This manual applies directly to Infiniium oscilloscopes with serial number prefixes:
• XX3625 through XX4106 and above
for information about serial numbers, see “Instruments Covered by this Guide” in section 1.

The part number for this Service Guide

For Safety information, Warranties, and Regulatory information, see the pages at the back of this book.

© Copyright Agilent Technologies 1997-2001
All Rights Reserved.
Ease of use with high performance
The Agilent Technologies Infiniium oscilloscopes combine unprecedented ease-of-use with high-performance digitizing oscilloscope functionality to simplify your design and analysis measurement tasks.

- Traditional oscilloscope front-panel interface provides direct access to the controls needed for most troubleshooting tasks
- Graphical user interface with menus, windows, dialogs, and toolbars provides easy access to dozens of configuration and analysis tools, ensuring you can set up and make the most complex measurements
- Agilent 54835A offers 4 channels, 4 GSa/s sampling rate in 2-channel mode, 2 GSa/s sampling rate in 4-channel mode, 1 GHz bandwidth
- Agilent 54845A offers 4 channels, 8 GSa/s sampling rate in 2-channel mode, 4 GSa/s sampling rate in 4-channel mode, 1.5 GHz bandwidth
- Agilent 54846A offers 4 channels, 8 GSa/s sampling rate in 2-channel mode, 4 GSa/s sampling rate in 4-channel mode, 2.25 GHz bandwidth

Display shows waveforms and graphical user interface
- Graphical interface allows direct interaction with waveforms, including drag-and-drop positioning and instant waveform zoom
- Waveforms displayed in color, making correlation easy
- Current configuration parameters displayed near the waveform display and are color-coded to make identification easy
- Graphical interface menus and toolbars simplify complex measurement setups

Horizontal controls set sweep speed and position
- Main sweep speeds from 100 ps/div to 5 s/div
- Delayed sweep speeds from 1 ps/div to main time base setting
- Intensified waveforms on main sweep window make it easy to see what will appear in delayed sweep window

Acquisition and general controls start and stop the scope and do basic setup
- Run and stop controls for continuous or single-shot acquisitions
- Clear display before one or more acquisitions
- Default setup and Autoscale set initial configuration

Hard disk drive and floppy disk drive for saving and restoring setups and measurement results
- Store measurement displays for inclusion in reports and test setup guides
- Store oscilloscope setups to repeat tests another time
- Hard disk stores oscilloscope operating system

Trigger setup controls set mode and basic parameters
- Select Edge, Glitch, or Advanced Modes
- Choose input source and slope
- Set coupling for trigger
- Use graphical user interface to simplify configuration of pattern, state, delay, violation, and video triggers
- Use auxiliary trigger to increase triggering flexibility

Vertical controls set input coupling, impedance, attenuation, and position
- AC or DC input coupling
- 1 MΩ or 50Ω input impedance
- Input attenuation adjustable from 2 mV/div to 1 V/div (plus 2 V/div in 1 MΩ)
- Color-coded knobs make it easy to find the controls that affect each waveform

Marker and quick measurements help measure waveform parameters
- Waveform markers A and B to check voltage or Δ-time at any point on the displayed waveform
- Quick Meas executes up to four predefined measurements instantly

Service Policy
The service policy of this instrument requires replacing defective assemblies. Some assemblies can be replaced on an exchange basis. Items such as the vertical attenuators, which are subject to wear and tear based on frequency of use, are a maintenance item that may need occasional replacement.
This book provides the service documentation for the Agilent Technologies 54835A/45A/46A oscilloscope. It is divided into eight chapters.

Chapter 1 provides general information and specifications.
Chapter 2 shows you how to prepare the oscilloscope for use.
Chapter 3 gives performance tests.
Chapter 4 covers calibration and adjustment procedures, how to do them, and how often they need to be done.
Chapter 5 provides troubleshooting information.
Chapter 6 gives the procedures and techniques for replacing assemblies and other parts.
Chapter 7 includes a list of exchange assemblies and other replaceable parts, part ordering information, and shipping information.
Chapter 8 briefly covers the internal operation of the oscilloscope.
At the back of the book you will find Safety information, Warranties, and Regulatory information.
Contents

Contents 1

1 General Information 1-2
 Instruments covered by this service guide 1-2
 Accessories supplied 1-3
 Options available 1-4
 Accessories available 1-5
 Specifications & characteristics 1-7
 Agilent Technologies 54835A/45A/46A general characteristics 1-14
 Recommended test equipment 1-16

2 Preparing for Use 2-2
 Setting Up the Oscilloscope 2-3
 To inspect the instrument 2-3
 To connect power 2-4
 To connect the mouse or other pointing device 2-5
 To attach the optional trackball 2-5
 To connect the keyboard 2-7
 To connect to the LAN card 2-7
 To connect oscilloscope probes 2-8
 To connect a printer 2-9
 To connect an external monitor 2-10
 To connect the GPIB cable 2-10
 To tilt the oscilloscope upward for easier viewing 2-11
 To power on the oscilloscope 2-12
 To verify basic oscilloscope operation 2-13
 To clean the instrument 2-14
 To clean the display monitor contrast filter 2-14

3 Testing Performance 3-2
 Testing Interval 3-2
 Equipment Required 3-2
 Self-Test Verification 3-2
 Test Record 3-3
 Operating Hints 3-3
 Specifications 3-3
 Performance Test Procedures 3-3
 To test the dc calibrator 3-4
 To test input resistance 3-6
 To test voltage measurement accuracy 3-7
 To test offset accuracy 3-11
 To test bandwidth 3-13
 To test time measurement accuracy 3-16
 To test trigger sensitivity 3-23

4 Calibrating and Adjusting 4-2
 Equipment Required 4-2
 Self Calibration Interval and Hardware Adjustments 4-2
Contents

Mainframe Cal Factor Memory Error 4-2
Operating Hints 4-3
Loading Default Oscilloscope Settings 4-3
Loading New Software 4-3
Calibration Procedures 4-3
To check the power supply 4-4
To check the 715 Hz auxiliary output (probe compensation squarewave) 4-6
To check the flat panel display (FPD) 4-7
To run the self calibration 4-10

5 Troubleshooting 5-2
Safety 5-2
Tools Required 5-2
ESD Precautions 5-2
Keystroke Conventions 5-2
Default Setup 5-3
To install the fan safety shield 5-3
To troubleshoot the instrument 5-4
Primary Trouble Isolation 5-6
No Display Trouble Isolation 5-9
Power Supply Trouble Isolation 5-13
To check probe power outputs 5-16
To check the keyboard 5-17
To check the LEDs 5-19
To check the motherboard, CPU, and RAM 5-21
To check the SVGA display board video signals 5-22
To check the backlight inverter voltages 5-23
POST Code Listing (AMI Motherboard only) 5-24
To configure the motherboard jumpers and set up the BIOS 5-29
To troubleshoot the acquisition system 5-49
To troubleshoot attenuator failures 5-56
Software Revisions 5-59

6 Replacing Assemblies 6-2
ESD Precautions 6-2
Tools Required 6-2
To return the instrument to Agilent Technologies for service 6-3
To remove and replace the cover 6-4
To disconnect and connect Mylar flex cables 6-5
To remove and replace the AutoProbe assembly 6-6
To remove and replace the probe power and control assembly 6-8
To remove and replace the backlight inverter board 6-9
To remove and replace the front panel assembly 6-9
To remove and replace the keyboard and flat-panel display assemblies 6-12
To remove and replace the acquisition board assembly 6-14
To remove and replace the LAN interface board 6-15
To remove and replace the GPIB interface board 6-16
To remove and replace the scope interface board and SVGA display board 6-17
To separate the scope interface board and SVGA display board 6-18
To remove and replace the Option 200 sound card 6-19
To remove and replace the hard disk drive 6-20
General Information
General Information

This chapter of the Agilent Technologies Infiniium Oscilloscope Service Guide gives you general information about the instrument. The following topics are covered in this chapter.

- Instrument identification
- Options
- Accessories
- Specifications and characteristics
- Test equipment requirements

Instruments covered by this service guide

On the rear panel of the instrument is a serial number label and a VIN # label. The serial number is in the form of XX00000000 while the VIN # is in the form of VIN # 0XX. The serial number is composed of two parts: the first two letters and the first four numbers are the serial prefix, while the last four numbers are the suffix. The prefix is normally the same for all identical oscilloscopes and changes only when a change has been made to the oscilloscope. However, the suffix is sequentially assigned and is different for each oscilloscope. The contents of this manual applies to oscilloscopes with serial number prefixes listed on the title page.

An oscilloscope manufactured after the printing of this manual may have a newer serial number prefix. This newer serial prefix indicates that the oscilloscope may be different from those described in this manual. The manual for this oscilloscope will be revised as needed. If you have an oscilloscope with a newer serial number prefix, please refer to the Agilent Technologies website and download a newer manual edition in Adobe Acrobat (pdf) format. The Agilent Technologies URL is: “www.agilent.com”. It will be necessary to search on a key word such as “Infiniium Service Guide”, and follow the links.

For additional information on configuration differences see the following sections in this service guide:

- “To configure the motherboard jumpers and setup the BIOS” in the Troubleshooting section 5 for information on determining:
 - which computer configuration is contained in your oscilloscope
 - setting up the BIOS correctly for that configuration
 - setting the motherboard jumpers if the PC motherboard is changed.

- Replaceable Parts section 7.
 This section contains exploded views for the different motherboard configurations, cabling schemes, and outside hardware versions. The Replaceable Parts List also contains the assembly part numbers for the different oscilloscope configurations.

<table>
<thead>
<tr>
<th>Oscilloscopes Covered by this Service Guide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
</tr>
<tr>
<td>Agilent 54846A</td>
</tr>
<tr>
<td>Agilent 54845A</td>
</tr>
<tr>
<td>Agilent 54835A</td>
</tr>
</tbody>
</table>

The oscilloscope can be identified by the product number on the back panel.
Accessories supplied

The following accessories are supplied.

- Agilent Mouse, Agilent P/N C3751-60201
- Agilent Mouse Pad, Agilent P/N 54810-85903
- 1 Keyboard
- (4) Agilent 1161A 10:1 10 MΩ passive probes
- Accessory Pouch (Agilent P/N 54810-68701)
- Power cord (see chapter 7, “Replaceable Parts,” for available power cords)
- User’s Quick Start Guide
- Programmer’s Guide and Programmer’s Quick Reference
Options available

The following options are available for the Agilent Technologies Infiniium oscilloscope.

<table>
<thead>
<tr>
<th>Option Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>090</td>
<td>Delete standard probes</td>
</tr>
<tr>
<td>001</td>
<td>Add 2 standard probes—Agilent 1161A probes for the Agilent 54835A/45A/46A</td>
</tr>
<tr>
<td>002</td>
<td>Add 1 Agilent 1162A 1:1 passive probe</td>
</tr>
<tr>
<td>003</td>
<td>Add 1 Agilent 1163A 10:1 500 Ω, low-C passive probe</td>
</tr>
<tr>
<td>006</td>
<td>Add 1 Agilent 1152A 2.5 GHz, 0.6 pF active probe</td>
</tr>
<tr>
<td>007</td>
<td>Add 1 Agilent E2613A, 0.5 mm wedge kit assembly</td>
</tr>
<tr>
<td>008</td>
<td>Add 1 Agilent 1153A 200 MHz differential probe</td>
</tr>
<tr>
<td>009</td>
<td>Add 1 Agilent 1154A 500 MHz differential probe</td>
</tr>
<tr>
<td>010</td>
<td>Add 1 Agilent 1159A 1 GHz differential probe</td>
</tr>
<tr>
<td>100</td>
<td>Communication Mask Test Kit</td>
</tr>
<tr>
<td>200</td>
<td>VoiceControl Option</td>
</tr>
<tr>
<td>1BP</td>
<td>MIL-STD-45662A and ANSI/NCSL Z540 calibration with test data</td>
</tr>
<tr>
<td>1CM</td>
<td>Add 1 Rackmount kit (Agilent E2609A)</td>
</tr>
<tr>
<td>UL6</td>
<td>Add 1 Clip-on trackball pointing device (Agilent E2611A)</td>
</tr>
<tr>
<td>UL5</td>
<td>Add 1 touchpad pointing device (Agilent E2612A)</td>
</tr>
<tr>
<td>W32</td>
<td>3 years calibration service</td>
</tr>
<tr>
<td>W34</td>
<td>3 years return standards comp cal service</td>
</tr>
<tr>
<td>W50</td>
<td>5 years return repair service (additional 2 years)</td>
</tr>
<tr>
<td>W52</td>
<td>5 years return calibrations service</td>
</tr>
<tr>
<td>W54</td>
<td>5 years return standards comp cal service</td>
</tr>
</tbody>
</table>

Other options are available. See your Agilent Technologies Sales Representative. You can order multiple options, or you can order most of these options separately, using the Agilent model number or part number.
Accessories available

The following accessories are available for use with the Agilent Technologies Infiniium oscilloscope.

<table>
<thead>
<tr>
<th>Table 1-3</th>
<th>Accessories for the Agilent Technologies Infiniium Oscilloscope Model 54835A/45A/46A</th>
</tr>
</thead>
</table>
| Agilent 1144A | 800 MHz Active Probe
Requires Agilent 1142A power supply—Agilent 1144-61604 probe power extender also required when using 2 or more Agilent 1144A active probes |
| Agilent 1144-61604 | Power Probe Extender |
| Agilent 1145A | 2-channel 750 MHz SMT active probe
Requires Agilent 1142A power supply |
| Agilent 1146A | Oscilloscope AC/DC Current Probe |
| Agilent 1152A | 2.5 GHz, 10:1, 100 kΩ, 0.6 pF Active Probe |
| Agilent 1153A | 200 MHz Differential Probe |
| Agilent 1155A | 750 MHz 2-Channel, Low-Mass Active Probe |
| Agilent 1161A | Standard probes for the Agilent 54835A/45A/46A |
| Agilent 1162A | 1:1 Passive Probe |
| Agilent 1163A | 10:1 500-Ω, low-C Passive Probe |
| Agilent 1170A | 500 MHz Low-Mass, miniature 10:1 10 MΩ Passive Probe |
| Agilent 1171A | 500 MHz Low-Mass, miniature 10:1 10 MΩ Passive Probe |
| Agilent 1172A | 500 MHz Low-Mass, miniature 20:1 10 MΩ Passive Probe |
| Agilent 1173A | 500 MHz Low-Mass, miniature 20:1 10 MΩ Passive Probe |
| Agilent 1182A | Testmobile |
| Agilent 10020A | Resistive Divider Probe Kit |
| Agilent 10240B | BNC Blocking Capacitor |
| Agilent 10833A | GPIB cable, 1 m |
| Agilent 10833B | GPIB cable, 2 m |
| Agilent 10833C | GPIB cable, 4 m |
| Agilent 10833D | GPIB cable, 0.5 m |
| Agilent 11094B | 75Ω Feedthrough Termination |
| Agilent 34810B | Benchlink Oscilloscope Software |
| Agilent 34398A + Agilent 34399A | RS-232-C printer cable + adapter kit |
| Agilent 54006A | 6 GHz, 10:1 (500 Ω) or 20:1 (1 kΩ), 0.25 pF |
| Agilent 01144-61604 | 1:2 probe power fan-out (for use with Agilent 1144A and Agilent 1145A) |
| Agilent C2950A | Parallel printer cable, 2 m |
| Agilent C2951A | Parallel printer cable, 3 m |
| Agilent E2610A | Keyboard |
| Agilent E2609A | Rackmount Kit |
| Agilent E2611A | Clip-on Track Ball Pointing Device |
Accessories available

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agilent E2612A</td>
<td>Touchpad Pointing Device</td>
</tr>
<tr>
<td>Agilent E2625A</td>
<td>Communication Mask Test Kit</td>
</tr>
<tr>
<td>Agilent 54810-68703</td>
<td>Service Kit (includes service software and fan safety shield)</td>
</tr>
<tr>
<td>Agilent 54801-00601</td>
<td>Fan Safety Shield (clips onto side of chassis with cover removed)</td>
</tr>
<tr>
<td>Agilent E2635A</td>
<td>Voice Control Retrofit Kit</td>
</tr>
<tr>
<td>Agilent E2636A</td>
<td>Microphone Replacement</td>
</tr>
</tbody>
</table>
Specifications & characteristics

The following tables list the performance specifications and operating characteristics for the Agilent Technologies 54835A/45A/46A oscilloscope. Asterisks (*) denotes warranted specifications, all others are typical. Specifications are valid after a 30 minute warm-up period, and within ± 5 °C from the self-calibration temperature.

Acquisition

<table>
<thead>
<tr>
<th>Specification</th>
<th>Real Time</th>
<th>Equivalent Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Sample Rate</td>
<td>Real Time</td>
<td>Agilent Models</td>
</tr>
<tr>
<td>54835A — 2-channel mode: 4 GSa/s</td>
<td>54835A — 4-channel mode: 2 GSa/s</td>
<td></td>
</tr>
<tr>
<td>54835A — 4-channel mode: 2 GSa/s</td>
<td>54845A — 2-channel mode: 8 GSa/s</td>
<td></td>
</tr>
<tr>
<td>54845A — 4-channel mode: 4 GSa/s</td>
<td>54846A — 2-channel mode: 8 GSa/s</td>
<td></td>
</tr>
<tr>
<td>54846A — 4-channel mode: 4 GSa/s</td>
<td>54846A — 4-channel mode: 4 GSa/s</td>
<td></td>
</tr>
<tr>
<td>Maximum Effective Sample Rate</td>
<td>Equivalent Time</td>
<td>500 GSa/s</td>
</tr>
<tr>
<td>2-channel mode: 65,536 points</td>
<td>4-channel mode: 32,768 points</td>
<td></td>
</tr>
<tr>
<td>Memory Depth Modes</td>
<td>Auto</td>
<td>Optimized for best combination of update rate and display quality.</td>
</tr>
<tr>
<td>Manual</td>
<td>Selectable</td>
<td>2-channel mode: from 16 to 65,536 points</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4-channel mode: from 16 to 32,768 points</td>
</tr>
<tr>
<td>Sampling Modes</td>
<td>Real Time</td>
<td>Successive single shot acquisitions.</td>
</tr>
<tr>
<td></td>
<td>Equivalent Time</td>
<td>Random repetitive sampling (higher time resolution at fast sweep speeds).</td>
</tr>
<tr>
<td>Filters</td>
<td>9-bit Bandwidth Limit filter: (BW = \frac{\text{Sample Rate}}{20})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>((\sin x) \times \text{Interpolation: On/Off selectable FIR digital filter. Digital signal processing adds points between acquired data points to enhance measurement accuracy and waveform display quality.})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(BW = \frac{\text{Sample Rate}}{4})</td>
<td></td>
</tr>
<tr>
<td>Averaging</td>
<td>Selectable from 2 to 4096.</td>
<td></td>
</tr>
</tbody>
</table>
Vertical

