58503B
GPS Time and Frequency
Reference Receiver
and
59551A
GPS Measurements
Synchronization Module

Operating and Programming
Guide
This guide describes how to operate the Symmetri-com 58503B GPS Time and Frequency Reference Receiver and 59551A GPS Measurements Synchronization Module via the RS-232C port(s). The information in this guide applies to instruments having the number prefix listed below, unless accompanied by a “Manual Updating Changes” package indicating otherwise.

SERIAL PREFIX NUMBER: 3805A and above (58503B), 3805A and above (59551A)

Instruments with serial numbers below 3805A may have earlier versions of firmware installed. There are no operator-specific differences in previous versions of firmware.

FIRMWARE REVISION: 3805A and above (58503B), 3805A and above (59551A)

Firmware revision can be identified by using a “*IDN?” command sent to the Receiver via RS-232C port. See the section “Connecting a Computer or Modem,” in Chapter 2, “Serial Interface Capabilities,” of this guide for instructions on connecting a computer or modem to these products.

For assistance, contact:
Symmetricom, Inc.
2300 Orchard Parkway
San Jose, CA 95131-1017

U.S.A. Call Center:
888-367-7966 (from inside U.S.A. only – toll free)
408-428-7907

U.K. Call Center:
+44.7000.111666 (Technical Assistance)
+44.7000.111888 (Sales)

Fax: 408-428-7998

E-mail: ctac@symmetricom.com

Internet: http://www.symmetricom.com
Contents

In This Guide

1. **Front and Rear Panels at a Glance**
 - 58503B Front Panel at a Glance 2
 - 58503B/Option 001 Front-Panel Display/Keypad at a Glance 3
 - 58503B Rear Panel at a Glance 4
 - 59551A Front Panel at a Glance 5
 - 59551A Rear Panel at a Glance 6

2. **Serial Interface Capabilities**
 - **Chapter Contents** 2
 - About the RS-232C Serial Port(s) 3
 - PORT 1 Rear-Panel RS-232C Serial Port 3
 - PORT 2 Front-Panel RS-232C Serial Port (59551A Only) 4
 - **Connecting a Computer or Modem** 5
 - To Connect the GPS Receiver to a PC or Modem Via the Rear-Panel PORT 1 6
 - Connecting to the Personal Computer (PC) 6
 - Connecting to a Modem 6
 - **Making Your Own Cables** 8
 - **Configuring the RS-232C Port(s)** 9
 - Making Changes to the Serial Port Settings (If Needed) 10
 - Configuring PORT 1 of the 59551A 10
 - Configuring PORT 1 of the 58503B and PORT 2 of the 59551A 10
 - **Determining the Serial Port Settings** 11
 - Standard 58503B and 59551A 11

3. **Visual User Interface**
 - **Chapter Contents** 2
 - **Using and Reading the Visual User Interface (the Receiver Status Screen)** 3
 - Tutorial on Using the Status Screen to Interface With the Receiver 3
 - Demonstration of Holdover Operation 8
 - **Receiver Status Screen Data** 11
 - SYNCHRONIZATION Section of the Status Screen 12
 - SYNCHRONIZATION Summary Line 12
 - SmartClock Mode 12
Contents

Reference Outputs 13
ACQUISITION Section of the Status Screen 14
ACQUISITION Line 14
Tracking, Not Tracking 14
Time 16
Position 17
HEALTH MONITOR Section of the Screen 18
The Receiver Status Screen at a Glance 20

4 Command Quick Reference

Chapter Contents 2
An Introduction to GPS Receiver Commands 4
SCPI Conformance Information 4
Command Syntax Conventions 4
Command Presentation 4
GPS Satellite Acquisition 5
1 PPS Reference Synchronization 7
Operating Status 8
System Time 10
Programmable Pulse Output (59551A Only) 11
Event Time Stamping (59551A Only) 12
Serial Interface Communication 13
Receiver Initialization 14
Receiver Identification/Upgrade 15
Receiver Commands at a Glance 17
Status Reporting System at a Glance 18

5 Command Reference

Chapter Contents 2
Command Syntax Conventions 4
Description Format 5
Commands and Returns 5
Query-Specific Information 6
Description of Response Formats (ASCII-encoded) 6
Contents

Using Multiple Commands 7
Program Messages 7
Program Message Syntax 7
Elements of Response Messages 9
Response Messages 9
Response Message Syntax 9
Response Formats 10

Reference Documentation 12

C Receiver Firmware Installation

Downloading New Firmware Using SatStat Program 2

D Performance Tests

Introduction 2
Operational Verification 2
Complete Performance Tests 2
Test Record 2

Equipment Required 3
Before You Start 4

Operational Verification 5
Introduction 5
Power-Up Procedure 5
10 MHz Verification (58503B Only) 6
1 PPS Verification 6
IRIG-B Verification (59551A Only) 7
Time of Day and PORT 1 RS-232C Serial Interface Verification 8
Antenna Power Verification 9
Front Panel Display/Keypad Verification (58503B Option 001 Only) 10
Time Tagging (Stamping) Verification and Programmable Verification (59551A Only) 11
Programmable Pulse Verification (59551A Only) 13
Operational Verification Conclusion 15

In Case of Difficulty 16

Complete Performance Tests 17
Preliminary Test Setup 18
Test 1: 10 MHz Frequency Accuracy and 1 PPS Jitter (Locked to GPS) 19
Specifications Tested 19
Procedure 19
Test 2: 10 MHz Holdover Aging and 1 PPS Accumulated Time Error (Unlocked) 22
Specifications Tested 22
Procedure 22
Test 3: 1 PPS Time Accuracy (Locked) 24
Test 4: 10 MHz Frequency Stability (Time Domain) and Phase Noise (Frequency Domain) Measurements 24
Frequency Stability (Time Domain) 24
Phase Noise (Frequency Domain) 24

58503B Performance Test Record 26
59551A Performance Test Record 27

E 58503B Specifications

Specifications and Characteristics 2
GPS Receiver Features 2
Other Information 5
Options and Accessories 5

F 59551A Specifications

Specifications and Characteristics 2
GPS Receiver Features 2
Other Information 5
Options and Accessories 5

Command Index

General Index
In This Guide

Chapter 1, “Front and Rear Panels at a Glance,” provides overview of the Receiver’s indicators, inputs, and outputs.

Chapter 3, “Visual User Interface,” which is subtitled “Using the Receiver Status Screen,” provides information on how to use the Receiver Status screen and the SatStat program. An illustrated foldout of the Receiver Status screen, which is a comprehensive summary of key operation conditions and settings, is provided at the end of this chapter.

Chapter 4, “Command Quick Reference,” is a quick reference that summarizes the Receiver commands. The commands are presented or grouped by their functions. A foldout sheet that presents all of the commands on one side (Receiver Commands at a Glance) and illustrates the status reporting system on the other side (Status Reporting System at a Glance) is provided at the end of this chapter.

Chapter 5, “Command Reference,” provides a description of each command that can be used to operate the GPS Receiver. The commands are grouped by functions. The functions are grouped and ordered the same as they are in Chapter 4, “Command Quick Reference,” and on the foldout “Receiver Commands at a Glance (cont’d).” A comprehensive discussion on how you can monitor and control alarm conditions using the status registers is also provided in this chapter.

Appendix A, “Error Messages,” lists all error messages the Receiver could generate along with descriptions of possible causes for the errors.

Appendix B, “Command Syntax and Style,” provides an overview of the Standard Commands for Programming Instrument (SCPI) syntax and style to help you program the Receiver.

Appendix C, “Receiver Firmware Installation,” provides a procedure for downloading new firmware to the GPS Receiver.

In This Guide

Appendix E, “58503B Specifications,” lists the product specifications and characteristics.

Appendix F, “59551A Specifications,” lists the product specifications and characteristics.

Command Index, lists all of the commands alphabetically and provides page references.

General Index
Front and Rear Panels at a Glance
58503B Front Panel at a Glance

1 When the **Power** indicator illuminates, it indicates that the proper input power is supplied to the Receiver.

2 When the **GPS Lock** indicator illuminates, it indicates that the Receiver is receiving the GPS signal and is locked on one or more satellite(s).

3 When the **Holdover** indicator illuminates, it indicates that the Receiver is NOT locked to the GPS signal. The Receiver is keeping time based on the internal reference oscillator signal. The internal reference oscillator will determine the accuracy of the 1 PPS signal and the 10 MHz reference output.

4 When the **Alarm** indicator illuminates, it indicates that the Receiver has detected an internal condition that requires attention.
1 An alphanumeric display for displaying time, position (i.e., longitude, latitude, and altitude), and Receiver status. The display is a highly visible twelve-character vacuum-fluorescent display.

2 Status LED indicators:

 When the **Power** indicator is illuminated, it indicates that input power is supplied to the Receiver.

 When the **GPS Lock** indicator is illuminated, it indicates that the Receiver is tracking satellites and has phase-locked its internal reference to the reference provided by GPS.

 When the **Holdover** indicator is illuminated, it indicates that the Receiver is not phase-locking its internal reference to the reference provided by GPS. Typically, this would happen due to loss of satellite tracking.

 When the **Alarm** indicator is illuminated, it indicates that the Module has detected a condition that requires attention.

3 Eight **MODE** keys with associated LEDs for front-panel access to time, position, and status information: **Time**, **Long** (longitude), **Lat** (latitude), **Alt** (altitude), **Sat** (number of satellites tracking), **Status** (Receiver or system status), and **Serial Port** (serial port settings). Each key selects a different display mode. Also, pressing **Shift** and **Alt** key in sequence clears instrument alarm.
58503B Rear Panel at a Glance

1 **ANT** N-type (female) connector for GPS Antenna connection.

2 **PORT 1** RS-232C, DB-25 (female) serial interface port for remote control, monitoring, and downloading of the Receiver's memory data and upgrading Receiver software.

3 **10 MHz OUT** output for user-specific applications.

4 **1PPS** connector for outputting a continuous 1 Pulse Per Second signal.

Option 002 **1P2S** (One-Pulse-Per-Two-Seconds) connector for outputting a pulse every other second, synchronized to the even seconds in GPS time. Pulses occur on even-numbered seconds (i.e., 2 seconds, 4 seconds, etc.).

6 **Alarm** output for external devices (such as red light, bell, or horn) to indicate that the Receiver has detected an internal condition that requires attention.

7 **POWER** input jack.
59551A Front Panel at a Glance

1 When the **Power** indicator illuminates, it indicates that the proper input power is supplied to the Module.

2 When the **GPS Lock** indicator illuminates, it indicates that the Module is receiving the GPS signal and is locked on one or more satellite(s).

3 When the **Holdover** indicator illuminates, it indicates that the Module is NOT locked to the GPS signal. The Module is keeping time based on the internal reference oscillator signal. The internal reference oscillator will determine the accuracy of the 1 PPS signal. (See specification for Accuracy in Holdover in Appendix F, “59551A Specifications,” in this guide.)

4 When the **Alarm** indicator illuminates, it indicates that the Module has detected an internal condition that requires attention.

5 **PORT 2** RS-232C, DE-9S (female) serial interface port for local monitoring and retrieving data stored in the Module’s memory data.
Chapter 1 Front and Rear Panels at a Glance

59551A Rear Panel at a Glance

1 **1 PPS** (One-Pulse-Per-Second) connector for outputting a continuous one pulse per second signal.

2 **Programmable Pulse** output connector for outputting pulses at user-specified time/period.

3 **IRIG-B** output for outputting formatted time-code signals. (This signal is used for general purpose time distribution and magnetic tape annotation applications requiring the time of year.)

4 **Time tag** input connectors for receiving TTL conditioned time tagging signals.

5 **Alarm BITE** (Built-In Test Equipment) output for external devices (such as red light, bell, or horn) to indicate that the Module has detected an internal condition that requires attention. The relay opens and closes with the **Alarm** indicator. (Mating connector is Amphenol part number 31-224 [glass-filled Noryl] or #31-2226 [Teflon]).

6 **ANTENNA** N-type (female) connector for GPS antenna connection.

7 **PORT 1** RS-232C, DB-25 (female) serial interface port for remote control, monitoring, and retrieving of the Module’s memory data and upgrading Module software.

8 **AC POWER** input jack. The AC input jack is standard. The unit operates from ac voltage. It can also be operated from dc voltage via this ac jack by using the supplied IEC 320 dc connector plug.
Serial Interface Capabilities
Chapter 2 Serial Interface Capabilities

Chapter Contents

This chapter describes how to operate the 59551A GPS Measurements Synchronization Module and the 58503B GPS Time and Frequency Reference Receiver via the RS-232C serial interface port. Hardware connections and configuration are discussed.

This chapter is organized as follows:

- **About the RS-232C Serial Port(s)**
 - PORT 1 Rear-Panel RS-232C Serial Port page 2-3
 - PORT 2 Front-Panel RS-232C Serial Port (59551A Only) page 2-4
- **Connecting a Computer or Modem**
 - To Connect the GPS Receiver to a PC or Modem Via the Rear-Panel PORT 1 page 2-5
 - To Connect the GPS Receiver to a PC or Modem Via the Rear-Panel PORT 1 page 2-5
- **Configuring the RS-232C Port(s)**
 - Making Changes to the Serial Port Settings (If Needed) page 2-9
 - Determining the Serial Port Settings page 2-11
About the RS-232C Serial Port(s)

The 58503B has only a rear-panel (PORT 1) RS-232C serial interface port.

The 59551A has separate rear-panel (PORT 1) and front-panel (PORT 2) RS-232C serial interface ports.

The rear-panel (PORT 1) RS-232C serial interface port is the only port which can be used to upgrade the Receiver firmware; therefore, it is referred to as the PRIMARY port. The 59551A’s front-panel (PORT 2) RS-232C serial interface port is referred to as the SECONDARY port because it cannot be used to upgrade the Receiver firmware. The operation and configuration of these ports are described in the following paragraphs. More information is provided in the sections titled “Connecting a Computer or Modem” and “Configuring the RS-232C Port(s)” in this chapter on page 2-5 and page 2-9, respectively.

Either port allows you full communication with the Receiver. This can be done by connecting any computer with an RS-232C serial interface and suitable terminal emulation software, then sending the correct commands for transmitting or retrieving data.

PORT 1 Rear-Panel RS-232C Serial Port

This 25-pin female subminiature D (DB-25) connector (PORT 1) RS-232C Serial Interface Port is located on the rear panel.

The pins used for PORT 1 RS-232C communication are described in Table 2-1.

NOTE

We reserve the right to impose signals on other pins; therefore, your connection should be restricted to the pins described in Table 2-1.

Table 2-1. PORT 1 Rear-Panel RS-232C Serial Port Connections

<table>
<thead>
<tr>
<th>*Pin Number</th>
<th>Input/Output</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Output</td>
<td>Transmit Data (TxD). GPS Receiver output.</td>
</tr>
<tr>
<td>3</td>
<td>Input</td>
<td>Receive Data (RxD). GPS Receiver input.</td>
</tr>
<tr>
<td>7</td>
<td>——</td>
<td>Signal Ground (SG)</td>
</tr>
</tbody>
</table>
Chapter 2 Serial Interface Capabilities

About the RS-232C Serial Port(s)

Refer to the sections titled “Connecting a Computer or Modem” in this chapter, on page 2-5, for wiring diagrams and more information on the RS-232C interface cables.

PORT 2 Front-Panel RS-232C Serial Port
(59551A Only)

This 9-pin female subminiature D (DB-9) connector (PORT 2) RS-232C Serial Interface Port is located on the front panel.

The pins used for PORT 2 RS-232C communication are described in Table 2-2.

NOTE

We reserves the right to impose signals on other pins; therefore, your connection should be restricted to the pins described in Table 2-2.

Table 2-2. PORT 2 Front-Panel RS-232C Serial Port Connections
(59551A Only)

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Input/Output</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Input</td>
<td>Receive Data (RxD). GPS Receiver input.</td>
</tr>
<tr>
<td>3</td>
<td>Output</td>
<td>Transmit Data (TxD). GPS Receiver output.</td>
</tr>
<tr>
<td>5</td>
<td>Signal Ground (SG)</td>
<td></td>
</tr>
</tbody>
</table>

Refer to the sections titled “Connecting a Computer or Modem” in this chapter, on page 2-5, for wiring diagrams and more information on the RS-232C interface cables.
Connecting a Computer or Modem

To connect the GPS Receiver to a computer or modem, you must have the proper interface cable. Most computers are DTE (Data Terminal Equipment) devices. Since the Receiver is also a DTE device, you must use a DTE-to-DTE interface cable when connecting to a computer. These cables are also called “null-modem”, “modem-eliminator”, or “crossover” cables.

Most modems are DCE (Digital Communication Equipment) devices; thus, you must use a DTE-to-DCE interface cable.

The interface cable must also have the proper connector on each end and the internal wiring must be correct. Connectors typically have 9 pins (DE-9 connector) or 25 pins (DB-25 connector) with a “male” or “female” pin configuration. A male connector has pins inside the connector shell and a female connector has holes inside the connector shell.

To simplify interface cable selections, the following sections tells you which cables to use.
To Connect the GPS Receiver to a PC or Modem Via the Rear-Panel PORT 1

Connecting to the Personal Computer (PC)

Use an HP 24542G interface cable or equivalent to connect the Receiver’s rear-panel PORT 1 DB-25 female connector to a PC as shown in Figure 2-1. See “Making Your Own Cables” starting on page 2-8.

Connecting to a Modem

Use an HP 40242M interface cable or equivalent to connect the Receiver’s rear-panel PORT 1 DB-25 female connector to a modem, which is a DCE (Digital Communication Equipment) device, as shown in Figure 2-2. See “Making Your Own Cables” starting on page 2-8.
Chapter 2 Serial Interface Capabilities

Connecting a Computer or Modem

Figure 2-2 Connecting the GPS Receiver to a Modem
Making Your Own Cables

If you choose to make your own cable, see Figure Figure 2-3 and Figure Figure 2-4.

Figure Figure 2-3 illustrates how to make a DE-9S-to-DE-9P, DTE-to-DCE interface cable that can replace the cable and adapter combination of the HP 24542U cable and the HP 5181-6639 adapter for use with PORT 2 of the 59551A.

Figure 2-3 DE-9S-to-DE-9P (DTE-to-DCE) Serial Interface Connection to PORT 2

Figure Figure 2-4 illustrates how to make a DE-9S-to-DB-25P, DTE-to-DTE interface cable that can replace the HP 24542G cable (25-pin male to 9-pin female connectors) for use with PORT 1.

Figure 2-4 DE-9S-to-DB-25P (DTE-to-DTE) Serial Interface Connection to PORT 1
Configuring the RS-232C Port(s)

The 59551A has separate rear-panel (PORT 1) and front-panel (PORT 2) RS-232C serial interface ports.

The 58503B has one RS-232C serial interface port (PORT 1) on the rear panel. Note: PORT 1 of the 58503B and PORT 2 of the 59551A have the same configuration capabilities as indicated in Table 2-4.

Software pacing, baud rate, parity, data bits, and stop bits parameters for each port are user-selectable and independent of the configuration of the other.

Table 2-3 and Table 2-4 list the configuration factory-default values for PORT 1 and PORT 2.

Table 2-3. Factory-Default Values for PORT 1 of the 59551A

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Possible Choices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software Pacing</td>
<td>NONE</td>
<td>XON or NONE</td>
</tr>
<tr>
<td>Baud Rate</td>
<td>9600</td>
<td>1200, 2400, 9600, or 19200</td>
</tr>
<tr>
<td>Parity</td>
<td>NONE</td>
<td>EVEN, ODD, or NONE</td>
</tr>
<tr>
<td>Data Bits</td>
<td>8</td>
<td>7 or 8</td>
</tr>
<tr>
<td>Stop Bits</td>
<td>1</td>
<td>1 or 2</td>
</tr>
<tr>
<td>Full Duplex</td>
<td>ON</td>
<td>ON or OFF</td>
</tr>
</tbody>
</table>

Table 2-4. Factory-Default Values for PORT 1 or the 58503B and PORT 2 of the 59551A

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Possible Choices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software Pacing</td>
<td>NONE</td>
<td>XON or NONE</td>
</tr>
<tr>
<td>Baud Rate</td>
<td>9600</td>
<td>1200, 2400, 9600, or 19200</td>
</tr>
<tr>
<td>Parity</td>
<td>NONE</td>
<td>EVEN, ODD, or NONE</td>
</tr>
<tr>
<td>Data Bits</td>
<td>8</td>
<td>Fixed at 7 when parity is even or odd. Fixed at 8 when parity is none.</td>
</tr>
<tr>
<td>Stop Bits</td>
<td>1</td>
<td>Fixed (no choices available)</td>
</tr>
<tr>
<td>Full Duplex</td>
<td>ON</td>
<td>ON or OFF</td>
</tr>
</tbody>
</table>

Procedures for configuring the RS-232C ports are provided in the following paragraphs.
Making Changes to the Serial Port Settings
(If Needed)

CAUTION

If you change the serial port settings, your changes will be stored in the Receiver. Cycling power will not reset to factory defaults. Therefore, if you make a change, it is recommended that you record the settings and keep the record with the Receiver.

If you need to change the serial port settings, for example, to set up for a different computer, use the guidelines given in this section.

Serial port settings are changed by issuing commands.

It is recommended that you issue a single compound command which simultaneously sets all the serial port parameters. Then connect the other computer and begin using the instrument with the new settings.

NOTE

If you choose to set parameters one at a time, you will make the procedure more difficult. That is, with each change, the instrument will be updated, but your computer will retain its original settings. At each step, you will have stopped serial communications and be forced to modify your PC settings to match the Receiver in order to continue. It is recommended that you make all changes in a single compound command, verify the changes, and record all parameters.

Configuring PORT 1 of the 59551A

Complete configuration of PORT 1 of the 59551A requires that you set five parameters. The command line sent in the following example would set the RS-232C port pacing to XON, baud rate to 2400, parity to EVEN, data bits to 7, and stop bits to 2. This command line must be transmitted on PORT 1.

```
SYST:COMM:SER:PACE XON; BAUD 2400; PARITY EVEN; BITS 7; SBITS 2
```

Configuring PORT 1 of the 58503B and PORT 2 of the 59551A

Complete configuration of PORT 1 (58503B) and PORT 2 (59551A) require that you set three parameters. The command line sent in the following example would set the RS-232C port pacing to XON, baud rate to 2400, and parity to EVEN. This command line must be transmitted on PORT 1 or PORT 2.

```
SYST:COMM:SER2:PACE XON; BAUD 2400; PARITY EVEN
```
Determining the Serial Port Settings

Standard 58503B and 59551A

If you connect your PC, press Return, and do not get a `scpi>` prompt back from the Receiver, your Receiver’s serial communication settings may have been modified. You need to systematically step through the data communication settings on your PC until your PC matches the Receiver. The Receiver cannot communicate its settings until this process is complete.

Iterate until you are able to verify that settings on your PC match the Receiver.

When you are successful, you will have restored full RS-232C communications, enabling you to query the Receiver's communication settings. Once you establish communications with one serial port, you can query the Receiver for settings of either port.

Issue the following queries to either serial port to verify **PORT 1**’s configuration.

- `SYST:COMM:SER:PACE?`
- `SYST:COMM:SER:BAUD?`
- `SYST:COMM:SER:PARITY?`
- `SYST:COMM:SER:BITS?`
- `SYST:COMM:SER:SBITS?`

Issue the following queries to either serial port to verify **PORT 2**’s configuration.

- `SYST:COMM:SER2:PACE?`
- `SYST:COMM:SER2:BAUD?`
- `SYST:COMM:SER2:PARITY?`
- `SYST:COMM:SER2:BITS?`
- `SYST:COMM:SER2:SBITS?`
This page intentionally left blank.
Visual User Interface

Using the Receiver Status Screen
Chapter Contents

This chapter provides a tutorial section on how to use the Receiver Status Screen, a comprehensive reference information section, and an illustrated foldout of the Receiver Status Screen, which is a comprehensive summary of key operation conditions and settings.

This chapter is organized as follows:

- Using and Reading the Visual User Interface (the Receiver Status Screen) page 3-3
 - Tutorial on Using the Status Screen to Interface With the Receiver page 3-3
 - Demonstration of Holdover Operation page 3-8
- Receiver Status Screen Data page 3-11
 - SYNCHRONIZATION Section of the Status Screen page 3-12
 - ACQUISITION Section of the Status Screen page 3-14
 - HEALTH MONITOR Section of the Screen page 3-18
- The Receiver Status Screen at a Glance (foldout) page 3-20
Using and Reading the Visual User Interface (the Receiver Status Screen)

The combination of the PC and the GPS Receiver yields a visual user interface called the Receiver Status Screen that lets you see what the Receiver is doing and how it is progressing towards tracking satellites to eventually lock to the GPS signal.

When connected to a properly configured PC, the Receiver Status Screen can be accessed. There are two ways to access and use the Receiver Status Screen:

- By installing a commercially available terminal emulation program, connecting the Receiver to a PC via the PORT 1 port, and manually sending the :SYSTEM:STATUS? query. (Refer to Chapter 1, “Getting Started,” in 58503B/59551A Getting Started Guide.)

- By installing and operating the SatStat program, which automatically generates continual status screen updates, and connecting the Receiver to a PC via PORT 1. (Refer to the sections titled “Installing the Automated SatStat Program for Continual Status Updates” and “Operating the Automated SatStat Program” in Chapter 1, “Getting Started,” of the 58503B/59551A Getting Started Guide for details on installation and operation.)

The following tutorial demonstrates how you can use the Receiver Status Screen to observe Receiver operation. The tutorial uses the manual (:SYSTEM:STATUS?) method.

Tutorial on Using the Status Screen to Interface With the Receiver

Type :SYSTEM:STATUS? at the `scpi>` prompt.

An initial power-up screen is displayed, which is similar to the demonstration screen shown in Figure 3-1. The first data that you should look at is in the SYNCHRONIZATION area of the screen. It is telling you that it is in the Power-up state as indicated by the `>>` marker. That is, the Receiver has just been put on line.
Using and Reading the Visual User Interface (the Receiver Status Screen)

Figure 3-1. Receiver Status Screen at Powerup

The ACQUISITION area of the screen is telling you that no satellites have been tracked. The identification numbers of several satellites appear in the Not Tracking column. The asterisk next to the satellite identification number, or pseudorandom noise code (PRN), indicates the Receiver is attempting to track it.

The current time and date are shown in the Time quadrant of the ACQUISITION area. The default power-up setting, indicated by [?], is corrected when the first satellite is tracked. Since the Receiver is not tracking any satellites, the GPS 1 PPS reference signal is invalid.

An accurate position is necessary to derive precise time from GPS. The Position quadrant indicates that the Receiver is in survey mode, which uses GPS to determine the position of the GPS antenna. This process has not yet started, since position calculations can be performed only while tracking four or more satellites. INIT LAT, INIT LON, and INIT HGT are the initial estimate of the true position. These coordinates are refined by the survey process. The Receiver uses this position and the time-of-day to select satellites to track. Therefore, you can reduce satellite acquisition time by specifying a close approximation of position and time.

Now, let’s send the :SYSTEM:STATUS? query again to see what kind of progress the Receiver has made.
You can now see that the Receiver is tracking several satellites as shown in Figure 3-2. The process of acquiring and tracking satellites is described in the following paragraphs.

An asterisk (*) next to the PRN of a satellite in the Not Tracking column indicates the Receiver is attempting to track it. The elevation (El) and azimuth (Az) angles of the satellite are indicated. Acq. or Acq. .. tell you that the Receiver is attempting to track that satellite. One dot after the Acq indicator shows that the Receiver is attempting to acquire its signal, and two dots indicate impending lock. Eventually, you will see the satellite move to the Tracking column, which shows the satellite PRN, the elevation angle of the satellite in the sky (90° being zenith), the azimuth angle (number of degrees bearing from true north), and the carrier-to-noise ratio (C/N). A good carrier-to-noise ratio is a number above 35, which would be efficient for the Receiver to operate. Numbers below 35, suggest intermittent tracking of the satellite or no tracking; check your antenna system should this be the case.

As indicated by the demonstration screen in Figure 3-2, the Receiver is now surveying for position. It is tracking four satellites which is the minimum number that must be tracked to determine position. As you can see, the Position MODE line indicates survey is 1.2% complete. A complete survey would take two hours during which four satellites or more are continuously tracked.
Also, you can see the initial (estimated) position has been replaced with a computed position, which the Receiver continuous to refine until it gets a very accurate position. The status screen indicates that a computed position is being used by displaying the averaged latitude, and longitude height (AVG LAT, AVG LON, and AVG HGT).

If the position were not precise, GPS timing information would be inaccurate by an amount corresponding to the error in the computed position. An error in the computed position of the antenna translates into an error in the derived time and will compromise the Receiver’s ability to be a timing source.

Let’s consider a case where four satellites are not visible at powerup because of a poor antenna location, such as an “urban canyon” (located between tall city buildings). If accurate position is known from a Geodetic survey of that site, it can be programmed with the position command, thereby bypassing the survey operation. This is useful when four satellites cannot be tracked for an extended period of time.

Let’s send the :SYSTEM:STATUS? query again to observe the current status of the Receiver.

The updated demonstration status screen in Figure 3-3 indicates that the position survey is now 5.4% complete. Thus, the survey task is beginning to iterate toward an accurate position. In the Time quadrant, the UTC time is now correct. The date is correct, and the GPS reference signal is synchronized to UTC.
Chapter 3 Visual User Interface

Using and Reading the Visual User Interface (the Receiver Status Screen)

Figure 3-3. Receiver Status Screen Displaying Progress Towards Steady-State Operation

In the SYNCHRONIZATION area, the >> marker is pointed at the Locked to GPS line, indicating that the Receiver is locked to GPS and stabilizing the frequency of its oscillator. This means that the Receiver has phase-locked its oscillator to the 1 PPS reference signal provided by GPS, but it is not at its final, or most stable, state. The Receiver is locked and the front-panel GPS Lock LED is illuminated.

For users without the command interface (PC/Terminal emulator connected to the Receiver), the illuminated GPS Lock LED is probably the first indication that after powerup that the Receiver is moving towards a stable state.

With the command interface and status screen, you can get more detailed information. For example, you can read the reference outputs quality indicators in the Reference Outputs area of the status screen. These are the Time Figure of Merit (TFOM) and Frequency Figure of Merit (FFOM) indicators. As shown in Figure 3-3, the TFOM is 4 and the FFOM is 1. These values will eventually decrease towards the ultimate values that represent steady-state performance. Refer to the subsection titled “Reference Outputs” on page 3-13 in this chapter for more information about TFOM and FFOM.
Chapter 3 Visual User Interface

Using and Reading the Visual User Interface (the Receiver Status Screen)

Also indicated is a prediction of the accuracy of the Receiver should it go into holdover operation.

Demonstration of Holdover Operation

The Receiver typically reaches stable state 24 to 72 hours after powerup, and it will learn best if its experiences no holdover in the first 24 hours. Therefore, the holdover demonstration in the following paragraphs will compromise the Receiver’s ability to learn the characteristics of its internal reference oscillator. For the purpose of education only, you will be shown how to initiate a holdover.

A user should never initiate holdover during the first 24 hours while the Receiver is learning its internal oscillator characteristics. The Receiver should maintain GPS lock during this time because it is using the GPS signal to discipline the oscillator. It will learn what the oscillator drift characteristics are relative to the GPS signal. It will learn how the oscillator ages, and the software will learn how to compensate for that aging.

Thus, it is recommended that the Receiver is always kept locked to GPS during the first 24 hours.

For demonstration purposes, and since the Receiver has been powered up for a while, let’s put the Receiver into holdover by simply removing the antenna connection. (Note that holdover also can be manually initiated by sending the SYNCHRONIZATION:HOLDOVER:INITIATE command; however, for this demonstration, disconnect the antenna cable.) The following will occur after a verification delay:

- The front-panel Holdover LED will illuminate, and
- after sending the :SYSTEM:STATUS? query again, a screen similar to Figure 3-4 should appear.

Let’s send the :SYSTEM:STATUS? query. Figure 3-4 should appear.
Using and Reading the Visual User Interface (the Receiver Status Screen)

Figure 3-4. Receiver Status Screen Displaying Holdover Operation

In the SYNCHRONIZATION area, you can see that the Receiver has gone into holdover as indicated by >> marker that is pointing at the Holdover line. The status screen indicates that the reason the Receiver is in holdover is because the GPS 1 PPS reference signal is invalid.

You would expect this since the antenna has been disconnected.

The status screen shows loss of the GPS signal. As you can see on the screen, all of the satellites in the Tracking column moved into the Not Tracking column.

The status screen in Figure 3-4 shows that the Receiver has been in holdover operation for 14 seconds.

If the Receiver SmartClock had had enough time to learn the internal oscillator characteristics, the Receiver Status Screen would show that the Receiver went into holdover, and the Receiver’s outputs were maintained during holdover by the SmartClock.
When the GPS antenna is re-connected and the GPS signal has been re-acquired, the Receiver has the ability to recover from holdover by itself. The SYNCHRONIZATION area of the screen will show the >> marker pointing at the Recovery line (and then eventually at the Locked to GPS line), the **GPS Lock** LED will illuminate, and the screen will look similar to Figure 3-5.

![Figure 3-5. Receiver Status Screen Following Recovery from Holdover Operation](image)

You can see the Receiver has recovered from holdover almost immediately and it has returned to locked operation.
Receiver Status Screen Data

This section defines the data displayed in the Receiver Status Screen, shown in Figure 3-6.

<table>
<thead>
<tr>
<th>SYNCHRONIZATION</th>
<th>ACQUISITION</th>
<th>HEALTH MONITOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>>> Locked to GPS</td>
<td>Not Tracking</td>
<td>Recovery</td>
</tr>
<tr>
<td>Recovery</td>
<td>6</td>
<td>Holdover</td>
</tr>
<tr>
<td>Power-up</td>
<td>1</td>
<td>Self Test: OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Int Pwr: OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oven Pwr: OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OCXO: OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EFC: OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GPS Rcv: OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3-6. Sample Status Screen

The status screen has three major sections:

- **SYNCHRONIZATION**
- **ACQUISITION**
- **HEALTH MONITOR**

The SYNCHRONIZATION section of the status screen shows how the GPS Receiver's SmartClock™ technology is progressing towards its objective, which is to synchronize the Receiver's oscillator to the 1 PPS reference signal produced by the Receiver's internal GPS Engine.

The ACQUISITION section of the status screen shows how the Receiver's internal GPS Engine is progressing towards its objective, which is to produce an accurate internal 1 PPS reference signal. It does so through tracking GPS satellites.

The HEALTH MONITOR section of the status screen summarizes the overall health of the product.
SYNCHRONIZATION Section of the Status Screen

SYNCHRONIZATION Summary Line

The SYNCHRONIZATION line in the screen summarizes the SmartClock Status and Reference Outputs. One of three SYNCHRONIZATION messages is shown:

- Outputs Invalid while the Receiver (unit) is warming up,
- Outputs Valid/Reduced Accuracy while the unit is in holdover or is locked but has not achieved steady-state operation, or
- Outputs Valid while the unit is in steady-state operation.

SmartClock Mode

The SmartClock Mode area of the screen shows the four operating modes:

- Locked to GPS
- Recovery
- Holdover
- Power-up

As shown in the sample status screen in Figure 3-6, a >> symbol indicates the current operating mode.

Locked to GPS indicates that the Receiver is locked to GPS. The front-panel GPS Lock LED will be illuminated.

When stabilizing frequency ... is shown, the time output (1 PPS) signal is locked and can be used, but the frequency outputs (10 MHz) are not at their final or most stable state.

Recovery indicates that the Receiver is actively working to become locked to GPS. All conditions needed to proceed towards a lock have been met. Expect an eventual spontaneous transition to a lock (unless changing external conditions prevent this, such as loss of tracked satellites.)

Holdover indicates that the Receiver is waiting for conditions that are needed to allow the process of recovery from holdover to begin. Once these conditions are met, the Receiver will transition on its own to the recovery mode.

When the GPS 1PPS CLK invalid message follows the Holdover label, the internal GPS 1 PPS reference signal is inaccurate.
When the *manually initiated* message follows the **Holdover** label, the Receiver has been placed in holdover by the user. An explicit command is required to initiate an exit from manual holdover.

When the **1 PPS TI exceeds hold threshold** message follows the **Holdover** label, the phase difference between the 1 PPS time output signal and the internal GPS 1 PPS reference signal has exceeded the user-entered holdover threshold value.

When the **internal hardware problem** message follows the **Holdover** label, a measurement hardware error exists.

The **Holdover Duration** message indicates the duration that the Receiver has been operating in holdover (and recovery). Thus, this message gives you an assessment of the quality of the outputs. The longer the Receiver is in holdover the more degraded the outputs become.

Power-up indicates that the Receiver hasn’t yet achieved GPS lock or acquired satellites since it has been powered up. The Receiver is measuring the internal reference oscillator’s frequency and adjusting it to 10 MHz during this power-up period. Other queries can provide insight as to the cause if the Receiver is remaining in powerup longer than expected.

Reference Outputs

TFOM (Time Figure of Merit) indicates the accuracy of the Receiver’s internal 1 PPS signal. A low TFOM value indicates a more accurate signal. In the sample screen of Figure 3-6, a value of 3 is displayed, meaning that the Time Error ranges from 100 to 1000 nanoseconds. The following table lists the TFOM values that could be displayed and the corresponding Time Error.

