKER -> REF LVL
MARKER -> CF STEP

Delta Marker
Span > 0 Hz
MARKER Δ -> CF
MARKER Δ -> CF STEP
MARKER Δ -> SPAN

Normal Marker
Zero Span
MARKER -> REF LVL

Delta Marker
Zero Span
MKR Δ -> CF
MKR Δ -> CF STEP
Normal Marker Functions

- **MARKER-> CF**
 - sets the center frequency equal to the marker frequency. This function provides a quick way to move a signal to the center of the screen.

- **MARKER-> REF LVL**
 - sets the amplitude reference level equal to the amplitude of the marker.

- **MARKER-> CF STEP**
 - sets the center frequency step-size equal to the marker frequency.

Delta Marker Functions

- **MARKER Δ -> CF**
 - sets the center frequency of the spectrum analyzer equal to the delta frequency value. Once activated, both the anchor marker and the active marker are positioned at the new center frequency. This function is useful in harmonic distortion measurements, where the delta marker can be used to mark the difference between harmonics, and **MARKER Δ -> CF** can be used to tune to the frequency of the fundamental.

- **MARKER Δ -> CF STEP**
 - sets the center-frequency step-size to the delta frequency value so that, when the center frequency function is active, using the step key will result in changes to the center frequency equivalent to the delta value. Stepping from one harmonic to another is useful in harmonic distortion measurements.

- **MARKER Δ -> SPAN**
 - sets the frequency span to the delta frequency value, allowing the user to span down quickly to the spectrum of interest.

- **MKR 1/Δ -> CF**
 - sets the center frequency equal to the reciprocal of the delta value. In zero span, the delta-marker frequency readout units are seconds. Therefore, the units for the reciprocal of the delta value will be in Hz.

- **MKR 1/Δ -> CF STEP**
 - sets the center-frequency step-size equal to the reciprocal of the delta value.
FREQ COUNT activates the frequency counter and displays its results in the upper-right corner of the screen. This replaces any current marker readout in that area. If **MARKER NORMAL** or **MARKER DELTA** is already active, **FREQ COUNT** uses that marker mode to read the frequency or the difference in frequency between two markers, respectively. If no marker mode is active, pressing **FREQ COUNT** automatically activates **MARKER NORMAL**. The counter will only count signals that are displayed on the screen. Thus, counter accuracy is lost when using **MARKER DELTA** when the anchor marker is off the screen. All signal-counting is done during the retrace time of the sweep. **FREQ COUNT** uses the same marker priority as described under “Marker Functions.” **FREQ COUNT** cannot be used in zero span, on traces that are being viewed, in stimulus-response (tracking generator) measurements, in single-sweep mode, or in video trigger.

FREQ COUNT also accesses a menu of additional counter functions, which are described below.

COUNTER ON OFF activates (ON) or deactivates (OFF) the counter mode. This softkey is not available when a tracking generator is active. The counted value appears in the upper-right corner of the display.

COUNTER RES adjusts the resolution of the frequency-count measurement. The resolution ranges from 1 Hz to 1 MHz in decade increments. The default value is 10 kHz. The counter measurement occurs over a time interval of twice the reciprocal of the counter resolution for resolution bandwidths greater than or equal to 300 Hz.

MARKER NORMAL activates a single marker and places it at the center of the trace. If one marker is already on, **MARKER NORMAL** becomes the active function. If two markers are on (as in **MARKER DELTA** mode), **MARKER NORMAL** deletes the anchor marker and makes the active one the new, single marker. The marker reads the amplitude and the frequency, and displays these values in the active function block and in the upper-right corner of the display. To move the marker, use either the knob, the step keys, or the data keys.

MARKER DELTA reads the difference in amplitude and frequency between two markers, and displays these values in the active function block and in the upper-right corner of the display. If a single marker is already on, **MARKER DELTA** places both an
anchor marker and an active (movable) marker at the position of the original, single marker. To move the active marker, use either the knob, the step keys, or the data keys. If two markers are already on, pressing MARKER DELTA once makes it the active function. However, if MARKER DELTA is already the active function, pressing MARKER DELTA places the anchor marker at the same position as the active marker. The delta amplitude is displayed in dB, or as a ratio when linear units are selected.

PEAK places a marker on the highest point on a trace. The peak must meet the current peak excursion and peak threshold criteria in order to be considered a peak. The frequency and amplitude of the marker are displayed in the upper-right corner of the screen; PEAK SEARCH does not alter the active function.

NEXT moves the active marker to the next-highest trace peak relative to the current marker position. This function finds successively lower peaks when the key is pressed repeatedly.
Peak Search

PEAK SEARCH

(PEAK SEARCH) places a marker on the highest point of a trace, makes the normal marker active, and accesses a menu of marker functions. The frequency and amplitude of the marker are displayed in the upper-right corner of the screen; (PEAK SEARCH) ignores the LO feedthrough as a peak. Peaks can be defined using PEAK EXCURSN. The functions available from the (PEAK SEARCH) menu are described below.

MARKER-> sets the center frequency equal to the marker frequency. This function provides a quick way to move a signal to the center of the screen. The active function is not affected. When the frequency span is equal to 0 Hz, this key accesses the MARKER NORMAL function.

MARKER DELTA reads the difference in amplitude and frequency (or time, when the frequency span equals 0 Hz) between two markers, and displays these values in the active function block and in the upper-right corner of the display. If a single marker is already on, MARKER DELTA places both an anchor marker and an active (movable) marker at the position of the original, single marker. To move the active marker, use either the knob, the step keys, or the data keys. If two markers are already on, pressing MARKER DELTA once makes it the active function. However, if MARKER DELTA is already on, pressing MARKER DELTA places the anchor marker at the same position as the active marker. The delta amplitude is displayed in dB, or as a voltage ratio when linear units are selected.

NEXT PEAK moves the active marker to the next-highest trace peak relative to the current marker position. The next peak must meet the current peak excursion and peak threshold criteria in order to be considered a peak. This function finds successively lower peaks when the key is pressed repeatedly.

NEXT PK RIGHT finds the next peak to the right of the current marker position. The next trace peak must meet the current peak excursion and peak threshold criteria in order to be considered a peak.

NEXT PK LEFT finds the next peak to the left of the current marker position. The next trace peak must meet the current peak excursion and peak threshold criteria in order to be considered a peak.
accesses additional marker functions, which are described below.

PEAK EXCURSN defines what constitutes a peak on a trace. To enter a value, use the data keys, step keys, or the knob and terminate the entry with \(\text{dB} \). The value specifies the amount that a trace must increase monotonically and then decrease monotonically in order to be a peak. For example, if the peak excursion is 5 \(\text{dB} \), the amplitude of the sides of a candidate peak must descend at least 5 \(\text{dB} \) in order to be considered a peak (see Figure 2-2). The excursion values range from 0 \(\text{dB} \) to 30 \(\text{dB} \) in log mode, and 0.1 \(\Delta \text{DIVS} \) to 10.0 \(\Delta \text{DIVS} \) in linear mode. The default value is 6 \(\text{dB} \).

Any portion of a peak that falls below the peak threshold is also used to satisfy the peak excursion criteria. For example, when the peak excursion is equal to 6 \(\text{dB} \), a peak that is equal to 3 \(\text{dB} \) above the peak threshold will be found if the peak extends an additional 3 \(\text{dB} \) or more below the threshold.

![Figure 2-3. PEAK EXCURSN Defines the Peaks on a Trace](image)

PEAK THRESHOLD sets the minimum amplitude level from which a peak on the trace can be detected. This function places a dashed line across the graticule to denote the selected level. To enter a value, use the data keys, the step keys, or the knob and terminate the entry with \(\pm \text{dBm} \) or \(\mp \text{dBm} \). The default is \(-120 \text{ dBm}\).

Any portion of a peak that falls below the peak threshold is also used to satisfy the peak excursion criteria. For example, when the peak excursion is equal to 6 \(\text{dB} \), a peak that is equal to 3 \(\text{dB} \) above the threshold will be found if the peak extends an additional 3 \(\text{dB} \) or more below the threshold.

MORE displays the previous softkey menu.
Control Functions

This section describes the functions available from the CONTROL section of the front panel.
Sweep

Sweep accesses a menu of sweep-related functions, which are described below. **Sweep** also activates the sweep-time function.

Swp. Time adjusts the sweep time of the spectrum analyzer. To change the sweep time, use the data keys, the step keys, or the knob. A line under AUTO or MAN indicates whether the sweep time can be manually set (MAN) or is coupled (AUTO), based on the resolution bandwidth, span, and video bandwidth settings. When the sweep time is in manual mode, press **Swp. Time Auto Man** until AUTO is underlined to return the sweep time to coupled mode.

When in stimulus-response, auto-coupled sweep-time mode (SR), which is usually much faster than spectrum-analyzer, auto-coupled sweep time mode (SA), an “E” appears in the special functions area at the left-hand side of the display screen. Manual sweep mode only applies to SA mode. If **Swp. Time Auto Man** is set to MAN, the analyzer sweep time defaults to SA mode.

Cont activates the continuous-sweep mode. This function, which is the default mode, is underlined to indicate that it is the current mode.

Single activates the single-sweep mode. **Single** is underlined, to indicate that it is the current sweep mode. Press **Single** to restart the sweep at the next trigger. When this function is active, an “S” appears at the left edge of the display.
Bandwidth

\[\text{BW} \] accesses a menu of bandwidth functions, which are described below. \[\text{BW} \] also activates the resolution-bandwidth function.

RES BW
- Adjusts the resolution bandwidth. The bandwidth, which appears in the active function block, ranges from 10 Hz to 2 MHz in a 1, 3, 10 sequence. The value can be changed using the data keys, the step keys, or the knob. A line under AUTO or MAN indicates whether the bandwidth is coupled (AUTO) or is in manual mode (MAN). When the resolution bandwidth is in manual mode, press **RES BW AUTO MAN** until AUTO is underlined to return the bandwidth to coupled mode.

VIDEO BW
- Adjusts the video bandwidth, which appears in the active function block, and ranges from 1 Hz to 3 MHz in a 1, 3, 10 sequence. The value can be changed using the data keys, the step keys, or the knob. A line under AUTO or MAN indicates whether the bandwidth is coupled (AUTO) or is in manual mode (MAN). When the video bandwidth is in manual mode, press **VIDEO BW AUTO MAN** until AUTO is underlined to return the bandwidth to coupled mode. When the video bandwidth is less than or equal to 100 Hz and the resolution bandwidth is greater than or equal to 300 Hz, the detector mode automatically changes to sample mode. When this function is active, a “D” appears in the special functions area at the left-hand side of the display screen.

Narrow video bandwidths help smooth a trace, allowing you to view signals that are otherwise masked by the noise. However, narrower bandwidths require longer sweep times, approximately proportional to the ratio of resolution bandwidth to video bandwidth.

VBW/RE BW RATIO
- Displays the current coupling ratio between the video bandwidth and the resolution bandwidth. The ratio is displayed in the active function block, and it is used when the two bandwidths are in coupled mode. The ratio ranges from 0.003 to 3, in a 1, 3, 10 sequence. The default value is 1.

Function Descriptions 2-59
RBW/SPAN RATIO displays the current coupling ratio between the resolution bandwidth and the frequency span. The ratio is displayed in the active function block, and it is used when the two functions are in coupled mode. The ratio ranges from 0.002 to 0.10, in a 1, 2, 5 sequence. The default ratio is 0.011.

VID AVG ON OFF turns the video averaging ON or OFF. Video averaging smooths the displayed trace without using a narrow video bandwidth. The function sets the detector mode to sample mode and smooths the trace by averaging successive traces with each other.
TRIG accesses a menu of trigger functions, which are described below. When any mode other than FREE RUN is selected, a “T” appears in the special functions area at the left-hand side of the display screen.

CONT activates the continuous-sweep mode. CONT is underlined, to indicate that it is the current sweep mode. In trigger modes other than free-run, press CONT to restart the sweep at the next trigger.

SINGLE activates the single-sweep mode. SINGLE is underlined to indicate that it is the current mode. Press SINGLE to start a new sweep at the next trigger. An “S” appears at the left edge of the display to indicate the function’s active status.

FREE RUN sets the trigger to free-run mode. Sweep triggers occur as rapidly as the spectrum analyzer will allow.

VIDEO sets the trigger to video mode. Sweep triggers occur whenever the input signal passes through, with a positive slope, the video trigger level. This trigger level can be changed using the data keys, the step keys, or the knob. A dashed line appears on the screen to denote the selected level. Note that in 1 dB/division, the error in this line can be up to three divisions.

LINE sets the trigger to line mode. Sweep triggers occur at intervals synchronized to the line frequency.

EXTERNAL sets the trigger to external mode. Connect an external trigger source to J5 EXT TRIG INPUT on the rear panel of the spectrum analyzer. The source must range from 0 to 5 VDC (TTL). The trigger occurs on the rising, positive edge of the signal (about 1.5 V).
Auto Couple

Auto Couple accesses a menu of coupled-mode functions, which are described below.

ALL sets the following functions to coupled mode: resolution bandwidth, video bandwidth, sweep time, input attenuator, center-frequency step-size, and units. The spectrum analyzer chooses appropriate values for these functions depending on the selected frequency and span (or start and stop frequencies). These values are set according to the coupled ratios stored under the softkeys **VBW/RBW RATIO** or **RBW/SPAN RATIO**. If no ratios are stored, default ratios are used instead.

RES BW adjusts the resolution bandwidth. The bandwidth, which appears in the active function block, ranges from 10 Hz to 2 MHz in a 1, 3, 10 sequence. The value can be changed using the data keys, the step keys, or the knob. A line under AUTO or MAN indicates whether the bandwidth is coupled (AUTO) or is in manual mode (MAN). When the resolution bandwidth is in manual mode, press **RES BW AUTO MAN** until AUTO is underlined to return the bandwidth to coupled mode.

VIDEO BW adjusts the video bandwidth, which appears in the active function block, and ranges from 1 Hz to 3 MHz in a 1, 3, 10 sequence. The value can be changed using the data keys, the step keys, or the knob. A line under AUTO or MAN indicates whether the bandwidth is coupled (AUTO) or is in manual mode (MAN). When the video bandwidth is in manual mode, press **VIDEO BW AUTO MAN** until AUTO is underlined to return the bandwidth to coupled mode. When the video bandwidth is less than or equal to 100 Hz and the resolution bandwidth is greater than or equal to 300 Hz, the detector mode automatically changes to sample mode.

SWP TIME adjusts the sweep time of the spectrum analyzer. To change the sweep time, use the data keys, the step keys, or the knob. A line under AUTO or MAN indicates whether the sweep time is coupled (AUTO) or is in manual mode (MAN). When the sweep time is in manual mode, press **SWP TIME AUTO MAN** until AUTO is underlined to return the sweep time to coupled mode.

ATTEN adjusts the spectrum analyzer input attenuator. The attenuator ranges from 0 dB to 70 dB in 10 dB increments. Input attenuation can be adjusted using...
the data keys, the step keys, or the knob; 0 dB attenuation can be selected using only the data keys. Attenuation is normally a coupled function and is automatically adjusted to changes in the reference level. The reference level, however, generally does not change when the attenuation changes. The attenuator is adjusted so that the maximum signal amplitude at the input mixer is -10 dBm or less. For example, if the reference level is 23 dBm, the attenuation is 40 dB, for an input of -17 dBm at the mixer (23 minus 40 equals -17). This prevents signal compression. Press either ATTEN or ATTEN AUTO MAN to adjust the input attenuator. A line under AUTO or MAN indicates whether the attenuator is coupled (AUTO) or in manual mode (MAN). When the input attenuator is in manual mode, press ATTEN AUTO MAN until AUTO is underlined to recouple the attenuator to the reference level.

accesses additional softkeys, which are described below.

MORE

1 OF 2

CF STEP

ADJUSTS THE CENTER-FREQUENCY STEP-SIZE. WHEN THIS FUNCTION IS IN COUPLED (AUTO) MODE, PRESSING A STEP KEY YIELDS A ONE-DIVISION SHIFT (10% OF SPAN) IN THE CENTER FREQUENCY. FOR MANUAI (MAN) MODE, PRESS CF STEP AUTO MAN until MAN IS ACTIVATED. AFTER ENTERING A STEP SIZE AND CHANGING THE ACTIVE FUNCTION TO CENTER FREQ, USE THE STEP KEYS TO ADJUST THE CENTER FREQUENCY BY THE STEP SIZE SELECTED. THE MINIMUM SETTABLE STEP SIZE IS 25 Hz. THIS FUNCTION IS USEFUL FOR QUICKLY TUNING TO THE HARMONICS OF AN INPUT SIGNAL. FOR EXAMPLE, TO TUNE TO THE HARMONICS OF A 300 MHz SIGNAL, PRESS CF STEP and ENTER 300 MHz. IF THE CENTER FREQUENCY IS AT 300 MHz, PRESSING THE STEP KEY INCREASES THE CENTER FREQUENCY TO 600 MHz, WHICH IS EQUAL TO THE SECOND HARMONIC. PRESSING THE STEP KEY AGAIN INCREASES THE CENTER FREQUENCY BY ANOTHER 300 MHz, TO 900 MHz. CF STEP AUTO MAN INDICATES WHETHER THE STEP SIZE IS IN A COUPLED (AUTO) OR MANUAL MODE (MAN). WHEN THE STEP SIZE IS IN MANUAL MODE, PRESS CF STEP AUTO MAN UNTIL AUTO IS UNDERLINED TO RETURN THE FUNCTION TO COUPLED MODE.

UNITS

ALLOWS AMPLITUDE UNITS TO BE SELECTED AUTOMATICALLY (AUTO). THIS SOFTKEY IS NOT AVAILABLE IN NORMALIZED MODE. WHEN IN AUTO MODE, THE DEFAULT UNITS ARE dBm (IN LOG SCALE) OR VOLTS (IN LINEAR SCALE).

IN ORDER TO SELECT AMPLITUDE UNITS MANUALLY, THE AMPTD UNITS SOFTKEY UNDER AMPLITUDE MUST BE SELECTED. UNITS AUTO MAN APPEARS, AND SELECTING ANY OF THE AVAILABLE UNITS EXECUTES THE MANUAL SETTING.

MORE

2 OF 2
TRACE accesses a menu of trace-related functions, which are described below. Trace A is brighter than trace B, to distinguish between the two traces.

- **CLEAR** clears trace A and sets it to accept and display new input-signal data continuously.
- **WRITE A** displays and holds the maximum responses of the input signal in trace A. In this mode, the trace accepts data from subsequent sweeps and selects the positive-peak detector mode.
- **MAX HOLD A** displays the current contents of trace A, but does not update the contents.
- **VIEW A** blanks trace A from the screen. The contents of trace A are retained, but not updated.
- **BLANK A** toggles control of the above softkeys between traces A and B.
- **TRACE A B** accesses additional trace function softkeys, which are described below.

VID AVG ON OFF

turns the video averaging ON or OFF. Video averaging smooths the displayed trace without using a narrow video bandwidth. The function sets the detector mode to sample mode and smooths the trace by averaging successive traces with each other.

Video averaging is available only for trace A, and trace A must be in clear-write mode for video average to be executed. After video averaging is activated, the number of sweeps that have been averaged appears at the top of the screen.

Using video averaging allows you to view changes to the entire trace much faster than using narrow video bandwidths. Narrow video bandwidths require long sweep times, which may not be desired. Video averaging, though requiring more sweeps, uses faster sweep times. Turning on video averaging...
allows the number of averages to be changed with the step keys, data keys, or knob, over the range of 1 to 999 readings.

accesses a menu of detector modes, which are described below. When any detector mode other than NORMAL is active, a “D” appears on the left edge of the display.

DETECTOR NORMAL sets the detector to normal mode; this is also the default mode. In normal mode, the display simulates an analog display by alternately displaying positive and negative peaks when the presence of noise is detected, and displaying positive peaks otherwise.

DETECTOR SAMPLE sets the detector to sample mode. This mode is used with the video averaging and marker noise functions, as well as for the combination of resolution bandwidths greater than or equal to 300 Hz and video bandwidths less than or equal to 100 Hz. Note that, when the resolution bandwidth is not much greater than the display resolution, the peak responses can be missed when the video signal is sampled.

DETECTOR POS PEAK selects the positive-peak detector mode. Use this mode to detect the positive-peak noise level of a trace. This is the detector selected by MAX HOLD.

DETECTOR NEG PEAK selects the negative-peak detector mode. Use this mode to detect the negative-peak noise level of a trace.

PREV MENU displays the previous menu of softkeys.

A EXCH B exchanges the contents of trace A with those of trace B, and places both trace A and trace B in view mode.

NORMALIZE ON OFF activates (ON) or deactivates (OFF) the normalization routine for stimulus-response measurements. The routine subtracts the calibration trace that is stored in trace B, from the active trace, trace A. The result is then offset by the normalized reference position. Results are displayed in trace A. The reference level value is displayed in dB when normalization is active.

When normalization is activated, an “N” appears in the special functions area at the left-hand side of the display screen. The REF LVL softkey under **AMPLITUDE** is replaced by NORM REF LVL.

Note

If a trace math function has been previously activated, turning normalize mode on deactivates the trace math function.

If a thru or open/short calibration state does not correspond to the current state when normalization is active, the error message ERR #902 BAD NORM appears.

NORM REF POSN allows the user to adjust the normalized reference position that corresponds to the position on the graticule where the difference between the measured and
calibrated traces reside. The normalized reference position may be adjusted between 0.0 and 10.0 using the data keys, step keys, or knob.

The normalized reference position adjustment allows measured data to be compared to a reference position, where the difference between the measured data and the reference position represents the gain or loss of the device under test.

When normalization is on, two indicators (\(\rightarrow\) and \(<\)) appear on-screen to mark the location of the normalized reference position.

Accesses additional trace function softkeys, which are described below.

Note

Trace math functions are performed either in dBm units when in logarithmic mode, or in volts when in linear mode.

If normalize mode is active, performing a trace math function turns the normalize mode off.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-B(\rightarrow)A</td>
<td>turns the trace math function A-B(\rightarrow)A ON or OFF. When this function is ON, the contents of trace B are subtracted from the contents of trace A; the result is placed in trace A. When this function is on, it is executed on all subsequent sweeps. An "M" appears on the left edge of the display to indicate its active status.</td>
</tr>
<tr>
<td>A+(\rightarrow)B</td>
<td>sums the contents of trace A with the contents of trace B, and places the result in trace A. This function is done only once and not on a continuous basis.</td>
</tr>
<tr>
<td>B-(\rightarrow)B</td>
<td>subtracts the value of the display line from the contents of trace B and places the result in trace B. This function is executed only once; to execute it a second time, press the softkey again. The display is activated as a result of this function.</td>
</tr>
<tr>
<td>A-B+D(\rightarrow)L</td>
<td>turns the trace math function A-B+DL(\rightarrow)A ON or OFF. When this function is ON, the contents of trace B are subtracted from the contents of trace A and the value of the display line is added to the result. The result is then displayed in trace A. This function is executed on all subsequent sweeps until it is turned off. An "M" appears on the left edge of the display to indicate its active status. The display line is activated as a result of this function; however, it can only be turned off by the DSPL LIN ON OFF softkey under DISPLAY.</td>
</tr>
</tbody>
</table>

Displays the first page of the trace function softkey menus.

2-66 Function Descriptions
DISPLAY accesses a menu of display-related functions, which are described below.

DSPL LIN ON - OFF activates a display line that can be adjusted with the DATA keys, the step keys, or the knob. When the display line is ON, pressing **DSP LINE ON - OFF** again turns the display line OFF.

THRESHOLD ON - OFF sets a threshold that determines the lower limit of the active trace(s). To change the threshold, use the data keys, the step keys, or the knob. The selected level is indicated by a dashed line across the screen. When the trace is in max-hold mode, once the threshold is raised, any data below the new threshold is permanently lost.

SCREEN TITLE displays a menu of functions that allow you to create a title on the screen. These functions are described below. **SCREEN TITLE** also displays a set of characters in the active function block. Use the step keys or the knob to select the desired characters for your title. After selecting the desired character, press **SELECT CHAR** to place it in the title area, which is in the upper-right corner of the graticule. The title can be up to two lines of 16 characters each.

SELECT CHAR causes the currently selected character in the active function block to appear in the next available character position of the title, which is indicated by a “blinking” period. This key may be held down for repeated characters.

SPACE places a blank space in the next available character position in the title.

BACK SPACE deletes the last character placed in the title.

ERASE TITLE erases the current title from the display.

CHAR SET 1 - 2 selects one of two character sets. Character set 1 contains uppercase letters, numbers, and miscellaneous characters. Character set 2 contains lowercase letters and miscellaneous characters.
TITLE fixes the current title and returns to the previous softkey
DONE menu.

INTENSTY changes the intensity of the display. Press **INTENSTY**, then use the data
keys, the step keys, or the knob to adjust the intensity. The intensity
ranges from 1 to 255; the current value appears in the active function block.
When **INTENSTY** is pressed, **STORE INTEN** appears on the menu. Press
STORE INTEN to store the new intensity value in nonvolatile memory.

For indoor use, keep the intensity around 80. For outdoor use, increase the
intensity as necessary, keeping in mind that excessive brightness shortens the
life of the CRT.

MORE accesses a menu of additional softkeys, which are described below.

1 OF 2

GRAT ON OFF blanks the graticule from the display (OFF) or reactivates it (ON).

ANNOT ON OFF blanks the annotation from the display (OFF) or reactivates it (ON).

ANNOT HELP defines the annunciators that appear in the special functions area at the
left-hand side of the display screen.

A = IF adjust turned OFF
C = DC coupling selected (ac coupling is default)
D = Detector mode set to sample, negative peak, or positive peak
E = Special sweep-time equations in use (refer to tracking generator menus)
F = Frequency offset is less than or greater than 0 Hz
G = Internal tracking generator is ON
K = Signal track is ON
M = Trace math is ON
N = Normalization is ON
R = Reference level offset is less than or greater than 0 dB
S = Single-sweep mode
T = Trigger mode set to line, video, or external
X = 10 MHz reference is external
+ = External mixer bias is greater than 0 mA
− = External mixer bias is less than 0 mA
FREQ DSP OFF

turns off all frequency annotation. This includes the start and stop
frequencies, center frequency, frequency span, marker readouts, center-
frequency step-size, and signal identification to center frequency. Once this
key is pressed, there is no way to display the frequency data. To reactivate
the annotation, press [Preset].

FOCUS

changes the focus of the display. Press FOCUS, then use the data keys, the
step keys, or the knob to adjust the focus. The focus ranges from 0 to 255;
the current value appears in the active function block. When FOCUS is
pressed, STORE FOCUS appears on the menu. Press STORE FOCUS to store the
new focus value. The overall display focus is only affected minimally.

MORE 2 OF 2

displays the previous menu of softkeys.
Common Measurements

This chapter demonstrates analyzer measurement techniques with examples of typical applications; each application focuses on different features of the HP 8560A and HP 8561B Spectrum Analyzers. The measurement application and procedures covered in this chapter are listed below:

- Harmonic Distortion
- Third-Order Intermodulation Distortion
- AM and FM Demodulation
- Stimulus-Response Measurements
- External Millimeter Mixers

Example 1: HARMONIC DISTORTION

What Is Harmonic Distortion?

Most transmitting devices and signal sources contain harmonics. Measuring the harmonic content of such sources is frequently required. In fact, measuring harmonic distortion is one of the most common uses of a spectrum analyzer. Harmonic distortion can be checked very quickly by using the measurement routine described below. This measurement routine measures harmonic amplitudes relative to the source frequency.

Spectrum Analyzer Functions Used

The harmonic distortion measurement below employs an important set of spectrum analyzer operating skills: setting the frequency span using start and stop frequencies; setting the video bandwidth and making relative measurements using two markers. It also demonstrates how to set a signal to center frequency using a marker and how to set the frequency step size to the value of the center frequency.

There are two common ways to measure harmonic distortion using a spectrum analyzer. The following procedure illustrates the faster method, which permits a simultaneous display of the fundamental and its harmonics. A second procedure is also given, and although it is somewhat lengthier to perform, it provides a better measurement of harmonics closer to the noise floor.

The example below measures the harmonic content of a 1 MHz signal provided by a signal generator. If desired, you may use the 300 MHz calibrator signal of the spectrum analyzer. However, be sure to adjust the spectrum analyzer start and stop frequencies to accommodate the source frequency and its harmonics.
Stepping through the Fast Harmonic Measurements

Connect the signal source to the spectrum analyzer INPUT 50Ω and complete the following steps. Start from a preset state by pressing [PRESSET].

1. For measuring the 1 MHz fundamental and its first two harmonics, set the start frequency to 450 kHz and the stop frequency to 3.5 MHz. This displays the fundamental frequency and the second and third harmonics as shown in Figure 3-1. To improve visibility, smooth the noise by pressing [BW] and then [VIDEO BW AUTO MAN] until MAN is selected. Now use the step down [▼] key as desired.

![Figure 3-1. Input Signal and Harmonics](image)

2. For greatest measurement accuracy, raise the peak of the fundamental to the reference level by pressing [PEAK SEARCH], [MKR ->], and then [MARKER -> REF LVL]. This is shown in Figure 3-2. To activate a second marker, press [PEAK SEARCH], [MARKER DELTA], and [NEXT PK RIGHT]. This places the anchor marker on the fundamental, and a second marker on the peak of the second harmonic as shown in Figure 3-3. The difference in amplitude between the fundamental and second harmonic shown in the figure is approximately -25 dB, or 5.5% harmonic distortion (see Figure 3-4). To measure the third harmonic, press [NEXT PK RIGHT] again. Continue reading amplitudes and comparing them to Figure 3-4 for each additional harmonic you wish to measure. According to the definition of a peak, the next-peak routines find the corresponding peak when using [PEAK EXCURSN].

Another easy way of determining the percent of distortion is to change the units to volts. Press [AMPLITUDE], [MORE 1 OF 3], [AMPTD UNITS], and then [VOLTS]. The marker readout automatically switches to voltage units. To determine the percentage of distortion, use the ratio given by the marker and move the decimal point of this value two places to the right.
Figure 3-2. Peak of signal is positioned at reference level for maximum accuracy.

Figure 3-3. Harmonic distortion measured in dBC. Marker threshold set to −70 dB.
3. You may want to plot the display for hard-copy documentation. To do this, simply connect a graphics plotter (such as an HP 7440A Color Pro) to the analyzer via HP-IB. Set the plotter address to 5. On the spectrum analyzer, press [CONFIG] and then COPY DEV PRNT PLT until PLT is selected. Press PLOTTER CONFIG to view available plot functions. Then, press COPY to transfer the entire display contents to the plotter. Other plotter functions allow you to select certain traces or parts of the display for plotting. The PLOT ORG DSP GRAT function lets you choose the plotter reference points to correlate to the display (DSP) or to the display graticule (GRAT).

Alternative Measurement Method

This method is somewhat lengthier, but because each signal is measured in a narrower span and resolution bandwidth, the signal-to-noise ratio is improved, making the results more accurate.

1. Using the present setup, clear the markers from the screen by pressing [MKR], then MARKERS OFF. Notice that when MARKERS OFF or [HOLD] is pressed, the display expands to the full size of the screen, for easier viewing. To measure the fundamental, press [PEAK SEARCH], which activates a marker on the highest-level signal on-screen. Reduce the frequency span to 1 MHz by pressing [SPAN], then [SPAN ZOOM] and entering 1 MHz. The span zoom function allows you to quickly “zoom” to a narrower frequency span without losing the signal from the screen (since signal track is activated). After the frequency span is reduced, turn off the signal-track function by pressing [MKR], and setting SIG TRK ON OFF to OFF. Next, set the center-frequency step-size to the frequency of the fundamental by pressing [MKR ->], then [MKR -> CF STEP]. For better amplitude accuracy, move the signal to the top of the graticule by pressing [MKR -> REF LVL]. The resulting display should resemble Figure 3-5.
2. To measure the second harmonic, press \texttt{MKR}, \texttt{MARKER \ DELTA}, \texttt{FREQUENCY}, and the step up \texttt{A} key. This step retunes the spectrum analyzer center frequency to the second harmonic. Adjust the harmonic to the reference level. (Note that the \texttt{MARKER} \rightarrow \texttt{REF LVL} function is not available in marker-delta mode.) This displays the amplitude of the second harmonic as shown in Figure 3-6. The difference between the second harmonic and the fundamental can be converted to a percentage of distortion using Figure 3-4. Again, units can be changed to volts in order to read the voltage ratio of the two signals.

For each additional harmonic you wish to measure, simply press the step up \texttt{A} key and adjust the reference level. Note the arrow in the upper left corner of the graticule indicates that the anchor marker is off-screen. However, the results are still valid.
Percent of Harmonic Distortion

Measuring the total percent of harmonic distortion of a signal is also performed frequently. For this measurement, the amplitude of each harmonic must be measured in linear units (for example, volts) instead of dBC. (To display amplitude units in volts, press [AMPLITUDE] and the softkeys [MORE 1 OF 3], [AMPTD UNITS], and [VOLTS]). The amplitude values of these signals are used in the equation below to compute total harmonic distortion.

\[
\text{Percent of distortion} = \frac{\sqrt{(A_2)^2 + (A_3)^2 + (A_4)^2 + \ldots + (A_n)^2}}{A_1} \times 100
\]

Where:
- \(A_1\) = the amplitude of the fundamental frequency, in volts
- \(A_2\) = the amplitude of the second harmonic, in volts
- \(A_3\) = the amplitude of the third harmonic, in volts
- \(A_4\) = the amplitude of the fourth harmonic, in volts
- \(A_n\) = the amplitude of the \(n\) harmonic, in volts

If the signal amplitudes are measured carefully, as in the previous example, this procedure measures percent-of-harmonic distortion very accurately.
Example 2: THIRD-ORDER INTERMODULATION DISTORTION

What Is Intermodulation Distortion?
In crowded communication systems, signal interference of one device with another is a common problem. For example, two-tone, third-order intermodulation is often a problem in narrow-band systems. When two signals (F₁ and F₂) are present in a system, they can mix with the second-order harmonics that are generated (2F₁ and 2F₂) to create third-order intermodulation distortion products, which are located close to the original signals at 2F₂−F₁ and 2F₁−F₂. Higher order intermodulation distortion can also occur. These distortion products are generated by such system components as amplifiers and mixers.

Spectrum Analyzer Functions Used
The procedure below describes how to measure third-order intermodulation distortion. It shows how to tune two signals onto the spectrum analyzer display and demonstrates setting the resolution bandwidth, mixer level, and reference level. It also incorporates several marker functions.

Stepping through the Measurement
To test a device for third-order intermodulation, connect the equipment as shown in Figure 3-7. This example uses two sources set to 20 MHz and 21 MHz. Other source frequencies may be substituted, but maintain a frequency separation of approximately 1 MHz to best follow this example. In this example, a 6 dB directional coupler is used. The device under test is a 26 dB preamplifier. The low-pass filters are not required if this procedure is used only to practice using the instrument.

Figure 3-7. Third-Order Intermodulation Test Setup

1. Set one source to 20 MHz and the other source to 21 MHz for a frequency separation of 1 MHz. Set the sources equal in amplitude (for this example, we have set the sources to −30 dBm).
2. Tune both signals onto the display by setting the center frequency to 20.5 MHz. Next, reduce the frequency span to 5 MHz for a span wide enough to include the distortion products on the display. For frequency separations other than the ones used in this example, choose a span greater than three times the separation of the source signals.

A quick way to get to a smaller frequency span is to use \texttt{SPAN ZOOM}. \texttt{SPAN ZOOM} activates a highest-peak marker, turns signal track on, and zooms down to the span selected by the user. To activate the span zoom function, press \texttt{SPAN}, \texttt{SPAN - ZOOM}, and enter 5 MHz. Do not forget to turn signal track off before changing other spectrum analyzer settings.

Press \texttt{FREQUENCY} and, using the knob, center the two signals on the displays, as shown in Figure 3-8. If necessary, to be sure that the distortion products are resolved, reduce the resolution bandwidth until the distortion products are visible; press \texttt{BW}, then use the step down \(\checkmark \) key to reduce the resolution bandwidth. You may wish to reduce the video bandwidth as well. To ensure that the input signals are equal in amplitude, press \texttt{PEAK SEARCH}, \texttt{MARKER DELTA}, and \texttt{NEXT PEAK}. Adjust one of the source signals until the difference in amplitude reads zero.

\textbf{Note}

It is sometimes necessary to choose a specific resolution bandwidth to verify that the distortion products are at a certain level below the source signal. For these cases, refer to Appendix G.

![Figure 3-8. Signals centered on spectrum analyzer display.]

3. For greatest measurement accuracy, position the peaks of the source signals at the reference level. The spectrum analyzer function \texttt{MARKER -> REF LVL} allows you to set the reference level using a marker. First, place a marker on the source signal of highest amplitude by pressing \texttt{PEAK SEARCH}. Then set the reference level to this value by pressing \texttt{MKR - >}, and then \texttt{MARKER -> REF LVL}. Figure 3-9 illustrates the resulting display.
4. For this type of measurement, distortion-free dynamic range is an important consideration. To maximize such dynamic range, set the mixer input level to -30 dBm by pressing [AMPLITUDE], [MORE 1 OF 3], [MAX MXR LEVEL], and enter -30 dBm. The spectrum analyzer automatically sets the attenuation so that the maximum signal level is seen at the input mixer when the signal is at or below the reference level. (See Appendix G.) You will hear the input attenuator click; notice that the value of the attenuator is now 20 dB. See Figure 3-10.

This change to the maximum mixer level may affect the noise, so adjustments to the resolution and video bandwidths may be required.

5. Once a marker is activated, the marker-delta function activates a second marker and displays the difference between the two markers. Relative measurements can then be performed easily. To measure a distortion product, press [PEAK SEARCH] to place a marker on a source signal. To activate a second marker, press [MARKER DELTA] and [NEXT PK LEFT] or [NEXT PK RIGHT] to set the second marker on the peak of the distortion product that is beside the signal source, as in Figure 3-10. The difference in frequency and amplitude between the two markers is displayed in the active function block.
Figure 3-10. Intermodulation distortion measured in dBC.

6. You may want to store the measurement information for future use. The save and recall functions allow you to store data for later viewing. The screen title function allows you to create a title on the screen and a label for the recall menu. To create a title, press DISPLAY and then SCREEN TITLE. Next, use the softkeys from the screen-title menu and the knob (to choose the letters) to create a title. The title appears in the upper-right corner of the graticule and can be one or two rows of 16 characters each (see Figure 3-11). Press the softkey TITLE DONE when the title is complete.

Figure 3-11. Display with title.
7. To save the instrument state, press SAVE, then SAVE STATE. Then press a softkey to enter the instrument state data into whichever register (0-9) you select. The first sixteen characters of the title are used to label the register on the recall menu. To view this menu, press RECALL and then RECALL STATE (see Figure 3-12). If a stored state has not been titled, the menu reads STATE followed by the register number chosen.

![Figure 3-12. Recall menu with a previously saved title.](image)

Example 3: AM AND FM DEMODULATION

Introduction

Amplitude modulation (AM) and frequency modulation (FM) are two very common types of modulation techniques used to transmit information. AM and FM signals are used in broadcasting information via the airwaves. In the United States and Canada, the AM band is 535 kHz to 1605 kHz, while the FM band covers 88 MHz to 108 MHz.

Demodulation of AM and FM signals can be done with any spectrum analyzer with zero span capability and with a wide enough bandwidth to fully encompass the modulated signal. An easier method for examining a demodulated signal is to use the built-in AM/FM demodulator and speaker in the HP 8560A and HP 8561B Spectrum Analyzers. For simplicity in our example, we will just demodulate an FM signal. To demodulate and listen to an AM signal, repeat the same steps, except activate AM DEMOD ON OFF instead of FM DEMOD ON OFF.
Spectrum Analyzer Functions Used

The procedure below illustrates the use of the HP 8560A and HP 8561B's built-in AM and FM demodulator and speaker. The example includes tuning the spectrum analyzer to a band of interest, activating and moving a marker to the signal that is to be demodulated, and demodulating and listening to the signal with the built-in demodulator and speaker.

Stepping Through the Measurement

Provide a signal to the spectrum analyzer by connecting a rod antenna to the input port of the spectrum analyzer, or connect a tap from your roof antenna.

![Spectrum Analyzer Diagram]

Figure 3-13. AM and FM Demodulation Test Setup

1. Tune to the FM band by setting the start frequency of the spectrum analyzer to 88 MHz, and the stop frequency to 108 MHz. Press **FREQUENCY**, **START FREQ**, enter 88 MHz, **STOP FREQ**, and enter 108 MHz.
2. To demodulate an FM signal, a marker must be activated before the demodulator is turned on. For easier use, the AM/FM demodulation menu contains the marker functions. Pressing **AUX CTRL**, then **AM/FM DEMOD** will show the demodulation menu. Activate a marker by pressing **MARKER NORMAL**. Position the marker on the signal of interest. If the signal of interest is the highest in amplitude, press **PEAK SEARCH** directly, as in Figure 3-15.

Figure 3-14. FM Band

Figure 3-15. Place a marker on the signal of interest, then demodulate.
3. For this example, before demodulating the signal, set the demodulation time to 30 seconds by pressing MORE OF 2, DEMOD TIME, and entering 30 seconds. This sets the actual time that the built-in demodulator will demodulate the signals in order for you to listen to it. Now, set FM DEMOD ON OFF to ON. You may have to adjust the volume of the speaker using the volume knob located on the front panel, under the display.

Example 4: STIMULUS-RESPONSE MEASUREMENTS

What are stimulus-response measurements?

Stimulus-response measurements require a source to stimulate a device-under-test (DUT) and a receiver to analyze the frequency-response characteristics of the DUT. Characterization of a DUT can be made in terms of its transmission or reflection parameters. Examples of transmission measurements include ripple, flatness, and image rejection. A typical reflection measurement is return loss.

A spectrum analyzer combined with a tracking generator forms a stimulus-response measurement system. With the tracking generator as the swept source and the spectrum analyzer as the receiver, operation is analogous to a single-channel scalar network analyzer. Being a narrow-band system, the tracking generator’s output frequency must be made to precisely track the spectrum analyzer’s input frequency, resulting in a wide dynamic range. This wide dynamic range will be illustrated in the following example. Figure 3-16 shows the block diagram of a spectrum analyzer/tracking generator system.

![Figure 3-16. Block diagram of a spectrum analyzer/tracking generator measurement system.](image-url)
Spectrum Analyzer Functions Used

The procedure below describes how to use the HP 8560A Option 002 Spectrum Analyzer with built-in tracking generator system to measure the rejection range of a bandpass filter, which is a type of transmission measurement. The same measurement can be made using an HP 8561B Spectrum Analyzer with an HP 85640A Tracking Generator. Illustrated in this example are the functions in the tracking-generator menu, such as adjusting the tracking-generator output power, source calibration, and normalization. Conducting a reflection measurement is similar and will not be covered. Refer to the HP Spectrum Analyzer Seminar, or Application Note 150-7, for more information.

Stepping Through the Measurement

There are four basic steps in performing a stimulus-response measurement, whether it be a transmission or reflection measurement: set-up the spectrum analyzer settings, calibrate, normalize, and measure.

To measure the rejection of a bandpass filter, connect the equipment as shown in Figure 3-17. This example uses a filter with a center frequency of 321.4 MHz and a specified rejection of -85 dB, as the device under test (DUT).

![Spectrum Analyzer Diagram]

Figure 3-17. Transmission Measurement Test Setup

1. Activate the tracking generator menu by pressing AUX CTRL, then TRACKING GENERATOR. The tracking-generator output power is then displayed in the active function block. Since the filter (DUT) is not particularly sensitive, an output power of -10 dBm should not damage it. To activate the tracking-generator power level, press SRC PWR ON OFF until ON is selected. See Figure 3-18.
Figure 3-18. Tracking-generator output power activated.

Note if the error ERR 901 TGFrqLmt appears in the error message area. If this occurs, set the start frequency to 300 kHz. (Stimulus-response measurements using an HP 8560A Option 002 and an HP 85640A are specified from 300 kHz to 2.9 GHz.) Due to the current resolution of the annotation, changing the start frequency to 300 kHz will only be denoted in smaller spans.

2. Put the sweep-time of the analyzer into stimulus-response auto-coupled mode by pressing MORE 1 OF 3, then SUP CPR SR SA until SR is selected. In stimulus-response mode, the auto-coupled sweep times are usually much faster for swept-response measurements.

3. Since we are only interested in the rejection of the bandpass filter, tune the spectrum analyzer's center frequency so that the rolloff of the filter comprises the majority of the trace on the display (see Figure 3-19).
Figure 3-19. Adjust spectrum analyzer settings according to the measurement requirement.

4. Decrease the resolution bandwidth to increase sensitivity, and narrow the video bandwidth to smooth the noise. In Figure 3-20, the resolution bandwidth has been decreased to 3 kHz.

Note

The minimum resolution bandwidth supported in stimulus-response measurements is 300 Hz.

Figure 3-20. Decrease the resolution bandwidth to improve sensitivity.
Note that adjusting the resolution bandwidth may result in a decrease in amplitude of the signal. This is known as a tracking error. Tracking errors occur when the tracking generator's output frequency is not exactly matched to the input frequency of the spectrum analyzer. The resulting mixing product from the spectrum analyzer's input mixer is not at the center of the IF bandwidth. Tracking errors are most notable when using narrow resolution bandwidths. Compensate for the tracking error, by using either the manual or automatic tracking adjustment. These keys can be found on the second softkey menu page of TRACKING GENERATOR under the (AUX CTRL) key.

![Graph](image)

Figure 3-21. Manual tracking adjustment compensates for tracking error.

Note that once the automatic tracking routine is activated in a wide resolution bandwidth, it is not necessary to use the tracking adjust again when decreasing the resolution bandwidth. The automatic tracking routine uses the 300 Hz resolution bandwidth to perform the tracking adjustment. To activate the automatic tracking routine, press TRACKING PEAK. In this example, the automatic tracking routine was performed, and the resolution bandwidth was decreased to 300 Hz, without encountering any tracking error. See Figure 3-21.

5. Calibration in a transmission measurement is done using a through (thru). To calibrate using a thru, press (AUX CTRL), TRACKING GENERATOR, SOURCE CAL MENU, CAL THRU. The guided calibration routine prompts you to connect the thru, as illustrated in Figure 3-22. Connect the thru, and press STORE THRU when ready. When STORE THRU is pushed, the thru trace is stored into trace B and into an internal memory location in the analyzer. The state information of the thru-calibration trace is stored in state register #9. This trace can be recalled for future use. Figure 3-23 shows what appears on-screen after the thru trace is stored. Trace B is in view, depicting the thru trace.
Figure 3-22. Guided calibration routines prompt the user.

Figure 3-23. The thru trace is displayed in trace B.

6. Normalization eliminates the frequency response error in the test-setup. When normalization is on, trace math is being performed on the active trace \((A-B+NRP \rightarrow AJ)\), where \(A\) is the active trace, \(B\) is the stored thru calibration trace, and \(NRP\) is the normalized reference position. Note that the units of the reference level, dB, reflect this relative measurement. See Figure 3-24.

To normalize, press NORMISE ONS OFF until ON is selected. (This softkey is is located on the first page of the tracking generator menu.) Note that two arrows appear on each side.
of the graticule, when normalization is activated. These two arrows mark the normalized reference position, or the position where 0 dB insertion loss (transmission measurements) or 0 dB return loss (reflection measurements) will normally reside. The dB value of the normalized reference position can be set using the NORM REF LVL adjustment under the AMPLITUDE key. Changing NORM REF POSN will result in a change in the position of the normalized trace, within the range of the graticule.

![Normalized Trace Graph]

Figure 3-24. Normalized Trace

7. Measure the range using the delta markers. Press PEAK SEARCH, MARKER DELTA, and use the knob to position the second marker in the rejection area of the bandpass filter as shown in Figure 3-25.
Figure 3-25. Measure the rejection range with delta markers.

8. When normalize is active, there is also a change to the amplitude menu. **REF LVL** is replaced by **NORM REF LVL**, and the **RANGE LVL** softkey appears.

NORM REF LVL, like **NORM REF POSN**, is a trace math function which allows you to change the position of the normalized trace, within the range of the graticule. See Figure 3-26. It does not change any spectrum-analyzer settings, so your measurement remains calibrated. However, using these two trace math functions may mean that the top of the screen does not necessarily represent the gain-compression limit.

Figure 3-26. **NORM REF LVL** adjusts the trace without changing analyzer settings.
RANGE_LVL increases the dynamic range of the measurement, by changing the input attenuator and IF gain. It is equivalent to REF_LVL, which is used in signal analysis measurements. Both RANGE_LVL and REF_LVL ensure that the input signal is not in gain compression.

To increase the dynamic range of the measurement, press RANGE_LVL. Note that while increasing the dynamic range, more errors are introduced into the measurement, such as attenuator switching, etc. However, as Figure 3-27 shows, the dynamic range level has increased by 18 dB, when using RANGE_LVL.

![Figure 3-27. Increase the dynamic measurement range by using RANGE_LVL.](image)

If the actual measured signal is beyond the gain-compression limit, or below the bottom graticule of the display, an error message will appear in the lower right-hand corner of the display. In the case shown here, the passband information is adjusted off-screen in order to view the rejection range with better resolution. Therefore, changing the analyzer settings to raise the passband information off the top of the screen will result in the error ERR 903 A>DLMT being displayed.

ERR 904 B>DLMT may also appear, when in normalized mode, if (1) calibration trace is off-screen, (2) no calibration has been performed after a preset, or (3) trace B is blank. To clear this error, and ensure a calibrated measurement, recalibrate and perform a store-thru operation.

Another example of the difference between range level and the normalized reference level is illustrated below. The normalized frequency response of a preamplifier is shown in Figure 3-28. The normalized trace falls off the top of the graticule. This is confirmed by the step up A key when a marker is activated, and the ERR 903 A>DLMT error appears in the error message block.
Figure 3-28. Normalized frequency response trace of a preamplifier.

By increasing **NORM REF LVL** to 30 dB, as shown in Figure 3-29, the trace moves down on the screen. Note the following three instrument parameters: (1) the input attenuator value still remains at 10 dB, (2) the marker-amplitude readout displays 13.2 dB, and (3) the ERR 903 A>DLMT error message is still displayed, even though the signal appears to be fully within the graticule.

Figure 3-29. **NORM REF POSN** is a trace function.

After returning the **NORM REF LVL** to 0 dB, increase **RANGE LVL** to 30 dB. As shown in Figure 3-30, the trace moves fully within the graticule. Again, note the following three
instrument parameters: (1) the input attenuator value has changed to 40 dB, (2) the marker-amplitude readout displays 16.3 dB, and (3) the ERR 903 A>DLMT error message no longer appears.

Figure 3-30. RANGE LVL adjusts analyzer settings for compression-free measurements.