<table>
<thead>
<tr>
<th>Specifications & Characteristics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Channels</td>
<td>4 (simultaneous acquisition)</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>Analog Bandwidth (-3dB)*</td>
</tr>
<tr>
<td>50Ω: 1.0 GHz — Agilent 54835A</td>
<td></td>
</tr>
<tr>
<td>50Ω: 1.5 GHz — Agilent 54845A</td>
<td></td>
</tr>
<tr>
<td>50Ω: 2.25 GHz — Agilent 54846A</td>
<td></td>
</tr>
<tr>
<td>1 MΩ: 500 MHz (with Agilent 1161A probe)</td>
<td></td>
</tr>
<tr>
<td>System Bandwidth</td>
<td></td>
</tr>
<tr>
<td>Agilent 1161A 10:1 passive probe: 500 MHz</td>
<td></td>
</tr>
<tr>
<td>Agilent 1162A 1:1 passive probe: 25 MHz</td>
<td></td>
</tr>
<tr>
<td>Agilent 1163A 10:1, 500 Ω passive probe: 1.5 GHz</td>
<td></td>
</tr>
<tr>
<td>Agilent 1152A 2.5 GHz, 0.6 pF active probe: 1.3 GHz (Agilent 54845A)</td>
<td></td>
</tr>
<tr>
<td>Agilent 1152A 2.5 GHz, 0.6 pF active probe: 1.0 GHz (Agilent 54835A)</td>
<td></td>
</tr>
<tr>
<td>Agilent 1153A 200 MHz differential probe: 200 MHz</td>
<td></td>
</tr>
<tr>
<td>Real Time bandwidth*</td>
<td></td>
</tr>
<tr>
<td>50Ω:</td>
<td></td>
</tr>
<tr>
<td>Agilent 54835A — 1 GHz (2-channel mode)</td>
<td></td>
</tr>
<tr>
<td>Agilent 54835A — 500 MHz (4-channel mode)</td>
<td></td>
</tr>
<tr>
<td>Agilent 54845A — 1.5 GHz (2-channel mode)</td>
<td></td>
</tr>
<tr>
<td>Agilent 54845A — 1.0 GHz (4-channel mode)</td>
<td></td>
</tr>
<tr>
<td>Agilent 54846A — 2.25 GHz (2-channel mode)</td>
<td></td>
</tr>
<tr>
<td>Agilent 54846A — 1.0 GHz (4-channel mode)</td>
<td></td>
</tr>
<tr>
<td>1 MΩ: 500 MHz</td>
<td></td>
</tr>
<tr>
<td>Rise Time¹</td>
<td></td>
</tr>
<tr>
<td>50Ω: 350 ps (Agilent 54835A)</td>
<td></td>
</tr>
<tr>
<td>50Ω: 233 ps (Agilent 54845A)</td>
<td></td>
</tr>
<tr>
<td>50Ω: 156 ps (Agilent 54846A)</td>
<td></td>
</tr>
<tr>
<td>1 MΩ: 700 ps</td>
<td></td>
</tr>
<tr>
<td>Sensitivity²</td>
<td></td>
</tr>
<tr>
<td>1 MΩ Coupling: 2 mV/div to 2 V/div</td>
<td></td>
</tr>
<tr>
<td>50 Ω Coupling: 2 mV/div to 1 V/div</td>
<td></td>
</tr>
<tr>
<td>Input Impedance*</td>
<td></td>
</tr>
<tr>
<td>1 MΩ ± 1% (±12 pf), or 50 Ω ± 1.5%</td>
<td></td>
</tr>
<tr>
<td>VSWR (50 Ω)</td>
<td></td>
</tr>
<tr>
<td>54835A/45A</td>
<td></td>
</tr>
<tr>
<td>54845A</td>
<td></td>
</tr>
<tr>
<td>54846A</td>
<td></td>
</tr>
<tr>
<td>dc to 500 MHz: 1.30</td>
<td></td>
</tr>
<tr>
<td>500 MHz to 1 GHz: 1.50</td>
<td></td>
</tr>
<tr>
<td>1 GHz to 1.5 GHz: 1.75</td>
<td></td>
</tr>
<tr>
<td>dc to 500 MHz: 1.30</td>
<td></td>
</tr>
<tr>
<td>500 MHz to 1 GHz: 1.50</td>
<td></td>
</tr>
<tr>
<td>1 GHz to 1.5 GHz: 1.75</td>
<td></td>
</tr>
<tr>
<td>1.5 GHz to 2.25 GHz: 2.50</td>
<td></td>
</tr>
<tr>
<td>Input Coupling</td>
<td>dc, ac (7 Hz, available in 1 MΩ only)</td>
</tr>
<tr>
<td>Maximum Input Voltage</td>
<td></td>
</tr>
<tr>
<td>1 MΩ: ± 100 V (dc + ac) [ac<10 kHz], CAT I</td>
<td></td>
</tr>
<tr>
<td>50 Ω: 5 Vrms, CAT I</td>
<td></td>
</tr>
<tr>
<td>Channel-to-channel Isolation (with channels at equal sensitivity)</td>
<td></td>
</tr>
<tr>
<td>54835A/54845A</td>
<td></td>
</tr>
<tr>
<td>dc to 100 MHz: 40 dB</td>
<td></td>
</tr>
<tr>
<td>100 MHz to 1 GHz: 30 dB</td>
<td></td>
</tr>
<tr>
<td>1 GHz to 1.5 GHz: 25 dB</td>
<td></td>
</tr>
<tr>
<td>54846A</td>
<td>dc to 100 MHz: 40 dB</td>
</tr>
<tr>
<td>100 MHz to 1 GHz: 30 dB</td>
<td></td>
</tr>
<tr>
<td>1 GHz to 1.25 GHz: 24 dB</td>
<td></td>
</tr>
<tr>
<td>Offset Range</td>
<td>Vertical Sensitivity</td>
</tr>
<tr>
<td>Available Offset</td>
<td></td>
</tr>
<tr>
<td>1 MΩ:</td>
<td></td>
</tr>
<tr>
<td>2 mV to 104 mV/div</td>
<td>± 4 V</td>
</tr>
<tr>
<td>> 104 mV to 2 V/div</td>
<td>± 40 V</td>
</tr>
<tr>
<td>50Ω: all</td>
<td>± 12 div</td>
</tr>
<tr>
<td>Full-resolution channel scales</td>
<td></td>
</tr>
<tr>
<td>10, 20, 50, 100, 200, 500, 1000 mV/div (plus 2000 mV/div in 1 MΩ)</td>
<td></td>
</tr>
<tr>
<td>Dynamic Range</td>
<td>± 8 div from center screen</td>
</tr>
<tr>
<td>dc Gain Accuracy²</td>
<td>± 1.00% of full scale at full-resolution channel scale.</td>
</tr>
<tr>
<td>Resolution²</td>
<td>Real Time</td>
</tr>
<tr>
<td>8 bits (0.4% of full scale), 12 bits with sufficient averaging (0.024% of full scale)</td>
<td></td>
</tr>
<tr>
<td>Equivalent Time</td>
<td></td>
</tr>
<tr>
<td>8 bits (0.4% of full scale), 12 bits with sufficient averaging (0.024% of full scale)</td>
<td></td>
</tr>
</tbody>
</table>
Offset Accuracy\(^*2\)
\[
\pm (1.00\% \text{ of channel offset} + 1\% \text{ of full scale}) \text{ at full-resolution channel scale.}
\]

dc Voltage Measurement Accuracy\(^*2\)

- **Dual Cursor**
 \[
 \pm (\text{dc gain accuracy}) + (\text{resolution})
 \]

- **Single Cursor**
 \[
 \pm (\text{dc gain accuracy}) + (\text{offset accuracy}) + (\text{resolution}/2)
 \]

AutoProbe Interface

AutoProbe is an intelligent communication and power link between compatible probes and Infiniium scopes. AutoProbe completely configures the scope for the attached probe. For instance, it identifies the probe type and sets up the proper input impedance, attenuation ratio, probe power and offset range, as needed.

Horizontal

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Time Base Range</td>
<td>100 ps/div to 20 s/div</td>
</tr>
<tr>
<td>Horizontal Position Range</td>
<td>pre-trigger 0 to -1 s or one full screen width, whichever is larger.</td>
</tr>
<tr>
<td></td>
<td>post-trigger 0 to 1 s or one full screen width, whichever is larger.</td>
</tr>
<tr>
<td>Delayed Sweep Range</td>
<td>1 ps/div to current main time base setting.</td>
</tr>
<tr>
<td>Delayed Sweep Delay Range</td>
<td>Within main time base acquisition record.</td>
</tr>
<tr>
<td>Resolution</td>
<td>2 ps</td>
</tr>
<tr>
<td>Timebase Accuracy</td>
<td>70 ppm (.007%)</td>
</tr>
</tbody>
</table>
| \(\Delta t\) Accuracy* | Real Time mode\(^4\) \[
 \pm (0.007\%)(\Delta t) + (0.2)(\text{sample period})
 \]
| | Equivalent Time mode \[
 \pm (0.007\%)(\Delta t) + (\text{full scale}/(2 \times \text{memory depth})) + 30 \text{ ps}
 \]
| | (Example: for \(\geq 16\) avgs, 9 ns signal, 1 ns/div, 1 channel, then accuracy = \[
 \pm (0.007\%)(9 \text{ ns}) + (10 \text{ ns}/(2 \times 65,536)) + 30 \text{ ps} = 31 \text{ ps})
 \] |
Chapter 1: General Information

Specifications & characteristics

Trigger

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Internal</th>
<th>Auxiliary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity*<sup>2</sup></td>
<td>dc to 100 MHz: 0.5 div 100 MHz to 500 MHz: 1.0 div 500 MHz to 1 GHz: 1.5 div</td>
<td>dc to 500 MHz: 300 mV<sub>pp</sub></td>
</tr>
<tr>
<td>Maximum Input Voltage*</td>
<td>Auxiliary</td>
<td>±15 V, CAT I</td>
</tr>
<tr>
<td>Minimum Pulse Width (internal, external)</td>
<td>500 ps at > 1.0 div</td>
<td></td>
</tr>
<tr>
<td>Level Range</td>
<td>Internal</td>
<td>±8 div from center screen</td>
</tr>
<tr>
<td></td>
<td>Auxiliary</td>
<td>±5 V</td>
</tr>
</tbody>
</table>

- **Sweep Modes**: Auto, triggered, single
- **Trigger Coupling**: dc, ac (7 Hz), low frequency reject (50 kHz), high frequency reject (50 kHz).
- **Trigger Holdoff Range**: 60 ns - 320 ms
- **Trigger Modes**: Edge, Glitch, Pattern, State, Delay by Time, Delay by Events, Violation (Setup/Hold Time, Pulse Width, Transition), Video, Line.
- **Glitch**: Select positive or negative polarity, width. Captures glitches as narrow as 500 ps.
- **Pattern**: Select inputs as High, Low or X (don't care) to create pattern. Trigger when pattern is entered, exited, present > t, present < t, or present over a range of time. Captures patterns as narrow as 500 ps.
- **State**: Select one channel as clock, specify other inputs as High, Low or X. Logic Type: AND or NAND
- **Delay by Time**: Time: 30 ns to 160 ms. The trigger is qualified by an edge. After the delay, a rising/falling edge on any one selected input will generate the trigger.
- **Delay by Events**: Events: 1 to 16,000,000 rising or falling edges. The trigger is qualified by an edge. After the delay, a rising/falling edge on any one selected input will generate the trigger.
- **Violation Trigger**: Setup/Hold Modes: Setup, Hold or Setup and Hold. Select Clock, Thresholds, setup and/or hold time.
 - **Pulse Width**: Triggers on pulse width >t, or <t. Captures pulses as narrow as 500 ps.
 - **Transition**: Select Rise Time or Fall Time, present > t or present < t, thresholds.
- **Accuracy (time) for glitch, pulse width, and time-qualified pattern**: 1.5 ns - 20 ns: ±(20% setting + 500 ps) 20 ns - 160 ms: ±(3% setting + 2 ns)
- **Video Triggering**: 525 lines/60 Hz (NTSC), 625 lines/50 Hz (PAL), 875 lines/60 Hz. Trigger on Field 1 or Field 2, any line. User defined triggering: User can specify sync pulse level, width and polarity, edge number.
Display

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display</td>
<td>8.4-inch diagonal color active matrix LCD module incorporating amorphous</td>
</tr>
<tr>
<td></td>
<td>silicon TFTs.</td>
</tr>
<tr>
<td>Active Display Area</td>
<td>171 mm x 128 mm (21,888 sq. mm)</td>
</tr>
<tr>
<td>Waveform Viewing Area</td>
<td>104 mm x 159 mm (16,536 sq. mm) in Full screen mode</td>
</tr>
<tr>
<td>Display Resolution</td>
<td>640 pixels horizontally x 480 pixels vertically</td>
</tr>
<tr>
<td>Waveform Colors</td>
<td>Select from 100 hues, 0-100% saturation and 0-100% luminosity.</td>
</tr>
<tr>
<td>Dual Intensity Infinite Persistence</td>
<td>Previous sweeps are stored in half bright display and most recent sweep in</td>
</tr>
<tr>
<td></td>
<td>full bright. This allows easy differentiation of current and historic</td>
</tr>
<tr>
<td>Waveform Overlap</td>
<td>When two waveforms overlap, a third color distinguishes the overlap area.</td>
</tr>
<tr>
<td>Full screen mode</td>
<td>On/Off selectable.</td>
</tr>
<tr>
<td>Connect-the-dots</td>
<td>On/Off selectable.</td>
</tr>
<tr>
<td>Persistence</td>
<td>Minimum, Variable (100 ms to 40 s), Infinite. Up to 6 levels of grey scale.</td>
</tr>
<tr>
<td>Graticule</td>
<td>On/Off (Grid or Frame).</td>
</tr>
<tr>
<td>Grid Intensity</td>
<td>0 to 100%</td>
</tr>
<tr>
<td>Display Update Rate</td>
<td>Measurement Conditions</td>
</tr>
<tr>
<td>(for instruments equipped with</td>
<td>Real Time sampling mode, minimum</td>
</tr>
<tr>
<td>AMD-K6-2 400 MHz processor)</td>
<td>persistence, triggered sweep, no</td>
</tr>
<tr>
<td></td>
<td>interpolation, markers off, math off, connect the dots off, 1 channel</td>
</tr>
<tr>
<td></td>
<td>acquisition, 50 ns/div, statistics off.</td>
</tr>
<tr>
<td></td>
<td>512 point record (2 GSa/s)</td>
</tr>
<tr>
<td>Vpp Measurements/sec:</td>
<td>> 2,100</td>
</tr>
<tr>
<td>Waveform/sec:</td>
<td>> 130</td>
</tr>
</tbody>
</table>

Measurements

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic Parametrics</td>
<td>33 automatic measurements: V_{pp}, V_{min}, V_{max}, V_{avg}, V_{amptd}, V_{base}, V_{top}, V_{rms},</td>
</tr>
<tr>
<td></td>
<td>Preshoot, Overshoot, V_{upper}, V_{middle}, V_{lower}, Rise Time, Fall Time, Period,</td>
</tr>
<tr>
<td></td>
<td>Frequency, Positive Width, Negative Width, Duty Cycle, Delta Time, T_{max}, T_{min},</td>
</tr>
<tr>
<td></td>
<td>FFT Frequency, FFT Magnitude, FFT Delta Frequency, FFT Delta Magnitude, Eye</td>
</tr>
<tr>
<td></td>
<td>Height, Eye Width, Jitter, Crossing %, Q-factor, Duty Cycle Distortion.</td>
</tr>
<tr>
<td></td>
<td>Over GPIB only: V_{Time}, T_{Volts}.</td>
</tr>
<tr>
<td>Threshold Definition</td>
<td>Selectable 10%, 50%, 90% or 20%, 50%, 80% or Custom (% or absolute voltage).</td>
</tr>
<tr>
<td>Top-Base Definition</td>
<td>Standard or Custom (in absolute voltage).</td>
</tr>
<tr>
<td>Statistics</td>
<td>On/Off selectable. Current measurement, mean, and standard deviation</td>
</tr>
<tr>
<td>Measurement Toolbar</td>
<td>16 Drag and Drop automatic measurement icons.</td>
</tr>
<tr>
<td>QuickMeas</td>
<td>Activates 4 preselected automatic measurements.</td>
</tr>
<tr>
<td>Markers Modes</td>
<td>Manual Markers, Track Waveform Data, Track Measurements.</td>
</tr>
<tr>
<td>Waveform Math</td>
<td>4 function waveforms f1-f4. Select from Add, Subtract, Multiply, Divide, Invert, Magnify, Vs, Min, Max, Integral, Differentiate, FFT Magnitude.</td>
</tr>
</tbody>
</table>
Chapter 1: General Information

Specifications & characteristics

FFT

<table>
<thead>
<tr>
<th>Frequency Range<sup>5</sup></th>
<th>Agilent 54835A — 2-channel mode: dc to 2 GHz (Sample rate/2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Agilent 54835A — 4-channel mode: dc to 1 GHz (Sample rate/2)</td>
</tr>
<tr>
<td></td>
<td>Agilent 54845A — 2-channel mode: dc to 4 GHz (Sample rate/2)</td>
</tr>
<tr>
<td></td>
<td>Agilent 54845A — 4-channel mode: dc to 2 GHz (Sample rate/2)</td>
</tr>
<tr>
<td></td>
<td>Agilent 54846A — 2-channel mode: dc to 4 GHz (Sample rate/2)</td>
</tr>
<tr>
<td></td>
<td>Agilent 54846A — 4-channel mode: dc to 2 GHz (Sample rate/2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Freq. Accuracy</th>
<th>(1/2 frequency resolution)+(7x10<sup>-5</sup>)(signal frequency)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplitude Display</td>
<td>Power in dBm</td>
</tr>
<tr>
<td>Signal-to-noise ratio</td>
<td>70 dB at 32K memory depth. Noise floor varies with memory depth and with averaging.</td>
</tr>
<tr>
<td>Window Modes</td>
<td>Hanning, Flattop, Rectangular.</td>
</tr>
</tbody>
</table>

Computer System/ Storage

<table>
<thead>
<tr>
<th>CPU</th>
<th>AMD-K5™ PR133 Microprocessor (instrument serial numbers US37349999 and below) or AMD-K6™ 200 MHz Microprocessor or AMD-K6/300™ or AMD-K6-2/300™ 300 MHz Microprocessor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disk Drive</td>
<td>1.4 GByte, 2.1 GByte, or higher internal hard drive depending upon the vintage. Storage capacity is limited only by disk space. 3.5” 1.44 Mbyte MS-DOS-compliant high density floppy disk drive or LS-120 MS-DOS 120 MByte floppy disk drive.</td>
</tr>
<tr>
<td>File types</td>
<td>Waveforms Internal Y values; X and Y values in ASCII or Microsoft Excel formats.</td>
</tr>
<tr>
<td></td>
<td>Images BMP, EPS, GIF, PCX, PS (Postscript), TIF.</td>
</tr>
<tr>
<td>Mouse</td>
<td>Standard mouse supplied—supports any Microsoft<sup>®</sup> mouse compatible pointing device, serial or PS/2.</td>
</tr>
<tr>
<td>Operating System</td>
<td>Microsoft Windows 95 or Microsoft Windows 98</td>
</tr>
<tr>
<td>Waveform Memories</td>
<td>4 nonvolatile waveform reference memories.</td>
</tr>
</tbody>
</table>

I/O

<table>
<thead>
<tr>
<th>LAN</th>
<th>Enables data/setup file transfers and use of network printers; supports popular network operating systems including Novell NetWare, Microsoft, Banyan VINES, SCO UNIX and IBM; 10 Mbps operation that complies with IEEE 802.3 Ethernet and ISO/IEC 8802-3 Ethernet standards; TCP/IP protocol; RJ-45 connector.</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPIB</td>
<td>Fully programmable, complies with IEEE 488.2.</td>
</tr>
<tr>
<td>RS-232 (serial)</td>
<td>2 ports: COM1, COM2. Printer and pointing device support.</td>
</tr>
<tr>
<td>Centronics</td>
<td>Printer port.</td>
</tr>
<tr>
<td>USB</td>
<td>Two pinheads link with Universal Serial Bus connectors (USB1 and USB2) peripheral devices via either a dual-port USB cable or a single-port USB cable on some configurations with serial prefixes US39400000 and above.</td>
</tr>
<tr>
<td>Printers and Plotters</td>
<td>Supports all printers and plotters compatible with Microsoft Windows<sup>®</sup> 95<sup>®</sup>. Includes but is not limited to Hewlett-Packard Deskjet and Laserjet printers. GPIB devices not supported.</td>
</tr>
<tr>
<td>PS/2 port</td>
<td>For PS/2 mouse.</td>
</tr>
<tr>
<td>Keyboard port</td>
<td>For optional keyboard.</td>
</tr>
</tbody>
</table>
Video Output 15-pin VGA, full color.

Notes

1. Rise Time figures are calculated from: \(tr = \frac{.35}{\text{Bandwidth}} \).

2. Magnification is used below the 10 mV/div range and between the major attenuation settings. Full scale is defined as the major attenuator setting over an intermediate setting.
 (Major settings for 50\(\Omega\): 10, 20, 50, 100, 200, 500, 1000 mV
 Major settings for 1 M\(\Omega\): all as for 50\(\Omega\) plus 2 V)

3. N/A

4. For bandwidth limited signals, \(tr \geq 1.4 \times \text{sample interval} \).

5. FFT amplitude readings are affected by input amplifier roll-off (-3 dB, with amplitude decreasing as frequency increases above 500 MHz in 1 M\(\Omega\), 2.25 GHz for Agilent 54846A, 1.5 GHz in 50\(\Omega\) for Agilent 54845A, 1 GHz in 50\(\Omega\) for Agilent 54835A).

CAT I and CAT II Definitions

Installation category (overvoltage category) I: Signal level, special equipment or parts of equipment, telecommunication, electronic, etc., with smaller transient overvoltages than installation category (overvoltage category) II.

Installation category (overvoltage category) II: Local level, appliances, portable equipment etc., with smaller transient overvoltages than installation category (overvoltage category) III.
The Infiniium oscilloscopes meet the Agilent Technologies Environmental Specification (section 750) for class B-1 products with exceptions as described for temperature.

General Characteristics

<table>
<thead>
<tr>
<th>Environmental</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Operating: 10°C to +40°C</td>
</tr>
<tr>
<td></td>
<td>Nonoperating: −40°C to 70°C</td>
</tr>
<tr>
<td></td>
<td>Indoor use only</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Humidity</th>
<th>Operating: Up to 95% relative humidity (noncondensing) at +40°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nonoperating: Up to 90% relative humidity at +65°C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Altitude</th>
<th>Operating: Up to 4 600 meters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nonoperating: Up to 15 300 meters</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vibration</th>
<th>Operating: Random vibration 5-500 Hz, 10 minutes per axis, 0.3g (rms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nonoperating: Random vibration 5-500 Hz, 10 minutes per axis, 2.41g (rms)</td>
</tr>
<tr>
<td></td>
<td>Resonant search 5-500 Hz, swept sine, 1 octave/minute sweep rate, (0.75g), 5-minute resonant dwell at 4 resonances per axis.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Physical</th>
<th>Size (excluding handle)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Height: 216 mm</td>
</tr>
<tr>
<td></td>
<td>Width: 437 mm</td>
</tr>
<tr>
<td></td>
<td>Depth: 440 mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weight</th>
<th>Net: approximately 12 kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Shipping: approximately 15 kg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Power</th>
<th>Line voltage selection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>None, PFC (Power Factor Correction)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Line voltage range</th>
<th>100-240VAC, ± 10% CAT II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line frequency</td>
<td>47 to 440 Hz</td>
</tr>
<tr>
<td>Maximum power consumption</td>
<td>390 W</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Safety</th>
<th>Meets IEC1010-1 +A1, CSA certified to C22.2 No. 1010.1, Self certified to UL 3111.</th>
</tr>
</thead>
</table>
Chapter 1: General Information
Agilent Technologies 54835A/45A/46A general characteristics
Chapter 1: General Information

Recommended test equipment

The following table is a list of the test equipment required to test performance, calibrate and adjust, and troubleshoot this instrument. The table indicates the critical specification of the test equipment and for which procedure the equipment is necessary. Equipment other than the recommended model may be used if it satisfies the critical specification listed in the table.