<table>
<thead>
<tr>
<th>TFOM Value</th>
<th>Time Error (in nanoseconds)</th>
<th>TFOM Value</th>
<th>Time Error (in nanoseconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>*0</td>
<td>less than 1</td>
<td>5</td>
<td>$10^4 - 10^5$</td>
</tr>
<tr>
<td>*1</td>
<td>1 – 10</td>
<td>6</td>
<td>$10^5 - 10^6$</td>
</tr>
<tr>
<td>*2</td>
<td>10 – 100</td>
<td>7</td>
<td>$10^6 - 10^7$</td>
</tr>
<tr>
<td>3</td>
<td>100 – 1000</td>
<td>8</td>
<td>$10^7 - 10^8$</td>
</tr>
<tr>
<td>4</td>
<td>$10^3 - 10^4$</td>
<td>9</td>
<td>greater than 10^8</td>
</tr>
</tbody>
</table>

The TFOM values 0, 1, and 2 are not presently used in the Receiver. The Receiver will display TFOM values ranging from 9 to 3, which is consistent with the specified accuracies of each product.
FFOM (Frequency Figure of Merit) indicates the *stability* of the Receiver's internal 10 MHz signal. The 10 MHz signal is controlled by the SmartClock's Phase-Locked Loop (PLL). Thus, the FFOM value is determined by monitoring the status of the PLL.

In the sample screen of Figure 3-6, the 0 indicates that the SmartClock's PLL is stabilized. The following table lists and defines the FFOM values that could be displayed.

<table>
<thead>
<tr>
<th>FFOM Value</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>PLL stabilized — internal 10 MHz signal within specification.</td>
</tr>
<tr>
<td>1</td>
<td>PLL stabilizing</td>
</tr>
<tr>
<td>2</td>
<td>PLL unlocked (holdover) — Initially the 10 MHz signal will be within specifications. However, when in holdover, the 10 MHz signal will eventually drift out of specification.</td>
</tr>
<tr>
<td>3</td>
<td>PLL unlocked (not in holdover) — Do not use the output.</td>
</tr>
</tbody>
</table>

1PPS TI indicates the difference (timing shift) between the SmartClock 1 PPS and the internal GPS 1 PPS signals.

HOLD THR (holdover threshold) displays the user-entered time error value.

ACQUISITION Section of the Status Screen

ACQUISITION Line

The **ACQUISITION** line in the screen summarizes the state of the internal GPS Engine as indicated by the **Tracking**, **Not Tracking**, and **Position** areas of the screen.

If the Receiver Engine was considered to be synchronized to the GPS signal, the [**GPS 1 PPS Valid**] message will appear at the end of the **ACQUISITION** line. If the Receiver has not yet synchronized to GPS, the [**GPS 1 PPS CLK Invalid**] message will be displayed.

Tracking, Not Tracking

The **Tracking** table indicates the number of satellites the Receiver is tracking.

The **Not Tracking** table indicates satellites predicted to be visible that are not tracked, and all of the satellites that are assigned to a GPS Engine channel but are not currently tracked.
Health and status indicators in the tables are defined as follows:

PRN indicates the pseudorandom noise code assigned to the satellite.

EI indicates the predicted elevation angle, from a range of 0 to 90°. The predicted elevation is derived from the almanac.

- - indicates that the elevation angle is unknown (the almanac did not provide this data).

Az indicates the predicted azimuth angle, from a range of 0 to 359°. The predicted azimuth angle is referenced to true north, and is derived from the almanac.

- - - indicates that the azimuth angle is unknown (the almanac did not provide this data).

C/N or **SS** indicates the carrier-to-noise ratio of the received signal, from a range of 26 to 55. A ratio below 35 is a weak signal that may not be acquired by the Receiver.

Ignore indicates that the user has chosen to exclude this satellite from a list of satellites available for tracking.

Not OK indicates GPS has reported that this satellite is unhealthy.

Acq indicates the unit is attempting to acquire the satellite signal.

Acq. indicates the unit is reading timing information from the satellite.

Acq. . indicates the unit is reading satellite orbital information.

ELEV MASK indicates the elevation mask angle in degrees. Satellites at or above this elevation angle are considered for tracking.

***attempting to track** indicates that the Receiver is attempting to track a satellite.
Chapter 3 Visual User Interface

Receiver Status Screen Data

Time

When you first power up the unit the time and date that is stored in the internal GPS Engine may not be the actual date. The actual time and date will be valid after one satellite has been tracked by the Receiver.

NOTE

There are two accurate ways to express time (GPS or UTC). GPS time is offset from UTC time by the number of accumulated leap seconds since midnight of January 6, 1980 UTC.

The **Time** area of the status screen provides three types of information: **Time**, **1PPS CLK**, and **ANT DLY**.

Time has four possible modes: **GPS, UTC, LOCL GPS**, and **LOCAL**.

GPS indicates current time and date collected from a satellite in GPS Time.

LOCL GPS indicates GPS Time, offset for the local time zone.

UTC indicates current time and date collected from a satellite in UTC time.

LOCAL indicates current time and date collected from a satellite offset from UTC for the local time zone.

1PPS CLK can indicate several possible advisory messages. These messages are:

- **Synchronized 1 PPS locked to GPS, referenced to GPS Time.**
- **Synchronized 1 PPS locked to GPS, referenced to UTC.**
- **Assessing stability ...** applying hysteresis to locked 1 PPS signal.
- **Inaccurate, not tracking** not tracking satellites.
- **Inaccurate, inacc position** in survey mode, but has not yet calculated a position.
- **Absent or freq incorrect** no 1PPS signal; or the internal GPS Engine is idle.
Chapter 3 Visual User Interface

Receiver Status Screen Data

ANT DLY (antenna delay) displays the user-entered value that is used to compensate for the propagation delay of the antenna cable.

Position

Position area of the status screen provides four types of information: **MODE** (hold or survey), **LAT** (latitude), **LON** (longitude), and **HGT** (height).

MODE indicates whether the unit is set to Hold or Survey position mode.

When *Hold* is displayed, the unit’s antenna position has been provided by the user, or the average position has been found after completion of survey.

If the unit is in the position *Hold* mode, the **LAT**, **LON**, and **HGT** “held” position coordinates will be displayed.

If *Survey: 57.3% complete* is displayed, for example, the Receiver is set to survey mode trying to determine the position of the antenna. The % value indicates the progress of the surveying.

At the beginning of a survey (0% completion), the following “estimated” position coordinates will be displayed:

INIT LAT indicates the estimated latitude (North or South) position of the unit in degrees, minutes, and seconds.

INIT LON indicates the estimated longitude (East or West) position of the unit in degrees, minutes, and seconds.

INIT HGT indicates estimated height of the unit’s antenna, in meters above the GPS ellipsoid for 58503B (in meters above mean sea level, MSL, for the 59551A).

Once survey starts, the following “averaged” position coordinates will be displayed:

AVG LAT indicates the average latitude (North or South) position of the unit in degrees, minutes, and seconds.

AVG LON indicates the average longitude (East or West) position of the unit in degrees, minutes, and seconds.

AVG HGT indicates average height of the unit’s antenna, in meters above the GPS ellipsoid for 58503B (in meters above mean sea level, MSL, for the 59551A).
The possible advisory messages that can be displayed when position mode is Survey are:

- Suspended: track <4 sats
- Suspended: poor geometry
- Suspended: no track data

HEALTH MONITOR Section of the Screen

The HEALTH MONITOR section of the status screen reports errors or failures of the key hardware functions. The OK summary message at the end of the HEALTH MONITOR line indicates that no errors or failures were detected. Error indicates that one or more hardware tests failed.

For each hardware function, OK is reported when it is operating normally; Err is displayed when a failure or an error is detected.

Hardware functions are monitored periodically, with the exception of Self Test, which is performed at powerup or when requested. The health and status indicators in the HEALTH MONITOR section are described as follows:

- **Self Test**: Last diagnostic check of the microprocessor system, reference oscillator, satellite receiver, and power supplies failed.
- **Int Pwr**: Internal power supply voltage(s) exceeds tolerance.
- **Oven Pwr**: Oscillator oven power supply voltage exceeds tolerance.
- **OCXO**: Oscillator output failed.
- **EFC**: Oscillator control voltage is at or near full-scale.
- **GPS Rcv**: Satellite receiver communication failed, or GPS 1PPS reference is absent.
Receiver Status Screen Data

This Page Intentionally Left Blank.
The Receiver Status Screen at a Glance

SYNCHRONIZATION

SYNCHRONIZATION profiles the process of synchronizing time and frequency reference signals with GPS.

SmartClock technology compares and adjusts (locks) the reference oscillator to GPS. In the absence of GPS, SmartClock operates in “holdover” mode, which maintains precise time and frequency over an extended duration by predicting and compensating for aging and temperature effects.

SmartClock Mode

Locked to GPS
Reference signals are synchronous with GPS. When stabilizing frequency is reported, short-term frequency errors limit the accuracy of the 10-MHz reference.

Recovery: ...
Adjusting the frequency and phase of the oscillator to correct errors accrued while in holdover operation. The phase difference between the GPS and disciplined oscillator 1PPS signal is shown.

Holdover: ...
Reference outputs are not synchronous with GPS due to the reported condition. SmartClock maintains timing accuracy by applying learned oscillator characteristics.

GPS 1PPS invalid
Not tracking any satellites, or position is inaccurate

1PPS TI exceeds hold threshold
Phase difference between 1PPS signals exceeds a specified limit (HOLD THR)

manualy initiated
User-initiated holdover.

Holdover Duration is the cumulative duration of holdover and recovery operations.

Power-up: ...
Warm-up/initial adjustment of the oscillator.

Reference Outputs

Measures of signal quality:

TFOM (Time Figure of Merit)
Accuracy of the 1PPS reference. A number between 0 (best) and 9 that denotes a timing error of 10^TFOM to 10^{-TFOM} nanoseconds.

FOM (Frequency Figure of Merit)
Frequency stability of the 10-MHz reference:
0 — Stable, within specification
1 — Stabilizing this signal
2 — Holdover mode, frequency will drift
3 — Signal is unusable.

1PPS TI (Time Interval)
Average phase difference between the GPS reference and oscillator 1PPS signals.

HOLD THR (Holdover Threshold)
1PPS phase difference that while exceeded forces holdover operation.

HEALTH MONITOR

HEALTH MONITOR reports the operational status of key receiver components and internal signals. When “Not” is reported:

Self Test
Last diagnostic check of the microprocessor system, reference oscillator, satellite receiver and power supplies failed.

Int Pwr
Internal power supply voltage(s) exceeds tolerance.

Oven Pwr
Oscillator oven power supply voltage exceeds tolerance.

OCXO
Oscillator output failed.

EFC
Oscillator control voltage is at or near full-scale.

GPS Rev
Satellite receiver communication failed, or GPS 1PPS reference is absent.

Holdover Uncertainty

Estimations of timing accuracy while in holdover mode, which reflect the extent to which SmartClock has learned the oscillator’s characteristics:

Predict
Maximum timing error that can be expected over the initial 24 hours of holdover operation.

Present
Maximum timing error currently expected.
Chapter 3 Visual User Interface

The Receiver Status Screen at a Glance (cont’d)

The Receiver Status Screen at a Glance

<table>
<thead>
<tr>
<th>Output Status</th>
<th>Outputs Valid/Reduced Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Outputs</td>
<td>TPU 1, FPU 2</td>
</tr>
<tr>
<td>Time</td>
<td>03:11:57 31 Jan 1996</td>
</tr>
<tr>
<td>GPS 1PPS</td>
<td>Synchronized to UTC</td>
</tr>
<tr>
<td>ANT DLY</td>
<td>120 ns</td>
</tr>
<tr>
<td>Position</td>
<td>Mode: Survey; 26.1% complete, Suspended: track < 4 sat</td>
</tr>
<tr>
<td>Media</td>
<td>N 37°19'31.797</td>
</tr>
<tr>
<td>AVG LON</td>
<td>W 121°59'52.018</td>
</tr>
<tr>
<td>Time</td>
<td>60.52 m (NSSL)</td>
</tr>
</tbody>
</table>

ACQUISITION

ACQUISITION profiles the process of acquiring precise time from GPS. GPS provides time-of-day information and a 1PPS reference signal used to discipline the internal oscillator.

Time

- Time of day: UTC (Coordinated Universal Time)
- LOCAL (UTC with local time zone offset)
- GPS (GPS Time)
- LOCL GPS (GPS Time, with time zone offset)

1PPS indicates the validity of the GPS 1PPS reference:

- Synchronized to UTC (or GPS Time)
- 1PPS reference is synchronous with GPS

Questionable accuracy...

- 1PPS must be accurate for 35 seconds
- Inaccurate: not tracking
- One or more satellites must be tracked
- Inaccurate: inacc position
- Position must be known to derive time
- Inaccurate: Time RAIM err
- GPS timing integrity is suspect.

ANT DLY offsets the GPS 1PPS reference to compensate for signal propagation delays introduced by the antenna system.

Position

An accurate position is necessary to transfer time from GPS. Two position MODEs are provided, hold and survey.

In Hold mode, a fixed position is used to derive time. This position may be specified if known, or determined by the survey process.

In Survey mode, position is determined from GPS. Four or more satellites must be tracked. Successive positional estimates (pseudoranges) are refined to obtain the true position, which is entered as the held position at the completion of this process.

Averaged (AVG) position coordinates and progress are reported while surveying. When surveying is suspended, an advisory message describes the reason:

- Suspended: track < 4 sat
- Four or more satellites must be tracked to determine position

Specifying an approximate initial (TRIM) position will reduce satellite acquisition time.
Command Quick Reference
Chapter Contents

This chapter is a quick reference that summarizes the GPS Receiver commands which allow you to operate and program the Receiver.

This chapter is organized as follows:

• An Introduction to GPS Receiver Commands page 4-4
 – SCPI Conformance Information page 4-4
 – Command Syntax Conventions page 4-4
 – Command Presentation page 4-4
• GPS Satellite Acquisition page 4-5
 – Facilitating Initial Tracking page 4-5
 – Establishing Position page 4-5
 – Selecting Satellites page 4-6
 – Compensating for Antenna Delay page 4-6
 – Monitoring Acquisition page 4-6
• 1 PPS Reference Synchronization page 4-7
 – Monitoring 1 PPS Synchronization page 4-7
 – Assessing 1 PPS Quality page 4-7
 – Operating in Holdover page 4-7
• Operating Status page 4-8
 – Receiver Operation at a Glance page 4-8
 – Reading the Error Queue page 4-8
 – Reading the Diagnostic Log page 4-8
 – Monitoring Status/Alarm Conditions page 4-8
 – Assessing Receiver Health page 4-9
Chapter Contents

• System Time
 – Identifying Time of Next 1 PPS Reference Edge page 4-10
 – Reading Current Time page 4-10
 – Applying Local Time Zone Offset page 4-10
 – Defining the 1 PPS Reference Edge (59551A Only) page 4-10
 – Reading Leap Second Status page 4-10
• Programmable Pulse Output (59551A Only) page 4-11
• Event Time Stamping (59551A Only) page 4-12
 – Defining the Time-stamped Edge page 4-12
 – Clearing Time Stamp Memory page 4-12
 – Reading Time Stamps page 4-12
 – Processing Memory Overflow page 4-12
• Serial Interface Communication page 4-13
 – Configuring I/O Port 1 page 4-13
 – Configuring I/O Port 2 (59551A Only) page 4-13
 – Recovering the Last Query Response page 4-13
• Receiver Initialization page 4-14
• Receiver Identification/Upgrade page 4-15
 – Reading Product Identification page 4-15
 – Installing Firmware via I/O Port 1 page 4-15
• Receiver Commands at a Glance (cont’d)/Status Reporting System at a Glance (foldout) page 4-17
An Introduction to GPS Receiver Commands

SCPI Conformance Information
The SCPI commands used in the GPS Receiver are in conformance with the SCPI Standard Version 1994.0.

Details of all the GPS Receiver commands can be found in Chapter 5, “Command Reference,” of this guide.

Information on the SCPI commands format, syntax, parameter, and response types is provided in Appendix B, “Command Syntax and Style,” of this guide.

Command Syntax Conventions
POSition Means you MUST use either all the upper case letters or the entire word. The lower case letters are optional. For example, POS and POSITION are both valid. However, POSI is not valid. (Note: POSition is used here as an example, but this convention is true for all command keywords.) In other words, the short form of the keywords is shown in uppercase.

NOTE When you see quotation marks in the command’s parameter, you must send the quotation marks with the command.

Command Presentation
The shaded commands listed in the following sections are the “basic” (fundamental) or most commonly used commands. These commands are essential for operating the Receiver; thus, a brief description of each of these commands is included in this section. More complete descriptions are provided in Chapter 5, “Command Reference.”

The non-shaded commands listed in this section are not fundamental or not commonly used. These commands are used for one-time setup, advanced, or specialized operation of the Receiver. Descriptions of these commands are provided in Chapter 5 only.
GPS Satellite Acquisition

The following commands are provided to facilitate initial GPS satellite tracking, to establish accurate GPS antenna position, to select or ignore satellites, to compensate for antenna cable delay, and to monitor the acquisition.

Facilitating Initial Tracking

:GPS:INITial:DATE <four-digit year>, <month>, <day>

:GPS:INITial:POSition N or S, <latitude degree>, <latitude minute>, <latitude second>, E or W, <longitude degree>, <longitude minute>, <longitude second>, <height above the GPS ellipsoid, in meters (58503B)> or <height above mean sea level, in meters (59551A)>

:GPS:INITial:TIME <hour>, <minute>, <second>

Establishing Position

:GPS:POsition N or S, <latitude degree>, <latitude minute>, <latitude second>, E or W, <longitude degree>, <longitude minute>, <longitude second>, <height above the GPS ellipsoid, in meters (58503B)> or <height above mean sea level, in meters (59551A)>

Specifies the position of the GPS antenna.

:GPS:POsition?

Returns the current average position of the GPS antenna.

:GPS:POsition:ACTual?

Returns the current instantaneous position of the GPS antenna.

:GPS:POsition LAST

:GPS:POsition SURVey

:GPS:POsition:HOLD:LAST?

:GPS:POsition:HOLD:STATe?

:GPS:POsition:SURVey:PROGress?

:GPS:POsition:SURVey:STATe ONCE

:GPS:POsition:SURVey:STATe?

:GPS:POsition:SURVey:STATe:POWerup ON or OFF

:GPS:POsition:SURVey:STATe:POWerup?
Selecting Satellites

<select> = IGNore or INClude

:GPS:SATellite:TRACking:EMANgle <degrees>
Sets the GPS elevation mask angle value.

:GPS:SATellite:TRACking:EMANgle?
Returns the GPS elevation mask angle value.

:GPS:SATellite:TRACking:INCLude <PRN>, ... , <PRN> (59551A)
Sends list of satellites to ignore.

:GPS:SATellite:TRACking:INCLude?
Returns list of satellites to ignore.

:GPS:SATellite:TRACking:IGNore <PRN>, ... , <PRN> (59551A)
Sends list of satellites to ignore.

:GPS:SATellite:TRACking:IGNore?
Returns list of satellites to ignore.

:GPS:SATellite:TRACking:<select>:ALL (59551A)

:GPS:SATellite:TRACking:<select>:COUNT?

:GPS:SATellite:TRACking:<select>:STATe? <PRN>

Compensating for Antenna Delay

:GPS:REFerence:ADELay <seconds>
Sets the GPS antenna delay value in seconds.

:GPS:REFerence:ADELay?
Returns the GPS antenna delay value in seconds.

Monitoring Acquisition

:GPS:REFerence:VALid?
Indicates whether the date and time are valid (1 = valid).

:GPS:SATellite:TRACking?
Returns a list of all satellites being tracked.

:GPS:SATellite:VISible:PREDicted?
Returns the list of satellites (PRN) that the almanac predicts should be visible, given date, time, and position.

:GPS:SATellite:TRACking:COUNt?
:GPS:SATellite:VISible:PREDicted:COUNt?
1 PPS Reference Synchronization

The following commands are provided to monitor the operating mode of the reference oscillator, to determine the accuracy and stability of the reference output signal(s), and to control the oscillator holdover process.

Monitoring 1 PPS Synchronization

- `:SYNChronization:STATe?`
 Returns the Receiver state.

- `:DIAGnostic:ROSCillator:EFControl:RELative?`
- `:LED:GPSLock?`
- `:LED:HOLDover?`

Assessing 1 PPS Quality

- `:SYNChronization:FFOMerit?`
 Returns the Frequency Figure of Merit.

- `:SYNChronization:HOLDover:TUNCertainty:PREDicted?`
 Returns an estimate of the time error that can be expected for a one day holdover, given the current state of SmartClock learning in the Receiver.

- `:SYNChronization:HOLDover:TUNCertainty:PREsent?`
 Returns the current time interval error at any time during holdover operation, given the current state of SmartClock learning in the Receiver.

- `:SYNChronization:TFOMerit?`
 Returns the Time Figure of Merit.

- `:SYNChronization:TINTerval?`
 Returns the difference or timing shift between the SmartClock 1 PPS and the GPS 1 PPS signals.

- `:SYNChronization:HOLDover:DURation?`
- `:SYNChronization:HOLDover:DURation:THReshold <seconds>`
- `:SYNChronization:HOLDover:DURation:THReshold?`
- `:SYNChronization:HOLDover:DURation:THReshold:EXCeeded?`

Operating in Holdover

Initiating Manual Holdover

- `:SYNChronization:HOLDover:INITiate`

Recovering from Holdover

- `:SYNChronization:HOLDover:WAITing?`
 Returns prioritized reason why the Receiver is waiting to recover.

- `:SYNChronization:HOLDover:RECovery:INITiate`
- `:SYNChronization:HOLDover:RECovery:LIMit:IGNore`
- `:SYNChronization:IMMediate`

Basic command
Operating Status

The following commands are provided to obtain Receiver status information. There are several ways to obtain Receiver status using commands. For example, you can send a command to display the Receiver Status screen, to read the error queue, and to read the diagnostic log. You can also send a sequence of commands to read and control the status registers for alarm generation.

Receiver Operation at a Glance

- `:SYSTem:STATus?`
 Outputs a fully formatted status screen.

- `:SYSTem:STATus:LENGth?`

Reading the Error Queue

- `:SYSTem:ERRor?`
 Returns the oldest error in the Error Queue and removes that error from the queue (first in, first out).

Reading the Diagnostic Log

- `:DIAGnostic:LOG:CLEar`
 Clears the diagnostic log.

- `:DIAGnostic:LOG:READ:ALL?`
 Returns all of the most recent diagnostic log entries.

- `:DIAGnostic:LOG:CLEar <current log size>`

- `:DIAGnostic:LOG:COUn?`

- `:DIAGnostic:LOG:READ?`

- `:DIAGnostic:LOG:READ? <entry number>`

Monitoring Status/Alarm Conditions

Clearing and Presetting Alarms

- `*CLS`
 Clears the event status registers and error queue.

- `:STATus:PRESet:ALARm`

Reading and Qualifying Alarms

- `:LED:ALARm?`
 Returns status of front-panel Alarm LED.

- `*SRE <bit mask>`

- `*SRE?`

- `*STB?`

Basic command
Reading and Qualifying Receiver Status

<register> = OPERation
<register> = QUEStionable
<register> = OPERation:HARDware
<register> = OPERation:HOLDover
<register> = OPERation:POWerup

:STATus:<register>:CONDition?
Returns the Condition Status Register value.

:STATus:<register>:EVENt?
Returns the Event Status Register value.

:STATus:<register>:ENABLE <bit mask>
:STATus:<register>:ENABLE?
:STATus:<register>:NTRansition <bit mask>
:STATus:<register>:NTRansition?
:STATus:<register>:PTRansition <bit mask>
:STATus:<register>:PTRansition?

Reading and Qualifying Command Error Status

*ESE <bit mask>
*ESE?
*ESR?

Reporting Questionable Status

:STATus:QUEStionable:CONDition:USER SET or CLEar
:STATus:QUEStionable:EVENt:USER PTR or NTR

Assessing Receiver Health

*TST?
Executes an internal selftest and reports the results.

:DIAGnostic:LIFetime:COUNt?
:DIAGnostic:TEST? ALL or DISPlay or PROCessor or RAM or EEPROM or UART or QSPI or FPGA or INTerpolator or IREFerence or GPS or POWER
:DIAGnostic:TEST:RESult?
System Time

The following commands are provided to allow you to monitor and control the system date and time. These commands allow you access to a very accurate system clock that provides both date and time, to customize the clock for a local time zone, to identify the exact time, to identify the accumulated time difference (in seconds) between the GPS and UTC timelines, and to monitor leap second occurrences.

Identifying Time of Next 1 PPS Reference Edge

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>:PTIMe:TCODE?</td>
<td>Returns timecode message 980 to 20 ms prior to 1 PPS of indicated time.</td>
</tr>
</tbody>
</table>

Reading Current Time

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>:PTIMe:DATE? or :SYSTem:DATE?</td>
<td></td>
</tr>
<tr>
<td>:PTIMe:TIME? or :SYSTem:TIME?</td>
<td></td>
</tr>
<tr>
<td>:PTIMe:TIME:STRing?</td>
<td></td>
</tr>
</tbody>
</table>

Applying Local Time Zone Offset

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>:PTIMe:TZONe <hours>, <minutes></td>
<td>Sets the time zone local time offset to provide an offset from UTC to serve as the basis for all reported time.</td>
</tr>
<tr>
<td>:PTIMe:TZONe?</td>
<td>Returns the local time zone offset.</td>
</tr>
</tbody>
</table>

Defining the 1 PPS Reference Edge (59551A Only)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>:PTIMe:PPS:EDGE RISING or FALLing</td>
<td>Selects the polarity of the 1 PPS on-time edge.</td>
</tr>
<tr>
<td>:PTIMe:PPS:EDGE?</td>
<td>Returns the polarity of the 1 PPS on-time edge.</td>
</tr>
</tbody>
</table>

Reading Leap Second Status

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>:PTIMe:LEAPsecond:ACCumulated?</td>
<td>Returns the leap second difference accumulated between GPS time and UTC time since the beginning of GPS time. The time units are seconds.</td>
</tr>
<tr>
<td>:PTIMe:LEAPsecond:DATE?</td>
<td></td>
</tr>
<tr>
<td>:PTIMe:LEAPsecond:DURation?</td>
<td></td>
</tr>
<tr>
<td>:PTIMe:LEAPsecond:STATe?</td>
<td></td>
</tr>
</tbody>
</table>

Basic command

R: Accessible via rear-panel PORT 1.
Programmable Pulse Output (59551A Only)

The following commands are provided to allow you to operate and control the programmable pulse output of the 59551A GPS Receiver. The pulse output, which is programmable by the user, can either generate a stream of pulses at a specified start time and repetition interval, or can produce a single pulse at a specified time and then stop.

```
:PULSe:CONTinuous:PERiod <seconds>
Sets the interval between pulses in seconds.

:PULSe:CONTinuous:PERiod?
Returns the interval between pulses in seconds.

:PULSe:CONTinuous:STATe ON or OFF
Selects whether the Programmable Pulse output will be just one pulse or a sequence of pulses.

:PULSe:CONTinuous:STATe?
Identifies whether the Programmable Pulse output is set to output a single pulse or sequence of pulses.

:PULSe:REFerence:EDGE RISing or FALLing
Selects the polarity of the Programmable Pulse on-time edge.

:PULSe:REFerence:EDGE?
Returns the polarity of the Programmable Pulse on-time edge.

:PULSe:STARt:DATE <four-digit year>, <month>, <day>
Sets the date when the individual pulse (or first pulse of the pulse sequence) is to be generated at the Programmable Pulse output.

:PULSe:STARt:DATE?
Returns the date when the individual pulse (or first pulse of the pulse sequence) is generated at the Programmable Pulse output.

:PULSe:STARt:TIME <hour>, <minute>, <second>
Sets the time when the individual pulse (or first pulse of the pulse sequence) is to be generated at the Programmable Pulse output.

:PULSe:STARt:TIME?
Returns the time when the individual pulse (or first pulse of the pulse sequence) is generated at the Programmable Pulse output.
```
Event Time Stamping (59551A Only)

The following commands are provided to allow you to time-tag and record events such as power surges and power outages. The time tagging input feature allows you to use the Receiver with equipment which produce a TTL edge when some important event happens in the base station. The Receiver has three time tagging inputs which record the time of occurrence of TTL edge(s).

Defining the Time-stamped Edge

<channel> = 1 or 2 or 3

:SENSE:TSTamp<channel>:EDGE RISing or FALLing
Selects the polarity of the edges the Receiver will timestamp.

:SENSE:TSTamp<channel>:EDGE?
Returns the polarity of the edges the Receiver will timestamp.

Clearing Time Stamp Memory

:SENSE:DATA:CLEar
Clears the data in the measurement buffer for all Time Tag inputs.

:SENSE:DATA:CLEar "TSTamp 1" or "TSTamp 2" or "TSTamp 3"

Reading Time Stamps

:SENSE:DATA? "TSTamp 1" or "TSTamp 2" or "TSTamp 3"
Returns the data in the timestamp measurement buffer for the specified Time Tag Input.

:FORMat:DATA ASCii or INTeger
:FORMat:DATA?
:SENSe:DATA:POINTs?
:SENSe:DATA:POINTs? "TSTamp 1" or "TSTamp 2" or "TSTamp 3"
:SENSe:DATA:TSTamp? "TSTamp 1" or "TSTamp 2" or "TSTamp 3", <entry number>

Processing Memory Overflow

:SENSE:DATA:MEMory:OVERflow:COUNt?
:SENSE:DATA:MEMory:OVERflow:COUNt? "TSTamp 1" or "TSTamp 2" or "TSTamp 3"
:SENSE:DATA:MEMory:SAVE FIRST or LAST
:SENSE:DATA:MEMory:SAVE?
Serial Interface Communication

The following commands are provided to allow you to configure the serial interface port(s) for instrument communications.

Configuring I/O Port 1

R :SYSTem:COMMunicate?
R :SYSTem:COMMunicate:SERial1:BAUD 1200 or 2400 or 9600 or 19200
R,F :SYSTem:COMMunicate:SERial1:BAUD?
R :SYSTem:COMMunicate:SERial1:BITS 7 or 8 (59551A)
R,F :SYSTem:COMMunicate:SERial1:BITS?
R :SYSTem:COMMunicate:SERial1:FDUPlex ON or OFF
R,F :SYSTem:COMMunicate:SERial1:FDUPlex?
R :SYSTem:COMMunicate:SERial1:PACE XON or NONE
R,F :SYSTem:COMMunicate:SERial1:PACE?
R :SYSTem:COMMunicate:SERial1:PARity EVEN or ODD or NONE
R,F :SYSTem:COMMunicate:SERial1:PARity?
R :SYSTem:COMMunicate:SERial1:SBITs 1 or 2 (59551A)
R,F :SYSTem:COMMunicate:SERial1:SBITs?

Configuring I/O Port 2 (59551A Only)

F :SYSTem:COMMunicate?
F :SYSTem:COMMunicate:SERial2:BAUD 1200 or 2400 or 9600 or 19200
R,F :SYSTem:COMMunicate:SERial2:BAUD?
F :SYSTem:COMMunicate:SERial2:FDUPlex ON or OFF
R,F :SYSTem:COMMunicate:SERial2:FDUPlex?
F :SYSTem:COMMunicate:SERial2:PACE XON or NONE
R,F :SYSTem:COMMunicate:SERial2:PACE?
F :SYSTem:COMMunicate:SERial2:PARity EVEN or ODD or NONE or ONE
R,F :SYSTem:COMMunicate:SERial2:PARity?
R,F :SYSTem:COMMunicate:SERial2:SBITs?

Recovering the Last Query Response

:DIAgnostic:QUERy:RESPonse?

Basic command

R: Accessible via rear-panel PORT 1.
F: Accessible via front-panel PORT 2 of the 59551A
Receiver Initialization

The following commands are provided to allow you to initialize or preset the serial interface port(s) and the Receiver to their factory shipment values.

\[\text{R:SYSTem:COMMunicate:SERial1:PRESet} \]
\[\text{:SYSTem:COMMunicate:SERial2:PRESet (59551A Only)} \]
\[\text{:SYSTem:PRESet} \]

Basic command

R: Accessible via Rear-panel PORT 1.
Receiver Identification/Upgrade

The commands provided in this section allow you to query the identification of the Receiver, and to perform firmware upgrades in the field after you obtain a new firmware disk.

Reading Product Identification

*IDN?
Returns the Receiver identification.

Installing Firmware via I/O Port 1

R *CLS
R :DIAGnostic:DOWNload <Motorola S-record>
R :DIAGnostic:ERASe
R :DIAGnostic:ERASe?
R :SYSTem:ERRor?
R :SYSTem:LANGuage "INSTALL" or "PRIMARY"
R :SYSTem:LANGuage?
Receiver Commands at a Glance

GPS Satellite Acquisition

Facilitating Initial Tracking
- :GPS:INITial:DATE <year>, <month>, <day>
- :GPS:INITial:POsition <position>1
- :GPS:INITial:TIME <hour>, <minute>, <second>

Establishing Position
- :GPS:POsition <position>1
- :GPS:POsition ACTual?
- :GPS:POsition LAST
- :GPS:POsition SURVey
- :GPS:POsition HOLD:LAST?
- :GPS:POsition:HOLD:STATe?
- :GPS:POsition:SURVey:PROGress
- :GPS:POsition:SURVey:STATe ONCE
- :GPS:POsition:SURVey:STATe
- :GPS:POsition:SURVey:POWerup ON or OFF
- :GPS:POsition:SURVey:STATe:POWerup?

Selecting Satellites <select> = IGGLE or INCLUDe
- :GPS:SATellite:TRACking:EMANgle <degrees>
- :GPS:SATellite:TRACking:EMANgle?
- :GPS:SATellite:TRACking:IGGLE <PRN>, ..., <PRN>
- :GPS:SATellite:TRACking:INCLUDe <PRN>, ..., <PRN>
- :GPS:SATellite:TRACking:IGGLE?
- :GPS:SATellite:TRACking:SELECT:ALL
- :GPS:SATellite:TRACking:SELECT:NONE

Compensating for Antenna Delay
- :GPS:REFerence:ADELay <seconds>
- :GPS:REFerence:ADELay?

Monitoring Acquision
- :GPS:REFerence:VALID?
- :GPS:SATellite:TRACking?
- :GPS:SATellite:VISible:PREDic ted?
- :GPS:SATellite:TRACking:COUNt?
- :GPS:SATellite:VISible:PREDic ted:COUNt?

1 PPS Reference Synchronization

Monitoring 1 PPS Synchronization
- :SYNChronization:STAte?
- :DIAgnostic:ROSSet:ELControl RELative?
- :LED:GPSlock?
- :LED:HOLDover?

Assessing 1 PPS Quality
- :SYNChronization:PPPerr?
- :SYNChronization:HOLDover:TUNcertainty:PREDic ted?
- :SYNChronization:HOLDover:TUNcertainty:PREsent?
- :SYNChronization:forker?
- :SYNChronization:TUNtival?
- :SYNChronization:HOLDover:DURation?
- :SYNChronization:HOLDover:DURation:THRshift <seconds>
- :SYNChronization:HOLDover:THRshift:EXCessed?

Operating in Holdover

Initiating Manual Holdover
- :SYNChronization:HOLDover:NITiate

Recovering from Holdover
- :SYNChronization:HOLDover:WAITing?
- :SYNChronization:HOLDover:RECovery:NITiate
- :SYNChronization:HOLDover:RECovery:LIMit:IGNore
- :SYNChronization:IMMediate

Operating Status

Receiver Operation at a Glance
- :SYStem:STATus?
- :SYStem:STATus:LENth?

Reading the Error Queue
- :SYStem:ERor?

Reading the Diagnostic Log
- :DIAgnostic:LOG:CLEar
- :DIAgnostic:LOG:READ:ALL?
- :DIAgnostic:LOG:CLEar <current log size>
- :DIAgnostic:LOG:COUNt?
- :DIAgnostic:LOG:READ? <entry number>

Monitoring Status/Alarm Conditions

Clearing and Presetting Alarms
- :GALS
- :STATus:PRESet:ALARm

Reading and Qualifying Alarms
- :LED:ALARm?
- *SRE <bit mask>
- *SRE?
- *STB?

Reading and Qualifying Receiver Status
- :registrat = OPERat <register> = QUESTIONable
- :registrat = OPERat:HArdware
- :registrat = OPERat:HOLDover
- :registrat = OPERat:POWerup
- :STATus:<registrat>:CONDitio n?
- :STATus:<registrat>:EVEN?
- :STATus:<registrat>:ENABle <bit mask>
- :STATus:<registrat>:ENABle?
- :STATus:<registrat>:NTTRatio n <bit mask>
- :STATus:<registrat>:PТRationa n <bit mask>
- :STATus:<registrat>:PTRationa n?

Reading and Qualifying Command Error Status
- *ESЕ <bit mask>
- *ESЕ?
- *ESE?

Reporting Questionable Status
- :STATus:QUEStionable:CONDitio n USER SET or CLEar
- :STATus:QUEStionable:EVEN USER PТRationa n or NTTRatio n

Assessing Receiver Health
- *PТS?
- :DIAgnostic:LIFeTime:COUNt?
- :DIAgnostic:TEST? AL1 or <specific test>2
- :DIAgnostic:TEST:RESult?
Chapter 4 Command Quick Reference

Receiver Identification/Upgrade

Receiver Commands at a Glance (cont’d)

System Time
- **Identifying Time of Next 1 PPS Reference Edge**
 - PTMe:TOCDe?

- **Reading Current Time**
 - PTMe:DATE? or SYSTem:DATE?
 - PTMe:TIME?
 - PTMe:TIME:STRTing?