Hence, Figure 3-29 shows that NORM REF LVL is a trace function that can position the active trace without changing analyzer settings. The ERR 903 A>DLMT error message is an indicator that the actual measured trace may fall outside of the analyzer's measurement range with the current settings. By adjusting RANGE LVL, thereby changing the input attenuator and IF gain, compression-free measurements are assured.

Example 5: EXTERNAL MILLIMETER MIXERS

External millimeter mixers can be used to extend the frequency coverage of the HP 8560A and HP 8561B. (It should be noted that an HP 8560A Option 002 does not have external-mixer capabilities.) Hewlett-Packard manufactures external mixers that do not require biasing and cover the frequency ranges from 18 GHz to 110 GHz. Other manufacturers sell mixers that extend to 325 GHz, but require biasing. The HP 8560A and HP 8561B will support both types of mixers.
Spectrum Analyzer Functions Used

The HP 8560A and HP 8561B contain an extensive menu of functions that help the millimeter user. This example explains how to connect external mixers to the spectrum analyzer, choose the band of interest, store conversion-loss factors, and how to use its automatic signal-identification functions.

Stepping Through the Measurement

Figure 3-31 illustrates how to connect an external harmonic mixer to the spectrum analyzer.

Caution

The spectrum analyzer local-oscillator output power is +16.5 dBm. Be sure that your external harmonic mixer can accommodate this power level before connecting it to the analyzer.

Figure 3-31. External mixer setup (a) without bias; (b) with bias.

Note

Good quality shielded, SMA-type cables should be used to connect the mixer to the spectrum analyzer to ensure that no signal attenuation occurs. HP 5064-5458 SMA-type cables may be used. Do not overtighten the cables.

1. To select a frequency above 18 GHz, press **(AUX CRTL), EXTERNAL MIXER** to set the analyzer to external mixer mode, and then enter the desired frequency directly using the center-frequency function. Note in Table 3-1 that some frequencies overlap and fall into two bands. Using the above method to select a frequency in an overlapping area will set the analyzer to one of the two bands, but it may not be the band that you desire. To be
function area corresponds to the desired frequency band. In this example, we’ll take a look at U-band, which ranges from 40 GHz to 60 GHz, as depicted in Figure 3-32. The LOCK HARMONIC function “locks” the spectrum analyzer in that band, ensuring that the spectrum analyzer sweeps only the chosen band.

Table 3-1. External Mixer Frequency Ranges

<table>
<thead>
<tr>
<th>Frequency Band</th>
<th>Frequency Range (GHz)</th>
<th>Mixing Harmonic</th>
<th>Conversion Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>18.0—26.5</td>
<td>6—</td>
<td>30 dB</td>
</tr>
<tr>
<td>A</td>
<td>26.5—40.0</td>
<td>8—</td>
<td>30 dB</td>
</tr>
<tr>
<td>Q</td>
<td>33.0—50.0</td>
<td>10—</td>
<td>30 dB</td>
</tr>
<tr>
<td>U</td>
<td>40.0—60.0</td>
<td>10—</td>
<td>30 dB</td>
</tr>
<tr>
<td>V</td>
<td>50.0—75.0</td>
<td>14—</td>
<td>30 dB</td>
</tr>
<tr>
<td>E</td>
<td>60.0—90.0</td>
<td>16—</td>
<td>30 dB</td>
</tr>
<tr>
<td>W</td>
<td>75.0—110.0</td>
<td>18—</td>
<td>30 dB</td>
</tr>
<tr>
<td>F</td>
<td>90.0—140.0</td>
<td>24—</td>
<td>30 dB</td>
</tr>
<tr>
<td>D</td>
<td>110.0—170.0</td>
<td>30—</td>
<td>30 dB</td>
</tr>
<tr>
<td>G</td>
<td>140.0—220.0</td>
<td>36—</td>
<td>30 dB</td>
</tr>
<tr>
<td>Y</td>
<td>170.0—260.0</td>
<td>44—</td>
<td>30 dB</td>
</tr>
<tr>
<td>J</td>
<td>220.0—325.0</td>
<td>54—</td>
<td>30 dB</td>
</tr>
</tbody>
</table>

Figure 3-32. Select the band of interest.

2. Table 3-1 lists default conversion-loss values that are stored in the analyzer for each frequency band. These values approximate the values for the HP 11970 Series Mixers. Other conversion-loss values may be entered into the spectrum analyzer in two ways. The first allows the user to save the average conversion-loss value for the entire band using AVERAGE CNV LOSS. To activate this function, press [AUX CTRL], [EXTERNAL MIXER], [AMPTD CORRECT], [AVERAGE CNV LOSS], then enter the appropriate average conversion-loss
value. On HP 11970 Series Harmonic Mixers, these values are charted on the mixer. The U-band mixer used for this example had an average conversion loss of 23.5 dB, as depicted in Figure 3-33.

![Figure 3-33. Store and correct for conversion loss.](image)

The second method for storing conversion-loss information uses the **CNV LOSS VS FREQ** softkey. This method allows you to save individual conversion-loss data points at specific intervals across the harmonic band. To view or enter a conversion-loss data point, press **CNV LOSS VS FREQ**, enter the conversion-loss data, and use the step up (A) key to step through the band.

SIGNAL IDENTIFICATION

3. The IF output of a harmonic mixer contains many mixer products (frequencies of LO ± source, 2LO ± source, 3LO ± source ... nLO ± source). As a result, within a single harmonic band, a single input signal can produce many responses, only one of which is valid. These responses come in pairs, where the members of the valid pair are spaced 621.4 MHz apart (see Figure 3-34) and the right-most member for the pair is the correct response (for this analyzer, the left member of a pair is not valid).
Figure 3-34. Signal responses produced by a 50 GHz signal in U band.

Signal-identification routines are built into the spectrum analyzer which identify the signal and image. The frequency shift method of identifying valid signals employs the spectrum-analyzer function **SIG-ID ON OFF**. When using this function, smaller spans will yield more accurate measurements. Span down to 50 MHz, then press **AUX CTRL**, **EXTERNAL MIXER**, **SIGNAL IDENT**, and **SIG ID ON OFF** to ON. Any signal not produced by the currently selected harmonic will be shifted horizontally on alternate sweeps (see Figure 3-35); so when viewing the display, on alternate sweeps, the signal will appear, then not appear at the frequency of interest. The correct signal that has been produced by the selected harmonic will be shifted in a vertical direction only, as in Figure 3-36.
There is also a function for identifying signals in wide frequency spans. This function, **SIG ID AT MKR**, employs a harmonic search method of signal identification. **SIG ID AT MKR** automatically determines the proper frequency of a signal and displays its value on the spectrum analyzer. Activating **SIG ID AT MKR** on an image will yield a reading in the active block, as depicted in Figure 3-37. The true signal frequency is given with an identifier that the marker resides on an image. If the marker is placed on a true signal, and **SIG ID AT MKR** is activated, the signal frequency will appear without the
IMAGE notation, as shown in Figure 3-38. To activate \texttt{SIG ID AT MKR}, place a marker on a signal and press \texttt{AUX CTRL}, \texttt{EXTERNAL MIXER}, \texttt{SIGNAL IDENT}, then \texttt{SIG ID AT MKR}.

![Graph](image1)

\textbf{Figure 3-37. SIG ID AT MKR} performed on an image signal.

![Graph](image2)

\textbf{Figure 3-38. SIG ID AT MKR} performed on a true signal.

4. To exit the external mixer mode, press \texttt{AUX CTRL}, then \texttt{INTERNAL MIXER}.

\textit{BIAS}

3-30 Common Measurements
The HP 11970A Series Harmonic Mixers mentioned in the section above, do not require bias. Mixers requiring bias can also be used with the HP 8560A and HP 8561B. Bias gives these mixers minimum conversion loss; however, bias must be adjusted for every measurement made. Mixers requiring bias are connected as shown in Figure 3-31 (with mixer bias supplied via the IF line). To measure a signal, access a band as described above. To activate the bias, press [AUX CTRL], [EXTERNAL MIXER], and [BIAS]; then press the softkey corresponding to the bias polarity (positive or negative) that your mixer requires. Use the knob on the spectrum analyzer to adjust the bias and to peak the signal for maximum amplitude. Activate the signal identification method that you desire. On most mixers, the optimum bias varies with frequency, so the bias should be adjusted for every signal measured.

| Warning | The open-circuit bias voltage can be as great as +3.5 V through a source resistance of 300 ohms. Such voltage levels may appear when recalling an instrument state in which an active bias has been stored. |

| Note | The bias value that appears on the spectrum analyzer display is expressed in terms of short-circuit current (that is, the amount of current that would flow if the IF line were shorted to ground). The actual amount of current flowing into the mixer will be less. |
Programming

This chapter describes how to operate an HP 8560A and HP 8561B Portable Spectrum Analyzer by remote, computer control. The topics covered in this chapter are listed below:

- Setup procedure for remote operation
- Communication with the system
- Initial program considerations
- Program timing
- Data transfer to computer
- Input and output buffers
- Math functions
- Creating screen titles
- Generating plots and prints remotely
- Monitoring system operation (service requests)
Setup Procedure

The following procedure describes how to connect your equipment for remote operation of the HP 8560A and HP 8561B Spectrum Analyzers.

Note

Refer to the *Installation and Verification Manual* for more information on installing, configuring, and addressing the system.

1. Connect computer, spectrum-analyzer system, and other peripherals with HP-IB cables. The HP 85620A Mass Memory Module can be attached for down-loadable programming (DLP) capabilities.

2. After the HP-IB cables are installed, reset all instruments connected to the bus. (If you are not sure how to reset a device, switch its line power off, then on, to reset it.)

3. Check the HP-IB address of the spectrum analyzer by pressing **CONFIG**, then **ANALYZER ADDRESS**. Note that for examples in this section, HP-IB address 18 is used.

Figure 4-1. HP 8560A connected to an HP 9000 Series 300 computer.
Communication with the System

This section develops some fundamental techniques for controlling the spectrum analyzer and obtaining reliable measurement results. The spectrum analyzer is remotely controlled with commands that correspond in general to front-panel softkey functions.

It is important to understand how messages are communicated to the spectrum analyzer; therefore, enter and output statements and command syntax discussed in this chapter should be understood before proceeding. HP BASIC is used for all examples in this manual.

Executing Remote Commands

The computer communicates with the spectrum analyzer system on the Hewlett-Packard Interface Bus (HP-IB), using HP BASIC OUTPUT and ENTER statements.

An OUTPUT statement tells the computer to send a message to the spectrum analyzer. For example, executing the statement below sets the center frequency to 300 MHz and the frequency span to 1 MHz.
An ENTER statement used in conjunction with a spectrum-analyzer query returns information to the computer. To return the center-frequency value to the computer, first form a query by adding a question mark (?) to the command:

\[\text{OUTPUT 718; "CF?;"} \]

Next, the ENTER statement is used to assign the returned value to a variable in the computer:

\[\text{ENTER 718; Center} \]

The value of the center frequency above is placed in the variable named “Center”. The variable may be printed, stored, or used for other computer functions.

Syntax Requirements

All of the program examples in this manual show recommended command syntax. All spectrum analyzer commands must be constructed according to specific syntactical rules which are outlined in Chapter 5, “Language Reference.” Chapter 5 lists all of the remote spectrum analyzer commands in alphabetical order, and contains a syntax diagram for each command. Refer to Appendix E for a complete alphabetical command listing of all valid HP 8560A and HP 8561B Spectrum Analyzer remote commands.
Local and Remote Control

Whenever the spectrum analyzer is remotely addressed, all front-panel keys and softkeys are disabled, except for the one HP-IB related softkey RMT LCL. When the analyzer is remotely addressed, the remote mode (RMT) is selected. Pressing RMT LCL until "LCL" is underlined returns the analyzer to local mode and reactivates front-panel operation. Executing the HP BASIC statement LOCAL achieves the same result.

Note

Local mode should not be activated, via the RMT LCL softkey, until other processes are complete (for example, instrument preset, recall state, fast Fourier transform, etc.). Using the LOCAL command via HP-IB may require the HP BASIC command WAIT to precede it. Executing a WAIT statement before the LOCAL command ensures that sufficient time has been allocated for full execution of other commands before local mode is activated.

Program timing may be affected when using the LOCAL command at the end of a command string or at the end of a program without preceding it with a WAIT command. In this case, all commands in the program may not be executed and errors that are generated may not be reported due to the fact that the analyzer has exited remote mode as soon as the LOCAL command is received.
Initial Program Considerations

Programs should begin with a series of HP BASIC statements and signal analyzer commands that form a good starting point for measurements. Some initial program considerations are discussed below.

CLEAR is an HP BASIC statement that puts an HP-IB instrument (for example, HP 8560A) in a known state by clearing the input buffer, the output buffer, and the command parser of the specified instrument, so that it is ready for operation. This command may be used to clear devices on the bus singly or in unison. It is often desirable to clear only one instrument so that other instruments on the bus are not affected. Refer to the “Program Timing” section, in this chapter, for more information.

To clear only the spectrum analyzer, CLEAR 718 should be used.

To clear all devices at select code 7, CLEAR 7 must be used.

IP, the instrument preset command, presets all parameters of the spectrum analyzer for the current mode of operation, and provides a good starting point for all measurement processes. Executing IP is actually the same as executing a number of commands that set the spectrum analyzer to a known state.
Program Timing

Most remotely-controlled measurements require control of the sweep. The TS (take sweep) command initiates a sweep when the trigger conditions are met. When TS is executed as part of a command sequence, the analyzer starts and completes one full sweep before the next analyzer command is executed.

Use the SNGLS (single sweep) command to maintain absolute control over the sweep and to reduce execution time. Once SNGLS activates the single-sweep mode, TS may be used to initiate a sweep only when necessary.

Note

If a TS command is executed, but the trigger conditions are not met, the spectrum analyzer will not respond on HP-IB. The analyzer continues to take commands into its input buffer, however the commands are not processed at this time. This may also appear to happen if the sweep time is very long. If this occurs, the HP BASIC CLEAR statement may be used to abort the TS command. (CLEAR also causes an instrument preset.)

Since many remote commands process trace information, updating trace information with TS becomes important whenever the input signal or analyzer settings change. Use TS to update the trace after the analyzer settings or input signals change, but before the trace information is returned to the computer or processed by other commands, like trace math or marker commands.

When developing measurement algorithms with the front-panel controls, use the single-sweep function to simulate the effect of the TS command updating the trace. Pressing either SGL SWP or SINGLE, and waiting until the end of the sweep, is the same as executing TS via remote control during the single-sweep mode.

The following examples demonstrate the importance of updating trace information with the TS command.

EXAMPLE. Change the measurement range but do not update trace information.

Connect the calibrator signal to the analyzer INPUT 50Ω before performing this example.

```
10  CLEAR 718
20  OUTPUT 718;"IP;SNGLS;TS;"
30  OUTPUT 718;"CF 300MHZ;SP 1MHZ;"
40  END
```

Initialize analyzer.
Change measurement range.
Figure 4-2. Invalid Trace Information

The previous program example does not measure with the new analyzer settings as depicted by the data-invalid indicator "*" in the upper right-hand corner. To obtain valid trace information, the trace must be updated with the TS command. Here is the program again, corrected to include the TS command.

Example. Change the measurement range, then update trace information.

Connect the calibrator signal to the analyzer INPUT 50Ω before performing this example.

```
10  CLEAR 718
20  OUTPUT 718;"IP;SNGLS;"
30  OUTPUT 718;"SP 1MHz;CF 300MHz;"
40  OUTPUT 718;"TS;"
50  END
```

Initialize analyzer.

Change measurement range.

Measure with trace A.
The next example processes trace information with a marker command, MKPK HI (marker peak highest), which selects the highest amplitude level in the trace. Since the program changes the measurement range, the trace information must be updated with TS before MKPK HI is executed.

Example. Use TS to update trace information before using the marker commands.

Connect the calibrator signal to the analyzer INPUT 50Ω before performing this example.

```
10 CLEAR 718
20 OUTPUT 718;"IP;SNGLS;"
30 OUTPUT 718;"SP 1MHZ;CF 300MHZ;RL -5DBM;"
40 OUTPUT 718;"TS;"
50 OUTPUT 718;"MKPK HI;"
60 END
```

Initialize analyzer.
Change measurement range.
Update trace.
Place marker on highest signal level.
Figure 4-4. Update trace information with TS before executing marker commands.

As the example shows, TS is executed *after* analyzer settings are changed, but *before* trace information is processed.

There are two commands that change the measurement range indirectly, MKCF (marker to center frequency) and MKRL (marker to reference level). They set the center frequency and reference level equal to the marker frequency and amplitude, respectively. If valid trace information is needed, a TS command must be executed after these commands are executed.

In all cases, executing TS invokes at least one entire sweep. However, TS invokes more than one sweep when certain commands are active, such as SP (frequency span) when MKTRACK (marker tracking) is turned on.

Note

To ensure that all processes have been completed (for example, FFT), take a sweep and then query the data.
Data Transfer to Computer

An important part of spectrum-analyzer remote operation is sending and receiving trace data to and from a computer via HP-IB. There are three requirements that apply to all trace data transfers.

1. Trace length

HP 8560A and HP 8561B traces are composed of 601 data points, or trace elements. This is the length of all traces and cannot be changed. When transferring trace data to or from a computer, trace-data array dimensions must be set to 601 elements.

2. Trace conditions

Trace data is of little value if you do not also know the trace conditions from which the data was taken. The five conditions that you must store in addition to the trace data are the start and stop frequencies, the reference level, the amplitude scaling, and the absolute amplitude units. You may want to store additional conditions such as the resolution bandwidth, attenuation, or sweep time. Example 1 below queries the spectrum analyzer for the trace conditions shown on the display and stores them. Example 2 shows how to return this data to the analyzer. These procedures, which you may find useful, are used throughout the programming examples in this chapter.

Example 1

```
10 SUB Get_settings(Fa,Fb,RL,Rb,Vb,St,Lg,Aunits$)
20 OUTPUT 718;"FA?;FB?;RL?;RB?;VB?;ST?;LG?;AUNITS?;"
30 ENTER 718 USING "K";Fa,Fb,RL,Rb,Vb,St,Lg,Aunits$
40 SUBEND
```

Example 2

```
10 SUB Setup_analyzer(Fa,Fb,RL,Rb,Vb,St,Lg,Aunits$)
20 OUTPUT 718;"FA ";Fa;"HZ;"
30 OUTPUT 718;"FB ";Fb;"HZ;"
40 OUTPUT 718;"RL ";RL;"DBM;"
50 OUTPUT 718;"AUNITS ";Aunits$;";"
60 OUTPUT 718;"RB ";Rb;"HZ;"
70 OUTPUT 718;"VB ";Vb;"HZ;"
80 OUTPUT 718;"ST ";St;"SEC;"
90 IF Lg=0 THEN
100 OUTPUT 718;"LN;"
110 ELSE
120 OUTPUT 718;"LG ";Lg;" dB;"
130 END IF
140 SUBEND
```

3. Specify the data format before transferring data.

Use the TDF (trace data format) command to specify the format before sending data from the spectrum analyzer to the computer. The examples in this section illustrate how to use this command.
The examples in this section use the TRA (trace A) command. This command transfers data to and from trace A. The TRB (trace B) command is also available for transferring trace B data. It is possible to read data from trace A and then send it to trace B, and vice versa. For simplicity, this capability is not reflected in the programming examples in this section.

The analyzer returns information as decimal values in fundamental units shown in Table 4-1. The analyzer also applies these units to data received from the computer which do not explicitly specify units.

<table>
<thead>
<tr>
<th>Measured Data</th>
<th>Fundamental Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>Hz</td>
</tr>
<tr>
<td>Power</td>
<td>dBm, dBMV, dBuV, W</td>
</tr>
<tr>
<td>Amplitude</td>
<td>dBm, dBMV, dBuV, W, V</td>
</tr>
<tr>
<td>Ratio</td>
<td>dB, unitless (voltage ratio)</td>
</tr>
<tr>
<td>Voltage</td>
<td>V</td>
</tr>
<tr>
<td>Time</td>
<td>s</td>
</tr>
</tbody>
</table>

As indicated in Table 4-1, power and amplitude information may be returned in several different units. The AUNITs (amplitude units) command is used to select the desired unit. The AUNITs command can either specify a single unit to be used for all power and amplitude information, or it can be set to automatically select the units, based on certain measurement settings. Refer to the description of the AUNITs command in Chapter 5 of this manual for more information.

Parameter vs Measurement Units

All units referred to above are parameter units which are standard scientific units. Trace data may optionally be sent to and received from the analyzer in non-standard units, measurement units, which are used internally by the analyzer. The main advantage to communicating with the analyzer in measurement units is speed; when the analyzer communicates in parameter units, it must convert between internal measurement units and parameter units.

The TDF (trace data format) command is used to select measurement or parameter units. Traces are stored internally as integers in the range from 0 to 600, where 0 represents the bottom graticule line and 600 represents the top graticule line. Since there are 10 graticule divisions vertically, there will be 60 measurement units per graticule. There is a small over-range area above the top graticule line (up to 610), so traces may contain numbers slightly larger than 600.

To convert from measurement units to parameter units or vice-versa, you must have the following information at the time that the trace data is measured: log-scale setting (dB/division or linear), reference level, and the amplitude units which the reference level is expressed in. For log scales where the reference level is expressed in a dB-related unit, the following formulas may be used:

4-12 Programming
Parameter Units = Reference Level + Log Scale \times \frac{\text{Measurement Units} - 600}{60}

\text{Measurement Units} = \frac{\text{Parameter Units} - \text{Reference Level}}{\text{Log Scale}} \times 60 + 600

If reference level is not expressed in a dB-related unit, it must first be converted to such a unit before using the formulas.

When using a linear display scale, the following formulas may be used with the reference level expressed in volts. If the reference level is not expressed in volts, it must be converted to volts before these formulas are used.

\text{Parameter Units} = \text{Reference Level} \times \frac{\text{Measurement Units}}{600}

\text{Measurement Units} = \frac{\text{Parameter Units}}{\text{Reference Level}} \times 600

Notice that the interpretation of measurement units always depends on the reference level and amplitude scaling of the display at the time that the trace data was measured.

Position Units and Trace Elements

Traces are comprised of a fixed number of elements (601). Each element has a fixed position on the horizontal axis of the trace. An element is identified by specifying its horizontal position in position units. Position units are integers, ranging from 1 to 601. The element at the left end of a trace is always identified by a position value of 1. The element at the right end of a trace has a position value equal to 601.

The left edge of the trace corresponds to the start frequency and the right edge corresponds to the stop frequency. You will need to know start and stop frequencies under which the trace data was measured if you plan to convert from position units to frequency.

Trace-Data Formatting

The TDF (trace-data format) command controls the formatting of trace-amplitude data. The HP 8560A and HP 8561B provide five format modes: real-number parameter units (P) format, binary (B) format, A-block format, I-block format, and measurement units (M) format. All the format modes return amplitude information in measurement units except for TDF P, which returns parameter units.

The output format, and how to transfer data to and from a computer with each format, is described below.

TDF P: Return Decimal Numbers in Parameter Units

The real number, or “P” format allows you to receive or send data as ASCII decimal values in real-number (parameter) units. This is the default format when the instrument is powered up, and when instrument preset (IP) is activated. Numbers are in dBm, dBmV, dBμV, volts, or watts, as determined using the amplitude units (AUNITS) command. Default units are volts for linear trace information, and dBm for logarithmic trace information.

A line feed (ASCII code 10) follows data output. The end-or-identify message (EOI) is sent with a line feed.
Real-number data may be an advantage if you wish to use the data later in a program. However, data transfers using P-format tend to be slow and require more storage memory (approximately 1200 bytes for binary and 4800 bytes for real numbers). In some cases, P-format can take up to four times the amount of controller memory compared to binary format.

Example 3 below illustrates how to send trace data to a computer.

Example 3

```plaintext
10   REAL A(1:601)
20   OUTPUT 718;'IP;CF 300 MHZ;SP 20 MHZ;SNGLS;TS;'
30   CALL Get_settings(Fa,Fb,R1,Rb,Vb,St,Lg,Aunits$)
40   OUTPUT 718;'TDF P;TRA?'
50   ENTER 718;A(*)
60   END
70   SUB Get_settings(Fa,Fb,R1,Rb,Vb,St,Lg,Aunits$)
80   OUTPUT 718;'FA?;FB?;RL?;RB?;VB?;ST?;LG?;AUNIT$?;''
90   ENTER 718 USING ''K'';Fa,Fb,R1,Rb,Vb,St,Lg,Aunits$
100  SUBEND
```

Line 10 dimensions array A to 601 elements (one element for each point of trace data). The array is dimensioned using the REAL statement, allowing each array element to accept real-number data.

Line 20 sets the analyzer to a desired state.

Line 30 calls the subprogram that queries the spectrum analyzer for the required state data.

Line 40 specifies P-format (TDF P), then queries the analyzer for data in trace A (TRA?).

Line 50 enters the data into the array.
Example 4 illustrates how to return data from a computer to the spectrum analyzer.

Example 4

```
10    REAL A(1:601)
20    OUTPUT 718:"IP;CF 300 MHZ;SP 20 MHZ;SNGLS;TS;"
30    CALL Get_settings(Fa,Fb,Rl,Rb,Vb,St,Lg,Aunits$)
40    OUTPUT 718:"TDF P;TRA?"
50    ENTER 718;A(*)
60    PRINT "PRESS CONTINUE TO RETURN DATA TO THE ANALYZER"
70    PAUSE
80    OUTPUT 718:"IP;TDF P;VIEW TRA;TS;"
90    CALL Setup_analyzer(Fa,Fb,Rl,Rb,Vb,St,Lg, Aunits$)
100   OUTPUT 718;"TRA ";
110    FOR I=1 TO 601
120    OUTPUT 718;A(I);"DBM ";
130    NEXT I
140   OUTPUT 718;A(601);"DBM;"
150   END
```

Lines 10 to 50 are the same as in Example 3 above.

Line 80 begins to send trace data by presetting the analyzer, preparing the spectrum analyzer to accept data into trace A, and selecting the P-format.

Line 90 sets the analyzer to the stored trace conditions per the subroutine in Example 2.

Lines 100 to 140 enter the stored trace data into trace A. When sending trace data into the analyzer using P-format, the data points must be entered into the analyzer one point at a time. Note that in Line 120 each data point value of the trace array is followed by the amplitude units (in this case, dBm). If the specified amplitude units for the trace data are the same as the amplitude units currently selected for the analyzer, you may omit the amplitude units in the above program.

TDF M (M-format): Return Decimal Numbers in Measurement Units (output only)

The measurement units (M) format transfers trace data as ASCII integer values in measurement units, which is the internal format used by the spectrum analyzer (see Figure 4-5). The displayed amplitude of each element falls on one of 601 vertical points (with 601 equal to the reference level). For example, the peak of the signal in Figure 4-5 is equal to −10 dBm, or one division below the reference level. This is equal to 540 measurement units (600 measurement units at the reference level, less 60 measurement units for one division down, equals 540 measurement units). There are also ten additional points of overrange. Measurement units, then, range from 0 to 610.

A line feed (ASCII code 10) follows data output. The end-of-identify message (EOI) is sent with a line feed.

The M-format is faster than the P-format, but most applications will require computer conversion to parameter units. Also, since the M-format transfers data as ASCII characters, the data may be viewed directly.
To send trace data to the computer, see Example 5.

Example 5

```
10  INTEGER A(1:601)
20  OUTPUT 718:"IP;CF 300 MHZ;SP 20 MHZ;SNGLS;TS;"
30  CALL Get_settings(Pa,Fb,Rl,Rb,Vb,St,Lg,Aunits$)
40  OUTPUT 719:"TDF M;TRA?;"
50  ENTER 718;A(*)
60  PRINT A(*)
70  END
```

![Graph](image)

Figure 4-5. Data Transferred in TDF M Format

TDF B (B-Format): Return Binary Numbers in Measurement Units (output only)

The binary (B) format, transmits data in measurement units, as binary numbers. This format provides the fastest data transfer and requires the least amount of memory to store data. Each data point is transferred in binary as two 8-bit bytes; the most significant byte is sent first, followed by the least significant byte. Binary data can also be easily converted into measurement data. If speed and memory are important considerations, you may prefer B-format to P-format.

Unlike A-block and I-block formats, the B-format does not send a header. The data is sent immediately, and the end-or-identify message (EOI) is sent with the last byte.
Example 6 shows how to transfer data in B-format from the spectrum analyzer to a computer.

Example 6

```
10 INTEGER Tra_binary(1:601)
20 ASSIGN Sa_bin TO 718;FORMAT OFF
30 OUTPUT 718;"IP;CF 300 MHZ;SP 20 MHZ;SNGLS;TS;"
40 CALL Get_settings(Fa,Fb,Rl,Rb,Vb,St,Lg,Aunits$)
50 OUTPUT 718;"TDF B;TRA?"
60 ENTER Sa_bin;Tra_binary(*)
70 END
```

Line 10 dimensions the array Tra_binary to 601 elements. Here the INTEGER statement dimensions each array element as two bytes (remember, each data point transferred in B-format is sent as two 8-bit bytes).

Line 20 assigns the spectrum analyzer address to "Sa_bin". Format is set to off because the trace data is transferred in the format of two 8-bit bytes and this format is also the internal format of the computer.

Line 40 enters the instrument state conditions.

Line 50 selects B-format, then queries the spectrum analyzer for trace A data.

Line 60 enters the data into the array Tra_binary.

To convert a trace-data point from binary to a real, logarithmic number (for example, dBm), use the equation below:

\[
n = RL - 10 \text{ divisions} \times \text{Log Scale} + \text{Log Scale} \times \left(\frac{x}{600/10 \text{ divisions}} \right)
\]

\[
= RL + \text{Log Scale} \times \left(\frac{x}{600/10 \text{ divisions}} - 10 \text{ divisions} \right)
\]

where: \(x \) = binary data in an array element

RL = reference level in dBm, dBmV, or dB\(\mu\)V

Log Scale = the log scale in units of dB per division selected on the spectrum analyzer.

\(n \) = real, log data
Example 7 converts binary values to measurement data and prints them on the computer display.

Example 7

```plaintext
10  INTEGER Trace_a(1:601)
20  DIM Real_num(1:601)
30  Ref_lvl=0       !0 dBm reference level
40  Log_scale=10    !10dB/division log scale
50  OUTPUT 718;"TDF B:TRA?;"
60  ENTER 718 USING "#,W";Trace_a(*)
70  MAT Real_num= Trace_a
80  FOR X=1 TO 601
90  Real_num(X)=Ref_level+Log_scale*(Real_num(X)/60-10)
100 NEXT X
110 END
```

For converting linear data, use this equation:

\[n = RL \times \left(\frac{x}{600} \right) \]

where: \(x \) = binary data in an array element

\(RL \) = reference level. When \(RL \) is in volts, \(n \) will be in volts.

These equations are useful when you are interested in viewing only a few points of data, rather than an entire trace. B-format saves time and memory, and these equations provide a means to view the data, if necessary.

Note

It is not possible to return data to the analyzer using binary format. You must use either A-block or I-block format. These two formats are described below.

TDF A (A-block format): Return Absolute Block-Data Fields in Measurement Units

The A-block format transmits data in measurement units as binary numbers in an absolute block-data field, or field of a known size, similar to the binary format. Each data point is sent as two 8-bit bytes; the most significant byte is sent first, followed by the least significant byte. The A-block format also transfers a four-byte header before the 601 points of trace data. The bytes are the ASCII characters "+", "A", and a two-byte length field specifying the number of data bytes in the block that follows (that is, 1202). The first two characters indicate that the transferred data is in A-block format. "1202" indicates the length of the trace data, expressed in bytes. As previously mentioned, trace data is composed of 601 trace elements. Each trace element is transferred as one word that is composed of two 8-bit bytes. Thus, 601 words contain 1202 bytes. 1202 is the trace length sent. You may want to keep this format and trace length information separate from the actual trace data, as in Example 8.

The end-or-identify message (EOI) is sent with a line feed.

IP (instrument preset) and device clear select words as the default data size. Block data formats are the fastest method of transferring trace data.
Example 8 illustrates how to keep the format and trace length information separate from the actual trace data.

EXAMPLE 8

```
10 INTEGER Tra_binary(1:601)
20 DIM Header$[4]
30 OUTPUT 718;"IP;CF 300 MHZ;SP 20 MHZ;SNGLS;TS;"
40 CALL Get_settings(Fa,Fb,Rl,Rb,Vb,St,Lg,Aunits$)
50 OUTPUT 718;"TDF A;TRA;"
60 ENTER 718 USING ",4A,601(W);Header$;Tra_binary(*)
70 END
```

Line 10 creates the array Trabinary using the INTEGER statement.

Line 20 creates a string, Header$. The header will be placed in this string, separate from the trace data.

Line 50 specifies the data format, then queries for the contents of trace A.

Line 60 places the header in “Header$” and places 601 points of trace data in “Trabinary”. Header$ will contain the #A and two non-printing characters that represent in binary the integer 1202. The first non-printing character is CHR$(4), and the second non-printing character is CHR$(178). Since this string does not contain desired trace data, you can discard it. The USING statement specifies that four header characters will be transferred, followed by 601 16-bit words, which are the actual trace data. The “#” sign within the USING statement suppresses any end-of-line signals that may occur before the last trace-data byte is sent.

To send trace data from the computer to the analyzer, refer to Example 9.

EXAMPLE 9

```
10 INTEGER Trabinary(1:601)
20 DIM Header$[4]
30 OUTPUT 718;"IP;CF 300MHZ;SP 20MHZ;SNGLS;TS;"
40 CALL Get_settings(Fa,Fb,Rl,Rb,Vb,St,Lg,Aunits$)
50 OUTPUT 718;"TDF A;TRA;"
60 ENTER 718 USING ",4A,601(W);Header$;Trabinary(*)
70 PRINT "PRESS CONTINUE TO RETURN DATA TO THE ANALYZER"
80 PAUSE
90 OUTPUT 718;"IP;TS;VIEW TRA;"
100 CALL Setup_analyzer(Fa,Fb,Rl,Rb,Vb,St,Lg,Aunits$)
110 OUTPUT 718;"TDF A;"
120 OUTPUT 718 USING ",K,W,601(W);"TRA#A",1202,Trabinary(*),;"
130 END
```

Line 90 presents the analyzer and sets trace A to view mode.

Line 100 returns the state data to the analyzer.

Line 110 sets the data format to A-block.

Line 120 sends the TRA command, the format information and the trace data. The USING statement specifies that the data “TRA#A” will be sent as characters, followed by a word (1202) and 601 16-bit words (the actual trace data). Remember, you must send #A to indicate the format and 1202 to indicate the length of the trace, in bytes. The # sign within the USING statement suppresses any end-of-line signal characters.
The I-block format: Return Indefinite Block-Data Fields in Measurement Units

Very similar to A-block format, the I-block format transmits data in measurement units as binary numbers in an indefinite block-data field of unknown size. Each data point is sent as two 8-bit bytes: the most significant byte is sent first, followed by the least significant byte. The I-block format also transfers a header before the trace data. The header is comprised of ASCII characters “#”, and “I”. These characters indicate that the trace data is in I-block format. Like the A-block format examples, when sending the trace data to the computer, you may want to keep these two characters separate from the trace data, as in Example 10.

I-format sends an end-of-identify message (EOI) with the last byte of data. If (instrument preset) and device clear select words as the default data size. Block data formats are the fastest method of transferring trace data.

Example 10 uses the I-block format to separate the # and I characters from the trace data.

Example 10

```
10 INTEGER Tra_binary(1:601)
20 DIM Header$(2)
30 OUTPUT 718;"IP;CF 300MHZ;SP 20 MHZ;SNGLS;TS;"
40 CALL Get_settings(Fa,Fb,Rl,Rb,Vb,St,Lg,Aunits$)
50 OUTPUT 718;"TDF I;TRA?;"
60 ENTER 718 USING ";#,2A,601(W);Header$,Tra_binary(*)
70 END
```

Like the examples for the A-block format, you store format information in a string (Header$) and store the desired trace data in an integer array (Tra_binary).

Returning the trace data to the analyzer requires an important instruction. The “I” in the term I-block refers to the ability of the spectrum analyzer to accept data of “indefinite” length when using I-block format. Even though the analyzer uses only 601 points of trace data, the I-block format lets you send any number of data points. The spectrum analyzer will continue to accept data until an end-of-instruction (EOI) signal is sent to it. HP 9000 Series 200/300 BASIC allows you to send an EOI with the last data byte using the END command. Refer to Example 11 below.

Example 11

```
10 INTEGER Tra_binary(1:601)
20 DIM Header$(2)
30 OUTPUT 718;"IP;CF 300MHZ;SP 20MHZ;SNGLS;TS;"
40 CALL Get_settings(Fa,Fb,Rl,Rb,Vb,St,Lg,Aunits$)
50 OUTPUT 718;"TDF I;TRA?;"
60 ENTER 718 USING ";#,2A,601(W);Header$,Tra_binary(*)
70 PRINT ";PRESS CONTINUE TO RETURN DATA TO THE ANALYZER"
80 PAUSE
90 OUTPUT 718;"IP;TS;VIEW TRA;"
100 CALL Setup_analyzer(Fa,Fb,Rl,Rb,Vb,St,Lg,Aunits$)
110 OUTPUT 718; "TDF I;"
120 OUTPUT 718 USING ";#,K,601(W);"TRA#I",Tra_binary(*)
130 END
140 END
```

By now most of this program should look familiar. Line 130 requires some explanation, however. The END statement appearing after the array Tra_binary sends (to the spectrum...
Transmission Sequence of Data on HP-IB

Table 4-2 shows an HP-IB transmission sequence for each format mode. Each one transmits the +10 dBm amplitude level of a one-element trace with the amplitude equal to the reference level. In each case, the HP 9000 Series 200 or 300 computer must be instructed how to interpret the data received correctly. The parenthetical numbers in the table are decimal values representing binary 8-bit numbers.

<table>
<thead>
<tr>
<th></th>
<th>Byte 1</th>
<th>Byte 2</th>
<th>Byte 3</th>
<th>Byte 4</th>
<th>Byte 5</th>
<th>Byte 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDF P</td>
<td>1</td>
<td>0</td>
<td>.</td>
<td>0</td>
<td>0</td>
<td>(10-EOI)</td>
</tr>
<tr>
<td>TDF M</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>(10-EOI)</td>
<td>(2)</td>
<td>88-EOI</td>
</tr>
<tr>
<td>TDF A</td>
<td>#</td>
<td>(A)</td>
<td>(0)</td>
<td>(2)</td>
<td>(2)</td>
<td>88-EOI</td>
</tr>
<tr>
<td>TDF I</td>
<td>#</td>
<td>(1)</td>
<td>(2)</td>
<td>88-EOI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDF B</td>
<td>2</td>
<td>88-EOI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Input and Output Buffers

Features of the HP 8560A and HP 8561B include the input and output data buffers. This section describes how to take advantage of the buffers and how to avoid potential programming pitfalls.

Benefits of an Output Buffer

The 64-character input buffer allows you to send several data queries to the spectrum analyzer using only one OUTPUT statement. The 64-character output-data buffer holds queried values so that you can read them into variables using only one ENTER statement. This is a more efficient method than using one OUTPUT statement per query and one ENTER statement per value read. See Example 1.

Example 1

```
10 OUTPUT 718;"IP;SNGLS;MKPX 6DB;MKPT -65DB;FA 270MHZ;FB 1200MHZ;TS;"
20 OUTPUT 718;"MKPK HI;MKD;MKPK NR;MKF?;MKA?;"
30 ENTER 718 USING "K";Mka,Mkf
40 PRINT Mka,Mkf
50 END
```

Example 1 reads the difference in frequency and amplitude between two peaks, then enters the values into variables. Note the order of the queries and entries. The first query is the first value to come out of the output-data buffer; you read the values into variables in the same order that you query the spectrum analyzer.

Whenever you execute a query, be sure to read that value out. If you do not read it out, you will get that value returned for your next query. See Example 2.

Example 2

```
10 OUTPUT 718;"CF?;"
20 OUTPUT 718;"AT UP;RL?;"
30 ENTER 718;R1
40 PRINT R1
50 END
```

In Example 2, even though you wanted to read the reference level, the printed value is equal to the center frequency. The center frequency had been left in the output-data buffer and was the first value to come out of the buffer.

If you are entering multiple values into multiple variables with one ENTER statement, use a “K” format with the ENTER statement. The spectrum analyzer separates queried values by a line feed with an end-or-identify (EOI) asserted; “K” format recognizes that a new value starts after each line feed with EOI. If you omit the USING statement, the ENTER statement will terminate on the first EOI encountered and generate an error.
Buffer Space

The maximum number of characters that the output-data buffer can hold is 64. In Example 1, the query MKD? filled seven character spaces in the output-data buffer. The returned value, -33.34, fills six spaces; the line feed that separates this value from the next one fills the seventh space. This method is used to enter all queries into the output-data buffer. You can continue to query the analyzer until the queries fill all 64 spaces. The input buffer fills similarly. The query AT? fills four spaces in the input data buffer. The input buffer can hold as many commands as will fill its 64-character capacity. Note that the length of returned frequency values are dependent on the frequency-counter resolution. The returned frequency value is not dependent on the current resolution bandwidth.

Preventing Timeouts

A program can pause unexpectedly when the output data buffer is completely filled with query values, the input buffer is completely filled with commands, and the spectrum analyzer is currently executing a query. Under this set of conditions, the program will pause indefinitely. The spectrum analyzer is trying to complete the query, but there is simply no more room in the output-data buffer for any more query data and no place to hold the query in the input buffer. If you have a timeout statement in the program, a timeout will occur.

To prevent this situation, do not allow query values or commands to stack up in the buffers. Query for only a few values, then read them into variables before you send more queries. If you must leave the output buffer full, do not send more than 64 characters of commands with one OUTPUT statement.

A program may also pause unexpectedly while the spectrum analyzer is executing a command that takes a long time to complete. Consider executing the take-sweep (TS) command when the selected sweep time is equal to 100 seconds. In this case, the TS command requires 100 seconds before it is completed. While this command is executing, the input-data buffer fills with 64 characters of commands. When the buffer is full, if there are any remaining commands in that OUTPUT statement, the program will pause. It will start again when the TS command is complete; the spectrum analyzer can then begin processing the commands in the buffer, and the remaining commands in the OUTPUT statement will move into the input data buffer. If you have a timeout statement in your program, the timeout may occur; this depends on whether the timeout setting is shorter than the pause in the program.

Synchronizing Your Program

You can use spectrum analyzer queries to synchronize a program. For example, when executing a TS command, if you want to know when the TS command is complete, execute the DONE command immediately after TS. The DONE query is satisfied only after the sweep has been completed. In fact, you can use any query in this manner. No query operation can take place until after the previous command is complete.
Clearing the Buffers

If you use the output-data buffer correctly, the buffer should be clear after the last ENTER statement is executed. But if you want to ensure that the buffer is empty, execute the device clear statement CLEAR 718. If your program is returning incorrect values, use this statement to clear the buffer; then look through your program for any missing ENTER statements. Or, use CLEAR at the beginning of a program. CLEAR flushes out the output-data and input-data buffers; however, it also executes an instrument preset.

Summary

Figure 4-6 illustrates the input and output data buffers. Below, the causes for the analyzer not accepting data are highlighted.

![Diagram of data buffers]

Figure 4-6. Buffer Summary

The spectrum analyzer will stop accepting data under these non-exclusive conditions:
1. A sweep or lengthy command is not done and the input buffer is full.
2. The output and input buffers are full and the command currently executed is a query.
Math Functions

The analyzer processes and stores measurement results that can be displayed or manipulated arithmetically.

This section describes the internal processing of traces and tells how to manipulate data correctly with the math commands.

Variables and Traces

The analyzer processes all information as variables and trace arrays. For example, the analyzer reserves an area in memory for trace A information. Whenever trace A is swept, the analyzer updates that memory area with new data. The analyzer also has space in memory for variables. Whenever a marker is placed on a trace, the analyzer assigns the amplitude value to the variable, MKA (marker amplitude).

Variables

Variables exist permanently in the analyzer memory. The CF (center frequency) command and SP (frequency span) command are examples of variables.

Traces

Traces consist of a series of data points that contain amplitude information. Two separate traces may be swept: trace A or B. These are the pre-defined traces that exist permanently in the analyzer memory. Traces A and B each have preset lengths of 601 data points.

Math Commands

Math commands are data-manipulating functions that modify traces or return modified data to the computer.

Two Rules for Trace Math

Special consideration must be exercised when using math commands with traces. Otherwise, these data-manipulating commands may yield inaccurate results. Follow these two rules to obtain accurate results:

- Avoid truncation of data. Be sure that the destination length is equal to or greater than the source length.
- Remember that the analyzer limits numbers greater than 600 (610 with overrange) and less than 0 (slightly above the top and at the bottom graticule, respectively), when operating with trace elements.

Math operations are restricted to the legal range of measurement units when trace arrays form the destination or source.
Adding and Subtracting in dBm

The HP 8560A and HP 8561B trace-math scheme allows easy addition and subtraction of correction values in dBm units. For example, to correct for 3 dB of loss in trace A data values, you can add or subtract trace B, which has been preloaded with +3 dBm or −3 dBm as its data values. The two traces can then be added or subtracted using APB (trace A plus trace B) or AMB (trace A minus trace B) and thus eliminate the effects of the loss.

Note that in the example above, the result is an addition or subtraction of dBm and not an addition or subtraction of power. Consider a trace-data value of −50 dBm and a second trace-data value of −50 dBm. When the two values are added using the APB command, the result is −50 dBm + −50 dBm = −100 dBm. However, if two −50 dBm power sources at two different frequencies are physically summed, the result is a power of −47 dBm. To further illustrate this point, if trace A is at 3.0 dBm and trace B is at 7.0 dBm, performing APB; moves trace A to 10.0 dBm (that is, trace A would move up on the screen). On the other hand, if trace A is at −10 dBm and trace B is at −60 dBm, performing APB; drops trace A data to −16 dB, even though trace B is 40 dBm higher in power in both cases. As you can see, the spectrum analyzer is not adding and subtracting physical values, but rather providing an efficient method for calculations in dBm units.

Use AMBPL to Correct Data

The AMBPL (trace A minus trace B plus display line) command provides the most versatile method for applying correction data to a trace. AMBPL subtracts the contents of trace B from the contents of trace A and adds the result to the display line. Consider characterizing the response of a device under test in a swept-measurement system. Enter the response of the system in trace B. Insert the device into the system, then enter this response into trace A. Use AMBPL to subtract the system response from the response with the device under test; the result is the response of the device under test, which is centered about the display line. So, to correct data, use trace B to store a copy of the uncorrected response and subtract this from new data in trace A; the result is a corrected response.

If the two traces are identical, as in the following example, the result of subtracting these two traces will equal 0 dBm. Note, however, that if the reference level is less than 0 dBm, the results will be off the screen, or even clipped (clipping is described under “Trace Data Limits” below). The display line is added to return the result to the screen, with no clipping occurring. Since you can specify the position of the display line, you can move the corrected data to any on-screen position.

Example 1 illustrates how to correct data remotely. Before running this example, connect the calibration signal to the INPUT 50Ω.

Example 1

```
10 OUTPUT 718;"IP;SNGLS;CF 300MHZ;SP 20KHZ;RB 10KHZ;LG 5DB;TS;"
20 OUTPUT 718;"CLRW TRA; CLRW TRB;TS;TS;"
30 OUTPUT 718;"VIEW TRB;DL -16DBM;"
40 OUTPUT 718;"AMBPL ON;" #
50 END
```

Line 10 executes an instrument preset, then uses the calibration signal to simulate uncorrected data. The program sets the reference level to −10 dBm, the span to 20 kHz, the center frequency to 300 MHz, the resolution bandwidth to 10 kHz, the log scale to 5 dB, and the sweep to single mode.

4-26 Programming
Line 20 sets traces A and B to clear-write mode. The program then executes the take-sweep command twice; this places the trace data in both traces.

Line 30 sets trace B to view mode in order to freeze the data in this trace. Use the display line to indicate where you want the corrected data to appear on the screen; for this example, the display line is set to −16 dBm.

Line 40 executes the function AMBPL. Trace B is subtracted from trace A; since the traces are identical, the result is a flat response equal to 0 dBm. Note, however, that the reference level is at −10 dBm; if this were the end of the calculation, you would not be able to see the result. The display line is added to move the response to −16 dBm and onto the screen where you can view the result.

Adding and Subtracting in Volts

In linear mode, all trace math is executed in positive-voltage units. This means that the APB command moves trace A data up the screen, while the AMB command moves trace A data down the screen (assuming trace B contains non-zero data).

To illustrate the difference between trace math in log mode and in linear mode, see Example 2. Here, both trace A and trace B are set to mid-screen values. When in log mode, the result of executing “AMB ON” appears at the top of the screen. When in linear mode, the result appears at the bottom of the screen.

Example 2

```
10 ! PUT TRACES ON SCREEN
20 INTEGER Atrace(I:601)
30 FOR I=1 TO 601
40 Atrace(I)=300
50 NEXT I
60 OUTPUT 718;"IP;LG 10DB;SNGLS;TS;"
70 OUTPUT 718 USING ",#;K,W,601(W),K","TDF A;TRA#A",1202,Atrace(*),";"
80 OUTPUT 718 USING ",#;K,W,601(W),K","TDF A;TRA#A",1202,Atrace(*),";"
90 OUTPUT 718;"AMB ON;"
100 PRINT "PRESS CONTINUE"
110 PAUSE
120 OUTPUT 718;"LN;SNGLS;TS;"
130 OUTPUT 718 USING ",#;K,W,601(W),K","TDF A;TRA#A",1202,Atrace(*),";"
140 OUTPUT 718 USING ",#;K,W,601(W),K","TDF A;TRA#A",1202,Atrace(*),";"
150 OUTPUT 718;"AMB ON;"
160 PAUSE
170 END
```

Trace Data Limits

The displayed amplitude of each trace element falls in one of 600 data points (see Figure 4-7). There are an additional 10 points of overrange. The spectrum analyzer clips results that exceed these limits. The overrange is equal to one-sixth of a division above the reference level. Also, the same clipping algorithm is applied to correction data in a trace (for example, correction data that you enter into trace B). For example, if the reference level is 0 dBm the
scale is equal to 10 dB per division, the correction values must be within the range of +1.66 dBm to -100.00 dBm (one-sixth of 10 dB is equal to 1.66 dB).

Figure 4-7. Display Units
Creating Screen Titles

Screen titles allow you to label instrument data as shown in Figure 4-8. They can help identify on-screen data or data that you want to store or plot. The HP 8560A and HP 8561B have commands to create titles remotely, and several methods can be used to make titles. These include using no format, or using A-block or I-block format. Each method is described below.