Recommended Test Equipment

<table>
<thead>
<tr>
<th>Equipment Required</th>
<th>Critical Specifications</th>
<th>Recommended Model</th>
<th>Use *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal Generator</td>
<td>1 - 2.25 GHz, sine wave, amplitude 30 - 200 mVrms, time base accuracy 0.25 ppm</td>
<td>Agilent 8664A</td>
<td>P</td>
</tr>
<tr>
<td>RF Amplifier</td>
<td>22 dB gain at 10 MHz, 1.3 GHz bandwidth</td>
<td>Agilent 8447D/F</td>
<td>P</td>
</tr>
<tr>
<td>Power Meter/Power Sensor</td>
<td>1 - 500 MHz, -70 dBm to +44 dBm, ±3% accuracy</td>
<td>Agilent EPM-441A / Agilent 8482A</td>
<td>P</td>
</tr>
<tr>
<td>DMM</td>
<td>6 1/2 digit (0.1 mV) resolution, dcV accuracy 8 ppm/year, 4-wire resistance acc. ±0.25%</td>
<td>Agilent 34401A</td>
<td>P, A, T</td>
</tr>
<tr>
<td>Power Supply</td>
<td>7 mV - 30 V dc, 0.1 mV accuracy and resolution</td>
<td>Agilent 6114A</td>
<td>P</td>
</tr>
<tr>
<td>Power Splitter</td>
<td>50 Ω type N, outputs differ by <0.15 dB</td>
<td>Agilent 11667A</td>
<td>P</td>
</tr>
<tr>
<td>Probe</td>
<td>No substitute</td>
<td>Agilent 1161A</td>
<td>P</td>
</tr>
<tr>
<td>Probe Tip Adapter</td>
<td>1160 series to BNC</td>
<td>Agilent 5063-2143</td>
<td>P</td>
</tr>
<tr>
<td>Oscilloscope</td>
<td>General-purpose</td>
<td>Agilent 54622A</td>
<td>P, T</td>
</tr>
<tr>
<td>Blocking Capacitor</td>
<td>0.18 µF</td>
<td>Agilent 10204B</td>
<td>P</td>
</tr>
<tr>
<td>Cable</td>
<td>Type N (m)(m) - 3 foot</td>
<td>Agilent 11500A or B</td>
<td>P</td>
</tr>
<tr>
<td>Cable (2)</td>
<td>BNC - 3 foot</td>
<td>Agilent 10503A</td>
<td>P, A, T</td>
</tr>
<tr>
<td>Cable (3)</td>
<td>BNC - 9 inch</td>
<td>Agilent 10502A</td>
<td>P, A, T</td>
</tr>
<tr>
<td>Adapter</td>
<td>N (m) to BNC (m)</td>
<td>Agilent 1250-0082</td>
<td>P</td>
</tr>
<tr>
<td>Adapter</td>
<td>N (m) to BNC (f)</td>
<td>Agilent 1250-0780</td>
<td>P</td>
</tr>
<tr>
<td>Adapter</td>
<td>N (f) to BNC (m)</td>
<td>Agilent 1250-0077</td>
<td>A</td>
</tr>
<tr>
<td>Adapter (2)</td>
<td>BNC tee (m)(f)(f)</td>
<td>Agilent 1250-0781</td>
<td>P, T</td>
</tr>
<tr>
<td>Adapter</td>
<td>BNC (f)(f)</td>
<td>Agilent 1250-0080</td>
<td>T</td>
</tr>
<tr>
<td>Adapter (2)</td>
<td>BNC (f) to dual banana (m)</td>
<td>Agilent 1251-2277</td>
<td>P</td>
</tr>
<tr>
<td>Termination</td>
<td>BNC connectors 50 Ω</td>
<td>Agilent 10100C</td>
<td>P</td>
</tr>
<tr>
<td>Shorting cap</td>
<td>BNC</td>
<td>Agilent 1250-0774</td>
<td>P</td>
</tr>
<tr>
<td>Resistor (2)</td>
<td>5 Ω, 5 W</td>
<td>Agilent 0812-0047</td>
<td>T</td>
</tr>
<tr>
<td>Video monitor</td>
<td>Accepts VGA-standard video signals</td>
<td>Agilent E2610A</td>
<td>T</td>
</tr>
<tr>
<td>Keyboard</td>
<td>PC-compatible, AT 5-pin connector</td>
<td>Agilent C3751-60201</td>
<td>P, T</td>
</tr>
<tr>
<td>Mouse</td>
<td>PS/2 compatible</td>
<td>Agilent E2610A</td>
<td>T</td>
</tr>
<tr>
<td>POST Card</td>
<td>Power-on self test card compatible with PC-compatible systems</td>
<td>Agilent E2610A</td>
<td>T</td>
</tr>
<tr>
<td>Fan Safety Shield</td>
<td>Clips onto side of chassis with cover removed</td>
<td>Agilent 54801-00601</td>
<td>A, T</td>
</tr>
<tr>
<td>Service software</td>
<td>No substitution</td>
<td>Agilent 54810-68700</td>
<td>T</td>
</tr>
</tbody>
</table>

Note: the Fan Safety Shield and Service software are part of the Service Kit, Agilent P/N 54810-68703.

* P = Performance Tests, A = Adjustments, T = Troubleshooting
Preparing for Use

Setting Up the Oscilloscope 2-3
To inspect the instrument 2-3
To connect power 2-4
To connect the mouse or other pointing device 2-5
To attach the optional trackball 2-5
To connect the keyboard 2-7
To connect to the LAN card 2-7
To connect oscilloscope probes 2-8
To connect a printer 2-9
To connect an external monitor 2-10
To connect the GPIB cable 2-10
To tilt the oscilloscope upward for easier viewing 2-11
To power on the oscilloscope 2-12
To verify basic oscilloscope operation 2-13
To clean the instrument 2-14
To clean the display monitor contrast filter 2-14
Preparing for Use

This chapter shows you how to prepare the Agilent Technologies 54835A/45A/46A oscilloscopes for use. The following areas are covered in this section.

• Inspection
• Setup
• Connecting a signal
• Cleaning

Following instrument setup is a brief section covering oscilloscope operation. If you are unfamiliar with this oscilloscope's operation, refer to the User's Quick Start Guide. The topics covered include:

• Using the front panel
• Using the graphical interface
• Starting and stopping acquisition
• Adjusting oscilloscope configuration
• Making measurements

The Infiniium Oscilloscope is designed to make it easy for you to use a high-performance digitizing oscilloscope.

• The familiar front-panel oscilloscope interface with knobs and buttons is optimized for the most common kinds of troubleshooting tasks and basic measurements.
• The graphical interface with menus, windows, dialogs, and toolbars provides easy logical access to dozens of configuration and analysis tools, making it easy for you to set up and make the most complex measurements.
Setting Up the Oscilloscope

This section will help you get the instrument ready to use. Included are procedures for:

- Inspection
- Connecting power
- Connecting probes and accessories
- Connecting peripherals
- Verifying basic operation
- Cleaning

To inspect the instrument

- Inspect the shipping container for damage.

 Keep a damaged shipping container or cushioning material until the contents of the shipment have been checked for completeness and the instrument has been checked mechanically and electrically.

- Check the accessories.

 Accessories supplied are listed in chapter 1 of this service guide.

 - If the contents are incomplete or damaged notify your Agilent Technologies Sales Office.

- Inspect the instrument.

 - If there is mechanical damage or defect, or if the instrument does not operate properly or pass performance tests, notify your Agilent Technologies Sales Office.

 - If the shipping container is damaged, or the cushioning materials show signs of stress, notify the carrier as well as your Agilent Technologies Sales Office. Keep the shipping materials for the carrier's inspection. The Agilent Technologies office will arrange for repair or replacement at Agilent Technologies' option without waiting for claim settlement.
Chapter 2: Preparing for Use

To connect power

The instrument Power Factor Correction (PFC) circuitry in the oscilloscope’s power supply operates over a line voltage in the range of 100 to 240 Vac ±10% (the power supply is autoranging to the input voltage and frequency). Line frequency must be in the range 47 to 440 Hz. Power consumption is 390W maximum.

1 Position the instrument where it will have sufficient clearance for airflow around the top, back, and sides.

2 Connect the power cord to the rear of the oscilloscope, then to a suitable ac voltage source.

The line cord provided is matched by Agilent Technologies to the country of origin of order. Ensure that you have the correct line cord. See “Power Cables and Plug Configurations” in chapter 7.

WARNING

SHOCK HAZARD!
BEFORE YOU CONNECT THIS INSTRUMENT TO MAINS POWER OR LIVE MEASURING CIRCUITS, you must provide a protective earth ground. Failure to provide a protective earth ground could result in a shock hazard if there is a failure in this instrument or equipment connected to it.
The mains plug must be inserted in a socket outlet provided with a protective earth contact. Do not use an extension cord (power cable) without a protective conductor (grounding).
Grounding one conductor of a two-conductor outlet does not provide an instrument ground.

A Three-wire Power Cable is Provided
This instrument is provided with a three-wire power cable. When connected to an appropriate ac power outlet, this cable grounds the instrument cabinet.
To connect the mouse or other pointing device

- Plug the mouse into the matching connector on the back panel of the oscilloscope.

The mouse is included with the oscilloscope, but using it is optional. While you can operate many oscilloscope functions with only the front-panel keys and knobs, you will need the mouse to access advanced oscilloscope functions through the graphical interface, or to find out more about the oscilloscope through the built-in information system.

The optional touchpad pointing device connects in exactly the same way as the mouse.

The supplied mousepad provides the correct surface for smooth mouse operation. To modify the mouse configuration, see the User’s Quick Start Guide.

To attach the optional trackball

1. Push in the latch on the trackball baseplate to extend the metal tabs. Insert the lower tab into the frontmost slot on the side of the oscilloscope. You can only install the trackball on the right side of the oscilloscope.
Chapter 2: Preparing for Use
To attach the optional trackball

2 While holding the latch in, slide the metal tabs up and to the rear of the oscilloscope until they fully engage the slot.

3 Release the latch. The trackball baseplate should now be secure against the side of the oscilloscope.

4 Snap the trackball assembly onto the pins of the baseplate. The trackball and buttons should face up and toward the front of the oscilloscope.

5 Connect the 9-pin “D” connector on the trackball cable to the COM1 port on the back panel. Tighten the retaining screws.

For information on changing the trackball settings, see the User’s Quick Start Guide.
To connect the keyboard

- Plug the keyboard cable into the matching connector on the back panel of the oscilloscope.

The keyboard simplifies access to some oscilloscope functions, such as entering file names when you store waveforms and setups to the disk. If you need to free desk space, place the keyboard on top of the instrument. Do not stack other objects on the keyboard; this will cause self-test failures on power-on.

To connect to the LAN card

- Connect your LAN cable to one of the connectors on the LAN card. Make sure the connection is secure. Two connections are possible on the LAN card: the RJ-45 connection and a BNC connection. Units equipped with 10/100Base-T LAN cards have an RJ-45 connector only.

Each Infiniium Oscilloscope now ships with a LAN card installed. If you want a LAN connection, but have an older Infiniium Oscilloscope model that does not have a LAN card installed, contact your Agilent Technologies Sales and Service Office. An Agilent Technologies LAN Card Installation Kit with instructions is available from Agilent Technologies, and describes how to add a LAN card to your Infiniium Oscilloscope. After you have connected to the LAN card, you must set up the network as described in the *User's Quick Start Guide*.
To connect oscilloscope probes

1. Attach the probe BNC connector to the desired oscilloscope channel or trigger input. Push it straight on until it latches into place.

2. Connect the probe to the circuit of interest using grabbers or other probing aids.

3. To disconnect the probe, push the small latch on top of the probe connector to the left, then pull the connector body away from the front panel of the oscilloscope without twisting it.

CAUTION

- AVOID DAMAGE TO THE PROBE CONNECTOR!
- Do not attempt to twist the snap-on probes on or off the oscilloscope’s BNC connector. Twisting the probe connector body will damage it.

CAUTION

- DO NOT EXCEED THE MAXIMUM INPUT VOLTAGE!
- Do not exceed the maximum input voltage rating of the oscilloscope inputs! The maximum input voltage for 50-Ω inputs is 5 V_{rms}, CAT I. The maximum input voltage for 1 MΩ inputs is ±100V (dc+ac) [ac < 10 kHz], CAT I. (Probes may have different ratings. See the probe documentation.)
To connect a printer

If you have a parallel (Centronics) printer, you will need a parallel printer cable, such as an Agilent C2950A (2 m) or Agilent C2951A (3 m) cable. Go to step 1.

If you have a serial printer, you will need a 9-pin to 25-pin serial printer cable, such as an Agilent 34398A cable, plus the Agilent 34399A adapter kit. Some printers may require other cable configurations, but the oscilloscope has a 9-pin serial connector. Go to step 4.

1 Attach the 25-pin small “D” connector to the printer output connector on the rear of the oscilloscope. Tighten the thumbscrews to secure the cable.

2 Attach the larger 36-pin “D” connector to the printer. Latch the wire bails into the tabs on each side of the connector.

3 Set the printer configuration to use the “Centronics” or “Parallel” interface, if necessary. Refer to the User’s Quick Start Guide for software installation instructions. See the documentation for your printer if you have questions about configuring the printer to use the parallel interface.

4 Connect the 9-pin “D” connector of the serial printer cable to the serial output port on the rear panel of the oscilloscope. Tighten the thumbscrews to secure the cable.
5 Attach the 25-pin “D” connector to the serial input port of the printer. Tighten the thumbscrews to secure the cable.

6 Set the printer configuration to use the serial interface. Refer to the User’s Quick Start Guide for software installation instructions. See the documentation for your printer if you have questions about configuring the printer to use the serial interface.

To connect an external monitor

You can connect a VGA-compatible monitor to the Infinium oscilloscope to provide a larger viewing area.

- Connect the monitor cable to the display board video connector at the rear panel of the oscilloscope. Tighten the retaining screws.

To connect the GPIB cable

- Attach the GPIB connector to the GPIB interface card connector at the rear of the oscilloscope. Tighten the thumbscrews on the connector.
To tilt the oscilloscope upward for easier viewing

- If your oscilloscope has front feet with individual wire bails, lift up the front of the oscilloscope, grasp one of the wire bails under the front corner, and pull it down and forward until it latches into place. Repeat for the other wire bail.

- If your oscilloscope has front feet with a wire bail between the two feet, lift up the front of the oscilloscope, grasp the bail near the center, and pull it down and forward until it latches into place.
To power on the oscilloscope

- Depress the power switch at the lower left-hand corner of the oscilloscope front panel.

After a short initialization period, the oscilloscope display appears. The oscilloscope is ready to use.

Hook up all cables and accessories before applying power. You can connect and disconnect probes while the oscilloscope is powered-on.

You Can Configure the Backlight Saver

The oscilloscope display has a backlight saver that turns off the backlight when there has been no interface activity for a pre-determined period. The default time is 8 hours and is configurable through the Display Setup dialog in the graphical interface. You can turn the display on by moving the mouse, typing on the optional keyboard, pressing a front-panel key, or turning a front-panel knob.
To verify basic oscilloscope operation

1. Connect an oscilloscope probe to channel 1.
2. Attach the probe to the calibration output on the front panel of the oscilloscope.
 Use a probe grabber tip so you do not need to hold the probe. The calibration output is marked with a square wave symbol.

3. Press the Default Setup key on the front panel.
 The display will pause momentarily while the oscilloscope is configured to its default settings.

4. Press the Autoscale key on the front panel.
 The display will pause momentarily while the oscilloscope adjusts the sweep speed and vertical scale. You should then see a squarewave with peak-to-peak amplitude approximately 5 divisions and a period of almost 3 divisions. If you do not see the waveform, ensure your power source is adequate, the oscilloscope is properly powered-on, and the probe is connected securely to the front-panel channel input BNC and to the probe calibration output.

5. Move the mouse pointer to the graphical interface enable button and click once.
 The graphical interface enable button is in the upper-right corner of the display.

6. Move the mouse around the mouse pad and verify that the pointer follows on the screen.
 If the pointer does not move, ensure that the mouse is properly connected, that you have clicked the correct button to enable the graphical interface, and that the mouse is on a medium-friction surface such as the mouse pad supplied with the oscilloscope.
To clean the instrument

- Clean the oscilloscope with a soft cloth dampened with a mild soap and water solution.

CAUTION

BE CAREFUL TO AVOID DAMAGING COMPONENTS!
Do not use too much liquid when cleaning the oscilloscope. Water can enter the front panel keyboard, damaging sensitive electronic components.

To clean the display monitor contrast filter

- Clean the display monitor contrast filter using glass cleaner and lens tissue or a soft cloth.
Testing Performance
Testing Performance

The procedures in this section test measurement performance using Performance Specifications given in chapter 1 as performance standards. Specifications applicable to individual tests are noted at the test for reference.

Testing Interval
The performance test procedures may be performed for incoming inspection of the instrument and should be performed periodically thereafter to ensure and maintain peak performance. The recommended test interval is yearly or every 2,000 hours of operation.

<table>
<thead>
<tr>
<th>Test Interval Dependencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>The test interval depends on frequency and severity of use and the environmental conditions under which the instrument is used. In recording test results, you may find that the test interval could be shortened or lengthened; however, such a decision should be based on substantial quantitative data.</td>
</tr>
</tbody>
</table>

See Also
Chapter 4, “Calibrating and Adjusting,” for information about the calibration cycle.

Equipment Required
A complete list of equipment required for the performance tests is in the Recommended Test Equipment table in chapter 1. Equipment required for individual tests is listed in the test. Any equipment satisfying the critical specifications listed may be substituted for the recommended model. The procedures are based on the model or part number recommended.

Self-Test Verification
To verify system operation with high confidence, without the test equipment and time required for performance tests, perform the self-tests. These internal tests verify many functions of the oscilloscope.

To run the self-tests, enable the graphical interface, then select Self Test from the Utilities menu. The Self Test drop down list box allows you to select Scope Self Tests, Key and Knob Test, or LED Test. A message is displayed with the instruction to remove all inputs to the instrument. During execution of the self-tests, the oscilloscope displays diagnostic messages indicating the status of each test.

If one of the self-tests fails, FAILED is displayed rather than PASSED, and a 16-bit diagnostic code is displayed. This code is used by factory service personnel when troubleshooting the main assembly. Failure of a self-test indicates an assembly failure. The assembly must be replaced before you attempt performance verification. For more troubleshooting information, refer to chapter 5, “Troubleshooting.”
Test Record
You can record the results of the performance tests in the Performance Test Record provided at the end of this chapter. The Performance Test Record lists the performance tests and provides an area to mark test results. You can use the results recorded at incoming inspection for later comparisons during periodic maintenance, troubleshooting, and after repairs or adjustments.

Operating Hints
Some knowledge of operating the oscilloscope is helpful; however, these procedures are written so that little experience is necessary. The following two hints will speed progress of the testing.

Clear Display
When using many averages, it often takes awhile for a waveform display to stabilize after a change. When a control on the oscilloscope is changed, averaging automatically restarts. When just the input signal is changed, the instrument must average new data with the old so it takes longer for the waveform to stabilize. Press the Clear Display key while changing input signals. The instrument will restart averaging and give a quick indication of the result of the signal change.

Averaging
Averaging is used to assure a stable signal for measurements. It is not necessary to wait for complete stability of the signal (averaging complete), as long as the measurement is well within the limits of the test.

Specifications
The specifications that apply to a particular test are given with the test procedure. The specification as given with the test may be abbreviated for clarity. In case of any questions, refer to the complete specifications and characteristics in chapter 1, “General Information.”

Performance Test Procedures
Performance test procedures start with the next paragraph. Procedures may be done individually and in any order.

<table>
<thead>
<tr>
<th>Let the Instrument Warm Up Before Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allow the instrument to warm up for at least 30 minutes prior to beginning performance tests. Failure to allow warm-up may cause the instrument to fail tests.</td>
</tr>
</tbody>
</table>
To test the dc calibrator

The Aux Out BNC on the front panel is used for self-calibration and probe calibration. Though calibrator accuracy is not specified in the performance specifications, it must be within limits in order to provide accurate self-calibration.

Test Limits: -2.5 v to +2.5 v, Accuracy ±0.2% of delta voltage output

Equipment Required

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Critical Specifications</th>
<th>Recommended Model/Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Multimeter</td>
<td>0.1 mV resolution, better than 0.1 % accuracy</td>
<td>Agilent 34401A</td>
</tr>
<tr>
<td>Cable</td>
<td>BNC</td>
<td>Agilent 10503A</td>
</tr>
<tr>
<td>Adapter</td>
<td>BNC (f) to banana (m)</td>
<td>Agilent 1251-2277</td>
</tr>
</tbody>
</table>

Procedure

1. **Connect the multimeter to the front panel Aux Out BNC.**
 Use the BNC cable and the BNC to banana plug adapter.
2. **Enable the graphical interface.**
 Use the mouse to click on the button in the upper right-hand corner of the display. See figure 3-1.

 Figure 3-1

 ![Click the mouse with the pointer on the right-hand button to enable the graphical interface]

 Enabling the graphical interface

3. **Press Default Setup to set the oscilloscope to default conditions.**
4. **Select Calibration from the Utilities menu.**
5. **Select DC from the Aux Output drop-down list box.**
 See figure 3-2.
6 Set the dc output voltage to +2.500 V using the Level spin box or the numeric keypad dialog.
 You can access the numeric keypad dialog by clicking on the value in the Level box. Enter the values by clicking on digits, signs, and exponents in the keypad. Click Close when finished.

7 The DVM should read near +2.500 V. Record the reading to four significant digits.
 \[V_1 = \text{__________.} \]

8 Set the level to -2.500 V using the Level spin box or the numeric keypad dialog.

9 The DVM should read near -2.500 V. Record the reading.
 \[V_2 = \text{__________.} \]

10 Subtract the second reading from the first reading, then divide the result by 5.
 For example, if the first reading is +2.498 V and the second reading is -2.497 V, then
 \[\frac{V_1 - V_2}{5} = \frac{2.498 - (-2.497)}{5} = 0.999 \]

11 The final result should be between 0.998 and 1.002. Record the result in the Performance Test Record at the end of the chapter.

12 Click Close to exit the calibration menu.

If the test fails
 Repair is necessary. See chapter 5, “Troubleshooting.”
To test input resistance

This test checks the input resistance of the vertical inputs. A four-wire measurement is used to accurately measure the 50-Ω and 1-MΩ inputs.

Specification: 1 MΩ ±1% and 50 Ω ±1.5%

Equipment Required

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Critical Specifications</th>
<th>Recommended Model/Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Multimeter</td>
<td>Measure resistance (4-wire) at better than 0.25% accuracy</td>
<td>Agilent 3401A</td>
</tr>
<tr>
<td>Cables (2)</td>
<td>BNC</td>
<td>Agilent 10503A</td>
</tr>
<tr>
<td>Adapter (2)</td>
<td>BNC Tee (m)(f)(f)</td>
<td>Agilent 1250-0781</td>
</tr>
<tr>
<td>Adapters (2)</td>
<td>BNC (f) to dual banana (m)</td>
<td>Agilent 1251-2277</td>
</tr>
</tbody>
</table>

Procedure

1. Set up the multimeter to make a four-wire resistance measurement.
2. Assemble the test cables.
 a. Use the two BNC-to-banana adapters to connect one end of each BNC cable to the four-wire resistance connections on the multimeter.
 b. Connect the free ends of the cables to the BNC tee.
 See figure 3-3.