- **Applying Local Time Zone Offset**
 - PTMe: TZOnE <hours>, <minutes>
 - PTMe:TZOnE?

- **Defining the 1 PPS Reference Edge** (HP 59551A)
 - PTMe:PPS:EDGE RISING or FALLing
 - PTMe:PPS:EDGE?

- **Reading Leap Second Status**
 - PTMe:LEAPseconD:ACUmulated?
 - PTMe:LEAPseconD DATE?
 - PTMe:LEAPseconD DUration?
 - PTMe:LEAPseconD STAte?

- **Programmable Pulse Output** (HP 59551A)
 - PULSe:CONTinuous:PERiod <seconds>
 - PULSe:CONTinuous:PERiod?

Event Time Stamping (HP 59551A)
- **Defining the Time-stamped Edge**
 - <channel> = 1 or 2 or 3

- **Clearing Time Stamp Memory**
 - SENE: DATAClear
 - SENSE: DATA: Clear <data set>3

- **Reading Time Stamps**
 - SENSE: DATAidisplays the time stamp data element number

- **Processing Memory Overflows**
 - SENSE: DATA disin:OVERflow:COUNT?
 - SENSE: DATA disin:OVERflow:COUNT?
 - SENSE: DATA disin:SAVE FIRST or LAST

Serial Interface Communication

Configuring I/O Port 1
- **port** = SERial1 or SERial1

Configuring I/O Port 2
- **port** = SERial2 (HP 59551A)

Receiver Initialization
- **port** = SERial1 or SERial2

Receiver Identification/Upgrade

Reading Product Identification
- ***IDN?**

Installing Firmware via I/O Port
- **port** = SERial1 or SERial2

Parameter Syntax:
1. **<positions>**
 - N or S, <latitude degree>, <latitude minute>, <latitude second>, E or W, <longitude degree>, <longitude minute>, <longitude second>, <height above mean sea level, in meters>

2. **<specific test>**
 - MSIP or PRGtest or RAM or ESRtest or UART or QSPI or FPPGA or INTepolator or IFRFence or GPS or POWER

3. **<data set>**
 - "STSTamp" 1 or "STSTamp" 2 or "STSTamp" 3

4. **<bit0>**
 - 1200 or 2400 or 6000 or 16000

5. **<parity>**
 - EVEN or ODD or NONE

Operating and Programming Guide 4-17
Chapter 4 Command Quick Reference

Status Reporting System at a Glance

Binary Weights

<table>
<thead>
<tr>
<th>Value</th>
<th>Binary Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td>7</td>
<td>15</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>20</td>
</tr>
<tr>
<td>12</td>
<td>22</td>
</tr>
<tr>
<td>13</td>
<td>23</td>
</tr>
<tr>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
</tr>
<tr>
<td>64</td>
<td>2</td>
</tr>
<tr>
<td>128</td>
<td>4</td>
</tr>
<tr>
<td>256</td>
<td>8</td>
</tr>
<tr>
<td>512</td>
<td>16</td>
</tr>
<tr>
<td>1024</td>
<td>32</td>
</tr>
<tr>
<td>2048</td>
<td>64</td>
</tr>
<tr>
<td>4096</td>
<td>128</td>
</tr>
<tr>
<td>8192</td>
<td>256</td>
</tr>
<tr>
<td>16384</td>
<td>512</td>
</tr>
<tr>
<td>32768</td>
<td>1024</td>
</tr>
</tbody>
</table>

Powerup

- First Satellite Tracked
- Oscillator Oven Warm
- Date & Time Valid

Holdover

- Holding
- Waiting to Recover
- Recovering
- Exceeding Threshold

Hardware

- Selftest Failure
- +15V Supply Exceeds Tolerance
- -15V Supply Exceeds Tolerance
- +6V Supply Exceeds Tolerance
- Oven Supply Exceeds Tolerance
- not used
- EFC Voltage Near Full-Scale
- EFC Voltage Full-Scale
- GPS 1 PPS Failure
- GPS Failure
- Ti Measurement Failed
- EEPROM Write Failed
- Internal Reference Failure

Questionable

- Time Reset
- User-reported

Command Error

- not used
- Query Error
- Hardware/Firmware Error
- Semantic Error
- Syntactic Error
- not used
- Power Cycled

Alarm

- Questionable Summary
- Command Error Summary
- Master Summary
- Operation Summary

Operation

- Powerup Summary
- Locked
- Holdover Summary
- Position Hold
- 1 PPS Reference Valid
- Hardware Summary
- Log Almost Full

Default Transition Filter

- False-to-true (positive) transition triggers event.
- Not applicable

Default Event Enable

- Event enabled to report to summary bit.
- Event disabled
Chapter Contents

This chapter provides a description of each command that can be used to operate the GPS Receiver. The commands are grouped by functions. The functions are grouped and ordered the same as they are in Chapter 4, “Command Quick Reference,” and on the foldout “Receiver Commands at a Glance (cont’d).”

This chapter is organized as follows:

- Command Syntax Conventions page 5-4
- Description Format page 5-5
 - Commands and Returns page 5-5
 - Query-Specific Information page 5-6
- GPS Satellite Acquisition page 5-7
 - Facilitating Initial Tracking page 5-9
 - Establishing Position page 5-12
 - Selecting Satellites page 5-17
 - Compensating for Antenna Delay page 5-22
 - Monitoring Acquisition page 5-24
- 1 PPS Reference Synchronization page 5-27
 - Monitoring 1 PPS Synchronization page 5-28
 - Assessing 1 PPS Quality page 5-30
 - Operating in Holdover page 5-36
- Operating Status page 5-39
 - Receiver Operation at a Glance page 5-41
 - Reading the Error Queue page 5-42
 - Reading the Diagnostic Log page 5-43
 - Monitoring Status/Alarm Conditions page 5-48
 - Assessing Receiver Health page 5-70
Chapter 5 Command Reference

Chapter Contents

- System Time page 5-73
 - Identifying Time of Next 1 PPS Reference Edge page 5-74
 - Reading Current Time page 5-75
 - Applying Local Time Zone Offset page 5-77
 - Defining the 1 PPS Reference Edge (59551A Only) page 5-78
 - Reading Leap Second Status page 5-79
- Programmable Pulse Output (59551A Only) page 5-83
- Event Time Stamping (59551A Only) page 5-89
 - Defining the Time-stamped Edge page 5-90
 - Clearing Time Stamp Memory page 5-91
 - Reading Time Stamps page 5-92
 - Processing Memory Overflows page 5-97
- Serial Interface Communication page 5-100
 - Configuring I/O Ports page 5-101
 - Recovering the Last Query Response page 5-108
- Receiver Initialization page 5-109
- Receiver Identification/Upgrade page 5-113
 - Reading Product Identification page 5-114
 - Installing Firmware via I/O Port 1 page 5-115

See Appendix B, “Command Syntax and Style,” for details regarding command Expanded Syntax, parameter types, and query response types.
Command Syntax Conventions

POSition Means you MUST use either all the uppercase letters or the entire word. The lowercase letters are optional. For example, POS and POSITION are both valid. However, POSI is not valid. (Note POSition is used here as an example, but this convention is true for all command keywords.) In other words, the short form of the keywords is shown in uppercase.

<n> The notation <n> ending a command keyword indicates a numeric suffix, used to differentiate multiple instances of the same structure. The numeric suffix is applied to both the short and long forms. The valid range for the value n is specified from an enumerated list, for example [1|2|3], or from a range, for example [1..3] to indicate any of the integers from 1 to 3.

"TSTamp 1" When you see quotation marks in the command’s parameter, you must send the quotation marks with the command.
Description Format

Commands and Returns

Command Index
Required characters are shown in bold type. "..." denotes one or more parameters; refer to Expanded Syntax for details.

Synopsis
Identifies a "basic" (fundamental) command.

Description
This command identifies the date when the individual pulse sequence is generated at the output.

Parameter
- The <four-digit year> range is 1994 to 2099.
- The <month> range is 1 to 12.
- The <day> range is 1 to 31.

Context Dependencies
If you select a date and time which occur after the completion of powerup and first GPS receiver, the parameters provided should be successfully find a start – and therefore time.

Side Effects
- :SYSTem:PRESet sets the date to January 1, 1994.

Theory
- This command can be executed via the rear-panel PORT 1 only.
- Indicates that you cautiously use the :SYSTem:COMMunicate:SERIAL commands to change the Receiver's serial interface parameters (i.e., BAUD, BITS, PACE, PARity, and SBITs) from their factory default values. It is recommended that you configure your PC's serial port settings to match the Receiver's factory default values instead. However, if you must change the parameters, be sure to write down or record all changes. Refer to Chapter 2, "Serial Interface Capabilities," in this guide for more information.

HP 59551A
1994,1,1
NON-VOLATILE

Default Setting
- (commands only)

Product Compatibility
- (if not present, the command is supported by both products)

Scope
- (commands only)

Allowed Values, Range and Resolution

When the command may be issued

Secondary effects on other functions.

Concepts
Query-Specific Information

Description of Response Formats (ASCII-encoded)

The following legend provides the meaning of each type of response format. Refer to Table B-3 in Appendix B, “Command Syntax and Style,” for details.

<table>
<thead>
<tr>
<th>RESPONSE FORMAT</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 or 1</td>
<td>0</td>
<td>Single character, one or zero</td>
</tr>
<tr>
<td>± dd</td>
<td>+10</td>
<td>Integer</td>
</tr>
<tr>
<td>± d.d</td>
<td>+1.5</td>
<td>Fixed-point number</td>
</tr>
<tr>
<td>± d.dEe</td>
<td>+1.00000E-009</td>
<td>Floating-point number</td>
</tr>
<tr>
<td>XYZ</td>
<td>LOCK</td>
<td>Alphanumeric characters</td>
</tr>
<tr>
<td>“XYZ”</td>
<td>“19:49:51” or “No error”</td>
<td>Quoted string</td>
</tr>
<tr>
<td>± dd, ...</td>
<td>+14, +15, +18, +22, +29</td>
<td>Comma-separated list of integers</td>
</tr>
<tr>
<td>“XYZ”, ...</td>
<td>“Log 001:19950101.00:00:00: Power on”, “Log 002:19950101.00:10:00: Log cleared”</td>
<td>Comma-separated list of quoted strings</td>
</tr>
</tbody>
</table>
GPS Satellite Acquisition

The GPS Receiver is designed to acquire time transfer information (time, date, and position) from the GPS satellites, which is used by the Receiver's internal reference oscillator and SmartClock™ technology to lock to GPS. It acquires a precise time and date by tracking at least one satellite. By tracking at least four satellites, it precisely determines the position of the antenna. With this information, the Receiver can produce a precise 1 PPS signal that is exactly synchronous to Coordinated Universal Time (UTC) as determined by GPS.

The following commands are provided to facilitate initiate GPS satellite tracking, to establish accurate GPS antenna position, to select or ignore satellites, to compensate for antenna cable delay, and to monitor the acquisition.

- **Facilitating Initial Tracking**
 - :GPS:INITial:DATE ...
 - :GPS:INITial:POSition ...
 - :GPS:INITial:TIME ...

- **Establishing Position**
 - :GPS:POSition ...
 - :GPS:POSition?
 - :GPS:POSition:ACTual?
 - :GPS:POSition:HOLD:LAST?
 - :GPS:POSition:HOLD:STATE?
 - :GPS:POSition:SURVey:PROGress?
 - :GPS:POSition:SURVey:STATe ...
 - :GPS:POSition:SURVey:STATe:POWerup ...
 - :GPS:POSition:SURVey:STATe:POWerup?

- **Selecting Satellites**
 - :GPS:SATellite:TRACking:EMANgle ...
 - :GPS:SATellite:TRACking:EMANgle?
 - :GPS:SATellite:TRACking:IGNore ...
 - :GPS:SATellite:TRACking:IGNore? (59551A)
 - :GPS:SATellite:TRACking:INCLude ...
 - :GPS:SATellite:TRACking:INCLude? (59551A)
 - :GPS:SATellite:TRACking:<select>:ALL (59551A)
 - :GPS:SATellite:TRACking:<select>:COUNT?
 - :GPS:SATellite:TRACking:<select>:STATe? ...
Chapter 5 Command Reference

GPS Satellite Acquisition

- **Compensating for Antenna Delay**
 :GPS:REFerence:ADELay ...
 :GPS:REFerence:ADELay?

- **Monitoring Acquisition**
 :GPS:REFerence:VALID?
 :GPS:SATellite:TRACTing?
 :GPS:SATellite:VISible:PREDicted?
 :GPS:SATellite:TRACTing:COUNT?
 :GPS:SATellite:VISible:PREDicted:COUNT?
Facilitating Initial Tracking

This command sets an approximate date for faster initial GPS acquisition. Following powerup, the Receiver obtains the current date from satellite data. This process occurs automatically. Providing an approximate date, however, reduces the time to initial GPS tracking by assisting the Receiver in finding satellites.

Expanded Syntax
:GPS:INITial:DATE <four-digit year>,<month>,<day>

Parameter
Range: the year, month, and day must be valid.

Context Dependencies
This command is valid prior to first satellite tracked (see bit 0 of the Operation Status Register). Sending this command after this time will generate error -221.

The initial date and time needs to be within 3 minutes of the actual date and time to be effective in enabling faster initial GPS acquisition.
This command sets an approximate position for faster initial GPS acquisition. Following powerup, the Receiver refines its position from the satellite data. This process occurs automatically. This command is most effective when the retained position differs significantly from the Receiver's true position.

Expanded Syntax

`:GPS:INITial:POSition N or S, <latitude degree>, <latitude minute>, <latitude second>, E or W, <longitude degree>, <longitude minute>, <longitude second>, <height above the GPS ellipsoid, in meters (58303B)> or <height above mean sea level, in meters (59551A)>`

Parameter

This command requires three position coordinates: latitude, longitude, and height. Position must be specified with respect to the World Geodetic System 1984 (WGS-1984) datum absolute earth coordinates.

The latitude coordinate is preceded by either N or S, which denotes the northern or southern hemisphere, respectively. The longitude coordinate is preceded by either E or W, which denotes the eastern or western hemisphere, respectively.

The following table lists the allowed settings of other parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
<th>Precision</th>
<th>Parameter</th>
<th>Range</th>
<th>Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td><latitude degrees></td>
<td>0 to 90</td>
<td>1</td>
<td><longitude degrees></td>
<td>0 to 180</td>
<td>1</td>
</tr>
<tr>
<td><latitude minutes></td>
<td>0 to 59</td>
<td>1</td>
<td><longitude minutes></td>
<td>0 to 59</td>
<td>1</td>
</tr>
<tr>
<td><latitude seconds></td>
<td>0 to 59.999</td>
<td>0.001</td>
<td><longitude seconds></td>
<td>0 to 59.999</td>
<td>0.001</td>
</tr>
<tr>
<td><height, m></td>
<td>-1000.00 to 18,000.00</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Context Dependencies

This command is valid while the Receiver is in survey mode prior to first computed position. Sending this command while the Receiver is not in survey mode will generate error -221.
Facilitating Initial Tracking (continued)

This command sets an approximate time for faster initial GPS acquisition. Following powerup, the Receiver obtains the current time from satellite data. This process occurs automatically. Providing an approximate time, however, reduces the time to initial GPS tracking by assisting the Receiver in finding satellites.

Expanded Syntax

:GPS:INITial:TIME <hour>,<minute>,<second>

Parameter

Range: all parameters (hour, minutes, seconds) must be valid.

Context Dependencies

This command is valid prior to first satellite tracked (see bit 0 of the Operation Status Register). Sending this command after this time will generate error -221.

The initial date and time needs to be within 3 minutes of the actual date and time to be effective in enabling faster initial GPS acquisition.
Establishing Position

This command defines the position of the Receiver. The Receiver uses this position to predict satellite visibility and to determine time. An accurate position is necessary for precise time transfer.

Expanded Syntax

:GPS:POSition N or S, <latitude degree>,
 <latitude minute>,
 <latitude second>,
 E or W, <longitude degree>,
 <longitude minute>,
 <longitude second>,
 <height above the GPS ellipsoid, in meters (58303B)> or
 <height above mean sea level, in meters (59551A)>

:GPS:POSition LAST
:GPS:POSition SURVey

Parameter

The numeric form of this command requires three position coordinates: latitude, longitude, and height. Position must be specified with respect to the World Geodetic System 1984 (WGS-1984) datum absolute earth coordinates.

The latitude coordinate is preceded by either N or S, which denotes the northern or southern hemisphere, respectively. The longitude coordinate is preceded by either E or W, which denotes the eastern or western hemisphere, respectively.

The following table lists the allowed settings of other parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
<th>Precision</th>
<th>Parameter</th>
<th>Range</th>
<th>Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td><latitude degree></td>
<td>0 to 90</td>
<td>1</td>
<td><longitude degree></td>
<td>0 to 180</td>
<td>1</td>
</tr>
<tr>
<td><latitude minutes></td>
<td>0 to 59</td>
<td>1</td>
<td><longitude minutes></td>
<td>0 to 59</td>
<td>1</td>
</tr>
<tr>
<td><latitude seconds></td>
<td>0 to 59.999</td>
<td>0.001</td>
<td><longitude seconds></td>
<td>0 to 59.999</td>
<td>0.001</td>
</tr>
<tr>
<td><height, m></td>
<td>-1000.00 to 18,000.00</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Establishing Position (continued)

LAST denotes the last specified position. This parameter is provided to cancel surveying (automatic position computation) and restore the last position setting.

SURVey directs the Receiver to stop surveying and use the computed position. This position is the average of individual position computations.

Context Dependencies

Error -221 is generated if this command is sent as SURV and no valid survey calculation has ever been computed.

Side Effects

This command stops position surveying. The computed position is retained and applied only when SURVey is specified.

:GPS:POSTion?

Returns the current average position of the Receiver.

Response

Returns a list of values defining the Receiver position:

N or S, <latitude degree>, <latitude minute>, <latitude second>,
E or W, <longitude degree>,<longitude minute>, <longitude second>,
<height above the GPS ellipsoid, in meters (58303B)> or <height above mean sea level, in meters (59551A)>.

Context Dependencies

Error -230 is generated if in survey and first calculation has not occurred.
Establishing Position

This query returns the current instantaneous position of the GPS antenna.

Response

Returns a list of values defining the Receiver position:

N or S, <latitude degree>, <latitude minute>, <latitude second>,
E or W, <longitude degree>, <longitude minute>, <longitude second>,
<height above the GPS ellipsoid, in meters (58303B)> or <height above mean sea level, in meters (59551A)>.

Context Dependencies

Error -230 is generated if in survey and first calculation has not occurred.

:GPS:POSITION:ACTUAL?

Returns the current instantaneous position of the GPS antenna.

RESPONSE FORMAT

XYZ or
± dd or
± d.dEe,
...

:GPS:POSITION:HOLD-LAST?

Returns the last position-hold setting, which is restored when the :GPS:POSITION LAST command is sent. Refer to the description of the :GPS:POSITION command on page 5-13 for details.

Response

Returns a list of values defining the Receiver position:

N or S, <latitude degree>, <latitude minute>, <latitude second>,
E or W, <longitude degree>, <longitude minute>, <longitude second>,
<height above the GPS ellipsoid, in meters (58303B)> or <height above mean sea level, in meters (59551A)>.

Context Dependencies

This query is always valid, but if the Receiver has not been in position-hold mode since it was preset (see :SYSTem:PRESet), the value returned will be the preset position.
Establishing Position

This query identifies whether the Receiver is in position-hold or survey mode. In survey mode, the Receiver continually refines its position. In position-hold mode, the position setting does not change.

Response

A value of 0 indicates not in position hold (in survey mode); a value of 1 indicates in position hold.

This query returns percent completed while in survey mode. Automatic transition to position-hold mode occurs following completion of survey mode (indicated by 100).

Response

The range is 0 to 100%. The units are percent.

Context Dependencies

This query is only valid while surveying for position (:GPS:POS:SURV:STATe? returns ONCE or status bit 3 = 0 in the Operation Status Register). If queried while not surveying, error -221 is generated.

This command initiates survey mode during which the Receiver determines its position from satellite data. The Receiver refines successive positional estimates to obtain a final position, transitions from survey to position-hold mode.

Expanded Syntax

:GPS:POS:STATe ONCE
Establishing Position (continued)

This query identifies whether the Receiver is in survey or position-hold mode. In survey mode, the Receiver continually refines its position. In position-hold mode, the position does not change.

Response
A response of ONCE indicates that the Receiver is in survey mode. A response of 0 indicates the Receiver is in position-hold mode.

This command specifies whether the Receiver always surveys at powerup or restores its last position at powerup.

Expanded Syntax
:GPS:POSITION:SURVEY:STATE:POWERup

Parameter
OFF sets the Receiver to powerup in the last valid position. ON sets the Receiver to survey on powerup.

This query returns the position mode to be used at powerup.

Response
A value of 0 indicates the Receiver is set to powerup in the last valid position. A value of 1 indicates the Receiver is set to survey on powerup.
Selecting Satellites

This command instructs the Receiver to allow tracking those satellites for which the elevation angle is greater than this elevation mask angle. Satellites below this elevation are visible, but will not be tracked.

Expanded Syntax

:GPS:SATellite:TRACking:EMANgle <degrees>

Parameter

<degrees> range is 0 degrees (horizon) to 89 degrees. The resolution is 1 degree.

The maximum recommended value while the position is being surveyed is 15 degrees, to allow tracking of four satellites needed for an accurate position determination.

Once the survey is complete, the elevation mask angle can be increased to avoid interference problems caused by buildings and trees and minimize effects of multipath, if necessary.

Values above 40 degrees severely limit GPS signal availability, and are not recommended.

Response

This query returns the GPS elevation mask angle value.

The range is 0 degrees to 89 degrees.
Selecting Satellites (continued)

This command adds the specified satellites to the list that the Receiver ignores for tracking. Each satellite is identified by its pseudorandom noise code (PRN).

Expanded Syntax

:GPS:SATellite:TRACking:IGNore <PRN>, . . ., <PRN>
:GPS:SATellite:TRACking:IGNore:NONE
:GPS:SATellite:TRACking:IGNore:ALL

Parameter

<PRN> parameter is the pseudorandom noise code of the satellite(s) you want the Receiver to ignore. Each satellite has its own unique PRN.

Context Dependencies

This command is always valid. On send, if any item in the <PRN> list is invalid, the entire list will be rejected. Error -222 will be generated.

This query returns a list of satellites to ignore for tracking. Each satellite is identified by its pseudorandom noise code (PRN). Zero (0) indicates no satellites being ignored.

Response

A value of 0 indicates no satellites being ignored. If any satellite is being ignored, the pseudorandom noise code (PRN) of the satellite is returned.

Context Dependencies

This query is always valid.
Selecting Satellites (continued)

This command adds the specified satellites to the list that the Receiver considers for tracking. Actual satellite selection is based on satellite visibility, geometry, and health.

Expanded Syntax

:GPS:SATEllite:TRACking:INCLude <PRN>, . . ., <PRN>
:GPS:SATEllite:TRACking:INCLude:NONE
:GPS:SATEllite:TRACking:INCLude:ALL

Parameter

<PRN> parameter is the pseudorandom noise code of the satellite(s) you want the Receiver to include. Each satellite has its own unique PRN.

Context Dependencies

This command is always valid. On send, if any item in the <PRN> list is invalid, the entire list will be rejected. Error -222 will be generated.

This query returns a list of satellites to include for tracking. Each satellite is identified by its pseudorandom noise code (PRN). Zero (0) indicates no satellites being included (i.e., the satellites are still on the ignored list).

Context Dependencies

This query is always valid.
Selecting Satellites (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Response Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>:GPS:SATellite:TRACking:IGNore:COUNt?</td>
<td>± dd</td>
</tr>
<tr>
<td>Returns the number of satellites that are on the list to ignore for tracking.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
<th>Response Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>:GPS:SATellite:TRACking:INClude:COUNt?</td>
<td>± dd</td>
</tr>
<tr>
<td>Returns the number of satellites that are on the list to include for tracking.</td>
<td></td>
</tr>
</tbody>
</table>

The query :GPS:SATellite:TRACking:IGNore:COUNt? returns the number of satellites that are on the list to ignore for tracking.

The query :GPS:SATellite:TRACking:INClude:COUNt? returns the number of satellites that are on the list to be included for tracking.

Response

There may be some delay between changes made to the list of satellites being ignored and their actual removal and inclusion in the tracking process.

At :SYSTem:PRESet, all satellites are put on the list to include for tracking.
The query :GPS:SATellite:TRACking:IGNore:STATe? returns the ignored status of the specified satellite. A satellite is specified by its pseudorandom noise code (PRN).

The query :GPS:SATellite:TRACking:INClude:STATe? returns the include status of the specified satellite. A satellite is specified by its pseudorandom noise code (PRN).

There may be some delay between changes made to the list of satellites being ignored and their actual removal and inclusion in the tracking process.

Expanded Syntax

:GPS:SATellite:TRACking:IGNore:STATe? <PRN>
:GPS:SATellite:TRACking:INClude:STATe? <PRN>

Parameter

<PRN> parameter is the pseudorandom noise code of the satellite(s) you want the Receiver to ignore or include. Each satellite has its own unique PRN.

Response

A value of 0 indicates not on the selected list.
A value of 1 indicates on the selected list.

Context Dependencies

After a :SYSTem:PRESet, all satellites are removed from the list to ignore.
Compensating for Antenna Delay

This command sets the GPS antenna delay value in seconds. It instructs the Receiver to output its 1 PPS output pulse earlier in time to compensate for antenna cable delay.

CAUTION
Using this command while the Receiver is in normal locked operation could cause the Receiver go into holdover.

Expanded Syntax
:GPS:REFERENCE:ADELAY <numeric_value>

Parameter
Numeric_value range is 0 to 0.000999999 seconds. The resolution is 1 nanosecond.

Zero cable delay is set for a zero-length antenna cable. Consult a cable data book for the delay per meter for the particular antenna cable used in order to compute the total cable delay needed for a particular installation.

See Also
:GPS:REFERENCE:ADELAY?

The tables below list the delay values that you need to use with the :GPS:REFERENCE:ADELAY <seconds> command for the available cable assemblies.

Delay Values for the 58518A/519A and 58518AA/519AA RG-213 Antenna Cables

<table>
<thead>
<tr>
<th>Cable Option</th>
<th>Length</th>
<th>RG 213 or Belden 8267 Antenna Delay Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>1 m</td>
<td>5.0 nanoseconds</td>
</tr>
<tr>
<td>002</td>
<td>2 m</td>
<td>10.3 nanoseconds</td>
</tr>
<tr>
<td>005</td>
<td>5 m</td>
<td>25.2 nanoseconds</td>
</tr>
<tr>
<td>010</td>
<td>10 m</td>
<td>50.5 nanoseconds</td>
</tr>
<tr>
<td>015</td>
<td>15 m</td>
<td>75.7 nanoseconds</td>
</tr>
<tr>
<td>030</td>
<td>30 m</td>
<td>151.5 nanoseconds</td>
</tr>
<tr>
<td>050</td>
<td>50 m</td>
<td>252.5 nanoseconds</td>
</tr>
</tbody>
</table>

The nominal delay value is labeled on the cables. Refer to the *Designing Your GPS Antenna System Configuration Guide* for more information.
Compensating for Antenna Delay

Delay Values for the 58520A/521A and 58520AA/521A LMR 400 Antenna Cables

<table>
<thead>
<tr>
<th>Cable Option</th>
<th>Length</th>
<th>LMR 400 Antenna Delay Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>1m</td>
<td>3.9 nanoseconds</td>
</tr>
<tr>
<td>002</td>
<td>2 m</td>
<td>8.0 nanoseconds</td>
</tr>
<tr>
<td>005</td>
<td>5 m</td>
<td>19.6 nanoseconds</td>
</tr>
<tr>
<td>010</td>
<td>10 m</td>
<td>39.3 nanoseconds</td>
</tr>
<tr>
<td>015</td>
<td>15 m</td>
<td>59.0 nanoseconds</td>
</tr>
<tr>
<td>030</td>
<td>30 m</td>
<td>118.0 nanoseconds</td>
</tr>
<tr>
<td>060</td>
<td>60 m</td>
<td>236.1 nanoseconds</td>
</tr>
<tr>
<td>110</td>
<td>110 m</td>
<td>432.9 nanoseconds</td>
</tr>
</tbody>
</table>

The nominal delay value is labeled on the cables. Refer to the Designing Your GPS Antenna System Configuration Guide for more information.

:GPS:REFerence:ADELay?

Returns the GPS antenna delay value in seconds.

This query returns the GPS antenna delay value in seconds. This is the delay value set by the system installer (or the factory default). It is not a value measured by the Receiver.

Response

The time units are seconds.
Monitoring Acquisition

This query identifies that the 1 PPS signal has locked to a valid GPS reference and the 1 PPS signal itself is valid.

Response
A value of 1 indicates signal is valid.
A value of 0 indicates signal is not valid.

This query returns a list of all satellites being tracked. Each satellite is identified by its pseudorandom noise code (PRN).

Response
A comma-separated list of satellite pseudorandom noise codes (<PRN>). The range of each <PRN> is 1 to 32.
A response of 0 indicates no satellites being tracked.
Monitoring Acquisition

This query returns the list of satellites (PRN) that the almanac predicts should be visible, given date, time, and location (if any of these values are incorrect, the prediction will be incorrect). Each satellite is identified by its pseudorandom noise code (PRN).

Response
A comma-separated list of satellite pseudorandom noise codes (<PRN>).
The range of each <PRN> is 1 to 32.
A response of 0 indicates no satellites predicted visible.

Theory
Satellites must be in view to be tracked. At least four satellites must be in view, and tracked, to determine the position in position survey operation. Only one satellite must be in view, and tracked, to maintain operation of the reference oscillator locked to GPS when in position hold operation.

This query returns the number of satellites being tracked.

Response
If there are no satellites being tracked, this query returns a 0.
Monitoring Acquisition

This query returns the number of satellites that the almanac predicts should be visible, given date, time, and location (if any of these are incorrect, the prediction will be incorrect).

Response

Number of satellites predicted visible.

Theory

Satellites must be in view to be tracked. At least four satellites must be in view, and tracked, to determine the position in position survey operation. Only one satellite must be in view, and tracked, to maintain operation of the reference oscillator locked to GPS when in position hold operation.
1 PPS Reference Synchronization

1 PPS and 10 MHz (58503B only) output signals are generated by the Receiver's internal reference oscillator. This oscillator is synchronized (phased locked) to GPS while a sufficient number of satellites are tracked. When the GPS signal is interrupted or absent, the Receiver maintains timing and frequency accuracy through its oscillator “holdover” process. While in holdover, the frequency of the reference oscillator is adjusted as necessary to compensate for aging characteristics. The Receiver returns to “locked” operation through a “holdover recovery” process.

The following commands are provided to monitor the operating mode of the reference oscillator, to determine the accuracy and stability of the reference output signal(s), and to control the oscillator holdover process.

Monitoring 1 PPS Synchronization

- :SYNChronization:STATe?
- :DIAGnostic:ROSCillator:EFControl:RELative?
- :LED:GPSLock?
- :LED:HOLDover?

Assessing 1 PPS Quality

- :SYNChronization:FFOMerit?
- :SYNChronization:HOLDover:TUNCertainty:PREDicted?
- :SYNChronization:HOLDover:TUNCertainty:PRESent?
- :SYNChronization:TFOMerit?
- :SYNChronization:TINTerval?
- :SYNChronization:HOLDover:DURation?
- :SYNChronization:HOLDover:DURation:THReshold ...
- :SYNChronization:HOLDover:DURation:THReshold?
- :SYNChronization:HOLDover:DURation:THReshold:EXCeeded?

Operating in Holdover

- **Initiating Manual Holdover**

 - :SYNChronization:HOLDover:INITiate

- **Recovering from Holdover**

 - :SYNChronization:HOLDover:WAITing?
 - :SYNChronization:HOLDover:RECovery:INITiate
 - :SYNChronization:HOLDover:RECovery:LImit:IGNore
 - :SYNChronization:IMMediate
Monitoring 1 PPS Synchronization

Command Reference

This query returns the Receiver state.

Response

OFF, or HOLD, or WAIT, or REC, or LOCK, or POW.

OFF indicates in diagnostic mode or a temporary start-up mode; HOLD indicates in manual holdover; WAIT indicates waiting for external conditions to allow recovery from holdover; REC indicates actively recovering from holdover; LOCK indicates locked to GPS; POW indicates in powerup prior to first lock.

Context Dependencies

:SYSTem:PRESet sets the state to POWerup.

This query returns the Electronic Frequency Control (EFC) output value of the internal reference oscillator. It returns a percentage value.

Response

Range is \(-100\%\) to \(+100\%\).
Monitoring 1 PPS Synchronization (continued)

This query returns the state of the front-panel GPS Lock LED. The Receiver sets this indicator during normal operation when it has locked the internal reference oscillator and 1 PPS output to GPS.

Response
A value of 0 indicates the LED is off.
A value of 1 indicates the LED is on.

This query returns the state of the front-panel Holdover LED. The Receiver sets this indicator when in holdover operation.

Response
A value of 0 indicates the LED is off.
A value of 1 indicates the LED is on.
Assessing 1 PPS Quality

This query returns the Frequency Figure of Merit (FFOM). Use this query when you want to know the stability of the Receiver’s 10 MHz output. The 10 MHz output is controlled by the SmartClock’s Phase-Locked Loop (PLL). Thus, the FFOM value is determined by monitoring the status of the PLL.

Response

The following table lists and defines the FFOM values (0 thru 3) that could be returned.

<table>
<thead>
<tr>
<th>FFOM Value</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>PLL stabilized—10 MHz output within specification.</td>
</tr>
<tr>
<td>1</td>
<td>PLL stabilizing</td>
</tr>
<tr>
<td>2</td>
<td>PLL unlocked (holdover)—Initially the 10 MHz output will be within specifications. However, when in holdover, the 10 MHz output will eventually drift out of specification.</td>
</tr>
<tr>
<td>3</td>
<td>PLL unlocked (not in holdover)—Do not use the output.</td>
</tr>
</tbody>
</table>
Assessing 1 PPS Quality

This query returns an estimate of the time interval error that can be expected for a one day holdover, given the current state of SmartClock learning in the Receiver.

Response
The first number in the response is the estimated time interval error. The units are seconds, the resolution is 100 nanoseconds.

The second number in the response identifies the holdover state. A value of 0 indicates the Receiver is not in holdover; a value of 1 indicates the Receiver is in holdover.

Context Dependencies
This query is not valid prior to first lock following powerup (see bit 2 of the Powerup Status Register) or :SYSTem:PRESet. Sending this query before first lock will generate error -230.

<table>
<thead>
<tr>
<th>Command</th>
<th>Response Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>:SYNChronization:HOlDoVer:TUNCertainty:PREDicted?</td>
<td>± d.dEe, 0 or 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
<th>Response Format</th>
</tr>
</thead>
</table>

This query returns the current time interval error during holdover operation, given the current state of SmartClock learning in the Receiver.

Response
The time error units are seconds.

Context Dependencies
This query is valid when the Receiver is in holdover. If not in holdover, error -230 is generated.
Assessing 1 PPS Quality (continued)

This query returns the Time Figure of Merit. Use this query when you want to know the accuracy of the Receiver’s 1 PPS output. A low TFOM value indicates a more accurate output. A value of 3 indicates that the Time Error ranges from 100 to 1000 nanoseconds.

Response
The following table lists the TFOM values that could be returned and provides the corresponding Time Error.

<table>
<thead>
<tr>
<th>TFOM Value</th>
<th>Time Error (in nanoseconds)</th>
<th>TFOM Value</th>
<th>Time Error (in nanoseconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0*</td>
<td>less than 1</td>
<td>5</td>
<td>10^4–10^5</td>
</tr>
<tr>
<td>1*</td>
<td>1–10</td>
<td>6</td>
<td>10^5–10^6</td>
</tr>
<tr>
<td>2*</td>
<td>10–100</td>
<td>7</td>
<td>10^6–10^7</td>
</tr>
<tr>
<td>3</td>
<td>100–1000</td>
<td>8</td>
<td>10^7–10^8</td>
</tr>
<tr>
<td>4</td>
<td>10^3–10^4</td>
<td>9</td>
<td>greater than 10^8</td>
</tr>
</tbody>
</table>

* The TFOM values 0, 1, and 2 are not presently used in the 58503B and 59551A products. The 58503B and 59551A products will display TFOM values ranging from 9 to 3, which is consistent with the specified accuracies of each product

This query returns the difference or timing shift between the SmartClock 1 PPS and the GPS 1 PPS signals. It generates an error when this interval is unavailable (That is, if no GPS 1 PPS).

Response
Time interval units are seconds.
Resolution is 1E-10 seconds.
Assessing 1 PPS Quality

This query returns the duration of the present or most recent period of operation in the holdover and holdover processes. This is the length of time the reference oscillator was not locked to GPS. The time units are seconds.

Response

The first number in the response is the holdover duration. The duration units are seconds, and the resolution is 1 second.

If the Receiver is in holdover, the response quantifies the current holdover duration. If the Receiver is not in holdover, the response quantifies the previous holdover.

The second number in the response identifies the holdover state. A value of 0 indicates the Receiver is not in holdover; a value of 1 indicates the Receiver is in holdover.

Context Dependencies

This query is always valid. If this query is sent before the first holdover has occurred, the response will be 0,0, indicating that the Receiver is currently not in holdover and last holdover duration was 0 seconds (user infers there has not been one yet).