Note also that the first 16 characters of a title become the label for a stored instrument state or stored trace. The label replaces the register number of the state or trace that usually appears on the spectrum analyzer menu. If you save or recall states or traces remotely, be sure to use the register number and not this label.

![Figure 4-8. Screen Titles Appear in the Upper-Right Corner of the Graticule](image)

No-Format Method

This is the simplest method for creating a title. No format is used; you simply enclose the title within string delimiters (a list of delimiters appears below). Refer to Example 1.

Example 1

```
10    OUTPUT 718;"TITLE@This is a title@;"
20    END
```

In this example, the "@" symbols are the string delimiters. Inside the delimiters is the title. A title can be up to 32 characters in length. On the spectrum analyzer display, a title appears on up to two lines of 16 characters each. The title can be made up of any valid, printing ASCII characters (line feed and carriage return are not recommended).

The list of string delimiters are: ! "$ % & ' () * + , - . / : ; < = > ? @ [\] ^ _ `{ } | ~
Format Methods

The method described above allows you to enter a title directly. Using formats provides greater flexibility. You can use data that has been previously stored in a string as the title. This data can be in ASCII characters, or even in binary or decimal equivalents. The two formats, A-block and I-block, are described below.

Making a Title in A-Block Format

A-block format allows you to use a string of data as a title. A-block format also requires that this string be of a known length; the length is sent to the spectrum analyzer. To place the title in a string, see Example 2.

Example 2

10 DIM A$[15]
20 A$="THIS IS A TITLE"

A-block format also requires that you send the length of the title, in bytes. When using Hewlett-Packard BASIC (HPBASIC), this task is easily accomplished. See Example 3.

Example 3

10 DIM A$[15]
20 A$="THIS IS A TITLE"
30 OUTPUT 718 USING ",#K,W,K";"TITLE#A",LEN(A$),A$,";"
40 END

Line 30 sends the TITLE command to the analyzer: the #A to specify that the title is in A-block format; the string length; and the contents of the string, which is the actual title. The USING statement specifies that some of the data will be sent as characters (K) and some as a 16-bit word (W). The character data is the spectrum analyzer command (TITLE #A) and the title (in A$). The length of the trace (LEN(A$)) is sent as one 16-bit word that is made up of two 8-bit bytes. The # sign in the USING statement suppresses any end-of-line characters.

Making a Title in I-Block Format

I-block format, like A-block format, also allows you to use string data as a title. With I-block, however, you can send a string of indefinite length. The spectrum analyzer will continue to accept data (up to 32 characters) until an end-or-identify (EOI) signal is sent to the spectrum analyzer. See Example 4.

Example 4

10 DIM A$[15]
20 A$="THIS IS A TITLE"
30 OUTPUT 718 USING ",#K";"TITLE#I",A$,END
40 END

This example is much like the previous one. For I-block format, you must place the title in a string. However, you do not send the title length. Line 30 sends all character data; thus, the USING statement specifies K format only. TITLE #I activates the analyzer TITLE function and specifies that the title is in I-block format. A$ sends the title, and the END statement, which is sent with the last byte of title data, activates the end-or-identify control line. Again, the # sign in the USING statement suppresses any end-of-line characters.

4-30 Programming
Generating Plots and Prints Remotely

In addition to the plot functions available from the spectrum analyzer front panel, the HP 8560A and HP 8561B also allows you to generate plots and prints remotely. This section describes how to combine plot commands to generate plots, as well as the print command to generate a color or monochrome print.

Plotter Requirements

Be sure your plotter satisfies the following requirements to execute the programming examples in this section successfully.

1. The following plotters are supported: the HP 7470A, HP 7475A, HP 7550A and the HP 7440A ColorPro. Be sure that the HP 7550A Plotter is in “standard” mode.

2. Set the plotter to address 5 and cycle the power. If you cannot locate the address switch on the plotter, refer to the plotter’s operation manual. If you want to use a different plotter address for remote operation, be sure to modify the examples accordingly. Remember, to generate plots from the spectrum analyzer front panel, you must reset the address to 5.

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
</table>
The plotter address of 5 corresponds to the default plotter address that the analyzer uses. This default can be changed via PLOTTER ADDRESS under the CONFIG key.

3. Know how to select the scaling points on your plotter. The scaling points (referred to as the P1 and P2 plotter coordinates) define the lower-left and upper-right corners of the plot (see Figure 4-9). These coordinates define the size of the plot. Table 4-3 shows the scaling points for several Hewlett-Packard plotters.

![Figure 4-9. P1 and P2 Coordinates](image-url)
Table 4-3. Scaling Points for Various Plotters

<table>
<thead>
<tr>
<th>Plotter</th>
<th>Typical Scaling Points</th>
<th>Plotting Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP 7440</td>
<td>200,200</td>
<td>7400,11000</td>
</tr>
<tr>
<td>HP 7475A</td>
<td>250,279</td>
<td>10250,7479</td>
</tr>
</tbody>
</table>

Making a Basic Plot

To make a basic plot, choose P1 and P2 coordinates for the plot size you desire and set the plotter to these values. The typical coordinates shown in Table 4-3 create a plot with approximately 1" margins on an 8-1/2" × 11" sheet of paper. (Many plotters have default values for this size of paper.) You can enter coordinates in a program directly, or query the plotter for the values. The latter method is used in the example program below. To generate a plot, connect the plotter via HP-IB to the computer and execute Example 1.

Example 1

10 OUTPUT 705:"GP;"
20 ENTER 705; P1x,P1y,P2x,P2y
30 OUTPUT 718:"PLOT ";P1x;" ";P1y;" ";P2x;" ";P2y;" ";
40 SEND 7;UNL LISTEN 5 TALK 18 DATA
50 END

Line 10 queries the plotter for its P1 and P2 coordinates.

Line 20 enters the P1 and P2 coordinate values into variables.

Line 30 sends the spectrum analyzer PLOT command and the plotter coordinates.

Line 40 sends the following statements over the HP-IB interface: UNL sets all instruments on the HP-IB to unlisten mode; LISTEN 5 sets only the plotter to listen mode; TALK 18 specifies the spectrum analyzer as the talker, which can then send its display contents to the plotter. Since the controller's HP-IB interface must not interfere with the plot, the DATA statement puts the controller HP-IB interface on standby and sets the attention line low.

Example 1 illustrates the statements required to generate a plot. However, there is no provision to indicate to the controller when the plot is finished. Example 2 uses a spectrum analyzer "command complete" service request to indicate when the plot is done (service requests are discussed later in this chapter). When the spectrum analyzer PLOT command is finished, a "command complete" service request is triggered and signals that the plot is done.

Example 2

10 OUTPUT 705:"GP;"
20 ENTER 705;P1x,P1y,P2x,P2y
30 ON INTR 7 GOTO Done
40 ENABLE INTR 7;2
50 OUTPUT 718;"RQS 16;"
60 OUTPUT 718;"PLOT ";P1x;" ";P1y;" ";P2x;" ";P2y;" ";
70 SEND 7;UNL LISTEN 5 TALK 18 DATA
80 Idle: GOTO Idle
90 Done: S_poll=S POLL(718)
100 OUTPUT 718;"RQS 0;"
110 PRINT "COMMAND IS COMPLETE"

4-32 Programming
Lines 10 and 20 obtain the P1 and P2 coordinates, as in the previous example.

Line 30 commands the controller to go to the subroutine Done when an interrupt occurs.

Line 40 enables the controller to receive service request interrupts.

Line 50 The RQS command specifies that a "command complete" condition will generate a service request.

Lines 60 and 70 plot the display contents.

Line 80 keeps the controller on Line 80 of the program until the plot is finished and the PLOT command satisfies the "command complete" condition. When the plot is finished, the controller continues to the subroutine Done. Done performs a serial poll on the spectrum analyzer and reads the generated service request. This also clears the analyzer of this request.

Line 100 returns the spectrum analyzer service requests to their initial condition.

Line 110 prints on the computer screen that the plot is done.

Plotting Options

Perhaps you do not want the entire display contents transferred to the plotter. You may want to plot only a trace, or only a trace and the screen annotation. The spectrum analyzer PLOTSRC (plot source) command specifies the display contents you want to plot. Choose to plot the entire display, trace A, trace B, the annotation, or the graticule. Example 3 illustrates how to plot trace A and the annotation.

Example 3

10 OUTPUT 705;"OP;"
20 ENTER 705;P1x,P1y,P2x,P2y
30 OUTPUT 718;"PLOTSRC TRA;RQS 16;PLOT ";P1x",";P1y",";P2x",";P2y";RQS O;"
40 GOSUB Wait_plot
50 OUTPUT 718;"PLOTSRC ANNT;RQS 16;PLOT ";P1x",";P1y",";P2x",";P2y";RQS O;"
60 GOSUB Wait_plot
70 PRINT "COMMAND IS COMPLETE"
80 STOP
90 Wait_plot: ON INTR 7 GOTO Go_back
100 ENABLE INTR 7;2
110 SEND 7;UNL LISTEN 5 TALK 18 DATA
120 Idle: GOTO Idle
130 Go_back: S_poll=SPOLL(718)
140 RETURN
150 END

Another available plot function, the PLOTO RG (display origins) command, specifies whether the plotter P1 and P2 coordinates are the origins for the entire analyzer display or for its graticule. If you choose the graticule as the origin and plot only the graticule, you can, in effect, create graph paper especially for analyzer plots. Using paper with preprinted graticule lines can save plotting time. When you use this paper, be sure to set the PLOTO RG command in reference to the graticule ("PLOTO RG GRT") and use the P1 and P2 coordinates that you used to create the graticule lines.
Printer Requirements

Be sure your printer satisfies the following requirements to execute the programming examples in this section successfully.

1. The following printers are supported: the HP 2225A ThinkJet and the HP 3630A PaintJet.

2. Set the printer to address 1 and cycle the power. If you cannot locate the address switch on the plotter, refer to the plotter's operation manual. If you want to use a different printer address for remote operation, be sure to modify the examples accordingly.

 Remember, to generate prints from the spectrum analyzer front panel, you must reset the address to 1.

Note

The printer address of 1 corresponds to the default printer address that the analyzer uses. This default can be changed via **PRINTER ADDRESS** under the **CONFIG** key.

Making a Basic Print

To make a basic print, use any HP-IB printer. If using a color printer, the color format (PRINT 1) can be selected; otherwise, a monochrome output is the default output selected.

The example program shown below demonstrates how to generate a print.

Note

The color format output cannot be selected for use with a monochrome printer (for example, an HP ThinkJet).

```
10 OUTPUT 718;"IP;"
20 OUTPUT 718;"CF 300MHZ;SP 1MHZ;TS;DONE?;"
30 ENTER 718;Done
40 ON INTR 7 GOTO Finish
50 ENABLE INTR 7:2
60 OUTPUT 718;"PRINT 0;RQS 16;"
70 SEND 7;UNT UNL LISTEN 1 TALK 18 DATA
80 Idle:  GOTO Idle
90 Finish:  S_poll=SPOLL(718)
100 OUTPUT 718;"RQS 0;"
110 PRINT "PRINT IS COMPLETE"
120 END
```
Monitoring System Operation

The programming techniques discussed so far describe communication between the analyzer and the computer, where the sequence of all data transfer is controlled by a computer program. This section describes how the analyzer can interrupt computer operation when the analyzer has attained a particular state.

The interrupting process is called a service request. Service requests have many applications. They facilitate economical use of computer-processing time when the analyzer is part of a large measurement system. For example, after the computer initiates an analyzer measurement, the computer can make calculations or control other devices via HP-IB while the analyzer is measuring. When the analyzer is through, it signals the computer with a service request. The computer's service-request subprogram then determines what the computer will do next. Service requests can also be used to report analyzer errors and other analyzer events, such as sweep trigger armed.

Interrupt Process

The interrupt process begins when the analyzer "requests" attention by setting the HP-IB service-request line (SRQ) true. The computer must be programmed to respond to this event. Typically, the computer is programmed to interrupt normal program execution and call a user-specified subroutine when the service request occurs. If multiple instruments are being controlled remotely, this subroutine determines which instrument(s) on HP-IB caused the service request. Then, it may be necessary to call another subroutine which determines why a particular instrument requested service (since there may be more than one possible cause). Finally, a subroutine(s) will be called to respond to the indicated event(s). Note that more than one instrument may request service simultaneously, and each instrument may have more than one event to report. These steps are summarized below.

2. Analyzer requests service by setting the SRQ line true.
3. Computer branches to routine that determines the instrument(s) that caused the SRQ.
4. Computer branches to routine that determines why a particular instrument is requesting service.
5. Computer branches to routine to process a specific event in a particular instrument.

Some of the routines above may be omitted, if only one instrument has been instructed to use the SRQ line, or if a particular instrument has been instructed to use the SRQ line for only one event.

Several system-level statements are required to make the computer respond to service requests. The HP BASIC statement, ENABLE INTR (enable interrupt), tells the computer to monitor the service-request line. The on-interrupt statement, ON INTR, specifies where the computer program will branch when a service request occurs. If more than one instrument could cause the service request, or if an instrument can cause a service request for more than one reason, the serial-poll statement, SPOLL, is used. The serial-poll statement is always required to clear the service request being generated by the instrument.
Analyzer Status Byte

The analyzer status byte indicates the status or occurrence of certain analyzer functions. The status byte contains eight bits, numbered 0—7, with bit 0 being the least significant bit.

Bits 0, 1, 2, 3, 4, 5, and 7 represent specific conditions or events. These bits are referred to as condition bits and event bits. Condition bits reflect a condition in the analyzer which may be present or absent at any given moment. Event bits reflect the occurrence of a transition or event within the analyzer.

Bit 6 is set by the analyzer to indicate whether or not it is requesting service.

When the analyzer is instructed not to use the service request line on HP-IB, the status bits always reflect the current condition of the analyzer. In this situation, the event bits in the status byte should not be used. Event bits are only true at the exact instant of a transition in the analyzer and as such are not reliable when service requests are disabled.

When the analyzer is instructed to generate service requests for one or more conditions or events, the status bits reflect the current condition of the analyzer until a service request is generated. Then, the bits which are generating the service request are held true until the status byte is read out of the analyzer (by the HP BASIC SPO LL system-level statement), by the STB? command, or until an HP-IB DEVICE CLEAR (HP BASIC CLEAR system-level statement) is received. These actions clear the status byte to once again reflect the current conditions and events within the analyzer.

The Service-Request Mask

The service-request mode is enabled and controlled by the request-service-condition command, RQS. It defines a service-request mask that specifies which of the status-byte bits may generate a service request. Below, RQS specifies the ERROR-PRESENT and COMMAND-COMPLETE states (bits 5 and 4, respectively) for service requests.

OUTPUT 718; "RQS "; DVAL("00110000", 2)

Selects bit 5 and 4 (32 + 16) to enable service request mode for ERROR-PRESENT and COMMAND-COMPLETE.

OUTPUT 718; "RQS 48;"

Also selects bits 5 and 4 as above, but is somewhat easier to read.

Once RQS is executed, the analyzer requests service by setting the SRQ line true when the desired conditions or events occur.

<table>
<thead>
<tr>
<th>Bit Number</th>
<th>Decimal Equivalent</th>
<th>Analyzer State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>128</td>
<td>RQS</td>
<td>Not used</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>Requests Service</td>
<td>Requests Service</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>ERROR PRESENT</td>
<td>Set when error present</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>COMMAND COMPLETE</td>
<td>Any command is completed</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td></td>
<td>Not used</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>END OF SWEEP</td>
<td>Set when any sweep is completed</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>MESSAGE</td>
<td>Set when display message appears</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>TRIGGER</td>
<td>Trigger is activated</td>
</tr>
</tbody>
</table>
Computer Interrupt Statements

Now that the spectrum analyzer is prepared to trigger service requests, you must prepare the computer to accept this type of interrupt. Use the BASIC statements ON INTR ... GOTO or CALL or GOSUB and ENABLE INTR. ON INTR ... GOTO causes the computer to branch to a subroutine or some other part of the program when an interrupt is generated. ENABLE INTR enables the computer to accept an interrupt. These two commands appear below.

 10 OUTPUT 718;"RQS 16;"
 20 ON INTR 7 GOSUB Srq
 30 ENABLE INTR 7;2

In this example, Line 20 indicates that if an interrupt appears (ON INTR 7), the computer is to go to the subroutine Srq (GOSUB Srq). The 7 specifies the interface select code; in this case, it refers to the Hewlett-Packard Interface Bus (HP-IB). Line 30 enables the computer to accept an interrupt. Here, the 7 again specifies the HP-IB select code. The semicolon is part of the BASIC statement ENABLE INTR. The 2 indicates that the interrupt is specifically a service request interrupt, which is asserted from the SRQ line of the HP-IB. From Line 10, you know the interrupt will be a service request triggered from a “command complete” condition.

Now that the spectrum analyzer and computer can assert and accept service-request interrupts, choose an event that will trigger the service request and create a subroutine to handle the interrupt. In the example below, the take sweep command (TS) is used to trigger a command complete signal. (Since ten video-averaging sweeps are desired, this signal does not occur until after the selected number of averages is complete.) This service request will cause the computer to go to the subroutine Srq. The subroutine identifies the type of service request and prints it on the computer screen. See Example 1, below.

Example 1

 10 OUTPUT 718;"IP;SNGLS;CF 300MHZ;SP 20MHZ;TS;"
 20 OUTPUT 718;"VAVG 10;RQS 16;"
 30 ON INTR 7 GOSUB Srq
 40 ENABLE INTR 7;2
 50 OUTPUT 718;"TS;"
 60 Srq: Sbyte=SPOLL(718)
 70 PRINT Sbyte
 80 PRINT "VIDEO AVERAGING IS COMPLETE"
 90 OUTPUT 718;"RQS 0;"
 100 END

Line 10 sets the desired instrument state. Note that the instrument is set to single-sweep mode. This allows the video averages to happen only when the take-sweep command is sent.

Line 20 selects the number of video averages desired. It is not until after the VAVG (video average) command is sent that the RQS command is sent. This ensures that no previous commands can accidently generate an SRQ.

Line 30 indicates to go to the routine Srq when an interrupt occurs.

Line 40 enables the computer to accept the interrupt.

Line 50 sends the take-sweep command; during the 10 video averages that will now occur, the computer remains on line 60. When the video averaging is complete, TS is complete and the
“command complete” condition is satisfied. The computer then branches to the subroutine Srq.

Line 70 causes the computer to read the decimal equivalent of the generated service request into the variable Sbyte. The computer then prints the value, alerting you that the interrupt has occurred.

Line 100 returns the status register to its initial state (that is, no conditions are masked).

Reading Service Request Data

In the above example, you used the serial-poll statement (S POLL) to read the service request data into a variable. The STB command also reads service request data. Example 2 shows how.

Example 2

```
10     OUTPUT 718;"IP;SNGLS;CF 300MHZ;SP 20MHZ;TS;"
20     OUTPUT 718;"VAVG 10;RQS 16;"
30     ON INTR 7 GOSUB Srq
40     ENABLE INTR 7;2
50     Done=0
60     OUTPUT 718;"TS;"
70     Idle: IF Done=0 GOTO Idle
80     STOP
90     Srq:OUTPUT 718;"STB?;"
100    ENTER 781;Sbyte
110    PRINT Sbyte
120    PRINT "VIDEO AVERAGING IS COMPLETE"
130    OUTPUT 718;"RQS 0;"
140    Done=1
150    RETURN
160    END
```

Line 20 sets the bit mask so that only the “command complete” condition is set. On Line 70, once the “command complete” condition is satisfied (in this case, after ten video averages), the STB command queries the spectrum analyzer for the service-request data. The data is then entered into variable Sbyte and printed. The value returned is the decimal equivalent of the generated service request.
Reading Service Requests From More Than One Instrument

Most instruments that can be controlled remotely have service request capability similar to that in the HP 8560A/8561B. You may want to take advantage of this capability in other instruments as well as in the spectrum analyzer. If you have more than one instrument on a bus than can generate a service request, you need to modify the above program to look for interrupts from more than one instrument. See Example 3.

EXAMPLE 3

10 OUTPUT 718;"IP;SNGLS;CF 300MHZ;SP 20MHZ;TS;"
20 OUTPUT 718;"VAVG 10;RQS 16;"
30 ON INTR 7 GOSUB Srq
40 ENABLE INTR 7;2
50 Done=0
60 OUTPUT 718;"TS;"
70 Idle: IF Done=0 GOTO Idle
80 STOP
90 Srq: Sbyte_1=SPOLL(718)
100 Sbyte_2=SPOLL(705)
110 IF BIT (Sbyte_1,6)=1 THEN
120 PRINT "SERVICE REQUEST",Sbyte_1,"ON ADDRESS 18"
130 OUTPUT 718;"RQS 0;"
140 STOP
150 END IF
160 IF BIT(Sbyte_2,6)=1 THEN
170 PRINT "SERVICE REQUEST",Sbyte_2,"ON ADDRESS 5"
180 END IF
190 ENABLE INTR 7;2
200 Done=1
210 RETURN
220 END

In this example, you execute the SPOLL command for each instrument that may cause a service request interrupt; in this case, the analyzer or an instrument that is set to address 5. Once the instruments are queried for interrupts, the IF ... THEN statements provide a way to branch to the appropriate routine.

Testing Service Request Routines

In the previous programming examples, you knew that a service request would be generated when the VAVG command was completed. You could easily test the program and make sure that it worked. However, service requests may not always be so predictable; this can make a program difficult to test. The spectrum analyzer SRQ command automatically triggers any service request you choose. Of course, as with other service requests, you must set the bit mask before executing the SRQ command. See Example 4.
Example 4

10 OUTPUT 718;"IP;SNGLS;CF 300MHZ;SP 20MHZ;TS;"
20 OUTPUT 718;"RQS 16;"
30 ON INTR 7 GOSUB Srq
40 ENABLE INTR 7;2
50 Done=0
60 OUTPUT 718;"SRQ 16;"
70 Idle: IF Done=0 GOTO Idle
80 STOP
90 Srq: Sbyte=SPOLL(718)
100 PRINT Sbyte
110 PRINT "INTERRUPT GENERATED"
120 OUTPUT 718;"RQS 0;"
130 Done=1
140 RETURN
150 END

Here, on Line 50, a "command complete" service request is immediately generated, and you can be sure that the routine will work.

Summary

The main points to using service requests are highlighted below.

1. Choose the conditions for generating service requests.
2. Set a bit mask that enables only these chosen conditions.
3. Prepare the computer to accept service requests. Use the ON INTR ... GOSUB and ENABLE INTR statements.
4. Once an interrupt is triggered, use the analyzer STB command or the SPOLL statement to read the interrupt.
Language Reference

Introduction

This chapter contains complete information for the programming commands available to
operate an HP 8560A and HP 8561B Spectrum Analyzer. The topics covered in this chapter
are listed below.

- **Syntax diagram conventions** describes the pictorial notation that represents the proper
 syntax for each command. Refer to Table 5-1 for definitions of syntax elements.

- **Secondary keywords** lists the valid secondary keywords. See Table 5-2.

- **Programming codes** lists the programming commands by functional groups.

- **Programming commands** are listed in alphabetical order according to their mnemonic,
 followed by a complete description of their syntax, parameters, and function.

For your convenience, two cross-reference listings for the HP 8560A and HP 8561B Spectrum
Analyzers are supplied in the Appendixes.

Appendix D, Keys vs Commands, provides an alphabetical listing of all front-panel keys
and softkeys with their corresponding remote command.

Appendix E, Commands vs Keys, provides an alphabetical listing of all valid
spectrum-analyzer remote commands with their corresponding front-panel keys or softkeys
(if applicable).
Syntax Diagram Conventions

Pictorial Notation

- All items enclosed by an oval are literals and must be entered exactly as shown.
- Items enclosed by a rectangular box indicate parameters used in the command sequence. A description of each parameter is given in the respective command description.
- Command sequence items are connected by lines. Each line can be followed in only one direction, as indicated by an arrow at the end of each line.
- Any combination of command sequence items that can be generated by following the lines in the proper direction is syntactically correct.
- A command sequence item is optional if there is a valid path around it.

Command Sequence

A typical command sequence is represented above. The order of command sequence items is specified in the syntax diagram for each respective command. “Command Sequence Summary” provides a description of the syntax elements in the sequence shown above.

Command Sequence Summary

command
Any valid command which is a literal and must be entered exactly as shown.

separator
Separators are required to separate command sequences and command sequence items. The separators allowed for the spectrum analyzer are as follows:

\[S_p \quad (\text{space}) \quad , \quad (\text{comma}) \]

command parameter
Any secondary key word recognized by the command.
A terminator is required to end all command sequences. The terminators allowed for the spectrum analyzer are as follows:

`; (semicolon)
LF (line feed)
CR (carriage return)
SP (space)
, (comma)

Query Responses

Figure 5-1. Numeric Value Query Response

Commands which set a function to a numeric value can be queried to determine the current setting of that function. For example, the CF command sets the center frequency to a numeric value in hertz. The format for the response to a CF query command is shown above. Refer to Table 5-1 for definitions of syntax elements.

Figure 5-2. Binary State Query Response

Other commands which control the binary state of a function can also be queried to determine its state. Examples are commands which accept ON and OFF parameters such as the ANNOT or GRAT commands. The query response in this case, as shown above, is either zero (indicating that the queried state is off or inactive) or one (indicating that the queried state is on or active). As an example, GRAT? will return a zero if the display graticule is off, and a one if it is on.
Table 5-1. Syntax Elements

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>data byte</td>
<td>8-bit byte containing numeric or character data.</td>
</tr>
<tr>
<td>data byte & EOI</td>
<td>8-bit byte containing numeric or character data sent with end-or-identify (EOI).</td>
</tr>
<tr>
<td>delimiter</td>
<td>! "$ % \ & ' / : = \ . \ , \ - \</td>
</tr>
<tr>
<td></td>
<td>A character, chosen from the above list, marks the beginning and end of a string of characters. For simplified use, choose delimiters that are not the same as any character within the string they delimit. Otherwise, every occurrence of the delimiter character inside the string being delimited must be replaced with a pair of delimiters when forming the delimited string.</td>
</tr>
<tr>
<td>digit</td>
<td>0 1 2 3 4 5 6 7 8 9</td>
</tr>
<tr>
<td>LF with EOI</td>
<td>Line feed (LF) with end-or-identify (EOI). ASCII code 10 (line feed) is sent with EOI control line.</td>
</tr>
</tbody>
</table>
| **number** | Expressed in integer, decimal, or exponential (E) form.
| | Range: \(-10^{+100}\) through \(+10^{+100}\)
| | The smallest positive fractional number which may be represented is \(+10^{-100}\). This is the range of numbers which may be used in commands. This range is further restricted when numbers are attached to specific types of units: |
| | - frequency values are limited to \(\pm 1000\) GHz.
| | - amplitude values are limited to \(\pm 300\) dBm or \(\pm 300\) dB.
| | - power values are limited to \(\pm 300\) dBm or \(\pm 300\) dB.
| | The above ranges may be further limited by hardware. These limitations are identified under the individual command descriptions. |
| | Precision: approximately 15 decimal digits, unless otherwise limited by hardware. |
| | Length: the complete number must be less than 25 characters. |
Secondary Keywords

Note
After executing a command with EP as a secondary keyword, select a numeric value using the spectrum analyzer DATA keys, STEP keys, or knob. When using the data keys, be sure to terminate the value with a units key (such as \(\text{Hz} \), \(\text{dBm} \), and so on.). When using the step keys or the knob, terminate the value with **HOLD**.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ampere (unit); A-block data format; external mixer frequency band</td>
</tr>
<tr>
<td>AC</td>
<td>alternating current (coupling)</td>
</tr>
<tr>
<td>ALL</td>
<td>all (marker off, plot screen)</td>
</tr>
<tr>
<td>AM</td>
<td>amplitude modulation (DEMOD)</td>
</tr>
<tr>
<td>ANNT</td>
<td>annotation</td>
</tr>
<tr>
<td>AUTO</td>
<td>automatic operation</td>
</tr>
<tr>
<td>B</td>
<td>8-bit byte output format</td>
</tr>
<tr>
<td>CURR</td>
<td>current (IF adjustment)</td>
</tr>
<tr>
<td>D</td>
<td>external mixer frequency band</td>
</tr>
<tr>
<td>DC</td>
<td>direct current (coupling)</td>
</tr>
<tr>
<td>DB</td>
<td>relative decibel (unit)</td>
</tr>
<tr>
<td>DBM</td>
<td>absolute decibel milliwatt (unit)</td>
</tr>
<tr>
<td>DBMV</td>
<td>absolute decibel millivolt (unit)</td>
</tr>
<tr>
<td>DBUV</td>
<td>absolute decibel microvolt (unit)</td>
</tr>
<tr>
<td>DM</td>
<td>absolute decibel milliwatt (unit)</td>
</tr>
<tr>
<td>DN</td>
<td>decrement the parameter</td>
</tr>
<tr>
<td>DSP</td>
<td>display</td>
</tr>
<tr>
<td>E</td>
<td>external mixer frequency band</td>
</tr>
<tr>
<td>EP</td>
<td>enable parameter for front panel operator entry</td>
</tr>
<tr>
<td>EXT</td>
<td>external</td>
</tr>
<tr>
<td>F</td>
<td>external mixer frequency band</td>
</tr>
<tr>
<td>FAV</td>
<td>frequency analog voltage (sweep output)</td>
</tr>
<tr>
<td>FLATTOP</td>
<td>FFT window format</td>
</tr>
<tr>
<td>FM</td>
<td>frequency modulation (DEMOD)</td>
</tr>
<tr>
<td>FREE</td>
<td>free run</td>
</tr>
<tr>
<td>FULL</td>
<td>full band span width</td>
</tr>
<tr>
<td>G</td>
<td>external mixer frequency band</td>
</tr>
<tr>
<td>GHZ</td>
<td>gigahertz (unit)</td>
</tr>
<tr>
<td>GRT</td>
<td>graticule</td>
</tr>
<tr>
<td>GZ</td>
<td>gigahertz (unit)</td>
</tr>
<tr>
<td>HANNING</td>
<td>FFT window format</td>
</tr>
<tr>
<td>HARM</td>
<td>harmonic number (frequency diagnostic)</td>
</tr>
<tr>
<td>HI</td>
<td>highest</td>
</tr>
<tr>
<td>HZ</td>
<td>hertz</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>I</td>
<td>I-block data format</td>
</tr>
<tr>
<td>INT</td>
<td>internal (reference, mixer mode)</td>
</tr>
<tr>
<td>J</td>
<td>external mixer frequency band</td>
</tr>
<tr>
<td>K</td>
<td>external mixer frequency band</td>
</tr>
<tr>
<td>KHZ</td>
<td>kilohertz (unit)</td>
</tr>
<tr>
<td>KZ</td>
<td>kilohertz (unit)</td>
</tr>
<tr>
<td>LAST</td>
<td>previous state before a change</td>
</tr>
<tr>
<td>LAST SPAN</td>
<td>previous span before a change</td>
</tr>
<tr>
<td>LINE</td>
<td>line, as in line trigger</td>
</tr>
<tr>
<td>LO</td>
<td>local oscillator (frequency diagnostic)</td>
</tr>
<tr>
<td>M</td>
<td>ASCII display data output format</td>
</tr>
<tr>
<td>MA</td>
<td>milliamp (unit)</td>
</tr>
<tr>
<td>MAN</td>
<td>manual operation</td>
</tr>
<tr>
<td>MHZ</td>
<td>megahertz (unit)</td>
</tr>
<tr>
<td>MS</td>
<td>millisecond (unit)</td>
</tr>
<tr>
<td>MSEC</td>
<td>millisecond (unit)</td>
</tr>
<tr>
<td>MROLL</td>
<td>main roller oscillator (frequency diagnostic)</td>
</tr>
<tr>
<td>MV</td>
<td>millivolt (unit)</td>
</tr>
<tr>
<td>MW</td>
<td>milliwatt (unit)</td>
</tr>
<tr>
<td>MZ</td>
<td>megahertz (unit)</td>
</tr>
<tr>
<td>NEG</td>
<td>negative peak detection</td>
</tr>
<tr>
<td>NH</td>
<td>next highest</td>
</tr>
<tr>
<td>NL</td>
<td>next left</td>
</tr>
<tr>
<td>NR</td>
<td>next right</td>
</tr>
<tr>
<td>NRM</td>
<td>normal rosenfell detection</td>
</tr>
<tr>
<td>OA</td>
<td>function query (same as "?"")</td>
</tr>
<tr>
<td>OFF</td>
<td>turn function off</td>
</tr>
<tr>
<td>ON</td>
<td>turn function on</td>
</tr>
<tr>
<td>OROLL</td>
<td>offset roller oscillator (frequency diagnostic)</td>
</tr>
<tr>
<td>P</td>
<td>real number output format</td>
</tr>
<tr>
<td>POS</td>
<td>positive peak detection</td>
</tr>
<tr>
<td>PWRON</td>
<td>sets same state as turning power on</td>
</tr>
<tr>
<td>Q</td>
<td>external mixer frequency band</td>
</tr>
<tr>
<td>RAMP</td>
<td>sweep ramp voltage (sweep output)</td>
</tr>
<tr>
<td>S</td>
<td>second (unit)</td>
</tr>
<tr>
<td>SA</td>
<td>spectrum analyzer (sweep time coupling)</td>
</tr>
<tr>
<td>SC</td>
<td>second (unit)</td>
</tr>
<tr>
<td>SEC</td>
<td>second (unit)</td>
</tr>
<tr>
<td>SMP</td>
<td>sample detection, sampling oscillator (frequency diagnostic)</td>
</tr>
<tr>
<td>SR</td>
<td>stimulus response (sweep time coupling)</td>
</tr>
<tr>
<td>TRA</td>
<td>trace A</td>
</tr>
<tr>
<td>TRB</td>
<td>trace B</td>
</tr>
<tr>
<td>U</td>
<td>external mixer frequency band</td>
</tr>
<tr>
<td>UA</td>
<td>microamp (unit)</td>
</tr>
<tr>
<td>UNIFORM</td>
<td>FFT window format</td>
</tr>
</tbody>
</table>
Table 5-2. Secondary Keyword Summary (continued)

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UP</td>
<td>increment the parameter</td>
</tr>
<tr>
<td>UV</td>
<td>microvolt (unit)</td>
</tr>
<tr>
<td>US</td>
<td>microsecond (unit)</td>
</tr>
<tr>
<td>V</td>
<td>volt (unit); external mixer frequency band</td>
</tr>
<tr>
<td>VID</td>
<td>video</td>
</tr>
<tr>
<td>W</td>
<td>watt (unit); external mixer frequency band</td>
</tr>
<tr>
<td>XROLL</td>
<td>transfer roller oscillator (frequency diagnostic)</td>
</tr>
<tr>
<td>Y</td>
<td>external mixer frequency band</td>
</tr>
<tr>
<td>ZERO</td>
<td>zero span</td>
</tr>
<tr>
<td>0</td>
<td>off</td>
</tr>
<tr>
<td>1</td>
<td>on</td>
</tr>
<tr>
<td>?</td>
<td>returns a query response containing the value or state of the associated parameter (same as OA)</td>
</tr>
</tbody>
</table>
Programming Codes (functional index)

Alternate commands common to the HP 8560A and HP 8561B and the HP 8566/8568 are shown in parentheses (). For further information, see "Backward-Compatible Commands" in Appendix F.

Amplitude Control

AT Specifies input attenuation.
AT AUTO Couples input attenuation (CA).
AUNITS Specifies amplitude units for input, output, and display.
COUPLE Selects ac or dc input coupling.
LG Selects log scale.
LN Selects linear scale.
MKRL Moves active marker amplitude to reference level (E4).
ML Specifies mixer level.
RL Specifies reference level.
RLCAL Calibrates reference level.
ROFFSET Specifies reference-level offset.

Bandwidth Control

RB Specifies resolution bandwidth.
RB AUTO Couples resolution bandwidth (CR).
RBR Specifies the coupling ratio of resolution bandwidth and frequency span.
VB Specifies video bandwidth.
VB AUTO Couples video bandwidth (CV).
VBR Specifies coupling ratio of video bandwidth and resolution bandwidth.

Coupling Control

AUTOCPL Auto-couple all controls.
AT AUTO Auto-couple the RF attenuator (CA).
RB AUTO Auto-couple resolution bandwidth (CR).
SS AUTO Auto-couple center-frequency step-size (CS).
ST AUTO Auto-couple sweep time (CT).
VB AUTO Auto-couple video bandwidth (CV).
RBR Specifies coupling ratio of resolution bandwidth and frequency span.
VBR Specifies coupling ratio of video bandwidth and resolution bandwidth.
Demodulation

DEMOD Demodulation.
DEMODAGC Demodulation auto gain control.
DEMODT Demodulation time.
SQUELCH Squelch control for demodulation.

Display Control

ANNOT Turns annotation on or off. Preset condition is on.
AUNITES Specifies amplitude units for input, output, and display.
DL Specifies display-line level in dBm.
DLE Turns display line on and off (L0).
FDSP Turns all frequency display annotation off. Power-on preset is the only way to
turn it back on.
GRAT Turns graticule on or off. Preset condition is on.
LG Selects log scale.
LN Selects linear scale.
TH Specifies display threshold value.

External Mixing

CNVLOSS Sets reference-level offset to compensate for external mixer conversion loss.
FULBAND Sets start and stop frequencies for full waveguide bands.
HNLOCK Locks to specified harmonic number.
HNUNLK Unlocks the specified harmonic number.
IDCF Sets center frequency to frequency of SIGID.
IDFREQ Returns frequency of identified signal.
MBIAS Specifies the bias level for external mixers.
MKPX Specifies minimum excursion for peak identification.
MXRMODE Specifies either internal or external mixing.
SIGID Identifies signals for external mixing frequency bands.

Frequency Control

CF Specifies center frequency.
SS AUTO Couples center-frequency step-size (CS).
FA Specifies start frequency.
FB Specifies stop frequency.
POFFSET Specifies frequency offset.
FREF Specifies the frequency reference source.
FS Specifies full frequency span as defined by instrument state.
FULBAND Sets the start and stop frequency for full waveguide band (external mixing
 only).
MKFCR Specifies resolution of frequency counter.
SP Specifies frequency span.
SS Specifies center-frequency step-size.
Information and Service Diagnostics

- **ADJALL**: Initiates power-on adjustment sequence.
- **ADJ CRT**: Initiates CRT adjustment patterns.
- **ADJ IF**: Initiates IF adjustment sequence.
- **ERR?**: Returns list of instrument error codes.
- **ET?**: Returns elapsed time.
- **FDIAG**: Returns frequency of specified oscillator.
- **ID?**: Returns the HP model number of analyzer used (HP 8562A/B).
- **PSDAC**: Returns preselector DAC setting at frequency of marker.
- **REV?**: Returns analyzer revision number.
- **RLCAL**: Calibrates reference level.
- **SER?**: Returns analyzer serial number.

Instrument State Control

- **IP**: Sets instrument parameters to preset values.
- **RCLS**: Recalls previously saved state (RC).
- **PSTATE**: Protect saved states (save lock).
- **SAVES**: Saves current state of the analyzer in the specified register (SV).

Marker Control

- **MKA**: Amplitude of active marker (MA).
- **MKCF**: Enters marker frequency into center frequency (E2).
- **MKD**: Moves delta marker to specified frequency (M3).
- **MKDR**: Marker delta reciprocal, readout in time.
- **MKF**: Frequency of active marker (MF).
- **MKFC**: Counts marker frequency for greater resolution (see MKFCR).
- **MKF CR**: Specifies resolution of marker frequency counter.
- **MKMIN**: Moves marker to minimum signal detected.
- **MKN**: Moves marker to specified frequency or center screen (M2).
- **MKNOISE**: Returns average noise value at marker, normalized to 1 Hz bandwidth.
- **MKOFF**: Turns the active marker off (M1).
- **MKPK**: Moves marker to signal peak (E1).
- **MKPT**: Specifies marker peak threshold.
- **MKPX**: Specifies minimum excursion for peak identification. Default value is 6 dB.
- **MKRL**: Moves active marker to reference level (E4).
- **MKSP**: Moves marker delta frequency into span.
- **MKSS**: Moves marker frequency to center-frequency step-size (E3).
- **MKT**: Positions marker at point corresponding to the time from beginning of sweep.
- **MKTRACK**: Turns marker signal track on (MT1) or off (MT0).
Operator Entry

HD Holds or disables data entry and blanks active function CRT readout.

Output Format Control

- **AUNITS** Specifies amplitude units for input, output, and display.
- **MKA?** Returns marker amplitude (MA).
- **MKF?** Returns marker frequency (MF).
- **SWPOUT** Specifies the sweep output.
- **TRA?** Outputs trace A (TA).
- **TRB?** Outputs trace B (TB).
- **TDF** Selects trace data output format as real number parameter units (P) format, binary (B) format, A-block format, I-block format, and measurement units (M) format.

Plotter and Printer Output

- **OP** Returns the display lower-left and upper-right coordinates.
- **PLOT** Sends analyzer display to a plotter.
- **PLOTOFG** Scaling points for plot.
- **PLOTSRC** Specifies plot source.
- **PRINT** Sends analyzer display to a printer.

Preselector Control

- **PP** Peaks preselector.
- **PSDAC** Preselector peak data.

Service Request

- **RQS** Specifies the decimal weighting of status byte bits which are allowed during service request. Set to 0 with power-up or device clear.
- **SRQ** Sets service request if operand bits are allowed by RQS.
- **STB** Returns the decimal equivalent of the bits set in the status byte.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Decimal</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>—</td>
<td>Not used</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>Request service</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>Error present in error register</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>Command complete</td>
</tr>
<tr>
<td>3</td>
<td>—</td>
<td>Not used</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>End of sweep</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>Message occurred</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>Cleared</td>
</tr>
</tbody>
</table>
Sweep and Trigger Control

CONT N Selects continuous sweep mode (S1).
ST SPECifies sweep time.
ST AUTO Couples sweep time.
SNGLS Selects single sweep mode (S2).
TM Selects trigger mode: free run (T1), video (T4), line (T2), external (T3).
TS Takes a sweep.
VT L Video trigger level.

Synchronization

TS Takes a sweep.
DONE? Returns a 1 when task has been completed.

Tracking Generator Control

NORMALIZE Activates normalization routine.
NRL Sets the normalized reference level.
NRPOS Adjusts the normalized reference position.
RCLOSCAL Recalls stored open/short trace calibration data.
RCLI THRU Recalls stored thru calibration data.
RL Adjusts the range level.
SRCALC Selects internal or external leveling.
SRCCRSTK Course tunes the tracking generator oscillator.
SRCFINTK Fine tunes the tracking generator oscillator.
SRCP OFS Offsets displayed source power to equal the power measured at the spectrum analyzer input.
SRCPSTP Sets the step size of the source power level.
SRCP SWP Controls the power-sweep function.
SRCP WWR Controls the output power of the tracking generator.
SRCTR PK Peaks the tracking generator response.
STOREOPEN Saves open-input calibration data for use with STORESHORT.
STORE Average shorted-input and open-input calibration data and saves the average.
SHORT STORETHRU Stores thru-calibration data.
SWPCPL Selects a stimulus response or spectrum analyzer coupled sweep time.

Trace Functions

Processing

BLANK Stores and blanks specified trace register (A4|B4).
CLRW Clear-writes specified trace register (A1|B1).
MINH Holds the minimum trace register values.
MXMH Max-holds the specified trace register (A2|B2).
RCLT Recall specified trace data.
S A V E T Save specified trace data.
TRA Input/output trace A.
TRB Input/output trace B.
VIEW Views specified trace register (A3|B3).
Math
AMB A - B into A (C1|C2).
AMBPL A - B + DL into A.
APB A + B into A.
AXB Exchanges A and B (EX).
BML B - DL into B (BL).
VAVG Turns video averaging on or off.
Other
AUNITS Specifies amplitude units for input, output, and display.
DET Specifies input detector type.
TITLE Writers specified ASCII characters in title block area of display.
User Measurements
FFT Performs a discrete Fourier transform.
PWRBW Returns the bandwidth equal to a percentage of total power.
TWNDOW Creates a trace array for the FFT function.
Programming Commands

This chapter contains the HP 8560A and HP 8561B programming commands. Each spectrum analyzer command is described here. Before using this part of the manual, you may want to refer to Chapter 4 of this manual.
ADJALL
LO and IF Adjustments

Syntax

```
ADJALL
```

Description

The ADJALL command activates the local oscillator (LO) and intermediate frequency (IF) alignment routines. These are the same routines that occur when \texttt{LINE} is switched on. Commands following ADJALL are not executed until after the analyzer has finished the alignment routines.

Example

```
10  OUTPUT 718;"ADJALL;"
20  END
```
ADJCRT
Adjust CRT Alignment

Syntax

Description
The ADJCRT command activates a CRT adjustment pattern, shown in Figure 5-3. Use the X POSN, Y POSN, and TRACE ALIGN adjustments (available from the rear panel) to align the display. Use X POSN and Y POSN to move the display horizontally and vertically, respectively. Use TRACE ALIGN to straighten a tilted display. To remove the pattern from the screen, execute the IP command.

Figure 5-3. CRT Alignment Pattern
Example

10 OUTPUT 718;"ADJCRT;"
20 OUTPUT 2;CHR$(255)&"K";
30 PRINT TABXY(0,1);"USE X POSN AND Y POSN"
40 PRINT TABXY(0,3);"TO ADJUST THE DISPLAY"
50 INPUT "THEN PRESS ENTER",Ans$
60 OUTPUT 718;"IP;"
70 END
ADJIF
Adjust IF

Syntax

![Syntax Diagram]

Description
The ADJIF command turns the automatic IF adjustment on or off. This function is normally on. Because the IF is continuously adjusting, executing the IF alignment routine is seldom necessary. When the IF adjustment is not active, an "A" appears on the left side of the display.

Parameters
- **FULL**: IF adjustment is done for all IF settings.
- **CURR**: IF adjustment is done only for the IF settings currently displayed.
- **OFF**: turns the continuous IF adjustment off.
- **ON**: reactivates the continuous IF adjustment.

Preset State
On

Query Response

![Query Response Diagram]
Example

10 OUTPUT 718;"ADJIF OFF;"
20 OUTPUT 718;"ADJIF?;"
30 ENTER 718;Adjif
40 PRINT Adjif
50 END
AMB
Trace A Minus Trace B

Syntax

Description
The AMB command subtracts the contents of trace B from trace A and places the result, in dBm (when in log mode), in trace A. When in linear mode, the result is in volts. If trace A is in clear-write or max-hold mode, this function is continuous. When AMB is active, an "H" appears on the left side of the display. The command AMBPL overrides AMB. For more information on trace math, refer to Chapter 4.

Note
The displayed amplitude of each trace element falls in one of 600 data points. There are 10 points of overrange, which corresponds to one-sixth of a division of overrange. When adding or subtracting trace data, any results exceeding this limit are clipped at the limit.

Preset State
Off

Query Response
Example

10 OUTPUT 718;"IP;"
20 OUTPUT 718;"CLR W TRB;TS;VIEW TRB;AMB ON;"
30 OUTPUT 718;"AMB?;"
40 ENTER 718;Amb
50 PRINT Amb
60 END
AMBPL
Trace A Minus Trace B Plus Display Line

Syntax

Description

The AMBPL command subtracts the contents of trace B from trace A, adds the display line to this value, and stores the result in dBm (when in log mode) in trace A. When in linear mode, the result is in volts. If trace A is in clear-write or max-hold mode, this function is continuous. When this function is active, an "M" appears on the left side of the display. AMBPL overrides the AMB command.

Note

The displayed amplitude of each trace element falls in one of 600 data points. There are 10 points of overrange, which corresponds to one-sixth of a division of overrange. When adding or subtracting trace data, any results exceeding this limit are clipped at the limit.

Preset State

Off

Query Response
Example

10 OUTPUT 718;"IP;"
20 OUTPUT 718;"CLRW TRB;TS;VIEW TRB;DL -50DBM;"
30 OUTPUT 718;"AMBPL ON;"
40 OUTPUT 718;"AMBPL?;"
50 ENTER 718;Ambpl
60 PRINT Ambpl
70 END
ANNOT
Annotation On/Off

Syntax

Description
The ANNOT command turns the display annotation off or on.

Preset State
On

Query Response
Example

10 OUTPUT 718;"IP;"
20 OUTPUT 718;"ANNOT OFF;"
30 OUTPUT 718;"ANNOT?;"
40 ENTER 718;Annot
50 PRINT Annot
60 END
APB
Trace A Plus Trace B

Syntax

Description
The APB command adds the contents of trace A to trace B and stores the result in dBm (when in log mode), in trace A. When in linear mode, the results are in volts. Trace A is placed in view mode. This command is done immediately and not on a repetitive basis.

Note
The displayed amplitude of each trace element falls in one of 600 data points. There are 10 points of overrange, which corresponds to one-sixth of a division of overrange. When adding or subtracting trace data, any results exceeding this limit are clipped at the limit.

Example

10 OUTPUT 718;"IP;SNGLS;"
20 OUTPUT 718;"TS;VIEW TRA;CLR W TRB;TS;VIEW TRB;"
30 OUTPUT 718;"APB;BLANK TRB;"
40 END
AT Input Attenuation

Syntax

Description
The AT command sets the amount of attenuation between the input and the first mixer.

The attenuation may be set to 0 dB only by numeric entry.

Parameters
number integer from 0 to 70, in decade increments. Numbers are rounded up to the nearest decade.
AUTO sets the attenuation to coupled mode.
MAN sets the attenuation to manual mode.
UP/DN changes the attenuation by 10 dB.

Preset State
Coupled mode, 10 dB
AT Input Attenuation

Query Response

```
Example
10   OUTPUT 718;"AT UP;"
20   OUTPUT 718;"AT?;"
30   ENTER 718;At
40   PRINT At
50   END
```
AUNITS
Absolute Amplitude Units

Syntax

Description
The AUNITS command sets the absolute amplitude units for the input signal and the display. AUNITS will affect the query responses of the following commands: MKA, TRA/TRB (when in P-format), DL, RL, SQUELCH, TH, and VTL. AUNITS is disabled when the HP 8560A Option 002 tracking generator is in use.

Parameters
AUTO sets amplitude units to coupled mode. For a log scale, the units default to dBm; for a linear scale, units default to volts.
MAN sets amplitude units to manual mode.

Preset State
Coupled mode, dBm
AUNITS Absolute Amplitude Units

Query Response

Example

10 OUTPUT 718;"AUNITS DBUV;"
20 OUTPUT 718;"AUNITS?;"
30 ENTER 718;Aunits$
40 END

5-30 Language Reference
AUTOCPL
Auto Coupled

Syntax

Description
The AUTOCPL command sets video bandwidth, resolution bandwidth, input attenuation, sweep time, and center frequency step-size to coupled mode. These functions can be recoupled individually or all at once. The spectrum analyzer chooses appropriate values for these functions. The video bandwidth and resolution bandwidth are set according to the coupled ratios stored under the softkeys VBW:RBW or RBW:SPAN, or the ratios selected using the VBR or RBR commands. If no ratios are chosen, default ratios (1.0 and 0.011, respectively) are used instead.