 ![Figure 3-3](image)

3. Connect the male end of the BNC tee to the channel 1 input of the oscilloscope.
4. Press Default Setup to set the oscilloscope to default conditions.
5. Press the Input key for Channel 1 to select 1 MΩ, then 50Ω, and verify resistance readings of 1 MΩ ±10 kΩ and 50 Ω ±0.75 Ω respectively.
6. Record the readings in the Performance Test Record.
7. Repeat steps 3 through 6 on the remaining channels.
To test voltage measurement accuracy

This test verifies the voltage measurement accuracy of the instrument. The measurement is made using dual-cursor automatic measurement so that offset errors are not a factor.

A power supply provides a reference voltage to check voltage measurement accuracy. The actual supply voltage is monitored for accuracy using a NIST-traceable voltmeter. A dc blocking capacitor and a BNC short are used to filter any noise generated by the power supply (especially at low voltages) so it does not appear at the oscilloscope input.

Specification

Only the dual-cursor specification is tested.

Single Cursor Measurement: ±(gain accuracy + offset accuracy + resolution/2)

Dual Cursor Measurement: ±(gain accuracy + resolution)

Gain Accuracy: ± 1.00% of full scale at full-resolution channel scale

Resolution: 8 bits, (0.4% of full scale without averaging); or 12 bits, (0.024% of full scale with 32 averages) at full-resolution scale

Offset Accuracy: ±(1.00% of channel offset + 1% of full scale) at full-resolution scale

Equipment Required

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Critical Specifications</th>
<th>Recommended Model/Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply</td>
<td>7 mV to 30 Vdc, 0.1 mV resolution</td>
<td>Agilent 6114A</td>
</tr>
<tr>
<td>Digital Multimeter (DVM)</td>
<td>Better than 0.1% accuracy</td>
<td>Agilent 34401A</td>
</tr>
<tr>
<td>Cables (2)</td>
<td>BNC</td>
<td>Agilent 10503A</td>
</tr>
<tr>
<td>Adapters (2)</td>
<td>BNC (f) to banana (m)</td>
<td>Agilent 1251-2277</td>
</tr>
<tr>
<td>Adapters (2)</td>
<td>BNC tee (m)(f)(f)</td>
<td>Agilent 1250-0781</td>
</tr>
<tr>
<td>Blocking capacitor</td>
<td>0.18 µF</td>
<td>Agilent 10240B</td>
</tr>
<tr>
<td>Shorting cap</td>
<td>BNC</td>
<td>Agilent 1250-0774</td>
</tr>
</tbody>
</table>

Procedure

1. **Connect the equipment.**

 See figure 3-4.

 a. Use a BNC-to-banana adapter to connect a BNC cable to the power supply.
 b. Connect a BNC tee to the other end of the cable and connect the tee to channel 1 of the oscilloscope.
 c. Connect another BNC cable to the tee at the oscilloscope and connect a BNC tee to the other end of the cable.
 d. Connect the blocking capacitor to the BNC tee and connect the BNC short to the blocking capacitor.
 e. Connect a BNC-to-banana adapter to the same BNC tee and connect the adapter to the DVM input.
Chapter 3: Testing Performance
To test voltage measurement accuracy

Figure 3-4

Voltage Measurement Accuracy Equipment Setup

2 Press Default Setup to set the oscilloscope to default conditions.
3 Set all channels to dc using the Coupling key and to 1 MΩ input impedance using the Input key.
4 Using the mouse, enable the graphical interface.
5 Select Acquisition from the Setup menu.
6 Select Equivalent Time sampling mode. Enable Averaging. Set the # of Averages to 32, either using the spin box or the numeric keypad dialog. Click Close.
See figure 3-5.

Figure 3-5

Acquisition Setup for Voltage Accuracy Measurement

7 Use the following table for steps 8 through 15.
Chapter 3: Testing Performance

To test voltage measurement accuracy

Below 10 mV/div expansion is used and full scale is defined as 80 mV. The ranges from 2 to 9 mV/div are handled in firmware, and will be within specifications when the 10 mV/div range is within specifications.

8 Select Vavg from the Voltage submenu of the Measure menu. Ensure that Channel 1 is selected in the Source dialog and click Close. See figure 3-6.

9 Select Channel 1 from the Setup menu.

10 Set the vertical scaling for Channel 1 to the volts/div value from the first row of the table in step 7. Set the Offset value to the Position value from the first row of the same table. Click Close. See figure 3-7.

<table>
<thead>
<tr>
<th>Scale</th>
<th>Offset</th>
<th>Supply</th>
<th>Tolerance</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 V/div*</td>
<td>2.5 V</td>
<td>5 V</td>
<td>±163.8 V</td>
<td>4.836 V to 5.164 V</td>
</tr>
<tr>
<td>1 V/div</td>
<td>2.5 V</td>
<td>5 V</td>
<td>±82 mV</td>
<td>4.918 V to 5.082 V</td>
</tr>
<tr>
<td>500 mV</td>
<td>1.75 V</td>
<td>3.5 V</td>
<td>±41 mV</td>
<td>3.459 V to 3.541 V</td>
</tr>
<tr>
<td>200 mV</td>
<td>700 mV</td>
<td>1.4 V</td>
<td>±16.4 mV</td>
<td>1.384 V to 1.416 V</td>
</tr>
<tr>
<td>100 mV</td>
<td>350 mV</td>
<td>700 mV</td>
<td>±8.2 mV</td>
<td>691.8 mV to 708.2 mV</td>
</tr>
<tr>
<td>50 mV</td>
<td>175 mV</td>
<td>350 mV</td>
<td>±4.1 mV</td>
<td>345.9 mV to 354.1 mV</td>
</tr>
<tr>
<td>20 mV</td>
<td>70 mV</td>
<td>140 mV</td>
<td>±1.64 mV</td>
<td>138.36 mV to 141.64 mV</td>
</tr>
<tr>
<td>10 mV</td>
<td>35 mV</td>
<td>70 mV</td>
<td>±0.819 mV</td>
<td>69.18 mV to 70.82 mV</td>
</tr>
</tbody>
</table>

* only in 1 MΩ input
Chapter 3: Testing Performance

To test voltage measurement accuracy

11 With the supply disconnected from the channel input, note the \(V_{\text{avg}} \) mean reading.
 \[\text{__________} \text{V} \]
 It may take a moment for this value to settle because of averaging.

12 Set the power supply voltage from the first line of the table. Use the voltmeter to adjust
 the power supply for the most accurate output.

13 Connect the power supply to the channel input and note the \(V_{\text{avg}} \) reading. \[\text{__________} \text{V} \]
 Press Clear Display and wait a moment to read the value (so that averaging is complete).

14 Subtract the value in step 11 from the value in step 13. Record the difference in the
 Performance Test Record.

15 On the same channel, repeat steps 10 through 14 for the rest of the rows in the table.

16 With the channel keys, set the active channel OFF and the next ON.
 A channel is ON if its key is illuminated and OFF if it is not illuminated.

17 Move the BNC tee to the next channel and repeat steps 8 through 15 for that channel.

18 Repeat steps 8 through 17 for the rest of the channels.

19 Repeat steps 3 through 18 for the 50Ω input.

If the test fails
Voltage measurement errors can be caused by the need for self-calibration. Before troubleshooting the
instrument, perform self-calibration. See “To run the self-calibration” in chapter 4, “Calibrating and
Adjusting.” If self-calibration fails to correct the problem, the cause may be the attenuator or main
assembly.
To test offset accuracy

This test checks the vertical offset accuracy.

Specification: ±(1.00% of channel offset + 1% of full scale) at full-resolution channel scale

Equipment Required

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Critical Specifications</th>
<th>Recommended Model/Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply</td>
<td>0.5 V to 2 Vdc, ±1 mV accuracy</td>
<td>Agilent 6114A</td>
</tr>
<tr>
<td>Digital Multimeter (DVM)</td>
<td>Better than 0.1% accuracy</td>
<td>Agilent 34401A</td>
</tr>
<tr>
<td>Cables (2)</td>
<td>BNC</td>
<td>Agilent 10503A</td>
</tr>
<tr>
<td>Adapters (2)</td>
<td>BNC (f) to banana (m)</td>
<td>Agilent 1251-2277</td>
</tr>
<tr>
<td>Adapters (2)</td>
<td>BNC tee (m)(f)(f)</td>
<td>Agilent 1250-0781</td>
</tr>
<tr>
<td>Blocking capacitor</td>
<td>0.18 µF</td>
<td>Agilent 10240B</td>
</tr>
<tr>
<td>Shorting cap</td>
<td>BNC</td>
<td>Agilent 1250-0774</td>
</tr>
</tbody>
</table>

Procedure

1. **Connect the equipment.**
 The cabling is the same as that used for the voltage measurement accuracy test. See figure 3-4.
 a. Use a BNC-to-banana adapter to connect a BNC cable to the power supply.
 b. Connect a BNC tee to the other end of the cable and connect the tee to channel 1 of the oscilloscope.
 c. Connect another BNC cable to the tee at the oscilloscope and connect a BNC tee to the other end of the cable.
 d. Connect the blocking capacitor to the BNC tee and connect the BNC short to the blocking capacitor.
 e. Connect a BNC-to-banana adapter to the same BNC tee and connect the adapter to the DVM input.

2. **Press Default Setup to set the oscilloscope to default conditions.**

3. **Select Acquisition from the Setup menu.**

4. **Select Equivalent Time under Sampling Mode. Enable Averaging, and set the # Points for averaging to 32. Click Close.**
 Setup is the same as that for the voltage measurement accuracy test. See figure 3-5.

5. **Use the following table for steps 6 through 12.**

<table>
<thead>
<tr>
<th>Volts/div</th>
<th>Position</th>
<th>Supply</th>
<th>Tolerance</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 mV</td>
<td>2.000000 V</td>
<td>2.00 V</td>
<td>±36 mV</td>
<td>1.964 V to 2.036 V</td>
</tr>
<tr>
<td>100 mV</td>
<td>1.000000 V</td>
<td>1.00 V</td>
<td>±18 mV</td>
<td>0.982 V to 1.018 V</td>
</tr>
<tr>
<td>50 mV</td>
<td>500.000 mV</td>
<td>500 mV</td>
<td>±9 mV</td>
<td>491 mV to 509 mV</td>
</tr>
</tbody>
</table>

6. **Select Channel 1 from the Setup menu.**

7. **Set the vertical Scale to the Volts/div value from the first row of the table. Set the Offset to the Position value from the first row of the table. Click Close.**
8 Set the supply voltage to 2.00 V as in the first row of the table. Use the DVM to verify the setting.

9 Re-adjust the vertical position, if necessary, so the trace is as close to the horizontal center line of the grid as possible after it has settled (averaging complete).

10 Read the position voltage. It should be equal to the DVM reading, within the limits given in the table. Record the reading in the Performance Test Record. To find the current position setting, select Channel 1 from the Setup menu and read the Offset field. Click Close when finished.

11 Repeat steps 6 through 10 for the other lines in the table.

12 With the channel keys, set the active channel OFF and the next ON.

13 Move the BNC from one channel to the next.

14 Repeat steps 6 through 13 for each channel, setting the parameters of the channel being tested where appropriate.

If the test fails
Offset errors can be caused by the need for self-calibration. Perform self-calibration (see chapter 4, “Calibrating and Adjusting”) before troubleshooting the instrument.
To test bandwidth

This test checks the bandwidth of the oscilloscope. The Agilent 54845A bandwidth at 1.5 GHz and the Agilent 54846A bandwidth at 2.25 GHz oscilloscopes are checked using aliasing since the trigger specification of these oscilloscopes is 1 GHz. The 1.5 GHz or the 2.25 GHz signal is viewed with a time/division setting of approximately 50 µs/div where the on-screen display is an untriggered sinewave that appears to be at a lower frequency, however the vertical response of the amplifiers is correct. The Agilent 54835A bandwidth at 1.0 GHz and 500 MHz of all three models is checked normally.

Specification

Equivalent Time:
- 50Ω: 2.25 GHz (Agilent 54846A), 1.5 GHz (Agilent 54845A), 1.0 GHz (Agilent 54835A)
- 1 MΩ: 500 MHz (with Agilent 1161A probe)

Real Time:
- 50Ω: for Agilent 54846A — 2.25 GHz (2-channel mode), 1.0 GHz (4-channel mode)
- 50Ω: for Agilent 54845A — 1.5 GHz (2-channel mode), 1.0 GHz (4-channel mode)
- 50Ω: for Agilent 54835A — 1.0 GHz (2-channel mode), 500 MHz (4-channel mode)
- 1 MΩ: 500 MHz (with Agilent 1161A probe)

Equipment Required

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Critical Specifications</th>
<th>Recommended Model/Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal Generator</td>
<td>10—2250 MHz at ~200 mVrms</td>
<td>Agilent 8664A</td>
</tr>
<tr>
<td>Power Meter/Sensor</td>
<td>1—1.5 GHz ±3% accuracy</td>
<td>Agilent EPM-441A/8482A</td>
</tr>
<tr>
<td>Power Splitter</td>
<td>outputs differ by <0.15 dB</td>
<td>Agilent 11667A</td>
</tr>
<tr>
<td>Cable</td>
<td>Type N (m) 24 inch</td>
<td>Agilent 11500B</td>
</tr>
<tr>
<td>Termination</td>
<td>50Ω, BNC Connectors</td>
<td>Agilent 10100C</td>
</tr>
<tr>
<td>Adapter</td>
<td>Type N (m) to BNC (m)</td>
<td>Agilent 1250-0082</td>
</tr>
<tr>
<td>Probe</td>
<td>No Substitute</td>
<td>Agilent 1161A</td>
</tr>
<tr>
<td>Probe Tip Adapter</td>
<td>1160 Series to BNC</td>
<td>Agilent 5063-2143</td>
</tr>
</tbody>
</table>

Equivalent Time Test

1. Connect the equipment.
 - a. With the N cable, connect the signal generator to the power splitter input. Connect the power sensor to one output of the power splitter.
 - b. With an N-to-BNC adapter, connect the other splitter output to the channel 1 input.

2. Press Default Setup to set the oscilloscope to default conditions.

4. Set the vertical scale for Channel 1 to 100 mV/div using the knob. Select 50Ω input impedance.

5. Set the sweep speed to 50 ns/div using the horizontal sweep speed knob.

6. Set the signal generator for 10 MHz at +5.0 dBm.

The signal on the oscilloscope screen should be about five cycles at six divisions amplitude.

Bandwidth Check Limits

Do not exceed 6 divisions when making the bandwidth check.
7 Select \(V_{\text{amptd}} \) from the Voltage submenu of the Measure menu.

8 Note the \(V_{\text{amptd}} \) reading at the bottom of the screen. \(V_{10\text{MHz}} = _____________mV \).

9 Set the power meter Cal Factor % to the 10 MHz value from the calibration chart on the power sensor. Then press dB[REF] on the power meter to set a 0 dB reference. This establishes the baseline output power at 10 MHz as a reference for the bandwidth measurement.

10 Change the signal generator output frequency to 1000 MHz for Agilent 54835A, 1500 MHz for Agilent 54845A, or 2250 MHz for Agilent 54846A. Set the power meter chart Cal Factor % to the 2250 MHz value, to the 1500 MHz value, or to the 1000 MHz value depending on the model number.

This step compensates the power meter reading for changes in the power sensor output at 1000 MHz, 1500 MHz, or 2250 MHz with respect to 10 MHz.

11 Adjust the signal generator output amplitude for a power reading as close as possible to 0.0 dB[REL]. Write down the actual reading. Reading = _____________ _______dB [REL].

The reading on the power meter will be used to correct the final bandwidth value.

12 Use one of the following steps depending on the Infiniium oscilloscope model being tested and the bandwidth acquisition mode:

 a (Use this step for model 54835A 1000 MHz Equivalent Time bandwidth check.)
 Set the sweep speed to 500 ps/div using the Horizontal sweep speed knob.

 b (Use this step for model 54845A 1500 MHz Equivalent Time bandwidth check.)
 Set the sweep speed to 50 µs/div using the Horizontal sweep speed knob.

 c (Use this step for model 54846A 2250 MHz Equivalent Time bandwidth check.)
 Set the sweep speed to 50 µs/div using the Horizontal sweep speed knob.

 d (Use this step for Real Time bandwidth checks: 1000 MHz on 54835A, 1500 MHz on 54845A, or 2250 MHz on 54836A)
 Set the sweep speed to 500 ps/div using the Horizontal sweep speed knob.

 e (Use this step for 1MΩ, 500 MHz bandwidth check for all three models.)
 Set the sweep speed to 1 ns/div using the Horizontal sweep speed knob.

13 Press the Clear Display key followed by the Run key to display a trace. (If there is no trace on the screen slowly adjust the Trigger Level knob through zero until a trace is displayed.) Note the \(V_{\text{amptd}(1)} \) reading.

 \[
 V_{1500\text{MHz}} = _____________mV (54846A) \\
 V_{1500\text{MHz}} = _____________mV (54845A) \\
 V_{1000\text{MHz}} = _____________mV (54835A)
 \]

14 Calculate the response using the formula:

 \[\text{response (dB)} = 20\log_{10}\frac{V_{1500\text{MHz}}}{V_{10\text{MHz}}} = 20\log_{10}\frac{______________mV}{_____________mV} = _____________dB\]

For example:

\[
20\log_{10}\frac{487\text{ mV}}{559\text{ mV}} = 20\log_{10}0.871 = -1.19\text{dB}
\]

15 Correct the result from step 14 with any difference in the power meter from step 11. Observe signs. For example:

Result from step 14 = -1.19 dB

Power meter reading = -0.5 dB(REL)

then true response = (-1.19)−(-0.5) = -0.69 dB

(____________________) − (___________________) = _____________dB

16 The result from step 15 should be between +3.0 dB and −3.0 dB. Record the result in the Test Record.

17 Turn off the current channel and turn on the next channel using the channel keys.
19 Repeat steps 4 through 18 for the remaining channels, setting the parameters of the channel being tested where appropriate.

Real Time Test

20 Select Acquisition from the Setup menu.

21 Select Real Time sampling mode, 8 GSa/s (Agilent 54845A and 54846A) or 4 GSa/s (Agilent 54835A) configuration, then click Close.

22 Repeat steps 4 through 19, testing channels 1 and 3 to the 2.25 GHz limit (54846A), 1.5 GHz limit (Agilent 54845A), or the 1.0 GHz limit (Agilent 54835A).

23 Select Acquisition from the Setup menu.

24 Select the 4 GSa/s configuration (Agilent 54845A and 54846A) or 2 GSa/s configuration (Agilent 54835A), then click Close.

25 Repeat steps 4 through 19, testing channels 1, 2, 3, and 4 to the 1 GHz limit (Agilent 54845A and 54846A) or the 500 MHz limit (Agilent 54835A).

1 MΩ, 500 MHz Test on 54835A, 54845A, and 54846A

26 Disconnect the power splitter from the channel input.

27 Select Acquisition from the Setup menu.

28 Select Equivalent time Sampling Mode and click Close.

29 Connect the Agilent 1161A 10:1 probe to channel 1. Verify that the probe compensation is correct.

30 Change channel to 100 mV/div using the knob.

31 Connect the probe tip to the power splitter using the probe-tip-to-BNC adapter and 50Ω termination.

32 Repeat steps 5 through 19, testing the 500 MHz limit on channels 1, 2, 3, and 4.

If the test fails

Failure of the bandwidth test can be caused by a faulty attenuator or main assembly. A self calibration may correct a bandwidth failure.
To test time measurement accuracy

This test uses a precise frequency source to check the accuracy of time measurement functions.

Specification Delta-t accuracy

Equivalent Time: \(\pm [(0.007\% \times \text{delta-t}) + (\text{full scale}/(2 \times \text{memory depth})) + 30 \text{ ps}] \)

Real Time: \(\pm [(0.007\% \times \text{delta-t}) + (0.2 \times \text{sample period})] \)

* The specification applies to bandwidth limited signals (\(tr \geq 1.4 \times \text{sample period} \)).

The sample period is defined as 1/(sample rate). The specification also applies to those automatic measurements computing time intervals on identical slope edges (like pos-pos, neg-neg).

Equipment Required

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Critical Specifications</th>
<th>Recommended Model/Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal Generator</td>
<td>1-100 MHz, timebase accuracy - 0.25 ppm</td>
<td>Agilent 8664A</td>
</tr>
<tr>
<td>RF Amplifier</td>
<td>40 MHz to 1 GHz, 20 dB gain</td>
<td>Agilent 8447D</td>
</tr>
<tr>
<td>Cable</td>
<td>Type-N 24 inch</td>
<td>Agilent 11500B</td>
</tr>
<tr>
<td>Cable</td>
<td>BNC</td>
<td>Agilent 10503A</td>
</tr>
<tr>
<td>Adapter</td>
<td>Type N (f) to BNC (m)</td>
<td>Agilent 1250-0077</td>
</tr>
</tbody>
</table>

The Agilent 8447D RF Amplifier is used as a saturation amplifier to create a very low-jitter squarewave from the sinewave output of the signal generator. You adjust the signal generator output level to change the risetime of the squarewave.

Equivalent Time Mode Procedure

This test checks time measurement in equivalent time mode with averaging.

1. Set the Agilent 8664A signal generator for a 40-MHz sine wave (25.0 ns period) at 250 mV_{rms}.
2. Connect the output of the signal generator to the INPUT of the Agilent 8447D RF amplifier.
3. Connect the OUTPUT of the RF amplifier to the channel 1 input of the oscilloscope.
4. Press Default Setup to set the oscilloscope to default conditions.
5. Press Input to select 50 \(\Omega \). Press Coupling to select dc.
6. Press Autoscale.
7. Set the vertical scale to 500 mV per division.
8 Select horizontal from the setup mean. Set the scale to 5 ns/div, position at -5 ns, and reference to the left.