Set to 0,0 after a :SYSTem:PRESet. If there was a prior holdover, the duration will be lost.
Assessing 1 PPS Quality

This command sets the duration (in seconds) which represents a limit against which the elapsed time of holdover is compared. If the elapsed time in holdover (and associated processes) exceeds the limit, a flag is set. The flag indicating the limit is exceeded can be queried using the :SYNC:HOLD:DUR:THR:EXCeeded? query.

Expanded Syntax

:SYNChronization:HOLDover:DURation:THReshold <seconds>

Parameter

Resolution of the <seconds> parameter is 1 second.

:SYNChronization:HOLDover:DURation:THReshold?

This query returns the duration (in seconds) which represents a limit against which the elapsed time of holdover is compared. If the elapsed time of holdover (and associated processes) exceeds the limit, a flag is set.

Expanded Syntax

:SYNChronization:HOLDover:DURation:THReshold?

Response

The threshold units are seconds.

The resolution is 1 second.
Assessing 1 PPS Quality

This query identifies if the Receiver has been in holdover longer than the amount of time specified by the THRehold command. If it has, 1 will be returned.

Response

A value of 1 indicates that the Receiver is in holdover, and has been operating in holdover for a duration that exceeds the specified duration.

The value 0 indicates either the Receiver is not in holdover, or it has been in holdover for less than the specified duration.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Response Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>:SYNChronization:HOLDover:DURation:THReshold :EXCeeded?</td>
<td>Identifies if the Receiver has been in holdover longer than the amount of time specified by the THRehold command.</td>
<td>0 or 1</td>
</tr>
</tbody>
</table>
Operating in Holdover

Initiating Manual Holdover

:SYNChronization:HOLDover:INI Ti ate

Places the Receiver in holdover mode.

This command places the Receiver in holdover mode. The Receiver will stay in holdover until you send :SYNC:HOLD:REC:INIT.

Context Dependencies

This command is not valid prior to the first lock following powerup (see bit 2 of the Powerup Status Register) or :SYSTem:PRESet. Sending this command before the first lock will generate error -221.

See Also

:SYNChronization:HOLDover:RECovery:INI Ti ate
Operating in Holdover (continued)

Recovering from Holdover

:`SYNC`hronization:`HOLD`over:`WAIT`ing?

Returns prioritized reason for why the Receiver is waiting to recover.

<table>
<thead>
<tr>
<th>RESPONSE FORMAT</th>
<th>XYZ</th>
</tr>
</thead>
</table>

This query returns prioritized reason for why the Receiver is waiting to recover.

Response

HARD indicates there is an internal hardware reason, GPS indicates there are no satellites, LIM indicates the time interval between GPS and internal oscillator is exceeding the limit, and NONE indicates the Receiver isn’t waiting to recover.

Note that if holdover has been initiated by sending the :SYNC:HOLD:INIT command, the Receiver is not waiting to recover; the response is NONE.

This query is always valid. If not in holdover and waiting to recover, NONE will be the response.

:`SYNC`hronization:`HOLD`over:`RECovery:`INIT`iate

Initiates a recovery from manually initiated holdover.

<table>
<thead>
<tr>
<th>EVENT</th>
</tr>
</thead>
</table>

This command initiates a recovery from manually initiated holdover. Use this command to take the Receiver out of a *manually selected holdover*. This command is not needed to initiate holdover recovery in any other situation.

See Also

:`SYNC`hronization:`HOLD`over:`INIT`iate
Operating in Holdover

Recovering from Holdover (continued)

This command initiates recovery from holdover if recovery was inhibited by time intervals exceeding limit.

The time interval used for this comparison is the time interval between the internal oscillator’s 1 PPS edge and the GPS system’s 1 PPS edge. When this time interval consistently exceeds the specified limit, the instrument enters the holdover state, “Waiting to Recover.”

Recovery is initiated when the time intervals consistently fall within limits, or when the limit is ignored by issuing this command.

This command initiates a near-instantaneous alignment of the GPS 1 PPS and Receiver output 1 PPS if the command is issued during recovery from holdover.

Context Dependencies

This command is only valid when recovering from holdover. See bit 2 of the Holdover Status Register (if it is 1, this command is okay). Sending this command when the Receiver is not recovering will generate error -221.
Operating Status

This section describes the commands that can be used to obtain Receiver status information. There are several ways to obtain Receiver status using commands. For example, you can send a command to display the Receiver Status screen, to read the error queue, and to read the diagnostic log. You can also send a sequence of commands to read and control the status registers for alarm generation.

This section defines all of the commands used for status reporting. A comprehensive discussion on how you can monitor and control alarm conditions using the status registers is included.

- **Receiver Operation at a Glance**

 :SYSTem:STATus?
 :SYSTem:STATus:LENGth?

- **Reading the Error Queue**

 :SYSTem:ERRor?

- **Reading the Diagnostic Log**

 :DIAGnostic:LOG:CLEar
 :DIAGnostic:LOG:READ:ALL?
 :DIAGnostic:LOG:CLEar ...
 :DIAGnostic:LOG:COUNT?
 :DIAGnostic:LOG:READ?
 :DIAGnostic:LOG:READ? ...

- **Monitoring Status/Alarm Conditions**

 - **Clearing and Presetting Alarms**

 *CLS
 :STATus:PRESet:ALARm

 - **Reading and Qualifying Alarms**

 :LED:ALARm?
 *SRE ...
 *SRE?
 *STB?
Reading and Qualifying Receiver Status

- **<register> = OPERation**
- **<register> = OPERation:HARDware**
- **<register> = OPERation:HOLDover**
- **<register> = OPERation:POWerup**

- :STATus:<register>:CONDition?
- :STATus:<register>:EVENt?
- :STATus:<register>:ENABle ...
- :STATus:<register>:ENABle?
- :STATus:<register>:NTRansition ...
- :STATus:<register>:NTRansition?
- :STATus:<register>:PTRansition ...
- :STATus:<register>:PTRansition?

Reading and Qualifying Command Error Status

- *ESE ...
- *ESE?
- *ESR?

Reporting Questionable Status

- :STATus:QUESTionable:CONDition:USER ...
- :STATus:QUESTionable:EVENt:USER ...

Assessing Receiver Health

- *TST?
- :DIAGnostic:LIFetime:COUNT?
- :DIAGnostic:TEST? ...
- :DIAGnostic:TEST:RESult?
Chapter 5 Command Reference

Operating Status

Receiver Operation at a Glance

This query outputs a formatted Receiver Status screen. Use this screen to monitor GPS acquisition, derivation of time and position, and synchronization of reference outputs to GPS.

Refer to Chapter 3, “Visual User Interface,” for detailed information on the Receiver Status screen.

Response

Sending this command will display a status screen similar to the following figure (58503B screen is shown in this figure).

```
SYSTem:STATus?
Outputs a formatted status screen.
```

```
SYSTem:STATus? LENGth?
Returns the number of lines of formatted text that are in the Receiver Status screen.
```

This query returns the number of lines of formatted text that are in the Receiver Status screen.
Reading the Error Queue

:SYSTem:ERRor?
Returns the oldest error in the Error Queue and removes that error from the queue (first in, first out).

RESPONSE FORMAT
± dd,"XYZ"

This query returns the oldest error in the Error Queue and removes that error from the queue (first in, first out).

See Appendix A, “Error Messages,” in this guide for detailed error information.

Response
The error response format is: <error_number>, "<error_description>”, where

- The <error_number> is an integer transferred as ASCII bytes in <NR1> format (integer). The range is -32768 to 32767.
- Negative error numbers are defined by the SCPI standard.
- Positive error numbers are defined specifically for this Receiver.
- An error number value of zero indicates that the Error Queue is empty.
- The maximum length of the <error_description> is 255 characters.

Context Dependencies
:SYSTem:PRESet clears the Error Queue.

The queue is cleared (emptied) on *CLS, power-on, or upon reading the last error from the queue.

If the Error Queue overflows, the last error in the queue is replaced with the error -350, "Queue overflow". Any time the queue overflows, the least recent errors remain in the queue and the most recent error is discarded.

The maximum length of the Error Queue is 30.
Reading the Diagnostic Log

The Diagnostic Log is one way to obtain Receiver status.

The following activities and events are recorded in the diagnostic log:

- power-on sequence,
- automatic or manual transitions between locked, and holdover,
- automatic or manual transitions between position survey and position hold operation,
- alarm indications, and
- self-test failures.

Each entry is date-and-time tagged. The log entries are stored in non-volatile memory so all data remains valid even if power is lost. Access to the diagnostic log entries is through commands in the :DIAGnostic:LOG subtree. For example, to read the first diagnostic log entry, use the command :

:DIAG:LOG:READ? 1

The possible log messages that can be displayed on your computer display are listed in the following table.

<table>
<thead>
<tr>
<th>Log Message</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log cleared</td>
<td>Always becomes first log message when the log is cleared. See :DIAG:LOG:CLEAR.</td>
</tr>
<tr>
<td>Power on</td>
<td>Indicates Receiver has been powered on.</td>
</tr>
<tr>
<td>Re-boot</td>
<td>Indicates Receiver processor has re-booted.</td>
</tr>
<tr>
<td>Survey mode started</td>
<td>Indicates beginning of survey for position.</td>
</tr>
<tr>
<td>Position hold mode started</td>
<td>Indicates transition from survey to position hold.</td>
</tr>
<tr>
<td>GPS lock started</td>
<td>Indicates transition into locked operation.</td>
</tr>
<tr>
<td>GPS reference valid at yyyyymmdd.hh:mm:ss</td>
<td>Indicates when GPS reference first become valid. Time in log is the present time from GPS.</td>
</tr>
<tr>
<td>Holdover started, manual</td>
<td>Indicates transition to holdover based on user request. See :SYNC:HOLD:INIT.</td>
</tr>
<tr>
<td>Holdover started, TI error</td>
<td>Indicates transition to holdover due to problem detected with Receiver ability to properly measure interval between GPS 1 PPS and internal oscillator 1 PPS.</td>
</tr>
<tr>
<td>Holdover started, TI limit exceeded</td>
<td>Indicates transition to holdover due to the interval from GPS 1 PPS to internal oscillator 1 PPS exceeding a limit threshold for numerous measurements.</td>
</tr>
<tr>
<td>Holdover started, not tracking GPS</td>
<td>Indicates transition to holdover since GPS is not tracking sufficient satellites.</td>
</tr>
</tbody>
</table>
Table 5-1. Diagnostic Log Messages (Continued)

<table>
<thead>
<tr>
<th>Log Message</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holdover started, GPS RAIM alarm</td>
<td>Indicates transition to holdover since time RAIM algorithm has detected GPS 1PPS timing inaccuracy.</td>
</tr>
<tr>
<td>Holdover started, GPS Alarm</td>
<td>Indicates transition to holdover due to GPS engine communication failure.</td>
</tr>
<tr>
<td>Holdover started, invalid GPS 1 PPS</td>
<td>Indicates transition to holdover due to problem with the GPS 1 PPS signal.</td>
</tr>
<tr>
<td>Holdover started, GPS</td>
<td>Indicates transition to holdover due to some other GPS problem.</td>
</tr>
<tr>
<td>Holdover started, HW error</td>
<td>Indicates transition to holdover due to internal hardware error.</td>
</tr>
<tr>
<td>Holdover started, temporary</td>
<td>Indicates temporary transition to holdover due to changing of certain settings.</td>
</tr>
<tr>
<td>Holdover started</td>
<td>Indicates transition to holdover for any reason not covered above.</td>
</tr>
<tr>
<td>Self-test failed</td>
<td>Indicates self-test failed on powerup.</td>
</tr>
<tr>
<td>System preset</td>
<td>Indicates that the Receiver has been preset to factory settings.</td>
</tr>
<tr>
<td>Hardware failure</td>
<td>Indicates that a hardware failure has been detected. See Hardware Status Register for details.</td>
</tr>
<tr>
<td>EEPROM save failed</td>
<td>Indicates that an attempt to save information to the EEPROM has failed.</td>
</tr>
</tbody>
</table>

The DIAGnostic commands for the log are described in the following text.
Reading the Diagnostic Log

(continued)

This command is an event that removes all previous diagnostic log entries, and effectively sets the number of diagnostic log entries to one.

```
:DIAGnostic:LOG:CLEar
Clears the diagnostic log.
```

This command clears the diagnostic log. The optional log count parameter is provided to ensure that no log entries are unread at the time of the clear.

```
:DIAGnostic:LOG:READ:ALL?
Returns all of the most recent diagnostic log entries.
```

This query returns all of the most recent diagnostic log entries.

Expanding Syntax

```
:DIAGnostic:LOG:CLEar <current log size>
```

Parameter

If the value sent for the optional log parameter does not match the current log entry count (use :DIAG:LOG:COUN? to obtain this number), the clear will not take place.

Context Dependencies

This command is always valid. If the optional log count parameter is sent, and the current and actual log count does not match log count value, the clear will not be performed and error -222 will be generated.
Reading the Diagnostic Log

(continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Response Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>:DIAGnostic:LOG:COUNt?</td>
<td>Identifies the number of entries in the diagnostic log.</td>
<td>± dd</td>
</tr>
</tbody>
</table>

This query identifies the number of entries in the diagnostic log.

Response

Range is 1 to 222, maximum is subject to change.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Response Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>:DIAGnostic:LOG:READ?</td>
<td>Returns the most recent diagnostic log entry.</td>
<td>“XYZ”</td>
</tr>
</tbody>
</table>

This query returns the most recent diagnostic log entry.

Response

The diagnostic log entry format is: “Log NNN: YYYYMMDD.HH:MM:SS: <log_message>”, where:

- Log indicates a diagnostic log entry, and NNN is the log entry number
- YYYYMMDD.HH:MM:SS is the date and time of the diagnostic log entry.
- The <log_message> is a sequence of up to 255 characters.
Reading the Diagnostic Log

This query returns the user-specified diagnostic log entry.

Expanded Syntax

:DIAGnostic:LOG:READ? <entry number>

Parameter

Range is 1 to current log count.

Response

The diagnostic log entry format is: “Log NNN: YYYYMMDD.HH:MM:SS: <log_message>”, where:

Log indicates a diagnostic log entry, and NNN is the log entry number
YYYMMDD.HH:MM:SS is the date and time of the diagnostic log entry.
The <log_message> is a sequence of up to 255 characters.

Context Dependencies

This query is always valid. If no log message is associated with the requested log number, error -222 is generated.
Monitoring Status/Alarm Conditions

The Receiver is at all times monitoring various operating conditions through a status/alarm reporting system. The Receiver is shipped from the factory with the status system set to generate an alarm under a default set of operating conditions.

The monitored operating conditions are organized by function into three major groups: Questionable status, Command Error status, and Operation status. The Operation status group has three functional subgroups: Powerup status, Holdover status, and Hardware status.

All of the operating conditions are summarized by the Alarm status.

Figure 5-1, on the next page, includes the identification of the default alarm conditions. Those conditions which are enabled to “feed” all the way through the system will generate an alarm in a Receiver configured with the factory defaults. (Note a diagram identical to Figure 5-1 is provides as part of the Receiver Commands at a Glance (cont’d)/Status Reporting System at a Glance foldout—pages 4-17 and 4-18, respectively.)
Operating Status

Monitoring Status/Alarm Conditions (continued)

Figure 5-1. 59551A/58503B Status Reporting System Diagram
Monitoring Status/Alarm Conditions (continued)

The following describes, for each functional group of operating status shown in Figure 5-1, each of the operating conditions that is monitored through the status/alarm system.

Each monitored condition bit is “set” (to one) when the named condition is true and “cleared” (to zero) when the named condition is false.

Each monitored event bit is set when the named event has occurred and cleared at powerup and when the user executes a command which reads or clears the event register.

All of the conditions and events are cleared at powerup and :SYSTem:PRESet.

Alarm Status

The Alarm Status summarizes condition changes from the three major functional status groups (Questionable, Command Error, and Operation).

- The Questionable Summary condition (bit 3) reflects one or more latched condition changes in the Questionable status group.
- The Command Error Summary condition (bit 5) reflects one or more latched condition changes in the Command Error status group.
- The Master Summary condition (bit 6) indicates that there was at least one reason for generating an Alarm.
- The Operation Summary condition (bit 7) reflects one or more latched condition changes in the Operation status group.

Operation Status

The Operation Status is comprised of the Operation subgroup (Powerup, Holdover, and Hardware) summaries, Locked, Position Hold, 1 PPS Reference Valid, and Log Almost Full status.

- The Powerup Summary condition (bit 0) reflects one or more latched condition changes in the Powerup status group.
- The Locked condition (bit 1) indicates whether or not the Receiver is locked to GPS.
- The Holdover Summary condition (bit 2) reflects one or more latched condition changes in the Holdover status group.
- The Position Hold condition (bit 3) indicates whether the Receiver is in position hold or survey mode.
- The 1 PPS Reference Valid condition (bit 4) indicates that the GPS 1 PPS signal is suitable to use as a locking reference.
- The Hardware Summary condition (bit 5) reflects one or more latched condition changes in the Hardware status group.
- The Log Almost Full condition (bit 6) indicates whether or not the diagnostic log is approaching the point where new entries will no longer be logged.
Operating Status

Monitoring Status/Alarm Conditions (continued)

Hardware Status

This Operation subgroup comprises operating status that indicates the health of the Receiver hardware.

One or more of the condition changes from this group are summarized in the Operation Status group.

- The Selftest Failure condition (bit 0) indicates whether a failure was detected during the powerup or last user-initiated self-test.
- The following conditions reflect the status of specific hardware that is continuously monitored by the Receiver:

 +15V Supply Exceeds Tolerance condition (bit 1)
 −15V Supply Exceeds Tolerance condition (bit 2)
 +5V Supply Exceeds Tolerance condition (bit 3)
 Oven Supply Exceeds Tolerance condition (bit 4)
 EFC Voltage Near Full-Scale condition (bit 6)
 EFC Voltage Full-Scale condition (bit 7)
 GPS 1 PPS Failure condition (bit 8)
 GPS Failure condition (bit 9)
 Time Interval Measurement Failed event (bit 10)
 Internal Reference Failure condition (bit 12)

- The EEPROM Write Failed event (bit 11) indicates that an attempt to write to the non-volatile memory failed.
Holdover Status

This Operation subgroup is comprised of operating status that occurs during holdover.

One or more of the condition changes from this group are summarized in the Operation Status group.

- The following conditions indicate that the Receiver is in holdover, and the specific holdover state:

 Holding condition (bit 0)
 Waiting to Recover condition (bit 1)
 Recovering condition (bit 2)

- The Exceeding User-Threshold condition (bit 3) indicates whether or not the user-specified holdover duration (:SYNC:HOLDover:DURation:THReshold) is being exceeded.

Powerup Status

This Operation subgroup is comprised of operating status that occurs at powerup.

One or more of the condition changes from this group are summarized in the Operation Status group.

- The First Satellite Tracked condition (bit 0) is cleared at powerup and set when the first satellite becomes tracked following powerup.
- The Oscillator Oven Warm condition (bit 1) is cleared at powerup and set when the internal oscillator has warmed up following powerup.
- The Date & Time Valid event (bit 2) is cleared at powerup and set when the date and time are set during the first lock is attained after powerup.

Questionable Status

The Time Reset status event (bit 0) indicates that the Receiver reset its time because the Receiver's time was found to be different from the time being reported by the satellites. This could occur after an extensive holdover period.

The User-reported condition (bit 1) indicates the setting reported by the user with the :STATus:QUEStionable:CONDition:USER or :STATus:QUEStionable:EVENt:USER command. This is the only condition in the status/alarm reporting that the user can directly affect.
Monitoring Status/Alarm Conditions (continued)

Command Error Status

This group contains events which indicate a command error has occurred, and an event which indicates that the power has cycled. (See Figure 5-1.)

The following status events indicate that a command error occurred:

- The Query Error status event (bit 2). **Errors -400** through **-499** are query errors.
- The Hardware/Firmware Error status event (bit 3). **Errors -300** through **-399** are hardware/firmware errors.
- The Semantic Error status event (bit 4). **Errors -200** through **-299** are semantic errors.
- The Syntactic Error status event (bit 5). **Errors -100** through **-199** are syntactic errors.
- The Power Cycled status event (bit 7) is set at powerup.
Clearing and Presetting Alarms

*CLS
Clears the current alarm and prepares the Receiver for the next alarm activation.

When the *CLS command clears the event status registers and error queue, the Receiver’s Alarm LED and Alarm BITE output will no longer indicate that there was a reason to alarm. Furthermore, the Receiver is then ready to detect a new alarm.

Context Dependencies
In the 59551A, the error queue (and corresponding serial port prompt) of the I/O port which transmitted *CLS will be cleared.

Side Effects
The Alarm LED is extinguished.
The Alarm BITE output is set “inactive/off.”
The prompt of the serial I/O port (which transmits *CLS) reflects error queue clearing.
The event status registers are cleared.
The error queue (and corresponding serial port prompt) of the I/O port which transmitted *CLS will be cleared.

Theory
The *CLS command clears the event status registers and error queue. (They are also cleared at power-up.)
Since the Alarm Condition register summarizes the event registers, it is cleared as a result of the clearing of all of the event registers.
The alarm remains active even after the condition that caused it has gone away.
If the condition that caused the alarm to occur is still set, a new alarm cannot be detected until the condition clears and resets.
This command has no effect on condition, enable, or transition filter registers.
Clearing and Presetting Alarms (continued)

When the configurable portion of the status/alarm reporting system is preset, the Receiver is configured to generate an alarm under the factory default set of operating conditions.

Use this command to restore only the status/alarm reporting system to the factory (:SYSTem:PRESet) settings.

Theory

The configurable portion of the status/alarm reporting system consists of enable and transition filter registers. Figure 5-1 identifies the factory default enables and transitions.

The status/alarm reporting configuration is stored in non-volatile memory.

This command performs a subset of the :SYSTem:PRESet command in that it only presets the configuration associated with status/alarm reporting system. This command does not affect condition or event registers.
Monitoring Status/Alarm Conditions (continued)

☐ Reading and Qualifying Alarms

Figure 5-2. Alarm Condition and Enable Registers

This query returns the status of the front-panel Alarm LED, which indicates that a change in operating conditions was recorded. The alarm remains active even after the condition that caused it has gone away.

Theory

This query essentially reads the Master Summary bit (bit 6) of the Alarm Condition Register.

At power-up, the alarm status is cleared.
Monitoring Status/Alarm Conditions (continued)

□ Reading and Qualifying Alarms (continued)

The setting of the Alarm Enable Register (Figure 5-2) selects which summary status from the Alarm Condition Register is enabled to generate an alarm.

Expanded Syntax
*SRE <bit mask>

Semantics
The <bit mask> has a range of 0 to 255.
The <bit mask> value represents the sum of the binary-weighted values of the register. Attempts to set unused bits in the register are ignored—the value of unused bits is zero.

This query identifies the status conditions enabled to generate an alarm.

Reading the Alarm Enable Register identifies which summary status from the Alarm Condition Register is enabled to generate an alarm.

Response
The range is 0 to 255.
The response value represents the sum of the binary-weighted values of the register. The value of unused bits is zero.

Theory
Reading/Querying the Alarm Enable Register does not change its contents.
This query reads the Alarm Condition Register (Figure 5-2).

Response

The range is 0 to 255.

The response value represents the sum of the binary-weighted values of the register. The value of unused bits is zero.

Theory

The Alarm Condition Register continuously monitors the summary status of the instrument.

The Alarm Condition Register bits are updated in real time—there is no latching or buffering.

Reading/Querying the Alarm Condition Register does not change its contents.

At powerup, the Alarm Condition Register is cleared.
Monitoring Status/Alarm Conditions

Reading and Qualifying Receiver Status

Figure 5-3. Condition, Transition Filter, Event Enable, and Event Registers
Monitoring Status/Alarm Conditions (continued)

- Reading and Qualifying Receiver Status (continued)

This query reads the specified condition register (figures 5-3 and 5-1).

Expanded Syntax

- `:STATus:<register>:CONDition?`
- `:STATus:QUESTIONable:CONDition?`
- `:STATus:OPERation:HARDware:CONDition?`
- `:STATus:OPERation:HOLDover:CONDition?`
- `:STATus:OPERation:POWerup:CONDition?`

Response

The range is 0 to 65535.

The response value represents the sum of the binary-weighted values of the register. The value of unused bits is zero.

Note that some bits, those which are “event-only”, have no corresponding conditions.

Theory

A condition register continuously monitors the hardware and firmware status (that is, the operating conditions) of the instrument.

Conditions register bits are updated in real time—there is no latching or buffering.

Reading/Querying a condition register does not change its contents.

At powerup, the conditions registers are cleared.
Monitoring Status/Alarm Conditions

Reading and Qualifying Receiver Status (continued)

This query reads the specified event register (figures 5-3 and 5-1), retrieving information about what has happened to the instrument since it was last queried, or cleared by :SYSTem:PRESet or *CLS.

Expanded Syntax

This query reads the specified event register (figures 5-3 and 5-1), retrieving information about what has happened to the instrument since it was last queried, or cleared by :SYSTem:PRESet or *CLS.

Expanded Syntax

:STATus:<register>:EVENt?
Reads the specified event register.

RESPONSE FORMAT

± dd

This query reads the specified event register (figures 5-3 and 5-1), retrieving information about what has happened to the instrument since it was last queried, or cleared by :SYSTem:PRESet or *CLS.

Expanded Syntax

:STATus:OPERation:EVENt?
:STATus:QUEStionable:EVENt?
:STATus:OPERation:HARDware:EVENt?
:STATus:OPERation:HOLDover:EVENt?
:STATus:OPERation:POWerup:EVENt?

Response

The range is 0 to 65535.
The response value represents the sum of the binary-weighted values of the register. The value of unused bits is zero.

Side Effects

Reading/Querying an event register clears it.

Theory

An event register captures changes in conditions. When a transition occurs, the corresponding bit in the event register is set TRUE. The instrument can be configured (using :STATus:<register>:NTRansition and :STATus:<register>:PTRansition), for each bit position, to capture the positive, the negative, either, or neither transition.

Event register bits, once set, are latched. That is, they remain set until they are read. When they are read, they are cleared.

At powerup, the event registers are cleared.

See Also

:STATus:<register>:NTRansition . . .
Monitoring Status/Alarm Conditions (continued)

Reading and Qualifying Receiver Status (continued)

The setting of an enable register (figures 5-3 and 5-1) selects which events from the corresponding event register are enabled to report to the corresponding summary bit of the summarizing condition register.

Expanded Syntax

:STATus:<register>:ENABle <bit mask>
:STATus:QUEStionable:ENABle <bit mask>
:STATus:OPERation:HARDware:ENABle <bit mask>
:STATus:OPERation:HOLDover:ENABle <bit mask>
:STATus:OPERation:POWerup:ENABle <bit mask>

Parameter

The <bit mask> has a range of 0 to 65535.

The <bit mask> value represents the sum of the binary-weighted values of the register. Attempts to set unused bits in an enable register are ignored—the value of unused bits is zero.
Monitoring Status/Alarm Conditions (continued)

□ Reading and Qualifying Receiver Status (continued)

:STATus:<register>:ENABle?

Reads the specified enable register.

RESPONSE FORMAT

± dd

Reading an enable register (figures 5-3 and 5-1) identifies which events from the corresponding event register are enabled to report to the corresponding summary bit of the summarizing condition register.

Expanded Syntax

:STATus:OPERation:ENABle?

:STATus:QUEStionable:ENABle?

:STATus:OPERation:HARDware:ENABle?

:STATus:OPERation:HOLDover:ENABle?

:STATus:OPERation:POWerup:ENABle?

Response

The range is 0 to 65535.

The response value represents the sum of the binary-weighted values of the register. The value of unused bits is zero.

Theory

Reading/Querying an enable register does not change its contents.
The setting of the transition filter registers selects which condition transitions (positive, negative, either, or neither) are enabled to report events.

Expanded Syntax

- `:STATus:<register>:NTRansition <bit mask>`
- `:STATus:<register>:PTTransion <bit mask>`
- `:STATus:<register>:HARDware:NTRansition <bit mask>`
- `:STATus:<register>:HOLDover:NTRansition <bit mask>`
- `:STATus:<register>:POWerup:NTRansition <bit mask>`

- `:STATus:<register>:PTRansition <bit mask>`
- `:STATus:<register>:HARDware:PTRansition <bit mask>`
- `:STATus:<register>:HOLDover:PTRansition <bit mask>`
- `:STATus:<register>:POWerup:PTRansition <bit mask>`

Parameter

The `<bit mask>` has a range of 0 to 65535.

The `<bit mask>` value represents the sum of the binary-weighted values of the register. Attempts to set unused bits in the transition filter are ignored—the value of unused bits is zero.

To enable negative (one to zero) transitions of specific conditions, set the corresponding bits to one in the `<bit mask>` for the NTRansition register command.

To enable positive (zero to one) transitions of specific conditions, set the corresponding bits to one in the `<bit mask>` for the PTRansition register command.

Note that some bits, those which are “event-only”, have no transition filter setting. Attempts to set these bits are ignored.
Monitoring Status/Alarm Conditions (continued)

Reading and Qualifying Receiver Status (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>:STATus:<register>:PTRansition?</td>
<td></td>
</tr>
</tbody>
</table>

Expanded Syntax

- :STATus:OPERation:NTRansition?
- :STATus:QUEStionable:NTRansition?
- :STATus:OPERation:HARDware:NTRansition?
- :STATus:OPERation:HOLDover:NTRansition?
- :STATus:OPERation:POWerup:NTRansition?
- :STATus:OPERation:PTRansition?
- :STATus:QUEStionable:PTRansition?
- :STATus:OPERation:HARDware:PTRansition?
- :STATus:OPERation:HOLDover:PTRansition?
- :STATus:OPERation:POWerup:PTRansition?

Response

The range is 0 to 65535.

The response value represents the sum of the binary-weighted values of the register. The value of unused bits is zero.

The bits which are set to one in the <bit mask> of the NTRansition query response indicate the enabled negative transitions of corresponding conditions.

The bits which are set to one in the <bit mask> of the PTRansition query response indicate the enabled positive transitions of corresponding conditions.

Theory

Reading/Querying a transition filter register does not change its contents.
Monitoring Status/Alarm Conditions (continued)

Reading and Qualifying Command Error Status

Figure 5-4. Command Error Event and Enable Registers

*ESE . . .
Sets the Command Error Enable Register.

:SYSTem:PRESet
0

The setting of the Command Error Enable Register (Figure 5-4) selects which events from the Command Error Event Register are enabled to report to the Command Error Summary bit of the Alarm Condition Register.

Expanded Syntax

*ESE <bit mask>

Parameter

The <bit mask> has a range of 0 to 255.

The <bit mask> value represents the sum of the binary-weighted values of the register. Attempts to set unused bits in the register are ignored—the value of unused bits is zero.
Monitoring Status/Alarm Conditions (continued)

Reading and Qualifying Command Error Status (continued)

This query identifies the status conditions enabled to generate an alarm.

Reading the Command Error Enable Register (Figure 5-4) identifies which events from the Command Error Event Register are enabled to report to the Command Error Summary bit of the Alarm Condition Register.

Response

The range is 0 to 255.

The response value represents the sum of the binary-weighted values of the register. The value of unused bits is zero.

Theory

Reading/Querying the Command Error Enable Register does not change its contents.

This query reads the Command Error Event Register, retrieving information about errors (or power cycles) that have occurred since the instrument was last queried, or cleared by SYSTem:PRESet or *CLS.

Response

The range is 0 to 255.

The response value represents the sum of the binary-weighted values of the register. The value of unused bits is zero.
Monitoring Status/Alarm Conditions (continued)

- **Reporting Questionable Status**

  ```
  Sets the User-reported bit of the Questionable Condition Register.
  ```

 This command sets the User-reported bit of the Questionable Condition Register.

 Expanded Syntax

  ```
  :STATus:QUEStionable:CONDition:USER  SET or CLEar
  ```

 Parameter

 SET will cause the User-reported bit of Questionable Condition Register to be set to 1.

 CLEar will cause the User-reported bit of Questionable Condition Register to be set to 0.

 Side Effects

 The User-reported bit of the Questionable Condition Register is set or cleared by this command.

 Theory

 A condition change (from SET to CLEAR, or CLEAR to SET) of the User-reported bit of the Questionable Condition Register, and the appropriate configuration of the Questionable Transition Filter is necessary to generate an event in the Questionable Event Register.

 Furthermore, when the User-reported bit of Questionable Event Enable Register is enabled, and the Questionable Summary bit of the Alarm Enable Register is enabled, then a transition of the User-reported condition will generate an ALARM.
Monitoring Status/Alarm Conditions (continued)

Reporting Questionable Status (continued)

This command generates a transition of the User-reported bit of the Questionable Condition Register.

Expanded Syntax

:STATus:QUEStionable:EVENt:USER \ldots

Generates a transition of the User-reported bit of the Questionable Condition Register.

Parameter

PTRansition will cause the User-reported bit of Questionable Condition Register to transition from a setting of 0 to a setting of 1.

NTRansition will cause the User-reported bit of Questionable Condition Register to transition from a setting of 1 to a setting of 0.

Context Dependencies

Issuing PTRansition, while the User-reported bit of the Questionable Positive Transition Register is enabled, sets the User-reported bit of the Questionable Event register.

Issuing NTRansition, while the User-reported bit of the Questionable Negative Transition Register is enabled, sets the User-reported bit of the Questionable Event register.

Side Effects

The user-reported bit of the Questionable Condition Register is set by the PTRansition parameter or cleared by the NTRansition parameter.

Theory

A positive or negative (PTRansition or NTRansition) of the User-reported bit of the Questionable Condition Register, and the appropriate configuration of the Questionable Transition Filter is necessary to generate an event in the Questionable Event Register.

Furthermore, when the User-reported bit of Questionable Event Enable Register is enabled, and the Questionable Summary bit of the Alarm Enable Register is enabled, then a User-reported event will generate an ALARM.
Assessing Receiver Health

*TST?
Executes an internal selftest and reports the results.

RESPONSE FORMAT
± dd

This query causes an internal selftest and the response indicates whether any errors were detected. This test takes about 40 seconds to complete.

Error -330, “Self test failed” is generated if the selftest fails.

NOTE
Manual operation of internal diagnostics will affect normal Receiver operation, including disruption of any or all of the following: GPS satellite tracking, reference oscillator frequency, 1 PPS output timing, and Receiver status information. When invoked manually, any of these diagnostics should be considered to be destructive tests.

The following elements and functions are tested:

- CPU
- EPROM
- RAM
- EEPROM
- UART
- QSPI
- FPGA logic
- Interpolators
- GPS engine
- Power supply levels
- Reference oscillator

Response

A value of 0 indicates the tests passed, a non-zero value indicates the selftest was not completed or was completed with errors detected.
Assessing Receiver Health (continued)

This query returns the lifetime count, indicating the total powered-on time.

Response

Range of the integer is 0 to 4,294,967,296 with a resolution of 1. Each count represents three hours of operation.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Response Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>:DIAGnostic:LIFeetime:COUNt?</td>
<td>Returns the lifetime count, indicating the total powered-on time.</td>
<td>± dd</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Response Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>:DIAGnostic:TEST? . . .</td>
<td>Returns information for user-specified test.</td>
<td>± dd</td>
</tr>
</tbody>
</table>

This query returns information for user-specified test.

Expanded Syntax

`:DIAGnostic:TEST?` ALL or DISPLAY or PROCessor or RAM or EEPROM or UART or QSPI or FPGA or INTERpolator or GPS or POWER.

Response

A value of 0 (zero) indicates test passed.

Parameter

ALL returns test information for all of the tests.
Assessing Receiver Health (continued)

This query returns the result of the last test and the type of test performed. Use this query, for example, following powerup to check the outcome of the powerup selftest.

Response

A value of 0 indicates test passed. Non-zero value indicates test failed.

The literal or alphanumeric characters portion of the response identifies the specific test.
System Time

The GPS Receiver is designed to allow you access to a very accurate system clock that provides both date and time, to customize the clock for a local time zone, to identify the exact time, to identify the accumulated time difference (in seconds) between the GPS and UTC timelines, and to monitor and adjust for leap second occurrences.

The following commands are provided to allow you to monitor and control the system date and time.

- **Identifying Time of Next 1 PPS Reference Edge**

 :PTIMe:TCODe?

- **Reading Current Time**

 :PTIMe:DATE? or :SYSTem:DATE?

 :PTIMe:TIME? or :SYSTem:TIME?

 :PTIMe:TIME:STRing?

- **Applying Local Time Zone Offset**

 :PTIMe:TZONe ...

 :PTIMe:TZONe?

- **Defining the 1 PPS Reference Edge (59551A Only)**

 :PTIMe:PPS:EDGE ...

 :PTIMe:PPS:EDGE?

- **Reading Leap Second Status**

 :PTIMe:LEAPsecond:ACCumulated?

 :PTIMe:LEAPsecond:DATE?

 :PTIMe:LEAPsecond:DURation?

 :PTIMe:LEAPsecond:STATE?
Identifying Time of Next 1 PPS Reference Edge

This query returns timecode message 980 to 20 ms prior to 1 PPS of indicated time. This special query provides not only accurate time but also provides the user the opportunity to correctly correlate this time with a corresponding 1 PPS edge.

Response

The query response provides the following type of information:

- date and time of next on-time edge,
- Time Figure of Merit,
- Frequency Figure of Merit,
- leap second indicator,
- alarm indication, and
- service request.