Example

```
10  OUTPUT 718:"AUTOCPL;"
20  END
```
AXB
Trace A Exchange Trace B

Syntax

Description
The AXB command exchanges the contents of trace A with those of trace B. If the traces are in clear-write or max-hold mode, the mode is changed to view. Otherwise, the traces remain in their initial mode.

Example

10 OUTPUT 718;'AXB;'
20 END
BLANK
Blank Trace

Syntax

Description
The BLANK command blanks the chosen trace from the display. The current contents of the trace remain in the trace but are not updated.

Example
10 OUTPUT 718:"BLANK TRA;"
20 OUTPUT 718:"CLRW TRB;"
20 END
BML
Trace B Minus Display Line

Syntax

![BML Syntax Diagram]

Description
The BML command subtracts the display line from trace B and places the result in dBm (when in log mode) in trace B, which is then set to view mode. In linear mode, the results are in volts.

Note
The displayed amplitude of each trace element falls into one of 600 data points. There are 10 additional points of overrange, which corresponds to one-sixth of a division. When adding or subtracting trace data, any results exceeding the limits are clipped at that limit.

Example

```
10     OUTPUT 718;"IP;"
20     OUTPUT 718;"BLANK TRA;"
30     OUTPUT 718;"CLRW TRB;TS;DL -50DBM;"
40     OUTPUT 718;"BML;"
50     END
```
CF Center Frequency

Syntax

Description
The CF command sets the center frequency and sets the spectrum analyzer to center frequency/span mode. The span remains constant; the start and stop frequencies change as the center frequency changes.

Parameters
- number: real from 0 to 2.9E+9 (HP 8560A) or to 6.5E+9 (HP 8561B); from 18E+9 to 325E+9 in external mixer mode.
- UP/DN: 10% of the frequency span or the amount set by the SS command.

Preset State
- 1.45 GHz (HP 8560A) 3.25 GHz (HP 8561B)

Query Response

```
+number+LF with E01
```
CF Center Frequency

Example

 10 OUTPUT 718;"IP;"
 20 OUTPUT 718;"CF 300MHZ;SP 20MHZ;TS;"
 30 OUTPUT 718;"CF;"
 40 ENTER 718;Cf
 50 PRINT Cf
 60 END
CLRW
Clear Write

Syntax

![Syntax Diagram]

Description
The CLRW command sets the chosen trace to clear-write mode. This mode sets each element of the chosen trace to the bottom-screen value; then new data from the detector is put in the trace with each sweep.

Example

```
10  OUTPUT 718:"IP;"
20  OUTPUT 718:"BLANK TRA;CLRW TRB;"
30  END
```
CNVLOSS
Conversion Loss

Syntax

```
\text{CNVLOSS} \rightarrow \text{number} \rightarrow \text{DB} \rightarrow \vdots
```

Description

The CNVLOSS command compensates for losses outside the instrument when in external mixer mode (such as losses within connector cables, external mixers, etc.). CNVLOSS specifies the mean conversion loss for the current harmonic band. In a full frequency band (such as band K), the mean conversion loss is defined as the minimum loss plus the maximum loss for that band divided by two. Adjusting for conversion loss allows the system to remain calibrated (that is, the displayed amplitude values have the conversion loss incorporated into them). The default value for any band is 30 dB. The spectrum analyzer must be in external-mixer mode in order for this command to work. When in internal-mixer mode, querying CNVLOSS returns a zero. This function is not available for an HP 8560A Option 002.

Parameters

- **number**: any real
- **UP/DN**: 0.1 dB

Preset State

30 dB

Query Response

```
\rightarrow \text{number} \rightarrow \text{LF with EOI} \rightarrow
```

5-38 Language Reference
Example

10 OUTPUT 718;"IP;MXRMODE EXIT;"
20 INPUT "ENTER DESIRED FREQUENCY BAND (KAQVEWFDGY OR J)";,Fulband$
30 OUTPUT 718;"FULBAND ";Fulband$;";
40 INPUT "ENTER IN THE DESIRED CENTER FREQUENCY IN GHZ",Cf
50 INPUT "ENTER IN THE CONVERSION LOSS FOR THAT FREQUENCY",Loss
60 OUTPUT 718;"CF ";Cf;"GHZ;SP 10MHZ;"
70 OUTPUT 718;"CNVLOSS ";Loss;"DB;"
80 END
CONTNS
Continuous Sweep

Syntax

Description
The CONTNS command activates the continuous-sweep mode. This mode enables another sweep at the completion of the current sweep once the trigger conditions are met.

Preset State
On

Example

10 OUTPUT 718:"CONTNS;"
20 END
COUPLE Input Coupling

Syntax

Description
The COUPLE command sets the input coupling to ac or dc coupling. AC coupling protects the input of the analyzer from damaging dc signals, while limiting the lower frequency-range to 100 kHz (although the analyzer will tune down to 0 Hz with signal attenuation).

Preset State
AC

Query Response

Example
10 OUTPUT 718;'"COUPLE DC;"'
20 PRINT "CAUTION: ANALYZER IS NOW DC-COUPLED."
30 OUTPUT 718;'"COUPLE?;"
40 ENTER 718;C$
50 PRINT C$
60 LOCAL 718
70 END
DEMOD
Demodulation

Syntax

![Diagram of DEMOD command with options AM, FM, OFF]

Description
The DEMOD command activates either AM or FM demodulation, or turns the demodulation off. Place a marker on a desired signal and then activate DEMOD; demodulation takes place on this signal. If no marker is on, DEMOD automatically places a marker at the center of the trace and demodulates the frequency at that marker position. Use the volume and squelch controls to adjust the speaker and listen.

Preset State
Off

Query Response

![Diagram of query response showing options 0, AM, FM]

Example

```
10   OUTPUT 718;"IP;"
20   OUTPUT 718;"FA 88MHZ;FB 108MHZ;"
30   OUTPUT 718;"MKN EP;"
40   PRINT "MOVE MARKER TO SIGNAL TO BE DEMODULATED; PRESS HOLD."
50   PRINT "THEN PRESS CONTINUE"
60   PAUSE
70   INPUT "ENTER DEMODULATION TIME (.1 SEC - 60 SEC)",Dtime
80   OUTPUT 718;"DEMODT ";Dtime;"SEC;"
```
90 OUTPUT 718;"DEMOD FM;"
100 LOCAL 718
110 PRINT "ADJUST VOLUME AND SQUELCH AS NECESSARY."
120 END
DEMODAGC
Demodulation Automatic Gain Control

Syntax

Description
The DEMODAGC command turns the demodulation automatic gain control (AGC) on or off. The AGC keeps the volume of the speaker relatively constant during AM demodulation. AGC is available only during AM demodulation and when the frequency span is greater than 0 Hz.

Preset State
Off

Query Response

Example

10 OUTPUT 718;"IP;"
20 OUTPUT 718;"FA 550KHZ;FB 1600KHZ;"
30 OUTPUT 718;"MKN EP;"
40 PRINT "MOVE MARKER TO SIGNAL TO BE DEMODULATED; PRESS HOLD."
50 PRINT "THEN PRESS CONTINUE"
60 PAUSE
70 INPUT "ENTER DEMODULATION TIME (.1 - 60 SEC)",Dtime
80 OUTPUT 718;"DEMODT ";Dtime;"SEC;"
90 OUTPUT 718;"DEMOD AM;DEMODAGC ON;"
100 LOCAL 718
110 PRINT "ADJUST VOLUME AND SQUELCH AS NECESSARY."
120 END
DEMOT
Demodulation Time

Syntax

Description
The DEMOT command selects the amount of time that the sweep pauses at the marker to demodulate a signal. The default value is 1 second. When the frequency span equals 0 Hz, demodulation is continuous, except when between sweeps. For truly continuous demodulation, set the frequency span to 0 Hz and the trigger mode to single sweep (see TM).

Parameter

- **number**: real from 100E-3 to 60.
- **UP/DN**: increments in a 1, 2, 5, 10 sequence.

Preset State
Off

Query Response

```
NUMBER LF WITH EDI
```
Example

10 OUTPUT 718:"IP;"
20 OUTPUT 718:"FA 88MHZ;FB 108MHZ;"
30 OUTPUT 718:"MKN EP;"
40 PRINT "MOVE MARKER TO SIGNAL TO BE DEMODULATED; PRESS HOLD."
50 PRINT "THEN PRESS CONTINUE"
60 PAUSE
70 INPUT "ENTER DEMODULATION TIME (.1 SEC - 60 SEC)",Dtime
80 OUTPUT 718;"DEMOD T;Dtime:"DSEC;"
90 OUTPUT 718;"DEMOD FM;"
100 LOCAL 718
110 PRINT "ADJUST VOLUME AND SQUELCH AS NECESSARY."
120 END
DET
Detection Modes

Syntax

Description
The DET command specifies the IF detector used for acquiring measurement data. This is normally a coupled function, in which the spectrum analyzer selects the appropriate detector mode. Four modes are available: normal, positive, negative, and sample. The modes are described below. When a mode other than normal is chosen, a "D" appears on the left side of the display.

Parameters
NEG selects the negative peak detector. The minimum signal values are displayed.
NRM selects the normal peak detector, which displays both positive and negative peak values. The noise floor is made up of alternately selected positive and negative peaks. When a signal is encountered, the positive peak detector is used.
POS selects the positive peak detector. The maximum signal values are displayed.
SMP selects the sample mode, which places the instantaneous signal value of the analog-to-digital conversion in memory.

If no detector mode is specified, the following rules determine the chosen detector.
1. If video averaging or marker noise functions are on, or if the resolution bandwidth is greater than 300 Hz and the video bandwidth is less than 300 Hz, the detector is set to sample mode. If the resolution bandwidth is less than 300 Hz, sample mode is independent of the video bandwidth.
2. If the maximum-hold trace mode is on, the positive peak detector is used.
3. If the minimum-hold trace mode is on, the negative peak detector is used.
4. If none of the above rules apply, the normal detector is used.
5. If more than one of the above rules apply, the first rule listed determines the detector used.
Preset State
Coupled mode, normal detector

Query Response

```
Example

10  INPUT "SELECT A DETECTOR MODE (NEG, NRM, POS, OR SMP)" ,Det$
20  OUTPUT 718;"DET ";Det$;";
30  PRINT "CHosen DETECTOR MODE IS ",Det$
40  END
```
DL
Display Line

Syntax

![Diagram showing the syntax of DL command]

Description

The DL command activates a horizontal display line for use as a visual aid or for computational purposes. The default value is 0 dBm.

Parameters

- **number** real. Dependent on the selected amplitude units.
- **UP/DN** changes the display line by one vertical division.

Preset State

Off

Query Response

```
  number LF with C01
```
Example

10 INPUT "ENTER START FREQUENCY, IN MHZ",Fa
20 INPUT "ENTER STOP FREQUENCY, IN MHZ",Fb
30 OUTPUT 718:"AUNITS DBUV;"
40 OUTPUT 718:"FA ";Fa:"MHZ;"
50 OUTPUT 718:"FB ";Fb:"MHZ;"
60 OUTPUT 718:"DL 48DBUV;"
70 END
DONE
Done

Syntax

![Diagram of DONE command flow]

Description
The DONE command sends a "1" to the controller when all commands in a command string entered before DONE have been completed. Sending a TS command before DONE ensures that the spectrum analyzer will complete a full sweep before continuing on in a program.

Query Response

![Diagram of query response]

Example
10 OUTPUT 718;"IP;CF 1GHZ;SP 2GHZ;TS;DONE?;"
20 ENTER 718; Done
30 PRINT "COMMAND STRING IS DONE"
40 END
ERR Error

Syntax

Description
The ERR command outputs a list of errors present. An error code of "0" means there are no errors present. For a list of error codes and descriptions, refer to Appendix C or the Installation and Verification Manual. Executing ERR clears all HP-IB errors. For best results, enter error data immediately after querying for errors.

Preset State
Remote error list cleared. (Persistent errors are reentered into the error list.)

Query Response

Example

```
10   DIM Err$[200]
20   OUTPUT 718;"ERR?;"
30   ENTER 718;Err$
40   PRINT Err$
50   !the following routine removes the comma between errors in a string
60   Position_comma=POS(Err$",""")
70   IF Position_comma>0 THEN
80   !multiple errors
90   First_error=VAL(Err$)
100  PRINT First_error
```
ERR Error

110 Err$=Err$[POS(Err$,"","")+1]
120 REPEAT
130 Position_comma=POS(Err$,"",""")
140 Next_error=VAL(Err$)
150 PRINT Next_error
160 IF Position_comma THEN Err$=Err$[POS(Err$,"","")+1]
170 UNTIL Position_comma=0
180 ELSE
190 Err=VAL(Err$)
200 IF Err<>0 THEN
210 PRINT Err
220 ELSE
230 PRINT "NO ERRORS"
240 END IF
250 END IF
260 !end routine
270 END
ET
Elapsed Time

Syntax

![Diagram of ET syntax]

Description
The ET command returns to the controller the elapsed time (in hours) of analyzer operation. This value can be reset only by Hewlett-Packard.

Query Response

[number] LF with EOI

Example
10 OUTPUT 718;'ET?;"
20 ENTER 718;Et
30 PRINT Et
40 END
FA
Start Frequency

Syntax

Description
The FA command sets the start frequency and sets the spectrum analyzer to start-frequency/stop-frequency mode. If the start frequency exceeds the stop frequency, the stop frequency increases to equal the start frequency plus 100 Hz. The center frequency and span change with changes in the start frequency.

Parameters
- number: real from 0 to 2.9E+9 (HP 8560A) or to 6.5E+9 (HP 8561B); from 18E+9 to 325E+9 in external mixer mode.
- UP/DN: increments in 10% of span.

Preset State
0 Hz

Query Response

5-56 Language Reference
Example

10 OUTPUT 718;"FA 88MHZ;FB 108MHZ;"
20 OUTPUT 718;"FA?;"
30 ENTER 718;Fa
40 PRINT Fa
50 END
FB
Stop Frequency

Syntax

Description
The FB command sets the stop frequency and sets the spectrum analyzer to start-frequency/stop-frequency mode. If the stop frequency is less than the start frequency, the start frequency decreases to equal the stop frequency minus 100 Hz. The center frequency and span change with changes in the stop frequency.

Parameters
number real from 0 to 2.9E+9 (HP 8560A) or to 6.5E+9 (HP 8561B) 18E+9 to 325E+9 in external mixer mode.
UP/DN increments in 10% of span.

Preset State
2.9 GHz (HP 8560A)
6.5 GHz (HP 8561B)

Query Response

5-58 Language Reference
Example

10 OUTPUT 718;'FA 88MHZ;FB 108MHZ;''
20 OUTPUT 718;'FB?;''
30 ENTER 718;Fb
40 PRINT Fb
50 END
FDIAG
Frequency Diagnostics

Syntax

Description
The FDIAG command activates the frequency diagnostic routine, which returns the frequency of the specified oscillator.

Parameters
LO returns the first local oscillator frequency corresponding to the current start frequency.
SMP returns the sampling oscillator frequency corresponding to the current start frequency.
HARM returns the sampler harmonic number corresponding to the current start frequency.
MROLL returns the main roller oscillator frequency corresponding to the current start frequency, except when the resolution bandwidth is less than or equal to 100 Hz.
OROLL returns the offset roller oscillator frequency corresponding to the current start frequency, except when the resolution bandwidth is less than or equal to 100 Hz.
XROLL returns the transfer roller oscillator frequency corresponding to the current start frequency, except when the resolution bandwidth is less than or equal to 100 Hz.

Note In multiband sweeps, the above frequencies correspond to the band being swept when the command is executed.
FDIAG Frequency Diagnostics

Query Response

Example

10 OUTPUT 718;"FDIAG SMP,?;"
20 ENTER 718;Fdiag
30 PRINT "DIAGNOSTIC FREQUENCY IS ",Fdiag
40 END
FDSP
Frequency Display Off

Syntax

```
FDSP OFF
```

Description
The FDSP command turns off all annotation that describes the spectrum analyzer frequency setting. This includes the start and stop frequencies, the center frequency, the frequency span, marker readouts, the center frequency step-size, and signal identification to center frequency. To retrieve the frequency data, query the spectrum analyzer. To reactivate the annotation, execute the IP command.

Preset State
Off

Query Response

```
0  LF with EO1
1
```

Example
10 OUTPUT 718;"FDSP OFF;"
20 OUTPUT 718;"FDSP?;"
30 ENTER 718;Fdsp
40 PRINT Fdsp
50 END

5-62 Language Reference
FFT
Fast Fourier Transform

Syntax

Description
The FFT command performs a discrete Fourier transform on the source trace array and stores the logarithms of the magnitudes of the results in the destination array. The maximum length of any of the traces is 601 points.

FFT is designed to be used in transforming zero-span amplitude-modulation information into the frequency domain. Performing an FFT on a frequency sweep will not provide time-domain results.

The FFT results are displayed on the spectrum analyzer in a logarithmic amplitude scale. For the horizontal dimension, the frequency at the left side of the graph is 0 Hz, and at the right side is F_{max}. F_{max} is equal to 300 divided by sweep time.

As an example, if the sweep time of the analyzer is 60 ms, F_{max} equals 5 kHz.

The FFT algorithm assumes that the sampled signal is periodic with an integral number of periods within the time-record length (that is, the sweep time of the analyzer). Given this assumption, the transform computed is that of a time waveform of infinite duration, formed of concatenated time records. In actual measurements, the number of periods of the sampled signal within the time record may not be integral. In this case, there is a step discontinuity at the intersections of the concatenated time records in the assumed time waveform of infinite duration. This step discontinuity causes measurement errors, both amplitude uncertainty (where the signal level appears to vary with small changes in frequency) and frequency resolution (due to filter shape factor and sidelobes). Windows are weighting functions that are applied to the input data to force the ends of that data smoothly to zero, thus reducing the step discontinuity and reducing measurement errors.
FFT Fast Fourier Transform

There are three types of windows which are available, using the TWNDOW command.

FLATTOP provides optimum amplitude accuracy.

HANNING provides an amplitude accuracy/frequency resolution compromise, which is useful for general purpose measurements, as well as noise measurements.

UNIFORM provides equal weighting of the time record for measuring transients.

Some important parameters of the three available windows are shown in the table below. In the bandwidth entries, multiply the entry by one-divided-by-sweep time.

<table>
<thead>
<tr>
<th>Bandwidth Factors</th>
<th>FLATTOP</th>
<th>HANNING</th>
<th>UNIFORM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise Equivalent Bandwidth</td>
<td>3.63x</td>
<td>1.5x</td>
<td>1x</td>
</tr>
<tr>
<td>3 dB Bandwidth</td>
<td>3.60x</td>
<td>1.48x</td>
<td>1x</td>
</tr>
<tr>
<td>Sidelobe height</td>
<td><-90 dB</td>
<td>-32 dB</td>
<td>-13 dB</td>
</tr>
<tr>
<td>Amplitude uncertainty</td>
<td>0.10 dB</td>
<td>1.42 dB</td>
<td>3.92 dB</td>
</tr>
<tr>
<td>Shape factor (60 dB BW/3 dB BW)</td>
<td>2.5</td>
<td>9.1</td>
<td>>300</td>
</tr>
</tbody>
</table>

Example

10 OUTPUT 718:"IP;"
20 OUTPUT 718:"CF 300 MHZ;"
30 OUTPUT 718:"SP 0HZ;ST 5OMS;"
40 OUTPUT 718:"TWNDOW TRA, UNIFORM;"
50 OUTPUT 718:"CLRW TRB;"
60 OUTPUT 718:"SNGLS;TS;TS;"
70 OUTPUT 718:"FFT TRA,TRB,TRA;"
80 OUTPUT 718:"BLANK TRB;"
90 OUTPUT 718:"VIEW TRA;"
100 END
FOFFSET
Frequency Offset

Syntax

```
FOFFSET
```

Description
The FOFFSET command adds a specified offset to the displayed absolute-frequency values, including marker-frequency values. It does not affect the frequency range of the sweep, nor does it affect relative frequency readouts. When this function is active, an "F" appears on the left side of the display.

Parameters

- **number**: real from 0 to 2.9E+9 (HP 8560A)
- real from 0 to 6.5E+9 (HP 8561B).
- **UP/DN**: changes by 20% of span.

Preset State
Off

Query Response

```
number
```

Language Reference 5-65
OFFSET Frequency Offset

Example

10 INPUT "ENTER DESIRED FREQUENCY OFFSET IN HERTZ", Offset
20 OUTPUT 718; "OFFSET "; Offset; "HZ;"
30 OUTPUT 718; "OFFSET?;"
40 ENTER 718; Offset
50 PRINT "THE FREQUENCY OFFSET IS", Offset, "HZ"
60 END
FREF
Frequency Reference

Syntax

![Diagram showing FREF, INT, and EXT connections]

Description
The FREF command specifies the frequency reference source. Select either the internal frequency reference (INT) or supply your own external reference (EXT). An external reference must be 10 MHz (±100 Hz) at a minimum amplitude of 0 dBm. Connect the external reference to J9 (10 MHz REF IN/OUT) on the rear panel. When the external mode is selected, an "X" appears on the left edge of the display.

Preset State
Internal

Example

```
10  INPUT "WHAT IS THE FREQUENCY REFERENCE SOURCE (INT OR EXT)",Src$
20  OUTPUT 718;"FREF ";Src$;";
30  PRINT "SOURCE SELECTED IS",Src$
40  END
```
FS
Full Span

Syntax

Description
The FS command selects the full frequency span as defined by the instrument. The full span is 2.9 GHz for the HP 8560A. For the HP 8561B, the full span is 6.5 GHz.

Example
10 OUTPUT 718,"FS;"
20 END
FULBAND
Full Band

Syntax

Description
The FULBAND command selects a commonly-used, external-mixer frequency band, as shown in Table 5-3. The harmonic lock function (HNLOCK) is also set; this locks the harmonic of the chosen band. External-mixing functions are not available with an HP 8560A Option 002.

<table>
<thead>
<tr>
<th>Frequency Band</th>
<th>Frequency Range (GHz)</th>
<th>Mixing Harmonic</th>
<th>Conversion Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>18.0—26.5</td>
<td>6—</td>
<td>30 dB</td>
</tr>
<tr>
<td>A</td>
<td>26.5—40.0</td>
<td>8—</td>
<td>30 dB</td>
</tr>
<tr>
<td>Q</td>
<td>33.0—50.0</td>
<td>10—</td>
<td>30 dB</td>
</tr>
<tr>
<td>U</td>
<td>40.0—60.0</td>
<td>10—</td>
<td>30 dB</td>
</tr>
<tr>
<td>V</td>
<td>50.0—75.0</td>
<td>14—</td>
<td>30 dB</td>
</tr>
<tr>
<td>E</td>
<td>60.0—90.0</td>
<td>16—</td>
<td>30 dB</td>
</tr>
<tr>
<td>W</td>
<td>75.0—110.0</td>
<td>18—</td>
<td>30 dB</td>
</tr>
<tr>
<td>F</td>
<td>90.0—140.0</td>
<td>24—</td>
<td>30 dB</td>
</tr>
<tr>
<td>D</td>
<td>110.0—170.0</td>
<td>30—</td>
<td>30 dB</td>
</tr>
<tr>
<td>G</td>
<td>140.0—220.0</td>
<td>36—</td>
<td>30 dB</td>
</tr>
<tr>
<td>Y</td>
<td>170.0—260.0</td>
<td>44—</td>
<td>30 dB</td>
</tr>
<tr>
<td>J</td>
<td>220.0—325.0</td>
<td>54—</td>
<td>30 dB</td>
</tr>
</tbody>
</table>
FULBAND Full Band

Example

10 OUTPUT 718:"IP;MXRMODE EXT;"
20 INPUT "ENTER DESIRED FREQUENCY BAND (KAQUVWEFDGJ OR J)",Fulband$
30 OUTPUT 718:"FULBAND ";Fulband$;">"
40 OUTPUT 718:"MNW EP;"
50 PRINT "POSITION THE MARKER ON THE DESIRED SIGNAL."
60 PRINT "PRESS THE ANALYZER HOLD KEY, THEN PRESS CONTINUE."
70 PAUSE
80 OUTPUT 718:"SNGLS;TS;SIGID AUTO;DONE?;"
90 ENTER 718;Done
100 OUTPUT 718:"IDFREQ?;"
110 ENTER 718;Idfreq
120 IF Idfreq<>0 THEN
130 PRINT Idfreq
140 ELSE
150 PRINT "NO SIGNAL FOUND"
160 END IF
170 OUTPUT 718:"CONTS;"
180 LOCAL 718
190 END
GRAT
Graticule On/Off

Syntax

Description
The GRAT command turns the display graticule on or off.

Preset State
On

Query Response

Example
10 OUTPUT 718;"GRAT OFF;"
20 OUTPUT 718;"GRAT?;"
30 ENTER 718;Grat
40 PRINT Grat
50 END
HD
Hold

Syntax

Description
The HD command freezes the active function at its current value. If no function is active, no operation takes place.

Example

```plaintext
10  OUTPUT 718;"IP;CF 300MHZ;SP 20MHZ;HD;"
20  END
```
HNLOCK
Harmonic Number Lock

Syntax

Description
The HNLOCK command locks a chosen harmonic so only that harmonic is used to sweep an external frequency band. To select a frequency band, use the FULBAND command; it selects an appropriate harmonic for the desired band. To change the harmonic number, use HNLOCK. Table 5-4 shows the frequency bands and the harmonics that sweep each band. Note that HNLOCK also works in internal-mixing modes.

Once FULBAND or HNLOCK are set, only center frequencies and spans that fall within the frequency band of the current harmonic may be entered. When the FS command is activated, the span is limited to the frequency band of the selected harmonic. This command is not available with an HP 8560A Option 002.

Table 5-4. Frequency Bands and the Corresponding LO Harmonic

<table>
<thead>
<tr>
<th>Frequency Range (GHz)</th>
<th>Mixing Harmonic</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.00–26.50</td>
<td>6–</td>
</tr>
<tr>
<td>26.50–40.00</td>
<td>8–</td>
</tr>
<tr>
<td>33.00–50.00</td>
<td>10–</td>
</tr>
<tr>
<td>40.00–60.00</td>
<td>10–</td>
</tr>
<tr>
<td>50.00–75.00</td>
<td>14–</td>
</tr>
<tr>
<td>60.00–90.00</td>
<td>16–</td>
</tr>
<tr>
<td>75.00–110.00</td>
<td>18–</td>
</tr>
<tr>
<td>40.00–140.00</td>
<td>24–</td>
</tr>
<tr>
<td>110.00–170.00</td>
<td>30–</td>
</tr>
<tr>
<td>140.00–220.00</td>
<td>36–</td>
</tr>
<tr>
<td>170.00–280.00</td>
<td>44–</td>
</tr>
<tr>
<td>220.00–325.00</td>
<td>54–</td>
</tr>
</tbody>
</table>
HNLOCK Harmonic Number Lock

Parameters

number integer from 1 to 54 (for best results, choose from harmonic numbers shown in Table 5-2).
UP/DN increments of 1.

Preset State

Off

Query Response

```
← number → LF with EOI ←
```

Example

```
10  OUTPUT 718:"IP;MIXMODE EXT;"
20  INPUT "SELECT THE START FREQUENCY, IN GHZ",Fa
30  INPUT "SELECT THE STOP FREQUENCY, IN GHZ",Fb
40  INPUT "ENTER HARMONIC DESIRED TO SWEEP RANGE",Harm
50  OUTPUT 718:"FA ":Fa:"GHZ;"
60  OUTPUT 718:"FB ":Fb:"GHZ;"
70  OUTPUT 718:"HNLOCK ";Harm:";
80  END
```
HNUNLK Unlock Harmonic Number

Syntax

Description
The HNUNLK command unlocks the harmonic number, allowing you to select frequencies and spans outside the range of the locked harmonic number. Also, when HNUNLK is executed, more than one harmonic can then be used to sweep across a desired span. For example, sweep a span from 18 GHz to 40 GHz. In this case, the analyzer will automatically sweep first using 6-, then using 8-. This command is not available with an HP 8560A Option 002.

Example

10 OUTPUT 718;"IP;MXMODE EXT;FULBAND Q;"
20 OUTPUT 718;"FA 18GHZ;FB 40GHZ;"
30 OUTPUT 718;"HNUNLK;"
40 END
ID
Output Identification

Syntax

```
ID
```

Description

The ID command returns the model number of the spectrum analyzer (HP 8560A or HP 8561B) and any options installed.

Query Response

```
 HP8560A
 HP8561B
```

Example

```
10 DIM Id$[8]
20 OUTPUT 718:"ID?;"
30 ENTER 718;Id$
40 PRINT Id$
50 END
```
IDCF
Signal Identification to Center Frequency

Syntax

![Diagram of IDCF signal identification to center frequency]

Description
The IDCF command sets the center frequency to the frequency obtained from the command SIGID. SIGID must be in AUTO mode and have found a valid result for this command to execute properly. Use SIGID on signals greater than 18 GHz (i.e., in external mixing mode). SIGID and IDCF may also be used on signals less than 6.5 GHz in an HP 8561B. IDCF is not available on an HP 8560A Option 002.

Example

```
10   OUTPUT 718;"SIGID AUTO;"
20   OUTPUT 718;"IDCF;"
30   OUTPUT 718;"CF?;"
40   ENTER 718;Cf
50   PRINT Cf
60   END
```
IDFREQ
Signal Identified Frequency

Syntax

![Diagram of IDFREQ syntax]

Description
The IDFREQ command returns the frequency of the last identified signal. After an instrument preset or an invalid signal identification, IDFREQ returns a "0". This command is not available with an HP 8560A Option 002.

Query Response

![Query Response Diagram]

Example

```
10  OUTPUT 718:"IDFREQ?;"
20  ENTER 718;Idfreq
30  PRINT Idfreq
40  END
```
IP
Instrument Preset

Syntax

![Diagram]

Description
The IP command sets the spectrum analyzer to a known, predefined state, shown in Table 5-5. IP does not affect the contents of any data or trace registers or stored preselector data. IP does not clear the input or output data buffers; to clear these, execute the statement CLEAR 718. Include the TS command after IP when the next command will operate on trace data (such as TRA).
IP Instrument Preset

Table 5-5. HP 8560A/51B Preset State

<table>
<thead>
<tr>
<th>Function</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 MHz REF</td>
<td>INTERNAL</td>
</tr>
<tr>
<td>A→B→A</td>
<td>OFF</td>
</tr>
<tr>
<td>A→B+DISPLAY LINE→A</td>
<td>OFF</td>
</tr>
<tr>
<td>AGC</td>
<td>OFF</td>
</tr>
<tr>
<td>ANNOTATION</td>
<td>ON</td>
</tr>
<tr>
<td>AUTO IF ADJUST</td>
<td>ON</td>
</tr>
<tr>
<td>BAND LOCK</td>
<td>OFF</td>
</tr>
<tr>
<td>CENTER FREQUENCY</td>
<td>1.45 GHz (HP 8560A); 3.25 GHz (HP 8561B)</td>
</tr>
<tr>
<td>CF STEP</td>
<td>290 MHz (HP 8560A); 650 MHz (HP 8561B)</td>
</tr>
<tr>
<td>DEMODULATION</td>
<td>FM OFF; AM OFF</td>
</tr>
<tr>
<td>DEMODULATION TIME</td>
<td>1 second</td>
</tr>
<tr>
<td>DETECTOR</td>
<td>NORMAL</td>
</tr>
<tr>
<td>DISPLAY LINE</td>
<td>0 dBm, OFF</td>
</tr>
<tr>
<td>EXT MIXER BIAS</td>
<td>0 mA</td>
</tr>
<tr>
<td>EXT MIXER LO HARMONIC</td>
<td>6</td>
</tr>
<tr>
<td>FREQUENCY COUNTER</td>
<td>OFF</td>
</tr>
<tr>
<td>FREQUENCY COUNTER RESOLUTION</td>
<td>10 kHz</td>
</tr>
<tr>
<td>FREQUENCY DISPLAY</td>
<td>ON</td>
</tr>
<tr>
<td>FREQUENCY MODE</td>
<td>CENTER-SPAN</td>
</tr>
<tr>
<td>FREQUENCY OFFSET</td>
<td>0 MHz, OFF</td>
</tr>
<tr>
<td>GRATICULE</td>
<td>ON</td>
</tr>
<tr>
<td>INPUT ATTENUATION</td>
<td>10 dB, AUTO</td>
</tr>
<tr>
<td>MARKER MODE</td>
<td>OFF</td>
</tr>
<tr>
<td>MAX MIXER LEVEL</td>
<td>−10 dBm</td>
</tr>
<tr>
<td>MIXER</td>
<td>INT</td>
</tr>
<tr>
<td>Function</td>
<td>State</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>MIXER CONV LOSS</td>
<td>30.0 dBm</td>
</tr>
<tr>
<td>NOISE MARKER</td>
<td>OFF</td>
</tr>
<tr>
<td>PEAK EXCURSION</td>
<td>6 dB</td>
</tr>
<tr>
<td>PEAK THRESHOLD</td>
<td>-130 dBm</td>
</tr>
<tr>
<td>RBW/SPAN RATIO</td>
<td>0.011</td>
</tr>
<tr>
<td>REFERENCE LEVEL</td>
<td>0 dBm</td>
</tr>
<tr>
<td>REFERENCE LEVEL OFFSET</td>
<td>0 dBm, OFF</td>
</tr>
<tr>
<td>RESOLUTION BW</td>
<td>1 MHz, AUTO</td>
</tr>
<tr>
<td>SIGNAL IDENTIFICATION</td>
<td>OFF</td>
</tr>
<tr>
<td>SIGNAL TRACK</td>
<td>OFF</td>
</tr>
<tr>
<td>SPAN</td>
<td>2.9 GHz (HP 8560A); 6.5 GHz (HP 8561B)</td>
</tr>
<tr>
<td>SQUELCH</td>
<td>OFF</td>
</tr>
<tr>
<td>SQUELCH LEVEL</td>
<td>-120 dBm</td>
</tr>
<tr>
<td>SWEEP TIME</td>
<td>60 ms, AUTO (HP 8560A); 200 ms, AUTO (HP 8561B)</td>
</tr>
<tr>
<td>THRESHOLD</td>
<td>-90 dBm, OFF</td>
</tr>
<tr>
<td>TRACE A</td>
<td>CLEAR-WRITE</td>
</tr>
<tr>
<td>TRACE B</td>
<td>BLANK</td>
</tr>
<tr>
<td>TRACE-DATA</td>
<td>FORMAT P</td>
</tr>
<tr>
<td>TRIGGER MODE</td>
<td>CONTINUOUS</td>
</tr>
<tr>
<td>TRIGGER SOURCE</td>
<td>FREE-RUN</td>
</tr>
<tr>
<td>UNITS</td>
<td>dBm, AUTO</td>
</tr>
<tr>
<td>VERTICAL SCALE</td>
<td>10 dB/DIV</td>
</tr>
<tr>
<td>VBW/RBW RATIO</td>
<td>1</td>
</tr>
<tr>
<td>VIDEO BW</td>
<td>1 MHz, AUTO</td>
</tr>
<tr>
<td>VIDEO AVERAGE</td>
<td>100, OFF</td>
</tr>
<tr>
<td>VIDEO TRIG LEVEL</td>
<td>0 dBm</td>
</tr>
</tbody>
</table>

Example

```
10 OUTPUT 718:"IP;SNGLS;"
20 END
```
LG
Logarithmic Scale

Syntax

Description
The LG command selects a 1, 2, 5, or 10 dB logarithmic amplitude scale. When in linear mode, querying LG returns a "0".

Parameters
number 1, 2, 5, or 10.
UP/DN increments in a 1, 2, 5, 10 sequence.

Preset State
10 dB/div

Query Response
Example

10 OUTPUT 718;"LG 10DB;"
20 OUTPUT 718;"AUNITS DBMV;"
30 OUTPUT 718;"TS;MKPK HI;MKRL;"
40 OUTPUT 718;"LG 2DB;"
50 END
LN
Linear Scale

Syntax

Description
The LN command selects a linear amplitude scale. Measurements made on a linear scale can be read out in any units.

Example

```
10  OUTPUT 718;"LN;"
20  END
```
MBIAS Mixer Bias

Syntax

Description
The MBIAS command sets the bias for an external mixer that requires diode bias for efficient mixer operation. The bias, which is provided on the center conductor of the IF input, is activated when MBIAS is executed. A "+" or "-" appears on the left edge of the spectrum analyzer display, indicating that positive or negative bias is on. When the bias is turned off, MBIAS is set to 0. Default units are in milliamps. This function is not available with an HP 8560A Option 002.

Caution
The open-circuit voltage can be ±3.5 V through a source resistance of 300 ohms. Such voltage may appear when recalling an instrument state in which an active bias has been stored.

Note
The bias value that appears on the spectrum analyzer display is expressed in terms of short-circuit current (the amount of current that would flow if the IF line were shorted to ground). The actual amount of current flowing into the mixer will be less.

Parameters
number real from 10E-3 to 10E+3.
UP/DN increments of 0.01 mA.
MBIAS Mixer Bias

Preset State
Off

Query Response

Example

10 OUTPUT 718;"IP;MXRMODE EXT;FULBAND U;"
20 OUTPUT 718;"MKN EP;"
30 PRINT "MOVE THE MARKER TO THE DESIRED SIGNAL"
40 PRINT "PRESS HOLD THEN PRESS CONTINUE"
50 PAUSE
60 INPUT "ENTER THE BIAS VALUE, IN MA",Bias
70 OUTPUT 718;"MBIAS ",Bias;"MA;"
80 OUTPUT 718;"MBIAS EP;"
90 PRINT "ADJUST BIAS IF NECESSARY"
100 PRINT "PRESS HOLD THEN PRESS CONTINUE"
110 PAUSE
120 OUTPUT 718;"SIGID AUTO;TS;DONE?;"
130 ENTER 718;Done
140 PRINT Done
150 END
MINH
Minimum Hold

Syntax

Description
The MINH command updates the chosen trace with the minimum signal level detected at each trace-data point from subsequent sweeps. This function employs the negative peak detector (refer to the DET command).

Example

```
10  OUTPUT 718:"IP;SWGLS;"
20  INPUT "ENTER START FREQUENCY, IN MHZ",Fa
30  INPUT "ENTER STOP FREQUENCY, IN MHZ",Fb
40  OUTPUT 718:"FA ";Fa;"MHZ;"
50  OUTPUT 718:"FB ";Fb;"MHZ;"
60  OUTPUT 718:"TS;MINH TRA;"
70  OUTPUT 718:"TS;MKPK HI;MKD;"
80  OUTPUT 718:"TS;MKPK NH;MKA?;AUNITS?;"
90  ENTER 718 USING "K";Difference,Aunits$
100 PRINT "DIFFERENCE IN AMPLITUDE IS ",Difference,Aunits$
110 LOCAL 718
120 END
```
MKA
Marker Amplitude

Syntax

Description
The MKA command returns the amplitude of the active marker. If no marker is active, MKA places a marker at the center of the trace and returns that amplitude value.

Query Response

Example

```
10    OUTPUT 718;"IP;SNGLS;"
20    INPUT "ENTER IN DESIRED CENTER FREQUENCY, IN MHZ", Cf
30    INPUT "ENTER IN DESIRED FREQUENCY SPAN, IN MHZ", Sp
40    OUTPUT 718;"CF ";Cf;"MHZ;"
50    OUTPUT 718;"SP ";Sp;"MHZ;"
60    OUTPUT 718;"TS;MKPK HI;"
70    OUTPUT 718;"MKA?;AUNITS?;"
80    ENTER 718 USING "K";Mka,Aunits$
90    PRINT "HIGHEST PEAK IS",Mka,Aunits$
100   END
```
MKCF Marker to Center Frequency

Syntax

Description
The MKCF command sets the center frequency to the frequency value of an active marker.

Example

10 OUTPUT 718;"IP;SNGLS;"
20 INPUT "ENTER IN DESIRED START FREQUENCY, IN MHZ",Fa
30 INPUT "ENTER IN DESIRED STOP FREQUENCY, IN MHZ",Fb
40 OUTPUT 718;"FA ";Fa;"MHZ;"
50 OUTPUT 718;"FB ";Fb;"MHZ;"
60 OUTPUT 718;"TS;MKPK HI;MKCF;TS;"
70 END
MKD
Marker Delta

Syntax

Description
The MKD command places a second marker on the trace. The number specifies the distance in frequency or time (when in zero span) between the two markers.

Parameters
number dependent upon the chosen span.
UP/DN increments in 10% of span.

Query Response

Example
10 OUTPUT 718;"IP;CF 450MHZ;SP 400MHZ;"
20 OUTPUT 718;"TS;MKPK HI;MKD 300MHZ;"
30 OUTPUT 718;"MKPK HI;MKD;MKPK NH;MKD?;"
40 ENTER 718;Mkd
50 PRINT Mkd
60 END

5-90 Language Reference
MKDR Reciprocal of Marker Delta

Syntax

Description
The MKDR command displays the reciprocal of the frequency or time (when in zero span) difference between two markers.

Parameters
number from 10E-12 to 1.

Query Response

Example
10 OUTFUT 718:"CF 300MHZ;SP 200MHZ;"
20 OUTPUT 718:"TS;MKPK HI;MKD;MKPK NH;MKDR?;"
30 ENTER 718;Period
40 PRINT "THE TIME PERIOD IS ",Period
50 END
MKF Marker Frequency

Syntax

```
MKF
```

Description
The MKF command places an active marker on the chosen frequency or can be queried to return the frequency of the active marker. Default units are in Hertz.

Parameters
number real from 0 to 2.9E+9 (HP 8560A) or to 6.5E+9 (HP 8561B); from 18E+9 to 325E+9 in external mixer mode.

Query Response

```
number LF with ED1
```

Example

```
10 OUTPUT 718;"CF 300MHZ;SP 20MHZ;MKF 290MHZ;"
20 OUTPUT 718;"TS;MKPK HI;MKF?;"
30 ENTER 718;Marker_freq
40 PRINT Marker_freq
50 END
```
MKFC Frequency Counter

Syntax

![Diagram of MKFC Frequency Counter]

Description
The MKFC command activates a frequency counter that counts the frequency of the active marker or the difference in frequency between two markers. If no marker is active, MKFC places a marker at the center of the trace and counts that marker frequency. The frequency counter provides a more accurate frequency reading; it pauses at the marker, counts the value, then continues the sweep. To adjust the frequency counter resolution, use the MKFCR command. To return the counter value, use the MKF command.

Preset State
Off

Example
10 INPUT "ENTER IN THE DESIRED CENTER FREQUENCY, IN MHz",Freq
20 INPUT "ENTER IN THE DESIRED FREQUENCY SPAN, IN MHz",Span
30 OUTPUT 718;"IP;CF ";Freq;"MHz;"
40 OUTPUT 718;"SP ";Span;"MHz;"
50 INPUT "ENTER DESIRED FREQUENCY-COUNTER RESOLUTION, IN Hz",Resolution
60 OUTPUT 718;"MKFCR ";Resolution;"Hz;"
70 OUTPUT 718;"MKN EP;"
80 PRINT "PLACE THE MARKER ON THE DESIRED SIGNAL."
90 PRINT "PRESS HOLD ON THE ANALYZER, THEN PRESS CONTINUE."
100 PAUSE
110 OUTPUT 718;"MKFC ON;"
120 END
MKFCR
Frequency Counter Resolution

Syntax

Description
The MKFCR command specifies the resolution of the frequency counter. Refer to the MKFC command. The default value is 10 kHz.

Parameters
number 1 Hz to 1 MHz, in powers of ten.

Query Response

Example
10 INPUT "ENTER IN THE DESIRED CENTER FREQUENCY, IN MHZ", Freq
20 INPUT "ENTER IN THE DESIRED FREQUENCY SPAN, IN MHZ", Span
30 OUTPUT 718;"IP;CF ";Freq;"MHZ;"
40 OUTPUT 718;"SP ";Span;"MHZ;"
50 INPUT "ENTER DESIRED FREQUENCY-COUNTER RESOLUTION, IN HZ", Resolution
60 OUTPUT 718;"MKFCR ";Resolution;"HZ;",
70 OUTPUT 718;"MKN EP;"
80 PRINT "PLACE THE MARKER ON THE DESIRED SIGNAL."
90 PRINT "PRESS HOLD ON THE ANALYZER, THEN PRESS CONTINUE."
100 PAUSE

5-94 Language Reference
110 OUTPUT 718;"MKFC ON;"
120 OUTPUT 718;"MKF?;"
130 ENTER 718;Freq_count
140 PRINT "FREQUENCY IS",Freq_count,"HZ"
150 END
MKMIN
Marker to Minimum

Syntax

```
MKMIN
```

Description
The MKMIN command places an active marker on the minimum signal detected on a trace.

Example
```
10 OUTPUT 718;"IP;SNGLS;"
20 INPUT "ENTER IN THE START FREQUENCY, IN MHZ",Start_freq
30 INPUT "ENTER IN THE STOP FREQUENCY, IN MHZ",Stop_freq
40 OUTPUT 718;"FA ";Start_freq;"MHZ"
50 OUTPUT 718;"FB ";Stop_freq;"MHZ"
60 OUTPUT 718;"TS;MKPK HI;MKD;MKMIN;MKF?;"
70 ENTER 718;Delta_freq
80 OUTPUT 718;"MKA?;"
90 ENTER 718;Delta_amp
100 PRINT "DIFFERENCE IN FREQUENCY IS ",Delta_freq,"HZ"
110 PRINT "DIFFERENCE IN AMPLITUDE IS",Delta_amp,"DB"
120 END
```
MKN Marker Normal

Syntax

Description
The MKN command places an active marker on the specified frequency. If no frequency is specified, MKN places the marker at the center of the trace. When in zero span, querying MKN returns the center frequency.

Parameters
number real from 0 to 2.9E+9 (HP 8560A) or to 6.5E+9 (HP 8561B); 18E+9 to 325E+9 in external mixer mode).
UP/DN increments in 10% of span.

Query Response
MKN Marker Normal

Example

```
10  INPUT "ENTER IN THE START FREQUENCY, IN MHZ",Start_freq
20  INPUT "ENTER IN THE STOP FREQUENCY, IN MHZ",Stop_freq
30  OUTPUT 718;"IP;FA ";Start_freq;"MHZ"
40  OUTPUT 718;"FB ";Stop_freq;"MHZ;"
50  OUTPUT 718;"MKN EP;"
60  PRINT "PLACE THE MARKER ON THE DESIRED SIGNAL."
70  PRINT "PRESS HOLD, THEN PRESS CONTINUE."
80  PAUSE
90  OUTPUT 718;"MKN?;"
100 ENTER 718;Mkn
110 PRINT "MARKER FREQUENCY IS ",Mkn,"HZ"
120 END
```
MKNOISE Marker Noise

Syntax

![MKNOISE Diagram]

Description

MKNOISE sets the detector mode to sample and computes the average of 32 data points (16 points on one side of the marker, the marker itself, and 15 points on the other side of the marker). This average is corrected for effects of the log or linear amplifier, bandwidth shape factor, IF detector, and resolution bandwidth. If two markers are on (whether in marker delta mode or 1/marker delta mode), MKRNOISE works on the active marker and not on the anchor marker. This allows you to measure signal-to-noise density directly. To query the value, use the MKA command.

Query Response

![Query Response Diagram]

Example

```
10  OUTPUT 718;"CF 300MZ;SP 10MZ;DET SMP;TS;MKPK HI;MKA?;"
20  ENTER 718;Amp_1
30  OUTPUT 718;"MKD UP UP;MKNOISE ON;MKA?;MKNOISE OFF;"
40  ENTER 718;Amp_2
50  DISP Amp_2
60  C_to_n=Amp_1-Amp_2
70  PRINT "CARRIER TO NOISE RATIO IN 1 HZ BANDWIDTH IS ";C_to_n;" DB"
80  END
```
MKOFF
Marker Off

Syntax

Description
The MKOFF command turns off the active marker or, if specified, turns off all markers.

Example

10 OUTPUT 718;"MKOFF ALL;"
20 END
MKPK
Peak Search

Syntax

Description
The MKPK command places a marker on the highest point on a trace, the next-highest point, the next-left peak, or the next-right peak. The default is HI (highest point). The trace peaks must meet the criteria of the marker threshold and peak excursion functions in order for a peak to be found. See also the MKPT and MKPX commands.

Parameters
HI finds the highest point on a trace.
NH finds the next-highest point on a trace.
NR finds the next-right peak.
NL finds the next-left peak.

Example
10 OUTPUT 718;"IP;SNGLS;"
20 INPUT "ENTER START FREQUENCY, IN MHZ",Start_freq
30 INPUT "ENTER STOP FREQUENCY, IN MHZ",Stop_freq
40 OUTPUT 718;"FA ";Start_freq;"MHZ;"
50 OUTPUT 718;"FB ";Stop_freq;"MHZ;"
60 OUTPUT 718;"TS;MKPK HI;MKD;MKPK NH;"
70 OUTPUT 718;"MKA?;"
80 ENTER 718;Delta_amplitude
90 OUTPUT 718;"MKF?;"
100 ENTER 718;Delta_freq
110 PRINT "DIFFERENCE IN FREQUENCY IS ",Delta_freq,"HZ"
120 PRINT "DIFFERENCE IN AMPLITUDE IS ",Delta_amplitude,"DB"
130 END

Language Reference 5-101
MKPT
Marker Threshold

Syntax

![Diagram of MKPT syntax](image)

Description
The MKPT command sets the minimum amplitude level from which a peak on the trace can be detected. The default value is -130 dBm. See also the MKPX command.

Any portion of a peak that falls below the peak threshold is used to satisfy the peak excursion criteria. For example, a peak that is equal to 3 dB above the threshold when the peak excursion is equal to 6 dB will be found if the peak extends an additional 3 dB or more below the threshold level.

Parameters

- **number**: real from -200 to 30.
- **UP/DN**: increments of 10 dB.

Query Response

![Query response diagram](image)
Example

10 OUTPUT 718;"IP;SNGLS;"
20 INPUT "ENTER START FREQUENCY, IN MHZ",Start_freq
30 INPUT "ENTER STOP FREQUENCY, IN MHZ",Stop_freq
40 INPUT "ENTER IN MARKER THRESHOLD, IN DB",Thresh
50 OUTPUT 718;"FA ";Start_freq;"MHZ;"
60 OUTPUT 718;"FB ";Stop_freq;"MHZ;"
70 OUTPUT 718;"MKPT ";Thresh;"DB;"
80 OUTPUT 718;"TS;MKPK HI;"
90 END
MKPX
Peak Excursion

Syntax

Description
The MKPX command defines what constitutes a peak on a trace. The chosen value specifies the amount that a trace must increase monotonically, then decrease monotonically, in order to be a peak. For example, if the peak excursion is 10 dB, the amplitude of the sides of a candidate peak must descend at least 10 dB in order to be considered a peak (see Figure 5-4). The default value is 6 dB. In linear mode, enter the marker peak excursion as a unit-less number.