Figure 3-8

Horizontal Setup for Equivalent Time Procedure

9 Adjust the signal generator output voltage to obtain a waveform with a risetime of approximately 700 ps to 1.4 ns.
You can measure the risetime by selecting the Risetime command from the Time submenu of the Measure menu. See figure 3-9.

Figure 3-9

Use the risetime measurement to verify correct waveform shape for the time measurement accuracy check

Waveform for Time Measurement Accuracy Check

10 Select Acquisition from the Setup menu.
Select Equivalent Time sampling mode. Enable Averaging and set the # Points to be averaged to 16. Select Manual Memory Depth. Set the memory depth to 2004 points. Click Close.
See figure 3-10.

Figure 3-10

Acquisition Setup for Equivalent Time Procedure

Select Delta Time from the Time submenu of the Measure menu. Select Channel 1 as the source in the dialog that appears and click Close.
See figure 3-11.

Figure 3-11

Source Selection for Delta Time Measurement

Select Measurement Definitions from the Customize submenu of the Measure menu. (If you have code Revision A.03.00 or higher, select Delta Time from the Measurements Definitions submenu of the Measure menu.)

Set From Edge # to 1 with Direction Rising and Threshold Middle. Set To Edge # to 2 with Direction Rising and Threshold Middle. Click Close.
See figure 3-12.
To test time measurement accuracy

15 Verify the period is 25 ns ± 44 ps, minimum 24.956 ns and maximum 25.044 ns. Record the minimum and maximum readings in the Performance Test Record.

16 Change the signal generator frequency to 100 MHz (10 ns period).

17 Select horizontal from the setup menu. Set the position to –11 ns.

18 Clear measurement statistics.
 Do this by clicking Clear Meas (Clear All) on the measurement toolbar, then selecting Delta time from the Time submenu of the measure menu.

19 The delta time reading should be 10 ns ± 43 ps, minimum 9.957 ns and maximum 10.043 ns. Record the minimum and maximum readings in the Performance Test Record.

20 Change the signal generator frequency to 20 MHz (50 ns period).

21 Select horizontal from the setup menu. Set the scale to 100 ns/div, position to –11 ns.

22 Clear measurement statistics as in step 18 and restart the measurement.

23 The delta time reading should be 50 ns ± 283 ps; minimum 49.72 ns and maximum 50.28 ns. Record the minimum and maximum readings in the Performance Test Record.

24 Change the signal generator frequency to 1 MHz (1 µs period).

25 Select horizontal from the setup menu. Set the scale to 1 µs/div, position to –11 ns.
26 Clear measurement statistics as in step 18 and restart the measurement.
27 The delta time reading should be $1 \mu s \pm 2.595$ ns, minimum 997.4 ns and maximum 1.0026 μs. Record the minimum and maximum readings in the Performance Test Record.
28 Select Measurement Definitions from the Customize submenu of the Measure menu. (If you have code Revision A.03.00 or higher, select Delta Time from the Measurements Definitions submenu of the Measure menu.)
29 Set the To Edge # to 6 with Direction Rising and Threshold Middle. Click Close. See figure 3-13.

Figure 3-13

![New Measurement Settings for Delta Time Measurement](image)

30 Clear measurement statistics as in step 18 and restart the measurement.
31 The delta time readings should be $5 \mu s \pm 2.875$ ns, minimum 4.9971 μs and maximum 5.0029 μs. Record the minimum and maximum readings in the Performance Test Record.
Real-Time Mode Procedure
This procedure continues from the previous one.

1. Change the signal generator frequency to 25.31646 MHz (39.49999 ns period).
2. Select Acquisition from the Setup menu.
3. Select Real Time sampling mode. Set Configuration to 8 GSa/s (Agilent 54845A) or 4 GSa/s (Agilent 54835A). Set Sampling Rate to Manual, 8 GSa/s (Agilent 54845A) or 4 GSa/s (Agilent 54835A). Enable Averaging with the number of points set to 16. Set Memory Depth to Automatic. Click Close. See figure 3-14.

4. Set sweep speed to 50 ns/div with horizontal position at 0.0 s.
5. Select Measurement Definitions from the Customize submenu of the Measure menu. (If you have code Revision A.03.00 or higher, select Delta Time from the Measurements Definitions submenu of the Measure menu.)
6. Set To Edge # to 11 with Direction Rising and Threshold Middle. Click Close. See figure 3-15.

Figure 3-14

Acquisition Setup for Real Mode Procedure (showing Agilent 54845A)

Figure 3-15

Measurement Definitions for Real Mode Procedure
Chapter 3: Testing Performance

To test time measurement accuracy

7 Clear measurements.
8 Select Period from the Time submenu of the Measure menu.
9 Period should be the following:
 For Agilent 54835A: 39.50 ns ± 53 ps, minimum 39.447 ns, maximum 39.553 ns. Record the minimum and maximum readings in the Performance Test Record.
 For Agilent 54845A: 39.50 ns ± 28 ps, minimum 39.47 ns, maximum 39.53 ns. Record the minimum and maximum readings in the Performance Test Record.
10 Select Delta Time from the Time submenu of the Measure menu.
11 Delta time should read the following:
 For Agilent 54835A: 395 ns ± 78 ps, minimum 394.922 ns, maximum 395.078 ns. Record the minimum and maximum readings in the Performance Test Record.
 For Agilent 54845A: 395 ns ± 53 ps, minimum 394.947 ns, maximum 395.053 ns. Record the minimum and maximum readings in the Performance Test Record.
12 Press the Stop key on the front panel.
13 Press the Sweep key (in the Trigger section of the front panel) to highlight the LED labeled “Single.”
14 Press the Clear Display key.
15 Set the timebase to 1 µs/div.
16 Press the Run key once.
17 Select Measurement Definitions from the Customize submenu of the Measure menu.
 (If you have code Revision A.03.00 or higher, select Delta Time from the Measurements Definitions submenu of the Measure menu.)
18 Set the To Edge # to 101 with Direction Rising and Threshold Middle. Click Close.
19 Delta time mean should read the following:
 For Agilent 54835A: 3.949999 µs ± 326 ps, minimum 3.949673 µs, maximum 3.950326 µs. Record the reading in the Performance Test Record.
 For Agilent 54845A: 3.94999 µs ± 301 ps, minimum 3.949688 µs, maximum 3.950291 µs. Record the reading in the Performance Test Record.
20 Select Measurement Definitions from the Customize submenu of the Measure menu.
 (If you have code Revision A.03.00 or higher, select Delta Time from the Measurements Definitions submenu of the Measure menu.)
21 Set the To Edge # to 201. Click Close.
22 The Delta Time mean should read the following:
 For Agilent 54835A: 7.89999 µs ± 603 ps, minimum 7.899395 µs and maximum 7.90060 µs. Record the reading in the Performance Test Record.
 For Agilent 54845A: 7.89999 µs ± 578 ps, minimum 7.89942 µs and maximum 7.90058 µs. Record the reading in the Performance Test Record.
23 Click Close.

If the test fails
Before troubleshooting the oscilloscope, be sure to verify your test setup and the waveform shape, then repeat the procedure. Try the measurement on different channels. If you still encounter problems, there may be a problem with the acquisition board. You may need to adjust the pulse overshoot response. See chapter 4 for adjustment information on the pulse response. See chapter 5 for troubleshooting information.
To test trigger sensitivity

This test checks channel and external triggers for sensitivity at rated bandwidth.

Specification

| Internal: | dc to 500 MHz: 0.5 div |
| 100 MHz to 500 MHz: 1.0 div |
| 500 MHz to 1 GHz: 1.5 div |

| Auxiliary: | dc to 500 MHz: 300 mVpp |

Equipment Required

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Critical Specifications</th>
<th>Recommended Model/Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal Generator</td>
<td>100 and 500 MHz, 1.0 GHz, 30-80 mVrms output</td>
<td>Agilent 8664A</td>
</tr>
<tr>
<td>Power Splitter</td>
<td>outputs differ by <0.15 dB</td>
<td>Agilent 11667A</td>
</tr>
<tr>
<td>Termination</td>
<td>BNC feedthrough, 50 Ω</td>
<td>Agilent 10100C</td>
</tr>
<tr>
<td>Cable</td>
<td>Type N (m) 24 inch</td>
<td>Agilent 11500B</td>
</tr>
<tr>
<td>Cable</td>
<td>50 Ω BNC 36 inch</td>
<td>Agilent 10503A</td>
</tr>
<tr>
<td>Adapter</td>
<td>Type N (f) to BNC (m)</td>
<td>Agilent 1250-0077</td>
</tr>
<tr>
<td>Adapter</td>
<td>Type N (m) to BNC (m)</td>
<td>Agilent 1250-0082</td>
</tr>
<tr>
<td>Adapter</td>
<td>Type N (m) to BNC (f)</td>
<td>Agilent 1250-0780</td>
</tr>
<tr>
<td>Adapter</td>
<td>BNC tee (m)(f)(f)</td>
<td>Agilent 1250-0781</td>
</tr>
</tbody>
</table>

Internal Trigger Test

Perform this test on all vertical channels.

1. Press Default Setup.
2. Select Acquisition from the Setup menu.
3. Select Equivalent time sampling mode. Enable Averaging and set the number of points to 4. Click Close.

See figure 3-16.

Figure 3-16

Acquisition Setup for Trigger Sensitivity Test

4. Set horizontal time/div to 5 ns/div.
To test trigger sensitivity

5 Turn on Channel 1 and turn off all other channels.
 You can do this by using the channel keys above each input BNC or by using the check boxes at
 the top of the waveform display area.

6 Set vertical scale for channel 1 to 200 mV/div. Select dc coupling and 50Ω input
 impedance.

7 With an N cable and N-to-BNC adapter, connect the signal generator to the channel 1
 input.

8 Set the signal frequency to 100 MHz and output level for 0.5 divisions of vertical
deflection.
 You can use the markers to set a 0.5 division reference. Select Markers from the Measure menu
 and select Manual Placement in the dialog that appears. Both Markers should be set to the same
 channel. Set the Y value for Marker A to +50.0 mV and the Y value for Marker B to –50.0 mV,
 then click Close. (If the markers do not appear on the screen, press the Marker A and Marker B
 keys on the front panel.) See figure 3-17.

9 Press the Sweep key (Trigger section of the front panel controls) to select Trig’d.
 The scope’s Armed and Trig’d LEDs (in the Horizontal section of the front panel) should flash.
 However, the waveform display may not be stable.

10 Adjust the trigger level control for a stable display.
11 The test passes if triggering is stable. Record the result in the Performance Test Record.
12 Set the signal frequency to 500 MHz and the output level for 1 division of vertical
deflection.
 Again, you can use the markers to check the deflection, with one set to +100 mV and the other
 to –100 mV.

13 Adjust the horizontal sweep speed to 1 ns/div.
14 Adjust the trigger level for a stable display.
15 The test passes if triggering is stable. Record the result in the Performance Test Record.
16 Set the signal frequency to 1.0 GHz and the output level for 1.5 division of vertical
deflection.
 Again, you can use the markers to check the deflection, with one set to +150 mV and the other
 to –150 mV.
17 Adjust the horizontal sweep speed to 1 ns/div.
18 Adjust the trigger level for a stable display.
19 The test passes if triggering is stable. Record the result in the Performance Test Record.
20 Connect the signal generator to the channel 2 input.
21 Repeat steps 4 through 20 for the remaining channels.

Procedure—Auxiliary Trigger Test

The auxiliary trigger input is on the front panel of the oscilloscope near the vertical inputs. The dc input resistance of the aux trigger is 2.58kΩ, so to avoid reflections, the trigger source is back-terminated with 50 Ω.

1 With an N-to-BNC adapter and BNC cable, connect the signal generator to the input of the power splitter. Connect one output of the power splitter to the Aux Trig input through a 50 Ω feedthrough termination. Connect the other output of the power splitter to channel 1.
2 Set the signal generator for 500 MHz, approximately 0 dBm.
3 Set the channel 1 input to 50-Ω input impedance and press Autoscale.
4 Set the channel 1 scaling to 50 mV/div. Then set the signal generator for 6 divisions of signal (300 mVpp).
5 Press the Source key (Trigger section of front panel) to highlight Aux.
6 Set the trigger level to 0.000 V.
7 Slowly adjust the Trigger Level knob slightly around the 0 V setting to obtain a stable trigger. Otherwise, the test fails. Record the result in the Performance Test Record.

If a test fails

Failure of the internal trigger or external trigger sensitivity tests can be caused by a defective main assembly or attenuator. Failure of the auxiliary trigger sensitivity is caused by a problem on the main assembly or a bad input cable. If you need further troubleshooting information, go to chapter 5, “Troubleshooting.”
Performance Test Record

Agilent Technologies

Model Number _______________________
Serial Number ________________________
Recommended Test Interval - 1 Year/2000 hours
Recommended next testing_________________

Agilent Technologies 54835A/45A/46A Oscilloscope

Tested by___________________
Work Order No.___________________
Date___________________
Ambient temperature ___________________

<table>
<thead>
<tr>
<th>Test</th>
<th>Limits</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>dc Calibrator Amplitude</td>
<td>(Vmax - Vmin)/5 = Limits</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>0.998 to 1.002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Resistance</td>
<td></td>
<td>Channel 1</td>
</tr>
<tr>
<td>50Ω</td>
<td>49.25 Ω to 50.75 Ω</td>
<td></td>
</tr>
<tr>
<td>1 MΩ</td>
<td>990 kΩ to 1.010 MΩ</td>
<td></td>
</tr>
<tr>
<td>Voltage Measurement Accuracy</td>
<td></td>
<td>Channel 1</td>
</tr>
<tr>
<td>2 V/div 1 MΩ</td>
<td>5 V</td>
<td>4.836 V to 5.164 V</td>
</tr>
<tr>
<td>1 V/div 1 MΩ</td>
<td>5 V</td>
<td>4.918 V to 5.082 V</td>
</tr>
<tr>
<td>1 V/div 50Ω</td>
<td>5 V</td>
<td>4.918 V to 5.082 V</td>
</tr>
<tr>
<td>500 mV/div 1 MΩ</td>
<td>3.5 V</td>
<td>3.459 V to 3.541 V</td>
</tr>
<tr>
<td>500 mV/div 50Ω</td>
<td>3.5 V</td>
<td>3.459 V to 3.541 V</td>
</tr>
<tr>
<td>200 mV/div 1 MΩ</td>
<td>1.4 V</td>
<td>1.384 V to 1.416 V</td>
</tr>
<tr>
<td>200 mV/div 50Ω</td>
<td>1.4 V</td>
<td>1.384 V to 1.416 V</td>
</tr>
<tr>
<td>100 mV/div 1 MΩ</td>
<td>700 mV</td>
<td>691.8 mV to 708.2 mV</td>
</tr>
<tr>
<td>100 mV/div 50Ω</td>
<td>700 mV</td>
<td>691.8 mV to 708.2 mV</td>
</tr>
<tr>
<td>50 mV/div 1 MΩ</td>
<td>350 mV</td>
<td>345.9 V to 354.1 mV</td>
</tr>
<tr>
<td>50 mV/div 50Ω</td>
<td>350 mV</td>
<td>345.9 V to 354.1 mV</td>
</tr>
<tr>
<td>20 mV/div 1 MΩ</td>
<td>140 mV</td>
<td>138.36 mV to 141.64 mV</td>
</tr>
<tr>
<td>20 mV/div 50Ω</td>
<td>140 mV</td>
<td>138.36 mV to 141.64 mV</td>
</tr>
<tr>
<td>10 mV/div 1 MΩ</td>
<td>70 mV</td>
<td>69.18 mV to 70.82 mV</td>
</tr>
<tr>
<td>10 mV/div 50Ω</td>
<td>70 mV</td>
<td>69.18 mV to 70.82 mV</td>
</tr>
<tr>
<td>Offset Accuracy</td>
<td></td>
<td>Channel 1</td>
</tr>
<tr>
<td>Range Offset Limits</td>
<td></td>
<td>Channel 1</td>
</tr>
<tr>
<td>200 mV/div 2.0 V</td>
<td>1.964 to 2.036 V</td>
<td></td>
</tr>
<tr>
<td>100 mV/div 1.0 V</td>
<td>0.982 to 1.018 V</td>
<td></td>
</tr>
<tr>
<td>50 mV/div 500 mV</td>
<td>491 to 509 mV</td>
<td></td>
</tr>
<tr>
<td>Test</td>
<td>Limits</td>
<td>Down from reference:</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Bandwidth (50Ω Input)</td>
<td>Equivalent Time</td>
<td>Agilent 54835A <3.0 dB at 1000 MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Agilent 54845A <3.0 dB at 1500 MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Agilent 54846A <3.0 dB at 2250 MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Realtime</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 channel (4 GSa/s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 channel (8 GSa/s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 channel (8 GSa/s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 channel (2 GSa/s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 channel (4 GSa/s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 channel (4 GSa/s)</td>
</tr>
<tr>
<td>Bandwidth (1 MΩ Input)</td>
<td>Equivalent Time</td>
<td>Agilent 54835A <3.0 dB at 500 MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>With 1161A Probe</td>
</tr>
<tr>
<td>Time measurement accuracy—equivalent time mode</td>
<td>ΔTime Limits</td>
<td>Minimum</td>
</tr>
<tr>
<td></td>
<td>25 ns</td>
<td>24.946 to 25.044 ns</td>
</tr>
<tr>
<td></td>
<td>10 ns</td>
<td>9.957 to 10.043 ns</td>
</tr>
<tr>
<td></td>
<td>50 ns</td>
<td>49.72 to 50.28 ns</td>
</tr>
<tr>
<td></td>
<td>1 μs</td>
<td>997.4 to 1.0026 μs</td>
</tr>
<tr>
<td></td>
<td>5 μs</td>
<td>4.9971 to 5.0029 μs</td>
</tr>
<tr>
<td>Time measurement accuracy—real time mode</td>
<td>Period Limits</td>
<td>Minimum</td>
</tr>
<tr>
<td></td>
<td>Agilent 54835A: 39.50 ns ± 53 ps</td>
<td>39.447 to 39.553 ns</td>
</tr>
<tr>
<td></td>
<td>Agilent 54845A/46A: 39.50 ns ± 28 ps</td>
<td>39.47 to 39.53 ns</td>
</tr>
<tr>
<td></td>
<td>ΔTime (edge#11) Limits</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Agilent 54835A: 395 ns ± 78 ps</td>
<td>394.922 to 395.078 ns</td>
</tr>
<tr>
<td></td>
<td>Agilent 54845A/46A: 395 ns ± 53 ps</td>
<td>394.947 to 395.053 ns</td>
</tr>
<tr>
<td></td>
<td>ΔTime (edge#101) Limits</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Agilent 54835A: 3.949999 μs ± 326 ps</td>
<td>3.949673 to 3.950326 μs</td>
</tr>
<tr>
<td></td>
<td>Agilent 54845A: 3.949999 μs ± 301 ps</td>
<td>3.949688 to 3.950291 μs</td>
</tr>
<tr>
<td></td>
<td>Agilent 54846A: 3.949999 μs ± 301 ps</td>
<td>3.949688 to 3.950291 μs</td>
</tr>
<tr>
<td></td>
<td>ΔTime (edge#201) Limits</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Agilent 54835A: 7.899999 μs ± 603 ps</td>
<td>7.899395 to 7.90060 μs</td>
</tr>
<tr>
<td></td>
<td>Agilent 54845A: 7.899999 μs ± 578 ps</td>
<td>7.89942 to 7.90058 μs</td>
</tr>
<tr>
<td></td>
<td>Agilent 54846A: 7.899999 μs ± 578 ps</td>
<td>7.89942 to 7.90058 μs</td>
</tr>
<tr>
<td>Trigger Sensitivity</td>
<td>Mode Stable Trigger On: Pass/Fail</td>
<td>Channel 1</td>
</tr>
<tr>
<td>Internal Trigger</td>
<td>0.5 div at 100 MHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.0 div at 500 MHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.5 div at 1.0 GHz</td>
<td></td>
</tr>
<tr>
<td>Auxiliary Trigger</td>
<td>300 mVpp at 500 MHz</td>
<td></td>
</tr>
</tbody>
</table>
Calibrating and Adjusting

Equipment Required 4-2
Self Calibration Interval and Hardware Adjustments 4-2
Mainframe Cal Factor Memory Error 4-2
Operating Hints 4-3
Loading Default Oscilloscope Settings 4-3
Loading New Software 4-3
Calibration Procedures 4-3
 To check the power supply 4-4
 To check the 715 Hz auxiliary output (probe compensation squarewave) 4-6
 To check the flat panel display (FPD) 4-7
 To run the self calibration 4-10
Calibrating and Adjusting

This chapter provides firmware (self calibration) and hardware adjustment procedures for the Agilent Technologies 54835A/45A/46A oscilloscope.

- Power Supply Check
- Oscillator Check
- Flat-Panel Display Check
- self calibration

Equipment Required
Equipment required for adjustments is listed in the Recommended Test Equipment table in chapter 1 of this manual. Any equipment that satisfies the critical specification listed in the table may be substituted for the recommended model. Equipment for individual procedures is listed at the procedure.

Self Calibration Interval and Hardware Adjustments
The firmware calibration is the self cal (self calibration). Self calibration should be done every year, or every 2,000 hours of operation, whichever comes first. The hardware adjustment consists of checking the power supply, 715 Hz calibration output (probe compensation squarewave), and flat-panel display. These adjustments only need to be done under circumstances set by certain needs, which are explained in other areas of this guide.

The self calibration uses signals generated in the oscilloscope to calibrate channel sensitivity, offsets, and trigger parameters. You should run the self calibration

- yearly, or according to your periodic needs,
- when you adjust or replace the acquisition assembly or acquisition hybrids,
- when you replace the hard drive or any other assembly,
- when the delta temperature is more than ±5 °C different than the last calibration, or
- after performing incoming performance verification and before performing outgoing performance verification.

The need for self calibration will also depend on your experience and on the environment in which you use the oscilloscope.

Mainframe Cal Factor Memory Error
If power is applied to the oscilloscope and the message “Mainframe cal factor memory error: Please perform calibration” is displayed, you must calibrate the oscilloscope. See “To run the self calibration” in this chapter.