An example response is:

T219950511205523300049

This example is in the "T2YYYYMMDDHHMMSSMFLRVcc" format, where:

- T2 indicates a timecode message.
- YYYYMMDD is the calendar date at the next 1 PPS on-time edge.
- HHMMSS is the 24 hour time at the next 1 PPS on-time edge. Note that this value is influenced by the ptim:zonz setting.
- M is time figure of merit.
- F is frequency figure of merit.
- L is leapsecond indicator (- means a -1 leapsecond is pending, 0 means no leapsecond pending, + means a 1 leapsecond is pending).
- R is the request for service bit from the status system (0 = no service requested, 1 = service requested). An alarm will be generated when this byte transitions to 1.
- V is validity byte. 1 indicates that time-related information isn't valid, 0 indicates that it is valid.
- cc is the checksum of the prior bytes (two Hex bytes).
Chapter 5 Command Reference

System Time

Reading Current Time

This query returns the current calendar date. The local calendar date is always referenced to UTC time, offset by any local time zone value that has been provided by the user. The year, month, and day are returned.

Response

Three fields are separated by commas: <year>,<month>,<day>.

- The <year> range is 1994 to 2077.
- The <month> range is 1 to 12.
- The <day> range is 1 to 31.

Context Dependencies

This query is not valid prior to the first lock following powerup (see bit 2 of the Powerup Status Register) or :SYSTem:PRESet. Sending this query before the first lock will generate error -230.

This query returns the current 24-hour time. The local time is always referenced to UTC time, offset by any local time zone value that has been provided by the user. The hour, minute, and second is returned.

Response

Three fields are separated by commas: <hour>,<minute>,<second>.

- The <hour> range is 0 to 23.
- The <minute> range is 0 to 59.
- The <second> range is 0 to 60. The value of 60 only occurs as the UTC leapsecond.

Context Dependencies

This query is not valid prior to the first lock following powerup (see bit 2 of the Powerup Status Register) or :SYSTem:PRESet. Sending this query before the first lock will generate error -230.
Reading Current Time

This query returns the current 24-hour time suitable for display (for example, 15:23:06).

Context Dependencies
This query is not valid prior to the first lock following powerup (see bit 2 of the Powerup Status Register) or :SYSTem:PRESet. Sending this query before the first lock will generate error -230.

:PTIe:TIME:STRing?
Returns the current 24-hour time suitable for display.

RESPONSE FORMAT
“XYZ”
Applying Local Time Zone Offset

This command sets the time zone local time offset to provide an offset from Universal Coordinated Time (UTC) to serve as the basis for all reported time. The local 24-hour time and local calendar date depend on the present setting of the time zone parameter, which is used to indicate the offset from UTC. Typical application of this command is to account for time zone differences between the installed Receiver location and the prime meridian at Greenwich, which uses UTC uncorrected.

Expanded Syntax

:PTIMe:TZONe <hour>, <minutes>

Parameter

- The `<hour>` range is -12 to +12, and is rounded to the nearest integer.
- The optionally supplied `<minute>` range -59 to +59, and is rounded to the nearest integer. The `<minute>` is defaulted to 0 if not supplied.

Context Dependencies

:SYSTem:PRESet sets the time zone to zero (0,0).

This query returns the local time zone offset.

Response

The first returned value is offset hours. The second returned value is offset minutes.
Chapter 5 Command Reference

System Time

Defining the 1 PPS Reference Edge (59551A Only)

This command selects the polarity of the 1 PPS on-time edge.

Expanded Syntax

:PTIMe:PPS:EDGE RISing

or

FALLing

Parameter

The RISing parameter sets the 1 PPS rising edge as the on-time edge.
The FALLing parameter sets the 1 PPS falling edge as the on-time edge.

This query returns the polarity of the 1 PPS on-time edge.

Response

RIS indicates that the 1 PPS on-time edge is the rising edge.
FALL indicates that the 1 PPS on-time edge is the falling edge.
Reading Leap Second Status

This query returns the leap second difference accumulated between GPS time and UTC time since the beginning of GPS time. The time units are seconds.

Response
An example response is:

+10

which indicates that the accumulated leap second difference between the GPS time and UTC is 10 seconds.

Context Dependencies
This query is not valid prior to the first lock following powerup (see bit 2 of the Powerup Status Register) or :SYSTem:PRESet. Sending this query before the first lock will generate error -230.

Theory
The leap second value is initialized during the power-on sequence by evaluating :PTIMe:LEAPsecond:ACC = GPS time - UTC time. In July 1994, the value was 10 seconds.

The value is automatically adjusted immediately following the occurrence of a leap second correction to the UTC time scale. When a 1 leap second addition is made to the UTC time scale, the extra second delays the arrival of midnight UTC causing :PTIM:LEAP:ACC? to increase by 1 second. When a 1 leap second subtraction is made to the UTC time scale, the missing second hastens the arrival of UTC midnight causing :PTIM:LEAP:ACC? to decrease by 1 second.
Reading Leap Second Status

This query returns the UTC calendar date of next leap second. The year, month, and day are returned.

Response

Three fields are separated by commas: <year>,<month>,<day>.

- The <year> range is 1994 to 2077.
- The <month> range is 1 to 12.
- The <day> range is 1 to 31.

Context Dependencies

This query is not valid prior to the first lock following powerup (see bit 2 of the Powerup Status Register) or :SYSTem:PRESet, or if no leap second is pending. Sending this query before the first lock or if no leap second is pending will generate error -230.
Reading Leap Second Status (continued)

This query identifies whether a leap second is pending, distinguishes between leap seconds which extend the minute, and leap seconds which shorten the minute. This query returns the duration of the minute corrected by the next leap second. The duration units are seconds.

Response

Returns a value of 59, 60 or 61:

- A value of 59 indicates subtraction of 1 second is pending.
- A value of 60 indicates no leap second pending.
- A value of 61 indicates addition of 1 second is pending.

Context Dependencies

This query is not valid prior to the first lock following powerup (see bit 2 of the Powerup Status Register) or :SYSTem:PRESet, or if no leap second is pending. Sending this query before the first lock or if no leap second is pending will generate error -230.
Reading Leap Second Status ________________ (continued)

This query identifies if a leap second is pending. This query looks ahead to indicate a pending leap second.

Response

A value of 0 indicates no leap second is pending.

A value of 1 indicates a leap second is pending. The leap second adjustment can be either the addition of a second or the subtraction of a second.

Context Dependencies

This query is not valid prior to the first lock following powerup (see bit 2 of the Powerup Status Register) or :SYSTem:PRESet (but is valid if no leap second is pending). Sending this query before the first lock will generate error -230.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Response Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>:PTIMe:LEAPsecond:STATe?</td>
<td>Identifies if leap second is pending.</td>
<td>0 or 1</td>
</tr>
</tbody>
</table>

RESPONSE FORMAT

Identifies if leap second is pending.

0 or 1
Programmable Pulse Output (59551A Only)

The Programmable Pulse output feature provides a means of using the GPS Receiver as a pulse generator. The pulse output, which is programmable by the user, can either generate a stream of pulses at a specified start time and repetition interval, or it can produce a single pulse at a specified time and then stop.

The following commands are provided to allow you to operate and control the programmable output of the 59551A GPS Receiver.

Note that the configuring of the Programmable Pulse output requires consideration of five settings: start date, start time, continuous on/off, pulse period, and pulse polarity. Changing any one of the settings will stop any previously configured pulse stream and reassert all five settings. If the start date has already passed when you modify the repetition interval, the pulse output will halt until you provide a new start date.

:PULSe:CONTinuous:PERiod ...
:PULSe:CONTinuous:PERiod?
:PULSe:CONTinuous:STATe ...
:PULSe:CONTinuous:STATe?
:PULSe:REFerence:EDGE ...
:PULSe:REFerence:EDGE?
:PULSe:STARt:DATE ...
:PULSe:STARt:DATE?
:PULSe:STARt:TIME ...
:PULSe:STARt:TIME?
This command sets the interval between pulses in seconds.

Expanded Syntax

{:PULSe:CONTinuous:PERiod <seconds>}

Parameter

The `<seconds>` parameter range is 1 to 31536000, equivalent to one year. Resolution is 1.

Context Dependencies

The interval set by this command is only used if :PULSe:CONTinuous:STATe is ON.

This query returns the interval between pulses in seconds.
Chapter 5 Command Reference

Programmable Pulse Output (59551A Only)

59551A

:PULS:CONTinuous:STATe

Controls whether the Programmable Pulse output will be just one pulse or a sequence of pulses.

Expanded Syntax

:PULS:CONTinuous:STATe ON or OFF

Parameter

OFF selects one pulse. ON selects a sequence of pulses.

Context Dependencies

With either state (OFF or ON) the output commences at the time and date defined by :PULS:STARt:DATE and :PULS:STARt:TIME commands.

This command controls whether the Programmable Pulse output will be just one pulse or a sequence of pulses.

59551A

:PULS:CONTinuous:STATe?

Identifies whether the Programmable Pulse output is set to output a single pulse or a sequence of pulses.

Response

- A value of 0 indicates the Receiver is set to output one pulse.
- A value of 1 indicates the Receiver is set to output a sequence of pulses.

Response Format

0 or 1
This command selects the polarity of the Programmable Pulse on-time edge.

Expanded Syntax

:PUSe:REFerence:EDGE RISing or FALLing

Parameter

The RISing parameter sets the Programmable Pulse rising edge as the on-time edge.

The FALLing parameter sets the Programmable Pulse falling edge as the on-time edge.

Response

RIS indicates that the Programmable Pulse on-time edge is the rising edge.

FALL indicates that the Programmable Pulse on-time edge is the falling edge.
This command identifies the date when the individual pulse (or first pulse of the pulse sequence) is generated at the Programmable Pulse output.

Expanded Syntax

`:PULS:STAR:DATE <four-digit year>,<month>,<day>`

Parameter

- The `<four-digit year>` range is 1994 to 3000.
- The `<month>` range is 1 to 12.
- The `<day>` range is 1 to 31.

Context Dependencies

If you select a date and time which occurs prior to the current time or prior to the completion of powerup and first GPS lock, the Receiver will not successfully find a start—and therefore will produce no pulses.

If the Receiver has been set up to use a time zone offset to produce local date and time, the parameters provided should also be expressed as local date and time.

This query returns the date when the individual pulse (or first pulse of the pulse sequence) is generated at the Programmable Pulse output. This query returns year, month, and day.

Response

Three fields are separated by commas: `<four-digit year>,<month>,<day>`.

- The `<four-digit year>` range is 1994 to 3000.
- The `<month>` range is 1 to 12.
- The `<day>` range is 1 to 31.
This command identifies the time when the individual pulse (or first pulse of the pulse sequence) is generated at the Programmable Pulse output.

Expanded Syntax

```
:PULS:STAR:TIME <hour>,<minute>,<second>
```

Parameter

Three fields are separated by commas: <hour>,<minute>, <second>.

- The <hour> range is 0 to 23.
- The <minute> range is 0 to 59.
- The <second> range is 0 to 59.

Context Dependencies

If you select a date and time which occurs prior to the current time or prior to the completion of powerup and first GPS lock, the Receiver will not successfully find a start—and therefore will produce no pulses.

If the Receiver has been set up to use a time zone offset to produce local date and time, the parameters provided should also be expressed as local date and time.

This query returns the time when the individual pulse (or first pulse of the pulse sequence) is generated at the Programmable Pulse output.

Response

Three fields are separated by commas: <hour>, <minute>, <second>.

- The <hour> range is 0 to 23.
- The <minute> range is 0 to 59.
- The <second> range is 0 to 59.
Event Time Stamping (59551A Only)

The time stamping feature allows you to use the Receiver with equipment such as a fault analyzer or a surge detector that produces a TTL edge when some important event happens in the base station. The Receiver has three time tagging inputs (Time Tag 1, Time Tag 2, Time Tag 3) which record the time of occurrence of TTL edge(s).

The following commands are provided to allow you to tag and record events such as power surges and power outages.

- **Defining the Time-stamped Edge**

  ```plaintext
  :SENSe:TSTamp<channel>:EDGE ...
  :SENSe:TSTamp<channel>:EDGE?
  ```

- **Clearing Time Stamp Memory**

  ```plaintext
  :SENSe:DATA:CLEar
  :SENSe:DATA:CLEar ...
  ```

- **Reading Time Stamps**

  ```plaintext
  :SENSe:DATA? ...
  :FORMat:DATA ...
  :FORMat:DATA?
  :SENSe:DATA:POINts?
  :SENSe:DATA:POINts? ...
  :SENSe:DATA:TSTamp? ...
  ```

- **Processing Memory Overflow**

  ```plaintext
  :SENSe:DATA:MEMory:OVERflow:COUNt?
  :SENSe:DATA:MEMory:OVERflow:COUNt? ...
  :SENSe:DATA:MEMory:SAVE ...
  :SENSe:DATA:MEMory:SAVE?
  ```
Defining the Time-stamped Edge

This command selects the polarity of the edges the Receiver will time stamp.

Expanded Syntax

:SENSe:TSTamp<channel>:EDGE RISing
or
FALLing

:SENSe:TSTamp2:EDGE RISing or FALLing

:SENSe:TSTamp3:EDGE RISing or FALLing

Parameter

- The RISing parameter sets the time-stamped edge as the rising edge.
- The FALLing parameter sets the time-stamped edge as the falling edge.

Response

RIS indicates that the time-stamped edge is the rising edge.
FALL indicates that the time-stamped edge is the falling edge.

This query returns the polarity of the edges the Receiver will time stamp.

Context Dependencies

:SYSTem:PRESet clears the time stamp measurement buffers and overflow counts.
Clearing Time Stamp Memory

59551A

:SENSe:DATA:CLEar . . .
Clears the data in the time stamp measurement buffer for the user-specified Time Tag input.

This command clears the data in the time stamp measurement buffer for the user-specified Time Tag input. Use "TSTamp 1" or "TSTamp 2" or "TSTamp 3" to select one input.

Expanded Syntax

:SENSe:DATA:CLEar "TSTamp 1" or "TSTamp 2" or "TSTamp 3"

Parameter

"TSTamp 1" clears the data in **Time Tag 1** input buffer.
"TSTamp 2" clears the data in **Time Tag 2** input buffer.
"TSTamp 3" clears the data in **Time Tag 3** input buffer.

Context Dependencies

:SYSTem:PRESet clears the time stamp measurement buffers.
Reading Time Stamps

This query outputs data from the one specified time stamp measurement buffer (or Time Tag input). This query does not clear the buffer. Each time stamp provides the year, month, day, hours, minutes, seconds, milliseconds, microseconds, nanoseconds, and TFOM (Time Figure of Merit).

Expanded Syntax

:SENSe:DATA? "TSTamp 1" or "TSTamp 2" or "TSTamp 3"

Response

If the format is ASCII (the default format), the response is a sequence of comma-separated integers.

If the format is INTEGER, the response is BINARY Data (see Table B-3, in Appendix B, “Command Syntax and Style,” in this guide for details).

To determine which format is selected, use query :FORmat:DATA?.

Parameter

Use "TSTamp 1" or "TSTamp 2" or "TSTamp 3" to select one input at a time:

- "TSTamp 1" outputs the data from Time Tag 1 input buffer.
- "TSTamp 2" outputs the data from Time Tag 2 input buffer.
- "TSTamp 3" outputs the data from Time Tag 3 input buffer.

Context Dependencies

:SYSTem:PRESet clears the time stamp measurement buffers and overflow counts.

Time stamps are not collected until after the Receiver has completed its powerup, and has reached initial lock to GPS.

Time stamps are not collected while the user is reading/clearing or otherwise accessing the time stamp buffers.
Reading Time Stamps (continued)

59551A

:FORMat:DATA . . .
Selects output format for the time stamps.

This command selects the output format for the time stamps.

Expanded Syntax

:FORMat:DATA ASCii or INTeger

Parameter

If the format is ASCii (the default format), the response is a sequence of comma-separated integers.

If the format is INTeger, the response to the :SENSe:DATA? query is BINARY Data (see Table B-3, in Appendix B, “Command Syntax and Style,” in this guide for details).

When ASCii formatting is selected the output stream data is buffered. In general, INT mode will provide faster output than ASC, but will require special data-handling routines to interpret the BINARY Data.

59551A

:FORMat:DATA?
Returns the output format for time stamp data.

This query returns the output format for time stamp data.

Response

ASC or INT is returned.
Reading Time Stamps (continued)

59551A

:SENSe:DATA:POINts?

Returns the number of time stamps in each of the three Time Tag inputs.

This query returns the number of time stamps in each of the three Time Tag inputs.

Response

Returns three comma-separated integers corresponding to the number of time stamps recorded for inputs 1, 2, and 3.

The numeric range for each integer is 0 to 256.

Context Dependencies

:SYSTem:PRESet clears the time stamp measurement buffers and overflow counts.

Time stamps are not collected until after the Receiver has completed its powerup and has reached initial GPS lock.

59551A

Returns the number of time stamps recorded for the one specified Time Tag input.

This query returns the number of time stamps recorded for the one specified Time Tag input. Use "TSTamp 1", "TSTamp 2", or "TSTamp 3" to select one input.

Expanded Syntax

:SENSe:DATA:POINts? "TSTamp 1" or "TSTamp 2" or "TSTamp 3"

Response

Returns an integer corresponding to the number of time stamps recorded for the specified input.

- Numeric range is 0 to 256.
Reading Time Stamps

Parameter

"TSTamp 1" queries for the number of points in Time Tag 1 input buffer.
"TSTamp 2" queries for the number of points in Time Tag 2 input buffer.
"TSTamp 3" queries for the number of points in Time Tag 3 input buffer.

Context Dependencies

:SYSTem:PRESet clears the time stamp measurement buffers and overflow
counts.

Time stamps are not collected until after the Receiver has completed its
powerup and has reached initial GPS lock.

59551A

This query returns a single time stamp. Use "TSTamp 1" or "TSTamp 2" or
"TSTamp 3" to select an input channel. Use <time stamp entry> to select a
single time stamp recorded on that input.

Expanded Syntax

:SENSe:DATA:TSTamp? "TSTamp 1" or "TSTamp 2" or "TSTamp 3",
<time stamp entry>

Response

The query response represents the single time stamp requested.

The query response is a sequence of ten comma-separated integers constituting
a single time stamp. The time stamp provides the year, month, day, hours,
minutes, seconds, milliseconds, microseconds, nanoseconds, and TFOM (Time
Figure of Merit).

For example,

:SENSe:DATA:TSTamp? "TSTamp 2", 37

Selects the 37th time stamp recorded on Time Tag Input 2.
Reading Time Stamps (continued)

Parameter
<time tag input> parameter:
- "TSTamp 1" to select Time Tag 1 input buffer.
- "TSTamp 2" to select Time Tag 2 input buffer.
- "TSTamp 3" to select Time Tag 3 input buffer.

<time stamp entry> parameter range is 1 to 256.

Context Dependencies
:SYSTem:PRESet clears the time stamp measurement buffers and overflow counts.

Time stamps are not collected until after the Receiver has completed its powerup and has reached initial GPS lock.
Processing Memory Overflows

This query returns an overflow count for each of the three Time Tag inputs. An “overflow count” occurs after 256 time stamps have been recorded. When any additional events are detected at the input, the overflow count increments.

If memory management protocol has been set to “FIRST,” the first 256 time stamps are recorded. The overflow count indicates the number of time stamps which followed the last recorded stamp, and which were discarded.

If memory management protocol has been set to “LAST,” the most recent 256 time stamps are recorded. The overflow count indicates the number of stamps which were collected prior to the first recorded stamp, and which were overwritten.

Response

Returns three comma-separated floating-point numbers corresponding to the overflow count of each of the three inputs: 1, 2, 3.

Context Dependencies

:SYSTem:PRESet clears the time stamp measurement buffers and overflow counts.

Time stamps are not collected until after the Receiver has completed its powerup and has reached initial GPS lock.
Processing Memory Overflows

59551A

This query returns an overflow count for the selected Time Tag input. Use "TSTamp 1", "TSTamp 2", or "TSTamp 3" to select or query one input at a time.

Expanded Syntax

:SENSe:DATA:MEMory:OVERflow:COUNt? "TSTamp 1" or "TSTamp 2" or "TSTamp 3"

Response

Returns one floating-point number corresponding to the overflow count of the selected Time Tag input.

Context Dependencies

:SYSTem:PRESet clears the time stamp measurement buffers and overflow counts.

Time stamps are not collected until after the Receiver has completed its powerup and has reached initial GPS lock.

59551A

This command sets the Receiver's memory management protocol.

Expanded Syntax

:SENSe:DATA:MEMory:SAVE FIRSt or LAST

Parameter

FIRSt retains time stamps for the first 256 events detected.
LAST retains time stamps of the last (most recent) 256 events detected.

Context Dependencies

:SYSTem:PRESet sets memory management protocol to retain time stamps for FIRSt 256 events.
Processing Memory Overflows (continued)

This query returns the state of the memory management protocol.

Response

FIRSt indicates that the memory retains time stamps for the first 256 events detected.

LAST indicates that the memory retains time stamps for the last (most recent) 256 events detected.
Serial Interface Communication

The 59551A and 58503B GPS Receivers provide a set of commands that allow you to configure the serial interface port(s) for instrument communications. A set of special commands is provided for the 59551A Receiver since it has two different serial ports (PORT 1, PORT 2).

Both Receivers have the rear-panel RS-232C serial interface port (PORT 1). The 59551A has an additional front-panel RS-232C serial interface port (PORT 2).

The following commands are provided to allow you to configure the ports.

- **Configuring I/O Port 1** \(<port> = \text{SERial1 or SERial}\)
 - **Configuring I/O Port 2** \(<port> = \text{SERial2 (59551A Only)}\)
 - :SYSTem:COMMunicate?
 - :SYSTem:COMMunicate:<port>:BAUD ...
 - :SYSTem:COMMunicate:<port>:BAUD?
 - :SYSTem:COMMunicate:SERial1:BITS ...
 - :SYSTem:COMMunicate:<port>:BITS?
 - :SYSTem:COMMunicate:<port>:FDUPlex ...
 - :SYSTem:COMMunicate:<port>:FDUPlex?
 - :SYSTem:COMMunicate:<port>:PACE ...
 - :SYSTem:COMMunicate:<port>:PACE?
 - :SYSTem:COMMunicate:<port>:PARity ...
 - :SYSTem:COMMunicate:<port>:PARity?
 - :SYSTem:COMMunicate:SERial1:SBITs ...
 - :SYSTem:COMMunicate:<port>:SBITs?

- **Recovering the Last Query Response**
 - :DIAGnostic:QUERy:RESPonse?
Configuring I/O Ports

This query identifies which serial port is being used. Use this query when the Receiver is installed out of sight or at a remote location. The distinction between SERIAL1 and SERIAL2 is required in communication commands for setting parameters such as baud and parity.

Response

SER1 or SER2 is returned.

Expanded Syntax

:SYSTem:COMMunicate:<port>:BAUD 1200 or 2400 or 9600 or 19200

Parameter

The possible baud rate values that can be entered are 1200, 2400, 9600, or 19200.

Context Dependencies

The baud rate value is stored in non-volatile memory. It is unaffected by powerup and :SYSTem:PRESet.

:SYSTem:COMMunicate:<port>:PRESet sets the baud rate to 9600, which is the factory-default value.
Configuring I/O Ports

This query returns the baud rate of specified port.

Expanded Syntax

`:SYSTem:COMMunicate:SERial1:BAUD?`
`:SYSTem:COMMunicate:SERial2:BAUD?`

<table>
<thead>
<tr>
<th>RESPONSE FORMAT</th>
<th>R, F</th>
</tr>
</thead>
<tbody>
<tr>
<td>dd</td>
<td></td>
</tr>
</tbody>
</table>

This command sets the data bits of PORT 1.

Expanded Syntax

`:SYSTem:COMMunicate:SERial1:BITS 7`
`:SYSTem:COMMunicate:SERial1:BITS 8`

<table>
<thead>
<tr>
<th>Parameter</th>
<th>NON-VOLATILE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The possible data bits values that can be entered are 7 or 8.

Context Dependencies

The data bits value is stored in non-volatile memory. It is unaffected by powerup and :SYSTem:PRESet.

`:SYSTem:COMMunicate:SERial1:PRESet` sets the data bits to 8, which is the factory-default value.
This query returns the data bits value of the specified port.

Expanded Syntax

:SYSTem:COMMunicate:SERial1:BITS?

:SYSTem:COMMunicate:SERial2:BITS?

This command sets the duplex state of the specified port. Use this command when you cannot see on the computer screen the characters you are typing for your command.

Expanded Syntax

:SYSTem:COMMunicate:SERial1:FDUPlex ON or OFF

:SYSTem:COMMunicate:SERial2:FDUPlex ON or OFF

Parameter

ON enables echoing of the characters you type (i.e., when typing a command, the ON state allows you to see on the computer screen the characters you type).

OFF disables the echoing of the characters you type.

Context Dependencies

The duplex state is stored in non-volatile memory. It is unaffected by powerup and :SYSTem:PRESet.

SYSTem:COMMunicate:<port>:PRESet sets the duplex state to ON, which is the factory-default state.

Must be received via the specified I/O port.
Configuring I/O Ports

:SYSTem:COMMunicate::<port>::FDUPlex?

<table>
<thead>
<tr>
<th>RESPONSEFORMAT</th>
<th>R, F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 or 1</td>
</tr>
</tbody>
</table>

Returns the duplex state of the specified port.

Expanded Syntax

:SYSTem:COMMunicate:SERial1::FDUPlex?
:SYSTem:COMMunicate:SERial2::FDUPlex?

Response

A value of 0 indicates echo is OFF.

A value of 1 indicates echo is ON.

:SYSTem:COMMunicate::<port>::PACE . . .

Sets flow control of the specified port.

<table>
<thead>
<tr>
<th>:SYSTem::PRESet</th>
<th>R, F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Not affected</td>
</tr>
<tr>
<td></td>
<td>NON-VOLATILE</td>
</tr>
</tbody>
</table>

This command sets flow control of the specified port.

Expanded Syntax

:SYSTem:COMMunicate:SERial1::PACE XON or NONE
:SYSTem:COMMunicate:SERial2::PACE XON or NONE

Parameter

The choices are XON or NONE.

Context Dependencies

The software pacing or flow control state is stored in non-volatile memory. It is unaffected by powerup and :SYSTem::PRESet.

:SYSTem:COMMunicate::<port>::PRESet sets the flow control to NONE, which is the factory-default state.

= Must be received via the specified I/O port.
Configuring I/O Ports (continued)

This query returns the flow control state of specified port.

Expanded Syntax

:SYSTem:COMMunicate:<port>:PACE?

Response

XON or NONE is returned.

This command sets parity of the specified port.

Expanded Syntax

:SYSTem:COMMunicate:SERial1:PARity: EVEN or ODD or NONE

:SYSTem:COMMunicate:SERial2:PARity: EVEN or ODD or NONE or ONE

Parameter

The choices for SERial1 are EVEN, ODD, or NONE.

The choices for SERial2 are EVEN, ODD, NONE, or ONE.

Context Dependencies

The parity state is stored in non-volatile memory. It is unaffected by powerup and :SYSTem:PRESet.

:SYSTem:COMMunicate:<port>:PRESet sets the parity to NONE, which is the factory-default state.

If parity is enabled, the Receiver sends/receives 7 data bits plus 1 parity bit.

If parity is disabled, the Receiver sends/receives 8 data bits.

RESPONSE FORMAT

R, F

XYZ

Returns flow control state of the specified port.

Not affected

NON-VOLATILE

Must be received via the specified I/O port.
This query returns the parity setting of the specified port.

Expanded Syntax

:SYSTem:COMMunicate:SERial1:PARity?
:SYSTem:COMMunicate:SERial2:PARity?

Response

EVEN, ODD, NONE, or ONE is returned.

This command sets the stop bits value of PORT 1.

Expanded Syntax

:SYSTem:COMMunicate:SERial1:SBITs 1 or 2

Parameter

The possible stop bits values that can be entered are 1 or 2.

Context Dependencies

The stop bits value is stored in non-volatile memory. It is unaffected by powerup and :SYSTem:PRESet.

:SYSTem:COMMunicate:SERial1:PRESet sets the stop bits value to 1, which is the factory-default value.
Configuring I/O Ports (continued)

This query returns the stop bits value of specified port.

Expanded Syntax

`:SYSTem:COMMunicate:<port>:SBITs?`
Returns the stop bits value of the specified port.

<table>
<thead>
<tr>
<th>RESPONSE FORMAT</th>
<th>R, F</th>
</tr>
</thead>
<tbody>
<tr>
<td>± dd</td>
<td></td>
</tr>
</tbody>
</table>

:SYSTem:COMMunicate:SERial1:SBITs?
:SYSTem:COMMunicate:SERial2:SBITs?
Recovering the Last Query Response

:DIAGnostic:QUERy:RESPonse?

Returns the last response item issued through the Receiver’s serial interface for use in an error recovery process.

This query returns the last response item issued through the Receiver’s serial interface for use in an error recovery process.

In the case of a serial interface data transmission error, this query can be used to get the last response item which may otherwise be unavailable because of the side effects of the original command. For example, the :SYST:ERRor? query removes the oldest entry from the error queue, so to see the entry again following a data transmission error, use :DIAG:QUER:RESP? instead of repeating the original command.

Response

The format depends on the last issued query.
Receiver Initialization

The following commands are provided to allow you to initialize or preset the serial interface port(s) and the Receiver to their factory shipment values.

:SYSTem:COMMunicate:SERial1:PRESet
:SYSTem:COMMunicate:SERial2:PRESet (59551A Only)
:SYSTem:PRESet
Chapter 5 Command Reference

Receiver Initialization

This command is an event that sets specified port parameters to their factory-default values.

Expanded Syntax

:SYSTem:COMMunicate:SERial1:PRESet
:SYSTem:COMMunicate:SERial2:PRESet

Factory-Default Settings for PORT 1 of the 59551A

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Possible Choices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software Pacing</td>
<td>NONE</td>
<td>XON or NONE</td>
</tr>
<tr>
<td>Baud Rate</td>
<td>9600</td>
<td>1200, 2400, 9600, or 19200</td>
</tr>
<tr>
<td>Parity</td>
<td>NONE</td>
<td>EVEN, ODD, or NONE</td>
</tr>
<tr>
<td>Data Bits</td>
<td>8</td>
<td>7 or 8</td>
</tr>
<tr>
<td>Stop Bits</td>
<td>1</td>
<td>1 or 2</td>
</tr>
<tr>
<td>Full Duplex</td>
<td>ON</td>
<td>ON or OFF</td>
</tr>
</tbody>
</table>

Factory-Default Settings for PORT 1 of the 58503B and PORT 2 of the 59551A

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Possible Choices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software Pacing</td>
<td>NONE</td>
<td>XON or NONE</td>
</tr>
<tr>
<td>Baud Rate</td>
<td>9600</td>
<td>1200, 2400, 9600, or 19200</td>
</tr>
<tr>
<td>Parity</td>
<td>NONE</td>
<td>EVEN, ODD, NONE, or ONE</td>
</tr>
<tr>
<td>Data Bits</td>
<td>8</td>
<td>Fixed at 7 when parity is even or odd.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fixed at 8 when parity is none.</td>
</tr>
<tr>
<td>Stop Bits</td>
<td>1</td>
<td>Fixed (no choices available)</td>
</tr>
<tr>
<td>Full Duplex</td>
<td>ON</td>
<td>ON or OFF</td>
</tr>
</tbody>
</table>

Context Dependencies

The SERial1 preset command only is valid if transmitted on the rear-panel (PORT 1).

This command is an event that restores the Receiver parameters settings to their factory-default values (see the following Table 5-2).

NOTE

Issuing this command will result in disruption of all of the following: GPS satellite tracking, reference oscillator frequency, 1 PPS output timing, and Receiver status information.
Table 5-2. System Preset (Factory Default) Parameter Settings

Summary

<table>
<thead>
<tr>
<th>Commands</th>
<th>:SYSTem:PRESet</th>
</tr>
</thead>
<tbody>
<tr>
<td>*ESE ...</td>
<td>0 (NV) — See footnotes on the bottom of the next page</td>
</tr>
<tr>
<td>*SRE ...</td>
<td>136 (NV)</td>
</tr>
<tr>
<td>:DIAGnostic:LOG:CLEAR</td>
<td>Log is cleared.</td>
</tr>
<tr>
<td>:DIAGnostic:LOG:COUNt?</td>
<td>2</td>
</tr>
<tr>
<td>:FORMat:DATA ...</td>
<td>ASCII (NV)</td>
</tr>
<tr>
<td>:GPS:POSITION ...</td>
<td>N,0,0,0,E,0,0,0,0 (NV)</td>
</tr>
<tr>
<td>:GPS:POSITION:HOLD:LAST?</td>
<td>N,0,0,0,E,0,0,0,0 (NV)</td>
</tr>
<tr>
<td>:GPS:POSITION:HOLD:STATe?</td>
<td>0 (NV)</td>
</tr>
<tr>
<td>:GPS:POSITION:SURVEY:STATe ...</td>
<td>ONCE</td>
</tr>
<tr>
<td>:GPS:POSITION:SURVEY:STATe:POWERUP ...</td>
<td>ON (NV)</td>
</tr>
<tr>
<td>:GPS:REFERENCE:ADELay ...</td>
<td>0.0 (NV)</td>
</tr>
<tr>
<td>:GPS:SATELLite:TRACKing:EMANgle ...</td>
<td>10 (NV)</td>
</tr>
<tr>
<td>:GPS:SATELLite:TRACKing:IGNore:STATe? ...</td>
<td>0 for every PRN.</td>
</tr>
<tr>
<td>:GPS:SATELLite:TRACKing:IGNore ...</td>
<td>No satellites ignored (NV)</td>
</tr>
<tr>
<td>:GPS:SATELLite:TRACKing:INCLude ...</td>
<td>All satellites included (NV)</td>
</tr>
<tr>
<td>:GPS:SATELLite:TRACKing:INCLude:STATe? ...</td>
<td>1 for every PRN.</td>
</tr>
<tr>
<td>:PTIME:ZONE ...</td>
<td>0,0 (NV)</td>
</tr>
<tr>
<td>:PULSE:CONTinuous:PERIOD ...</td>
<td>1 (NV)</td>
</tr>
<tr>
<td>:PULSE:CONTinuous:STATe ...</td>
<td>OFF (NV)</td>
</tr>
<tr>
<td>:PULSE:START:DATE ...</td>
<td>1994,1,1 (NV)</td>
</tr>
<tr>
<td>:PULSE:START:TIME ...</td>
<td>0,0,0 (NV)</td>
</tr>
<tr>
<td>:SENSe:DATA?</td>
<td>Data is cleared.</td>
</tr>
<tr>
<td>:SENSe:DATA:MEMory:OVERflow:COUNt?</td>
<td>All counts are cleared (V^<sup>+</sup>).</td>
</tr>
<tr>
<td>:SENSe:DATA:MEMory:SAVE ...</td>
<td>FIRST (NV)</td>
</tr>
<tr>
<td>:SENSe:DATA:POINts?</td>
<td>All responses become 0 (zero).</td>
</tr>
<tr>
<td>:SENSe:DATA:TSTamp? ...</td>
<td>All timestamps cleared.</td>
</tr>
</tbody>
</table>
Table 5-2. System Preset (Factory Default) Parameter Settings Summary (Continued)

<table>
<thead>
<tr>
<th>Commands</th>
<th>:SYSTem:PRESet</th>
</tr>
</thead>
<tbody>
<tr>
<td>:STATus:OPERation:ENABle ...</td>
<td>36 (NV)</td>
</tr>
<tr>
<td>:STATus:OPERation:HARDware:ENABle ...</td>
<td>8191 (NV)</td>
</tr>
<tr>
<td>:STATus:OPERation:HARDware:NTRansition ...</td>
<td>0 (NV)</td>
</tr>
<tr>
<td>:STATus:OPERation:HARDware:PTRansition ...</td>
<td>5119 (NV)</td>
</tr>
<tr>
<td>:STATus:OPERation:HOLDover:ENABle ...</td>
<td>8 (NV)</td>
</tr>
<tr>
<td>:STATus:OPERation:HOLDover:NTRansition ...</td>
<td>0 (NV)</td>
</tr>
<tr>
<td>:STATus:OPERation:HOLDover:PTRansition ...</td>
<td>15 (NV)</td>
</tr>
<tr>
<td>:STATus:OPERation:NTRansition ...</td>
<td>0 (NV)</td>
</tr>
<tr>
<td>:STATus:OPERation:POWerup:ENABle ...</td>
<td>7 (NV)</td>
</tr>
<tr>
<td>:STATus:OPERation:POWerup:NTRansition ...</td>
<td>0 (NV)</td>
</tr>
<tr>
<td>:STATus:OPERation:POWerup:PTRansition ...</td>
<td>7 (NV)</td>
</tr>
<tr>
<td>:STATus:OPERation:PTRansition ...</td>
<td>127 (NV)</td>
</tr>
<tr>
<td>:STATus:QUESTionable:CONDition:USER ...</td>
<td>Cleared (NV)</td>
</tr>
<tr>
<td>:STATus:QUESTionable:ENABle ...</td>
<td>3 (NV)</td>
</tr>
<tr>
<td>:STATus:QUESTionable:NTRansition ...</td>
<td>0 (NV)</td>
</tr>
<tr>
<td>:STATus:QUESTionable:PTRansition ...</td>
<td>2 (NV)</td>
</tr>
<tr>
<td>:SYNChronization:HOLDover:DURation?</td>
<td>0,0 (Even if there was a prior holdover, its duration will be lost.)</td>
</tr>
<tr>
<td>:SYNChronization:HOLDover:DURation:THReshold ...</td>
<td>86400 (that is, 1 day), (NV)</td>
</tr>
<tr>
<td>:SYNChronization:STATe?</td>
<td>POWerup</td>
</tr>
<tr>
<td>:SYSTem:ERRor?</td>
<td>Error queue is cleared.</td>
</tr>
<tr>
<td>:SYSTem:LANGuage ...</td>
<td>"PRIMARY"</td>
</tr>
</tbody>
</table>

* NV stands for non-volatile memory.
** V stands for volatile memory.
Receiver Identification/Upgrade

The commands provided in this section allow you to query the identification of the Receiver, and to perform firmware upgrades in the field after you obtain a new firmware disk.