Any portion of a peak that falls below the peak threshold is also used to satisfy the peak excursion criteria. For example, a peak that is equal to 3 dB above the threshold when the peak excursion is equal to 6 dB will be found if the peak extends an additional 3 dB or more below the threshold level.

Figure 5-4. MKPX Determines Which Signals are Considered Peaks
Parameters

number real from 0.1 to 99.
UP/DN 1 vertical division of the display.

Query Response

Example

10 OUTPUT 718;"IP;FA 250MHZ;FB 1300MHZ;"
20 INPUT "ENTER IN PEAK EXCURSION, IN DB ",Excursion
30 OUTPUT 718;"MKPX ";Excursion;"DB;"
40 OUTPUT 718;"TS;MKPK HI;MKA;"
50 ENTER 718;Mka
60 OUTPUT 718;"MKF;;"
70 ENTER 718;Mkf
80 IF Mka<>0 THEN
90 PRINT "PEAK FOUND AT ",Mkf
100 PRINT "PEAK AMPLITUDE IS",Mka
110 ELSE
120 PRINT "NO PEAKS FOUND"
130 END IF
140 END
MKRL
Marker to Reference Level

Syntax

! Image of a flowchart showing the relationship between MKRL and other commands.

Description
The MKRL command sets the reference level to the amplitude of an active marker. If no marker is active, MKRL places a marker at the center of the trace and uses that marker amplitude to set the reference level.

Example
10 OUTPUT 718;"IP;SNGLS;CF 300MHZ;SP 20MHZ;"
20 OUTPUT 718;"TS;MKPK HI;MKRL;TS;"
30 OUTPUT 718;"RL?;AUNITS?;"
40 ENTER 718 USING "K";Ref_level,Aunits$
50 PRINT "REFERENCE LEVEL IS",Ref_level,Aunits$
60 END
MKSP Marker Delta to Span

Syntax

Description
The MKSP command sets the frequency span equal to the frequency difference between two markers on a trace. The start frequency is set equal to the frequency of the left-most marker and the stop frequency is set equal to the frequency of the right-most marker.

Example

10 INPUT "CONNECT THE 300 MHZ CALIBRATOR TO THE INPUT",Ans$
20 OUTPUT 718;"IP;SGLS:FA 270MHZ;FB 1275MHZ;TS;"
30 OUTPUT 718;"MKPK HI;MKD;MKPK NH;TS;MKSP;TS;"
40 END
MKSS
Marker to Center Frequency Step-Size

Syntax

```
MKSS
```

Description
The MKSS command sets the center frequency step-size equal to the frequency value of the active marker.

Example

```
10   INPUT "CONNECT THE 300 MHZ CALIBRATOR TO THE INPUT",Ans$
20   OUTPUT 718;"IP;SNGLS;CF 300MHZ;SP 20MHZ;TS;"
30   OUTPUT 718;"MKPK HI;MKSS;MKD;CF UP;TS;MKPK HI;"
40   OUTPUT 718;"MKA?;"
50   ENTER 718;Delta_amplitude
60   OUTPUT 718;"MKF?;"
70   ENTER 718;Delta_freq
80   PRINT "DIFFERENCE IN AMPLITUDE IS",Delta_amplitude,"DB"
90   PRINT "DIFFERENCE IN FREQUENCY IS ",Delta_freq,"HZ"
100  END
```
MKT Marker Time

Syntax

Description

The MKT command places a marker at a position that corresponds to a specified point in time during the sweep. Default units are seconds.

Parameters

number real from 0 to the current sweep time.

Preset State

Off

Query Response

Example

10 OUTPUT 718;"ST 2S;MKT 1.6S;"
20 END
MKTRACK
Signal Track

Syntax

![Diagram of MKTRACK command]

Description
The MKTRACK command locates the active marker and sets the center frequency to the marker value. This is done after every sweep, thus maintaining the marker value at the center frequency. This allows you to "zoom in" quickly from a wide span to a narrow one, without losing the signal from the screen. Or, use MKTRACK to keep a slowly drifting signal centered on the display. When this function is active, a "K" appears on the left edge of the display.

Preset State
Off

Query Response

![Diagram of query response]

Example
10 INPUT "ENTER IN CENTER FREQUENCY, IN MHZ",Freq
20 INPUT "ENTER IN FREQUENCY SPAN, IN MHZ",Span
30 OUTPUT 718:"IP;"
40 OUTPUT 718:"CF ";Freq;"MHZ;TS;"
50 OUTPUT 718:"MKTRACK ON;"
60 OUTPUT 718:"SP ";Span;"MHZ;TS;"
70 OUTPUT 718:"MKTRACK OFF;"
80 END
ML Mixer Level

Syntax

Description
The ML command specifies the maximum signal level that is at the input mixer. The attenuator automatically adjusts to ensure that this level is not exceeded for signals less than the reference level.

Parameters
number integer from -80 to -10, in decade increments. Numbers round down to the nearest decade.
UP/DN increments by 10 dB.

Preset State
-10 dBm
Example

10 OUTPUT 718;"ML -40DBM;"
20 OUTPUT 718;"ML?;"
30 ENTER 718;ML
40 PRINT ML
50 END
MXMH
Maximum Hold

Syntax

Description
The MXMH command updates the chosen trace with the maximum signal level detected at each trace-data point from subsequent sweeps. This function employs the positive peak detector (refer to the DET command). The detector mode can be changed, if desired, after max hold is initialized.

Example

10 OUTPUT 718;"BLANK TRA;CLRW TRB;MXMH TRB;"
20 END
MXRMODE
Mixer Mode

Syntax

Description
The MXRMODE command specifies the mixer mode. Select either the internal mixer (INT) or supply an external mixer (EXT). This command is not available with an HP 8560A Option 002.

Preset State
Internal

Query Response

Example
10 INPUT "ENTER THE MIXER MODE (INT OR EXT)",Mode$
20 OUTPUT 718;"MXRMODE ";Mode$;";
30 END
NORMLIZE Normalize Trace Data

Syntax

![Diagram of NORMLIZE command]

Description

The NORMLIZE command activates or deactivates the normalization routine for stimulus-response measurements. This function subtracts trace B from trace A, offsets the result by the value of the normalized reference position (NRL), and displays the result in trace A. NORMLIZE is intended for use with the STOREOPEN and STORESHORT or STORETHRU commands. These functions are used to store a reference trace into trace B. Refer to the respective command descriptions for more information.

Accurate normalization occurs only if the reference trace and the measured trace are on-screen. If any of these traces are off-screen, an error message will be displayed. If the error message ERR 903 A > DLMT is displayed, the range level (RL) can be adjusted to move the measured response within the displayed measurement range of the analyzer. If ERR 904 B > DLMT is displayed, the calibration is invalid and a thru or open/short calibration must be performed.

If active (ON), the NORMLIZE command is automatically turned off with an instrument preset (IP) or at power on.

Preset State

Off

Query Response

![Diagram of Query Response]
NORMLIZE Normalize Trace Data

Example

10 OUTPUT 718;"IP;SNGLS;"
20 OUTPUT 718;"FA 300KHZ;FB 1GHZ;"
30 OUTPUT 718;"SRCPWR ON;"
40 OUTPUT 718;"SWPCPL SR;"
50 OUTPUT 718;"RB 100KHZ;"
60 OUTPUT 718;"SRCTKPK;DONE?;"
70 ENTER 718; Done
80 PRINT "CONNECT THRU. PRESS CONTINUE WHEN READY TO STORE."
90 PAUSE
100 OUTPUT 718;"TS;DONE?;"
110 ENTER 718; Done
120 OUTPUT 718;"STORETHRU;"
130 OUTPUT 718;"TS;DONE?;"
140 ENTER 718; Done
150 OUTPUT 718;"NORMLIZE ON;"
160 OUTPUT 718;"TS;DONE?;"
170 ENTER 718; Done
180 LOCAL 718
190 END
NRL
Normalized Reference Level

Syntax

![Diagram of NRL syntax]

Description

The NRL command sets the normalized reference level. It is intended to be used with the NORMLIZE command. When using NRL, the input attenuator and IF step gains are not affected. This function is a trace-offset function enabling the user to offset the displayed trace without introducing hardware-switching errors into the stimulus-response measurement. The unit of measure for NRL is dB.

In absolute power mode (dBm), reference level (RL) affects the gain and RF attenuation settings of the instrument, which affects the measurement or dynamic range. In normalized mode (relative power or dB-measurement mode), NRL offsets the trace data on-screen and does not affect the instrument gain or attenuation settings. This allows the displayed normalized trace to be moved without decreasing the measurement accuracy due to changes in gain or RF attenuation. If the measurement range must be changed to bring trace data on-screen, then the range level should be adjusted. Adjusting the range-level normalized mode has the same effect on the instrument settings as does reference level in absolute power mode (normalize off).

Preset State

0 dB

Query Response

![Diagram of NRL query response]
Example

10 OUTPUT 718;"IP;SNGLS;"
20 OUTPUT 718;"FA 300KHZ;FB 1GHZ;"
30 OUTPUT 718;"SRCPWR ON;"
40 OUTPUT 718;"SWPCPL SR;"
50 OUTPUT 718;"SRCTKPK;DONE?;"
60 ENTER 718;Done
70 PRINT "CONNECT THRU. PRESS CONTINUE WHEN READY TO STORE."
80 PAUSE
90 OUTPUT 718;"TS;DONE?;"
100 ENTER 718;Done
110 OUTPUT 718;"STORETHRU;"
120 OUTPUT 718;"TS;DONE?;"
130 ENTER 718;Done
140 OUTPUT 718;"NORMALIZE ON;"
150 OUTPUT 718;"TS;DONE?;"
160 ENTER 718;Done
170 OUTPUT 718;"MAP05 5;TS;"
180 PRINT "RECONNECT DUT. PRESS CONTINUE WHEN READY."
190 PAUSE
200 OUTPUT 718;"NRL -10DB;"
210 OUTPUT 718;"TS;DONE?;"
220 ENTER 718;Done
230 LOCAL 718
240 END
NRPOS
Normalized Reference Position

Syntax

Description
The NRPOS command adjusts the normalized reference-position that corresponds to the position on the graticule where the difference between the measured and calibrated traces resides. The dB value of the normalized reference-position is equal to the normalized reference level. The normalized reference-position may be adjusted between 0.0 and 10.0, corresponding to the bottom and top graticule lines, respectively.

Parameters
number real from 0.0 to 10.0.
UP/DN increments by 1.0.

Preset State
10.0 (top graticule line)

Query Response
NRPOS Normalized Reference Position

Example

10 OUTPUT 718;"IP;SNGLS;"
20 OUTPUT 718;"FA 300KHZ;FB 1GHZ;"
30 OUTPUT 718;"SRCPWR ON;"
40 OUTPUT 718;"SWPCPL SR;"
50 OUTPUT 718;"SRCTKPK;DONE?;"
60 ENTER 718;Done
70 PRINT "CONNECT THRU. PRESS CONTINUE WHEN READY TO STORE."
80 PAUSE
90 OUTPUT 718;"TS;DONE?;"
100 ENTER 718;Done
110 OUTPUT 718;"STORETHRU;"
120 OUTPUT 718;"TS;DONE?;"
130 ENTER 718;Done
140 OUTPUT 718;"NORMLIZE ON;"
150 OUTPUT 718;"TS;DONE?;"
160 ENTER 718;Done
170 OUTPUT 718;"NRPOS 5;TS;"
180 PRINT "RECONNECT DUT. PRESS CONTINUE WHEN READY."
190 PAUSE
200 OUTPUT 718;"NRL -10DB;"
210 OUTPUT 718;"TS;DONE?;"
220 ENTER 718;Done
230 LOCAL 718
240 END
OP
Output Display Parameters

Syntax

```
OP --> ? --> 
```

Description
The OP command requests the location of the lower left (P1) and upper right (P2) vertices of the display window.

Query Response

```
72 --> 16 --> 712 --> 755 --> LF with EOL
```

Example

```
10  OUTPUT 718;"OP?;"
20  ENTER 718;X$
30  PRINT X$
40  END
```
PLOT
Plot Display

Syntax

Description
The PLOT command copies the specified display contents onto any HP-GL plotter. Set the plotter address to 5, select the P1 and P2 positions, and then execute the plot command. P1 and P2 correspond to the lower-left and upper-right plotter positions, respectively. If P1 and P2 are not specified, default values (either preloaded from power-up or sent in via a previous plot command) are used. Once PLOT is executed, no subsequent commands are executed until PLOT is done. For more information, refer to Chapter 4.

Parameters
P1X, P1Y plotter-dependent values that specify the lower-left plotter position.
P2X, P2Y plotter-dependent values that specify the upper-right plotter position.

Example

10 OUTPUT 705;"0P;"
20 ENTER 705;P1x,P1y,P2x,P2y
30 ON INTR 7 GOTO Done
40 ENABLE INTR 7;2
50 OUTPUT 718;"PLOT ","P1x",";P1y",";P2x",";P2y",";"
60 OUTPUT 718;"RQS 16;"
70 SEND 7;UNL LISTEN 5 TALK 18 DATA
80 Idle: GOTO Idle
90 Done: S_poll=SPOLL(718)
100 OUTPUT 718;"RQS 0;"
110 PRINT "COMMAND IS COMPLETE"
120 END

5-122 Language Reference
PLOTORG
Display Origins

Syntax

Description
The PLOTORG command specifies whether the P1 and P2 plotter settings are the origin for the display graticule or for the entire display. GRT allows you to position the output plot, such as trace A, on a preprinted graticule (obtained from the PLTSRC command) and to save plotting time. For more information on P1 and P2 settings, see the PLOT command, or refer to Chapter 4.

Parameters

DSP references P1 and P2 to the corners of the entire display.
GRT references P2 and P2 to the corners of the graticule.

Query Response

Example

10 OUTPUT 705:"OP;"
20 ENTER 705;P1x,P1y,P2x,P2y
30 OUTPUT 718;"PLOTORG GRT;"
40 OUTPUT 718;"PLOT ";P1x;",",";P1y;",",";P2x;",",";P2y;",""
50 SEND 7;UNL LISTEN 5 TALK 18 DATA
60 END
PLOTSRC
Plot Source

Syntax

![Syntax Diagram]

Description
The PLOTSRC command specifies the source for the PLOT command.

Parameters
- ALL plots the entire display.
- TRA plots only trace A.
- TRB plots only trace B.
- GRT plots only the graticule.
- ANNT plots only the annotation.

Preset State
All

Query Response

![Query Response Diagram]
Example

10 OUTPUT 705;"OP;"
20 ENTER 705;P1x,P1y,P2x,P2y
30 OUTPUT 718;"PLTSRC TRA;RQS 16;PLOT ";P1x",";P1y",";P2x",";P2y";RQS 0;"
40 Done=0
50 IF Done=0 THEN GOSUB Wait_plot
60 Done=0
70 OUTPUT 718;"PLTSRC ANNT;RQS 16;PLOT ";P1x",";P1y",";P2x",";P2y";RQS 0;"
80 IF Done=0 THEN GOSUB Wait_plot
90 PRINT "COMMAND IS COMPLETE"
100 STOP
110 Wait_plot: Done=1
120 ON INTR 7 GOTO Go_back
130 ENABLE INTR 7;2
140 SEND 7;UNL LISTEN 5 TALK 18 DATA
150 Idle: GOTO Idle
160 Go_back: S_poll=SPOLL(718)
170 RETURN
180 END
PP
Preselector Peak

Syntax

![Diagram]

Description
The PP command peaks the preselector in the HP 8561B Spectrum Analyzer. Make sure the entire frequency span is in high band, set the desired trace to clear-write mode, place a marker on a desired signal, then execute PP. The peaking routine zooms to zero span, peaks the preselector tracking, then returns to the original position. To read the new preselector peaking number, use the PSDAC command. Commands following PP are not executed until after the analyzer has finished peaking the preselector.

Example

```
10  OUTPUT 718;"CF 3GHZ;SP 500KHZ;"
20  OUTPUT 718;"TS;MKPK HI;MKCF;TS;PP;"
30  END
```
PRINT
Print

Syntax

```
PRINT
```

Description

The PRINT command initiates an output of the screen data to the remote interface. With appropriate HP-IB commands, the HP-IB can be configured to route the data to an external printer. The data is output in HP raster graphics format. PRINT or PRINT 0 produces a monochrome printout. PRINT 1 produces a “color format” output, if an HP PaintJet printer is used.

The PRINT command must be followed by the program line listed below with the correct values added in place of the variables:

```
SEND Sel_code; UNT UNL LISTEN Prt_addr TALK Sa_addr DATA
```

<table>
<thead>
<tr>
<th>where:</th>
<th>Sel_code is the interface select code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prt_addr is the printer's address on that select code</td>
</tr>
<tr>
<td></td>
<td>Sa_addr is the analyzer's address on that select code</td>
</tr>
</tbody>
</table>

Parameters

0: monochrome output
1: color format output

Example

```
10     OUTPUT 718;"IP;"
20     OUTPUT 718;"CF 300MHZ;SP 1MHZ;TS;DONE?;"
30     ENTER 718;Done
40     ON INTR 7 GOTO Finish
50     ENABLE INTR 7;2
60     OUTPUT 718;"PRINT 0;RQS 16;"
70     SEND 7;UNT UNL LISTEN 1 TALK 18 DATA
80     Idle: GOTO Idle
90     Finish: S_poll=SPOLL(718)
```
PRINT Print

100 OUTPUT 718;"RQS 0;"
110 PRINT "PRINT IS COMPLETE"
120 END
PSDAC
Preselector DAC Number

Syntax

```
+-----------------+
| PSDAC           |
+-----------------+
| number          |
+-----------------+
| GA              |
| EP              |
| DN              |
| UP              |
| ?               |
+-----------------+
```

Description
The PSDAC command adjusts or returns the preselector peak DAC number. For use with an HP 8561B Spectrum Analyzer.

Parameters

- **number** integer from 0 to 255.
- **UP/DN** increments of 1.

Query Response

```
number LF with EDI
```

Example

```
10  OUTPUT 718;"CF 3GHZ;SP 500KHZ;"
20  OUTPUT 718;"TS;MKPK HI;MKCF;TS;PP;"
30  OUTPUT 718;"PSDAC?;"
40  ENTER 718;Dac_number
50  PRINT "PRESELECTOR DAC NUMBER IS",Dac_number
60  END
```
PSTATE
Protect State

Syntax

Description
The PSTATE command prevents storing any new data in the state or trace registers. When PSTATE is on, the registers are "locked"; the data in them cannot be erased or overwritten, although the data can be recalled. To "unlock" the registers, and store new data, set PSTATE to off by selecting "0" as the parameter.

Preset State
Off

Query Response

Example
10 OUTPUT 718;"PSTATE ON;"
20 OUTPUT 718;"PSTATE?;"
30 ENTER 718;State
40 PRINT State
50 OUTPUT 718;"PSTATE OFF;"
60 END

5-130 Language Reference
PWRBW Trace Power Bandwidth

Syntax

![Diagram of PWRBW syntax]

Description

The PWRBW command first computes the combined power of all signal responses contained in a trace array. The command then computes the bandwidth equal to a percentage of the total power.

For example, if 100% is specified, the power bandwidth equals the current frequency span. If 50% is specified, trace elements are eliminated from either end of the array, until the combined power of the remaining trace elements equals half of the total power computed. The frequency span of these remaining trace elements is the power bandwidth output to the controller.

Query Response

![Diagram of query response]

Example

```plaintext
10 DISP "CONNECT CAL OUT TO INPUT"
20 OUTPUT 718;"IP;"
30 OUTPUT 718;"SNGLS;"
40 OUTPUT 718;"CF 300MHZ;SP 1MHZ;RB 300KHZ;"
50 OUTPUT 718;"MXMH TRA;TS;TS;TS;"  
60 OUTPUT 718;"PWRBW TRA, 99.0?;"
70 ENTER 718;P
80 DISP \"THE POWER BANDWIDTH AT 99 PERCENT IS\";P/1.0E+3;\"kHz\"
90 END
```
RB
Resolution Bandwidth

Syntax

Description
The RB command sets the resolution bandwidth. This is normally a coupled function that is selected according to the ratio selected by the RBR command. If no ratio is selected, a default ratio (0.011) is used. The bandwidth, which ranges from 10 Hz to 2 MHz, may also be selected manually.

Parameters
number integer from 10 to 2E+6. Numbers are rounded to the nearest bandwidth.
UP/DN increments in a 1, 3, 10 sequence.

Preset State
Coupled mode, 1 MHz
Query Response

Example

10 OUTPUT 718;"IP;"
20 OUTPUT 718;"CF 1.2GHZ;SP 2GHZ;"
30 INPUT "SELECT THE RESOLUTION BANDWIDTH, IN KHZ",B_width
40 OUTPUT 718;"RB ";B_width;"KHZ;"
50 OUTPUT 718;"RB?;"
60 ENTER 718;B_width
70 PRINT "SELECTED BANDWIDTH IS ",B_width,"KHZ"
80 END
RBR
Resolution Bandwidth to Span Ratio

Syntax

Description
The RBR command specifies the coupling ratio between the resolution bandwidth and the frequency span. When the frequency span is changed, the resolution bandwidth is changed to satisfy the selected ratio. The ratio ranges from 0.002 to 0.10. The "UP" and "DN" parameters adjust the ratio in a 1, 2, 5 sequence. The default ratio is 0.011.

Query Response

Example
10 OUTPUT 718;"IP;"
20 OUTPUT 718;"CF 1.2GHZ;SP 200MHZ;"
30 INPUT "SELECT THE RESOLUTION BANDWIDTH TO SPAN RATIO",B_ratio
40 OUTPUT 718;"RBR ";B_ratio;";"
50 OUTPUT 718;"RB?;"
60 ENTER 718;B_width
70 PRINT "SELECTED BANDWIDTH IS ",B_width,"KHZ"
80 END
RCLOSCAL Recall Open/Short Average

Syntax

![Diagram of RCLOSCAL syntax]

Description

The RCLOSCAL command recalls the internally stored open/short average reference trace into trace B. The instrument state is also set to the stored open/short reference state.

Example

10 OUTPUT 718;"IP;SNCLS;"
20 OUTPUT 718;"FA 300 KHZ;FB 1GHZ;"
30 OUTPUT 718;"SRCPWR ON;"
40 OUTPUT 718;"SWPCPL SR;"
50 OUTPUT 718;"SRCTKPK;DONE?;"
60 ENTER 718;Done
70 PRINT "CONNECT OPEN. PRESS CONTINUE WHEN READY TO STORE."
80 PAUSE
90 OUTPUT 718;"TS;DONE?;"
100 ENTER 718;Done
110 OUTPUT 718;"STOREOPEN;TS;DONE?;"
120 ENTER 718;Done
130 PRINT "CONNECT SHORT. PRESS CONTINUE WHEN READY TO STORE AND AVERAGE."
140 PAUSE
150 OUTPUT 718;"STORESHORT;TS;DONE?;"
160 ENTER 718;Done
170 PRINT "RECONNECT DUT. PRESS CONTINUE WHEN READY."
180 PAUSE
190 OUTPUT 718;"NORMLIZE ON;"
200 OUTPUT 718;"TS;DONE?;"
210 ENTER 718;Done
220 OUTPUT 718;"NRPPOS 8;TS;"
230 !demonstrate recall of open/short average trace
240 OUTPUT 718;"IP;"
250 OUTPUT 718;"RCLOSCAL;TS;DONE?;"
260 ENTER 718;Done
RCLOSCAL Recall Open/Short Average

270 !instrument state is returned to calibrated state
280 OUTPUT 718;"NORMALIZE ON;"
290 OUTPUT 718;"TS;DONE?;"
300 ENTER 718;Done
310 OUTPUT 718;"NRPOS 8;"
320 OUTPUT 718;"TS;DONE?;"
330 !end recall
340 LOCAL 718
350 END
RCLS
Recall State

Syntax

Description
The RCLS command recalls to the display a previously saved instrument state. See SAVES.

Parameters
number integer from 0 to 9. Numbers less than zero default to zero; numbers greater than nine default to nine.
LAST recalls the instrument state that existed previous to executing the IP command or switching (LINE) off.
PWR ON sets the instrument state to the same state that occurred when (LINE) was switched on. This state was originally saved using the SAVES command.

Example
10 OUTPUT 718;"SAVES 7;"
20 OUTPUT 718;"IP;"
30 OUTPUT 718;"RCLS 7;"
40 END
RCLT
Recall Trace

Syntax

![Diagram]

Description
The RCLT command recalls previously saved trace data to the display. See SAVET.

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRA</td>
<td>recalls the trace data to trace A.</td>
</tr>
<tr>
<td>TRB</td>
<td>recalls the trace data to trace B.</td>
</tr>
<tr>
<td>number</td>
<td>integer from 0 to 7. Numbers less than zero default to zero; numbers greater than seven default to seven.</td>
</tr>
</tbody>
</table>

Example

```
10  OUTPUT 718:"IP;CF 300MHZ;SP 20MHZ;"
20  OUTPUT 718;"SAVET TRA,7;"
30  OUTPUT 718;"IP;"
40  OUTPUT 718;"RCLT TRB,7;"
50  END
```
RCLTHRU Recall Thru

Syntax

```
RCLTHRU
```

Description

The RCLTHRU command recalls the internally stored thru-reference trace into trace B. The instrument state is also set to the stored thru-reference state.

Example

```
10   OUTPUT 718;"IP;SNGLS;"
20   OUTPUT 718;"FA 300 KHZ;FB 1GHZ;"
30   OUTPUT 718;"SRCPWR ON;"
40   OUTPUT 718;"SWPCPL SR;"
50   OUTPUT 718;"SRCTKPK;DONE?;"
60   OUTPUT 718;"ENTER 718;Done"
70   PRINT "CONNECT THRU. PRESS CONTINUE WHEN READY TO STORE."
80   PAUSE
90   OUTPUT 718;"TS;DONE?;"
100  ENTER 718;Done
110  OUTPUT 718;"STORETHRU;TS;DONE?;"
120  ENTER 718;Done
130  PRINT "RECONNECT DUT. PRESS CONTINUE WHEN READY."
140  PAUSE
150  OUTPUT 718;"NORMLIZE ON;"
160  OUTPUT 718;"TS;DONE?;"
170  ENTER 718;Done
180  OUTPUT 718;"NRPOS 8;TS;"
190  PAUSE
200  !demonstrate recall of thru trace
210  OUTPUT 718;"IP;"
220  OUTPUT 718;"RCLTHRU;TS;DONE?;"
230  ENTER 718;Done
240  !instrument state is returned to calibrated state
250  OUTPUT 718;"NORMLIZE ON;"
260  OUTPUT 718;"TS;DONE?;"
270  ENTER 718;Done
280  OUTPUT 718;"NRPOS 8;"
```
RCLTHRU Recall Thru

290 OUTPUT 718;"TS;DONE?;"
300 ENTER 718;Done
310 !end recall
320 LOCAL 718
330 END
REV
Revision Number

Syntax

![Diagram of Syntax]

Description
The REV command sends to the computer the revision date code of the spectrum analyzer firmware.

Query Response

![Diagram of Query Response]

Example

```
20   OUTPUT 718;'REV?;'
30   ENTER 718;A$
40   PRINT A$
50   END
```
RL
Reference/Range Level

Syntax

Description
The RL command sets the reference level, or range level when in normalized mode. (Range level functions the same as reference level.) The reference level is the top horizontal line on the graticule. For best measurement accuracy, place the peak of a signal of interest on the reference-level line. The spectrum analyzer input attenuator is coupled to the reference level and automatically adjusts to avoid compression of the input signal. Table 5-6 shows the minimum reference level for each band and amplitude scale. Refer also to AUNITS.

Table 5-6. Frequency Ranges and Minimum Reference Level

<table>
<thead>
<tr>
<th>Band</th>
<th>Minimum Reference Level</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Log Scale</td>
<td>Linear Scale</td>
<td></td>
</tr>
<tr>
<td>HP 8560A</td>
<td>-120.0 dBm</td>
<td>2.2 μV</td>
<td></td>
</tr>
<tr>
<td>50 kHz—2.9 GHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HP 8561B</td>
<td>-120.0 dBm</td>
<td>2.2 μV</td>
<td></td>
</tr>
<tr>
<td>50 kHz—2.9 GHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.75 GHz—6.5 GHz</td>
<td>-120.0 dBm</td>
<td>2.2 μV</td>
<td></td>
</tr>
</tbody>
</table>

5-142 Language Reference
Parameters
number dependent on the chosen amplitude units.
UP/DN increments by one vertical division in log mode and in a 1, 2, 5, 10 sequence in linear mode.

Query Response

```
  number
  LF with EO1
```

Preset State
0 dBm

Example
```plaintext
10  OUTPUT 718;"IP;SNGLS;CF 300MHZ;SP 20MHZ;"
20  OUTPUT 718;"TS;MKPK HI;MKRL;TS;"
30  OUTPUT 718;"RL?;"
40  ENTER 718;Ref_level
50  PRINT "REFERENCE LEVEL IS",Ref_level,"DB"
60  END
```
RLCAL
Reference Level Calibration

Syntax

Description
The RLCAL command allows you to calibrate the reference level remotely or check the current calibration. To calibrate the reference level, connect the 300 MHz calibration signal to the RF input. Set the center frequency to 300 MHz, the frequency span to 20 MHz, and the reference level to -10 dBm. Use the RLCAL command to move the input signal to the reference level. When the signal peak falls directly on the reference-level line, the reference level is calibrated. Storing this value in the analyzer in EEROM can be done only from the front panel. The RLCAL command, when queried, returns the current value.

Parameter

number integer from -33 to 33.

Example

10 INTEGER Rlcal
20 INPUT "CONNECT CAL SIGNAL TO RF INPUT AND PRESS CONTINUE",A$
30 OUTPUT 718;"IP;TS;CF 300MHZ;SP 100KHZ;RL 0DBM;TS;"
40 OUTPUT 718;"MKPK HI;MKA?;"
50 ENTER 718;Mkamptd
60 OUTPUT 718;"RLCAL?;"
70 ENTER 718;Rlcal
80 Rlcal=Rlcal-INT((Mkamptd+10)/.17)
90 OUTPUT 718;"RLCAL ";Rlcal;"
100 END
OFFSET
Amplitude Reference Offset

Syntax

Description
The OFFSET command introduces an offset to all amplitude readouts (for example, the reference level and marker amplitude). The offset is in dB, regardless of the selected scale and units. The offset can be useful to account for gains of losses in accessories connected to the input of the analyzer. When this function is active, an "R" appears on the left edge of the display.

Parameter
number real from −100 to 100.
UP/DN increments of one vertical division.

Preset State
Off

Query Response

Example
10 INPUT "ENTER REFERENCE LEVEL OFFSET", Offset
20 OUTPUT 718;"ROFFSET ";Offset;"DB;"
30 OUTPUT 718;"ROFFSET?;"
40 ENTER 718; Offset
50 PRINT "AMPLITUDE OFFSET IS ", Offset
60 END
RQS
Request Service Conditions

Syntax

Description
The RQS command sets a bit mask that specifies which service requests can interrupt a program sequence. Each service request has a corresponding bit number and decimal equivalent of that bit number, as shown in Table 5-7. Use the decimal equivalents to set the bit mask. For example, to set a mask for bits 4 and 5, add the decimal equivalents \((16 + 32 = 48)\), then send the command RQS 48. For more service request information, refer to Chapter 4.

<table>
<thead>
<tr>
<th>BIT NUMBER</th>
<th>DECIMAL EQUIVALENT</th>
<th>ANALYZER STATE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>128</td>
<td>RQS</td>
<td>Not used</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>ERROR PRESENT</td>
<td>Request service</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>COMMAND COMPLETE</td>
<td>Set when error present</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>END OF SWEEP</td>
<td>Any command is completed</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>MESSAGE</td>
<td>Not used</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>TRIGGER</td>
<td>Set when any sweep is completed</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td></td>
<td>Set when display message appears</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td></td>
<td>Trigger is activated</td>
</tr>
</tbody>
</table>
Query Response

Example

10 OUTPUT 718;"IP;SNGLS;CF 300MHZ;SP 20MHZ;TS;"
20 OUTPUT 718;"RQS 16;"
30 CN INTR 7 GOTO Srq
40 ENABLE INTR 7;2
50 OUTPUT 718;"SRQ 16;"
60 Idle: GOTO Idle
70 Srq: Sbyte=SPOLL(718)
80 PRINT Sbyte
90 PRINT "INTERUPT GENERATED"
100 OUTPUT 718;"RQS 0;"
110 LOCAL 718
120 END
SAVES
Save State

Syntax

Description
The SAVES command saves the currently displayed instrument state in the specified state register.

Parameters
number integer from 0 to 9. Numbers less than zero default to zero; numbers greater than nine default to nine.
PWRON sets the spectrum analyzer to the current state when LINE is switched on.

Example
10 OUTPUT 718;"IP;CF 300MHZ;SP 20MHZ;"
20 OUTPUT 718;"SAVES PWRON;"
30 END
SAVET
Save Trace

Syntax

```
SAVET TRA number
```

Description
The SAVET command saves the selected trace in the specified trace register.

Parameters

- **TRA**: stores the contents of trace A.
- **TRB**: stores the contents of trace B.
- **number**: integer from 0 to 7. Numbers less than zero default to zero; numbers greater than seven are not allowed.

Example

```
10  INPUT "SELECT THE TRACE YOU WISH TO SAVE (TRA OR TRB)",Save_trace$
20  INPUT "SELECT THE REGISTER NUMBER",Reg_number
30  OUTPUT 718;"SAVET ";Save_trace$",";Reg_number",";
40  END
```
SER
Serial Number

Syntax

Description
The SER command returns the spectrum analyzer serial number to the computer.

Query Response

Parameter
msb/lsb represents length of serial # to be returned.

Example

```
10  DIM Ser$[10]
20  OUTPUT 718:"SER?;"
30  ENTER 718;Ser$
40  PRINT Ser$
50  END
```
SIGID
Signal Identification

Syntax

![Diagram of SIGID Signal Identification]

Description

The SIGID command identifies signals for the external mixing frequency bands.

Two signal identification methods are available. AUTO employs the image response method for locating correct mixer responses. Place a marker on the desired signal, then activate SIGID AUTO. The frequency of a correct response appears in the active function block. Use this mode before executing the IDCF command.

The second method of signal identification, MAN, shifts responses both horizontally and vertically. A correct response is shifted horizontally by less than 80 kHz.

To ensure accuracy in MAN mode, limit the frequency span to less than 20 MHz. This command is not available with an HP 8560A Option 002.

Query Response

![Diagram of Query Response]

where 1 = manual mode is active and 0 = auto mode is active or SIGID is off.
SIGID Signal identification

Example

10 OUTPUT 718;"SIGID AUTO;"
20 OUTPUT 718;"IDCF;"
30 OUTPUT 718;"CF?;"
40 ENTER 718;Cf
50 PRINT Cf
60 END
SNGLS
Single Sweep

Syntax

Description
The SNGLS command selects the single-sweep mode. This mode allows only one sweep when trigger conditions are met. When this function is active, an "S" appears on the left edge of the display.

Example

10 OUTPUT 718;"IP;SNGLS;"
20 END
SP
Frequency Span

Syntax

Description
The SP command sets the frequency span. The center frequency does not change with changes in the frequency span; start and stop frequencies do change. Setting the frequency span to 0 Hz effectively allows an amplitude-versus-time mode in which to view signals. This is especially useful for viewing modulation. Querying SP will leave the analyzer in center frequency/span mode.

Parameters
number real from 0 to 2.9E+9 (HP 8560A); from 0 Hz to 2.9E+9 in low band, 2.75E+9 to 19.25E+9 in high band (HP 8561B); 0 to 307E+9 in external mixer mode.
UP/DN increments in a 1, 2, 5 sequence.

Preset State
Full span; 2.9 GHz (HP 8560A)
Full span; 6.5 GHz (HP 8561B)
Query Response

Example

10 OUTPUT 718;"IP;CF 300MHZ;SP 20MHZ;"
20 OUTPUT 718;"SP UP;SP?;"
30 ENTER 718;Span
40 PRINT Span
50 END
SQUELCH

Squelch

Syntax

Description

The SQUELCH command adjusts the squelch level for demodulation. When this function is on, a dashed line indicating the squelch level appears on the display. A marker must be active and above the squelch line for demodulation to occur. Refer to the DEMOD command. The default value is -120 dBm.

Parameters

- **number** real from -220 to 30.
- **UP/DN** increments by 1 vertical division.

Preset State

Off

Query Response

```
<number> LF with EOI
```
Example

10 OUTPUT 718:"IP;"
20 OUTPUT 718:"FA 88MHZ;FB 108MHZ;"
30 OUTPUT 718:"MKN EP;"
40 PRINT "MOVE MARKER TO SIGNAL TO BE DEMODULATED"
50 PRINT "PRESS HOLD; THEN PRESS CONTINUE"
60 PAUSE
70 INPUT "ENTER DEMODULATION TIME (.1 SEC - 60 SEC)",Dtime
80 OUTPUT 718;"DEM0DT ";Dtime;"SEC;"
90 OUTPUT 718;"SQUELCH EP;"
100 INPUT "ADJUST SQUELCH AS NECESSARY; PRESS HOLD, THEN ENTER",A$
110 OUTPUT 718;"DEM0D FM;"
120 LOCAL 718
130 END
SRCALC
Source Leveling Control

Syntax

Description
The SRCALC command selects internal (INT) or external (EXT) leveling for use with the built-in tracking generator. This function is only available with an HP 8560A Option 002.

Query Response

Example

10 OUTPUT 718;'IP;SNGLS;TS;CF 300 MHZ;SP 1MHZ;''
20 OUTPUT 718;'SRCPWR ON;SRCPWR -5DBM;TS;''
30 PRINT "CONNECT EXTERNAL LEVELING LOOP.
PRESS CONTINUE WHEN READY."
40 PAUSE
50 OUTPUT 718;'SRCALC EXT;TS;''
60 WAIT 1
70 OUTPUT 718;'ERR?;''
80 ENTER 718;Err
90 IF Err=900 THEN
100 PRINT "UNLEVELED CONDITION. CHECK LEVELING LOOP."
110 END IF
120 LOCAL 718
130 END
SRCCRSTK
Coarse Tracking Adjust

Syntax

```
SRCCRSTK number
```

Description
The SRCCRSTK command controls the coarse adjustment to the frequency of the built-in tracking-generator oscillator. Once enabled, this adjustment is made in digital-to-analog-converter (DAC) values from 0 to 255. For fine adjustment, refer to the SRFINTK command description.

SRCCRSTK is only available with an HP 8560A Option 002.

Parameters
- `number` integer from 0 to 255.
- `UP/DN` increments by 1.

Preset State
32

Query Response

```
[number] LF with E01
```
SRCCRSTK Coarse Tracking Adjust

Example

10 OUTPUT 718:"IP;"
20 OUTPUT 718:"FA 300KHZ;FB 1GHZ;"
30 OUTPUT 718:"SRCPWR ON;"
40 OUTPUT 718:"SWPCPL SR;RB 10KHZ;"
50 OUTPUT 718:"TS;DONE?;"
60 ENTER 718;Done
70 OUTPUT 718:"SRCCRSTK EP;"
80 PRINT "ADJUST TRACKING (coarse adjust) USING KNOB ON ANALYZER."
90 PRINT "PRESS [HOLD], THEN CONTINUE WHEN READY."
100 PAUSE
110 OUTPUT 718:"TS;DONE?;"
120 ENTER 718;Done
130 OUTPUT 718:"SRCFINTK EP;"
140 PRINT "ADJUST TRACKING (fine adjust) USING KNOB ON ANALYZER."
150 PRINT "PRESS [HOLD], THEN CONTINUE WHEN READY."
160 PAUSE
170 OUTPUT 718:"TS;DONE?;"
180 ENTER 718;Done
190 PRINT "CONNECT THRU. PRESS CONTINUE WHEN READ TO STORE."
200 PAUSE
210 OUTPUT 718:"STORETHRU;"
220 OUTPUT 718:"TS;DONE?;"
230 ENTER 718;Done
240 OUTPUT 718:"NORMLIZE ON;"
250 OUTPUT 718:"TS;DONE?;"
260 ENTER 718;Done
270 OUTPUT 718:"MRPOS 8;TS;"
280 PRINT "RECONNECT DUT. PRESS CONTINUE WHEN READY."
290 PAUSE
300 LOCAL 718
310 END
SRCFINTK
Fine Tracking Adjust

Syntax

Description
The SRCFINTK command controls the fine adjustment of the frequency of the built-in tracking-generator oscillator. Once enabled, this adjustment is made in digital-to-analog-converter (DAC) values from 0 to 255. For coarse adjustment, refer to the SRCCRSTK command description.

SRCFINTK is only available with an HP 8560A Option 002.

Parameters
number integer from 0 to 255.
UP/DN increments by 1.

Preset State
128

Query Response

Language Reference 5-161
Example

10 OUTPUT 718;'IP;''
20 OUTPUT 718;'FA 300KHZ;FB 1GHZ;''
30 OUTPUT 718;'SRCFWR ON;''
40 OUTPUT 718;'SWPCPL SR;RB 10KHZ;''
50 OUTPUT 718;'TS;DONE?;''
60 ENTER 718;Done
70 OUTPUT 718;'SRCCRSTK EP;''
80 PRINT "ADJUST TRACKING (coarse adjust) USING KNOB ON ANALYZER."
90 PRINT "PRESS [HOLD], THEN CONTINUE WHEN READY."
100 PAUSE
110 OUTPUT 718;'TS;DONE?;''
120 ENTER 718;Done
130 OUTPUT 718;'SRCFINTK EP;''
140 PRINT "ADJUST TRACKING (fine adjust) USING KNOB ON ANALYZER."
150 PRINT "PRESS [HOLD], THEN CONTINUE WHEN READY."
160 PAUSE
170 OUTPUT 718;'TS;DONE?;''
180 ENTER 718;Done
190 PRINT "CONNECT THRU. PRESS CONTINUE WHEN READ TO STORE."
200 PAUSE
210 OUTPUT 718;'STORETHRU;''
220 OUTPUT 718;'TS;DONE?;''
230 ENTER 718;Done
240 OUTPUT 718;'NORMLIZE ON;''
250 OUTPUT 718;'TS;DONE?;''
260 ENTER 718;Done
270 OUTPUT 718;'MRPOS 8;TS;''
280 PRINT "RECONNECT DUT. PRESS CONTINUE WHEN READY."
290 PAUSE
300 LOCAL 718
310 END
SRCPOFS
Source Power Offset

Syntax

Description
The SRCPOFS command offsets the displayed power of the built-in tracking generator so that it is equal to the measured power at the input of the spectrum analyzer. This function may be used to take into account system losses (for example, cable loss) or gains (for example, preamplifier gain) reflecting the actual power delivered to the device under test.

SRCPOFS is only available with an HP 8560A Option 002.

Parameters
number real from -100 dB to +100 dB.

Preset State
0.0 dB

Query Response

Example
10 OUTPUT 718;"IP;SNGLS;"
20 OUTPUT 718;"CF 300MHZ;SP 0HZ;TS;"
30 OUTPUT 718;"SRCPWR ON;SRCPWR -10DBM;"
40 OUTPUT 718;"SRCPSWP ON;SRCPSWP 10DB;TS;"
50 INPUT "ENTER GAIN OF PREAMPLIFIER UNDER TEST",Gain
60 OUTPUT 718;"SRCPOFS ";Gain;"DB;"
70 OUTPUT 718;"TS;MKPK HI;MKD;MKMIN;"
80 END
SRCPSTP
Source Power Step

Syntax

![Diagram of SRCPSTP syntax]

Description
The SRCPSTP command sets the step size of the source power level, source power offset, and power-sweep range functions. This function is only available with an HP 8560A Option 002.

Parameters

number
real from 0.1 dB to 12.75 dB; 0.05 dB resolution via HP-IB.

Preset State
1.0 dB

Query Response

![Diagram of query response]

Example

10 OUTPUT 718;"IP;SNGLS;"
20 OUTPUT 718;"CF 300MHZ;SP ONZ;TS;"
30 OUTPUT 718;"SRCPWR ON;SRCPWR -10DBM;"
40 OUTPUT 718;"SRCPSTP 1.0DB;"
50 OUTPUT 718;"SRCPWR UP;"
60 OUTPUT 718;"SRCPWR?;"
70 ENTER 718;Pwr
80 END

5-164 Language Reference
SRCPSWP
Source Power Sweep

Syntax

Description
The SRCPSWP command activates and deactivates the power-sweep function, where the output power of the tracking generator is swept over the power-sweep range chosen. The starting source power level is set using the SRCPWR command. The output power of the tracking generator is swept according to the sweep rate of the spectrum analyzer.

SRCPSWP is only available with an HP 8560A Option 002.

Parameters
number real from 0 dB to 12.75 dB; 0.05 dB resolution via HP-IB.

Preset State
10 dB

Query Response
SRCPSWP Source Power Sweep

Example

10 OUTPUT 718:"IP;SNGLS;"
20 OUTPUT 718:"CF 300MHZ;SP 0HZ;TS;"
30 OUTPUT 718:"SRCPWR ON;SRCPWR -10DBM;"
40 OUTPUT 718:"SRCPSWP ON;SRCPSWP 10DB;TS;"
50 OUTPUT 718:"MKPK HI;MKD;MKMIN;TS;"
60 END
SRCPWR Source Power

Syntax

```
SRCPWR number amplitude units
```

Description
The SRCPWR command turns the built-in tracking generator on and off and adjusts the output power. This function is only available with an HP 8560A Option 002.

Parameters
number real from -10 dBm to $+2.8$ dBm; 0.05 dB resolution via HP-IB.

Preset State
-10 dBm

Query Response

```
number LF with EOI
```

Example
```
10 OUTPUT 718;"IP;SNGLS;"
20 OUTPUT 718;"FA 300KHZ;FB 1GHZ;"
30 OUTPUT 718;"SRCPWR ON;"
40 OUTPUT 718;"SWPCPL SR;"
50 PRINT "CONNECT THRU. PRESS CONTINUE WHEN READY TO STORE."
60 PAUSE
70 OUTPUT 718;"SRCTKPK;DONE?;"
```
SRCPWR Source Power

80 ENTER 718;Done
90 OUTPUT 718;"TS;DONE?;"
100 ENTER 718;Done
110 OUTPUT 718;"STORETHRU;"
120 OUTPUT 718;"TS;DONE?;"
130 ENTER 718;Done
140 OUTPUT 718;"NORMLIZE ON;"
150 OUTPUT 718;"TS;DONE?;"
160 ENTER 718;Done
170 OUTPUT 718;"NRPOS 5;TS;"
180 PRINT "RECONNECT DUT. PRESS CONTINUE WHEN READY."
190 PAUSE
200 OUTPUT 718;"NRL -10DB;"
210 OUTPUT 718;"TS;DONE?;"
220 ENTER 718;Done
230 LOCAL 718
240 END
SRCTKPK
Source Tracking Peak

Syntax

Description
The SRCTKPK command activates a routine which automatically adjusts both the coarse- and fine-tracking adjustments to obtain the peak response of the tracking generator on the spectrum-analyzer display. Tracking peak is not necessary for resolution bandwidths greater than or equal to 300 kHz. A thru connection should be made prior to peaking in order to ensure accuracy.

SRCTKPK is only available with an HP 8560A Option 002.

Example

10 OUTPUT 718;"IP;SNGLS;"
20 OUTPUT 718;"FA 300KHZ;FB 1GHZ;"
30 OUTPUT 718;"SRCPWR ON;"
40 OUTPUT 718;"SWPCPL SR;"
50 OUTPUT 718;"RB 100KHZ;"
50 OUTPUT 718;"SRCTKPK;DONE?;"
60 ENTER 718;Done
70 LOCAL 718
80 END
SRQ
Service Request

Syntax

Description
The SRQ command triggers a service request. This command allows you to force a service request and test a program designed to handle service requests. However, the service request can be triggered only if it is first masked using the RQS command. For more service request information, refer to Chapter 4.

Example

10 OUTPUT 718;"IP;SNGLS;CF 300MHZ;TS;"
20 OUTPUT 718;"RQS 16;"
30 ON INTR 7 GOTO Srq
40 ENABLE INTR 7;2
50 OUTPUT 718;"SRQ 16;"
60 Idle: GOTO Idle
70 Srq: Sbyte=SPOLL(718)
80 PRINT Sbyte
90 PRINT "INTERRUPT GENERATED"
100 OUTPUT 718;"RQS 0;"
110 LOCAL 718
120 END
SS Center Frequency Step-Size

Syntax

![Diagram of SS Center Frequency Step-Size](image)

Description

The SS command sets the center frequency step-size. This is normally a coupled function. After entering a step size, execute the CF command using the UP or DN parameter. The center frequency is adjusted by the selected step size. This function is useful for quickly tuning to the harmonics of an input signal. The default value is 10% of span. When the span is 0 Hz, the default value is one-fourth of the resolution bandwidth.

Parameters

- **number**: real from 100 to 22E+9.
- **UP/DN**: increments in a 1, 2, 5, 10 sequence.

Query Response

```plaintext
number LF with EOl
```
SS Center Frequency Step-Size

Example

10 CLEAR 718
20 OUTPUT 718;"IP;SNGLS;CF300MHZ;SP 20MZ;TS;"
30 OUTPUT 718;"MKPK HI;MKRL;TS;MKF?;MKA?;"
40 ENTER 718 USING "K";Mk_freq,Mk_amp
50 OUTPUT 718;"SS ";Mk_freq;"HZ"
60 OUTPUT 718;"CF UP;TS;MKPK HI;MKA?;"
70 ENTER 718;Mk_ampl
80 PRINT "The fundamental is ";Mk_amp-MK_ampl;" db above the first harmonic."
90 END
ST Sweep Time

Syntax

Description
The ST command sets the sweep time. This is normally a coupled function which is automatically set to the optimum value allowed by the current instrument settings. Alternatively, you may specify the sweep time. Note that when the specified sweep time is too fast for the current instrument settings, the instrument is no longer calibrated and the message “MEAS UNCAL” appears on the display. The sweep time cannot be adjusted when the resolution bandwidth is set to 10 Hz, 30 Hz, or 100 Hz.

Parameters
number real from 50E–3 to 100 when the span is greater than 0 Hz; 50E–6 to 60 when the span equals 0 Hz. When the resolution bandwidth is \(\leq 100 \) Hz, the sweep time cannot be adjusted.

UP/DN increments in a 1, 2, 5, 10 sequence.