If the oscilloscope does not pass the self calibration, repair is necessary.
Operating Hints

Some knowledge of operating the Agilent Technologies 54835A/45A/46A oscilloscope is helpful. However, procedures are written so that little experience is necessary. The following hints will speed progress of the procedures.

When using many averages, it often takes awhile for a waveform display to stabilize after a change. When a front panel control on the oscilloscope is changed, averaging automatically restarts. When the input signal or an adjustment is changed, the oscilloscope averages new data with the old, so it takes longer for the waveform to stabilize to the new value. Press the Clear Display key while changing input signals or adjustments. Clearing the display restarts averaging, which gives a quicker indication of the result of the change.

Loading Default Oscilloscope Settings

To reset the oscilloscope to default conditions, press the Default Setup key.

Loading New Software

This oscilloscope stores its operating system code on a hard disk drive. New code is loaded into the oscilloscope by using the floppy disk drive. It is rarely necessary to reload the code. You should load the code only if prompted by a troubleshooting procedure, or if you want to load a later version of code.

To load new code, enable the graphical interface, then select Upgrade Software from the Utilities menu. You can then follow the instructions on the screen, inserting diskettes as necessary.

Calibration Procedures

The procedures start with the next paragraphs. Unless specified elsewhere, procedures must be followed in the order given. Display checks are optional and independent of other procedures.

WARNING

SHOCK HAZARD!

Read the Safety information at the back of this guide before performing adjustment procedures. Failure to observe safety precautions may result in electrical shock.

WARNING

INJURY CAN RESULT!

Install the fan safety shield (included in the Service Kit) if you remove the oscilloscope cover. Without this shield, the oscilloscope fan blades are exposed and can cause injury.

Let the Oscilloscope Warm Up Before Adjusting

Warm up the oscilloscope for 30 minutes before starting adjustment procedures. Failure to allow warm-up may result in inaccurate calibration.
To check the power supply

There are no adjustments for the supply. Perform this procedure only if you suspect a power supply problem.

Equipment Required

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Critical Specifications</th>
<th>Recommended Model/Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Voltmeter</td>
<td>Accuracy ±0.05%</td>
<td>Agilent 34401A</td>
</tr>
</tbody>
</table>

Procedure

1. Disconnect the oscilloscope power cord and remove the cover.
 If necessary, refer to the procedures in chapter 6, “Replacing Assemblies.”

 WARNING
 INJURY CAN RESULT!
 Use care when working around the oscilloscope with the cover off and power applied. The fan blades are exposed and could cause injury; also, there is approximately 900 V generated by the backlight inverter for the flat-panel display.

2. Connect the oscilloscope power cord and set power switch to ON.
3. Refer to the following figure for testpoint locations.

![Figure 4-1](image)

Power Supply Test Points
4 Connect the common lead of the voltmeter to the GND test point.
5 Connect the positive lead of the voltmeter to the +5.1 V test point.
6 Verify that the +5.1 supply voltage is within limits as shown in the following table:

<table>
<thead>
<tr>
<th>Supply Voltage Specification</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>+5.1 V ± 0.1 V</td>
<td>+5.0 V to +5.2 V</td>
</tr>
<tr>
<td>-5.2 V ± 0.1 V</td>
<td>-5.1 V to -5.3 V</td>
</tr>
<tr>
<td>+12.2 V ± 0.3 V</td>
<td>+11.9 V to +12.5 V</td>
</tr>
<tr>
<td>-12.2 V ± 0.3 V</td>
<td>-11.9 V to -12.5 V</td>
</tr>
<tr>
<td>+15 V bias</td>
<td>+14 V to +16 V</td>
</tr>
</tbody>
</table>

7 Repeat steps 4 through 6 for each of the other supply voltages.
 If any supply voltage is not within specifications, see chapter 5, “Troubleshooting.”
To check the 715 Hz auxiliary output (probe compensation squarewave)

This test is optional. The 715 Hz auxiliary output is not specified in the oscilloscope performance specifications. The values given are typical. Results are not recorded in the Performance Test Record.

Equipment Required
You can check the 715 Hz auxiliary output using the scope itself.

Procedure
1 Press Default Setup.
2 Use a BNC cable to connect the front panel Aux Out to the Channel 1 input.
3 Set Coupling to DC and Input to 50Ω for Channel 1.
4 Press Autoscale.
5 Select Vamptd from the Voltage submenu of the Measure menu.
6 Select Frequency from the Time submenu of the Measure menu.
7 The signal should be a squarewave at approximately 715 Hz with amplitude of approximately 300 mV_{pp}.
To check the flat panel display (FPD)

No equipment is required for this procedure. Specifications for flat-panel displays used in the Infiniium oscilloscope are shown in the following table.

<table>
<thead>
<tr>
<th>Flat-Panel Display Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defect Type</td>
</tr>
<tr>
<td>Polarizer</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Dot Defect</td>
</tr>
<tr>
<td>(A dot is defined as 1, 2, or 3 stuck subpixels touching horizontally. Subpixels are horizontal red, green, blue triads, so these may show up as one of 8 colors or black.)</td>
</tr>
<tr>
<td>Dot Defect</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Non-uniformity</td>
</tr>
<tr>
<td>Line Defect</td>
</tr>
<tr>
<td>Luminance</td>
</tr>
<tr>
<td>(The measurement is perpendicular to the screen surface in both axes.)</td>
</tr>
</tbody>
</table>

When to Use this Procedure

This procedure should not be performed as a part of routine maintenance. Perform the procedure only when there appears to be a problem with the display.

1. Enable the graphical interface.
2. Select Self Test from the Utilities menu.
3. Click the Service Extensions box in the Self Test dialog.
4. Select Screen from the Test drop-down list box.

See figure 4-2.
Chapter 4: Calibrating and Adjusting
To check the flat panel display (FPD)

Figure 4-2

Click to start the test
Select Screen to do the flat-panel display test

Starting the Screen Test

5 Click Start.
A new dialog appears with a series of radio buttons that allow selection of different background colors. See figure 4-3.
Select a color by clicking the radio button for that color.

7 Carefully check the colored region for pixels colored differently than the current selection.
 These pixels are either inactive or stuck. If black (when a color or white is selected), they are
 inactive; if another color than the current selection, but not black, then they are stuck. If the
display does not meet the specification given on the previous page, replace it. See chapter 6 for
removal and replacement procedures.

8 Repeat steps 6 and 7 for all colors.
To run the self calibration

The self calibration uses signals generated in the oscilloscope to calibrate channel sensitivity, offsets, and trigger parameters. You should run the self calibration

• yearly, or according to your periodic needs,
• when you adjust or replace the acquisition assembly or acquisition hybrids,
• when you replace the hard drive or any other assembly,
• when the delta temperature is more than ±5 °C different than the last calibration, or
• after performing incoming performance verification and before performing outgoing performance verification.

Equipment Required

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Critical Specifications</th>
<th>Recommended Model/Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable</td>
<td>BNC 50 Ω 9 inch</td>
<td>Agilent 10502A</td>
</tr>
</tbody>
</table>

Let the Oscilloscope Warm Up Before Running the Self Calibration

The self calibration should only be done after the oscilloscope has run for one half hour at ambient temperature with the cover installed. Calibration of an oscilloscope that has not warmed up may result in performance test failure.

Calibration time

It will take approximately 45 minutes to run the self calibration on the oscilloscope, including the time required to change cables from channel to channel.

1. Enable the graphical interface.
2. Select Calibration from the Utilities menu.
3. If the Cal Memory Protect box in the Calibration dialog is checked, click the check box to clear the check mark.

See figure 4-4.
Chapter 4: Calibrating and Adjusting

To run the self calibration

4–11

Figure 4-4

Click Start, then follow the instructions on the screen.

You will be asked first to disconnect all channels and the Aux Output, then to connect Aux Out to each channel and the auxiliary trigger in turn. After you complete each cable change, click OK in the dialog box to continue the calibration.

The oscilloscope displays a Passed/Failed message as each calibration routine is completed.

5 After calibration has been completed, click to check the Cal Memory Protect box to protect the calibration memory. Then click Close.

If calibration fails
Go to chapter 5 “Troubleshooting.”
Safety 5-2
Tools Required 5-2
ESD Precautions 5-2
Keystroke Conventions 5-2
Default Setup 5-3
To install the fan safety shield 5-3
To troubleshoot the instrument 5-4
Primary Trouble Isolation 5-6
No Display Trouble Isolation 5-9
Power Supply Trouble Isolation 5-13
To check probe power outputs 5-16
To check the keyboard 5-17
 Test Procedure 5-17
 Troubleshooting Procedure 5-18
To check the LEDs 5-19
To check the motherboard, CPU, and RAM 5-21
To check the SVGA display board video signals 5-22
To check the backlight inverter voltages 5-23
POST Code Listing (AMI Motherboard only) 5-24
To configure the motherboard jumpers and set up the BIOS 5-29
 Motherboard / floppy drive configurations BIOS setup 5-29
 Configuring the AMI Series 727 Motherboard Jumpers 5-32
 To configure the AMI Series 727 WINBIOS Parameters 5-34
 Configuring the AMI Series 757 Motherboard for 200 MHz CPU 5-37
 To configure the AMI Series 757 WINBIOS Parameters with 1.44 Mbyte floppy drive 5-39
 Configuring the AMI Series 757 Motherboard for 300 MHz CPU 5-42
 To configure the AMI Series 757 WINBIOS Parameters with 120 Mbyte floppy drive 5-44
 Configuring the FIC VA-503A motherboard switches for the 400 MHz CPU and 120 Mbyte floppy drive 5-47
 To Configure the FIC Series VA-503A Motherboard BIOS Parameters 5-48
To troubleshoot the acquisition system 5-49
 Determining the Acquisition Contact Closure Count 5-49
 Isolating Acquisition Problems 5-49
To troubleshoot attenuator failures 5-56
 Attenuator Click Test 5-56
 Swapping Attenuators 5-57
 Attenuator Connectivity Test 5-57
Software Revisions 5-59

Troubleshooting
Troubleshooting

This section provides troubleshooting information for the Agilent Technologies 54835A/45A/46A oscilloscope. The service strategy of this instrument is replacement of defective assemblies.

Safety
Read the Safety Summary at the front of this manual before servicing the instrument. Before performing any procedure, review it for cautions and warnings.

WARNING

SHOCK HAZARD!
Maintenance should be performed by trained service personnel aware of the hazards involved (for example, fire and electric shock). Lack of training and awareness of the hazards could result in electrical shock. When maintenance can be performed without power applied, the power cord should be removed from the instrument.

WARNING

INJURY CAN RESULT!
Use caution when working around the cooling fan with the cover removed from the instrument. The cooling fan blades are exposed on one side and can be hazardous. Install the optional fan safety shield (Agilent Technologies P/N 54801-00601) to protect your fingers from the fan blades.

Tools Required
You will need basic electronic troubleshooting tools, including a digital multimeter and a 100-MHz oscilloscope. Performance verification tests have more stringent requirements. See chapter 1 for the list of recommended test equipment.

If you need to remove and replace assemblies, you will need some of the hand tools listed in chapter 6, “Replacing Assemblies.”

ESD Precautions
When using any of the procedures in this chapter, you should use proper ESD precautions. As a minimum, you should place the instrument on a properly grounded ESD mat and wear a properly grounded ESD wrist strap.

Keystroke Conventions
To guide you while setting up the oscilloscope, the following conventions are used to represent keystrokes and other interactions with the instrument:

- When you need to issue a command through the graphical interface, the command will be phrased like this: “Select <command> from the <menu name> menu.”
- When you need to click on an object on the graphical interface, the instructions will be phrased something like this: “Click the OK button.”
- When you need to press a key, the instructions will be phrased something like this: “Press the Run key.”
Default Setup

A Default Setup is provided to assure the instrument setup is in a known default state. The default setup prevents previous setups from interfering with the next test. It also simplifies the instrument setup procedure. Use the default setup when a procedure requires it.

- Press the Default Setup key to set the instrument to the default state.

To install the fan safety shield

1. Disconnect the instrument power cord and remove the cover.
 If necessary, refer to the procedures in chapter 6 "Replacing Assemblies".
2. Clip the fan safety shield over the outside of the instrument chassis next to the fans. See figure 5-1.
To troubleshoot the instrument

The troubleshooting procedure is used to isolate problems to a faulty assembly. When you find the faulty assembly, use the disassembly and assembly procedures in chapter 6 to replace the assembly.

The primary procedural tool in this section is the flowchart. The flowchart contains the entire troubleshooting path from a failed instrument to a working one, and will direct you in an orderly manner through the possible failure symptoms. Reference letters on the flowcharts point to procedural steps that explain the brief instructions in the chart. Do not try to troubleshoot by following only the reference text because the text is not in the correct order for troubleshooting. Instead, simply follow the flowchart.

If you are unfamiliar with this instrument, start with the Primary Trouble Isolation Flowchart on the next page.
Chapter 5: Troubleshooting

To troubleshoot the instrument

Primary Trouble Isolation Flowchart

Primary Trouble Isolation

A

Perform Power-Up

B

Check Display

Display on Screen?

Yes

C

Run Scope Self Tests

Scope Self-Tests Pass?

Yes

D

Check Front Panel Response

Front Panel Response OK?

Yes

E

Run Knob, Key, and LED Tests

Knob, Key, and LED tests pass?

Yes

F

System Works; Run Self-Calibration; Do Performance Tests

End

No

No

No

No

Go to No Display Troubleshooting

Go to Acquisition Troubleshooting

Go to Keyboard Troubleshooting
Primary Trouble Isolation

The actions in the Primary Trouble Isolation are done without disassembling the instrument. Interaction of the front panel with the rest of the instrument and other indicators are used to help identify the problem area.

A letter is assigned to boxes in the flowchart. The letter corresponds to a specific section in the reference text. Be sure to use the flowchart itself for your troubleshooting path.

A Perform power-up.

1 Power-on the instrument.

A short time after the instrument is turned on, the scope graticule is displayed on the screen. The screen should look similar to the next figure. The exact appearance may vary depending on the setup selected before the instrument was turned off.

Figure 5-2

![Power-on Display Default](image)

Power-on Display Default (Graphical Interface Disabled)

2 Press the Default Setup key.

B Check the display.

The display on the screen should be similar to the figure above. If there is no display on the oscilloscope flat-panel display after power-up, go to the No Display Trouble Isolation Flowchart for further troubleshooting.
C Run oscilloscope self-tests.
 1 Enable the graphical interface.
 2 Select Self Test from the Utilities menu.
 3 Select Scope Self Tests from the Self Test drop down list box.
 4 Click the Start Test button and follow the instructions on the screen.
 If any of the selftests fail, go to the Acquisition Trouble Isolation troubleshooting flowchart later in this chapter for further troubleshooting. Otherwise, go to step D.

D Check the front panel.
 Randomly press the front panel keys and rotate the knobs to verify that they work correctly. If any fail to work, run the Knob and Key selftest and the LED selftest in step E.

E Run the Knob and Key selftest and the LED selftest.
 1 Enable the graphical interface.
 2 Select Self Test from the Utilities menu.
 3 Select the Knob and Key selftest from the Self Test drop down list box.
 4 Click the Start test button and follow the instructions on the screen.
 If any of the knobs or keys do not work, go to “To check the keyboard” later in this chapter.
 5 Select the LED selftest from the Self Test drop down list box.
 6 Click the Start test button and follow the instructions on the screen.
 If any of the LEDS do not work, go to “To check the LEDs” later in this chapter.

F The system is operational. Performance test the oscilloscope using the procedures in chapter 3 of this service manual.
Chapter 5: Troubleshooting
Primary Trouble Isolation

No Display Trouble Isolation Flowchart

A
Remove cabinet and install fan guard

B
Check fan connections and power-on

Fans running? Power LED Lit?

No → Go to Power Supply Trouble Isolation

Yes

C
Connect external monitor, cycle power, and check power up sequence

Power-up displayed on ext. monitor?

No → Use visual & audible powerup sequence chart, troubleshoot & repair.

Yes

D
Check video to flat-panel display

Video to flat-panel display OK?

No → Replace SVGA Card

Yes

Check backlight, etc.
No Display Trouble Isolation

This trouble isolation procedure helps isolate a problem to the assembly level when there is no display on the flat-panel liquid crystal display screen.

A Remove the cabinet and install the fan safety shield.
1 Disconnect the power cord from the oscilloscope. Refer to chapter 6, “Replacing Assemblies,” for instructions on removing the cabinet. Use care in handling the instrument.
2 Install the optional fan safety shield, Agilent Technologies P/N 54801-00601, over the fans on the left side of the instrument.

WARNING
SHOCK HAZARD!
The backlight inverter assembly, which is mounted at the front corner of the instrument near the flat-panel display, operates at 900 V at turn on. **DO NOT** handle this assembly while it is in operation.

WARNING
INJURY CAN RESULT!
Once the cover is removed, the fan blades are exposed both inside and outside the chassis. Disconnect the power cable before working around the fan. Use extreme caution in working with the instrument when the cover is removed. Install the fan safety shield (Agilent Technologies P/N 54801-00601) on the side of the chassis over the fan. Failure to observe these precautions may result in injury.

3 Connect the power cord and press the power switch on the front panel.

B Check the fan connections.
Verify that the fan mounted in the left side of the instrument and the CPU fan (on the motherboard) are connected.
1 The instrument fans connect to the side of the Acquisition assembly at J3 and J5.
2 The CPU fan connects to the top side of the motherboard at J46 (Fan Power).
3 Connect the power cord and press the power switch on the front panel. Verify that both fans are running and that the front panel power switch LED is illuminated. These are indications that the power supply is functioning. If the fans and LED are off, go to the Power Supply Trouble Isolation flowchart.

C Connect an external monitor, cycle power, and observe the instrument power-on sequence.
See table 5-1 to check the visual and audible power-on sequence, and repair as needed, referring to other procedures as directed.
Table 5-1

Power-On Sequence with External Monitor Connected

<table>
<thead>
<tr>
<th>Time</th>
<th>Audible Indicators</th>
<th>Visible Indicators</th>
<th>Description</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Power-on</td>
<td></td>
<td>Power-on the instrument and listen for the fans and the hard disk drive. The hard disk is located behind the floppy drive against the chassis side wall.</td>
<td>You will need to use a DMM to verify that the supply voltages are within specifications. If the power supplies do not come up, go to the “Power Supply Trouble Isolation” flowchart.</td>
</tr>
<tr>
<td>2</td>
<td>Fans begin running</td>
<td>Power switch LED illuminates</td>
<td>The main instrument fan and the CPU fan start running at power on. The LED located behind the front panel power switch is connected to the +5 V supply, making it a good power supply indicator.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>HDD (hard disk drive)</td>
<td>Front panel LEDs come up in power-on pattern</td>
<td>The front panel LEDs display their power-up pattern. The following trigger LEDs should all come on at the same time: Edge, Glitch, Advanced, Positive and Negative slope, DC, AC, LF Reject, and HF Reject. This pattern indicates that the front panel keyboard has completed its power-on test.</td>
<td>If the LEDs do not come on, check the cabling to the front panel board and check for +5 V on pin 2 of the 10-pin conductor keyboard cable W16. Also check for +5 V on the scope interface card A6. If the +5 V is at the scope interface card but the front panel LEDs do not come on, the problem is the cable or the front panel keyboard A7.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The hard disk drive (HDD) starts spinning at power on. Listen at the top right rear of the instrument for a higher-pitched whine; this is the HDD coming up to speed. Shortly after the disk comes up to speed, you should hear a brief burst of clicks*; this sound is part of the disk’s power-up self-check routine.</td>
<td>If the HDD is not responding, check the cabling. If the disk is turning, but you do not hear the brief burst of clicks after the disk comes up to speed, the circuitry onboard the disk drive may be at fault. If the motherboard (including CPU and RAM) are functioning but the HDD is not responding, the external VGA monitor will usually show the message “16000 KB OK, WAIT...” followed by the message “Pri Master HDD Error, RUN SETUP, Press F1 to Resume. See “To configure the motherboard jumpers and set up the BIOS” on page 5-29. for information on how to access and run the setup program. If, after running setup, there is still a problem, check the cabling for the hard disk drive, both between the motherboard and SVGA display board, and between the SVGA display board and the HDD. If the cabling is OK, see the section on verifying motherboard operation; otherwise, replace the HDD.</td>
</tr>
</tbody>
</table>

* Later model hard disk drives are much quieter than earlier models. The clicking can only be heard with the instrument sleeve removed and in close proximity to the hard disk drive.
<table>
<thead>
<tr>
<th>Time</th>
<th>Audible Indicators</th>
<th>Visible Indicators</th>
<th>Description</th>
<th>Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>HDD clicking*</td>
<td>PC Power-On Self Test (POST) memory test message on external monitor.</td>
<td>The HDD begins clicking* as it is accessed by the system. The external SVGA monitor shows the POST messages. These messages show the memory test.</td>
<td>If there is no display on the external monitor, either the motherboard A4 (including CPU or RAM), the SVGA display board, cabling, or external VGA monitor are suspect. Check the cabling and VGA monitor first. Next, use a POST (Power-On Self Test) card to help isolate the no-display problem. Install the POST card in an ISA slot and apply power to the instrument. The POST card displays the respective codes as the power-on self tests are completed. See the “POST Code Listing” in this chapter for codes and descriptions. Replace the motherboard, CPU, or RAM as indicated from the POST code listing.</td>
</tr>
<tr>
<td>5</td>
<td>HDD clicking*</td>
<td>System board configuration appears on external monitor and internal display.</td>
<td>The HDD continues clicking* as the instrument loads the oscilloscope application. The flat panel LCD backlight comes on and the display shows the system board configuration. This is an indication that the motherboard and SVGA display board are functioning correctly.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>HDD clicking*</td>
<td>The Infinium display appears on the internal and external displays.</td>
<td>The HDD continues clicking.*</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Attenuators click as solenoids are preset to known states</td>
<td>Front panel LEDs change to a normal operating pattern. Both screens go blank momentarily.</td>
<td>The attenuators click. This is louder than the HDD clicking and comes from the front of the instrument. The front panel LEDs change to a normal operating pattern. For example, the Trigger LEDs show only one trigger mode, such as Edge, and one trigger coupling, such as dc.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Attenuators click to their operating states (second interval, indicates scope running)</td>
<td>Oscilloscope display comes up on both the external monitor and the scope’s front panel display.</td>
<td>The attenuators click a second time. The oscilloscope display backlight comes on, and the display appears on both the external monitor and the scope’s front panel display. The oscilloscope is running.</td>
<td>If the attenuators click a second time but the display does not come up, try the front panel keys to see whether they respond. If so, there is a display problem. If the external monitor shows the screen but the oscilloscope does not, the problem may be with cabling, the backlight inverter board A3 not supplying +900 V and +12 V, the flat-panel display A2, or the SVGA display board A5. See the sections “To check the backlight inverter voltages” and “To check the SVGA display board video signals.”</td>
</tr>
</tbody>
</table>

* Later model hard disk drives are much quieter than earlier models. The clicking can only be heard with the instrument sleeve removed and in close proximity to the hard disk drive.
Chapter 5: Troubleshooting

No Display Trouble Isolation

Power Supply Trouble Isolation Flowchart

A. Check Power Supply Voltages
 B. Voltages OK?
 Yes
 Display onscreen?
 Yes
 Power supply and display OK, return to primary trouble isolation chart
 No
 Power supply OK, return to no-display trouble isolation chart
 No
 Check for display onscreen
 Yes
 Resistance OK?
 Yes
 Override the Remote Inhibit Signal
 No
 Replace shorted assembly
 No
 Check power supply resistances
 Yes
 Replace Power Supply
 No
 C. Power supply OK, return to no-display trouble isolation chart

E. Check Bias and Remote Inhibit Cabling

5–12
Power Supply Trouble Isolation

These trouble isolation instructions help isolate the problem to the assembly level when the power supply is not operating. Because of advanced power supply protection features, the problem may not be with the supply itself, and therefore you will need to work through the procedure systematically to determine the source of the fault.