- **Reading Product Identification**
 *IDN?

- **Installing Firmware via I/O PORT 1**
 *CLS
 :DIAGnostic:DOWNload ...
 :DIAGnostic:ERASe
 :DIAGnostic:ERASe?
 :SYSTem:ERRor?
 :SYSTem:LANGuage ...
 :SYSTem:LANGuage?
Reading Product Identification

This query returns the Receiver identification.

Response

- A sequence of ASCII-encoded bytes:

 HEWLETT-PACKARD, 59551A, XXXXYZZZZZ, WWWW – V

 where 59551A is the product model number, XXXXYZZZZZ is the product serial number, and WWWW is the product’s firmware revision date code, and V is the hardware revision letter.

 In the product serial number (XXXXYZZZZZ):

 – XXXX is a four-digit prefix that identifies a series of instruments.
 – Y identifies the country in which the instrument was manufactured (e.g., the “A” in 3426A000123 stands for America).
 – ZZZZZ is a five-digit suffix that identifies a particular instrument within a series.

- For example,

 HEWLETT-PACKARD, 59551A,3426A00123,3422 – A

 This query should be the last query in a terminated program message; otherwise, error -440 is generated.

Context Dependencies

Preparatory to installation of new product firmware, the instrument is switched to the “INSTALL” language, available only on PORT 1.

The “INSTALL” language includes an *IDN? query which returns the revision identification for the installation firmware. The response format is the same as described above for the instrument’s “PRIMARY” language, but the identification code may be different.
Installing Firmware via I/O PORT 1

The commands in this section represent the command set of the “INSTALL” language. The “INSTALL” language is part of a highly-specialized set of features used to erase the Receiver's firmware, and to install a new firmware revision. It should be selected only when firmware installation is required.

The “INSTALL” language offers the limited number of commands and queries which are documented in this section. This set is designed to provide the Receiver status and control capability required during firmware upgrade.

NOTE

The SatStat program provides a Service menu which automates firmware installation.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>*CLS</td>
<td>Clears errors.</td>
<td>EVENT</td>
</tr>
<tr>
<td>:DIAGnostic:DOWNload</td>
<td>Sends down a Motorola® S-record.</td>
<td>EVENT</td>
</tr>
<tr>
<td>:DIAGnostic:ERASE</td>
<td>Erases the flash EEPROM.</td>
<td>EVENT</td>
</tr>
</tbody>
</table>

This command clears errors.

This command sends down a Motorola® S-record.

Expanded Syntax

:DIAGnostic:DOWNload <Motorola S-record>

This command erases the flash EEPROM. It should ONLY be sent to the Receiver as a preparatory step during firmware upgrade. Erasing flash EEPROM will disable the instrument until flash EEPROM is reloaded with factory-supplied instrument firmware.
Installing Firmware via I/O Port 1

This query verifies the flash EEPROM has been erased.

Response
A value of 1 indicates that flash EEPROM has been erased.
This condition normally occurs when the instrument software in flash
EEPROM is erased in preparation for installation of a more recent software
revision. That is, after command \texttt{:DIAG:ERASe} has been issued and erase is
complete, the \texttt{:DIAG:ERASe?} query response is “1”.

This query returns the oldest error in the Error Queue and removes that error
from the queue (first in, first out).

Response

The error response format is: \texttt{<error_number>,"<error_description>"}, where
- The \texttt{<error_number>} is an integer transferred as ASCII bytes in \texttt{<NR1>}
 format (integer). The range is -32768 to 32767.
- Negative error numbers are defined by the SCPI standard.
- Positive error numbers are defined specifically for this Receiver.
- An error number value of zero indicates that the Error Queue is empty.
- The maximum length of the \texttt{<error_description>} is 255 characters.
Context Dependencies

:SYSTem:PRESet clears the Error Queue.

The queue is cleared (emptied) on *CLS, power-on, or upon reading the last error from the queue.

If the Error Queue overflows, the last error in the queue is replaced with the error -350, "Queue overflow". Any time the queue overflows, the least recent errors remain in the queue and the most recent error is discarded.

The maximum length of the Error Queue is 30.

Expanded Syntax

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>:SYSTem:LANGuage</td>
<td>Switches the operation mode (primary or install) of the Receiver.</td>
</tr>
<tr>
<td></td>
<td>"INSTALL" or "PRIMARY"</td>
</tr>
</tbody>
</table>

This command switches the operation mode (primary or install) of the Receiver.

Parameter

The “INSTALL” language is part of a highly-specialized set of features used to erase the Receiver's firmware, and to install a new firmware revision. It should be selected only when firmware installation is required.

The “INSTALL” language offers the limited number of commands and queries which are documented in this section. This set is designed to provide the Receiver status and control capability required during firmware upgrade.

NOTE

The SatStat program provides a Service menu which automates firmware installation.

The “PRIMARY” language provides the capabilities required for normal Receiver operation. If the “INSTALL” language has been selected as part of the firmware upgrade, the “PRIMARY” language should be selected after the upgrade to restore normal operation.
Installing Firmware via I/O Port 1 (continued)

This query identifies the operation mode (primary or install) of the Receiver.

Response
“INSTALL” or “PRIMARY” is returned.
Introduction

This appendix explains how to read any errors from the Receiver, discusses the error queue, types of errors and general error behavior, and provides a table of all of the Receiver’s errors and their probable causes.

Reading an Error

Executing the :SYSTEM:ERROR? command reads the oldest error from the error queue and erases that error from the queue. The :SYST:ERR? response has the form:

<error number>, <error string>

An example response is:

-113,"Undefined header"

Positive error numbers are specific to the Receiver. Negative error numbers are command language related and are discussed later in this appendix.

All errors set a corresponding bit in the Standard Event Status Register (see Figure 5-1 on page 5-49).
Error Queue

As errors are detected, they are placed in an error queue. This queue is first in, first out. That is, if there has been more than one error, the first one in the queue is read out with :SYST:ERR?. Subsequent responses continue until the queue is empty.

If the error queue overflows, the last error in the queue is replaced with error -350, "Queue overflow". Any time the queue overflows, the least recent errors remain in the queue, and the most recent error is discarded. The length of the Receiver’s error queue is 30 (29 positions for the error messages, and 1 position for the “Queue overflow” error). Reading an error from the head of the queue removes that error from the queue, and opens a position at the tail of the queue for a new error, if one is subsequently detected.

When all errors have been read from the queue, further error queries return +0, "No error".

The error queue is cleared when any of the following occur:

- Upon power-on.
- Upon receipt of a *CLS command.
- Upon reading the last item from the queue.
Appendix A Error Messages

Error Types

Error numbers are categorized by type as shown in Table A-1. Each error is listed in Table A-2.

Table A-1. Error Types

<table>
<thead>
<tr>
<th>Error Number</th>
<th>Error Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>+0</td>
<td>No Error</td>
</tr>
<tr>
<td>−100 to −199</td>
<td>Syntactic Errors</td>
</tr>
<tr>
<td>−200 to −299</td>
<td>Semantic Errors</td>
</tr>
<tr>
<td>−300 to −350</td>
<td>Hardware/Firmware Errors</td>
</tr>
<tr>
<td>−400 to −499</td>
<td>Query Errors</td>
</tr>
</tbody>
</table>

The first error described in each class (for example, −100, −200, −300, −400) is a “generic” error.

No Error

The :SYST:ERR? response +0, "No error" indicates that the Receiver has no errors. The error queue is empty when every error in the queue has been read (:SYST:ERR? query) or the queue was cleared by power-on or *CLS.

Syntactic Error

An <error number> in the range [−100 to −199] indicates that an IEEE 488.2 syntax error has been detected by the Receiver’s parser.

The occurrence of any error in this class causes the syntactic error bit (bit 5) in the Event Status Register to be set. One of the following events has occurred:

- An IEEE 488.2 syntax error has been detected by the parser. That is, a controller-to-Receiver message was received that is in violation of the IEEE 488.2 Standard. Possible violations include a data element that violates the Receiver listening formats or whose type is unacceptable to the Receiver.
- An unrecognized header was received. Unrecognized headers include incorrect Receiver-specific headers and incorrect or unimplemented IEEE 488.2 Common Commands.

Events that generate syntactic errors do not generate semantic errors, hardware/firmware errors, or query errors.
Appendix A Error Messages

Error Types

Semantic Error

An <error number> in the range [−200 to −299] indicates that an error has been detected by the Receiver's execution control block. The occurrence of any error in this class causes the semantic error bit (bit 4) in the Event Status Register to be set. One of the following events has occurred:

- A <PROGRAM DATA> element following a header was evaluated by the Receiver as outside of its legal input range or is otherwise inconsistent with the Receiver's capabilities.
- A valid program message could not be properly executed due to some Receiver condition.

Semantic errors are reported by the Receiver after rounding and expression evaluation operations have been taken place. Rounding a numeric data element, for example, is not reported as a semantic error. Events that generate semantic errors do not generate syntactic errors, hardware/firmware errors, or query errors.

Hardware/Firmware Error

An <error number> in the range [−300 to −399] or [+1 to +32767] indicates that the Receiver has detected an error that is not a syntactic error, a query error, or a semantic error; some Receiver operations did not properly complete, possibly due to an abnormal hardware or firmware condition. These codes are also used for self-test response errors. The occurrence of any error in this class causes the hardware/firmware error bit (bit 3) in the Event Status Register to be set.

Query Error

An <error number> in the range [−400 to −499] indicates that the output queue control of the Receiver has detected a problem with the message exchange protocol. The occurrence of any error in this class should cause the query error bit (bit 2) in the Event Status Register to be set. One of the following is true:

- An attempt is being made to read data from the output queue when no output is either present or pending.
- Data in the output queue has been lost.
General Error Behavior

For Commands (i.e., non-query; doesn’t provide a response):

- For any command that has numeric parameters, if the value is out of range (beyond either the min or max allowed settings), the value will be clipped to the appropriate limit and **error –222** will be generated (data out-of-range error) as an indication that the value wasn’t set to the requested value.

There are some commands having numeric parameters where the clipping behavior described above doesn’t make sense. These include the satellite include and ignore commands, and the status system mask commands. For these commands, an out-of-bounds value is ignored and **error –222** is generated. Also, a single out-of-bounds value may cause the entire command to be ignored. For example, GPS:SAT:TRAC:INCL 3,87,5 will be entirely ignored because 87 is out-of-range (i.e., 3 and 5 do not become included even though they are in-range).

- Commands with multiple numeric parameters can produce multiple errors. For example, if the initial date command is sent as GPS:INIT:TIME 25,66,−7, the actual programmed value will be 23:59:00 (23 is max hour, 59 is max minute, 0 is min second) and three out-of-range errors will be generated. As always, only a single prompt will be returned, but in this case three errors will be in the error queue (de-queued via SYST:ERR? or *CLS).

- Numeric parameters between in-range values are rounded to the closest value. For example, sending GPS:REF:ADEL 1.7 ns will set the antenna delay to 2 ns.

For Queries (response-generating commands)

- If the query produces an error, there will not be a response (other than the prompt that always occurs).

- If the query includes a numeric parameter, and that parameter is out of range, **error –222** will be generated and there won’t be a response (this is consistent with the prior bullet). An example of this would be DIAG:LOG:READ? 25 when there are fewer than 25 messages in the log. Note that for this specific example, to get the most recent log entry, simply use DIAG:LOG:READ?.

- Another way you can view this: if you get a query response you can know that it is responding precisely to the question asked by the query.
List of Errors

Table A-2 lists and describes the error messages

<table>
<thead>
<tr>
<th>Number</th>
<th>Error String</th>
<th>Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>+0</td>
<td>No error</td>
<td>The error queue is empty. Every error in the queue has been read (SYSTem:ERRor? query) or the queue was cleared by power-on or "CLS."</td>
</tr>
<tr>
<td>-100</td>
<td>Command error</td>
<td>This is the generic syntax error used if the Receiver cannot detect more specific errors.</td>
</tr>
<tr>
<td>-101</td>
<td>Invalid character</td>
<td>A syntactic element contains a character that is invalid for that type.</td>
</tr>
<tr>
<td>-102</td>
<td>Syntax error</td>
<td>An unrecognized command or data type was encountered.</td>
</tr>
<tr>
<td>-103</td>
<td>Invalid separator</td>
<td>The parser was expecting a separator and encountered an illegal character.</td>
</tr>
<tr>
<td>-104</td>
<td>Data type error</td>
<td>The parser recognized a data element different than one allowed. For example, numeric or string data was expected, but block data was received.</td>
</tr>
<tr>
<td>-108</td>
<td>Parameter not allowed</td>
<td>More parameters were received than expected for the header.</td>
</tr>
<tr>
<td>-109</td>
<td>Missing parameter</td>
<td>Fewer parameters were received than required for the header.</td>
</tr>
<tr>
<td>-112</td>
<td>Program mnemonic too long</td>
<td>The header or character data element contains more than twelve characters.</td>
</tr>
<tr>
<td>-113</td>
<td>Undefined header</td>
<td>The header is undefined. For example, the command "::HELLO".</td>
</tr>
<tr>
<td>-120</td>
<td>Numeric data error</td>
<td>This error, as well as errors -121 through -129, is generated when parsing a data element which appears to be numeric. This particular error message is used when the Receiver cannot detect a more specific error.</td>
</tr>
<tr>
<td>-121</td>
<td>Invalid character in number</td>
<td>An invalid character for the data type being parsed was encountered. For example, a "9" in octal data.</td>
</tr>
<tr>
<td>-123</td>
<td>Exponent too large</td>
<td>Numeric overflow.</td>
</tr>
<tr>
<td>-124</td>
<td>Too many digits</td>
<td>The mantissa of a decimal numeric data element contained more than 255 digits excluding leading zeros.</td>
</tr>
<tr>
<td>-128</td>
<td>Numeric data not allowed</td>
<td>A legal numeric data element was received, but the Receiver does not accept one in this position for the header.</td>
</tr>
<tr>
<td>-131</td>
<td>Invalid suffix</td>
<td>The suffix does not follow the syntax described in IEEE 488.2 or the suffix is inappropriate for the Receiver.</td>
</tr>
<tr>
<td>-134</td>
<td>Suffix too long</td>
<td>The suffix contained more than 12 characters.</td>
</tr>
<tr>
<td>-138</td>
<td>Suffix not allowed</td>
<td>A suffix was encountered after a numeric element that does not allow a suffix.</td>
</tr>
<tr>
<td>-141</td>
<td>Invalid character data</td>
<td>The character data element contains an invalid character.</td>
</tr>
<tr>
<td>-148</td>
<td>Character data not allowed</td>
<td>A legal character data element was encountered where prohibited by the Receiver.</td>
</tr>
<tr>
<td>-150</td>
<td>String data error</td>
<td>This error can be generated when parsing a string data element. This particular error message is used if the Receiver cannot detect a more specific error.</td>
</tr>
<tr>
<td>-151</td>
<td>Invalid string data</td>
<td>A string data element was expected but was invalid for some reason.</td>
</tr>
<tr>
<td>-158</td>
<td>String data not allowed</td>
<td>A string data element was encountered but was not allowed by the Receiver at this point in parsing.</td>
</tr>
<tr>
<td>-170</td>
<td>Expression error</td>
<td>This error can be generated when parsing an expression data element. It is used if the Receiver cannot detect a more specific error.</td>
</tr>
<tr>
<td>Number</td>
<td>Error String</td>
<td>Cause</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>-178</td>
<td>Expression data not allowed</td>
<td>Expression data was encountered but was not allowed by the Receiver at this point in parsing.</td>
</tr>
<tr>
<td>-200</td>
<td>Execution error</td>
<td>This is the generic syntax error if the Receiver cannot detect more specific errors.</td>
</tr>
<tr>
<td>-220</td>
<td>Parameter error</td>
<td>Indicates that a program data element error occurred. This error is used when the Receiver cannot detect more specific errors.</td>
</tr>
<tr>
<td>-221</td>
<td>Settings conflict</td>
<td>Indicates that a legal program data element was parsed but could not be executed due to the current Receiver state.</td>
</tr>
<tr>
<td>-222</td>
<td>Data out of range</td>
<td>Indicates that a legal program data element was parsed but could not be executed because the interpreted value is outside the legal range defined by the Receiver.</td>
</tr>
<tr>
<td>-223</td>
<td>Too much data</td>
<td>Indicates that a legal program data element of block, expression, or string type was received that contained more data than the Receiver could handle due to memory or related receiver-specific requirements.</td>
</tr>
<tr>
<td>-224</td>
<td>Illegal parameter value</td>
<td>Used where exact value, from a list of possible values, was expected (but not received).</td>
</tr>
<tr>
<td>-230</td>
<td>Data corrupt or stale</td>
<td>No valid data available.</td>
</tr>
<tr>
<td>-240</td>
<td>Hardware error</td>
<td>Indicates that a legal program command or query could not be executed because of a hardware problem in the Receiver.</td>
</tr>
<tr>
<td>-241</td>
<td>Hardware missing</td>
<td>Indicates that a legal program command or query could not be executed because of missing Receiver hardware.</td>
</tr>
<tr>
<td>-300</td>
<td>Device-specific error</td>
<td>This is the generic device-dependent error.</td>
</tr>
<tr>
<td>-310</td>
<td>System error</td>
<td>Indicates that a system error occurred.</td>
</tr>
<tr>
<td>-311</td>
<td>Memory error</td>
<td>Occurs on EEPROM write failure.</td>
</tr>
<tr>
<td>-315</td>
<td>Configuration memory lost</td>
<td>Could happen on powerup or preset if a nonvolatile memory problem is detected.</td>
</tr>
<tr>
<td>-321</td>
<td>Out of memory</td>
<td>Indicates that the Receiver has detected that insufficient memory is available.</td>
</tr>
<tr>
<td>-330</td>
<td>Self-test failed</td>
<td>Indicates at least one failure occurred when *TST? or :DIAG:TEST? was executed.</td>
</tr>
<tr>
<td>-350</td>
<td>Queue overflow</td>
<td>An error occurred but was not recorded because the error queue is full.</td>
</tr>
<tr>
<td>-360</td>
<td>Communication error</td>
<td>This is the generic communication error for devices that cannot detect the more specific errors described for errors -361 through -363.</td>
</tr>
<tr>
<td>-361</td>
<td>Parity error in program message</td>
<td>Parity bit not correct when data received for example, on a serial port.</td>
</tr>
<tr>
<td>-362</td>
<td>Framing error in program message</td>
<td>A stop bit was not detected when data was received. For example, on a serial port (for example, a baud rate mismatch).</td>
</tr>
<tr>
<td>-363</td>
<td>Input buffer overrun</td>
<td>Software or hardware input buffer on serial port overflows with data caused by improper or nonexistent pacing.</td>
</tr>
<tr>
<td>-440</td>
<td>Query UNTERMINATED after indefinite response</td>
<td>Indicates that a query was received in the same program message after a query requesting an indefinite response (e.g., *IDN? or :PTIM:TCOD? or :SYST:STAT?).</td>
</tr>
</tbody>
</table>
Command Syntax and Style
Appendix Contents

This appendix provides an overview of the Standard Commands for Programming Instrument (SCPI) syntax and style to help you program the Receiver. A section that lists SCPI reference documentation is also provided.

This appendix is organized as follows:

- Command Types, Format, and Elements page B-3
 - Command Types page B-3
 - Command Formats page B-3
 - Elements of SCPI Commands page B-4
 - Using Multiple Commands page B-7
 - Elements of Response Messages page B-9
- Reference Documentation page B-12
Command Types, Format, and Elements

Command Types

There are two types of GPS Receiver programming commands: IEEE 488.2 Common Commands and Standard Commands for Programmable Instruments (SCPI). The IEEE 488.2 Common Commands control and manage communications between the Receiver and the controller, terminal, or personal computer. The SCPI commands control instrument functions. The format of each type of command is described in the following paragraphs.

Command Formats

Common Command Format

The IEEE 488.2 Standard defines the Common commands as commands that perform functions like reset, self-test, status byte query, and identification. Common commands always begin with the asterisk (*) character, and may include parameters. The command keyword is separated from the first parameter by a space character. Some examples of Common commands are as follows:

*IDN? *ESE 32

SCPI Command and Query Format

SCPI commands perform functions like instrument setup. A subsystem command has a hierarchical structure that usually consists of a top level (or root) keyword, one or more lower-level keywords, and parameters. The following example shows a command and its associated query:

:GPS:POSition:SURVey:STATe ONCE
:GPS:POSition:SURVey:STATe?

GPS is a root-level keyword with POSition the second-level keyword, SURVey the third-level keyword, and STATe the fourth-level. ONCE is the command parameter.
Elements of SCPI Commands

A program command or query is composed of functional elements that include a header (keywords with colon separators), program data, and terminators. These elements are sent to the Receiver over the serial interface as a sequence of ASCII characters. Examples of a typical Common Command and Subsystem Command are:

*CLS
:SYST:ERR?

Common Command Syntax

Figure B-1 shows the simplified syntax of a Common Command. You must use a space (SP) between the command mnemonic and the parameter in a Common Command.

![Common Command Syntax Diagram](image)

NOTE: sp = space. ASCII character decimal 32

Figure B-1. Simplified Common Command Syntax Diagram

Subsystem Command Syntax

Figure B-2 shows the simplified syntax of a Subsystem Command. You must use a space (SP) between the last command mnemonic and the first parameter in a Subsystem Command. Note that if you send more than one parameter with a single command, you must separate adjacent parameters with a comma.

![Subsystem Command Syntax Diagram](image)

NOTE: sp = space. ASCII character decimal 32

Figure B-2. Simplified Program Command Syntax Diagram
Abbreviated Commands

The command syntax shows most keywords as a mixture of upper and lower case letters. Upper case letters indicate the abbreviated spelling for the command. For better program readability, you may send the entire keyword. The Receiver accepts either command form and is not case sensitive.

For example, if the command syntax shows SYNChronization, then SYNC and SYNCHRONIZATION are both acceptable forms. Other forms of SYNChronization, such as SYNCHR or SYNCHRONIZ will generate an error. You may use upper and/or lower case letters. Therefore, SYNCHRONIZATION, synchronization, SyNchROnizatioN, and SYnC are all acceptable.

Keyword Separator

A colon (:) always separates one keyword from the next lower-level keyword as shown below:

:SYST:ERR?

Parameter Data Types

Table B-1 contains explanations and examples of parameter types. Parameter types may be numeric value, Boolean, literal, NRf, string, or non-decimal numeric.

<table>
<thead>
<tr>
<th>TYPE</th>
<th>EXPLANATIONS AND EXAMPLES</th>
</tr>
</thead>
<tbody>
<tr>
<td><numeric value></td>
<td>Accepts all commonly used decimal representation of numbers including optional signs,</td>
</tr>
<tr>
<td></td>
<td>decimal points, and scientific notation:</td>
</tr>
<tr>
<td></td>
<td>123, 123e2, -123, -1.23e2, .123, 1.23e−2, 1.23000E−01.</td>
</tr>
<tr>
<td></td>
<td>Special cases include MINimum and MAXimum as follows:</td>
</tr>
<tr>
<td></td>
<td>MINimum selects minimum value available.</td>
</tr>
<tr>
<td></td>
<td>MAXimum selects maximum value available.</td>
</tr>
<tr>
<td></td>
<td>Queries using MINimum or MAXimum return the associated numeric value.</td>
</tr>
<tr>
<td><Boolean></td>
<td>Represents a single binary condition that is either true or false:</td>
</tr>
<tr>
<td></td>
<td>1 or ON, 0 or OFF (Query response returns only 1 or 0.)</td>
</tr>
<tr>
<td></td>
<td>An <NRf> is rounded to an integer. A non-zero value is interpreted as 1.</td>
</tr>
<tr>
<td><literal></td>
<td>Selects from a finite number of choices. These parameters use mnemonics to represent</td>
</tr>
<tr>
<td></td>
<td>each valid setting. An example of a <literal> parameter is: GPS</td>
</tr>
<tr>
<td><NRf></td>
<td>Flexible numeric representation. Only positive integers are used for NRf parameters in</td>
</tr>
<tr>
<td></td>
<td>the instrument.</td>
</tr>
<tr>
<td><string></td>
<td>A string parameter is delimited by either single quotes or double quotes. Within the quotes,</td>
</tr>
<tr>
<td></td>
<td>any characters in the ASCII B-bit code may be specified.</td>
</tr>
<tr>
<td><non-decimal numeric></td>
<td>Format for specifying hexadecimal (#H1F), octal (#Q1077), and binary (#B10101011)</td>
</tr>
<tr>
<td></td>
<td>numbers using ASCII characters. May be used in :STATus subsystem commands.</td>
</tr>
</tbody>
</table>
Parameter Separator

If you send more than one parameter with a single command, you must separate adjacent parameters with a comma.

Query Parameters

All selectable <numeric value> parameters can be queried to return the minimum or maximum values they are capable of being set to by sending a MINimum or MAXimum parameter after the “?.” For example, consider the :GPS:REF:ADEL? query.

If you send the query without specifying a parameter (:GPS:REF:ADEL?), the present antenna delay value is returned. If you send the MIN parameter (using :GPS:REF:ADEL? MIN), the command returns the minimum value currently available. If you send the MAX parameter, the command returns the maximum value currently available. Be sure to place a space between the question mark and the parameter.

Suffixes

A suffix is the combination of suffix elements and multipliers that can be used to interpret the <numeric value> sent. If a suffix is not specified, the Receiver assumes that <numeric value> is unscaled (that is, Volts, seconds, etc.)

For example, the following two commands are equivalent:

:GPS:REF:ADELay 100 NS
:GPS:REF:ADELay 100E-9

Suffix Elements

Suffix elements, such as HZ (Hertz), S (seconds), V (Volts), OHM (Ohms), PCT (percent), and DEG (degrees) are allowed within this format.
Appendix B Command Syntax and Style

Command Types, Format, and Elements

Suffix Multipliers

Table B-2 lists the suffix multipliers that can be used with suffix elements (except PCT and DEG).

Table B-2. Suffix Multipliers

<table>
<thead>
<tr>
<th>DEFINITION</th>
<th>MNEMONIC</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1E9</td>
<td>G</td>
<td>GIGA</td>
</tr>
<tr>
<td>1E6</td>
<td>MA (or M for OHM and HZ)*</td>
<td>MEGA</td>
</tr>
<tr>
<td>1E3</td>
<td>K</td>
<td>KILO</td>
</tr>
<tr>
<td>1E-3</td>
<td>M (except for OHM and HZ)*</td>
<td>MILLI</td>
</tr>
<tr>
<td>1E-6</td>
<td>U</td>
<td>MICRO</td>
</tr>
<tr>
<td>1E-9</td>
<td>N</td>
<td>NANO</td>
</tr>
<tr>
<td>1E-12</td>
<td>P</td>
<td>PICO</td>
</tr>
</tbody>
</table>

* The suffix units, MHZ and MOHM, are special cases that should not be confused with <suffix multiplier>HZ and <suffix multiplier>OHM.

Command Terminator

A command may be terminated with a line feed (ASCII LF character 10 decimal), a carriage return (ASCII CR character 13 decimal), or one followed immediately by the other in any order.

Using Multiple Commands

Program Messages

Program Messages are a combination of one or more properly formatted SCPI Commands. Program messages always go from the DTE to the Receiver. They are sent to the Receiver over the Receiver's serial interface as a sequence of ASCII characters.

Program Message Syntax

Figure B-3 shows the simplified syntax of a program message. You can see Common Commands and Subsystem Commands in the same program message. If you send more than one command in one message, you must separate adjacent commands with a semicolon.

Operating and Programming Guide B-7
NOTE:
<new line> = ASCII character decimal 10
<carriage return> = ASCII character decimal 13

Figure B-3. Simplified Program Message Syntax Diagram

When using IEEE 488.2 Common commands with SCPI Subsystem commands on the same line, use a semicolon between adjacent commands. For example:

```
*CLS;;SYST:ERR?
```

When multiple SCPI Subsystem commands are sent in one program message, the first command is always referenced to the root node. Subsequent commands, separated by “;”, are referenced to the same level as the preceding command if no “;” is present immediately after the command separator (the semicolon).

For example, sending

```
:GPS:INIT:DATE 1994,7,4;TIME 12,34,56
```

is equivalent to sending:

```
:GPS:INIT:DATE 1994,7,4
:GPS:INIT:TIME 12,34,56
```

or

```
```

The “;” must be present to distinguish another root level command. For example:

```
:SYNC:HOLD:DUR?;;GPS:SAT:VIS:PRED?
```

is equivalent to sending:

```
:SYNC:HOLD:DUR?
:GPS:SAT:VIS:PRED?
```
If the “;” (which is following the “,” and is in front of GPS) is omitted, the Receiver assumes that the second command is

:SYNC:HOLD:GPS:SAT:VIS:PRED?

and generates a syntax error.

Elements of Response Messages

Response Messages

Response messages are data sent from the Receiver to the DTE in response to a query. (A query is a command followed by a question mark. Queries are used to find out how the Receiver is currently configured and to transfer data from the Receiver to the DTE.)

After receiving a query, the Receiver interrogates the requested configuration and issues its response message as soon as possible. The message is transmitted across the serial interface to the DTE.

Response Message Syntax

Figure B-4 shows the simplified syntax of a Response Message. Response messages may contain both commas and semicolon separators. When a single query command returns multiple values, a comma is used to separate each item. When multiple queries are sent in the same program message, the groups of data corresponding to each query are separated by a semicolon.

![Figure B-4. Simplified Response Message Syntax Diagram](image)

NOTE:

<new line> = ASCII character decimal 10
<carriage return> = ASCII character decimal 13
; = multiple response separator (ASCII character decimal 59)
, = data separator within a response (ASCII character decimal 44)
Response Formats

Table B-3 contains explanations of response formats.

Table B-3. Response Formats

<table>
<thead>
<tr>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>± dd</td>
<td>This numeric format represents an integer (e.g., +9).</td>
</tr>
<tr>
<td>± dd, ...</td>
<td>This numeric format represents a comma-separated list of integers (e.g., +1,+2,+3).</td>
</tr>
<tr>
<td>± d.d</td>
<td>This numeric format represents a fixed (e.g., +10.5).</td>
</tr>
<tr>
<td>± d.dEe</td>
<td>This numeric format represents a floating-point number (e.g., +1.00E+000).</td>
</tr>
<tr>
<td>± d.dEe,</td>
<td>This numeric format represents comma-separated list of floating-numbers (e.g., +1.00000E-009, +2.00000E-009, +5.00000E-009).</td>
</tr>
<tr>
<td>0 or 1</td>
<td>A single ASCII-encoded byte, 0 or 1, is returned for the query of settings that use ON, OFF, 1, or 0 parameters.</td>
</tr>
</tbody>
</table>
Table B-3. Response Formats (Continued)

<table>
<thead>
<tr>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>XYZ</td>
<td>ASCII-encoded bytes corresponding to the literal used as the command parameter. An example of an alphanumeric response is: NONE</td>
</tr>
<tr>
<td>"XYZ "</td>
<td>A string response consists of ASCII characters enclosed by double quotes. For example, string data is used for the "<error description>" portion of :SYST:ERR? response.</td>
</tr>
<tr>
<td>"XYZ", ...</td>
<td>A list of string responses consist of comma-separated ASCII characters enclosed by double quotes. (e.g., "log 224:19951017.00:00:26:30: Holdover started, GPS", "log 225:19951017.00:00:29:02: GPS lock started")</td>
</tr>
<tr>
<td>ASCII Data</td>
<td>A sequence of ASCII-encoded bytes.</td>
</tr>
<tr>
<td>Binary Data</td>
<td>The syntax is a pound sign (#) followed by a non-zero digit representing the number of digits in the subsequent decimal integer. The decimal integer specifies the number of 8-bit data bytes being sent. This is followed by the actual data. The terminator is a line feed. For example, for transmitting 8 bytes of data, the format might be:</td>
</tr>
</tbody>
</table>

```
<carriage return> is defined as a single ASCII-encoded byte corresponding to 13 decimal.
<new line> is defined as a single ASCII-encoded byte corresponding to 10 decimal.
```
Reference Documentation

This section contains a list of documentation related to the use of the Receiver’s RS-232C serial port. Additional information that you may find useful can be found in the following publications:

 This standard is a guide for the selection of messages to be included in programmable instrumentation. It is primarily intended for instrument firmware engineers. However, you may find it useful if you are programming more than one instrument that claims conformance to the SCPI standard. You can verify the use of standard SCPI commands in different instruments.

 To obtain a copy of this standard, contact:

 SCPI Consortium
 8380 Hercules, Suite P3
 La Mesa, CA 91942
 Phone: (619) 697-8790
 FAX: (619) 697-5955

 This standard defines the underlying message formats and data types used in SCPI. It is intended more for firmware engineers than for instrument users/programmers. However, it can be useful if you need to know the precise definition of specific message formats, data type, or common commands.

 To obtain a copy of this standard, write to:

 The Institute of Electrical and Electronic Engineers Inc.
 345 East 47th Street
 New York, NY 10017 USA
C

Receiver Firmware Installation
Appendix C Receiver Firmware Installation

Downloading New Firmware Using SatStat Program

1 Copy the file of the updated firmware disk to a directory on your PC disk drive.

If you haven’t already installed SatStat, you should install it now (follow instructions on the disk label or in the section titled “To Install the Automated SatStat Program for Continual Status Updates” in Chapter 3, “Visual User Interface,” of this guide).

2 Start SatStat (easiest way is to double-click on the icon).

3 You should establish communication with the GPS Receiver. This requires connection from a serial RS-232 port on your PC to the GPS Receiver’s serial port (a 25-pin RS-232 connection). Assuming you’ve got the cable attached to make this connection, you may want to check the settings.

a. Select CommPort, then choose Settings.

The Communication Settings dialog box is displayed. Unless someone has reprogrammed the CommPort settings on the GPS Receiver, these settings are probably OK. The one setting that is likely to need changing is the Com Port. The application defaults it to Com1, but the serial port on your PC may be assigned to a different Com Port. Select the appropriate setting. If you are unsure, Com1 will be your best bet (worst case, you can cycle through all of them until it works).

b. If you made any changes on this form, select OK, otherwise you can just Cancel.

4 Select CommPort, then choose Port Open.

The main form of the Receiver Status screen is displayed. The application will send some commands to the GPS Receiver and then the main form should begin to periodically update every few seconds. If you are getting screen updates, proceed to the next step. Otherwise, something is wrong with your CommPort settings or perhaps the physical connection between your PC and the GPS Receiver.
Prior to download, interrogate the product, record any custom configuration parameters. This step is necessary because downloading new instrument firmware will reset all parameters to system-preset defaults. Parameters typically recorded include:

- antenna delay
- elevation mask angle
- timezone offset

A table of all system-preset defaults is printed in Table 5-2 on page 5-111 in Chapter 5 of this guide; refer to it to identify additional parameters whose default values are inappropriate for your application. Record the settings you use prior to download.

5 Performing the download works best if the periodic updates are disabled. On the main form, select the Function menu, choose Status (check mark appears), and choose Disable Updates (check mark appears).

6 Activate the form titled “Control & Query” by clicking anywhere on it. Select Service, then choose Download Firmware. This will bring up a form titled “Firmware Download”.

7 Now you need to select the file that you will download. Select the control labeled File.

This brings up a form for file selection. Download files for the GPS Receiver have a .s appended to the file name. This form is set to only find .s type files. In this case, you want to find and select the filename, for example s_3503.s. Depending on where you have placed this file, you may have to use this form to navigate for it. If it is on a different drive, use the Drives selection in the lower right. Once you’ve located s_3503.s select it (clicking on the name is probably the easiest) and then select OK. The file, along with its path should now appear in the “File to Download” portion of the “Firmware Download” form.

8 You’re now ready to perform the download. Select the control titled Download and an erase warning will appear. This is just a double-check to make sure you really want to do this. Assuming you do, select Yes, Perform the Download.

The program will switch the GPS Receiver to the “INSTALL” language, erase the flash memory, and begin downloading S-records. The S-records are the long character strings that appear in the lower part of the form as the downloading process proceeds. The total
downloading time varies depending on the type of PC you have, but with communication settings optimized a typical time is about 30 minutes. Once the download is under way, an estimate of the time to complete the process is updated every 100 S-records.

9 When the downloading has completed, the “Minutes Until Finished” field will say “DONE”. You can then select Close on the Firmware Download form.

There are a couple of ways to confirm that the new firmware has been installed; the easiest is to just power-cycle the unit. Once it has powered up, you can confirm that the new revision is in place by selecting Query, then choosing Product ID (from the “Control & Query” form) and selecting Send Cmd. The product ID will appear on the Control & Query form and should contain the new date code “3503”, for example. An alternative way to check the download is to type SYST:LANG "PRIMARY" in the edit field on the “Control & Query” form and select Send Cmd. This will return the unit to normal operating mode without power-cycling. If you do this, you could then check the product ID as described above. NOTE: it is expected that in early software revisions the alarm will come on the first time you power-cycle (or switch to “primary” using SYST:LANG “PRIMARY”). If you investigate the alarm, you will find it is the software safeguard—it has gone off because you have changed the instrument firmware. On subsequent power-ons the alarm will not come on.