Preset State
Coupled mode; 60 ms
ST Sweep Time

Query Response

Example

10 OUTPUT 718;"ST 500MS;"
20 OUTPUT 718;"ST DN;"
30 OUTPUT 718;"ST?;"
40 ENTER 718;St
50 PRINT St
60 END

5-174 Language Reference
STB Status Byte Query

Syntax

Description

The STB command returns to the controller the decimal equivalent of the bits set in the status byte (see the RQS and SRQ commands). STB is equivalent to a serial poll command. The RQS and associated bits are cleared in the same way that a serial poll command would clear them. For more information, refer to Chapter 4.

Query Response

Example

10 OUTPUT 718;"IP; SNGLS; CF 300MHZ; SP 20MHZ; TS;"
20 OUTPUT 718;"VAVG 10; RQS 16;"
30 ON INTR 7 GOTO Srq
40 ENABLE INTR 7; 2
50 OUTPUT 718;"TS;"
60 Idle: GOTO Idle
70 Srq: OUTPUT 718;"STB?;"
80 ENTER 718; Sbyte
90 PRINT Sbyte
100 PRINT "VIDEO AVERAGING IS COMPLETE"
110 OUTPUT 718;"RQS 0;"
120 LOCAL 718
130 END
STOREOPEN
Store Open

Syntax

Description
The STOREOPEN command saves the current instrument state and trace A into nonvolatile memory. This command must be used in conjunction with the STORESHORT command and must precede the STORESHORT command. The data obtained during the STOREOPEN procedure is averaged with the data obtained during the STORESHORT procedure to provide an open/short calibration. The instrument state (that is, instrument settings) must not change between the STOREOPEN and STORESHORT operations in order for the open/short calibration to be valid. Refer to the STORESHORT command description for more information.
Example

10 OUTPUT 718;"IP;SNGLS;"
20 OUTPUT 718;"FA 300KHZ;FB 1GHZ;"
30 OUTPUT 718;"SRCPWR ON;"
40 OUTPUT 718;"SWPCPL SR;"
50 PRINT "CONNECT OPEN. PRESS CONTINUE WHEN READY TO STORE."
60 PAUSE
70 OUTPUT 718;"TS;DONE?;"
80 ENTER 718;Done
90 OUTPUT 718;"STOREOPEN;"
100 PRINT "CONNECT SHORT. PRESS CONTINUE WHEN READY TO STORE AND AVERAGE."
110 PAUSE
120 OUTPUT 718;"TS;DONE?;"
130 ENTER 718;Done
140 OUTPUT 718;"STORESHORT;"
150 OUTPUT 718;"TS;DONE?;"
160 ENTER 718;Done
170 OUTPUT 718;"NORMIMIZE ON;"
180 OUTPUT 718;"TS;DONE?;"
190 ENTER 718;Done
200 LOCAL 718
210 END
STORESHORT
Store Short

Syntax

Description
The STORESHORT command takes currently displayed trace A data and averages this data with previously stored open data, and stores it in trace B. This command is used in conjunction with the STOREOPEN command and must be preceded by it for proper operation. Refer to the STOREOPEN command description for more information.

The state of the open/short average trace is stored in state register #8.

Example

10 OUTPUT 718;"IP;SNGLS;"
20 OUTPUT 718;"FA 300KHZ;FB 1GHZ;"
30 OUTPUT 718;"SRCPWR ON;"
40 OUTPUT 718;"SWPCPL SR;"
50 PRINT "CONNECT OPEN. PRESS CONTINUE WHEN READY TO STORE."
60 PAUSE
70 OUTPUT 718;"TS;DONE?;"
80 ENTER 718;Done
90 OUTPUT 718;"STOREOPEN;"
100 PRINT "CONNECT SHORT. PRESS CONTINUE WHEN READY TO STORE AND AVERAGE."

110 PAUSE
120 OUTPUT 718;"TS;DONE?;"
130 ENTER 718;Done
140 OUTPUT 718;"STORESHORT;"
150 OUTPUT 718;"TS;DONE?;"
160 ENTER 718;Done
170 OUTPUT 718;"NORMLIZE ON;"
180 OUTPUT 718;"TS;DONE?;"
190 ENTER 718;Done
200 LOCAL 718
210 END

5-178 Language Reference
STORETHRU Store Thru

Syntax

Description

The STORETHRU command stores a thru-calibration trace into trace B and into the nonvolatile memory of the spectrum analyzer.

The state of the thru information is stored in state register #9.

Example

10 OUTPUT 718;"IP;SNGLS;"
20 OUTPUT 718;"FA 300KHZ;FB 1GHZ;"
30 OUTPUT 718;"SRCPWR ON;"
40 OUTPUT 718;"SWPCPL SR;"
50 OUTPUT 718;"RB 300KHZ;TS;"
60 PRINT "CONNECT THRU. PRESS CONTINUE WHEN READY TO STORE."
70 PAUSE
80 OUTPUT 718;"SRCTKPK;DONE?;"
90 ENTER 718;Done
100 OUTPUT 718;"TS;DONE?;"
110 ENTER 718;Done
120 OUTPUT 718;"STORETHRU;"
130 OUTPUT 718;"TS;DONE?;"
140 ENTER 718;Done
150 OUTPUT 718;"NORMLIZE ON;"
160 OUTPUT 718;"TS;DONE?;"
170 ENTER 718;Done
180 LOCAL 718
190 END
SWPCPL
Sweep Couple

Syntax

Description
The SWPCPL command selects either a stimulus-response (SR) or spectrum-analyzer (SA) auto-coupled sweep time. In stimulus-response mode, auto-coupled sweep times are usually much faster for swept-response measurements. Stimulus-response auto-coupled sweep times are typically valid in stimulus-response measurements when the system’s frequency span is less than 20 times the bandwidth of the device under test.

Preset State
SA (spectrum analyzer mode)

Query Response

Example
10 OUTPUT 718;"IP;SNGLS;"
20 OUTPUT 718;"FA 300KHZ;FB 1GHZ;"
30 OUTPUT 718;"SRCPWR ON;"
40 OUTPUT 718;"SWPCPL SR;"
50 OUTPUT 718;"SRCKPK;DONE?;"
60 ENTER 718;Done
70 LOCAL 718
80 END

5-180 Language Reference
SWPOUT Sweep Output

Syntax

![Syntax Diagram]

Description

The SWPOUT command selects the sweep-related signal that is available from J8 on the rear panel. FAV provides a dc ramp of 0.5V/GHz. RAMP provides a 0—10 V ramp corresponding to the sweep ramp that tunes the first local oscillator (LO). For the HP 8561B, in multiband sweeps one ramp is provided for each frequency band.

Query Response

![Query Response Diagram]

Example

```
10   INPUT "SELECT THE SIGNAL OUTPUT OF J8 (RAMP OR FAV)",Sig_out$
20   OUTPUT 718;"SWPOUT ";Sig_out$;";"
30   OUTPUT 718;"SWPOUT?;"
40   ENTER 718;Sig_out$
50   PRINT "SELECTED SIGNAL OUTPUT IS ",Sig_out$
60   END
```
TDF
Trace Data Format

Syntax

Description
The TDF command selects the format used to input and output trace data (see the TRA/TRB command or refer to Chapter 4). You must specify the desired format when transferring data from the spectrum analyzer to a computer; this is optional when transferring data to the analyzer.

Parameters
A specifies A-block data format.
B specifies binary data format.
I specifies I-block data format.
M specifies ASCII data format.
P specifies real number output format. Numbers are in Hz, volts, watts, dBm, dBmV, dBµV, dBV, or seconds.

Query Response
Example

10 REAL A(1:601)
20 OUTPUT 718;"IP;CF 300MHZ;SP 20MHZ;SNGLS;TS;"
30 CALL Get_data(Fa,Fb,Rl,Rb,Vb,St,Lg,Aunits$)
40 OUTPUT 718;"TDF P;TRA?;"
50 ENTER 718;A(*)
60 PRINT "PRESS CONTINUE TO RETURN DATA TO THE ANALYZER."
70 PAUSE
80 OUTPUT 718;"IP:TDF P;TS;VIEW TRA;"
90 CALL Enter_data(Fa,Fb,Rl,Rb,Vb,St,Lg,Aunits$)
100 OUTPUT 718;"TRA ";
110 FOR I=1 TO 600
120 OUTPUT 718;A(I);"DBM,"
130 NEXT I
140 OUTPUT 718;A(601);"DBM;"
150 END
160 SUB Enter_data(Fa,Fb,Rl,Rb,Vb,St,Lg,Aunits$)
170 OUTPUT 718;"FA ";Fa;"HZ;"
180 OUTPUT 718;"FB ";Fb;"HZ;"
190 OUTPUT 718;"AUNITS ";Aunits$;""
200 OUTPUT 718;"RB ";Rb;"HZ;"
210 OUTPUT 718;"VB ";Vb;"HZ;"
220 OUTPUT 718;"ST ";St;"SEC;"
230 IF Lg=0 THEN
240 OUTPUT 718;"LN;"
250 ELSE
260 OUTPUT 718;"LG ";Lg;"DB;"
270 END IF
280 END
290 SUB Get_data(Fa,Fb,Rl,Rb,Vb,St,Lg,Aunits$)
300 OUTPUT 718;"FA?;FB?;RL?;RB?;VB?;ST?;LG?;AUNITS?;"
310 ENTER 718 USING "K";Fa,Fb,Rl,Rb,Vb,St,Lg,Aunits$
320 PRINT Fa,Fb,Rl,Rb,Vb,St,Lg,Aunits$
330 SUBEND
TH
Threshold

Syntax

Description
The TH command sets the minimum amplitude level and clips data at this value. Default value is -90 dBm. See also MKPT. MKPT does not clip data below its threshold.

Note
When a trace is in max-hold mode, if the threshold is raised above any of the trace data, the data below the threshold will be permanently lost.

Parameters

- **number**: dependent upon the chosen amplitude units.
- **UP/DN**: increments by one vertical division.
Preset State
Off

Query Response

Example

10 OUTPUT 718;"TH EP;"
20 PRINT "SELECT THE THRESHOLD ON THE ANALYZER"
30 PRINT "PRESS HOLD THEN PRESS CONTINUE"
40 PAUSE
50 END
TITLE
Title Entry

Syntax

Description
The TITLE command places character data in the title area of the display, which is in the upper-right corner. A title can be up to two rows of sixteen characters each and can include the special characters shown in Table 5-8. Carriage return and line feed characters are not recommended. For more information on creating titles, refer to Chapter 6 of this manual.

Table 5-8. Special Printing Characters

<table>
<thead>
<tr>
<th>Code</th>
<th>Character</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td><</td>
</tr>
<tr>
<td>62</td>
<td>></td>
</tr>
<tr>
<td>168</td>
<td>≪</td>
</tr>
<tr>
<td>169</td>
<td>≫</td>
</tr>
<tr>
<td>225</td>
<td>α</td>
</tr>
<tr>
<td>226</td>
<td>β</td>
</tr>
<tr>
<td>237</td>
<td>μ</td>
</tr>
<tr>
<td>240</td>
<td>π</td>
</tr>
<tr>
<td>241</td>
<td>θ</td>
</tr>
<tr>
<td>242</td>
<td>ρ</td>
</tr>
<tr>
<td>243</td>
<td>σ</td>
</tr>
<tr>
<td>244</td>
<td>τ</td>
</tr>
<tr>
<td>247</td>
<td>ω</td>
</tr>
<tr>
<td>249</td>
<td>Δ</td>
</tr>
</tbody>
</table>

Parameter
msb/lsb represents the length of the title as two 8-bit bytes.

Example

10 OUTPUT 718: "TITLE@This is a title@;"
20 END

5-186 Language Reference
TM Trigger Mode

Syntax

Description
The TM command selects a trigger mode. Selected trigger conditions must be met in order for a sweep to occur. The available trigger modes are listed below. When any trigger mode other than free run is selected, a "T" appears on the left edge of the display.

Parameters
EXT selects the external mode. Connect an external trigger source to J5 on the rear panel of the spectrum analyzer. The source must range from 0 to 5 V (TTL). The trigger occurs on the rising, positive edge of the signal (about 1.5 V).
FREE selects the free-run mode. Sweep triggers occur as fast as the spectrum analyzer will allow.
LINE selects the line mode. Sweep triggers occur at intervals synchronized to the line frequency.
VID selects the video mode. Sweep triggers occur whenever the positively-sloped part of the input signal passes through the video trigger level. This trigger level can be changed (refer to the VTL command), and a dashed line appears on the screen to denote the selected level.

Preset State
Free-run mode

Query Response
TM Trigger Mode

Example

10 OUTPUT 718;"TM VID;"
20 OUTPUT 718;"VTL -20DBM;"
30 END
TRA/TRB
Trace Data Input/Output

Syntax

Description
The TRA and TRB commands provide a method for transferring trace data to or from a computer. The available data formats are real number (P) format, binary (B) format, A-block format, I-block format, or measurement units (M) format. Transfers to the computer must be completed within 30 seconds or the transfer will be aborted. For instructions on transferring data and more examples, refer to Chapter 4.

Parameter
msb/lsb represents the length of the trace as two 8-bit bytes.

Query Response
Example

```
10  REAL A(1:601)
20  OUTPUT 718:"IP;CF 300MHZ;SP 20MHZ;SNGLS;TS;"
30  CALL Get_data(Fa,Fb,Rl,Rb,Vb,St,Lg,Aunits$)
40  OUTPUT 718:"TDF P;TRA?;"
50  ENTER 718;A(*)
60  PRINT "PRESS CONTINUE TO RETURN DATA TO THE ANALYZER."
70  PAUSE
80  OUTPUT 718:"IP;TDF P;TS;VIEW TRA;"
90  CALL Enter_data(Fa,Fb,Rl,Rb,Vb,St,Lg,Aunits$)
100 OUTPUT 718:"TRA ";
110  FOR I=1 TO 600
120  OUTPUT 718;A(I);"DBM,"
130  NEXT I
140 OUTPUT 718;A(601);"DBM;"
150 END
160 SUB Enter_data(Fa,Fb,Rl,Rb,Vb,St,Lg,Aunits$)
170 OUTPUT 718;"FA ";Fa;"HZ;"
180 OUTPUT 718;"FB ";Fb;"HZ;"
190 OUTPUT 718;"AUNITS ";Aunits$;";"
200 OUTPUT 718;"RB ";Rb;"HZ;"
210 OUTPUT 718;"VB ";Vb;"HZ;"
220 OUTPUT 718;"ST ";St;"SEC;"
230 IF Lg=0 THEN
240  OUTPUT 718;"LN;"
250 ELSE
260  OUTPUT 718;"LG ";Lg;"DB;"
270  END IF
280 SUBEND
290 SUB Get_data(Fa,Fb,Rl,Rb,Vb,St,Lg,Aunits$)
300 OUTPUT 718;"FA?;FB?;RL?;RB?;VB?;ST?;Lg?;AUNITS?;"
310 ENTER 718 USING "K";Fa,Fb,Rl,Rb,Vb,St,Lg,Aunits$
320 PRINT Fa,Fb,Rl,Rb,Vb,St,Lg,Aunits$
330 SUBEND
```
TS
Take Sweep

Syntax

\[\text{TS} \]

Description

TS commands the spectrum analyzer to take one full sweep across the trace display. Commands following TS are not executed until after the analyzer has finished the trace sweep. This ensures that the instrument is set to a known condition before subsequent commands are executed. For information on how to synchronize a program using TS and the DONE command, refer to Chapter 4.

Example

\begin{verbatim}
10 OUTPUT 718;"IP;SNGLS;"
20 OUTPUT 718;"TS;DONE?;"
30 ENTER 718;Done
40 PRINT Done
50 END
\end{verbatim}
TWNDOW
Trace Window

Syntax

Note
The destination trace is not currently used, but it must be supplied for future compatibility.

Description
The TWNDOW command creates a window trace array for the fast Fourier transform (FFT) function. The trace-window function creates a trace array according to three built-in algorithms: UNIFORM, HANNING, and FLATTOP. When used with the FFT command, the three algorithms give resultant passband shapes that represent a compromise among amplitude uncertainty, sensitivity, and frequency resolution. Refer to the FFT command description for more information.

The three types of windows which are available when using the TWNDOW command are:

- FLATTOP provides optimum amplitude accuracy.
- HANNING provides an amplitude accuracy/frequency resolution compromise, which is useful for general purpose measurements, as well as noise measurements.
- UNIFORM provides equal weighting of the time record for measuring transients.

Preset State
HANNING
Example

10 OUTPUT 718;"IP;"
20 OUTPUT 718;"CF 300 MHZ;"
30 OUTPUT 718;"SP 0HZ;ST 50MS;"
40 OUTPUT 718;"TWNDOW TRA, UNIFORM;"
50 OUTPUT 718;"CLRW TRB;"
60 OUTPUT 718;"SNGLS;TS;TS;"
70 OUTPUT 718;"FFT TRA,TRB,TRA;"
80 OUTPUT 718;"BLANK TRB;"
90 OUTPUT 718;"VIEW TRA;"
100 END
VAVG

Video Average

Syntax

![Diagram]

Description

The VAVG command activates the video averaging function. Video averaging smooths the displayed trace without using a narrow bandwidth. VAVG sets the IF detector to sample mode (see the DET command) and smooths the trace by averaging successive traces with each other. If desired, you can change the detector mode during video averaging.

Video averaging is available only for trace A, and trace A must be in clear-write mode for VAVG to operate. After VAVG is executed, the number of sweeps that have been averaged appears at the top of the analyzer screen.

Using video averaging allows you to view changes to the entire trace much faster than using narrow video filters. Narrow video filters require long sweep times, which may not be desired. Video averaging, though requiring more sweeps, uses faster sweep times; in some cases, it can produce a smooth trace as fast as a video filter.

Parameters

- **number**: integer from 1 to 999.
- **UP/DN**: increments by 1.
Preset State
100, off

Query Response

Example
10 OUTPUT 719;"SNGLS;VAVG 20;TS;"
20 END
VB
Video Bandwidth

Syntax

Description
The VB command specifies the video bandwidth. This is normally a coupled function that is selected according to the ratio selected by the VBR command. (If no ratio is selected, a default ratio, 1.0, is used instead.) Video bandwidth filters (or smooths) post-detected video information. The bandwidth, which ranges from 1 Hz to 3 MHz, may also be selected manually. If the specified video bandwidth is less than 300 Hz and the resolution bandwidth is greater than or equal to 300 Hz, the IF detector is set to sample mode.

Reducing the video bandwidth or increasing the number of video averages will usually smooth the trace by about as much for the same total measurement time. Reducing the video bandwidth to one-third or less of the resolution bandwidth is desirable when the number of video averages is above 25. For the case where the number of video averages is very large, and the video bandwidth is equal to the resolution bandwidth, internal mathematical limitations allow about 0.4 dB overresponse to noise on the logarithmic scale. The overresponse is negligible (less than 0.1 dB) for narrower video bandwidths.
Parameters

number integer from 1 to 3E+6.
UP/DN increments in a 1, 3, 10 sequence.

Preset State
Coupled mode, 1 MHz

Query Response

Example

10 OUTPUT 718;"IP;"
20 OUTPUT 718;"CF 1.2GHZ;SP 2GHZ;"
30 INPUT "SELECT THE VIDEO BANDWIDTH, IN KHZ",B_width
40 OUTPUT 718;"VB ";B_WIDTH;"KHZ;"
50 OUTPUT 718;"VB?;"
60 ENTER 718;B_width
70 PRINT "SELECTED BANDWIDTH IS ",B_width,"HZ"
80 END
VBR
Video Bandwidth to Resolution Bandwidth Ratio

Syntax

Description
The VBR command specifies the coupling ratio between the video bandwidth and the resolution bandwidth. Thus, when the resolution bandwidth is changed, the video bandwidth changes to satisfy the ratio. The ratio ranges from 0.003 to 3 in a 1, 3, 10 sequence. The default ratio is 1. When a new ratio is selected, the video bandwidth changes to satisfy the new ratio—the resolution bandwidth does not change value.

Query Response
Example

10 OUTPUT 718;"IP;"
20 OUTPUT 718;"CF 1.2GHZ;SP 200MHZ;"
30 INPUT "SELECT THE VIDEO BANDWIDTH TO RESOLUTION BANDWIDTH RATIO", B_RATIO
40 OUTPUT 718;"VBR ";B_ratio;"
50 INPUT "SELECT THE RESOLUTION BANDWIDTH, IN KHZ", B_width
60 OUTPUT 718;"RB ";B_width;"KHZ;"
70 OUTPUT 718;"VB?;"
80 ENTER 718;B_width
90 PRINT "THE VIDEO BANDWIDTH IS ",B_width,"HZ"
100 END
VIEW
View Trace

Syntax

Description
The VIEW command displays the current contents of the selected trace, but does not update the contents. View mode may be executed before a sweep is complete when SNGLS and TS are not used. For more information of using SNGLS and TS, refer to Chapter 4.

Example

```
10   OUTPUT 718:"CLRW TRA;TS;VIEW TRA;"
20   END
```
VTL Video Trigger Level

Syntax

![Diagram of VTL Video Trigger Level]

Description

The VTL commands set the video trigger level when the trigger mode is set to VIDEO (refer to the TM command). A dashed line appears on the display to indicate the level. The default value is 0 dBm.

Parameters

- `number`: real from -220 to 30.
- `UP/DN`: increments by 1 vertical division.

Query Response

```
number LF with EOI
```

Example

1. `10 OUTPUT 718;"TM VID;"
2. `20 OUTPUT 718;"VTL -20DBM;"
3. `30 END

Language Reference 5-201
Instrument Preset State

The following tables describe the factory-defined state that is stored in each instrument's memory which cannot be changed.

Table A-1. HP 8560A Instrument State After [PRESET] is Executed

<table>
<thead>
<tr>
<th>Function</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>FREQ MODE</td>
<td>CENTER-SPAN</td>
</tr>
<tr>
<td>CENTER FREQ</td>
<td>1.45 GHz</td>
</tr>
<tr>
<td>SPAN</td>
<td>2.9 GHz</td>
</tr>
<tr>
<td>CF STEP</td>
<td>290 MHz, AUTO</td>
</tr>
<tr>
<td>FREQ OFFSET</td>
<td>0 Hz, OFF</td>
</tr>
<tr>
<td>10 MHz REF</td>
<td>INTERNAL</td>
</tr>
<tr>
<td>REFERENCE LEVEL</td>
<td>0 dBm</td>
</tr>
<tr>
<td>INPUT ATTENUATION</td>
<td>10 dB, AUTO</td>
</tr>
<tr>
<td>MAX MIXER LEVEL</td>
<td>-10 dBm</td>
</tr>
<tr>
<td>REF LEVEL OFFSET</td>
<td>0 dB, OFF</td>
</tr>
<tr>
<td>VERTICAL SCALE</td>
<td>10 dB/DIV</td>
</tr>
<tr>
<td>UNITS</td>
<td>dBm, AUTO</td>
</tr>
<tr>
<td>AUTO IF ADJUST</td>
<td>ON</td>
</tr>
<tr>
<td>DETECTOR</td>
<td>NORMAL</td>
</tr>
<tr>
<td>RESOLUTION BW</td>
<td>1 MHz, AUTO</td>
</tr>
<tr>
<td>VIDEO BW</td>
<td>1 MHz, AUTO</td>
</tr>
<tr>
<td>VBW/RBW RATIO</td>
<td>1</td>
</tr>
<tr>
<td>RBW/SPAN RATIO</td>
<td>0.011</td>
</tr>
<tr>
<td>VIDEO AVERAGE</td>
<td>100, OFF</td>
</tr>
<tr>
<td>SWEEP TIME</td>
<td>60 ms, AUTO</td>
</tr>
<tr>
<td>TRIGGER MODE</td>
<td>CONTINUOUS</td>
</tr>
<tr>
<td>TRIGGER SOURCE</td>
<td>FREE-RUN</td>
</tr>
<tr>
<td>VIDEO TRIG LEVEL</td>
<td>0 dBm</td>
</tr>
<tr>
<td>MARKER MODE</td>
<td>OFF</td>
</tr>
<tr>
<td>NOISE MARKER</td>
<td>OFF</td>
</tr>
<tr>
<td>SIGNAL TRACK</td>
<td>OFF</td>
</tr>
<tr>
<td>PEAK THRESHOLD</td>
<td>-130 dBm</td>
</tr>
<tr>
<td>PEAK EXCURSION</td>
<td>6 dB</td>
</tr>
<tr>
<td>FREQUENCY COUNTER</td>
<td>OFF</td>
</tr>
<tr>
<td>FREQUENCY COUNTER RESOLUTION</td>
<td>10 kHz</td>
</tr>
<tr>
<td>TRACE A</td>
<td>CLEAR-WRITE</td>
</tr>
<tr>
<td>TRACE B</td>
<td>BLANK</td>
</tr>
<tr>
<td>TRACE-DATA</td>
<td>FORMAT P</td>
</tr>
<tr>
<td>A-B->A</td>
<td>OFF</td>
</tr>
<tr>
<td>A-B+DISPLAYLINE->A</td>
<td>OFF</td>
</tr>
<tr>
<td>Function</td>
<td>State</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>DISPLAY LINE</td>
<td>0 dBm, OFF</td>
</tr>
<tr>
<td>THRESHOLD</td>
<td>–90 dBm, OFF</td>
</tr>
<tr>
<td>GRATICULE</td>
<td>ON</td>
</tr>
<tr>
<td>ANNOTATION</td>
<td>ON</td>
</tr>
<tr>
<td>FREQUENCY DISPLAY</td>
<td>ON</td>
</tr>
<tr>
<td>COUPLING</td>
<td>AC</td>
</tr>
<tr>
<td>DEMODULATION</td>
<td>FM OFF, AM OFF</td>
</tr>
<tr>
<td>DEMODULATION TIME</td>
<td>1 second</td>
</tr>
<tr>
<td>SQUELCH</td>
<td>OFF</td>
</tr>
<tr>
<td>SQUELCH LEVEL</td>
<td>–120 dBm</td>
</tr>
<tr>
<td>AGC</td>
<td>OFF</td>
</tr>
<tr>
<td>SIGNAL IDENTIFICATION</td>
<td>OFF</td>
</tr>
<tr>
<td>MIXER</td>
<td>INT</td>
</tr>
<tr>
<td>EXT MIXER LO HARMONIC</td>
<td>6</td>
</tr>
<tr>
<td>MIXER CONV LOSS</td>
<td>30.0 dBm</td>
</tr>
<tr>
<td>BAND LOCK</td>
<td>OFF</td>
</tr>
<tr>
<td>EXT MIXER BIAS</td>
<td>0 mA</td>
</tr>
<tr>
<td>Function</td>
<td>State</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>FREQ MODE</td>
<td>CENTER-SPAN</td>
</tr>
<tr>
<td>CENTER FREQ</td>
<td>3.250 GHz</td>
</tr>
<tr>
<td>SPAN</td>
<td>6.500 GHz</td>
</tr>
<tr>
<td>CF STEP</td>
<td>650 MHz, AUTO</td>
</tr>
<tr>
<td>FREQ OFFSET</td>
<td>0 Hz, OFF</td>
</tr>
<tr>
<td>10 MHz REF</td>
<td>INTERNAL</td>
</tr>
<tr>
<td>REFERENCE LEVEL</td>
<td>0 dBm, AUTO</td>
</tr>
<tr>
<td>INPUT ATTENUATION</td>
<td>10 dB, AUTO</td>
</tr>
<tr>
<td>MAX MIXER LEVEL</td>
<td>-10 dBm</td>
</tr>
<tr>
<td>REF LEVEL OFFSET</td>
<td>0 dB, OFF</td>
</tr>
<tr>
<td>VERTICAL SCALE</td>
<td>10 dB/DIV</td>
</tr>
<tr>
<td>UNITS</td>
<td>dBm, AUTO</td>
</tr>
<tr>
<td>AUTO IF ADJUST</td>
<td>ON</td>
</tr>
<tr>
<td>DETECTOR</td>
<td>NORMAL</td>
</tr>
<tr>
<td>RESOLUTION BW</td>
<td>1 MHz, AUTO</td>
</tr>
<tr>
<td>VIDEO BW</td>
<td>1 MHz, AUTO</td>
</tr>
<tr>
<td>VBW/RBW RATIO</td>
<td>1</td>
</tr>
<tr>
<td>RBW/SPAN RATIO</td>
<td>0.011</td>
</tr>
<tr>
<td>VIDEO AVERAGE</td>
<td>100, OFF</td>
</tr>
<tr>
<td>SWEEP TIME</td>
<td>200 ms, AUTO</td>
</tr>
<tr>
<td>TRIGGER MODE</td>
<td>CONTINUOUS</td>
</tr>
<tr>
<td>TRIGGER SOURCE</td>
<td>FREE-RUN</td>
</tr>
<tr>
<td>VIDEO TRIG LEVEL</td>
<td>0 dBm</td>
</tr>
<tr>
<td>MARKER MODE</td>
<td>OFF</td>
</tr>
<tr>
<td>NOISE MARKER</td>
<td>OFF</td>
</tr>
<tr>
<td>SIGNAL TRACK</td>
<td>OFF</td>
</tr>
<tr>
<td>PEAK THRESHOLD</td>
<td>-130 dBm</td>
</tr>
<tr>
<td>PEAK EXCURSION</td>
<td>6 dB</td>
</tr>
<tr>
<td>FREQUENCY COUNTER</td>
<td>OFF</td>
</tr>
<tr>
<td>FREQUENCY COUNTER RESOLUTION</td>
<td>10 kHz</td>
</tr>
<tr>
<td>TRACE A</td>
<td>CLEAR-WRITE</td>
</tr>
<tr>
<td>TRACE B</td>
<td>BLANK</td>
</tr>
<tr>
<td>TRACE-DATA</td>
<td>FORMAT P</td>
</tr>
<tr>
<td>A→B→A</td>
<td>OFF</td>
</tr>
<tr>
<td>A→B+DISPLAYLINE→A</td>
<td>OFF</td>
</tr>
<tr>
<td>DISPLAY LINE</td>
<td>0 dBm, OFF</td>
</tr>
<tr>
<td>THRESHOLD</td>
<td>-90 dBm, OFF</td>
</tr>
<tr>
<td>GRATICULE</td>
<td>ON</td>
</tr>
<tr>
<td>ANNOTATION</td>
<td>ON</td>
</tr>
<tr>
<td>FREQUENCY DISPLAY</td>
<td>ON</td>
</tr>
<tr>
<td>COUPLING</td>
<td>AC</td>
</tr>
<tr>
<td>DEMODULATION</td>
<td>FM OFF, AM OFF</td>
</tr>
<tr>
<td>DEMODULATION TIME</td>
<td>1 second</td>
</tr>
<tr>
<td>SQUELCH</td>
<td>OFF</td>
</tr>
<tr>
<td>SQUELCH LEVEL</td>
<td>-120 dBm</td>
</tr>
</tbody>
</table>
Table A-2. HP 8561B Instrument State After \texttt{Preset} Is Executed (continued)

<table>
<thead>
<tr>
<th>Function</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGC</td>
<td>OFF</td>
</tr>
<tr>
<td>SIGNAL IDENTIFICATION</td>
<td>OFF</td>
</tr>
<tr>
<td>MIXER</td>
<td>INT</td>
</tr>
<tr>
<td>EXT MIXER LO HARMONIC</td>
<td>6</td>
</tr>
<tr>
<td>MIXER CONV LOSS</td>
<td>30.0 dBm</td>
</tr>
<tr>
<td>BAND LOCK</td>
<td>OFF</td>
</tr>
<tr>
<td>EXT MIXER BIAS</td>
<td>0 mA</td>
</tr>
<tr>
<td>Function</td>
<td>State</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>FREQ MODE</td>
<td>CENTER-SPAN</td>
</tr>
<tr>
<td>CENTER FREQ</td>
<td>12.38 GHz</td>
</tr>
<tr>
<td>SPAN</td>
<td>19.25 GHz</td>
</tr>
<tr>
<td>CF STEP</td>
<td>1.93 GHz, AUTO</td>
</tr>
<tr>
<td>FREQ OFFSET</td>
<td>0 Hz, OFF</td>
</tr>
<tr>
<td>10 MHz REF</td>
<td>INTERNAL</td>
</tr>
<tr>
<td>REFERENCE LEVEL</td>
<td>0 dBm</td>
</tr>
<tr>
<td>INPUT ATTENUATION</td>
<td>10 dB, AUTO</td>
</tr>
<tr>
<td>MAX MIXER LEVEL</td>
<td>-10 dBm</td>
</tr>
<tr>
<td>REF LEVEL OFFSET</td>
<td>0 dB, OFF</td>
</tr>
<tr>
<td>VERTICAL SCALE</td>
<td>10 dB/DIV</td>
</tr>
<tr>
<td>UNITS</td>
<td>dBm, AUTO</td>
</tr>
<tr>
<td>AUTO IF ADJUST</td>
<td>ON</td>
</tr>
<tr>
<td>DETECTOR</td>
<td>NORMAL</td>
</tr>
<tr>
<td>RESOLUTION BW</td>
<td>1 MHz, AUTO</td>
</tr>
<tr>
<td>VIDEO BW</td>
<td>1 MHz, AUTO</td>
</tr>
<tr>
<td>VBW/RBW RATIO</td>
<td>1</td>
</tr>
<tr>
<td>RBW/SPAN RATIO</td>
<td>0.011</td>
</tr>
<tr>
<td>VIDEO AVERAGE</td>
<td>100, OFF</td>
</tr>
<tr>
<td>SWEEP TIME</td>
<td>400 ms, AUTO</td>
</tr>
<tr>
<td>TRIGGER MODE</td>
<td>CONTINUOUS</td>
</tr>
<tr>
<td>TRIGGER SOURCE</td>
<td>FREE-RUN</td>
</tr>
<tr>
<td>VIDEO TRIG LEVEL</td>
<td>0 dBm</td>
</tr>
<tr>
<td>SWEEP OUTPUT</td>
<td>0—10V LO-SWEEP RAMP</td>
</tr>
<tr>
<td>MARKER MODE</td>
<td>OFF</td>
</tr>
<tr>
<td>NOISE MARKER</td>
<td>OFF</td>
</tr>
<tr>
<td>SIGNAL TRACK</td>
<td>OFF</td>
</tr>
<tr>
<td>PEAK THRESHOLD</td>
<td>-120 dBm</td>
</tr>
<tr>
<td>PEAK EXCURSION</td>
<td>6 dB</td>
</tr>
<tr>
<td>FREQUENCY COUNTER</td>
<td>OFF</td>
</tr>
<tr>
<td>FREQUENCY COUNTER RESOLUTION</td>
<td>10 kHz</td>
</tr>
<tr>
<td>TRACE A</td>
<td>CLEAR-WRITE</td>
</tr>
<tr>
<td>TRACE B</td>
<td>BLANK</td>
</tr>
<tr>
<td>TRACE-DATA</td>
<td>FORMAT P</td>
</tr>
<tr>
<td>A→B→A</td>
<td>OFF</td>
</tr>
<tr>
<td>A→B+DISPLAYLINE→A</td>
<td>OFF</td>
</tr>
<tr>
<td>DISPLAY LINE</td>
<td>0 dBm, OFF</td>
</tr>
<tr>
<td>THRESHOLD</td>
<td>-90 dBm, OFF</td>
</tr>
<tr>
<td>GRATICULE</td>
<td>ON</td>
</tr>
<tr>
<td>ANNOTATION</td>
<td>ON</td>
</tr>
<tr>
<td>FREQUENCY DISPLAY</td>
<td>ON</td>
</tr>
<tr>
<td>COUPLING</td>
<td>AC</td>
</tr>
<tr>
<td>DEMODULATION</td>
<td>FM OFF, AM OFF</td>
</tr>
<tr>
<td>DEMODULATION TIME</td>
<td>1 second</td>
</tr>
<tr>
<td>SQUELCH</td>
<td>OFF</td>
</tr>
<tr>
<td>SQUELCH LEVEL</td>
<td>-120 dBm</td>
</tr>
<tr>
<td>Function</td>
<td>State</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>AGC</td>
<td>OFF</td>
</tr>
<tr>
<td>SIGNAL IDENTIFICATION</td>
<td>OFF</td>
</tr>
<tr>
<td>MIXER</td>
<td>INT</td>
</tr>
<tr>
<td>EXT MIXER LO HARMONIC</td>
<td>6</td>
</tr>
<tr>
<td>MIXER CONV LOSS</td>
<td>30.0 dBm</td>
</tr>
<tr>
<td>BAND LOCK</td>
<td>OFF</td>
</tr>
<tr>
<td>EXT MIXER BIAS</td>
<td>0 mA</td>
</tr>
</tbody>
</table>
Softkey Cross Reference

This appendix lists the HP 8560A and 8561B softkeys in alphabetical order. Next to each softkey is the front-panel key under whose menu the softkey is found. Some softkeys are available on certain models only. Access to some marker softkeys may depend on the number of markers in use and the selected frequency span.

<table>
<thead>
<tr>
<th>Softkey</th>
<th>Front-Panel Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>0→10V LO SWP</td>
<td>AUX CTRL</td>
</tr>
<tr>
<td>0.5 V/GE (FAV)</td>
<td>AUX CTRL</td>
</tr>
<tr>
<td>10 MHz EXT INT</td>
<td>AUX CTRL</td>
</tr>
<tr>
<td>A</td>
<td>TRACE</td>
</tr>
<tr>
<td>A+B→A</td>
<td>TRACE</td>
</tr>
<tr>
<td>A→B→A OW OFF</td>
<td>TRACE</td>
</tr>
<tr>
<td>A→B+DL→A OW OFF</td>
<td>TRACE</td>
</tr>
<tr>
<td>ADJ CURR IF STATE</td>
<td>CAL</td>
</tr>
<tr>
<td>A EXCH B</td>
<td>TRACE</td>
</tr>
<tr>
<td>AGC ON OFF</td>
<td>AUX CTRL</td>
</tr>
<tr>
<td>ALC INT EXT</td>
<td>AUX CTRL</td>
</tr>
<tr>
<td>ALC INT EXT</td>
<td>AUX CTRL</td>
</tr>
<tr>
<td>ALL</td>
<td>AUTO COUPLE</td>
</tr>
<tr>
<td>AM DEMOD ON OFF</td>
<td>AUX CTRL</td>
</tr>
<tr>
<td>AM/FM DEMOD</td>
<td>AUX CTRL</td>
</tr>
<tr>
<td>AMPTD CORRECT†</td>
<td>AUX CTRL</td>
</tr>
<tr>
<td>AMPTD UNITS</td>
<td>AMPLITUDE</td>
</tr>
<tr>
<td>ANALYZER ADDRESS</td>
<td>CONFIG</td>
</tr>
</tbody>
</table>

*Available only with an HP 8560A Option 002.
†Not available with an HP 8560A Option 002.
<table>
<thead>
<tr>
<th>Softkey</th>
<th>Front-Panel Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (continued)</td>
<td></td>
</tr>
<tr>
<td>ANOT HELP</td>
<td>DISPLAY</td>
</tr>
<tr>
<td>ANOT ON/OFF</td>
<td>DISPLAY</td>
</tr>
<tr>
<td>ATTN AUTO MAN</td>
<td>AMPLITUDE, AUTO COUPLE</td>
</tr>
<tr>
<td>AVERAGE CMV LOSS*</td>
<td>AUX CTRL</td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>BACK SPACE</td>
<td>DISPLAY</td>
</tr>
<tr>
<td>B--DL--B</td>
<td>TRACE</td>
</tr>
<tr>
<td>BIAS*</td>
<td>AUX CTRL</td>
</tr>
<tr>
<td>BIAS OFF*</td>
<td>AUX CTRL</td>
</tr>
<tr>
<td>BLANK A</td>
<td>TRACE</td>
</tr>
<tr>
<td>BLANK B</td>
<td>TRACE</td>
</tr>
<tr>
<td>B & W</td>
<td>CONFIG</td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>CAL OPEN/SERT</td>
<td>AUX CTRL</td>
</tr>
<tr>
<td>CAL THRU</td>
<td>AUX CTRL</td>
</tr>
<tr>
<td>CENTER FREQ</td>
<td>FREQUENCY</td>
</tr>
<tr>
<td>CF STEP AUTO MAN</td>
<td>FREQUENCY, AUTO COUPLE</td>
</tr>
<tr>
<td>CHAR SET 1 2</td>
<td>DISPLAY</td>
</tr>
<tr>
<td>CLEAR WRITE A</td>
<td>TRACE</td>
</tr>
<tr>
<td>CLEAR WRITE B</td>
<td>TRACE</td>
</tr>
<tr>
<td>CMV LOSS VS FREQ*</td>
<td>AUX CTRL</td>
</tr>
<tr>
<td>COLOR</td>
<td>CONFIG</td>
</tr>
<tr>
<td>CONT</td>
<td>SWEEP, TRIG</td>
</tr>
<tr>
<td>COPY DEV PRNT PLT</td>
<td>CONFIG</td>
</tr>
</tbody>
</table>

*Not available with an HP 8560A Option 002.
<table>
<thead>
<tr>
<th>Softkey</th>
<th>Front-Panel Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>C (continued)</td>
<td></td>
</tr>
<tr>
<td>COUNTER ON/OFF</td>
<td>FREQ COUNT</td>
</tr>
<tr>
<td>COUNTER RES</td>
<td>FREQ COUNT</td>
</tr>
<tr>
<td>COUPLING AC/DC</td>
<td>AMPLITUDE</td>
</tr>
<tr>
<td>CRT ADJ PATTERN</td>
<td>CAL</td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>DATECODE & OPTIONS</td>
<td>CONFIG</td>
</tr>
<tr>
<td>dBm</td>
<td>AMPLITUDE</td>
</tr>
<tr>
<td>dBmV</td>
<td>AMPLITUDE</td>
</tr>
<tr>
<td>dBµV</td>
<td>AMPLITUDE</td>
</tr>
<tr>
<td>DEMOD TIME</td>
<td>AUX CTRL</td>
</tr>
<tr>
<td>DETECTOR MDES</td>
<td>TRACE</td>
</tr>
<tr>
<td>DETECTOR NEG PEAK</td>
<td>TRACE</td>
</tr>
<tr>
<td>DETECTOR NORMAL</td>
<td>TRACE</td>
</tr>
<tr>
<td>DETECTOR POS PEAK</td>
<td>TRACE</td>
</tr>
<tr>
<td>DETECTOR SAMPLE</td>
<td>TRACE</td>
</tr>
<tr>
<td>DISPL LIN ON/OFF</td>
<td>DISPLAY</td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>ELAPSED TIME</td>
<td>RECALL</td>
</tr>
<tr>
<td>ERASE TITLE</td>
<td>DISPLAY</td>
</tr>
<tr>
<td>EXTERNAL</td>
<td>TRIG</td>
</tr>
<tr>
<td>EXTERNAL MIXER*</td>
<td>AUX CTRL</td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>FACTORY SEL PK †</td>
<td>RECALL</td>
</tr>
<tr>
<td>FFT MEAS</td>
<td>MEAS/USER</td>
</tr>
</tbody>
</table>

*Not available with an HP 8560A Option 002.
†Available with an HP 8561B only.
<table>
<thead>
<tr>
<th>Softkey</th>
<th>Front-Panel Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>F (continued)</td>
<td></td>
</tr>
<tr>
<td>FM DEMOD ON OFF</td>
<td>AUX CTRL</td>
</tr>
<tr>
<td>FOCUS</td>
<td>DISPLAY</td>
</tr>
<tr>
<td>FREE RUN</td>
<td>TRIG</td>
</tr>
<tr>
<td>FREQ DIAGNOSE</td>
<td>CAL</td>
</tr>
<tr>
<td>FREQ DSP OFF</td>
<td>DISPLAY</td>
</tr>
<tr>
<td>FREQ OFFSET</td>
<td>FREQUENCY</td>
</tr>
<tr>
<td>FULL BAND*</td>
<td>AUX CTRL</td>
</tr>
<tr>
<td>FULL IF ADJ</td>
<td>CAL</td>
</tr>
<tr>
<td>FULL SPAN</td>
<td>SPAN</td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>GRAT ON OFF</td>
<td>DISPLAY</td>
</tr>
<tr>
<td>I</td>
<td></td>
</tr>
<tr>
<td>IF ADJ ON OFF</td>
<td>CAL</td>
</tr>
<tr>
<td>INTENSITY</td>
<td>DISPLAY</td>
</tr>
<tr>
<td>INTERNAL MIXER*</td>
<td>AUX CTRL</td>
</tr>
<tr>
<td>L</td>
<td></td>
</tr>
<tr>
<td>LAST SPAN</td>
<td>SPAN</td>
</tr>
<tr>
<td>LAST STATE</td>
<td>PRESET, RECALL</td>
</tr>
<tr>
<td>LINE</td>
<td>TRIG</td>
</tr>
<tr>
<td>LINEAR</td>
<td>AMPLITUDE</td>
</tr>
<tr>
<td>LOCK HARMONIC*</td>
<td>AUX CTRL</td>
</tr>
<tr>
<td>LOCK ON OFF*</td>
<td>AUX CTRL</td>
</tr>
<tr>
<td>LO FREQ</td>
<td>CAL</td>
</tr>
<tr>
<td>LOG dB/DIV</td>
<td>AMPLITUDE</td>
</tr>
</tbody>
</table>

*Not available with an HP 8560A Option 002.
<table>
<thead>
<tr>
<th>Softkey</th>
<th>Front-Panel Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>MAIN ROLLER</td>
<td>CAL</td>
</tr>
<tr>
<td>MAIN TRK ADJ*</td>
<td>AUX CTRL</td>
</tr>
<tr>
<td>MARKER—CF</td>
<td>MKR→ (PEAK SEARCH)</td>
</tr>
<tr>
<td>MKRA—CF†</td>
<td>MKR→</td>
</tr>
<tr>
<td>MARKER—CF STEP</td>
<td>MKR→</td>
</tr>
<tr>
<td>MKRA—CF STEP†</td>
<td>MKR→</td>
</tr>
<tr>
<td>MARKER DELTA</td>
<td>AUX CTRL†, FREQ COUNT, MKR, PEAK SEARCH</td>
</tr>
<tr>
<td>MARKER 1/DELTA</td>
<td>MKR</td>
</tr>
<tr>
<td>MARKER NORMAL</td>
<td>AUX CTRL, FREQ COUNT, MKR, PEAK SEARCH†</td>
</tr>
<tr>
<td>MARKER—REF_LVL</td>
<td>MKR→</td>
</tr>
<tr>
<td>MARKERS OFF</td>
<td>MKR</td>
</tr>
<tr>
<td>MARKERΔ—SPAN†</td>
<td>MKR→</td>
</tr>
<tr>
<td>MAX HOLD A</td>
<td>TRACE</td>
</tr>
<tr>
<td>MAX HOLD B</td>
<td>TRACE</td>
</tr>
<tr>
<td>MAX MXR LEVEL</td>
<td>AMPLITUDE</td>
</tr>
<tr>
<td>MKR.Δ→CF†</td>
<td>MKR→</td>
</tr>
<tr>
<td>MKR.Δ→CF STEP†</td>
<td>MKR→</td>
</tr>
<tr>
<td>MXR NOISE ON/Off</td>
<td>MKR</td>
</tr>
<tr>
<td>N</td>
<td></td>
</tr>
<tr>
<td>NEGATIVE BIAS</td>
<td>AUX CTRL§</td>
</tr>
<tr>
<td>NEXT PEAK</td>
<td>AUX CTRL, FREQ COUNT, PEAK SEARCH</td>
</tr>
</tbody>
</table>

*Available with an HP 8560A Option 002 only.
†Available when delta marker mode is active.
‡Available when delta marker mode and zero span are in use.
§Not available with an HP 8560A Option 002.
Table B-1. Softkey Cross Reference (continued)

<table>
<thead>
<tr>
<th>Softkey</th>
<th>Front-Panel Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (continued)</td>
<td></td>
</tr>
<tr>
<td>NEXT PK LEFT</td>
<td>PEAK SEARCH</td>
</tr>
<tr>
<td>NEXT PK RIGHT</td>
<td>PEAK SEARCH</td>
</tr>
<tr>
<td>NORMLIZE ON OFF</td>
<td>AUX CTRL, TRACE</td>
</tr>
<tr>
<td>NORM REF LVL*</td>
<td>AMPLITUDE</td>
</tr>
<tr>
<td>NORM REF POSN*</td>
<td>AMPLITUDE, AUX CTRL, TRACE</td>
</tr>
<tr>
<td>O</td>
<td>CAL</td>
</tr>
<tr>
<td>OFFSET ROLLER</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td></td>
</tr>
<tr>
<td>PEAK EXCURS*</td>
<td>PEAK SEARCH</td>
</tr>
<tr>
<td>PEAK SEARCH</td>
<td>AUX CTRL, FREQ COUNT</td>
</tr>
<tr>
<td>PEAK THRESHOLD</td>
<td>PEAK SEARCH</td>
</tr>
<tr>
<td>PLOT ANNOT</td>
<td>CONFIG</td>
</tr>
<tr>
<td>PLOT GRATICUL</td>
<td>CONFIG</td>
</tr>
<tr>
<td>PLOT ORG DSP GRAT</td>
<td>CONFIG</td>
</tr>
<tr>
<td>PLOTTER ADDRESS</td>
<td>CONFIG</td>
</tr>
<tr>
<td>PLOTTER CONFIG</td>
<td>CONFIG</td>
</tr>
<tr>
<td>PLOT TRACE A</td>
<td>CONFIG</td>
</tr>
<tr>
<td>PLOT TRACE B</td>
<td>CONFIG</td>
</tr>
<tr>
<td>POSITIVE BIAS†</td>
<td>AUX CTRL</td>
</tr>
<tr>
<td>POWER BANDWIDTH</td>
<td>MEAS/USER</td>
</tr>
<tr>
<td>POWER ON</td>
<td>RECALL</td>
</tr>
<tr>
<td>PRESEL AUTO PK†</td>
<td>AMPLITUDE, AUX CTRL</td>
</tr>
<tr>
<td>PRESEL MAN ADJ†</td>
<td>AMPLITUDE, AUX CTRL</td>
</tr>
</tbody>
</table>

*Softkey appears only when NORMLIZE ON OFF is set to ON.
†Not available with an HP 8560A Option 002.
‡Available only with an HP 8561B.
Table B-1. Softkey Cross Reference (continued)

<table>
<thead>
<tr>
<th>Softkey</th>
<th>Front-Panel Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>P (continued)</td>
<td></td>
</tr>
<tr>
<td>PRINTER ADDRESS</td>
<td>CONFIG</td>
</tr>
<tr>
<td>PRINTER CONFIG</td>
<td>CONFIG</td>
</tr>
<tr>
<td>PWR ON STATE</td>
<td>SAVE</td>
</tr>
<tr>
<td>PWR SWP ON-OFF *</td>
<td>AUX CTRL</td>
</tr>
<tr>
<td>R</td>
<td></td>
</tr>
<tr>
<td>RANGE LVL</td>
<td>AMPLITUDE†, AUX CTRL</td>
</tr>
<tr>
<td>RBW/SPAN RATIO</td>
<td>BW</td>
</tr>
<tr>
<td>REALIGN LO & IF</td>
<td>CAL</td>
</tr>
<tr>
<td>RECALL ERRORS</td>
<td>RECALL</td>
</tr>
<tr>
<td>RECALL OPN/SHUT</td>
<td>AUX CTRL</td>
</tr>
<tr>
<td>RECALL PRSEL PK †</td>
<td>RECALL</td>
</tr>
<tr>
<td>RECALL STATE</td>
<td>RECALL</td>
</tr>
<tr>
<td>RECALL TRU</td>
<td>AUX CTRL</td>
</tr>
<tr>
<td>RECALL TO TR A</td>
<td>RECALL</td>
</tr>
<tr>
<td>RECALL TO TR B</td>
<td>RECALL</td>
</tr>
<tr>
<td>REAR PANEL</td>
<td>AUX CTRL</td>
</tr>
<tr>
<td>REF LVL</td>
<td>AMPLITUDE</td>
</tr>
<tr>
<td>REF LVL ADJ</td>
<td>CAL</td>
</tr>
<tr>
<td>REF LVL OFFSET</td>
<td>AMPLITUDE</td>
</tr>
<tr>
<td>RES BW AUTO MAN</td>
<td>AUTO COUPLE, BW</td>
</tr>
<tr>
<td>S</td>
<td></td>
</tr>
<tr>
<td>SAMPLER FREQ</td>
<td>CAL</td>
</tr>
<tr>
<td>SAMPLER HARMONIC</td>
<td>CAL</td>
</tr>
</tbody>
</table>

*Available with an HP 8560A Option 002 only.
†Softkey appears when NORMALIZE ON OFF is set to ON.
‡Available only with an HP 8561B.
<table>
<thead>
<tr>
<th>Softkey</th>
<th>Front-Panel Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAVELOCK ON OFF</td>
<td>SAVE</td>
</tr>
<tr>
<td>SAVE PRESEL PK*</td>
<td>SAVE</td>
</tr>
<tr>
<td>SAVE STATE</td>
<td>SAVE</td>
</tr>
<tr>
<td>SAVE TRACE A</td>
<td>SAVE</td>
</tr>
<tr>
<td>SAVE TRACE B</td>
<td>SAVE</td>
</tr>
<tr>
<td>SCREEN TITLE</td>
<td>DISPLAY</td>
</tr>
<tr>
<td>SELECT CHAR</td>
<td>DISPLAY</td>
</tr>
<tr>
<td>SIG ID AT MKR†</td>
<td>AUX CTRL</td>
</tr>
<tr>
<td>SIG ID → CF†</td>
<td>AUX CTRL</td>
</tr>
<tr>
<td>SIR ID ON OFF†</td>
<td>AUX CTRL</td>
</tr>
<tr>
<td>SIGNAL IDENT†</td>
<td>AUX CTRL</td>
</tr>
<tr>
<td>SIG TRK ON OFF</td>
<td>MKR</td>
</tr>
<tr>
<td>SINGLE</td>
<td>SWEEP, TRIG</td>
</tr>
<tr>
<td>SOURCE CAL MENU</td>
<td>AUX CTRL</td>
</tr>
<tr>
<td>SPACE</td>
<td>DISPLAY</td>
</tr>
<tr>
<td>SPAN</td>
<td>SPAN</td>
</tr>
<tr>
<td>SPAN ZOOM</td>
<td>SPAN</td>
</tr>
<tr>
<td>SQUELCH ON OFF</td>
<td>AUX CTRL</td>
</tr>
<tr>
<td>SRC PWR OFFSET‡</td>
<td>AUX CTRL</td>
</tr>
<tr>
<td>SRC PWR ON OFF‡</td>
<td>AUX CTRL</td>
</tr>
<tr>
<td>SRC PWR STP SIZE‡</td>
<td>AUX CTRL</td>
</tr>
<tr>
<td>START FREQ</td>
<td>FREQUENCY</td>
</tr>
<tr>
<td>STOP FREQ</td>
<td>FREQUENCY</td>
</tr>
<tr>
<td>SWP CPL SR SA</td>
<td>AUX CTRL</td>
</tr>
<tr>
<td>SWP TIME AUTO MAN</td>
<td>AUTO COUPLE, SWEEP</td>
</tr>
</tbody>
</table>

*Available with an HP 8561B only.
† Not available with an HP 8560A Option 002.
‡ Available only with an HP 8560A Option 002.
<table>
<thead>
<tr>
<th>Softkey</th>
<th>Front-Panel Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>DISPLAY</td>
</tr>
<tr>
<td>THRESHLD ON OFF</td>
<td>DISPLAY</td>
</tr>
<tr>
<td>TITLE DONE</td>
<td>DISPLAY</td>
</tr>
<tr>
<td>TRACE A B</td>
<td>TRACE</td>
</tr>
<tr>
<td>TRACKING GENERATOR</td>
<td>AUX CTRL</td>
</tr>
<tr>
<td>TRACKING PEAK*</td>
<td>AUX CTRL</td>
</tr>
<tr>
<td>TRANSFER ROLLER</td>
<td>CAL</td>
</tr>
<tr>
<td>U</td>
<td>AMPLITUDE, AUTO COUPLE</td>
</tr>
<tr>
<td>UNITS AUTO MAN</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>BW</td>
</tr>
<tr>
<td>VBW/RBW RATIO</td>
<td>BW, TRACE</td>
</tr>
<tr>
<td>VID AVG ON OFF</td>
<td>BW, TRACE</td>
</tr>
<tr>
<td>VIDEO</td>
<td>TRIG</td>
</tr>
<tr>
<td>VIDEO BW AUTO MAN</td>
<td>AUTO COUPLE, BW</td>
</tr>
<tr>
<td>VIEW A</td>
<td>TRACE</td>
</tr>
<tr>
<td>VIEW B</td>
<td>TRACE</td>
</tr>
<tr>
<td>VOLTS</td>
<td>AMPLITUDE</td>
</tr>
<tr>
<td>W</td>
<td>AMPLITUDE</td>
</tr>
<tr>
<td>WATTS</td>
<td>AMPLITUDE</td>
</tr>
<tr>
<td>Z</td>
<td>SPAN</td>
</tr>
<tr>
<td>ZERO SPAN</td>
<td>SPAN</td>
</tr>
</tbody>
</table>

*Available with an HP 8560A Option 002 only.
Error Messages

Error messages are displayed in the lower right-hand corner of the analyzer’s CRT display. A number, or error code, is associated with each error message. Several error codes can correspond to the same error message. These codes are provided for service personnel to troubleshoot the spectrum analyzer.