A Check the power supply voltages.

You check the power supply voltages on the acquisition board, A13. See figure 5-3 for the location of these test points. Table 5-2 shows the allowable range of power supply voltages.

![Figure 5-3](image)

Table 5-2

<table>
<thead>
<tr>
<th>Supply Voltage Specification</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>+5.1 V ± 0.1 V</td>
<td>+5.0 V to +5.2 V</td>
</tr>
<tr>
<td>-5.2 V ± 0.1 V</td>
<td>-5.1 V to -5.3 V</td>
</tr>
<tr>
<td>+12.2 V ± 0.3 V</td>
<td>+11.9 V to +12.5 V</td>
</tr>
<tr>
<td>-12.2 V ± 0.3 V</td>
<td>-11.9 V to -12.5 V</td>
</tr>
</tbody>
</table>

B Turn off the power and measure the power supply resistances to ground to check for shorted supply lines.

You can probe the test points on A13, shown in figure 5-3, for this resistance check. Table 5-3 shows the characteristic resistance values for the Agilent Technologies 54835A/45A oscilloscope.

Table 5-3

<table>
<thead>
<tr>
<th>Supply</th>
<th>Approximate Resistance to Ground</th>
</tr>
</thead>
<tbody>
<tr>
<td>+12 V</td>
<td>300 Ω</td>
</tr>
<tr>
<td>-12 V</td>
<td>180 Ω</td>
</tr>
<tr>
<td>-5.2 V</td>
<td>10 Ω</td>
</tr>
<tr>
<td>+5.1 V</td>
<td>50 Ω</td>
</tr>
</tbody>
</table>
C Replace any shorted assembly.
You can locate the shorted assembly by disconnecting assemblies from the power supply, one at a time. Use the power supply distribution chart in table 5-4 as a guide to locating the shorted assembly.

<table>
<thead>
<tr>
<th>Assembly</th>
<th>+5.1 V</th>
<th>-5.2 V</th>
<th>Ground</th>
<th>+12.2 V</th>
<th>-12.2 V</th>
<th>3.3 V (generated on Motherboard)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acquisition</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Motherboard</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Probe Power & Control</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front-Panel Keyboard</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scope Interface Board</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Display Board</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Backlight Inverter</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flat Panel Display</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Floppy Disk Drive</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hard Disk Drive</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D Override the Remote Inhibit signal.
Power up the unit by connecting a resistor between pin 3 and pin 11 of power supply control cable W2. Use a resistor in the range of 196-220Ω, 1/8 W, such as Agilent Technologies P/N 0698-3440 or 0757-0407. See figure 5-4.
E Check +15 V Bias and Remote Inhibit cabling.
If the oscilloscope will not power up, check all cabling to troubleshoot and correct the problem. Figure 5-4 shows the routing of the +15 V Bias and Remote Inhibit signals from the front panel to the power supply. The power supply is on only when the remote inhibit signal is between +1 V and +5 V. A problem could be caused by a faulty cable or bad connector anywhere in this path. Check all the cables and connections and replace any at fault.

Figure 5-5

Routing of +15 V Bias and Remote Inhibit Signals

F Replace the power supply.
1 If the +15 V bias is correct, but the instrument will not power up with a 196-220Ω resistor, replace the power supply. Chapter 6 explains how to remove and replace the power supply.
2 Re-assemble the instrument and apply power.

G Check for the oscilloscope display onscreen.
1 You should see the oscilloscope display (see figure 5-2). If not, see the No Display Trouble Isolation Flowchart.
2 If you see the display, return to the Primary Trouble Isolation Flowchart.
To check probe power outputs

Probe power outputs are on the front panel, surrounding each BNC input.

Use the table and figure to the right to check the power output at the connectors.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+3V</td>
</tr>
<tr>
<td>2</td>
<td>–3V</td>
</tr>
<tr>
<td>3</td>
<td>Offset</td>
</tr>
<tr>
<td>4</td>
<td>Data</td>
</tr>
<tr>
<td>5 & ring</td>
<td>Probe ID</td>
</tr>
<tr>
<td>6</td>
<td>Clk</td>
</tr>
<tr>
<td>7</td>
<td>R_p</td>
</tr>
<tr>
<td>8</td>
<td>–12 V</td>
</tr>
<tr>
<td>9</td>
<td>+12 V</td>
</tr>
</tbody>
</table>

The +12 V and –12 V supplies come directly from the power supply, and the +3 V and –3 V supplies are developed in three-terminal regulators on the probe power & control assembly.

Measure the voltages with respect to the ground terminal on the front panel, located near the Aux Out BNC.

Do not attempt to measure voltages at pins 3 through 7.

Any failure may be a problem with the probe power and control assembly, the AutoProbe flex cable W13, or the probe power and control cable W12.
To check the keyboard

Test Procedure
Use this procedure to verify correct keyboard operation.

1. Enable the graphical interface.
2. Select Self Test from the Utilities menu.
3. Select Knob and Key from the Self Test drop down list box, then click Start.

 A new window appears with a symbolic representation of the keyboard. See figure 5-6.

Figure 5-6

![Knob and Key Self Test Screen](image)

When you push a key or turn a knob in both directions, the corresponding symbol on this screen turns green.

4. Push each key on the keyboard until you have pushed all keys.
 When you push a key, the corresponding key symbol on the display should change from red to green.

5. Turn each knob in both directions until you have turned all knobs.
 When you turn a knob in one direction, the corresponding knob symbol on the display should change from red to yellow. When you then turn the knob in the other direction, the knob symbol should change from yellow to green.

6. When you are finished, click Close.
 If any knob failed, you should replace the keyboard assembly. If you encounter any key failures, record the location of those failures, then go to the troubleshooting procedure that follows.
Troubleshooting Procedure

Use this procedure only if you encounter key failures in the keyboard test procedure. If any knobs fail, replace the keyboard assembly.

1. Disconnect the power cord and remove the cover.
2. Remove the front panel assembly.
 See chapter 6 for instructions.
3. Remove the keyboard assembly and the cursor keyboard assembly from the front panel assembly. Partially reassemble the front panel assembly, including the flat-panel display and lens, but omitting the keyboard and cursor keyboard. Re-attach the partial assembly to the chassis.
 Be sure to reconnect the display video cable and the backlight inverter cables. See chapter 6 for instructions on removing and disassembling the front panel.
4. Separate the elastomeric keypads from the cursor keyboard and keyboard assemblies.

CAUTION

CONTAMINATION CAN CAUSE INTERMITTENT OPERATION!

Be careful not to contaminate the key side of the PC board or the keypads. Dust and fingerprints on these parts may cause intermittent key operation.

5. Set the cursor keyboard and keyboard assembly on an antistatic electrical insulated surface.
6. Connect the cursor keyboard cable to the keyboard assembly. Connect the keyboard cable to the scope interface board in the chassis.
 You may need to set the chassis on its side to allow proper routing of the cables without straining them.
7. Reconnect the power cable and apply power.
8. Enable the graphical interface, then start the keyboard test as described in the previous procedure.
9. Carefully short the PC board trace, with a paper clip or screwdriver, at each nonoperating key (as determined by keyboard test), and look for an appropriate response on the display.
 • If the display responds as though a key were pressed, replace the elastomeric keypad.
 • If the display does not respond as though a key were pressed, replace the keyboard.
10. Re-assemble the instrument.
To check the LEDs

Use the following procedure to test the front-panel LED (light-emitting diode) indicators.

1. Enable the graphical interface.
2. Select Self Test from the Utilities menu.
3. Select LED from the Self Test drop-down list box, then click Start Test.

The LED test screen appears, which shows a symbolic representation of all front panel LED indicators. See figure 5-7.

Figure 5-7

LED Test Screen

4. Push the Marker A left and right arrow keys to highlight each LED symbol in the test screen. Verify that the corresponding LEDs on the front panel are the only ones illuminated.

Test by Rows

You can use the Marker B arrow keys to test LEDs by row; however, in the event that two LED indicators are shorted together, there is a small chance that the test will not reveal the failure.
5 When you are finished, click Close.
If you see a failure with the Auto or Trig'd LEDs, check the voltage at pin 6 of W16, with W16 disconnected from the keyboard. The voltage should be as follows:
• 0 V ±0.5 V when both LEDs are supposed to be off.
• 2.5 V ±0.5 V when Trig'd is supposed to be on and Auto is supposed to be off.
• 5.0 V ±0.5 V when both LEDs are supposed to be on.
If the voltages are not correct, the problem may be with keyboard cable W16, scope interface board A6, acquisition cable W11, or acquisition board W13. Try troubleshooting the acquisition system first to verify correct behavior before replacing any assemblies. If the voltages are correct but the LEDs do not light correctly, replace the keyboard assembly.

If you find a problem with the Armed LED, check pin 5 of W16 with the cable disconnected from the keyboard. The voltage should be as follows:
• 5.0 V ±0.5 V when Armed is supposed to be on.
• < 3.6 V ±0.5 V when Armed is supposed to be on.
Isolation is the same as for the Trig’d and Auto LEDs.
If you find any other failures, replace the keyboard assembly. If the front panel power indicator LED does not light, replace the cursor keyboard assembly.
To check the motherboard, CPU, and RAM

This procedure verifies that the PC system board and the associated CPU and RAM are functioning. It assumes that the power supply, SVGA display board, and an external VGA monitor are functioning correctly.

1. Connect an external keyboard to the keyboard port.
2. Connect an external VGA monitor to the VGA output connector on the rear panel.
3. Hold down the Insert key on the external keyboard, then apply power to the oscilloscope.
4. Verify that a message, such as the following, appears on the external monitor:

 AMI Atlas-III PCI/ISA
 AMD-K6(tm)-/200
 Checking NVRAM
 16000 KB OK

 WAIT...
 <INS> Pressed
 RUN SETUP
 Press F1 to Resume

 Messages Vary Slightly
 These messages may vary slightly depending on the motherboard version.

If the above message is displayed, you can assume that the PC system board, CPU, and RAM are functioning correctly.

If the message is not displayed or there is no display, remove the GPIB interface board and LAN interface board and try the test again. Procedures to remove the interface boards are given in chapter 6, “Replacing Assemblies.”

If you need to run setup, press F1. Otherwise, turn off power and proceed with troubleshooting. See “To configure the motherboard jumpers and set up the BIOS” for information.
To check the SVGA display board video signals

The video signals are checked on the 40-pin connector J103 on the SVGA display board A5. Use a 100-MHz, general-purpose oscilloscope, such as the Agilent Technologies 54600B, to verify the signals. Even-numbered pins are on the top side of the connector. The video signals are present during the system boot process before the backlights come on. If the signals are not present, suspect the display card. If the signals are present and the backlights are on, suspect the flat-panel display as the problem.

Table 5-5

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>+3.3 V</td>
</tr>
<tr>
<td>3, 5-6</td>
<td>NC</td>
</tr>
<tr>
<td>4, 7-9, 11, 15, 19, 23, 27, 31, 35, 38, 40</td>
<td>Ground</td>
</tr>
<tr>
<td>12-14, 16-18</td>
<td>Blue video</td>
</tr>
<tr>
<td>20-22, 24-26</td>
<td>Green video</td>
</tr>
<tr>
<td>28-30, 32-34</td>
<td>Red video</td>
</tr>
<tr>
<td>10</td>
<td>Panel enable</td>
</tr>
<tr>
<td>36</td>
<td>Panel HSync</td>
</tr>
<tr>
<td>37</td>
<td>Panel VSync</td>
</tr>
<tr>
<td>39</td>
<td>Panel Clk</td>
</tr>
</tbody>
</table>

Figure 5-8

The oscilloscope display shows the video signals for blue, green, and panel HSync.
To check the backlight inverter voltages

The backlight inverter board A3 is located in the front-left corner of the oscilloscope (as you face the front panel).

- There is one input connector on the side of the board.
- There are two output connectors, one at each end of the board (top and bottom), which power the two backlights inserted into the flat panel display.

The output voltage is approximately \(300-450\,\text{V}_{\text{rms}}\), 40 kHz (measured differentially between the two wires) when the backlight is illuminated. The voltage is approximately 1 kV before the backlight tube is illuminated.

The outputs are controlled by the input. Notice that input pin 5 goes low to enable the output voltage. These pins can be reached at J1 on the SVGA display board A5.

<table>
<thead>
<tr>
<th>Table 5-6</th>
<th>Backlight Inverter Board Input Voltages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Pin #</td>
<td>7</td>
</tr>
<tr>
<td>Backlight OFF</td>
<td>0 V</td>
</tr>
<tr>
<td>Backlight ON</td>
<td>0 V</td>
</tr>
</tbody>
</table>
POST Code Listing (AMI Motherboard only)

Use the following listing to troubleshoot the motherboard. You will need a POST (Power-On Self Test) card installed in an ISA slot to use this listing.

POST Code Listing

<table>
<thead>
<tr>
<th>Checkpoint</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D0h</td>
<td>The NMI is disabled. Power on delay is starting. Next, the initialization code checksum will be verified.</td>
</tr>
<tr>
<td>D1h</td>
<td>Initializing the DMA controller.</td>
</tr>
<tr>
<td>D3h</td>
<td>Starting memory sizing next.</td>
</tr>
<tr>
<td>D4h</td>
<td>Returning to real mode. Executing any OEM patches and setting the stack next.</td>
</tr>
<tr>
<td>D5h</td>
<td>Passing control to the uncompressed code in shadow RAM at E000:0000h. The initialization code is copied to segment 0 and control will be transferred to segment 0.</td>
</tr>
<tr>
<td>D6h</td>
<td>Control is in segment 0. Next, checking if Home was pressed and verifying the BIOS checksum. If either Home was pressed or the system BIOS checksum is bad, next will go to checkpoint code E0h. Otherwise, going to checkpoint code D7h.</td>
</tr>
</tbody>
</table>

Bootblock Recovery Codes

The bootblock recovery checkpoint codes are listed in order of execution:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0h</td>
<td>The onboard floppy controller, if available, is initialized. Next, beginning the base 512 KB memory test.</td>
</tr>
<tr>
<td>E1h</td>
<td>Initializing the interrupt vector table next.</td>
</tr>
<tr>
<td>E2h</td>
<td>Initializing the DMA and Interrupt controllers next.</td>
</tr>
<tr>
<td>E6h</td>
<td>Enabling the floppy drive controller and Timer IRQs. Enabling internal cache memory.</td>
</tr>
<tr>
<td>EDh</td>
<td>Initializing the floppy drive.</td>
</tr>
<tr>
<td>E6h</td>
<td>Looking for a floppy diskette in drive A:. Reading the first sector of the diskette.</td>
</tr>
<tr>
<td>EFh</td>
<td>A read error occurred while reading the floppy disk in drive A:.</td>
</tr>
<tr>
<td>E9h</td>
<td>Next, searching for the AMIBOOT.ROM file in the root directory.</td>
</tr>
<tr>
<td>F1h</td>
<td>The AMIBOOT.ROM file is not in the root directory.</td>
</tr>
<tr>
<td>F2h</td>
<td>Next, reading and analyzing the floppy diskette FAT to find the clusters occupied by the AMIBOOT.ROM file.</td>
</tr>
<tr>
<td>F3h</td>
<td>Next, reading the AMIBOOT.ROM file, cluster by cluster.</td>
</tr>
<tr>
<td>F4h</td>
<td>The AMIBOOT.ROM file is not the correct size.</td>
</tr>
<tr>
<td>F5h</td>
<td>Next, disabling internal cache memory.</td>
</tr>
<tr>
<td>FBh</td>
<td>Next, detecting the type of flash ROM.</td>
</tr>
<tr>
<td>FCh</td>
<td>Next, erasing the flash ROM.</td>
</tr>
<tr>
<td>F6h</td>
<td>Next, programming the flash ROM.</td>
</tr>
<tr>
<td>FFh</td>
<td>Flash ROM programming was successful. Next, restarting the system BIOS.</td>
</tr>
</tbody>
</table>
Uncompressed Initialization Codes

The following runtime checkpoint codes are listed in order of execution. These codes are uncompressed in F0000h shadow RAM.

<table>
<thead>
<tr>
<th>Checkpoint Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03h</td>
<td>The NMI is disabled. Next, checking for a soft reset or a power on condition.</td>
</tr>
<tr>
<td>05h</td>
<td>The BIOS stack has been built. Next, disabling cache memory.</td>
</tr>
<tr>
<td>06h</td>
<td>Uncompressing the POST code next.</td>
</tr>
<tr>
<td>07h</td>
<td>Next, initializing the CPU and the CPU data area.</td>
</tr>
<tr>
<td>08h</td>
<td>The CMOS checksum calculation is done next.</td>
</tr>
<tr>
<td>0Ah</td>
<td>The CMOS checksum calculation is done. Initializing the CMOS status register for date and time next.</td>
</tr>
<tr>
<td>0Bh</td>
<td>The CMOS status register is initialized. Next, performing any required initialization before the keyboard BAT command is issued.</td>
</tr>
<tr>
<td>0Ch</td>
<td>The keyboard controller input buffer is free. Next, issuing the BAT command to the keyboard controller.</td>
</tr>
<tr>
<td>0Eh</td>
<td>The keyboard controller BAT command result has been verified. Next, performing any necessary initialization after the keyboard controller BAT command test.</td>
</tr>
<tr>
<td>0Fh</td>
<td>The initialization after the keyboard controller BAT command test is done. The keyboard command byte is written next.</td>
</tr>
<tr>
<td>10h</td>
<td>The keyboard controller command byte is written. Next, issuing the Pin 23 and 24 blocking and unblocking command.</td>
</tr>
<tr>
<td>11h</td>
<td>Next, checking if keys were pressed during power on. Initializing CMOS RAM if the Initialize CMOS RAM in every boot AMIBIOS POST option was set in AMIBCP or the key was pressed.</td>
</tr>
<tr>
<td>12h</td>
<td>Next, disabling DMA controllers 1 and 2 and interrupt controllers 1 and 2.</td>
</tr>
<tr>
<td>13h</td>
<td>The video display has been disabled. Port B has been initialized. Next, initializing the chipset.</td>
</tr>
<tr>
<td>14h</td>
<td>The 8254 timer set will begin next.</td>
</tr>
<tr>
<td>19h</td>
<td>The 8254 timer test is over. Starting the memory refresh test next.</td>
</tr>
<tr>
<td>1Ah</td>
<td>The memory refresh line is toggling. Checking the 15 second on/off time next.</td>
</tr>
<tr>
<td>23h</td>
<td>Reading the 8042 input port and disabling the MEGAKEY Green PC feature next. Making the BIOS code segment writable and performing any necessary configuration before initializing the interrupt vectors.</td>
</tr>
<tr>
<td>24h</td>
<td>The configuration required before interrupt vector initialization has completed. Interrupt vector initialization is about to begin.</td>
</tr>
<tr>
<td>25h</td>
<td>Interrupt vector initialization is done. Clearing the password if the POST DIAG switch is on.</td>
</tr>
<tr>
<td>27h</td>
<td>Any initialization before setting video mode will be done next.</td>
</tr>
<tr>
<td>28h</td>
<td>Initialization before setting the video mode is complete. Configuring the monochrome mode and color settings next.</td>
</tr>
<tr>
<td>2Ah</td>
<td>Bus initialization system, static, output devices will be done next, if present.</td>
</tr>
<tr>
<td>2Bh</td>
<td>Passing control to the video ROM to perform any required configuration before the video ROM test.</td>
</tr>
<tr>
<td>2Ch</td>
<td>All necessary processing before passing control to the video ROM is done. Looking for the video ROM next and passing control to it.</td>
</tr>
<tr>
<td>2Dh</td>
<td>The video ROM has returned control to BIOS POST. Performing any required processing after the video ROM had control.</td>
</tr>
</tbody>
</table>
Chapter 5: Troubleshooting
POST Code Listing (AMI Motherboard only)

2Eh Completed post-video ROM test processing. If the EGA/VGA controller is not found, performing
 the display memory read/write test next.

2Fh The EGA/VGA controller was not found. The display memory read/write test is about to begin.

30h The display memory read/write test passed. Look for retrace checking next.

31h The display memory read/write test or retrace checking failed. Performing the alternate display
 memory read/write next.

32h The alternate display memory read/write test passed. Looking for alternate display retrace
 checking next.

34h Video display checking is over. Setting the display mode next.

37h The display mode is set. Displaying the power on message next.

38h Initializing the bus input, IPL, general devices next, if present.

39h Displaying bus initialization error messages.

3Ah The new cursor position has been read and saved. Displaying the Hit message next.