After upgrading instrument firmware, you will need to restore the instrument settings recorded prior to the download, and restore the instrument and PC communications settings so that BAUD rate and echo are set according to the requirements of your installation.
Performance Tests

Verifying Specifications
Introduction

This appendix provides procedures to test the electrical performance of the 58503B and 59551A GPS Receivers specifications listed in and Appendix E, “58503B Specifications,” and Appendix F, “59551A Specifications,” of the. Two types of testing are provided:

- Operational Verification, starting on page D-5
- Complete Performance Tests, starting on page D-17

Operational Verification

The Operational Verification operational verification test is an abbreviated series of checks that may be performed to give a high degree of confidence that the instrument is operating properly without performing the Complete Performance Tests. An operational verification is useful for incoming inspection, routine maintenance, and after instrument repair.

Complete Performance Tests

The Complete Performance Tests performance tests verify the specifications listed in Appendix E, “58503B Specifications or Appendix F, “59551A Specifications.” All tests can be performed without access to the inside of the instrument.

Test Record

The results of the Operational Verification and Complete Performance Tests should be recorded on a copy of the appropriate (i.e., 58503B or 59551A) Performance Test Record, located at the end of this chapter.
Equipment Required

Table D-1. Recommended Test Equipment

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Required Characteristics</th>
<th>Recommended Model</th>
<th>Use*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digitizing Oscilloscope</td>
<td>2 channels 500 MHz bandwidth (repetitive)</td>
<td>HP 54600B (or equivalent)</td>
<td>OV, P</td>
</tr>
<tr>
<td>Digital Multimeter (DMM)</td>
<td>Microvolt accuracy with leads</td>
<td>HP 34401A (or equivalent)</td>
<td>OV, P</td>
</tr>
<tr>
<td>Terminal or computer</td>
<td>Communication Software, RS-232C connection</td>
<td>Any Model</td>
<td>OV, P</td>
</tr>
<tr>
<td>Universal Counter</td>
<td>Resolution: 300 ps or better in T.I. Mode</td>
<td>HP 53132A (or equivalent)</td>
<td>P</td>
</tr>
<tr>
<td>Frequency Standard</td>
<td>1 PPS Source. Jitter: <1 ns rms pulse-to-pulse 10 MHz House Standard. Accuracy: 2x10^{-12} or better</td>
<td>HP 5071A (or equivalent)</td>
<td>P</td>
</tr>
<tr>
<td>50Ω Feedthrough</td>
<td></td>
<td>HP 10100C (or equivalent)</td>
<td>OV</td>
</tr>
<tr>
<td>50Ω Coaxial Cable with BNC connectors</td>
<td>BNC(m) to BNC(m), 48 inches</td>
<td>HP 10503A (or equivalent)</td>
<td>P</td>
</tr>
<tr>
<td>GPS Antenna or Antenna Assembly</td>
<td></td>
<td>58504A or 58513A</td>
<td>P</td>
</tr>
<tr>
<td>GPS Antenna Cable Assembly</td>
<td>RG-213 or LMR 400 cables with TNC (m)-to-N (m) connectors</td>
<td>58518A, 58520A</td>
<td>P</td>
</tr>
<tr>
<td>Antenna Interconnect Cable Assembly</td>
<td>RG-213 or LMR 400 cables with N (m)-to-N (m) connectors</td>
<td>58519A, 8521A</td>
<td>P</td>
</tr>
<tr>
<td>Barrel adapter</td>
<td>N (f)-to-N (f)</td>
<td>HP 1250-0777 (or equivalent)</td>
<td>P</td>
</tr>
</tbody>
</table>

*OV = Operational Verification

P = Performance Tests

T = Troubleshooting
Before You Start

The time required to acquire lock as described in the following section can vary significantly depending on your local conditions. In general, it is strongly recommended that your antenna and cables be set up in accordance with the information provided in the documents listed below prior to performing any of the tests that follow, or the results cannot be assumed to be valid.

Documents providing GPS Antenna System information are:

- *Designing Your GPS Antenna System* Configuration Guide configuration guide, which discusses the components of an GPS timing receiver system and how to custom design the configuration of your antenna system. *Contact your local Sales office for a copy of this guide.*

- Information Notes that provide installation procedures for the applicable GPS antenna and accessories that you purchase.

Acquiring lock does not mean that the unit is fully operational and meeting specifications. It just means that the GPS Receiver has detected enough satellites to start its survey mode to determine its precise location. An Internal measurement FFOM (Frequency Figure of Merit) becomes 0 when the internal loops reach their proper time constants, indicating that the output frequency and 1 PPS signals are now fully operational and meeting their specifications. Under the worst conditions, the GPS Receiver may take 24 to 72 hours to achieve FFOM = 0. FFOM can be monitored in the Reference Outputs quadrant of the Receiver Status screen (see the sample status screen, Figure 3-1, in Chapter 3, “Visual User Interface,” of this guide if needed). Also, using :PTIMe:TCODe? query command will provide the FFOM value.
Operational Verification

Introduction

The 58503B and 59551A GPS Receivers are designed to automatically detect and acquire satellites in order to begin providing precise frequency and time information.

Until such acquisition is complete and the unit is locked with FFOM = 0, the signals produced on the rear panel are not precise. However, it is possible to verify that the Receiver has been received in good working condition by performing some simple operational verification tests upon receipt.

Except for two tests (Time Stamp Verification and Programmable Pulse Verification), all of the following operational verification tests do not require usage of the GPS antenna. These tests are designed to provide a high degree of confidence that the Receiver is functioning, but the tests will not verify the specified performance characteristics. Such testing requires more expensive equipment and very long test times (over 72 hours per unit). We recommend that full or complete Performance Testing be restricted to testing only after any repairs to the 58503B or 59551A.

The 58503B and 59551A require no calibration.

Record the results of the Operational Verification in the appropriate place on the appropriate (i.e., 58503B or 59551A) Performance Test Record, which is located at the end of this chapter.

Power-Up Procedure

NOTE

Use the HP 10100C 50Ω feedthrough on the input of the oscilloscope for the following test.

1 Connect the Receiver to a suitable power source. The unit will perform a self-test of internal components.

2 Verify that after 15 seconds the Power indicator is on and the Alarm indicator is off. This ensures that all internal components and connections are functioning. (If needed, refer to the subsection titled “To Connect Power” in Chapter 1 of the 58503B/59551A Getting Started Guide for assistance in connecting the Receiver to a power source.)
10 MHz Verification (58503B Only)

1. Set the HP 54600B oscilloscope or equivalent sweep rate to 100 ns/div, input amplitude to 0.2 Volts/div, and input coupling to ac.

2. Connect the oscilloscope to the rear-panel 10 MHz OUT output of the 58503B as shown in Figure 2.

3. Verify that there is a 10 MHz sine wave present with approximately 1 Volt peak-to-peak into the 50 ohm load.

4. Mark Pass or Fail in Line 1 on the Operational Verification portion of the 58503B Performance Test Record, located at the end of this chapter.

1 PPS Verification

1. Set the oscilloscope sweep rate to 5 ,s/div, input amplitude to 5 Volts, and input coupling to dc.

2. Connect the oscilloscope to the rear-panel 1 PPS output of the Receiver as shown in Figure D-2.
Figure D-2. 1 PPS Operational Verification Setup

3 Verify the presence of a TTL level pulse with approximately 20 µs pulse width.

4 Mark Pass or Fail in Line 2 on the Operational Verification portion of the appropriate (58503B or 59551A) Performance Test Record, located at the end of this chapter.

IRIG-B Verification (59551A Only)

1 Set the oscilloscope sweep rate to 1 msec/div and input amplitude to 5 Volts/div, dc-coupled.

2 Connect the oscilloscope to the rear-panel IRIG-B output of the 59551A GPS Receiver as shown in Figure 2.

 Verify that the display shows a sine wave with a period of 1 ms, changing in amplitude from 5 Volts peak-to-peak, to greater than 10 Volts peak-to-peak. This is the IRIG-B time code modulating a 1 kHz carrier.

3 Mark Pass or Fail in Line 3 on the Operational Verification portion of the 59551A Performance Test Record, located at the end of this chapter.
Operational Verification

Time of Day and PORT 1 RS-232C Serial Interface Verification

1. Connect a terminal or computer (set to 9600 baud, 8 data bits, 1 stop bit, and no parity and no pace) to the rear-panel PORT 1. If you need assistance in setting the serial parameters, refer to the Getting Started guide.

2. Press the Return key on the terminal.

 Verify that either a **SCPI >** or **E-xxx>** prompt is returned. The **xxx** can be any number for this test. If **E-xxx>** is returned, send the **CLS** command to clear the error.

3. Type **:SYSTEM:STATUS?**, then press Enter (or Return) key.

 The terminal screen displays the Receiver Status screen, which is a complete status report of the Receiver. Without a GPS antenna, most data will be blank or indicating that the instrument is in “Power-Up” mode. The **FFOM = 3** in the upper right corner indicates that the Receiver is in power-up mode and frequency outputs are invalid. At this point, the data at the bottom of the screen lists the results of all internal self-tests. The **HEALTH MONITOR, SelfTest, Int Pwr, Oven Pwr, OCXO, EFC, and GPS Rcv** should all show **OK**.

4. From the terminal keyboard, type

 :PTIME:TCODE? and press Return.
Appendix D Performance Tests

Operational Verification

An alphanumeric string which starts with a “T” should be displayed as shown in the following example:

T2199505112055233000049

Note that the value above will be different for each test, depending on the local date and time.

5 Mark Pass or Fail in Line 4 on the Operational Verification portion of the appropriate (58503B or 59551A) Performance Test Record, located at the end of this chapter.

Antenna Power Verification

1 Set the DMM to read a range of 5 Volts dc.

2 Measure the dc voltage from the center pin of the antenna (Type N) connector with respect to the threaded connector shell.

 Verify that the voltage is between 4.5 and 5.0 Volts dc.

3 Mark Pass or Fail in Line 5 on the Operational Verification portion of the appropriate (58503B or 59551A) Performance Test Record, located at the end of this chapter.

4 If you are testing the 58503B with Option 001 Front Panel and Keypad, perform the procedure in the following section titled “Front Panel Display/Keypad Verification (58503B Option 001 Only)” on page D-10.

 If you are testing the standard 58503B, go to the section titled “Operational Verification Conclusion” on page D-15 in this chapter.

 If you are testing a 59551A, go to the section titled “Time Tagging (Stamping) Verification and Programmable Verification (59551A Only)” on page D-11.
Front Panel Display/Keypad Verification (58503B Option 001 Only)

This tests the operation of the Front Panel Display/Keypad option for the 58503B.

1 Disconnect and re-apply power to the 58503B.

2 While the letters "HP" are moving from right to left (about 2 seconds), press Sat key and then Time key to enter the TEST/DEMO mode.

3 The words VFD DSP TEST will momentarily appear.

 The display should then show a test pattern that sequentially illuminates all 15 segments of all digits and punctuation marks in the display.

4 Verify that all segments illuminate.

5 When the segment illumination sequence is complete, the words DEMO MODE should then appear.

6 Press each key one at a time. Each keypress should:
 • illuminate the LED corresponding to that key, and
 • display a simulated response to the function.

 NOTE

 (1) The Clear Alarm (Shift , Alt) function will exit the test. (2) The values displayed are not related to the 58503B under test. They are displayed for demonstration only.

7 To exit the diagnostic, press Shift key, and then press Alt key.

8 The 58503B power-up sequence should then continue. No further tests are necessary.

9 Mark Pass or Fail in Line 5 on the Operational Verification portion of the 58503B Performance Test Record, located at the end of this chapter.

10 Proceed to the section titled “Operational Verification Conclusion” on page D-15 to complete the operational verification.
Time Tagging (Stamping) Verification and Programmable Verification (59551A Only)

NOTE

GPS ANTENNA REQUIRED. The steps below require that a GPS antenna be properly set up, and the 59551A is in GPS locked mode before proceeding. For information on how to make such a setup, refer to the antenna information provided on page D-4 in this chapter.

If you determine that these tests will not be performed for your facility, please proceed to the next section titled “Operational Verification Conclusion” on page D-15.

1. Connect a GPS Antenna and cable to the 59551A and allow the Receiver to indicate it is in “GPS Lock” mode as indicated by the illuminated **GPS Lock** indicator. Until GPS lock is attained, the following tests will not be valid. Your test setup should be similar to Figure 1.

![Figure D-4. 59551A Time Tagging Operational Verification Setup](https://example.com/figure_d_4)

2. Enter the following commands from the terminal or computer to note the current date and time.

 :PTIME:DATE?

 :PTIME:TIME?

3. On the computer or terminal, type :SENSE:DATA:CLEAR and press the Return key.
Appendix D Performance Tests

Operational Verification

This clears the Time Tagging event registers of any data prior to the next step.

4 On the computer or terminal, type :FORMAT:DATA ASCII and press the Return key.

This sets the output format of the Time Tagging Data to an ASCII string for easier interpretation.

5 Refer to Chapter 2, “Features and Functions,” in the 58503B/59951A Getting Started Guide to identify types of stimulus equipment that could be used for this test.

A suggested general-purpose device could be a pulse generator, set to output a TTL level pulse.

6 Use this signal to send an event to each of the three Time Tagging inputs.

7 From the terminal or computer, send the following query commands to verify that an event was recorded in each of the Time Tagging event registers. Note that there is a space between the question mark (?) and the quotation mark (") in the following commands.

 :SENSE:DATA? “TSTAMP 1”
 :SENSE:DATA? “TSTAMP 2”
 :SENSE:DATA? “TSTAMP 3”

Note that the actual date and time of the record is not being tested.

8 Verify that each response is the following format:

 yyyy,mm,dd,hh,mm,ssssssss,xxxxxxxxxx

9 On the terminal, type :SENSE:DATA:CLEAR and press the Return key.

10 This again clears the Time Tagging event registers of any data from this test.

11 Mark Pass or Fail in Line 6 on the Operational Verification portion of the 59551A Performance Test Record, located at the end of this chapter.
Programmable Pulse Verification (59551A Only)

1. Enter the following commands from the terminal or computer:

 :PULSE:CONTINUOUS:PERIOD 1

 This sets the period to 1 second.

 :PULSE:CONTINUOUS:STATE ON

 This sets the programmable pulse output to provide a continuous stream of pulses.

 :PULSE:START:DATE <four-digit year>, <month>, <day>

2. Set the year, month, and day to the same values read in step 2 in the previous procedure “Time Tagging Verification.”

 Example:

 :PULSE:START:TIME <hours>, <minutes>, <seconds>

3. Set the hours, minutes, and seconds to the same values observed in step 2 of the previous procedure “Time Tagging Verification.”

 Example:

 :PULSE:START:TIME 13, 1, 5 is 13:01:05 in 24-hour format.

 NOTE

 Setting the time to a value earlier than the present time will start the pulse stream immediately. If a time is input with a value some time in the future, the pulse stream will not start until that time is attained.

4. Set the oscilloscope sweep rate to 5 msec/div, input amplitude to 5 Volts/div, and input coupling to dc.

5. Connect the oscilloscope to the rear-panel Programmable Pulse output as shown in Figure 5.
6 Verify that a continuous stream of TTL-compatible pulses are occurring at a 1 second rate.

7 Mark Pass or Fail in Line 7 on the Operational Verification portion of the 59551A Performance Test Record, located at the end of this chapter.
Operational Verification Conclusion

NOTE
Perform the following step only if you wish to restore memory of the 58503B or 59551A Receiver to the factory default states. Doing this can change several parameters that have been stored by a previous user. If you have any questions or concerns, refer to Table 5-2 under the description of the :SYSTEM:PRESET command on page 5-111 of Chapter 5 in this guide for information on the type of information that is stored.

On the terminal or computer, type:

:SYSTEM:PRESET and press the Return key.

This will ensure that your Receiver has been restored to the factory defaults as originally received.

This completes the operational verification.
In Case of Difficulty

If any of the above tests fail it should be re-checked before assuming that the unit is defective. Return any defective unit.
Complete Performance Tests

The specifications of the 58503B and 59551A can be verified by performing the Performance Tests provided in this section. Table D-2 lists a summary of the 58503B/59551A Complete Performance Tests.

Table D-2. The 58503B/59551A Complete Performance Tests

<table>
<thead>
<tr>
<th>Page Number</th>
<th>Time and Frequency Output Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-18</td>
<td>Preliminary Test Setup</td>
</tr>
<tr>
<td>D-19</td>
<td>Test 1: 10 MHz Frequency Accuracy and 1 PPS Jitter (Locked to GPS)</td>
</tr>
<tr>
<td>D-22</td>
<td>Test 2: 10 MHz Holdover Aging and 1 PPS Accumulated Time Error (Unlocked)</td>
</tr>
<tr>
<td>D-24</td>
<td>Test 3: 1 PPS Time Accuracy (Locked)</td>
</tr>
<tr>
<td>D-24</td>
<td>Test 4: 10 MHz Frequency Stability (Time Domain) and Phase Noise (Frequency Domain) Measurements</td>
</tr>
</tbody>
</table>

The following tests will ensure that the 58503B GPS Time and Frequency Reference Receiver and 59551A GPS Measurements Synchronization Module are meeting the published specifications. Some of these tests will require that the Receiver be operating continuously for at least 3 days, others require that the Receiver be disconnected from GPS, and others will require further investigation in order to produce a satisfactory setup and measurement.

The critical specifications to be tested are the 10 MHz Frequency Accuracy (1 day) and the 1 PPS Jitter (1 day) specifications. As long as the Receiver is locked, the proper performance of these two specifications will imply that the other specifications are in conformance.

The following tests do not test “typical” or “nominal” specifications, or “supplemental characteristics,” “supplemental information,” or “features.”

Record the results of the Performance Test in the appropriate place on the appropriate (i.e., 58503B or 59551A) Performance Test Record, which is located at the end of this chapter.
Preliminary Test Setup

If you have not connected the GPS antenna to the Receiver, perform the following preliminary procedure in this section.

If you have already connected the GPS antenna to the Receiver, go to the next subsection titled “Test 1: 10 MHz Frequency Accuracy and 1 PPS Jitter (Locked to GPS).”

1 Connect the antenna system to the rear-panel **ANTENNA** Type-N connector of the Receiver as described in the instructions given in the section titled “Preparing the GPS Receiver for Use” in Chapter 1, of the 58503B/59551A Getting Started Guide.

NOTE

Do not apply power to the Receiver unless a fully operational antenna system is connected to the ANTENNA input connector. Power applied with no antenna input or a non-functioning antenna will initiate an extended search process that may increase time to reach GPS lock. You can halt the extended search by disconnecting and reconnecting (cycling) the external supply voltage to the Receiver (you may need to leave power disconnected for greater than five seconds).

2 Connect the Receiver to a suitable power source. (If needed, refer to the subsection titled “To Connect Power” in Chapter 1 of the 58503B/59551A Getting Started Guide.)

3 The Receiver will perform a self-test of internal components. Verify that after 15 seconds the **Power** indicator illuminates and the **Alarm** indicator is off. This ensures that all internal components and connections are functioning.
Test 1: 10 MHz Frequency Accuracy and 1 PPS Jitter (Locked to GPS)

This test measures the relative change in the 1 PPS pulses between the unit under test and a known accurate source. A time interval is measured and the data is stored to be compared with a second measurement, 24 hours later. The 1 PPS source is derived from the internal 10 MHz, and the relative accuracy of 1 PPS is directly related to the accuracy of the 10 MHz.

Specifications Tested

Frequency Accuracy (locked): Better than 1 x 10^{-12} for a one day average, 0 degrees to 50 degrees C.

1 PPS Jitter of leading edge: <750 ps with at least one satellite in view, Selective Availability on.

Procedure

1. Connect the terminal or computer to the Receiver using the cable recommended in the Getting Started Guide and ensure that they are both communicating.

2. Ensure that the Receiver is in “GPS Lock” mode as indicated by the illuminated GPS Lock indicator, and that FFOM = 0. The current value of FFOM and many other characteristics of the unit can be determined by typing :SYSTEM:STATUS? on the terminal.

3. Connect the 10 MHz reference output from the reference 1 PPS source (HP 5071A or another stable, traceable house standard) to the rear-panel Ref In of the Universal Counter, as shown in Figure D-6, to provide an external timebase for the Counter.

Figure D-6. 10 MHz Frequency Accuracy and 1 PPS Jitter Test Setup (58503B GPS Receiver shown)
4 Connect the rear-panel 1 PPS from Receiver under test to Channel 1 of the Universal Counter.

5 Connect the 1 PPS from the reference standard (5071A) to Channel 2.

6 On the terminal or computer, enter the following command to clear all entries in the Diagnostic (status) Log:

 :DIAG:LOG:CLEAR and press the Enter (or Return) key.

7 Set the Universal Counter function to take 100 samples of Time Interval and compute the Mean value. Ensure that the inputs are set to DC-coupled, 50 Ohms, and rising edge. Set the trigger level for both inputs to 1 Volt dc.

8 Record the average time interval for later comparison.

 __________________________ seconds.

9 Disconnect the reference 1 PPS from input 2 and set the counter to “COMMON” mode so the 1 PPS from the Receiver is input to both channels. For this step, be sure the trigger levels are both set to 1 Volt dc.

10 Set the counter to compute the Standard Deviation for the same 100 samples.

 This is the RMS Jitter of the 1 PPS.
Appendix D Performance Tests

Complete Performance Tests

11 Again, allow the counter to accumulate 100 samples of time interval.

12 Note the largest deviation (greater or less) from exactly 1 second.

This the worst-case 1 PPS leading edge jitter.

13 Record the results of 1 PPS Jitter on Line 2 of Test 1 of the Performance Test Record.

14 Wait 24 hours to complete the Frequency Accuracy test.

15 On the terminal or computer, enter the following command:

Observe the messages (if any) that appear and verify that none of the messages indicate that the 58503B/59551A has entered holdover mode. If it has, the entire test must be re-started from step 2 above.

16 Repeat steps 2 through 8 above after the 24-hour period.

17 Compute the Frequency Accuracy using the following formula:

\[
\frac{(t_1 - t_2) \text{seconds}}{\Delta t \text{seconds}} = \text{Accuracy (unitless)}
\]

Where,

- t_1 is the average time interval first measured
- t_2 is the average time interval last measured
- Δt is the time between measurements ($86,400$ seconds = 24 hours)

18 Record the results of Frequency Accuracy in Line 1 of Test 1 of the Performance Test Record.
Test 2: 10 MHz Holdover Aging and 1 PPS Accumulated Time Error (Unlocked)

The following tests are identical to the previous tests, with the exception that during the actual test, the Receiver is not locked to the GPS. However, the test must adhere to the restrictions noted below with the specification in order for the results to be valid.

Specifications Tested

Holdover aging: $< 1 \times 10^{-10}$/day average frequency change in 24 hours unlocked after 3 days locked operation for any 10 degrees C range between 10 degrees C and 40 degrees C.

Accumulated time error: < 8.6 us accumulated in 24 hours unlocked after 3 days of locked operation with a fixed antenna location, any 10 degrees C range between 10 degrees and 40 degrees C.

Procedure

1. Ensure that the Receiver has been in GPS Lock mode for at least three (3) days without entering holdover mode by typing the following command on the terminal or computer:

 Verify that there are no messages to indicate that holdover mode was started during the last 72 hours of operation.

2. Ensure that the temperature restrictions described above will be met for the next 24 hours.

3. Connect the 10 MHz reference output from the reference 1 PPS source (5071A or another stable, traceable house standard) to the rear-panel Ref In of the Universal Counter, as shown in Figure D-6, to provide an external timebase for the Counter.

4. Connect the rear-panel 1 PPS from Receiver under test to Channel 1 of the Universal Counter.

5. Connect the 1 PPS from the reference standard (5071A) to Channel 2. Ensure that the inputs are set to DC-coupled, 50 Ohms, and rising edge. Set the trigger level for both inputs to 1 Volt dc.

6. Disconnect the antenna cable (N-type connector) at the rear of the Receiver to force it into Holdover Mode.

7. Ensure that the Holdover indicator is illuminated and the GPS Lock is not illuminated.
Appendix D Performance Tests
Complete Performance Tests

8 Note the time interval average for 100 samples, either positive or negative.

NOTE
Do not re-connect the antenna at this time. It must remain disconnected for the entire 24-hour period.

9 Wait 24 hours to complete the Holdover Aging test. During this 24-hour period, ensure that the temperature restrictions are maintained. If the temperature does exceed the range, the Receiver will have to be re-connected to the antenna, allowed to lock, run for at least 3 days, and re-tested with this procedure.

10 Repeat steps 3, 4, 5, and 8 above after the 24 hour period.

11 If desired, re-connect the antenna cable at this time.

12 Compute the Holdover Aging rate using the following formula:

\[
\frac{(t_1 - t_2) \text{seconds}}{\Delta t \text{seconds}} = \text{Aging rate (unitless)}
\]

Where,

\(t_1\) is the average time interval first measured
\(t_2\) is the average time interval last measured
\(\Delta t\) is the time between measurements (86,400 seconds = 24 hours)

13 Compute the Accumulated Time Error using the following formula:

\[(t_1 - t_2) \text{ seconds} = \text{Error (seconds)}\]

Where \(t_1\) and \(t_2\) are defined as in the previous step.

14 Record the results of Holdover Aging and 1 PPS Accumulated Time Error in the Test 2 row of the Performance Test Record.
Test 3: 1 PPS Time Accuracy (Locked)

This specification is a statistical probability that the Receiver will conform to the standard as described. This cannot be tested with any degree of confidence except at NIST or an equivalent National Standards Laboratory. Actual accuracy obtained depends on the exact knowledge of the geophysical location, characteristics and delay in the antenna, calibration of all measurement delays, and calibration of antenna cable delay. Calibration of both ionospheric and tropospheric delay use the standard algorithms provided in the GPS data messages. At the 95% confidence level, time errors associated with the Receiver, GPS system, and ionospheric and tropospheric effects will be less than 110 ns.

Test 4: 10 MHz Frequency Stability (Time Domain) and Phase Noise (Frequency Domain) Measurements

NOTE

High accuracy precision measurements of both time and frequency domain stability are available through the National Institute of Standards and Technology (NIST) in the USA, and at other equivalent National Standards Laboratories. NIST can completely characterize and verify all major specifications of the 58503B or 59551A. For information regarding the various tests available, contact:

National Institute of Standards and Technology,
Measurements Services Office
325 Broadway, Boulder CO 80303-3328 USA,
Telephone: (303) 497-3753

Frequency Stability (Time Domain)

This is an engineering-level measurement requiring a special test setup. The test setup must be carefully designed to eliminate all sources of noise. For more information on how to make this measurement, see Application Note 358-12. Also, see NIST Technical Note 1337 (available from US Government Printing Office, Washington DC., USA). This is an excellent theoretical as well as technical reference for this measurement.

Phase Noise (Frequency Domain)

This measurement requires the HP 3048A Phase Noise Measurement System or equivalent, a highly specialized test system. In order to perform properly, this system must contain a reference oscillator with phase noise characteristics that are equal to or better than the 58503B or 59551A.

This completes the performance tests.
58503B Performance Test Record

Model 58503B GPS Time and Frequency Reference Receiver

<table>
<thead>
<tr>
<th>Line Number</th>
<th>Operational Verification</th>
<th>Test Results</th>
<th>Test Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10 MHz Verification</td>
<td>Pass</td>
<td>Fail</td>
</tr>
<tr>
<td>2</td>
<td>1 PPS Verification</td>
<td>Pass</td>
<td>Pass</td>
</tr>
<tr>
<td>3</td>
<td>Time of Day RS-232 Serial Interface Verification</td>
<td>Pass</td>
<td>Pass</td>
</tr>
<tr>
<td>4</td>
<td>Antenna Power Verification</td>
<td>Pass</td>
<td>Fail</td>
</tr>
<tr>
<td>5</td>
<td>Front Panel Display/Keypad Verification (Option 001 Only)</td>
<td>Pass</td>
<td>Fail</td>
</tr>
</tbody>
</table>

58503B Complete Performance Tests

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Test Description</th>
<th>Results</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10 MHz Frequency Accuracy and 1 PPS Jitter (Locked to GPS)</td>
<td>1. ________ 2. ________</td>
<td>Better than 1×10^{-12} for a one day average, 0° to 50° C. <750 ps with at least one satellite in view, Selective Availability on.</td>
</tr>
<tr>
<td>2</td>
<td>10 MHz Holdover Aging and 1 PPS Accumulated Time error (Unlocked)</td>
<td>1. ________ 2. ________</td>
<td><1×10^{-10}/day average frequency change in 24 hours unlocked after 3 days locked operation for any 10° C range between 10° C and 40° C. <8.6 us accumulated in 24 hours unlocked after 3 days of locked operation with a fixed antenna location, any 10° C range between 10° C and 40° C.</td>
</tr>
<tr>
<td>3</td>
<td>1 PPS Time Accuracy (Locked)</td>
<td>________</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10 MHz Frequency Stability (Time Domain) and Phase Noise (Frequency Domain) Measurement</td>
<td>________</td>
<td></td>
</tr>
</tbody>
</table>
59551A Performance Test Record

Model 59551A GPS Measurements Synchronization Module

- **Serial Number:** __________________________
- **Repair/Work Order No.:** _______________________
- **Test Performed By:** _______________________
- **Temperature:** ______________________________
- **Date:** ___________________________________
- **Relative Humidity:** _________________________
- **Notes:** __

<table>
<thead>
<tr>
<th>Line Number</th>
<th>Operational Verification</th>
<th>Test Results</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pass</td>
<td>Fail</td>
</tr>
<tr>
<td>1</td>
<td>10 MHz Verification</td>
<td>____</td>
<td>_____</td>
</tr>
<tr>
<td>2</td>
<td>1 PPS Verification</td>
<td>____</td>
<td>_____</td>
</tr>
<tr>
<td>3</td>
<td>IRIG-B Verification</td>
<td>____</td>
<td>_____</td>
</tr>
<tr>
<td>4</td>
<td>Time of Day RS-232 Serial Interface Verification</td>
<td>____</td>
<td>_____</td>
</tr>
<tr>
<td>5</td>
<td>Antenna Power Verification</td>
<td>____</td>
<td>_____</td>
</tr>
<tr>
<td>6</td>
<td>Time Tagging (Stamping) Verification</td>
<td>____</td>
<td>_____</td>
</tr>
<tr>
<td>7</td>
<td>Programmable Pulse Verification</td>
<td>____</td>
<td>_____</td>
</tr>
</tbody>
</table>

59551A Complete Performance Tests

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Test Description</th>
<th>Results</th>
<th>Limits</th>
</tr>
</thead>
</table>
| 1 | 10 MHz Frequency Accuracy and 1 PPS Jitter (Locked to GPS) | 1. ________ 2. ________ | Better than 1×10^{-12} for a one day average, 0° to 50° C.
<750 ps with at least one satellite in view, Selective Availability on. |
| 2 | 10 MHz Holdover Aging and 1 PPS Accumulated Time error (Unlocked) | 1. ________ 2. ________ | <1×10^{-10}/day average frequency change in 24 hours unlocked after 3 days locked operation for any 10° C range between 10° C and 40° C.
<8.6 us accumulated in 24 hours unlocked after 3 days of locked operation with a fixed antenna location, any 10° C range between 10° C and 40° C. |
| 3 | 1 PPS Time Accuracy (Locked) | ________ | |
| 4 | 10 MHz Frequency Stability (Time Domain) and Phase Noise (Frequency Domain) Measurement | ________ | |
Specifications and Characteristics

The specifications and characteristics of the 58503B GPS Time and Frequency Reference Receiver are provided in this chapter.

GPS Receiver Features

Eight-channel, parallel tracking GPS engine
C/A Code, L1 Carrier
SmartClock™ technology
Enhanced GPS technology
10 MHz Output

Specifications

Locked:
- Frequency Accuracy: Better than 1×10^{-12}, for a one-day average, 0° C to 50° C.

Unlocked:
- Holdover aging: $<1 \times 10^{-10}$ per day average frequency change in 24 hours of unlocked operation. (See Note 1.)

Phase Noise: (Locked)

<table>
<thead>
<tr>
<th>Offset From Signal (Hz)</th>
<th>SSB Phase Noise (dBc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>85</td>
</tr>
<tr>
<td>10</td>
<td>125</td>
</tr>
<tr>
<td>100</td>
<td>135</td>
</tr>
<tr>
<td>1000</td>
<td>140</td>
</tr>
<tr>
<td>10000</td>
<td>145</td>
</tr>
</tbody>
</table>

Time Domain Stability: (Locked) (See graph on next page.)

<table>
<thead>
<tr>
<th>Averaging Time Seconds</th>
<th>Root Allan Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>1.5×10^{-10}</td>
</tr>
<tr>
<td>0.1</td>
<td>1.5×10^{-11}</td>
</tr>
<tr>
<td>1</td>
<td>5×10^{-12}</td>
</tr>
<tr>
<td>10</td>
<td>5×10^{-12}</td>
</tr>
<tr>
<td>100</td>
<td>5×10^{-11}</td>
</tr>
<tr>
<td>1000</td>
<td>5×10^{-11}</td>
</tr>
</tbody>
</table>

Supplemental Information
- Waveform: Sine wave
- Amplitude: >1 volt p-p into a 50Ω load
- Harmonic Distortion: <-25 dBc (Typical)
- Non-harmonic signals: <-60 dBc (Typical)
- Source impedance: 50Ω (nominal)
- Coupling: ac
- Connector: BNC

Note 1
This specification has a 95% probability, and is based on the availability of four or more GPS satellites during three days of locked operation with a fixed antenna location. The temperature must remain within a 10° C range between 10° C and 40° C.

Additional Features

Alarm Output: TTL open collector with internal pull-up resistor. Circuit can sink up to 10 ma. Provides a logic output to allow monitoring of normal (H) and abnormal (L) operation externally and remotely. BNC connector.

Front Panel Indicators (LEDs):
- Power
- GPS Lock
- Holdover Mode
- Alarm

Remote Interface:
- RS-232-C DTE configuration: Complete remote control and interrogation of all instrument functions and parameters.
- Factory defaults: baud rate 9600, 8 data bits, 1 start bit, 1 stop bit, no parity. Other settings are programmable.
- Connector: 25-pin female rectangular D subminiature on rear panel.
- Time code output is available to a computer immediately preceding the 1 PPS signal for the current second.

Environmental Specifications

Time and Frequency Reference Receiver (58503B)
- Operating: 0° C to +50° C
- Storage: –40° C to +80° C

Antenna (58532A)
- Operating: –30° C to +80° C
- Storage: –40° C to +85° C
Appendix E 58503B Specifications
Specifications and Characteristics

Power Requirements

AC Power (standard):
90 to 132 Vac or 198 to 264 Vac, automatically selected;
50 to 60 Hz.

Option AWQ:
Unit accepts:
+24 Vdc or + 48 Vdc nominal.
Actual operating range:
+19 to +60 Vdc operating range.
Greater than
+23 Vdc required to start.

Input Power (all options):
<35 watts (nominal).

Weight and Size

Dimensions:
88.5 mm H ×
212.6 mm W × 348.3 mm D.
Half-Rack Module

Weight: 3.6 kg (8 lbs).

10 MHz Root Allan Variance
Other Information

The standard 58503B does not include a display or a keypad. While not necessary, it may be convenient to track the Receiver’s progress during installation and startup by monitoring the satellites being tracked, location (position), time and other parameters. The 58503B, however, is supplied with a small Windows 3.1 program named SatStat (59551-13401), which can serve to display important parameters. SatStat operates on any PC that can run Windows 3.1, and that has an available serial interface.

SatStat provides several useful functions. It continuously polls the RS-232C interface and displays Receiver information most likely to be of interest. This includes satellites being tracked along with their elevation and azimuth, SmartClock State (locked, holdover, etc.), antenna coordinates, time and frequency figures of merit and other data. In addition, a clock window is provided to display time of day in real time. Finally, SatStat allows you to easily change many receiver parameters, such as antenna delay, by simply picking the item from a pop-up menu and entering a new value. With SatStat and a PC, you can monitor and control many aspects of the Receiver status without developing software.

Achieving accurate time of day requires care in determining cable delays, Receiver bias, position (Lat, Lon, Alt), atmospheric conditions and other parameters which are dependent on each individual installation.

Options and Accessories

Available options and accessories include an antenna, an antenna environmental cover and ground plane, pre-configured cables, a lightning arrester, an antenna line amplifier, a built-in display and dc power.
This page intentionally left blank.
Specifications and Characteristics

The specifications and characteristics of the 59551A GPS Measurements Synchronization Module are provided in this chapter.

GPS Receiver Features

Eight-channel, parallel tracking GPS engine
C/A Code, L1 Carrier
SmartClock™ technology
Enhanced GPS technology
Appendix F 59551A Specifications
Specifications and Characteristics

1 PPS Output
Specifications
Locked:
 Jitter of leading edge: <750 ps
 rms with at least one satellite in
 view.

Time Accuracy:
 <110 ns with respect to UTC
 (USNO MC)—95% probability
 when unit is properly installed,
 calibrated, and locked to GPS.

Unlocked:
 Accumulated time error: <8.6 µs
 accumulated in 24 hours of
 unlocked operation. (See Note 1.)