It might be possible to eliminate some error messages by performing a REALIGN LO & IF sequence. Follow this procedure:

1. Press SAVE SAVE STATE.
2. Store the current state in a convenient STATE register.
3. Press PRESET CAL REALIGN LO & IF. Wait for the sequence to finish.
4. Press RECALL RECALL STATE.
5. Recall the previously stored STATE.

If an error message remains displayed, refer to Chapter 2, “Preparation,” for information about calling Hewlett-Packard.

If returning the analyzer for repair is necessary, include a list of any error codes and messages that appeared when the trouble began. These codes and messages provide troubleshooting information for the service person working on the analyzer.

The spectrum analyzer displays only one error message at a time. More error messages may exist. To check for more error messages, proceed as follows:

1. Press RECALL MORE MORE 1 OF 2.
2. Press RECALL ERRORS. An error message is displayed in the active function block on the analyzer display.
3. Use ▲ ▼ to scroll through any other error messages which might exist, making note of each error code.

Error codes and their associated messages are listed in numeric order below.

<table>
<thead>
<tr>
<th>ERR code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERR 100</td>
<td>NO Power-on state is invalid; default state is loaded.</td>
</tr>
<tr>
<td>PWRON</td>
<td></td>
</tr>
<tr>
<td>ERR 101</td>
<td>State to be RECALLED not valid or not SAVED.</td>
</tr>
<tr>
<td>NO STATE</td>
<td></td>
</tr>
<tr>
<td>ERR 106</td>
<td>Current operation is aborted; HP-IB parser reset.</td>
</tr>
<tr>
<td>ABORTED!</td>
<td></td>
</tr>
<tr>
<td>ERR 107</td>
<td>No HP-IB listener is present.</td>
</tr>
<tr>
<td>HELLO ??</td>
<td></td>
</tr>
<tr>
<td>ERR 108</td>
<td>Analyzer timed out when acting as controller.</td>
</tr>
<tr>
<td>TIME OUT</td>
<td></td>
</tr>
</tbody>
</table>

Error Messages C-1
ERR 109 Analyzer unable to take control of the bus.
CtrlFail

ERR 110 Analyzer is not system controller.
NOT CTRL

ERR 111 Command does not have enough arguments.
ARGMTS

ERR 112 Unrecognized command.
??CMD??

ERR 113 Command cannot have frequency units.
FREQ NO!

ERR 114 Command cannot have time units.
TIME NO!

ERR 115 Command cannot have amplitude units.
AMPL NO!

ERR 116 Unrecognizable units.
?UNITS??

ERR 117 Command cannot have numeric units.
NOP NUM

ERR 118 Enable parameter cannot be used.
NOP EP

ERR 119 UP/DN are not valid arguments for command.
NOP UPDN

ERR 120 ON/OFF are not valid arguments for command.
NOP OMOF

ERR 121 AUTO/MAN are not valid arguments for command.
NOP ARG

ERR 122 Trace registers are not valid for command.
NOP TRC

ERR 123 A-block format not valid here.
NOP ABLK

ERR 124 I-block format not valid here.
NOP IBLK

ERR 125 Strings are not valid for this command.
NOP STRNG

ERR 126 This command cannot be queried.
NO ?

ERR 127 Not a valid peak detector mode.
BAD DTMD

ERR 128 Not a valid peak search parameter.
PK WHAT?

ERR 129 Premature A-block termination.
PRE TERM

ERR 130 Arguments are only for TDF command.
BAD TDF

C-2 Error Messages
ERR 131 AM/FM are not valid arguments for this command.
?? AM/FM
ERR 132 FAV/RAMP are not valid arguments for this command.
!FAV/RMP
ERR 133 INT/EXT are not valid arguments for this command.
!INT/EXT
ERR 134 ZERO is not a valid argument for this command.
?? ZERO
ERR 135 CURR is not a valid argument for this command.
?? CURR
ERR 136 FULL is not a valid argument for this command.
?? FULL
ERR 137 LAST is not a valid argument for this command.
?? LAST
ERR 138 GRT/DSP are not valid arguments for this command.
!GRT/DSP
ERR 139 Argument can only be used with PLOT command.
PLOTONLY
ERR 140 PWRON is not a valid argument for this command.
?? PWRON
ERR 141 Argument can only be used with FDIAG command.
BAD ARG
ERR 142 Query expected for FDIAG command.
BAD ARG
ERR 143 No preselector hardware to use command with. (HP 8562B)
NO PRESL
ERR 200 Hardware/firmware interaction; check other errors.
SYSTEM
ERR 201 Hardware/firmware interaction; check other errors.
SYSTEM
ERR 250 ADC input is outside of ADC range.
OUTOF RG
ERR 261 Microprocessor not receiving interrupt from ADC.
NO IRQ
ERR 300 YTO (1ST LO) phase-locked loop (PLL) is unlocked.
YTO UNLK
ERR 301 YTO PLL is unlocked.
YTO UNLK
ERR 302 Offset Roller Oscillator PLL is unlocked.
OFF UNLK
ERR 303 Transfer Roller Oscillator PLL is unlocked.
XFR UNLK
ERR 304 Main Roller Oscillator PLL is unlocked.
ROL UNLK

Error Messages C-3
ERR 305 Frequency accuracy error.
FREQ ACC through ERR 326 FREQ ACC
ERR 327 Offset Roller Oscillator PLL is unlocked.
OFF UNLK
ERR 328 Frequency accuracy error.
FREQ ACC
ERR 329 Frequency accuracy error.
FREQ ACC
ERR 331 Frequency accuracy error.
FREQ ACC
ERR 333 600 MHz Reference Oscillator PLL is unlocked.
600 UNLK
ERR 334 YTO (1st LO) unleveled.
LO AMPL

Note
Error codes 400 through 592 are generated when the automatic IF adjustment routine detects a fault. This routine adjusts amplitude parameters first, then resolution bandwidths in this sequence: 300 kHz, 1 MHz, 2 MHz, 100 kHz, 30 kHz, 10 kHz, 3 kHz, 1 kHz, 300 Hz, 100 Hz, 30 Hz, and 10 Hz. The routine restarts from the beginning if a fault is detected. Resolution bandwidth filters adjusted after the routine begins and before the fault is detected should be acceptable; resolution bandwidth filters adjusted later in the sequence are suspect.

If the fault is detected before the first resolution bandwidth (300 kHz) is adjusted, all IF performance is suspect.

ERR 400 Unable to adjust amplitude of 100 Hz resolution bandwidth.
AMPL 100
ERR 401 Unable to adjust amplitude of 300 Hz resolution bandwidth.
AMPL 300
ERR 402 Unable to adjust amplitude of 1 kHz resolution bandwidth.
AMPL 1K
ERR 403 Unable to adjust amplitude of 3 kHz resolution bandwidth.
AMPL 3K
ERR 404 Unable to adjust amplitude of 10 kHz resolution bandwidth.
AMPL 10K
ERR 405 Unable to adjust 10 kHz resolution bandwidth.
RBW 10K
ERR 406 Unable to adjust 10 kHz resolution bandwidth.
RBW 10K
ERR 407 Unable to adjust 10 kHz resolution bandwidth.
RBW 10K

C-4 Error Messages
ERR 408 RBW 10K
Unable to adjust 10 kHz resolution bandwidth.

ERR 409 RBW 10K
Unable to adjust 10 kHz resolution bandwidth.

ERR 410 RBW 10K
Unable to adjust 10 kHz resolution bandwidth.

ERR 411 RBW 10K
Unable to adjust 10 kHz resolution bandwidth.

ERR 412 RBW 10K
Unable to adjust 10 kHz resolution bandwidth.

ERR 413 RBW 10K
Unable to adjust 10 kHz resolution bandwidth.

ERR 414 RBW 10K
Unable to adjust 10 kHz resolution bandwidth.

ERR 415 RBW 10K
Unable to adjust 10 kHz resolution bandwidth.

ERR 416 RBW 10K
Unable to adjust 10 kHz resolution bandwidth.

ERR 417 RBW 3K
Unable to adjust 3 kHz resolution bandwidth.

ERR 418 RBW 3K
Unable to adjust 3 kHz resolution bandwidth.

ERR 419 RBW 3K
Unable to adjust 3 kHz resolution bandwidth.

ERR 420 RBW 3K
Unable to adjust 3 kHz resolution bandwidth.

ERR 421 RBW 10K
Unable to adjust 10 kHz resolution bandwidth.

ERR 422 RBW 10K
Unable to adjust 10 kHz resolution bandwidth.

ERR 423 RBW 10K
Unable to adjust 10 kHz resolution bandwidth.

ERR 424 RBW 10K
Unable to adjust 10 kHz resolution bandwidth.

ERR 425 RBW 3K
Unable to adjust 3 kHz resolution bandwidth.

ERR 426 RBW 3K
Unable to adjust 3 kHz resolution bandwidth.

ERR 427 RBW 3K
Unable to adjust 3 kHz resolution bandwidth.

ERR 428 RBW 3K
Unable to adjust 3 kHz resolution bandwidth.

ERR 429 RBW 100
Unable to adjust 100 Hz resolution bandwidth.
ERR 430
RBW 300
Unable to adjust 300 Hz resolution bandwidth.

ERR 431
RBW 1K
Unable to adjust 1 kHz resolution bandwidth.

ERR 432
RBW 3K
Unable to adjust 3 kHz resolution bandwidth.

ERR 433
RBW 10K
Unable to adjust 10 kHz resolution bandwidth.

ERR 434
RBW 300
Unable to adjust 300 Hz resolution bandwidth.

ERR 435
RBW 300
Unable to adjust 300 Hz resolution bandwidth.

ERR 436
RBW 300
Unable to adjust 300 Hz resolution bandwidth.

ERR 437
RBW 300
Unable to adjust 300 Hz resolution bandwidth.

ERR 438
RBW 1K
Unable to adjust 1 kHz resolution bandwidth.

ERR 439
RBW 1K
Unable to adjust 1 kHz resolution bandwidth.

ERR 440
RBW 1K
Unable to adjust 1 kHz resolution bandwidth.

ERR 441
RBW 1K
Unable to adjust 1 kHz resolution bandwidth.

ERR 442
RBW 3K
Unable to adjust 3 kHz resolution bandwidth.

ERR 443
RBW 3K
Unable to adjust 3 kHz resolution bandwidth.

ERR 444
RBW 3K
Unable to adjust 3 kHz resolution bandwidth.

ERR 445
RBW 3K
Unable to adjust 3 kHz resolution bandwidth.

ERR 446
RBW 10K
Unable to adjust 10 kHz resolution bandwidth.

ERR 447
RBW 10K
Unable to adjust 10 kHz resolution bandwidth.

ERR 448
RBW 10K
Unable to adjust 10 kHz resolution bandwidth.

ERR 449
RBW 10K
Unable to adjust 10 kHz resolution bandwidth.

ERR 450
IF SYSTM
IF hardware failure. Check other error messages.

ERR 451
IF SYSTM
IF hardware failure. Check other error messages.

C-6 Error Messages
ERR 452 IF SYSTM
IF hardware failure. Check other error messages.

ERR 454 FREQ ACC
Unable to adjust step gain amplifiers.

ERR 465 FREQ ACC
through

ERR 466 LIN AMPL
Unable to adjust linear amplitude scale.

ERR 467 LOG AMPL
Unable to adjust log amplitude scale.

ERR 468 LOG AMPL
Unable to adjust log amplitude scale.

ERR 469 LOG AMPL
Unable to adjust log amplitude scale.

ERR 470 LOG AMPL
Unable to adjust log amplitude scale.

ERR 471 RBW 30K
Unable to adjust 30 kHz resolution bandwidth.

ERR 472 RBW 100K
Unable to adjust 100 kHz resolution bandwidth.

ERR 473 RBW 300K
Unable to adjust 300 kHz resolution bandwidth.

ERR 474 RBW 1M
Unable to adjust 1 MHz resolution bandwidth.

ERR 475 RBW 30K
Unable to adjust 30 kHz resolution bandwidth.

ERR 476 RBW 100K
Unable to adjust 100 kHz resolution bandwidth.

ERR 477 RBW 300K
Unable to adjust 300 kHz resolution bandwidth.

ERR 478 RBW 1M
Unable to adjust 1 MHz resolution bandwidth.

ERR 483 RBW 10K
Unable to adjust 10 kHz resolution bandwidth.

ERR 484 RBW 3K
Unable to adjust 3 kHz resolution bandwidth.

ERR 485 RBW 1K
Unable to adjust 1 kHz resolution bandwidth.

ERR 486 RBW 300
Unable to adjust 300 Hz resolution bandwidth.

ERR 487 RBW 100
Unable to adjust 100 Hz resolution bandwidth.

ERR 488 RBW 100
Unable to adjust 100 Hz resolution bandwidth.
ERR 489
RBW 100
Unable to adjust 100 Hz resolution bandwidth.

ERR 490
RBW 100
Unable to adjust 100 Hz resolution bandwidth.

ERR 491
RBW 100
Unable to adjust 100 Hz resolution bandwidth.

ERR 492
RBW 300
Unable to adjust 300 Hz resolution bandwidth.

ERR 493
RBW 1K
Unable to adjust 1 kHz resolution bandwidth.

ERR 494
RBW 3K
Unable to adjust 3 kHz resolution bandwidth.

ERR 495
RBW 10K
Unable to adjust 10 kHz resolution bandwidth.

ERR 496
RBW 100
Unable to adjust 100 Hz resolution bandwidth.

ERR 497
RBW 100
Unable to adjust 100 Hz resolution bandwidth.

ERR 498
RBW 100
Unable to adjust 100 Hz resolution bandwidth.

ERR 499
CAL UNLK
A16 IF Adjustment Cal Oscillator is unlocked.

ERR 500
AMPL 30K
Unable to adjust amplitude of 30 kHz resolution bandwidth.

ERR 501
AMPL .1M
Unable to adjust amplitude of 100 kHz resolution bandwidth.

ERR 502
AMPL .3M
Unable to adjust amplitude of 300 kHz resolution bandwidth.

ERR 503
AMPL 1M
Unable to adjust amplitude of 1 MHz resolution bandwidth.

ERR 504
AMPL 30K
Unable to adjust amplitude of 30 kHz resolution bandwidth.

ERR 505
AMPL .1M
Unable to adjust amplitude of 100 kHz resolution bandwidth.

ERR 506
AMPL .3M
Unable to adjust amplitude of 300 kHz resolution bandwidth.

ERR 507
AMPL 1M
Unable to adjust amplitude of 1 MHz resolution bandwidth.

ERR 508
AMPL 30K
Unable to adjust amplitude of 30 kHz resolution bandwidth.

ERR 509
AMPL .1M
Unable to adjust amplitude of 100 kHz resolution bandwidth.

ERR 510
AMPL .3M
Unable to adjust amplitude of 300 kHz resolution bandwidth.
ERR 511 Unable to adjust amplitude of 1 MHz resolution bandwidth.
AMPL 1M
ERR 512 Unable to adjust 100 Hz resolution bandwidth.
RBW 100
ERR 513 Unable to adjust 300 Hz resolution bandwidth.
RBW 300
ERR 514 Unable to adjust 1 kHz resolution bandwidth.
RBW 1K
ERR 515 Unable to adjust 3 kHz resolution bandwidth.
RBW 3K
ERR 516 Unable to adjust 10 kHz resolution bandwidth.
RBW 10K
ERR 517 Unable to adjust 100 Hz resolution bandwidth.
RBW 100
ERR 518 Unable to adjust 300 Hz resolution bandwidth.
RBW 300
ERR 519 Unable to adjust 1 kHz resolution bandwidth.
RBW 1K
ERR 520 Unable to adjust 3 kHz resolution bandwidth.
RBW 3K
ERR 521 Unable to adjust 10 kHz resolution bandwidth.
RBW 10K
ERR 522 Unable to adjust 10 kHz resolution bandwidth. SYM POLE 1.
RBW 10K
ERR 523 Unable to adjust 10 kHz resolution bandwidth. SYM POLE 2.
RBW 10K
ERR 524 Unable to adjust 10 kHz resolution bandwidth. SYM POLE 3.
RBW 10K
ERR 525 Unable to adjust 10 kHz resolution bandwidth. SYM POLE 4.
RBW 10K
ERR 526 Unable to adjust <300 Hz resolution bandwidths.
RBW <300
ERR 527 Step gain correction failed for <300 Hz resolution bandwidth.
RBW <300
ERR 528 Unable to adjust <300 Hz resolution bandwidths.
RBW <300
ERR 529 Unable to adjust <300 Hz resolution bandwidths.
RBW <300
ERR 530 Unable to adjust <300 Hz resolution bandwidths.
RBW <300
ERR 531 Unable to adjust gain versus frequency for resolution bandwidths <300 Hz.
RBW <300
ERR 532 Absolute gain data for resolution bandwidths <300 Hz not acceptable.
RBW <300

Error Messages C-9
ERR 533 Unable to adjust <300 Hz resolution bandwidths.
RBW <300

ERR 534 Unable to adjust frequency accuracy for resolution bandwidths ≤100 Hz.
RBW <300

ERR 535 Unable to adjust <300 Hz resolution bandwidths.
RBW <300

ERR 536 Unable to adjust <300 Hz resolution bandwidths.
RBW <300

ERR 537 Unable to adjust <300 Hz resolution bandwidths.
RBW <300

ERR 538 Unable to adjust <300 Hz resolution bandwidths.
RBW <300

ERR 539 Unable to adjust <300 Hz resolution bandwidths.
RBW <300

ERR 540 Unable to adjust <300 Hz resolution bandwidths.
RBW <300

ERR 551 Unable to adjust step gain amplifiers.
AMPL

ERR 552 Unable to adjust amplitude of log scale.
LOG AMPL

ERR 553 Unable to adjust amplitude of log scale.
LOG AMPL

ERR 554 Unable to adjust amplitude of log scale.
LOG AMPL

ERR 555 Unable to adjust amplitude in log scale.
LOG AMPL

ERR 556 Unable to adjust amplitude in log scale.
LOG AMPL

ERR 557 Unable to adjust amplitude in log scale.
LOG AMPL

ERR 558 Unable to adjust amplitude in log scale.
LOG AMPL

ERR 559 Unable to adjust amplitude in log scale.
LOG AMPL

ERR 560 Unable to adjust amplitude in log scale.
LOG AMPL

ERR 561 Unable to adjust amplitude in log scale.
LOG AMPL

ERR 562 Unable to adjust amplitude in log scale.
LOG AMPL

ERR 563 Unable to adjust amplitude in log scale.
LOG AMPL

ERR 564 Unable to adjust amplitude in log scale.
LOG AMPL

C-10 Error Messages
ERR 565	Unable to adjust amplitude in log scale.
ERR 566	Unable to adjust amplitude in log scale.
ERR 567	Unable to adjust amplitude in log scale.
ERR 568	Unable to adjust amplitude in log scale.
ERR 569	Unable to adjust amplitude in log scale.
ERR 570	Unable to adjust amplitude in log scale.
ERR 571	Unable to adjust step gain amplifiers.
ERR 572	Unable to adjust amplitude of 1 MHz resolution bandwidth.
ERR 573	Unable to adjust amplitude in log scale.
ERR 574	Unable to adjust amplitude in log scale.
ERR 575	Unable to adjust amplitude in log scale.
ERR 576	Unable to adjust amplitude in log scale.
ERR 577	Unable to adjust amplitude in log scale.
ERR 581	Unable to adjust 100 kHz and ≤10 kHz resolution bandwidths.
ERR 582	Unable to adjust 100 kHz and ≤10 kHz resolution bandwidths.
ERR 583	Unable to adjust 30 kHz resolution bandwidth.
ERR 584	Unable to adjust 100 kHz resolution bandwidth.
ERR 585	Unable to adjust 300 kHz resolution bandwidth.
ERR 586	Unable to adjust 1 MHz resolution bandwidth.
ERR 587	Unable to adjust 30 kHz resolution bandwidth.
ERR 588	Unable to adjust 100 kHz resolution bandwidth.
ERR 589	Unable to adjust 300 kHz resolution bandwidth.
ERR 590 Unable to adjust 1 MHz resolution bandwidth.
RBW 1M

ERR 591 Unable to adjust amplitude in log scale.
LOG AMPL

ERR 592 Unable to adjust amplitude in log scale.
LOG AMPL

ERR 600 Hardware/firmware interaction; check other errors.
SYSTEM

ERR 601 Hardware/firmware interaction; check other errors.
SYSTEM

ERR 650 ADC input is outside of the ADC range.
OUTOF RG

ERR 651 Microprocessor is not receiving interrupt from ADC.
NO IRQ

ERR 700 Checksum error of EEROM A2U501
EEROM

ERR 701 Checksum error of frequency response correction data.
AMPL CAL

ERR 702 Checksum error of elapsed time data.
ELAP TIM

ERR 703 Checksum error of frequency response correction data.
AMPL CAL

ERR 704 Checksum error of customer preselector peak data.
PRESELECT

ERR 705 Checksum error of program ROM A2U306.
ROM U306

ERR 706 Checksum error of program ROM A2U307.
ROM U307

ERR 707 Checksum error of program ROM A2U308.
ROM U308

ERR 708 Checksum error of program ROM A2U309.
ROM U309

ERR 709 Checksum error of program ROM A2U310.
ROM U310

ERR 710 Checksum error of program ROM A2U311.
ROM U311

ERR 711 Checksum error of system RAM A2U303.
RAM U303

ERR 712 Checksum error of system RAM A2U302.
RAM U302

ERR 713 Checksum error of system RAM A2U301.
RAM U301

ERR 714 Checksum error of system RAM A2U300.
RAM U300

C-12 Error Messages
<table>
<thead>
<tr>
<th>ERR 715 RAM U305</th>
<th>Checksum error of system RAM A2U305.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERR 716 RAM U304</td>
<td>Checksum error of system RAM A2U304.</td>
</tr>
<tr>
<td>ERR 717 BAD uP!!</td>
<td>Microprocessor not fully operational.</td>
</tr>
<tr>
<td>ERR 718 BATTERY?</td>
<td>Nonvolatile RAM not working; check battery.</td>
</tr>
<tr>
<td>ERR 750 SYSTEM</td>
<td>Hardware/firmware interaction; check other errors.</td>
</tr>
<tr>
<td>ERR 751 SYSTEM</td>
<td>Hardware/firmware interaction; check other errors.</td>
</tr>
<tr>
<td>ERR 752 SYSTEM</td>
<td>Hardware/firmware interaction; check other errors.</td>
</tr>
<tr>
<td>ERR 753 SYSTEM</td>
<td>Hardware/firmware interaction; check other errors.</td>
</tr>
<tr>
<td>ERR 754 SYSTEM</td>
<td>Hardware/firmware interaction; check other errors.</td>
</tr>
<tr>
<td>ERR 755 SYSTEM</td>
<td>Hardware/firmware interaction; check other errors.</td>
</tr>
</tbody>
</table>

Note
Error codes 800 through 899, MODULE, are reserved for Option Modules, such as the HP 85629B Test and Adjustment Module or the HP 85620A Mass Memory Module. Refer to the option module's manual for a listing of error messages.

Note
Error codes 900 to 904, user-generated errors, occur if the operator has entered information incorrectly, or is attempting to use the analyzer inappropriately.

<table>
<thead>
<tr>
<th>ERR 900 TG UNLVL</th>
<th>Tracking generator output is unleveled.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERR 901 TG FreqLmt</td>
<td>Tracking generator output unleveled because START FREQ is set below tracking generator frequency limit (300 kHz).</td>
</tr>
<tr>
<td>ERR 902 BAD NORM</td>
<td>The state of the stored trace does not match the current state of the analyzer.</td>
</tr>
<tr>
<td>ERR 903 &> DLMT A</td>
<td>Unnormalized trace A is off-screen with trace math or normalization on.</td>
</tr>
<tr>
<td>ERR 904 &> DLMT B</td>
<td>Calibration trace (trace B) is off-screen with trace math or normalization on.</td>
</tr>
</tbody>
</table>

Error Messages C-13
Key versus Programming Command Cross Reference

This appendix lists the HP 8560A and 8561B keys in alphabetical order. Next to a key is the related programming command. In some cases, a key has no corresponding programming command.

Table D-1. Softkey Cross Reference

<table>
<thead>
<tr>
<th>Key</th>
<th>Programming Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>0→10V LO SWP</td>
<td>SWPOUT</td>
</tr>
<tr>
<td>0.5 V/GeV (FAV)</td>
<td>SWPOUT</td>
</tr>
<tr>
<td>10 MHz EXT INT</td>
<td>PREF</td>
</tr>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>A+B→A</td>
<td>APB</td>
</tr>
<tr>
<td>A-B→A ON OFF</td>
<td>AMB</td>
</tr>
<tr>
<td>A-B+DL→A ON OFF</td>
<td>AMBPL</td>
</tr>
<tr>
<td>ADJ CURR IF STATE</td>
<td>ADJIF</td>
</tr>
<tr>
<td>A EXCH B</td>
<td>AXB</td>
</tr>
<tr>
<td>AGC ON OFF</td>
<td>DEMODAGC</td>
</tr>
<tr>
<td>ALC INT EXT</td>
<td>SRCALC</td>
</tr>
<tr>
<td>ALL</td>
<td>AUTOCPL</td>
</tr>
<tr>
<td>AM DEMOD ON OFF</td>
<td>DEMOD</td>
</tr>
<tr>
<td>AM/FM DEMOD</td>
<td>—</td>
</tr>
<tr>
<td>AMPLITUDE</td>
<td>RL</td>
</tr>
<tr>
<td>AMP TD CORRECT</td>
<td>—</td>
</tr>
<tr>
<td>AMP TD UNITS</td>
<td>AUNITS</td>
</tr>
<tr>
<td>ANALYZER ADDRESS</td>
<td>—</td>
</tr>
<tr>
<td>ANNOT HELP</td>
<td>—</td>
</tr>
<tr>
<td>ANNOT ON OFF</td>
<td>ANNOT</td>
</tr>
<tr>
<td>Key</td>
<td>Programming Command</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>A (continued)</td>
<td></td>
</tr>
<tr>
<td>ATTEN AUTO MAN</td>
<td>AT</td>
</tr>
<tr>
<td>AVERAGE CNV LOSS</td>
<td>CNVLOSS</td>
</tr>
<tr>
<td>AUTOCOUPLER</td>
<td>—</td>
</tr>
<tr>
<td>AUX CTRL</td>
<td>—</td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>BACK SPACE</td>
<td>—</td>
</tr>
<tr>
<td>B = DL = B</td>
<td>BML</td>
</tr>
<tr>
<td>BIAS</td>
<td>MBIAS</td>
</tr>
<tr>
<td>BIAS OFF</td>
<td>MBIAS</td>
</tr>
<tr>
<td>BLANK A</td>
<td>BLANK</td>
</tr>
<tr>
<td>BLANK B</td>
<td>BLANK</td>
</tr>
<tr>
<td>BW</td>
<td>RB</td>
</tr>
<tr>
<td>B & W</td>
<td>PRINT</td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>CAL</td>
<td>—</td>
</tr>
<tr>
<td>CAL OPM/SHRT</td>
<td>STOREOPEN, STORESHORT</td>
</tr>
<tr>
<td>CAL THRU</td>
<td>STORETHRU</td>
</tr>
<tr>
<td>CENTER FREQ</td>
<td>CF</td>
</tr>
<tr>
<td>CF STEP AUTO MAN</td>
<td>SS</td>
</tr>
<tr>
<td>CHAR SET 1 2</td>
<td>—</td>
</tr>
<tr>
<td>CLEAR WRITE A</td>
<td>CLRW</td>
</tr>
<tr>
<td>CLEAR WRITE B</td>
<td>CLRW</td>
</tr>
<tr>
<td>CNV LOSS VS FREQ</td>
<td>—</td>
</tr>
<tr>
<td>COLOR</td>
<td>PRINT</td>
</tr>
<tr>
<td>CONFIG</td>
<td>—</td>
</tr>
<tr>
<td>CONT</td>
<td>CONTS</td>
</tr>
<tr>
<td>Key</td>
<td>Programming Command</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>C (continued)</td>
<td></td>
</tr>
<tr>
<td>COPY</td>
<td>PLOT, PRINT</td>
</tr>
<tr>
<td>COPY DEV. PRNT PLT</td>
<td>—</td>
</tr>
<tr>
<td>COUNTER ON OFF</td>
<td>MKFC</td>
</tr>
<tr>
<td>COUNTER RES</td>
<td>MKFCR</td>
</tr>
<tr>
<td>COUPLING AC DC</td>
<td>COUPLE</td>
</tr>
<tr>
<td>CRT ADJ PATTERN</td>
<td>ADJCRT</td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>DATECODE & OPTIONS</td>
<td>ID, REV, SER</td>
</tr>
<tr>
<td>dBm</td>
<td>AUNITS</td>
</tr>
<tr>
<td>dBmV</td>
<td>AUNITS</td>
</tr>
<tr>
<td>dBlV</td>
<td>AUNITS</td>
</tr>
<tr>
<td>DEMOD TIME</td>
<td>DEMODT</td>
</tr>
<tr>
<td>DETECTOR MODES</td>
<td>—</td>
</tr>
<tr>
<td>DETECTOR NEG PEAK</td>
<td>DET</td>
</tr>
<tr>
<td>DETECTOR NORMAL</td>
<td>DET</td>
</tr>
<tr>
<td>DETECTOR POS PEAK</td>
<td>DET</td>
</tr>
<tr>
<td>DETECTOR SAMPLE</td>
<td>DET</td>
</tr>
<tr>
<td>DSPL LIN ON OFF</td>
<td>DL</td>
</tr>
<tr>
<td>DISPLAY</td>
<td>—</td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>ELAPSED TIME</td>
<td>ET</td>
</tr>
<tr>
<td>ERASE TITLE</td>
<td>—</td>
</tr>
<tr>
<td>EXTERNAL</td>
<td>TM</td>
</tr>
<tr>
<td>EXTERNAL MIXER</td>
<td>MXRMODE</td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>FACTORY PSEL PK</td>
<td>—</td>
</tr>
<tr>
<td>FFT MEAS</td>
<td>FFT</td>
</tr>
<tr>
<td>Key</td>
<td>Programming Command</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>F (continued)</td>
<td>FM DEMOD ON OFF</td>
</tr>
<tr>
<td></td>
<td>DEMOD</td>
</tr>
<tr>
<td></td>
<td>FOCUS</td>
</tr>
<tr>
<td></td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>FREE RUN</td>
</tr>
<tr>
<td></td>
<td>TM</td>
</tr>
<tr>
<td></td>
<td>FREQ COUNT</td>
</tr>
<tr>
<td></td>
<td>MKFC</td>
</tr>
<tr>
<td></td>
<td>FREQ DIAGNOSE</td>
</tr>
<tr>
<td></td>
<td>FDIAG</td>
</tr>
<tr>
<td></td>
<td>FREQ DSP OFF</td>
</tr>
<tr>
<td></td>
<td>FDSP</td>
</tr>
<tr>
<td></td>
<td>FREQ OFFSET</td>
</tr>
<tr>
<td></td>
<td>FOFFSET</td>
</tr>
<tr>
<td></td>
<td>FREQUENCY</td>
</tr>
<tr>
<td></td>
<td>CF</td>
</tr>
<tr>
<td></td>
<td>FULL BAND</td>
</tr>
<tr>
<td></td>
<td>FULBAND</td>
</tr>
<tr>
<td></td>
<td>FULL IF ADJ</td>
</tr>
<tr>
<td></td>
<td>ADJIF</td>
</tr>
<tr>
<td></td>
<td>FULL SPAN</td>
</tr>
<tr>
<td></td>
<td>FS</td>
</tr>
<tr>
<td>G</td>
<td>GRAT ON OFF</td>
</tr>
<tr>
<td></td>
<td>GRAT</td>
</tr>
<tr>
<td>H</td>
<td>HOLD</td>
</tr>
<tr>
<td></td>
<td>HD</td>
</tr>
<tr>
<td>I</td>
<td>IF ADJ ON OFF</td>
</tr>
<tr>
<td></td>
<td>ADJIF</td>
</tr>
<tr>
<td></td>
<td>INTENSITY</td>
</tr>
<tr>
<td></td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>INTERNAL MIXER</td>
</tr>
<tr>
<td></td>
<td>MXRMODE</td>
</tr>
<tr>
<td>L</td>
<td>LAST SPAN</td>
</tr>
<tr>
<td></td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>LAST STATE</td>
</tr>
<tr>
<td></td>
<td>RCLS</td>
</tr>
<tr>
<td></td>
<td>LINE</td>
</tr>
<tr>
<td></td>
<td>TM</td>
</tr>
<tr>
<td></td>
<td>LINEAR</td>
</tr>
<tr>
<td></td>
<td>LN</td>
</tr>
<tr>
<td></td>
<td>LOCK HARMONIC</td>
</tr>
<tr>
<td></td>
<td>HNLOCK</td>
</tr>
<tr>
<td>Key</td>
<td>Programming Command</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>L (continued)</td>
<td>HNLOCK, HNUNLK</td>
</tr>
<tr>
<td>LOCK ON/OFF</td>
<td>FDIAG</td>
</tr>
<tr>
<td>LOG FREQ</td>
<td>LG</td>
</tr>
<tr>
<td>LOG 4B/DIV</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>FDIAG</td>
</tr>
<tr>
<td>MAIN ROLLER</td>
<td>SRCCRSTK, SRCFINRK</td>
</tr>
<tr>
<td>MARKER→CF</td>
<td>MKCF</td>
</tr>
<tr>
<td>MARKER→CF</td>
<td>MKCF</td>
</tr>
<tr>
<td>MARKER→CF STEP</td>
<td>MKSS</td>
</tr>
<tr>
<td>MARKER→CF STEP</td>
<td>MKSS</td>
</tr>
<tr>
<td>MARKER DELTA</td>
<td>MKD</td>
</tr>
<tr>
<td>MARKER 1/DELTA</td>
<td>MKDR</td>
</tr>
<tr>
<td>MARKER NORMAL</td>
<td>MKN</td>
</tr>
<tr>
<td>MARKER→REF LVL</td>
<td>MKRL</td>
</tr>
<tr>
<td>MARKERS OFF</td>
<td>MKOFF</td>
</tr>
<tr>
<td>MARKER→SPAN</td>
<td>MKSP</td>
</tr>
<tr>
<td>MAX HOLD A</td>
<td>MXMH</td>
</tr>
<tr>
<td>MAX HOLD B</td>
<td>MXMH</td>
</tr>
<tr>
<td>MAX MCR LEVEL</td>
<td>ML</td>
</tr>
<tr>
<td>MEAS/USER</td>
<td></td>
</tr>
<tr>
<td>MKR</td>
<td>MKN</td>
</tr>
<tr>
<td>MKR→</td>
<td>MKN</td>
</tr>
<tr>
<td>MKR 1/4→CF</td>
<td></td>
</tr>
<tr>
<td>MKR 1/4→CF STEP</td>
<td></td>
</tr>
<tr>
<td>MKRNOISE ON/OFF</td>
<td>MKNOISE</td>
</tr>
<tr>
<td>MODULE</td>
<td></td>
</tr>
<tr>
<td>Key</td>
<td>Programming Command</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>N</td>
<td></td>
</tr>
<tr>
<td>NEGATIVE BIAS</td>
<td>MBIAS</td>
</tr>
<tr>
<td>NEXT PEAK</td>
<td>MKPK</td>
</tr>
<tr>
<td>NEXT PK : LEFT</td>
<td>MKPK</td>
</tr>
<tr>
<td>NEXT PK : RIGHT</td>
<td>MKPK</td>
</tr>
<tr>
<td>NORMLIZE ON : OFF</td>
<td>NORMLIZE</td>
</tr>
<tr>
<td>NORM REF LVL</td>
<td>NRL</td>
</tr>
<tr>
<td>NORM REF : POSN</td>
<td>NRPOS</td>
</tr>
<tr>
<td>O</td>
<td></td>
</tr>
<tr>
<td>OFFSET ROLLER</td>
<td>FDIAG</td>
</tr>
<tr>
<td>P</td>
<td></td>
</tr>
<tr>
<td>PEAK EXCURSN</td>
<td>MKPX</td>
</tr>
<tr>
<td>PEAK SEARCH</td>
<td>MKPK</td>
</tr>
<tr>
<td>PEAK SEARCH</td>
<td>MKPK</td>
</tr>
<tr>
<td>PEAK THRESHLD</td>
<td>MKPT</td>
</tr>
<tr>
<td>PLOT ANNOT</td>
<td>PLOTSRC</td>
</tr>
<tr>
<td>PLOT GRATICUL</td>
<td>PLOTSRC</td>
</tr>
<tr>
<td>PLOT ORG : DSP : GRAT</td>
<td>PLOTORG</td>
</tr>
<tr>
<td>PLOTTER ADDRESS</td>
<td>—</td>
</tr>
<tr>
<td>PLOTTER CONFIG</td>
<td>PLOTSRC</td>
</tr>
<tr>
<td>PLOT TRACE A</td>
<td>PLOTSRC</td>
</tr>
<tr>
<td>PLOT TRACE B</td>
<td>PLOTSRC</td>
</tr>
<tr>
<td>POSITIVE BIAS</td>
<td>MBIAS</td>
</tr>
<tr>
<td>POWER BANDWIDTH</td>
<td>PWRBW</td>
</tr>
<tr>
<td>POWER ON</td>
<td>RCLS</td>
</tr>
<tr>
<td>PRESEL AUTO PK</td>
<td>PP</td>
</tr>
<tr>
<td>PRESEL MAN : ADJ</td>
<td>PSDAC</td>
</tr>
<tr>
<td>Key</td>
<td>Programming Command</td>
</tr>
<tr>
<td>------------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>P (continued)</td>
<td></td>
</tr>
<tr>
<td>PRESET</td>
<td>IP</td>
</tr>
<tr>
<td>PRINTER ADDRESS</td>
<td>-</td>
</tr>
<tr>
<td>PRINTER CONFIG</td>
<td>-</td>
</tr>
<tr>
<td>PWR ON STATE</td>
<td>SAVES</td>
</tr>
<tr>
<td>PWR SWP ON OFF</td>
<td>SRCPSWP</td>
</tr>
<tr>
<td>R</td>
<td></td>
</tr>
<tr>
<td>RANGE_LVL</td>
<td>RL</td>
</tr>
<tr>
<td>RBW/SPAN_RATIO</td>
<td>RBR</td>
</tr>
<tr>
<td>REALIGN LO & IF</td>
<td>ADJALL</td>
</tr>
<tr>
<td>RECALL</td>
<td>-</td>
</tr>
<tr>
<td>RECALL ERRORS</td>
<td>ERR</td>
</tr>
<tr>
<td>RECALL OPM/SHRT</td>
<td>RCLOSCAL</td>
</tr>
<tr>
<td>RECALL PRSEL PK</td>
<td>-</td>
</tr>
<tr>
<td>RECALL STATE</td>
<td>RCLS</td>
</tr>
<tr>
<td>RECALL THRU</td>
<td>RCLTHRU</td>
</tr>
<tr>
<td>RECALL TO TR A</td>
<td>RCLT</td>
</tr>
<tr>
<td>RECALL TO TR B</td>
<td>RCLT</td>
</tr>
<tr>
<td>REAR PANEL</td>
<td>-</td>
</tr>
<tr>
<td>REF_LVL</td>
<td>RL</td>
</tr>
<tr>
<td>REF_LVL ADJ</td>
<td>RLCAL</td>
</tr>
<tr>
<td>REF_LVL OFFSET</td>
<td>ROFFSET</td>
</tr>
<tr>
<td>RES BW AUTO MAN</td>
<td>RB</td>
</tr>
<tr>
<td>S</td>
<td></td>
</tr>
<tr>
<td>SAMPLER FREQ</td>
<td>FDIAG</td>
</tr>
<tr>
<td>SAMPLER HARMONIC</td>
<td>FDIAG</td>
</tr>
<tr>
<td>SAVE</td>
<td>-</td>
</tr>
<tr>
<td>SAVELOCK ON OFF</td>
<td>PSTATE</td>
</tr>
</tbody>
</table>

Key versus Programming Command Cross Reference D-7
<table>
<thead>
<tr>
<th>Key</th>
<th>Programming Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>S (continued)</td>
<td></td>
</tr>
<tr>
<td>SAVE PRSEL PK</td>
<td>SAVES</td>
</tr>
<tr>
<td>SAVE STATE</td>
<td>SAVET</td>
</tr>
<tr>
<td>SAVE TRACE A</td>
<td>SAVET</td>
</tr>
<tr>
<td>SAVE TRACE B</td>
<td>TITLE</td>
</tr>
<tr>
<td>SCREEN TITLE</td>
<td></td>
</tr>
<tr>
<td>SELECT CHAR</td>
<td>SNGLS</td>
</tr>
<tr>
<td>SGL SWP</td>
<td>SIGID</td>
</tr>
<tr>
<td>SIG ID AT MKR</td>
<td>SIGID</td>
</tr>
<tr>
<td>SID ID ON OFF</td>
<td>IDCF</td>
</tr>
<tr>
<td>SIG ID → CF</td>
<td></td>
</tr>
<tr>
<td>SIGNAL IDENT</td>
<td>MKTRACK</td>
</tr>
<tr>
<td>SIG TRK ON OFF</td>
<td>SNGLS</td>
</tr>
<tr>
<td>SINGLE</td>
<td></td>
</tr>
<tr>
<td>SOURCE CAL MENU</td>
<td>—</td>
</tr>
<tr>
<td>SPACE</td>
<td>SP</td>
</tr>
<tr>
<td>SPAN</td>
<td>SP</td>
</tr>
<tr>
<td>SQUELCH ON OFF</td>
<td>SQUELCH</td>
</tr>
<tr>
<td>SRC PWR OFFSET</td>
<td>SRCPOFS</td>
</tr>
<tr>
<td>SRC PWR ON OFF</td>
<td>SRCPWR</td>
</tr>
<tr>
<td>SRC PWR STP SIZE</td>
<td>SRCPSTP</td>
</tr>
<tr>
<td>START FREQ</td>
<td>FA</td>
</tr>
<tr>
<td>STOP FREQ</td>
<td>FB</td>
</tr>
<tr>
<td>(Sweep)</td>
<td>ST</td>
</tr>
<tr>
<td>SWP CPL SR SA</td>
<td>SWPCPL</td>
</tr>
<tr>
<td>SWP TIME AUTO MAN</td>
<td>ST</td>
</tr>
<tr>
<td>Key</td>
<td>Programming Command</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>T</td>
<td>TH</td>
</tr>
<tr>
<td>Threshold ON OFF</td>
<td>TITLE</td>
</tr>
<tr>
<td>TRACE</td>
<td>TRA, TRB</td>
</tr>
<tr>
<td>TRACKING GENERATOR</td>
<td></td>
</tr>
<tr>
<td>TRACKING PEAK</td>
<td>SRCTKPK</td>
</tr>
<tr>
<td>TRANSFER ROLLER</td>
<td>FDIAG</td>
</tr>
<tr>
<td>TRIG</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>AUNITS</td>
</tr>
<tr>
<td>UNITS AUTO MAN</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>VBR</td>
</tr>
<tr>
<td>VBW/RGBW RATIO</td>
<td>VAVG</td>
</tr>
<tr>
<td>VID AVG ON OFF</td>
<td>TM, VTL</td>
</tr>
<tr>
<td>VIDEO</td>
<td></td>
</tr>
<tr>
<td>VIDEO BW AUTO MAN</td>
<td>VB</td>
</tr>
<tr>
<td>VIEW A</td>
<td>VIEW</td>
</tr>
<tr>
<td>VIEW B</td>
<td>VIEW</td>
</tr>
<tr>
<td>VOLTS</td>
<td>AUNITS</td>
</tr>
<tr>
<td>W</td>
<td>AUNITS</td>
</tr>
<tr>
<td>WATTS</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>SP</td>
</tr>
<tr>
<td>ZERO SPAN</td>
<td></td>
</tr>
</tbody>
</table>
Programming Commands versus Keys

This appendix lists HP 8560A and 8561B programming commands. The programming commands are listed in alphabetical order, followed by a brief command name and (if applicable) the corresponding key.