Supplemental Information
 • Pulse Width: 26 µsec
 • Amplitude: >2.4 volts into
 50Ω load. (TTL compatible)
 • Connector: BNC
 • Rise time: <5 ns

Additional Features
Alarm BITE Output:
Basic unit output: solid state relay
(normally open); closed contact
indicates system fault or loss of
satellite lock. Contact rating
200 Vdc @ 0.5 amps.

IRIG-B123 Output Port
BNC connector

Note 1
This specification has a 95% probability,
and is based on availability of four or more
GPS satellites during three days locked
operation with a fixed antenna location.
The temperature must remain within a
10° C range between 10° C and 40° C.

Note 2
When a quartz crystal oscillator has not
been operated for a period of time, or if it
has been subjected to severe thermal or
mechanical shock, as might be
encountered during product shipment, the
oscillator may take some time to stabilize.
In most cases, the oscillator will drift and
then stabilize at or below its specified rate
within a few days after being turned on.
In isolated cases, depending upon the
amount of time the oscillator has been off
and the environmental conditions it has
experienced, the oscillator may take up to
one week to reach its specified aging rate
and to operate without significant
frequency "jumps."

When a GPS Receiver is initially turned
on and locked to the GPS satellite
system, it will achieve GPS lock within
30 minutes of operation. It has a 95% probability
of meeting unlocked (holdover)
specifications after 24 hours of warmup,
followed by GPS lock for 48 hours. The
longer GPS Receiver (and its quartz
oscillator) operates, the better its stability
and unlocked (holdover) performance
becomes.

Three Time-tag Inputs
Received signal: TTL, 50Ω.
Time-tag accuracy: same as the
accuracy of the 59551A.

Quantization: 100 ns
Input Interface: BNC
Minimum Pos/Neg pulse width:
200 ns

Three time-tag buffers: 256 events
each, retrievable via RS-232C.
Minimum time between events:
1 ms
Maximum stamp rate:
1 measurement per ms

Timer/Clock Output
Programmable Pulse Output:
Single pulse at the time
programmed via RS-232C port,
or repetitive output pulse at a
programmable repetition period
from 1 second to 1 year.
Quantization: 100 ns
Accuracy: same as the time
accuracy of the 59551A.

Front Panel Indicators (LEDs):
Power
GPS Lock
Holdover Mode
Alarm

Remote Interface:
(Two RS-232C Ports)
RS-232-C DTE configuration:
PRIMARY PORT
 Complete remote control and
 interrogation of all instrument
 functions and parameters.
SECONDARY PORT
 Interrogation of all instrument
 functions and parameters.
Factory defaults: baud rate 9600—
8 data bits, 1 start bit, 1 stop bit,
no parity. Other settings are
programmable.
Connectors: 9-pin female
rectangular D subminiature
(DB-9) on front panel, 25-pin
female rectangular D
subminiature (DB-25) on rear
panel.

Time code output is available to a
computer immediately preceding
the 1 PPS signal for the current
second.

Operating and Programming Guide F-3
Environmental Specifications

Measurements Synchronization Module (59551A)

Operating: 0° C to +50° C
Storage: −40° C to +80° C

Antenna (58532A)

Operating: −40° C to +80° C
Storage: −40° C to +85° C

Power Requirements

AC Power:
90 to 132 Vac or 198 to 264 Vac, automatically selected;
50 to 60 Hz.

or

DC Power:
129 Vdc nominal (115 to 140 Vdc operating range).

Input Power (all options):
<35 watts (nominal).

Weight and Size

Dimensions:
88.5 mm H × 212.6 mm W × 348.3 mm D. Half-Rack Module

Weight: 3.6 kg (8 lbs).

Surge Withstand:
Meets IEEE/ANSI C37.90, C37.90.1
Other Information

The standard 59551A does not include a display or a keypad. While not necessary, it may be convenient to track the Receiver's progress during installation and startup by monitoring the satellites being tracked, location (position), time and other parameters. The 59551A, however, is supplied with a small Windows 3.1 program named SatStat (59551-13401), which can serve to display important parameters. SatStat operates on any PC that can run Windows 3.1, and that has an available serial interface.

SatStat provides several useful functions. It continuously polls the RS-232C interface and displays Receiver information most likely to be of interest. This includes satellites being tracked along with their elevation and azimuth, SmartClock State (locked, holdover, etc.), antenna coordinates, time and frequency figures of merit and other data. In addition, a clock window is provided to display time of day in real time. Finally, SatStat allows you to easily change many receiver parameters, such as antenna delay, by simply picking the item from a pop-up menu and entering a new value. With SatStat and a PC, you can monitor and control many aspects of the Receiver status without developing software.

Achieving accurate time of day requires care in determining cable delays, Receiver bias, position (Lat, Lon, Alt), atmospheric conditions and other parameters which are dependent on each individual installation.

Options and Accessories

Available options and accessories include an antenna, an antenna environmental cover and ground plane, pre-configured cables, a lightning arrester, an antenna line amplifier, a built-in display and ac power.
This page intentionally left blank.
Command Index

*CLS, 5-54, 5-115
*ESE, 5-66
*ESE?, 5-67
*ESR?, 5-67
*IDN?, 5-114
*SRE, 5-57
*SRE?, 5-57
*STB?, 5-58
*TST?, 5-70

:DIAGnostic:DOWNload, 5-115
:DIAGnostic:ERASe, 5-115
:DIAGnostic:ERASe?, 5-116
:DIAGnostic:LIFetime:COUNt?, 5-71

:DIAGnostic:LOG:CLEAR, 5-45
:DIAGnostic:LOG:CLEAR <current log size>, 5-45
:DIAGnostic:LOG:COUNt?, 5-46
:DIAGnostic:LOG:READ:ALL?, 5-45
:DIAGnostic:LOG:READ?, 5-46
:DIAGnostic:LOG:READ? <entry number>, 5-47

:DIAGnostic:QUERY:RESPonse?, 5-108
:DIAGnostic:ROSCillator:EFControl:RELative?, 5-28

:DIAGnostic:TEST:RESULT?, 5-72
:DIAGnostic:TEST?, 5-71

:FORMat:DATA, 5-93
:FORMat:DATA?, 5-93

:GPS:INITial:DATE, 5-9
:GPS:INITial:POSition, 5-10
:GPS:INITial:TIME, 5-11

:GPS:POSition, 5-12

:GPS:POSition:ACTual?, 5-14

:GPS:POSition:HOLD:LAST?, 5-14
:GPS:POSition:HOLD:STATE?, 5-15

:GPS:POSition:SURVey:PROGress?, 5-15
:GPS:POSition:SURVey:STATE, 5-15
:GPS:POSition:SURVey:STATE:POWERup, 5-16
:GPS:POSition:SURVey:STATE:POWERup?, 5-16
:GPS:POSition:SURVey:STATE?, 5-16

:GPS:POSition?, 5-13

:GPS:REFerence:ADELay, 5-22
:GPS:REFerence:ADELay?, 5-23
:GPS:REFerence:VALid?, 5-24
:GPS:SA tellite:TRACking:COUNt?, 5-25
:GPS:SA tellite:TRACking:EMAngle, 5-17
:GPS:SA tellite:TRACking:EMAngle?, 5-17

:GPS:SA tellite:TRACking:IGNore, 5-18
:GPS:SA tellite:TRACking:IGNore:ALL, 5-18
:GPS:SA tellite:TRACking:IGNore:COUNt?, 5-20
:GPS:SA tellite:TRACking:IGNore:NONE, 5-18
:GPS:SA tellite:TRACking:IGNore:STATe?, 5-21
:GPS:SA tellite:TRACking:IGNore?, 5-18

:GPS:SA tellite:TRACking:INCLude, 5-19
:GPS:SA tellite:TRACking:INCLude:COUNt?, 5-20
:GPS:SA tellite:TRACking:INCLude:NONE, 5-19
:GPS:SA tellite:TRACking:INCLude:STATe?, 5-21
:GPS:SA tellite:TRACking:INCLude?, 5-19

:GPS:SA tellite:TRACking?, 5-24

:GPS:SA tellite:VISible:PREDicted:COUNt?, 5-26
:GPS:SA tellite:VISible:PREDicted?, 5-25

:LED:ALARm?, 5-56
:LED:GPSLock?, 5-29
:LED:HOLDover?, 5-29

:PTIMe:DATE?, 5-75
:PTIMe:LEAPsecond:ACCumulated?, 5-79
:PTIMe:LEAPsecond:DATE?, 5-80
:PTIMe:LEAPsecond:DURation?, 5-81
:PTIMe:LEAPsecond:STATe?, 5-82

:PTIMe:PPS:EDGE, 5-78
:PTIMe:PPS:EDGE?, 5-78

:PTIMe:TIME:STRing?, 5-76
:PTIMe:TIME?, 5-75

:PTIMe:TZONe, 5-77
:PTIMe:TZONe?, 5-77

:PULSe:CONTinuous:PERiod, 5-84
:PULSe:CONTinuous:PERiod?, 5-84
:PULSe:CONTinuous:STATe, 5-85
:PULSe:CONTinuous:STATe?, 5-85

:PULSe:REference:EDGE, 5-86
:PULSe:REference:EDGE?, 5-86

:PULSe:STARt:DATE, 5-87
:PULSe:STARt:DATE?, 5-87
:PULSe:STARt:TIME, 5-88
:PULSe:STARt:TIME?, 5-88
:SENSe:DATA:CLEar, 5-90
:SENSe:DATA:CLEar <data set>, 5-91

:SENSe:DATA:MEMory:OVERflow:COUNt?, 5-97
:SENSe:DATA:MEMory:OVERflow:COUNt <data set>, 5-98
:SENSe:DATA:MEMory:SAVE, 5-98
:SENSe:DATA:MEMory:SAVE?, 5-99

:SENSe:DATA:POINts?, 5-94
:SENSe:DATA:POINts? <data set>, 5-94
:SENSe:DATA:TSTamp?, 5-95

:SENSe:DATA?, 5-92

:SENSe:TSTamp <channel>:EDGE, 5-90
:SENSe:TSTamp <channel>:EDGE?, 5-90

:STATus:<register>:CONDition?, 5-60
:STATus:<register>:ENABle, 5-62
:STATus:<register>:ENABle?, 5-63
:STATus:<register>:EVENT?, 5-61

:STATus:<register>:NTRansition, 5-64
:STATus:<register>:NTRansition?, 5-65
:STATus:<register>:PTRansition, 5-64
:STATus:<register>:PTRansition?, 5-65

:STATus:PRESet:ALARm, 5-55

:STATus:QUEStionable:CONDition:USER, 5-68
:STATus:QUEStionable:EVENt:USER, 5-69

:SYNChronization:FFOMerit?, 5-30

:SYNChronization:HOLDover:DURation:THReshold, 5-34
:SYNChronization:HOLDover:DURation:THReshold?, 5-34
:SYNChronization:HOLDover:DURation?, 5-33

:SYNChronization:HOLDover:INITiate, 5-36

:SYNChronization:HOLDover:RECovery:INITiate, 5-37
:SYNChronization:HOLDover:RECovery:LIMit:IGNore, 5-38

:SYNChronization:HOLDover:TUNCertainty:PREDicted?, 5-31
:SYNChronization:HOLDover:TUNCertainty:PRESENT?, 5-31
:SYNChronization:HOLDover:WAITing?, 5-37

:SYNChronization:IMMediate, 5-38
:SYNChronization:STATE?, 5-28
:SYNChronization:TFOMerit?, 5-32
:SYNChronization:TINTerval?, 5-32
:SYSTem:COMMunicate:<port>:BAUD, 5-101
:SYSTem:COMMunicate:<port>:BAUD?, 5-102
:SYSTem:COMMunicate:<port>:BITS?, 5-103
:SYSTem:COMMunicate:<port>:FDUPlex, 5-103
:SYSTem:COMMunicate:<port>:FDUPlex?, 5-104
:SYSTem:COMMunicate:<port>:PACE, 5-104
:SYSTem:COMMunicate:<port>:PACE?, 5-105
:SYSTem:COMMunicate:<port>:PARity, 5-105
:SYSTem:COMMunicate:<port>:PARity?, 5-106
:SYSTem:COMMunicate:<port>:PRESet, 5-110
:SYSTem:COMMunicate:<port>:SBITs?, 5-107
:SYSTem:COMMunicate:SERial1:BITS, 5-102
:SYSTem:COMMunicate:SERial1:SBITs, 5-106
:SYSTem:COMMunicate?, 5-101

:SYSTem:DATE?, 5-75

:SYSTem:ERROR?, 5-42, 5-116

:SYSTem:LANGuage?, 5-118

:SYSTem:PRESet, 5-110

:SYSTem:STATus:LENGTH?, 5-41
:SYSTem:STATus?, 5-41

:SYSTem:TIME?, 5-75
::SENSe:DATA:MEMory:OVERflow:COUNT?, 5-97
::SENSe:DATA:MEMory:OVERflow:COUNT <data set>, 5-98
::SENSe:DATA:MEMory:SAVE, 5-98
::SENSe:DATA:MEMory:SAVE?, 5-99
::SENSe:DATA:POINTS?, 5-94
::SENSe:DATA:POINTS <data set>, 5-94
::SENSe:DATA:TSTamp?, 5-95
::SENSe:DATA?, 5-92
::SENSe:TSTamp <channel>:EDGE, 5-90
::SENSe:TSTamp <channel>:EDGEn?, 5-90
::STATus:<register>:CONDition?, 5-60
::STATus:<register>:ENABle, 5-62
::STATus:<register>:ENABle?, 5-63
::STATus:<register>:EVEnt?, 5-61
::STATus:<register>:NTRansition, 5-64
::STATus:<register>:NTRansition?, 5-65
::STATus:<register>:PTRansition, 5-64
::STATus:<register>:PTRansition?, 5-65
::STATus:PRESet:ALARm, 5-55
::STATus:QUEStionable:CONDition:USER, 5-68
::STATus:QUEStionable:EVENt:USER, 5-69
::SYNChronization:FFOMerit?, 5-30
::SYNChronization:HOLDover:DURation:THReshold, 5-34
::SYNChronization:HOLDover:DURation:THReshold:EXCeeded?, 5-35
::SYNChronization:HOLDover:DURation:THReshold?, 5-34
::SYNChronization:HOLDover:DURation?, 5-33
::SYNChronization:HOLDover:INITiate, 5-36
::SYNChronization:HOLDover:RECovery:INITiate, 5-37
::SYNChronization:HOLDover:RECovery:LIMit:IGNore, 5-38
::SYNChronization:HOLDover:TUNCertainty:PREDicted?, 5-31
::SYNChronization:HOLDover:TUNCertainty:PRESent?, 5-31
::SYNChronization:HOLDover:WAITing?, 5-37
::SYNChronization:IMMediate, 5-38
::SYNChronization:STATe?, 5-28
::SYNChronization:TFOMerit?, 5-32
::SYNChronization:TINTerval?, 5-32
::SYSTem:COMMunicate:<port>:FDUPlex, 5-103
::SYSTem:COMMunicate:<port>:FDUPlex?, 5-104
::SYSTem:COMMunicate:<port>:PACE, 5-104
::SYSTem:COMMunicate:<port>:PACE?, 5-105
::SYSTem:COMMunicate:<port>:PARity, 5-105
::SYSTem:COMMunicate:<port>:PARity?, 5-106
::SYSTem:COMMunicate:<port>:PRESet, 5-110
::SYSTem:COMMunicate:<port>:SBITS?, 5-107
::SYSTem:COMMunicate:SERial1:BITS, 5-102
::SYSTem:COMMunicate:SERial1:SBITS, 5-106
::SYSTem:COMMunicate?, 5-101
::SYSTem:DATE?, 5-75
::SYSTem:ERRor?, 5-42, 5-116
::SYSTem:LANGuage?, 5-118
::SYSTem:PRESet, 5-110
::SYSTem:STATus:LENGth?, 5-41
::SYSTem:STATus?, 5-41
::SYSTem:TIME?, 5-75

NUMERICS
1 PPS, 1-4
1 PPS error estimation, 5-31
1 PPS output, 5-27
1 PPS output quality, 4-7, 4-10, 5-27, 5-28, 5-29, 5-30, 5-31, 5-32, 5-33, 5-34, 5-35
1 PPS polarity, 4-10, 5-78
1 PPS reference edge, 4-10
1 PPS reference synchronization, 4-7
1 PPS output, 1-6
1 PPS connector (optional), 1-4
1 PPS output, 1-4
1 PPS signal is locked to valid GPS reference, 5-24
1 PPS signal is valid, 5-24
10 MHz OUT, 1-4
10 MHz output, 5-27
10 MHz output quality, 4-7, 4-10, 5-27, 5-28, 5-29, 5-30, 5-31, 5-32, 5-33, 5-34, 5-35

A
abbreviated commands, B-5
ac power, 1-6
ACQUISITION, 3-11, 3-14
acquisition of satellites, 4-5, 4-6, 5-7, 5-8
Alarm, 1-2, 1-4

General Index-2 Operating and Programming Guide
alarm analysis, 4-8, 5-39, 5-40, 5-48, 5-49, 5-50, 5-51, 5-52, 5-53, 5-54, 5-55, 5-56, 5-57, 5-58, 5-59, 5-60, 5-61, 5-62, 5-63, 5-64, 5-65, 5-66, 5-67, 5-68, 5-69
Alarm BITE, 1-6
alarm BITE, 4-8, 5-39, 5-48, 5-49, 5-50, 5-51, 5-52, 5-53, 5-54, 5-56, 5-57, 5-58, 5-59, 5-60, 5-61, 5-62, 5-63, 5-64, 5-65, 5-66, 5-67, 5-68, 5-69
alarm clear, 4-8, 5-39, 5-54, 5-55, 5-56, 5-57, 5-58
Alarm condition, 1-2, 1-4, 1-5
Alarm indicator, 1-6, 4-8, 5-39, 5-56
Alarm LED, 1-3
alarm relay, 4-8, 5-39, 5-48, 5-49, 5-50, 5-51, 5-52, 5-53, 5-54, 5-55, 5-56, 5-57, 5-58, 5-59, 5-60, 5-61, 5-62, 5-63, 5-64, 5-65, 5-66, 5-67, 5-68, 5-69
alarm setup, 4-8, 5-39, 5-48, 5-49, 5-50, 5-51, 5-52, 5-53, 5-54, 5-56, 5-57, 5-58, 5-59, 5-60, 5-61, 5-62, 5-63, 5-64, 5-65, 5-66, 5-67, 5-68, 5-69
alarm status, 5-50
alarm test, 4-8, 5-39, 5-40, 5-68, 5-69, 5-70, 5-71, 5-72
antenna
delay values, 5-22
antenna connection, 5-22
ANTENNA connector, 1-4, 1-6
antenna delay, 3-17
antenna delay compensation, 4-6, 5-8
antenna placement, 4-6, 5-8, 5-22
ASCII Data, B-11
azimuth angle, 3-15
B
baud, 2-9, 5-101, 5-102, 5-110
baud rate, 2-9
BINARY Data, 5-93, B-11
Boolean, B-5
C
C/N, 3-15
cable delay compensation, 4-6, 5-8
cables, 5-22
crossover, 2-5
HP 24542G interface, 2-6
HP 24542U, 2-8
HP 40242M interface, 2-6
modem-eliminator, 2-5
null-modem, 2-5
carrier-to-noise ratio, 3-15
characteristics
58503B, E-2
59551A, F-2
clear, 5-90, 5-91
alarm, 4-8, 5-39, 5-54
errors, 4-8, 5-39, 5-42, 5-115
clear time stamp memory, 5-89
comma, B-4, B-6, B-9
command
abbreviated, B-5
common, B-3
format, 5-5
parameter, B-5
SCPI, B-3
syntax, B-2, B-5
terminator, B-7
terminators, B-4
command error, 4-9, 5-40, 5-48, 5-53
Command Error status, 5-48
command syntax conventions, 4-4, 5-4
commands
introduction, 4-4
Commands at a Glance, 4-16, 4-17
commands summary, 4-16, 4-17
common command
syntax, B-4
Common Command Format, B-3
common commands
description, B-3
communication
serial interface port, 2-3, 2-4, 5-100, 5-101, 5-103, 5-104, 5-105, 5-106
compensating for antenna delay, 5-22
configuration
PORT 1, 2-11, 5-100
PORT 2, 2-11, 5-100
configuration factory-default values, 5-110
configuring PORT 1, 2-10, 4-13
configuring PORT 2, 2-10, 4-13
configuring serial interface port(s), 5-100
configuring the RS-232C ports, 2-9
conformance Information
SCPI, 4-4
correcting a computer, 2-5
correcting a laptop, 2-6
correcting a modem, 2-5, 2-6
correcting a PC, 2-6
correcting antenna system, 4-6, 5-8, 5-22
conventions
command syntax, 4-4, 5-4
Coordinated Universal Time, 5-7
CPU, 5-70
crossover cable, 2-5
current time, 4-10
D
d.dEe, B-10
d.dEe, ..., B-10
d.dEed.dEe, B-10
data, 5-92
data bits, 2-9, 5-102, 5-103, 5-110
date and time outputs, 4-6, 4-10, 5-8
DB-25 connector, 2-5
DB-9 connector, 2-5
dc power, 1-6
DCE, 2-5
dd, ... B-10
dddd, B-10
decimal point, B-5, B-10
defaults, factory settings, 2-9, 4-14, 5-110, 5-111
delay value, 5-22
delay values, 5-22
delay values, antenna cables, 4-6, 5-8
diagnostic log, 4-8, 5-39, 5-43, 5-44, 5-45, 5-46, 5-47
diagnostic log messages, 5-43
diagnostic tests, 4-9, 5-40, 5-70, 5-71, 5-72 result, 5-72
diagnostics
internal self-test, 5-70
documents
list, B-12
related, B-12
download, 5-115
downloading
Using SatStat, C-2
downloading new firmware, C-2
DTE, 2-5
duplex state, 5-103, 5-104
E
echoing of the characters you type, 5-103, 5-104, 5-110
EEPROM, 5-70, 5-115
elevation angle, 3-15
elevation mask angle, 3-15
EPROM, 5-70
erasing
EEPROM, 5-116
error
hardware/firmware, A-5
query, A-5
semantic, A-5
syntactic, A-4
error analysis, 4-8, 5-39, 5-40, 5-42, 5-116
error behavior, A-6
error log, 4-8, 5-39, 5-40, 5-42, 5-116
error messages, 4-8, 5-39, A-7
error queue, 4-8, 5-39, 5-42, 5-116, A-3
error recovery, serial port, 4-8, 4-13, 5-39, 5-108
error types, A-4
error, command, 5-48, 5-53
error, reading, A-2
F
factory default settings, 2-9, 4-14, 5-109, 5-110
failure protection, satellite loss, 4-7, 5-27, 5-33, 5-34, 5-35
FFOM, 4-7, 5-30
FFOM value, 3-14
Figure
command list, 4-16, 4-17
factory instrument settings, 5-111
factory serial port settings, 5-111
status reporting system, 5-49
figure of merit, 5-30, 5-32, 5-74
firmware error, A-5
firmware installation, 2-3, 4-15, 5-113, 5-115, 5-116, 5-117, 5-118
firmware revision code, 2-3, 4-15, 5-114
firmware upgrade, 2-3, 5-115
flash EEPROM, 5-115
flow control state, 5-104, 5-105
format
ASCii, 5-93
INTeger, 5-93
FPGA logic, 5-70
front panel
95551A, 1-5
PORT 2, 2-4
full duplex, 2-9, 5-104, 5-110
G
GPS engine, 5-70
GPS Lock, 1-2
GPS lock, 4-5, 4-6, 5-7, 5-33, 5-34, 5-35
GPS Lock indicator, 4-7, 5-29
GPS Lock LED, 1-3, 1-5
GPS position, 4-5, 5-7, 5-13, 5-14, 5-15
GPS satellite acquisition, 4-5, 4-6, 5-7, 5-33, 5-34, 5-35
GPS time, 3-16
GPS timeline, 5-73
H
Hardware status, 5-48, 5-51, 5-60, 5-61, 5-62, 5-63, 5-64, 5-65
hardware/firmware error, A-5
HEALTH MONITOR, 3-11
health monitor screen, 3-11
Hold position mode, 3-17
Holdover, 1-2, 3-12
holdover
process, 5-27
recovery, 5-27, 5-37
status, 5-48, 5-52
tutorial, 3-8
Holdover indicator, 4-7, 5-29
Holdover LED, 1-3, 1-5
holdover loss of satellites, 4-7
holdover mode, 1-2, 1-5
holdover operation, 3-8
holdover recovery, 4-7, 5-37
holdover status, 4-9
holdover threshold, 3-14
How to use the Status Screen, 3-3
58518A/519A cable, 5-22
58518AA/519AA cable, 5-22
58520A/521A cable, 5-23
58520AA/521AA cable, 5-23
59551A Receiver, 1-6
SatStat, 3-3, C-2
SmartClock, 3-11
HP 24542G interface cable, 2-6
HP 24542U cable, 2-8
HP 40242M interface cable, 2-6
I
I/O
PORT 1, 59551A, 1-6
PORT 2, 59551A, 1-5
I/O PORT 1, 4-13
identification of Receiver, 4-15, 5-114
IEEE Standard 488.2
obtaining copy of standard, B-12
IEEE 488.2
description, B-3
syntax, B-4
In This Guide, 1-ix
indicator
Alarm, 1-2, 1-5, 1-6
GPS Lock, 1-2, 1-5
Holdover, 1-2, 1-5
Power, 1-2, 1-5
indicators
Alarm, 1-3
GPS Lock, 1-3
Holdover, 1-3
Power, 1-3
initialization, 5-109
initializing the Receiver, 4-14
initiating manual Holdover, 5-27, 5-36
input
antenna, 1-6, 4-6, 5-8, 5-22
Power, 1-4
Time Tag, 1-6, 4-12
input jack, 1-6
inputs
Time tag, 1-6
install
firmware, 2-3, 4-15, 5-113, 5-115
Receiver, 5-9, 5-17, 5-22
install firmware, 5-115
INSTALL language, 5-115, 5-117
installation, 4-15
interface RS-232C, 2-3
internal reference oscillator, 5-7, 5-27
internal self-test oscillator, 5-70
interpolators, 5-70
introduction commands, 4-4
IRIG-B output, 1-6
K
keyword
separator, B-5
L
latitude, 4-5, 5-7, 5-12, 5-13, 5-14
leap second, 4-10
leap second status, 5-73
LED
Alarm, 1-2, 1-3, 1-5, 1-6, 4-8, 5-39
GPS Lock, 1-2, 1-3, 1-5, 4-7
Holdover, 1-3, 1-5, 4-7
Power, 1-2, 1-3, 1-5
lifetime count, 5-71
list of
commands, 4-16, 4-17
configuration factory-default values, 5-110
error messages, A-7
time format, A-4
factory-default values, 5-110
response format, B-10
system preset, 5-111
literal, B-5
local time, 4-10
local time zone, 3-16
locking to GPS satellites, 4-5, 4-6, 5-7,
5-8, 5-9, 5-10, 5-11, 5-12, 5-13, 5-14, 5-15,
5-16, 5-17, 5-18, 5-19, 5-20, 5-21, 5-22,
5-23, 5-24, 5-25, 5-26, 5-33, 5-34, 5-35,
5-36, 5-37, 5-38, 5-39
log, diagnostic, 4-8, 5-39, 5-43, 5-44, 5-45,
5-46, 5-47
log, error, 4-8, 5-39, 5-40, 5-42, 5-116
longitude, 4-5, 5-7, 5-12, 5-13, 5-14
M
MAXimum, B-6
memory overflow, 4-12, 5-89
messages
program, B-7
response, B-9
messages, error, A-7
MINimum, B-6
modem-eliminator cable, 2-5
multipliers, B-7
N
new line, B-11
not tracking., 3-14
null-modem cable, 2-5

OHM, B-6

1 PPS, 1-4, 1-6, 4-7, 4-10, 5-27, 5-28, 5-29, 5-30, 5-31, 5-32, 5-33, 5-34, 5-35, 5-78
10 MHz OUT, 1-4
Alarm, 1-4
FAQ, 4-7
Alarm BITE, 1-6
IRIG-B, 1-6
Programmable Pulse, 1-6, 4-11, 5-83, 5-84, 5-85, 5-86, 5-87, 5-88
synchronization, 5-28, 5-29, 5-30, 5-31, 5-32, 5-33, 5-34, 5-35
output pulse, 4-11, 5-83, 5-84, 5-85, 5-86, 5-87, 5-88
output synchronization, 4-7
outputs
1 PP2S (optional), 1-4
1 PPS, 1-6
IRIG-B, 1-6
Programmable Pulse, 1-6

pace, 2-9, 5-104, 5-105, 5-110

pacing, 5-110

parameter separator, B-6

parameter types, B-5

Boolean, B-5
literal, B-5
string, B-5

parity, 2-9, 5-105, 5-106, 5-110

performance tests, D-2

pin assignment
PORT 1, 2-3
PORT 2, 2-4

polarity of edges
1 PPS, 4-10, 5-78
programmable pulse, 4-11
time stamp, 4-12, 5-89, 5-90

PORT, 1-6
PORT 1, 2-6, 4-13, 5-100, 5-101, 5-102, 5-103, 5-104, 5-105, 5-106, 5-107, 5-110
factory-default values, 2-9

PORT 1 configuration, 2-11
PORT 1 rear panel, 2-3
PORT 1, 58503B, 1-4

PORT 2, 1-5, 4-13, 5-100, 5-101, 5-102, 5-103, 5-104, 5-105, 5-106, 5-107, 5-110
factory-default values, 2-9

PORT 2 configuration, 2-11
PORT 2 front panel, 2-4

Position, 3-17
position, 4-5, 5-7, 5-12, 5-13, 5-14, 5-15
position at powerup, 5-16
position hold, 5-15
Power, 1-2
power
ac, 1-6
dc, 1-6

POWER input, 1-4
power input jack, 1-6
Power input jack, 58503A, 1-4
Power LED, 1-3, 1-5
power outages, 5-89
power supply, 1-6
Power supply levels, 5-70
power surges, 5-89
Powerup status, 5-48, 5-52
predicted visible satellites, 5-25

preface, 1-ix

preset, 5-109
preset to factory defaults, 2-9, 4-14, 5-109, 5-110
product identification, 4-15, 5-114
program messages
definition, B-7
syntax, B-7

programmable pulse, 4-11, 5-83, 5-84, 5-85, 5-86, 5-87, 5-88
Programmable Pulse output, 1-6
pseudorandom noise, 3-15
pulse generator, 4-11, 5-83, 5-84, 5-85, 5-86, 5-87, 5-88
pulse output, 4-11, 5-83, 5-84, 5-85, 5-86, 5-87, 5-88

Q

quality
FFOM, 3-14
signal, 3-13, 3-14
TFOM, 3-13
query, B-6, B-9
query error, A-5
query parameters
<numeric value>, B-6
MAXimum, B-6
MINimum, B-6
querying instrument identification, 5-113
Questionable status, 5-48, 5-52
queue overflows, A-3
queue, error, 4-8, 5-39, 5-116
General Index

quick reference
command list, 4-16, 4-17
factory instrument settings, 5-111
factory serial port settings, 5-110
status reporting system, 4-18

R
RAM, 5-70
rear panel
58503A, 1-4
59551A, 1-6
PORT 1, 2-3
Receiver Commands at a Glance, 4-16, 4-17
Receiver identification, 4-15, 5-113, 5-114
Receiver initialization, 4-14
Receiver Status Screen, 3-3
Receiver status screen, 5-41
recovering from holdover, 4-7, 5-27, 5-37
recovering the last query response, 4-13, 5-100
Recovery, 3-12
Reference oscillator, 5-70
related documentation, B-12
relay, alarm, 4-8, 5-39, 5-48, 5-49, 5-50, 5-51, 5-52, 5-53, 5-54, 5-55, 5-56, 5-57, 5-58, 5-59, 5-60, 5-61, 5-62, 5-63, 5-64, 5-65, 5-66, 5-67, 5-68, 5-69
removes error from error queue, 5-116
reset to factory defaults, 2-9, 4-14, 5-109, 5-110
response message syntax, B-9
response messages, B-9
data types, B-10
restore to factory defaults, 2-9, 4-14, 5-109, 5-110
revision code, 4-15, 5-114
RS-232C, 1-4, 1-5, 1-6
RS-232C interface, 4-13, 5-100, 5-101, 5-102, 5-103, 5-104, 5-105, 5-106, 5-107
RS-232C ports, 2-3

S
satellite acquisition, 4-5, 4-6, 5-7, 5-33, 5-34, 5-35
satellite failure protection, 4-7, 5-27, 5-33, 5-34, 5-35
satellite loss, 4-7, 5-33, 5-34, 5-35
satellite management, 4-5, 4-6, 5-7, 5-9, 5-10, 5-11, 5-12, 5-13, 5-14, 5-15, 5-16, 5-17, 5-18, 5-19, 5-20, 5-21, 5-22, 5-23, 5-24, 5-25, 5-26, 5-33, 5-34, 5-35, 5-36, 5-37, 5-38, 5-39
satellite reacquisition, 4-7
satellite selection, 4-6, 5-7
Satellite Status, 3-14
satellite tracking at installation, 4-5, 5-7, 5-9
SCPI, B-2
description, B-3
version, 4-4
SCPI Command and Query Format, B-3
SCPI conformance Information, 4-4
SCPI standard, B-12
Self Test, 3-18
self test, 4-9, 5-40, 5-70, 5-71, 5-72
semantic error, A-5
separator
keyword, B-5
parameter, B-6
serial interface, 1-4, 1-5, 1-6
serial interface communication, 4-13
serial interface port, 2-3, 2-4
preset, 5-109
serial number, 5-114
serial port error recovery, 4-8, 4-13, 5-39, 5-108
serial port I/O, 4-13, 5-110
serial port settings, 2-11
setting up the Receiver, 4-15, 5-9, 5-17
settings, serial port, 2-11
signal
quality, 3-13, 3-14
signal loss, 4-7, 5-27, 5-33, 5-34, 5-35, 5-36, 5-37, 5-38
signal strength, 3-15
SmartClock Mode, 3-12
SmartClock PLL, 3-14
software pacing, 2-9
specifications
58503B, E-2
59551A, F-2
SS, 3-15
status
alarm, 5-50, 5-56
command error, 5-53, 5-66
hardware, 5-51, 5-60, 5-61, 5-62, 5-63, 5-64, 5-65
holdover, 5-52, 5-60, 5-61, 5-62, 5-63, 5-64, 5-65
operation, 5-50, 5-60, 5-61, 5-62, 5-63, 5-64, 5-65
powerup, 5-52, 5-60, 5-61, 5-62, 5-63, 5-64, 5-65
questionable, 5-52, 5-60, 5-61, 5-62, 5-63, 5-64, 5-65, 5-68
status information, 5-39
status registers, 5-48
status reporting, 4-8, 4-9, 5-39, 5-40, 5-48, 5-49, 5-50, 5-51, 5-52, 5-53, 5-54, 5-56, 5-57, 5-58, 5-59, 5-60, 5-61, 5-62, 5-63, 5-64, 5-65, 5-66, 5-67, 5-68, 5-69
status reporting system, 5-48
Status Reporting System Diagram, 5-49
status screen, 4-8, 5-41
status/alarm reporting system, 5-48
stop bits, 2-9, 5-106, 5-107, 5-110
strength of the signal, 3-15
string, B-5
subsystem command
 syntax, B-4
suffix
 elements, B-6
 multipliers, B-7
suffix, multiplier, B-7
suffixes, B-6
summary
 commands, 4-16, 4-17
survey mode, 5-15
Survey position mode, 3-17
SYNCHRONIZATION, 3-11
synchronization of output signals, 4-7, 5-28, 5-29, 5-30, 5-31, 5-32, 5-33, 5-34, 5-35
synchronizing to reference, 4-7, 5-27
syntactic error, A-4
syntax, 4-4, 5-4
 program messages, B-7
 response messages, B-9
syntax, SCPI, B-2
SYSTEM
 STATUS? query, 3-3
system preset, 5-111
system time, 4-10, 5-73

T
Table
 command list, 4-16, 4-17
 factory instrument settings, 5-110, 5-111
 factory serial port settings, 5-110
 status reporting system, 5-49
terminator
 command, B-7
test record, D-2
test result, 5-72
TFOM, 4-7, 5-32, 5-74
TFOM value, 3-13
time and date outputs, 4-6, 4-10, 5-8, 5-73, 5-74, 5-75, 5-76, 5-77
time of day outputs, 4-6, 4-10, 5-8, 5-73, 5-74, 5-75, 5-76, 5-77
Time Stamp memory, 4-12
time stamp polarity, 4-12, 5-89, 5-90
time stamping, 4-12, 5-89, 5-90, 5-91, 5-92, 5-93, 5-94, 5-95, 5-96, 5-97, 5-98, 5-99

time tag, 4-12, 5-89, 5-90, 5-91, 5-92, 5-93, 5-94, 5-95, 5-96, 5-97, 5-98, 5-99
Time Tag inputs, 4-12
Time tag inputs, 1-6
time transfer information, 5-7
time zone setting, 4-10, 5-73, 5-77
Time-stamped Edge, 4-12, 5-90
time-stamped edge, 5-90
timing outputs, 4-7, 5-28, 5-29, 5-30, 5-31, 5-32, 5-33, 5-34, 5-35
timing shift, 3-14
tutorial, 3-3
 using the Status Screen, 3-3

U
UART, 5-70
units, B-6
upgrading firmware, 2-3, 4-15, 5-113
UTC, 5-7
UTC time, 3-16
UTC timeline, 5-73

V
visible satellites, 5-25

W
Windows program
 Receiver Status screen, C-2

X
XON, 5-104
XYZ, B-11