<table>
<thead>
<tr>
<th>Command</th>
<th>Name</th>
<th>Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADJALL</td>
<td>Execute LO and IF Adjustments</td>
<td>REALIGN LO & IF</td>
</tr>
<tr>
<td>ADJCRT</td>
<td>Adjust CRT Alignment</td>
<td>CRT ADJ PATTERN</td>
</tr>
<tr>
<td>ADJIF</td>
<td>Adjust IF</td>
<td>ADJ CURN IF STATE, FULL IF ADJ, IF ADJ ON OFF</td>
</tr>
<tr>
<td>AMB</td>
<td>Trace A Minus Trace B</td>
<td>A-B---A ON OFF</td>
</tr>
<tr>
<td>AMBPL</td>
<td>Trace A Minus Trace B Plus Display Line</td>
<td>A-B+DL---A ON OFF</td>
</tr>
<tr>
<td>ANNOT</td>
<td>Annotation On/Off</td>
<td>ANNCT ON OFF</td>
</tr>
<tr>
<td>APB</td>
<td>Trace A Plus Trace B</td>
<td>A+B---A</td>
</tr>
<tr>
<td>AT</td>
<td>Input Attenuation</td>
<td>ATTEN AUTO MAN</td>
</tr>
<tr>
<td>AUNITS</td>
<td>Absolute Amplitude Units</td>
<td>UNITS AUTO MAN</td>
</tr>
<tr>
<td>AUTOCPL</td>
<td>Autocouple All "AUTO" Functions</td>
<td>ALL</td>
</tr>
<tr>
<td>AXB</td>
<td>Trace A Exchange Trace B</td>
<td>A EXCH B</td>
</tr>
<tr>
<td>BLANK</td>
<td>Blank Trace</td>
<td>BLANK A, BLANK B</td>
</tr>
<tr>
<td>BML</td>
<td>Trace B Minus Display Line</td>
<td>B-DL---B</td>
</tr>
<tr>
<td>CF</td>
<td>Center Frequency</td>
<td>CENTER FREQ, FREQUENCY</td>
</tr>
<tr>
<td>CLRW</td>
<td>Clear/Write Trace</td>
<td>CLEAR WRITE A, CLEAR WRITE B</td>
</tr>
<tr>
<td>CNVLOSS</td>
<td>External Mixer Conversion Loss</td>
<td>AVERAGE CNV LOSS</td>
</tr>
<tr>
<td>CONTS</td>
<td>Continuous Sweep</td>
<td>CONT</td>
</tr>
<tr>
<td>COUPLE</td>
<td>Input Coupling</td>
<td>COUPLING AC DC</td>
</tr>
<tr>
<td>DEMOD</td>
<td>Demodulation</td>
<td>AM DEMOD ON OFF, FM DEMOD ON OFF</td>
</tr>
<tr>
<td>DEMODAGC</td>
<td>Demodulation Automatic Gain Control</td>
<td>AGC ON OFF</td>
</tr>
</tbody>
</table>

Programming Commands versus Keys E-1
Table E-1. Commands versus Keys (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Name</th>
<th>Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEMODT</td>
<td>Demodulation Time</td>
<td>DEMOD TIME</td>
</tr>
<tr>
<td>DET</td>
<td>Detection Mode</td>
<td>DETECTOR MODES</td>
</tr>
<tr>
<td>DL</td>
<td>Display Line</td>
<td>DSPL LIN ON OFF</td>
</tr>
<tr>
<td>DONE</td>
<td>Done</td>
<td></td>
</tr>
<tr>
<td>ERR</td>
<td>Error</td>
<td>RECALL ERRORS</td>
</tr>
<tr>
<td>ET</td>
<td>Elapsed Time</td>
<td>ELAPSED TIME</td>
</tr>
<tr>
<td>FA</td>
<td>Start Frequency</td>
<td>START FREQ</td>
</tr>
<tr>
<td>FB</td>
<td>Stop Frequency</td>
<td>STOP FREQ</td>
</tr>
<tr>
<td>FDIAG</td>
<td>Frequency Diagnostics</td>
<td>FREQ DIAGNOSE</td>
</tr>
<tr>
<td>FDSP</td>
<td>Frequency Display</td>
<td>FREQ DSP OFF</td>
</tr>
<tr>
<td>FFT</td>
<td>Fast Fourier Transform</td>
<td>FFT MEAS</td>
</tr>
<tr>
<td>FOFFSET</td>
<td>Frequency Offset</td>
<td>FREQ OFFSET</td>
</tr>
<tr>
<td>FREF</td>
<td>Frequency Reference</td>
<td>10 MHZ INT EXT</td>
</tr>
<tr>
<td>FS</td>
<td>Full Span</td>
<td>FULL SPAN</td>
</tr>
<tr>
<td>FULBAND</td>
<td>Full Band</td>
<td>FULL BAND</td>
</tr>
<tr>
<td>GRAT</td>
<td>Graticule On/Off</td>
<td>GRAT ON OFF</td>
</tr>
<tr>
<td>HD</td>
<td>Hold</td>
<td>HOLD</td>
</tr>
<tr>
<td>HNLOCK</td>
<td>Harmonic Number Lock</td>
<td>LOCK HARMONIC, LOCK ON OFF</td>
</tr>
<tr>
<td>HNUNLK</td>
<td>Unlock Harmonic Number</td>
<td>LOCK ON OFF</td>
</tr>
<tr>
<td>ID</td>
<td>Output Identification</td>
<td>DATE CODE & OPTIONS</td>
</tr>
<tr>
<td>IDCF</td>
<td>Signal Identification Frequency to Center Frequency</td>
<td>SIG ID—CF</td>
</tr>
<tr>
<td>IDFREQ</td>
<td>Signal Identified Frequency</td>
<td></td>
</tr>
<tr>
<td>IP</td>
<td>Instrument Preset</td>
<td>PRESET</td>
</tr>
<tr>
<td>LG</td>
<td>Logarithmic Amplitude Scale</td>
<td>LOG dB/DIV</td>
</tr>
<tr>
<td>LN</td>
<td>Linear Amplitude Scale</td>
<td>LINEAR</td>
</tr>
<tr>
<td>MBIAS</td>
<td>Mixer Bias</td>
<td>BIAS OFF, NEGATIVE BIAS, POSITIVE BIAS</td>
</tr>
<tr>
<td>MINH</td>
<td>Minimum Trace Hold</td>
<td></td>
</tr>
<tr>
<td>Command</td>
<td>Name</td>
<td>Key</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>MKA</td>
<td>Marker Amplitude</td>
<td>—</td>
</tr>
<tr>
<td>MKCF</td>
<td>Marker to Center Frequency</td>
<td>MARKER→CF</td>
</tr>
<tr>
<td>MKD</td>
<td>Marker Delta</td>
<td>MARKER DELTA</td>
</tr>
<tr>
<td>MKDR</td>
<td>Marker Delta Reciprocal</td>
<td>MARKER 1/Delta</td>
</tr>
<tr>
<td>MKF</td>
<td>Marker Frequency</td>
<td>—</td>
</tr>
<tr>
<td>MKFC</td>
<td>Frequency Counter</td>
<td>COUNTER ON OFF, FREQ COUNT</td>
</tr>
<tr>
<td>MKFCR</td>
<td>Frequency Counter Resolution</td>
<td>COUNTER RES</td>
</tr>
<tr>
<td>MKMIN</td>
<td>Marker to Minimum</td>
<td>—</td>
</tr>
<tr>
<td>MKN</td>
<td>Marker Normal</td>
<td>MARKER NORMAL, MKR, MKR→</td>
</tr>
<tr>
<td>MKNOISE</td>
<td>Marker Noise</td>
<td>MKRNOISE ON OFF</td>
</tr>
<tr>
<td>MKOFF</td>
<td>Markers Off</td>
<td>MARKERS OFF</td>
</tr>
<tr>
<td>MKPK</td>
<td>Marker Peak Search</td>
<td>PEAK SEARCH, PEAK SEARCH</td>
</tr>
<tr>
<td>MKPT</td>
<td>Marker Peak Threshold</td>
<td>PEAK THRSHLD</td>
</tr>
<tr>
<td>MKPX</td>
<td>Marker Peak Excursion</td>
<td>PEAK EXCURSN</td>
</tr>
<tr>
<td>MKRL</td>
<td>Marker to Reference Level</td>
<td>MARKER→REF LVL</td>
</tr>
<tr>
<td>MKSP</td>
<td>Marker Delta to Span</td>
<td>MKR→SPAN</td>
</tr>
<tr>
<td>MKSS</td>
<td>Marker to Center Frequency Step-Size</td>
<td>MARKER→CF STEP</td>
</tr>
<tr>
<td>MKT</td>
<td>Marker Time</td>
<td>MARKER NORMAL (when span < 0 Hz)</td>
</tr>
<tr>
<td>MKTRACK</td>
<td>Signal Track</td>
<td>SIG TRK ON OFF</td>
</tr>
<tr>
<td>ML</td>
<td>Mixer Level</td>
<td>MAX MXR LEVEL</td>
</tr>
<tr>
<td>MXMH</td>
<td>Maximum Hold</td>
<td>MAX HOLD A MAX HOLD B</td>
</tr>
<tr>
<td>MXRMODE</td>
<td>Mixer Mode</td>
<td>EXTERNAL MIXER, INTERNAL MIXER</td>
</tr>
<tr>
<td>NORMIMIZE</td>
<td>Normalized Trace Data</td>
<td>NORMIZE ON OFF</td>
</tr>
<tr>
<td>NRL</td>
<td>Normalize Reference Level</td>
<td>NORM REF LVL</td>
</tr>
<tr>
<td>NRPOS</td>
<td>Adjust Normalized Reference Level</td>
<td>NORM REF POSN</td>
</tr>
<tr>
<td>OP</td>
<td>Output Display Parameters</td>
<td>—</td>
</tr>
<tr>
<td>PLOT</td>
<td>Plot Display</td>
<td>COPY</td>
</tr>
<tr>
<td>PLOTOrg</td>
<td>Specify Plot Origins</td>
<td>PLOT ORG DSP GRAT</td>
</tr>
<tr>
<td>PLOTSRC</td>
<td>Plot Source</td>
<td>PLOTTER CONFIG</td>
</tr>
<tr>
<td>Command</td>
<td>Name</td>
<td>Key</td>
</tr>
<tr>
<td>----------</td>
<td>---------------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>PP</td>
<td>Preselector Peak</td>
<td>PRESEL AUTO PK</td>
</tr>
<tr>
<td>PRINT</td>
<td>Print Display</td>
<td>COPY</td>
</tr>
<tr>
<td>PSDAC</td>
<td>Preselector DAC Number</td>
<td>PRESEL MAN ADJ</td>
</tr>
<tr>
<td>PSTATE</td>
<td>Protect State</td>
<td>SAVELOCK ON OFF</td>
</tr>
<tr>
<td>PWRBW</td>
<td>Trace Power Bandwidth</td>
<td>POWER BANDWIDTH</td>
</tr>
<tr>
<td>RB</td>
<td>Resolution Bandwidth</td>
<td>BW, RES BW AUTO MAN</td>
</tr>
<tr>
<td>RBR</td>
<td>Resolution Bandwidth to Span Ratio</td>
<td>RSW/SPAN RATIO</td>
</tr>
<tr>
<td>RCLOSCAL</td>
<td>Recall Open/Short Average</td>
<td>RECALL OPN/SHRT</td>
</tr>
<tr>
<td>RCLS</td>
<td>Recall State Register</td>
<td>RECALL STATE</td>
</tr>
<tr>
<td>RCLT</td>
<td>Recall Trace Register</td>
<td>RECALL TO TRA, RECALL TO TRB</td>
</tr>
<tr>
<td>RCLTHRU</td>
<td>Recall Thru</td>
<td>RECALL THRU</td>
</tr>
<tr>
<td>REV</td>
<td>Output Firmware Revision</td>
<td>DATECODE OPTIONS</td>
</tr>
<tr>
<td>RL</td>
<td>Reference/Range Level</td>
<td>AMPLITUDE, RANGE LVL, REF LVL</td>
</tr>
<tr>
<td>RLCAL</td>
<td>Reference Level Calibration</td>
<td>REF LVL ADJ</td>
</tr>
<tr>
<td>ROFFSET</td>
<td>Reference Amplitude Offset</td>
<td>REF LVL OFFSET</td>
</tr>
<tr>
<td>RQS</td>
<td>Request Service Conditions</td>
<td></td>
</tr>
<tr>
<td>SAVES</td>
<td>Save State</td>
<td>SAVE STATE</td>
</tr>
<tr>
<td>SAVET</td>
<td>Save Trace</td>
<td>SAVE TRACE A, SAVE TRACE B</td>
</tr>
<tr>
<td>SER</td>
<td>Serial Number</td>
<td>DATECODE OPTIONS</td>
</tr>
<tr>
<td>SIGID</td>
<td>Signal Identify</td>
<td>SIG ID AT MKR, SIG ID ON OFF</td>
</tr>
<tr>
<td>SNGLS</td>
<td>Single Sweep</td>
<td>SGL SWP, SINGLE</td>
</tr>
<tr>
<td>SP</td>
<td>Frequency Span</td>
<td>SPAN, SPAN</td>
</tr>
<tr>
<td>SQUELCH</td>
<td>Squelch for Demodulation</td>
<td>SQUELCH ON OFF</td>
</tr>
<tr>
<td>SRCalc</td>
<td>Source Leveling Control</td>
<td>ALC INT EXT</td>
</tr>
<tr>
<td>SRCRRSTK</td>
<td>Coarse Tracking Adjust</td>
<td>MAN TRK ADJ</td>
</tr>
<tr>
<td>SRCFinTK</td>
<td>Fine Tracking Adjust</td>
<td>MAN TRK ADJ</td>
</tr>
</tbody>
</table>

E-4 Programming Commands versus Keys
<table>
<thead>
<tr>
<th>Command</th>
<th>Name</th>
<th>Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRCPOFS</td>
<td>Source Power Offset</td>
<td>SRC PWR OFFSET</td>
</tr>
<tr>
<td>SRCPSTP</td>
<td>Source Power Step-Size</td>
<td>SRC PWR STP SIZE</td>
</tr>
<tr>
<td>SRCPSWP</td>
<td>Tracking Generator Power Sweep</td>
<td>FWR SWP ON OFF</td>
</tr>
<tr>
<td>SRCPWR</td>
<td>Tracking Generator Output Power</td>
<td>SRC PWR ON OFF</td>
</tr>
<tr>
<td>SRCTKPK</td>
<td>Peak Tracking Generator Response</td>
<td>TRACKING PEAK</td>
</tr>
<tr>
<td>SRQ</td>
<td>Service Request</td>
<td>—</td>
</tr>
<tr>
<td>SS</td>
<td>Center Frequency Step-Size</td>
<td>CF STEP AUTO MAN</td>
</tr>
<tr>
<td>ST</td>
<td>Sweep Time</td>
<td>SWP TIME AUTO MAN</td>
</tr>
<tr>
<td>STB</td>
<td>Status Byte Query</td>
<td>—</td>
</tr>
<tr>
<td>STOREOPEN</td>
<td>Store Open</td>
<td>CAL OPW/SERT</td>
</tr>
<tr>
<td>STORESHORT</td>
<td>Store Short</td>
<td>CAL OPW/SERT</td>
</tr>
<tr>
<td>STORETHRU</td>
<td>Store Thru</td>
<td>CAL THRU</td>
</tr>
<tr>
<td>SWPCPL</td>
<td>Stimulus-Response Sweep Couple</td>
<td>SWP CPL SR SA</td>
</tr>
<tr>
<td>SWPOUT</td>
<td>Sweep Output</td>
<td>0.5 V/GHz (FAV)</td>
</tr>
<tr>
<td>TDF</td>
<td>Trace Data Format</td>
<td>—</td>
</tr>
<tr>
<td>TH</td>
<td>Threshold</td>
<td>THRESHOLD ON OFF</td>
</tr>
<tr>
<td>TITLE</td>
<td>Title Entry</td>
<td>SCREEN TITLE</td>
</tr>
<tr>
<td>TM</td>
<td>Trigger Mode</td>
<td>TRIG</td>
</tr>
<tr>
<td>TRA</td>
<td>Trace A Data Input/Output</td>
<td>—</td>
</tr>
<tr>
<td>TRB</td>
<td>Trace B Data Input/Output</td>
<td>—</td>
</tr>
<tr>
<td>TS</td>
<td>Take Sweep</td>
<td>—</td>
</tr>
<tr>
<td>TWINDOW</td>
<td>Trace window</td>
<td>—</td>
</tr>
<tr>
<td>VAVG</td>
<td>Video Average</td>
<td>VID AVG ON OFF</td>
</tr>
<tr>
<td>VB</td>
<td>Video Bandwidth</td>
<td>VIDEO BW AUTO MAN</td>
</tr>
<tr>
<td>VBR</td>
<td>Video Bandwidth to Resolution Bandwidth Ratio</td>
<td>VBW/RBW RATIO</td>
</tr>
<tr>
<td>VIEW</td>
<td>View Trace</td>
<td>VIEW A, VIEW B</td>
</tr>
<tr>
<td>VTL</td>
<td>Video Trigger Level</td>
<td>VIDEO</td>
</tr>
</tbody>
</table>
Resolution Bandwidth

Signal resolution is determined by the intermediate frequency (IF) filter bandwidth. The spectrum analyzer traces the shape of its IF filter as it tunes past a signal. Thus, if two equal-amplitude signals are close enough in frequency, the filter shapes can fall on top of one another and appear as a single response. If two signals are not equal in amplitude but are still close together, the smaller signal can be hidden under the response of the larger one.

The resolution bandwidth function (RES BW) selects the appropriate IF bandwidth for a measurement. (Hewlett-Packard specifies resolution bandwidth as the 3 dB bandwidth of a filter.) The following guidelines can help you determine the appropriate resolution bandwidth to choose.

Input Signals of Equal Amplitude

Generally, to resolve two signals of equal amplitude, the resolution bandwidth must be less than or equal to the frequency separation of the two signals. For example, to resolve two signals of equal amplitude with a frequency separation of 1 kHz, a resolution bandwidth of 1 kHz or less should be used. See Figure 3-15. Further, to resolve two signals with a frequency separation of 2 kHz, a 1 kHz resolution bandwidth again must be used. See Figure 3-16. Since the spectrum analyzer uses bandwidths in a 1, 3, 10 sequence, the next larger filter, 3 kHz, would exceed the 2 kHz separation and thus would not resolve the signals.

Keep in mind that phase noise can also affect resolution.

Figure G-1. 1 kHz Signal Separation
Input Signals of Unequal Amplitude

To resolve two signals of unequal amplitude, the resolution bandwidth must also be less than or equal to the frequency separation of the two signals. However, in this case the largest resolution bandwidth that will resolve the two unequal signals is determined primarily by the shape factor of the IF filter, rather than by the 3 dB bandwidth. (Shape factor is defined as the ratio of the 3 dB bandwidth to the 60 dB bandwidth of the IF filter, as in Figure 3-17. The IF filters in this spectrum analyzer have shape factors of 15:1 or better.) Therefore, to resolve two signals of unequal amplitude, the half-bandwidth of a filter at the point equal to the amplitude separation of the two signals must be less than the frequency separation of the two signals.
Figure G-3. Bandwidth Shape Factor

For example, consider resolving a third-order intermodulation distortion product with a frequency separation of 700 kHz and an amplitude separation of 60 dB. Using a 100 kHz filter with a typical shape factor of 12:1, the filter will have a 60 dB bandwidth of 1.2 MHz and a half-bandwidth value of 600 kHz. This half-bandwidth is narrower than the frequency separation, so the two input signals will be resolved (see Figure 3-18). However, using a 300 kHz filter, the 60 dB bandwidth is 3.6 MHz and the half-bandwidth value is 1.8 MHz. Since this half-bandwidth is wider than the frequency separation, the signals most likely would not be resolved (see Figure 3-19).

Figure G-4. 100 kHz Bandwidth Resolution
Figure G-5. 300 kHz Bandwidth Resolution

Note

Spectrum analyzer sweep time is inversely proportional to the square of the resolution bandwidth. So, if the resolution bandwidth is reduced by a factor of ten, the sweep time is increased by a factor of 100. For fastest measurement times, use the widest resolution bandwidth that still permits resolution of all desired signals.
Index

0

- 0 -> 10V LO SWP softkey, 2-36

1

- 10 MHz EXT INT softkey, 2-37

5

- .5 V/GHz (FAV) softkey, 2-37

A

- A-B->A ON OFF softkey, 2-66
 - A+B->A softkey, 2-66
 - A-B+DL->A ON OFF softkey, 2-66
- absolute amplitude units, 5-29
 - ac coupling, 2-10
 - active function area, 1-5
 - active special functions, 1-5, 2-68
- ADJALL command, 5-15
 - ADJCRT command, 5-16
 - ADJ CURR IF STATE softkey, 2-18
 - ADJIF command, 5-18
- adjust CRT alignment, 5-16
 - A EXCH B softkey, 2-65
 - AGC ON OFF softkey, 2-36
 - ALC/EXT input, 1-7
 - ALC INT EXT softkey, 2-28
- alignment of CRT, 5-16
- alignment routines, LO and IF, 2-18
 - ALL softkey, 2-62
 - AMB command, 5-20
 - AMBPL command, 5-22
 - AM DEMOD ON OFF softkey, 2-35
 - AM/FM DEMOD softkey, 2-35, 3-13
- amplitude control functions, 5-8
 - amplitude correction, 2-32
 - amplitude functions, 2-10
 - UNITS AUTO MAN softkey, 2-10
 - AMPLITUDE key, 2-7
- amplitude modulation, 3-11
 - amplitude readout offset, 2-9
 - amplitude reference offset, 5-145
 - amplitude scale, 5-82, 5-84
 - linear, 2-8
 - logarithmic, 2-8
 - amplitude units, 2-10, 2-63, 5-29
 - dBm, 2-10
 - dBMV, 2-10
 - dBmV, 2-10
 - VOLTS, 2-10
 - WATTS, 2-10
- amplitude values, 5-3
 - AMPTD CORRECT softkey, 2-31, 3-26
 - AMPTD UNITS softkey, 2-10, 3-6
 - ANALYZER ADDRESS softkey, 2-17
 - analyzer status byte, 4-36
 - annotation on/off, 5-24
 - annotation plots, 2-16
 - ANNOT command, 5-24
 - ANNOT HELP softkey, 2-68
 - ANNOT ON OFF softkey, 2-68
 - APB command, 5-26
 - AT command, 5-27
 - ATTN AUTO MAN softkey, 2-7, 2-62
 - attenuation, 5-27
 - AUNITS command, 4-12, 5-29
 - auto-coupled functions, 5-31
 - AUTO COUPLE key, 2-62
 - AUTOCP command, 5-31
 - automatic gain control, 2-36, 5-44
 - AUX CTRL key, 2-21
 - AVERAGE CNV LOSS softkey, 2-31, 3-26
 - AXB command, 5-32

B

- BACK SPACE softkey, 2-67
 - bandwidth control functions, 5-8
 - bandwidth state adjustment, 2-18
 - basic measurement, 1-10
 - B-DL->B softkey, 2-66
 - bias, 3-30
 - BIAS OFF softkey, 2-34
 - BIAS softkey, 2-34, 3-30
 - BLANK A softkey, 2-64
 - BLANK command, 5-33
 - blanking output, 1-6
 - blanking traces, 5-33
 - BML command, 5-34
 - built-in tracking generator, 2-24
 - softkey menu, 1-17
 - BW key, 2-59
 - B & W softkey, 2-15
CAL key, 2-18
CAL OPN/SHRT softkey, 2-21, 2-25
CAL THRU softkey, 2-21, 2-24, 3-18
CENTER FREQ softkey, 2-3
center frequency, 1-4, 1-10, 5-35, 5-108
center-frequency step-size, 2-3, 2-63, 5-165
CF command, 5-35
CF STEP AUTO MAN softkey, 2-3, 2-63
character sets, 2-67
CHAR SET 1 2 softkey, 2-67
CLEAR statements, 4-6
clear write, 5-37
CLEAR WRITE A softkey, 2-64
CLRW command, 5-37
CNVLOSS command, 5-38
CNV LOSS VS FREQ softkey, 2-32, 3-27
coarse tracking adjust, 5-153
COLOR softkey, 2-15
command sequence, 5-2
command sequence summary, 5-2
common measurements, 3-1
AM and FM demodulation, 3-11-14
external millimeter mixers, 3-24-31
harmonic distortion, 3-1-6
stimulus-response, 3-14-24
third-order intermodulation distortion, 3-7-11
CONFIG key, 2-15
continuous sweep mode, 2-47, 2-58, 2-61, 5-40
control functions, 1-2, 2-57
auto couple, 2-62
bandwidth, 2-59
display, 2-67
softkey menu, 1-21-22
sweep, 2-58
trace, 2-64
trigger, 2-61
CONTS command, 5-40
CONT softkey, 2-58, 2-61
conversion loss, 1-5, 2-31-32, 3-26, 5-38
frequency bands, 2-32
COPY DEV PRNT PLT softkey, 2-15, 3-4
COPY key, 2-38
COUNTER ON OFF softkey, 2-53
COUNTER RES softkey, 2-53
COUPLE command, 5-41
coupled functions, 2-62, 5-31
COUPLING AC DC softkey, 2-10
coupling control functions, 5-8
CRT ADJ PATTERN softkey, 2-19
CRT adjustment
alignment, 2-19
TRACE ALIGN, 1-7
X POSN, 1-7
Y POSN, 1-7
CRT alignment, 5-16
DATA
data byte, 5-3
data byte & EOI, 5-3
data entry, 1-2, 1-8
data invalid indicator, 1-4
data keys, 1-2
data transfer, 4-11
DATECODE &OPTIONS softkey, 2-17
dBµV softkey, 2-10
dBm softkey, 2-10
dBV softkey, 2-10
dc coupling, 2-10
delimiter, 5-3
delta marker functions, 2-52
DEMODAGC command, 5-44
DEMOD command, 5-42
DEMODT command, 5-46
DEMOD TIME softkey, 2-36, 3-13
demodulation, 2-35, 5-42, 5-44, 5-46, 5-150
AM, 2-35
duration, 2-36
FM, 2-35
demodulation functions, 5-9
demodulation time, 5-46
DET command, 5-48
detection modes, 5-48
detector mode, 2-65, 5-87
negative peak, 2-65
normal, 2-65
positive peak, 2-65
sample, 2-65
DETECTOR M OD softkey, 2-65
DETECTOR NEG PEAK softkey, 2-65
DETECTOR NORMAL softkey, 2-65
DETECTOR POS PEAK softkey, 2-65
DETECTOR SAMPLE softkey, 2-65
diagnostic functions, 2-20
diagnostics, 5-60
digit, 5-3
discrete Fourier transform, 2-45
display
annotation, 2-68
focus, 2-69
graticule, 2-68
intensity, 2-68
display adjustment, 2-19
display aids, 5-82
display annotation, 1-4, 5-24
display control functions, 5-9
display graticule, 5-71
DISPLAY key, 2-67
display line, 2-87, 5-50
display origin plots, 2-16
display origins for plotting, 5-123
distortion
 harmonic, 3-1
 intermodulation, 3-7
DL command, 5-50
done, 5-52
DONE command, 5-52
DSPL LIN ON OFF softkey, 2-67
dynamic range, 3-22
dynamic range level, 2-8, 2-22, 2-25

E
earphone jack, 1-6
elapsed time, 5-55
ELAPSED TIME softkey, 2-43
ENTER statements, 4-3
ERASE TITLE softkey, 2-67
ERR command, 5-53
error, 5-53
error message area, 1-4
error messages, 2-43
ET command, 5-55
exchanging trace contents, 5-32
extended frequency range, 3-24
external frequency reference, 2-37, 2-43
external leveling input, 1-7
external millimeter mixers, 3-24
external mixer bands, 5-73
external mixer bias, 2-34, 5-85
 negative, 2-35
 positive, 2-35
external mixer loss compensation, 5-38
external mixers, 3-25
EXTERNAL MIXER softkey, 2-30, 3-25, 3-28
external mixing bands, 5-69, 5-75
external mixing functions, 5-9, 5-145
EXTERNAL softkey, 2-61
external tracking generator functions, 2-21
external trigger input, 1-6

F
FA command, 5-56
FACTORY PRSEL PK softkey, 2-43
fast Fourier transform, 2-45, 5-63
FB command, 5-58
FDIAG command, 5-60
FDSP command, 5-62
FFT command, 5-63
FFT MEAS softkey, 2-45
fine tracking adjust, 5-155
firmware date code, 2-17, 5-141
flatness, 2-31
flatness points, 2-32
FM DEMOD ON OFF softkey, 2-35, 3-13
FOCUS softkey, 2-69
OFFSET command, 5-65
format TDF A, 4-18
format TDF B, 4-16
format TDF I, 4-20
format TDF M, 4-15
format TDF P, 4-13
formatting trace data, 4-13
FREE RUN softkey, 2-61
FREF command, 5-67
FREQ COUNT key, 2-53
FREQ DIAGNOSE softkey, 2-20
FREQ DSP OFF softkey, 2-69
FREQ OFFSET softkey, 2-4
frequency analog voltage, 2-37
frequency annotation, 2-69
frequency bands, 2-7
frequency control functions, 5-9
frequency conversion loss, 2-32
frequency counter, 5-93
frequency counter resolution, 2-53, 5-94
frequency diagnostics, 5-60
frequency display off, 5-62
FREQUENCY key, 2-3
frequency modulation, 3-11
frequency offset, 2-4, 5-65
frequency reference, 2-37, 5-67
frequency response functions, 2-21
frequency span, 1-4, 1-10, 5-68, 5-148
frequency values, 5-3
front-panel connector data, 1-3
front-panel connectors, 1-2
 active-probe power, 1-2
 calibrator signal, 1-2
 first LO output, 1-2
 IF input, 1-2
 RF input, 1-2
 volume, 1-2
front-panel keys, 1-8
FS command, 5-68
FULBAND command, 5-69
full Band, 5-69
FULL BAND softkey, 2-30
FULL IF ADJ softkey, 2-18
full span, 5-68
FULL SPAN softkey, 2-5
functional commands
 amplitude control, 5-8
 bandwidth control, 5-8
 coupling control, 5-8
 demodulation, 5-9
 display control, 5-9
 external mixing, 5-9
 frequency control, 5-9
 information, 5-10
instrument state, 5-10
marker control, 5-10
operator entry, 5-11
output format control, 5-11
plotter output, 5-11
preselector control, 5-11
printer output, 5-11
service diagnostics, 5-10
service requests, 5-11
sweep control, 5-12
synchronization, 5-12
trace math, 5-13
trace processing, 5-12
tracking generator, 5-12
trigger control, 5-12
user measurement, 5-13
fundamental functions, 1-1, 2-2
amplitude, 2-7
frequency, 2-3
hold, 2-12
softkey menu, 1-14
span, 2-5
fundamental units, 4-12

G
GRAT command, 5-71
graticule on/off, 5-71
garicule origin plots, 2-16
garicule plots, 2-16
GRAT ON OFF softkey, 2-68

H
hardcopy devices, 2-15
harmonic distortion, 3-1
alternative measurement method, 3-4
harmonic distortion percentage, 3-6
harmonic lock, 2-30
harmonic number, 2-31
mixing, 2-31
harmonic number lock, 5-73
harmonic number unlock, 5-75
HD command, 5-72
HNLOCK command, 5-73
HNUNLK command, 5-75
hold, 5-72
HOLD key, 2-12
HP 8560A front panel features, 1-1
HP 8560A Option 002 functions, 2-24
HP-IB address, 4-2
analyzer, 2-17
plotter, 2-16
printer, 2-15
HP-IB connector, 1-6
HP-IB transmission data sequence, 4-21

I
IDCF command, 5-77
ID command, 5-76
identification, 5-76
IDFREQ command, 5-78
IF ADJ ON OFF softkey, 2-18
IF adjustment, 2-18, 5-18
IF output, 1-7
information/service diagnostics functions, 5-10
initial program considerations, 4-6
input attenuation, 5-27
input attenuator, 2-7, 2-62
input-attenuator value, 1-5
input connectors
external leveling, 1-7
external trigger, 1-6
IF, 1-2
RF, 1-2
input coupling, 5-41
input mixer, 5-111
input-mixer level, 2-9
instrument calibration, 1-12
instrument errors, 5-53
instrument identification, 5-76
instrument options, 2-17
instrument preset, 4-6, 5-79
instrument state control functions, 5-10
instrument state functions, 1-2, 2-13
auxiliary control, 2-21
calibration, 2-18
configuration, 2-15
copy, 2-38
measure, 2-45
module, 2-39
preset, 2-14
recall, 2-42
save, 2-40
single sweep, 2-47
softkey menu, 1-15-19
INTENSTY softkey, 2-68
intermodulation distortion, 3-7
internal frequency reference, 2-37
INTERNAL MIXER softkey, 2-29
interrupt process, 4-35
IP command, 5-79

L
LAST SPAN softkey, 2-5
LAST STATE softkey, 2-14, 2-42
LF with EOI, 5-3
LG command, 5-82
linear amplitude scale, 2-8
linear scale, 5-84
LINEAR softkey, 2-8
LINE input, 1-6
LINE softkey, 2-61
LN command, 5-84
LO and IF adjustments, 5-15
LO and IF alignment routines, 2-18
local control, 4-5
local oscillator frequency, 2-20
LOCK HARMONIC softkey, 2-31, 3-26
LOCK ON OFF softkey, 2-31
LO FREQ softkey, 2-20
logarithmic amplitude scale, 2-8
logarithmic scale, 5-82
LOG dB/DIV softkey, 2-8
LO output, first, 1-2

M

main roller oscillator frequency, 2-20
MAIN ROLLER softkey, 2-20
MAN TRK ADJ softkey, 2-27
MARKER -> REF LVL softkey, 3-5
MARKER 1/DELTA softkey, 2-49
marker activation, 1-11
marker amplitude, 5-88
MARKER -> CF softkey, 2-52, 2-55
MARKER -> CF STEP softkey, 2-52
marker control functions, 5-10
marker delta, 2-49, 5-90
MARKER DELTA softkey, 2-34, 2-49, 2-53, 2-55, 3-2, 3-5, 3-8-9, 3-20
marker delta to span, 5-107
marker frequency, 5-92
marker functions, 1-2, 2-48
 amplitude, 5-88
 center frequency, 5-89
 center-frequency step-size, 5-108
 delta, 5-90
 delta to span, 5-107
 frequency, 5-92
 frequency counter, 2-53, 5-93
 frequency-counter resolution, 5-94
 marker, 2-49
 marker ->, 2-51
 marker to minimum, 5-96
 noise, 5-99
 normal, 5-97
 off, 5-100
 peak excursion, 5-104
 peak search, 5-101
 peak search, 2-55
 reciprocal of marker delta, 5-91
 reference level, 5-106
 signal track, 5-110
 softkey menu, 1-20
 threshold, 5-102
 time, 5-109
 marker indicator, 1-5
 marker noise, 5-99
 marker normal, 5-97
 MARKER NORMAL softkey, 2-34-35, 2-49, 2-53,
 3-13
 marker off, 5-100
 marker priority, 2-48
 MARKER -> REF LVL softkey, 2-52, 3-2, 3-8
 MARKERS OFF softkey, 2-50
 marker threshold, 5-102
 marker time, 5-109
 marker to center frequency, 5-89
 marker to center-frequency step-size, 5-108
 marker to minimum, 5-96
 marker to reference level, 5-106
 MARKER Δ -> CF softkey, 2-52
 MARKER Δ -> CF STEP softkey, 2-52
 MARKER Δ -> SPAN softkey, 2-52
 math commands, 4-25
 math functions, 4-25
 math commands, 4-25
 traces, 4-25
 variables, 4-25
 MAX HOLD A softkey, 2-64
 maximum hold, 5-113
 maximum signal amplitude, 2-9
 MAX MXR LEVEL softkey, 2-9, 3-9
 MBIAS command, 5-85
 measurements
 harmonic distortion, 3-1
 measurement techniques, 3-1
 measurement units, 4-12
 measuring harmonics, 3-4-5
 MEAS/USER key, 2-45
 menus, 1-8
 menu title, 1-4
 message area, 1-5
 MINH command, 5-87
 minimum hold, 5-87
 mixer bias, 5-85
 mixer level, 5-111
 mixer mode, 5-114
 mixing harmonic number, 2-31
 MKA command, 5-88
 MKCF command, 5-89
 MKD command, 5-90
 MKDR command, 5-91
 MKFC command, 5-93
 MKF command, 5-92
 MKFCR command, 5-94
 MKMIN command, 5-96
 MKN command, 5-97
 MKNOISE command, 5-99
 MKOFF command, 5-100
 MKPK command, 5-101
MKPT command, 5-102
MKPX command, 5-104
MKR 1/A -> CF softkey, 2-52
MKR 1/A -> CF STEP softkey, 2-52
MKR -> CF STEP softkey, 3-4
MKR -> key, 2-51
MKR key, 2-49
MKRL command, 5-106
MKRNOISE ON OFF softkey, 2-50
MKSP command, 5-107
MKSS command, 5-108
MKT command, 5-100
MKTRACK command, 5-110
ML command, 5-111
MODULE key, 2-39
monitoring system operation, 4-35
MXMI command, 5-113
MXRMODE command, 5-114

N
NEGATIVE BIAS softkey, 2-35
negative-peak detector mode, 2-65
NEXT PEAK softkey, 2-36, 2-54-55, 3-8
NEXT PK LEFT softkey, 2-55, 3-9
NEXT PK RIGHT softkey, 2-55, 3-2, 3-9
normal detector mode, 2-65
normalization, 3-19
normalization routine, 2-23, 2-26, 2-65
normalized reference level, 2-7, 5-117
normalized reference position, 2-10, 2-23, 2-26, 2-65, 3-19, 5-119
normalize trace data, 5-115
normal marker functions, 2-52
NORMLIZE command, 5-115
NORMLIZE ON OFF softkey, 2-23, 2-26, 2-65, 3-19
NORM REF LVL softkey, 2-7, 3-19, 3-21, 3-23
NORM REF POSN softkey, 2-10, 2-23, 2-26, 2-65, 3-19, 3-21
NRL command, 5-117
NRPOS command, 5-119
number, 5-3
decimal form, 5-3
exponential form, 5-3
integer form, 5-3

O
offset roller oscillator frequency, 2-20
OFFSET ROLLER softkey, 2-20
OP command, 5-121
open/short average calibration trace, 2-21-22, 2-25
operation time, 5-55
operator entry functions, 5-11
option module connector, 1-6
option modules, 2-39
output
plot, 2-38
print, 2-38
output connectors
blanking, 1-6
IF, 1-7
sweep ramp, 1-6
video, 1-6
output display parameters, 5-121
output format control functions, 5-11
output identification, 5-76
output power, 2-24
OUTPUT statements, 4-3

P
parameter units, 4-12
peak excursion, 5-104
PEAK EXCURSN softkey, 2-56, 3-2
peak response routine, 2-27
peak search, 5-101
PEAK SEARCH key, 2-55
PEAK SEARCH softkey, 2-34, 2-36, 2-54, 3-13
PEAK THRESHLD softkey, 2-56
percent of harmonic distortion, 3-6
pictorial notation, syntax, 5-2
plot, 2-38
PLOT ANNOT softkey, 2-16
PLOT command, 5-122
PLOT GRATICUL softkey, 2-16
PLOTOGR command, 5-123
PLOT ORG DSP GRAT softkey, 2-16, 3-4
plot source, 5-124
PLOTSRC command, 5-124
PLOTTER ADDRESS softkey, 2-16
PLOTTER CONFIG softkey, 2-15, 3-4
plotter configuration options, 2-15
plotter output functions, 5-11
plotting the display, 5-122
PLOT TRACE A softkey, 2-16
PLOT TRACE B softkey, 2-16
position units, 4-13
POSITIVE BIAS softkey, 2-35
positive-peak detector mode, 2-65
POWER BANDWIDTH softkey, 2-46
power-on register, 2-40
POWER ON softkey, 2-42
PP command, 5-126
PRESEL AUTO PK softkey, 2-10, 2-30
preselector control functions, 5-11
preselector DAC number, 5-129
preselector peak, 5-126
current data, 2-41, 2-44
factory data, 2-41, 2-43
user data, 2-41, 2-43
preselector-peak data, 2-41
preselector peaking, 2-10, 2-30
preselector tracking, 2-11, 2-30
PRESEL MAN ADJ softkey, 2-11, 2-30
PRESET key, 2-14
print, 5-127
print, 2-38
PRINT command, 5-127
PRINT CONFIG softkey, 2-15
PRINTER ADDRESS softkey, 2-15
printer configuration options, 2-15
printer options
 color printer, 2-15
 monochrome printer, 2-15
printer output functions, 5-11
programming commands, 5-14
programming techniques, 4-6
program timing, 4-7-10
single-sweep mode, 4-7
SINGLE (sweep) softkey, 4-7
TS command, 4-7
protect stored state data, 5-130
PSDAC command, 5-129
PSTATE command, 5-130
PWRBW command, 5-131
PWR ON STATE softkey, 2-40
PWR SWP ON OFF softkey, 2-28
Q
query response
 binary state value, 5-3
 numeric value, 5-3
R
range level, 5-142
RANGE LVL softkey, 2-8, 2-22, 2-25, 3-21
RB command, 5-132
RBR command, 5-134
RBW/SPAN RATIO softkey, 2-60
RCLSCAL command, 5-135
RCLS command, 5-137
RCLT command, 5-138
RCLTHRU command, 5-139
REALIGN LO & IF softkey, 2-18
rear panel, 1-5
 functions, 1-5
REAR PANEL softkey, 2-36
rear-panel sweep output, 2-36
RECALL ERRORS softkey, 2-43
recall instrument state, 5-137
RECALL key, 2-42
recall open/short average, 5-135
RECALL OPN/SHRT softkey, 2-22, 2-25
RECALL PRSEL PK softkey, 2-43
RECALL STATE softkey, 2-42, 3-10
recall thru, 5-139
RECALL THRU softkey, 2-22, 2-25
RECALL TO TR A softkey, 2-42
RECALL TO TR B softkey, 2-43
recall trace data, 5-138
reciprocal of marker delta, 5-91
reference frequency, 5-67
reference level, 1-5, 5-106, 5-142
reference-level amplitude, 1-12
reference-level calibration, 1-12, 2-19, 5-144
reference-level function, 2-7
reference-level indicator, 1-5
reference-level offset, 5-145
reference/range level, 5-142
REF LVL ADJ softkey, 2-19
REF LVL OFFSET softkey, 2-9
REF LVL softkey, 2-7, 3-21
remote commands
 CLEAR statements, 4-6
 ENTER statements, 4-3
 OUTPUT statements, 4-3
 query, 4-4
 syntax requirements, 4-4
remote control, 4-5
remote setup procedure, 4-2
request service conditions, 5-146
RES BW AUTO MAN softkey, 2-59, 2-62
resolution bandwidth, 1-4, 2-59, 2-62, 5-132, 5-190
resolution bandwidth to span ratio, 5-134
REV command, 5-141
revision number, 5-141
RL command, 5-142
RLCAL command, 5-144
ROFFSET command, 5-145
RQS command, 5-146
S
sample detector mode, 2-65
SAMPLER FREQ softkey, 2-20
sampler harmonic number, 2-20
SAMPLER HARMONIC softkey, 2-20
sampling oscillator frequency, 2-20
save instrument state, 5-142
SAVELOCK ON OFF softkey, 2-41
SAVE PRSEL PK softkey, 2-41
SAVES command, 5-142
SAVE softkey, 2-40
SAVE STATE softkey, 2-40, 3-10
SAVET command, 5-143
SAVE TRACE A softkey, 2-40
SAVE TRACE B softkey, 2-41
save trace data, 5-143
SCREEN TITLE softkey, 2-67, 3-10
secondary keywords, 5-5-7
SELECT CHAR softkey, 2-67
SER command, 5-144
serial number, 5-144
service-request conditions, 5-146
service-request functions, 5-11
service-request mask, 4-36
service requests, 4-35, 5-164, 5-169
SGL SWP key, 2-47
SIG ID AT MKR softkey, 2-29, 2-33, 3-29
SIG ID -> CF softkey, 2-29, 2-33
SIGID command, 5-145
SIG ID ON OFF softkey, 2-29, 2-33, 3-28
signal compression, 2-9
signal identification, 2-29, 2-33, 3-27, 3-28, 5-145
frequency, 2-29, 2-33
harmonic number, 2-29, 2-33
signal identification to center frequency, 5-77
signal identified frequency, 5-78
SIGNAL IDENT softkey, 2-33
signal to noise density, 5-99
signal track, 2-50, 5-110
SIG TRK ON OFF softkey, 2-50, 3-4
SINGLE softkey, 2-58, 2-61
single sweep, 5-147
single-sweep mode, 2-47, 2-58, 2-61
SNGLS command, 5-147
softkey menu, 1-4, 1-8, 1-14-22
built-in tracking generator, 1-17
control functions, 1-21-22
fundamental functions, 1-14
instrument state functions, 1-15-19
marker functions, 1-20
softkeys, 1-8
SOURCE CAL MENU softkey, 2-21, 2-24, 3-18
source leveling control, 5-152
source power, 5-161
source power offset, 5-157
source power step, 5-158
source power sweep, 5-159
source tracking peak, 5-163
SPACE softkey, 2-67
span, 5-107
SPAN key, 2-5
SPAN softkey, 2-5
SPAN ZOOM softkey, 2-5, 3-8
SP command, 5-148
special function annunciators, 2-68
special functions, 1-5
spectrum analyzer auto-coupled sweep time, 2-22, 2-28
squelch, 5-150
SQUELCH command, 5-150
SQUELCH ON OFF softkey, 2-36
SRCALC command, 5-152
SRCCRSTK command, 5-153
SRCFINST command, 5-155
SRCPOFS command, 5-157
SRCPSTP command, 5-158
SRCPSWP command, 5-159
SRCPWR command, 5-161
SRC PWR ON OFF softkey, 2-24, 3-15
SRC PWR STP SIZE softkey, 2-28
SRTKPK command, 5-163
SRQ command, 5-164
SS command, 5-155
START FREQ softkey, 2-3, 3-12
start frequency, 1-4, 5-56
state registers, 2-40
status byte query, 5-169
status register, 5-146
STB command, 5-169
ST command, 5-167
step keys, 1-2
stimulus-response mode, 2-22, 2-28, 3-14
STOP FREQ softkey, 2-3, 3-12
stop frequency, 1-4, 5-58
stored instrument state registers, 2-42
store open, 5-170
STOREOPEN command, 5-170
store short, 5-172
STORESHORT command, 5-172
store thru, 5-173
STORETHRU command, 5-173
STORE THRU softkey, 3-18
sweep control functions, 5-12
sweep couple, 5-174
Sweep key, 2-58
sweep modes, 5-40
sweep output, 5-175
sweep ramp output, 1-6
sweep time, 5-167
sweep time, 1-4, 2-58, 2-62
SWP CPL command, 5-174
SWP CPL SR SA softkey, 2-22, 2-28, 3-16
SWPOUT command, 5-175
SWP TIME AUTO MAN softkey, 2-58, 2-62
synchronization functions, 5-12
syntax conventions
query responses, 5-3
syntax diagram conventions, 5-2
syntax elements, 5-3
data byte, 5-3
data byte & EOI, 5-3
delimiter, 5-3
digit, 5-3
LF with EOI, 5-3
number, 5-3
syntax requirements, 4-4
system communication
remotely, 4-3
system IP adjustment, 2-18

T
take sweep, 5-185
take sweep command, 4-7
TDF command, 4-12-13, 5-176
TH command, 5-178
THRESHLD ON/OFF softkey, 2-67
threshold, 5-178
thru calibration trace, 2-21-22, 2-24
time-base reference, 1-7
 external, 1-7
 internal, 1-7
title, 2-67
title area, 1-4
TITLE command, 5-180
TITLE DONE softkey, 2-67, 3-10
title entry, 5-180
TM command, 5-181
trace A
 blank, 2-64
clear-write, 2-64
display, 2-64
 maximum response, 2-64
 selection, 2-64
TRACE A B softkey, 2-64
trace A exchange trace B, 5-32
TRACE ALIGN adjustment, 1-7
trace A minus trace B, 5-20
trace A minus trace B plus display line, 5-22
trace A plus trace B, 5-26
trace B, 2-64
trace B minus display line, 5-34
trace data format, 5-176
trace-data formatting, 4-13
trace data transfers, 5-176, 5-183
trace elements, 4-13
trace functions, 5-12
TRACE key, 2-64
trace math
 A+B->A, 2-66, 5-26
 A-B->A, 2-66, 5-20
 A-B+DL->A, 2-66, 5-22
 B-DL->B, 2-66, 5-34
trace math functions, 4-25, 5-13
trace math rules, 4-25
trace modes, 5-37, 5-113, 5-192
trace power bandwidth, 5-131
trace processing functions, 5-12
trace registers, 2-40
trace window, 5-186
tracking adjust
 coarse, 5-153
 fine, 5-155
tracking generator
 frequency adjustment, 2-27
 internal/external leveling, 2-28
 output power, 2-24
 peak response, 2-27
 power sweep, 2-28
 power sweep range, 2-28
 source power level step size, 2-28
 source power offset, 2-29
tracking generator control functions, 5-12
TRACKING GENERATOR softkey, 2-21, 2-24, 3-15
TRACKING PEAK softkey, 2-27, 3-18
transfer roller oscillator frequency, 2-20
TRANSFER ROLLER softkey, 2-20
TRA/TRB commands, 5-183
trigger
 external mode, 2-61
 free run mode, 2-61
 line mode, 2-61
 video mode, 2-61
trigger control functions, 5-12
trigger mode, 5-181
TRIG key, 2-61
TS command, 5-185
TWIND command, 5-186

U
uncoupled function indicator, 1-4
UNITS AUTO MAN softkey, 2-10, 2-63
units of measure, 5-29
updating trace information, 4-7
user measurement functions, 5-13

V
value limits
 amplitude, 5-3
 frequency, 5-3
variable math functions, 4-25
VAVG command, 5-188
VB command, 5-190
VBR command, 5-190
VBW/RBW RATIO softkey, 2-59
VID AVG ON OFF softkey, 2-60, 2-64
video averaging, 5-188
video averaging, 2-60, 2-64
video bandwidth, 5-190
video bandwidth, 1-4, 2-59, 2-62
video bandwidth to resolution bandwidth ratio, 5-190
VIDEO BW AUTO MAN softkey, 2-59, 2-62, 3-2
video output, 1-6
VIDEO softkey, 2-61
video trigger level, 5-181, 5-193
VIEW A softkey, 2-64
VIEW command, 5-192
view trace, 5-192
VOLTS softkey, 2-10
VTL command, 5-193

W
WATTS softkey, 2-10

X
X POSN adjustment, 1-7

Y
Y POSN adjustment, 1-7

Z
ZERO SPAN softkey, 2-5