3Bh The Hit message is displayed. The protected mode memory test is about to start.

40h Preparing the descriptor tables next.

42h The descriptor tables are prepared. Entering protected mode for the memory test next.

43h Entered protected mode. Enabling interrupts for diagnostics mode next.

44h Interrupts enabled if the diagnostics switch is on. Initializing data to check memory wraparound
 at 0:0 next.

45h Data initialized. Checking for memory wraparound at 0:0 and finding the total system memory size
 next.

46h The memory wraparound test is done. Memory size calculation has been done. Writing patterns
 to test memory next.

47h The memory pattern has been written to extended memory. Writing patterns to the base 640 KB
 memory test.

48h Patterns written in base memory. Determining the amount of memory below 1 MB next.

49h The amount of memory below 1 MB has been found and verified. Determining the amount of
 memory above 1 MB next.

4Bh The amount of memory above 1 MB has been found and verified. Checking for a soft reset and
 clearing the memory below 1 MB for the soft reset next.

4Ch The memory below 1 MB has been cleared via a soft reset. Clearing the memory above 1 MB next.

4Dh The memory above 1 MB has been cleared via a soft reset. Saving the memory size next. Going to
 checkpoint 52h next.

4Eh The memory test started, but not as the result of a soft reset. Displaying the first 64 KB memory
 size next.

4Fh The memory size display has started. The display is updated during the memory test. Performing
 the sequential and random memory test next.

50h The memory below 1 MB has been tested and initialized. Adjusting the displayed memory size for
 relocation and shadowing next.

51h The memory size display was adjusted for relocation and shadowing. Testing the memory above
 1 MB next.

52h The memory above 1 MB has been tested and initialized. Saving the memory size information next.

53h The memory size information and the CPU registers are saved. Entering real mode next.

54h Shutdown was successful. The CPU is in real mode. Disabling the Gate A20 line, parity, and NMI.
57h The A20 address line, parity, and the NMI are disabled. Adjusting the memory size depending on relocation and shadowing next.

58h The memory size was adjusting for relocation and shadowing. Clearing the Hit message next.

59h The Hit message is cleared. The AIT... message is displayed. Starting the DMA and interrupt controller test next.

60h The DMA page register test passed. Performing the DMA Controller 1 base register test next.

62h The DMA controller 1 base register test passed. Performing the DMA controller 2 base register test next.

65h The DMA controller 2 base register test passed. Programming DMA controllers 1 and 2 next.

66h Completed programming DMA controllers 1 and 2. Initializing the 8259 interrupt controller next.

67h Completed 8259 interrupt controller initialization.

7Fh Extended NMI source enabling is in progress.

80h The keyboard test has started. Clearing the output buffer and checking for stuck keys. Issuing the keyboard reset command next.

81h A keyboard reset error or stuck key was found. Issuing the keyboard controller interface test command next.

82h The keyboard controller interface test completed. Writing the command byte and initializing the circular buffer next.

83h The command byte was written and global data initialization has completed. Checking for a locked key next.

84h Locked key checking is over. Checking for a memory size mismatch with CMOS RAM data next.

85h The memory size check is done. Displaying a soft error and checking for a password or bypassing WINBIOS Setup next.

86h The password was checked. Performing any required programming before WINBIOS Setup next.

87h The programming before WINBIOS Setup has completed. Uncompressing the WINBIOS Setup code and executing the AMIBIOS Setup or WINBIOS Setup utility next.

88h Returned from WINBIOS Setup and cleared the screen. Performing any necessary programming after WINBIOS Setup next.

89h The programming after WINBIOS Setup has completed. Displaying the power on screen message next.

8Bh The first screen message has been displayed. The AIT... message is displayed. Performing the PS/2 mouse check and extended BIOS data area allocation check next.

8Ch Programming the WINBIOS Setup options next.

8Dh The WINBIOS Setup options are programmed. Resetting the hard disk controller next.

8Fh The hard disk controller has been reset. Configuring the floppy drive controller next.

95h Initializing the bus option ROMs from C800 next.

96h Initializing before passing control to the adapter ROM at C800.

97h Initialization before the C800 adapter ROM gains control has completed. The adapter ROM check is next.

98h The adapter ROM had control and has now returned control to BIOS POST. Performing any required processing after the option ROM returned control.

99h Any initialization required after the option ROM test has completed. Configuring the timer data area and printer base address next.

9Ah Set the timer and printer base addresses. Setting the RS-232 base address next.
9Bh Returned after setting the RS-232 base address. Performing any required initialization before the Coprocessor test next.

9Ch Required initialization before the Coprocessor test is over. Initializing the Coprocessor next.

9Dh Coprocessor initialized. Performing any required initialization after the Coprocessor test next.

9Eh Initialization after the Coprocessor test is complete. Checking the extended keyboard, keyboard ID, and Num Lock key next. Issuing the keyboard ID command next.

A2h Displaying any soft errors next.

A3h The soft error display has completed. Setting the keyboard typematic rate next.

A4h The keyboard typematic rate is set. Programming the memory wait states next.

A5h Memory wait state programming is over. Clearing the screen and enabling parity and the NMI next.

A7h NMI and parity enabled. Performing any initialization required before passing control to the adapter ROM at E000 next.

A8h Initialization before passing control to the adapter ROM at E000h completed. Passing control to the adapter ROM at E000h next.

A9h Returned from adapter ROM at E000h control. Performing any initialization required after the E000h option ROM had control next.

AAh Initialization after E000h option ROM control has completed. Displaying the system configuration next.

ABh Uncompressing the DMI data and executing DMI POST initialization next.

B0h The system configuration is displayed.

B1h Copying any code to specific areas.

00h Code copying to specific areas is done. Passing control to INT 19h boot loader next.
To configure the motherboard jumpers and set up the BIOS

If the BIOS settings become corrupted, the Infiniium oscilloscope PC motherboard will not recognize the hard drive and the unit will not boot. To determine the correct BIOS setup procedure for your configuration, determine the following information:

- BIOS release number
- RAM size shown on screen at power-up
- The type of floppy drive installed in your oscilloscope

The 1.44 MB floppy drive has the release button above the disk opening. The 120 MB floppy has the release button below the disk opening. From this information, determine the correct WINBIOS setup procedure in order to enter the correct BIOS settings.

When the motherboard is replaced, set the motherboard jumpers to support the CPU clock speed and CPU power. Refer to one of the following topics that applies to your Infiniium later in this chapter for the correct jumper configuration procedure.

- Configuring the AMI Series 727 Motherboard
- Configuring the AMI Series 757 Motherboard for 200 CPU
- Configuring the AMI Series 757 Motherboard for 300 CPU
- Configuring the AMI Series 757 Motherboard for 300 CPU and 120 MByte Floppy Drive
- Configuring the FIC VA-503A Motherboard

Motherboard / floppy drive configurations BIOS setup

Configuration 1—Series 727 motherboard, 100 MHz CPU, and 1.44 Mbyte floppy drive

Infiniium oscilloscopes with serial numbers US37349999 and below came equipped with the AMI Series 727 motherboard and AMD K5-P133 (100 MHz) processors. This motherboard lists the message "BIOS Release 727XXXXXX" when the BIOS setup is entered. See "To configure the AMI Series 727 WINBIOS Parameters" for the BIOS setup procedure. See "Configuring the AMI Series 727 Motherboard Jumpers" for motherboard jumper configuration to match the processor.

Configuration 2—Series 757 motherboard, 200 MHz CPU, and 1.44 Mbyte floppy drive

Serial prefix range US3805 through US3838 with rear-panel label VIN # 020 The second configuration Infiniiums were equipped with AMI series 757 motherboards, AMD K6/200 (200 MHz) processors, and a 1.44 Mbyte floppy drive. The K6 processor is a dual-voltage processor with 2.9 V core and 3.3 V I/O. This dual-voltage processor requires that a 2.9 V voltage regulator module (VRM) is installed in the motherboard's VRM socket and that the J14 jumpers are set accordingly.

This motherboard lists the message "BIOS Release 757XXXXXX" and 16XXXKB or 65XXXKB of RAM when the BIOS setup is entered. See "To configure the AMI Series 757 WINBIOS Parameters with 1.44 Mbyte floppy drive" for the appropriate BIOS setup procedure. See "Configuring the AMI Series 757 Motherboard with 200 MHz CPU" for the motherboard jumper configuration to match the K6-200 processor.

1. If the PC motherboard was replaced with a newer type, please use the newer BIOS setup procedure that applies to that PC motherboard configuration.
Chapter 5: Troubleshooting

To configure the motherboard jumpers and set up the BIOS

Configuration 3—Series 757 motherboard, 300 MHz CPU, and 1.44 Mbyte floppy drive serial prefix range US3845 through US3909 with rear-panel label VIN # 025

Infiniium oscilloscopes of configuration 3 were equipped with AMI Series 757 motherboards and the AMD K6/300 or K6-2/300 (300 MHz) processors. These K6 processors are dual-voltage processors with a 2.2 V core and 3.3 V I/O. These dual-voltage processors require a 2.2 V voltage regulator module (VRM) in the motherboard’s VRM socket and that the J14 jumpers are set accordingly.

This motherboard lists the message "BIOS Release 757XXXXXX" and 64XXXKB of RAM when the BIOS setup is entered. See "To configure the AMI Series 757 WINBIOS Parameters with 1.44 Mbyte floppy drive" for the appropriate BIOS setup procedure. See "Configuring the AMI Series 757 Motherboard for 300 MHz CPU" for motherboard jumper configuration details to match the K6/300 or K6-2/300 processor.

Configuration 4—Series 757 motherboard, 300 MHz CPU, and 120 Mbyte floppy drive serial prefix range US3919 through US3935 with rear-panel label VIN # 025

Infiniium oscilloscopes of this configuration were equipped with AMI Series 757 motherboards and the AMD K6/300 or K6-2/300 (300 MHz) processors. These K6 processors are dual voltage processors with a 2.2 V core and 3.3 V I/O. These dual voltage processors require a 2.2 V voltage regulator module (VRM) in the motherboard’s VRM socket and that the J14 jumpers are set accordingly.

This motherboard lists the message "BIOS Release 757XXXXXX" and 64XXXKB of RAM when the BIOS setup is entered. See "To configure the AMI Series 757 WINBIOS Parameters with 120 Mbyte floppy drive" for the appropriate BIOS setup procedure. See "Configuring the AMI Series 757 Motherboard for 300 MHz CPU" for jumper configuration details to match the K6/300 or K6-2/300 processor.

The respective motherboard jumper information and BIOS setups procedures are presented in the following pages.

Configuration 5—FIC Series VA-503A, 400 MHz CPU, and 120 Mbyte floppy drive serial prefix range US3949 and above with rear-panel label VIN # 03X

Infiniium oscilloscopes of this configuration are equipped with the FIC Series VA-503A motherboard and the AMD K6T-2/400 processor. These processors are dual-voltage processors with a 2.2 V core and 3.3 V I/O. The motherboard’s voltage select switch S1 must be configured for the correct processor core voltage.

This motherboard configuration lists the following message or similar at turn-on:

Award Modular BIOS v.4.51PG - An Energy Star Friend
Copyright © 1984-99 Award Software
Version JN4202
AMD K6T-2/400 CPU Found
Memory Test: 65536K OK

See “To Configure the FIC Series VA-503A Motherboard BIOS Parameters” for the appropriate BIOS setup procedure.

(This configuration / vintage incorporates mechanical changes to the instrument chassis and cabling to match the change in form factor of this motherboard. See the Replaceable Parts chapter for new part numbers.)

2. Option 8ZE, remanufactured unit, may be older an configuration than the serial prefix number indicates. In this case, refer to the rear-panel VIN # label, floppy drive, and BIOS screen to determine motherboard configuration.
Agilent Technologies Service Note Describes Upgrade Details

For improved performance and hard disk drive reliability refer to Agilent Technologies Service Note 54810A-06. This service note gives detailed information for upgrading to 64 MB RAM, upgrading to revision 2.51 or newer code, and enabling power management in the BIOS. This combination of upgrades and power management settings enable the instrument to load the application into memory at powerup and allows the hard drive to power down. This provides a quick response from the oscilloscope controls during use while maximizing hard drive life.
Configuring the AMI Series 727 Motherboard Jumpers

There are several jumpers on the motherboard that must be configured to the correct settings for the AMD-K5-PR133 (100 MHz) microprocessor. Figure 5-9 shows the series 727 motherboard.

Figure 5-9

Pin 1 is identified by a square pin □ and by a pointed box on the silkscreen.

Series 727 Motherboard Jumpers
The jumpers you must check are J2, J11, J12, J21, J24, J25, J37, and J39. In addition, you need to ensure that the CPU fan is connected to J46 once the CPU is installed. Failure to connect the fan will cause the CPU to overheat and malfunction.

CAUTION

AVOID DAMAGE TO THE CPU BY CORRECTLY CONFIGURING THE JUMPERS!

You must configure J2, J11, J12, and J21 before installing the CPU and applying power to the motherboard. Failure to configure these jumpers correctly may damage the CPU.

- To configure the jumpers, set J2, J11, J12, and J21 as shown in the following figure. Note that all pairs of pins on J12 and J21 are shorted; all pins on J2 are open.

- The processor must be configured for a 100 MHz clock speed by setting jumpers J24, J25, J37, and J39 as shown in the following figure. Note that the pins on J25 are shorted and the pins on J24, J37, and J39 are open.

A 100-MHz Clock Is Required
The AMD-K5-PR133 processor requires a 100 MHz clock. The processor part number is printed on the top of the part.

- To connect the fan, connect the fan cable to J46. The colored fan lead must connect to Pin 1.
To configure the AMI Series 727 WINBIOS Parameters

Use this procedure to set the motherboard system setup parameters, also known as the WINBIOS setup.

1. Connect the power cable to the oscilloscope.
2. Connect an external VGA monitor to the rear panel connector of the oscilloscope.
3. Connect an external keyboard and a mouse to the oscilloscope.
4. Hold down the Insert key on the external keyboard, then power-on the oscilloscope. Continue to hold down the Insert key until information begins to appear on the external VGA monitor.
 a. You should hear a burst of clicks from the internal hard disk drive as it executes its internal self tests.
 b. After approximately 10 seconds, the text on the external VGA monitor should read as follows:

 BIOS Release 727XXXXXX
 NVRAM Ignored
 16000 KB OK
 WAIT...
 <INS> Pressed
 RUN SETUP
 Press F1 to Resume

 These messages may vary slightly depending on the motherboard version.

If you see the word "ERROR" in the last few lines, or the oscilloscope does not appear to be functioning, check the motherboard jumper settings and the ribbon cable connectors. Proceed to the Primary Trouble Isolation flowchart. Otherwise, continue with the next step.

5. Press F1 to run the WINBIOS setup.

 During the setup program, you can control the cursor with the mouse. If the mouse does not appear to work, press the Esc key on the external keyboard to exit the setup program. Turn off the oscilloscope, and ensure that the mouse is properly connected to the rear panel connector. You may also need to remove the cover and ensure that the mouse connector is correctly connected to the motherboard by the PS/2 Mouse Cable W22.
You can use the keyboard in the WINBIOS setup to perform various functions. Refer to this table:

WINBIOS Keyboard Commands

<table>
<thead>
<tr>
<th>Keystroke</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td><Tab></td>
<td>Change or select a global field.</td>
</tr>
<tr>
<td>←, ↑, →, ↓</td>
<td>Change or select the current field.</td>
</tr>
<tr>
<td><Enter></td>
<td>Perform an operation in the current field.</td>
</tr>
<tr>
<td>+</td>
<td>Increment a value.</td>
</tr>
<tr>
<td>-</td>
<td>Decrement a value.</td>
</tr>
<tr>
<td><Esc></td>
<td>Abort any window function.</td>
</tr>
<tr>
<td><PgUp></td>
<td>Return to the previous page.</td>
</tr>
<tr>
<td><PgDn></td>
<td>Advance to the next page.</td>
</tr>
<tr>
<td><Home></td>
<td>Returns to the beginning of the text.</td>
</tr>
<tr>
<td><End></td>
<td>Advance to the end of the text.</td>
</tr>
<tr>
<td><Ctrl><Alt><-></td>
<td>Change to high speed.</td>
</tr>
<tr>
<td><Ctrl><Alt><-></td>
<td>Change to low speed.</td>
</tr>
</tbody>
</table>

6 Do the following within the setup program:
 a. Double-click on Optimal Defaults. Click Yes in response to “Load Optimal Values?”
 b. Double-click on Peripheral Setup, then select OnBoard Primary/Secondary IDE. Select Primary, then exit Peripheral Setup by clicking on the box in the upper left corner.
 c. Double-click on Detect IDE Utility. The line labeled “Pri. Master” should contain numeric information indicating that it has found a hard drive. Exit this utility.
 If a hard drive was not found, check Motherboard Hard Drive Cable W9 and SVGA to Hard Drive Cable W10. If the drive is still not found, replace the hard disk drive.
 d. Double-click on Standard Setup, then select Date/Time. Use the mouse to set the current month, day, year, and time. When you are finished, exit the Date/Time block.
 e. Under Standard Setup, select Floppy A. Select 1.44 MB 3-1/2. Exit the Floppy A block, then exit Standard Setup.
 f. Select Advanced Setup, then select System Keyboard. Select Absent (not installed).
 g. Under Advanced Setup, scroll down the list to find and select External Cache. Select Disabled, then exit Advanced Setup.

Do steps h-l ONLY if Your System has 64 Mb RAM

Perform steps h through l only if your instrument has 64 Mb of RAM installed. If your instrument has less than 64 Mb of RAM, skip to step 7.

 h. Double-click on Power Management.
 i. Click Power Management/APM and select Enabled.
 j. Click Hard Disk Power Down Mode and select Suspend.
 k. Click Hard disk Time Out (Minute) and select 15 min.
 l. Exit Power Management Setup.

Table 5-7 summarizes the settings for the system configuration.
Chapter 5: Troubleshooting
To configure the motherboard jumpers and set up the BIOS

Table 5-7
Series 727 System Configuration Settings

<table>
<thead>
<tr>
<th>Configuration Item</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load Optimal Defaults</td>
<td>YES</td>
</tr>
<tr>
<td>Peripheral Setup (OnBoard Primary/Secondary IDE)</td>
<td>Primary</td>
</tr>
<tr>
<td>Detect IDE Utility (Hard drive Primary Master)</td>
<td>Data</td>
</tr>
<tr>
<td>Standard Setup—Date/Time</td>
<td>Enter current values</td>
</tr>
<tr>
<td>Standard Setup—Floppy Drive A</td>
<td>1.44 MB, 3-1/2</td>
</tr>
<tr>
<td>Advanced Setup—System Keyboard</td>
<td>Absent</td>
</tr>
<tr>
<td>Advanced Setup—External Cache</td>
<td>Disabled</td>
</tr>
<tr>
<td>Power Management/APM*</td>
<td>Enabled</td>
</tr>
<tr>
<td>Hard Disk Power Down Mode*</td>
<td>Suspend</td>
</tr>
<tr>
<td>Hard Disk Time Out (minute)*</td>
<td>15 min</td>
</tr>
</tbody>
</table>

* These configurations are only for instruments with 64 Mb or more of RAM.

7 Exit the Setup program, saving the changes you made.
The oscilloscope should now reboot and come up with the scope display. If it does not, recheck your steps in the above procedure. If all the settings are correct, return to the Primary Troubleshooting Procedure.
Configuring the AMI Series 757 Motherboard for 200 MHz CPU

There are several jumpers on the motherboard that must be configured to the correct settings for the AMD-K6 200 MHz microprocessor. Figure 5-10 shows the series 757 Rev C motherboard.

Figure 5-10

Series 757 Atlas PCI-III
Chapter 5: Troubleshooting

To configure the motherboard jumpers and set up the BIOS

The jumpers you must check are J5, J6, J7, J8, J14 and J15. You must also install a 2.9 V VRM module in the VRM socket. In addition, you need to ensure that the CPU fan is connected to J13 once the CPU is installed; failure to connect the fan will cause the CPU to overheat and malfunction.

CAUTION

AVOID DAMAGE TO THE CPU BY CORRECTLY CONFIGURING THE JUMPERS!

You must configure J5, J6, J7, J8, J14 and J15 before installing the CPU and applying power to the motherboard. Failure to configure these jumpers correctly may damage the CPU.

- To configure the jumpers, set J5, J6, J7, J8, and J14 as shown in the following figure. Note that the pairs of pins on J6 and J7 are shorted; the pairs of pins on J5 and J8 are open; and all pins on J14 are open.

- The processor must be configured for a 66 (33) MHz PCI bus clock speed by shorting pins 1 and 2 on J15 as shown in the following figure.

- Install a 2.9 V Voltage Regulator Module (VRM) in the VRM socket. Use Agilent Technologies part number 0950-2794 (VXI part number 073-20723-29 or Corsair part number SP5260TS-2X9).

- To connect the fan, connect the fan cable to J13. The colored fan lead must connect to Pin 1.
To configure the AMI Series 757 WINBIOS Parameters with 1.44 Mbyte floppy drive

Use this procedure to set the motherboard system setup parameters, also known as the WINBIOS setup.

1. Connect the power cable to the oscilloscope.
2. Connect an external VGA monitor to the rear panel connector of the oscilloscope.
3. Connect an external keyboard and a mouse to the oscilloscope.
4. Hold down the Insert key on the external keyboard, then power-on the oscilloscope.
 - You should hear a burst of clicks from the internal hard disk drive as it executes its internal self-tests.
 - After approximately 10 seconds, the text on the external VGA monitor should read as follows below the caution.

 CAUTION
 - DO NOT PRESS F2!
 - When the listing instructs you to “Press F2 to load default values and continue,” DO NOT press F2 to load the default values since some units will not boot with default values.

 AMI Atlas-III PCI/ISA
 BIOS Release 757XXXXXX
 AMD-K6(tm)-/200
 Checking NVRAM
 XXXXXX KB OK

 WAIT...

 <INS> Pressed

 RUN SETUP
 Press F1 to Run SSETUP
 Press F2 to load default values and continue

 Messages Vary Slightly
 These messages may vary slightly depending on the motherboard version.

 If you see the word "ERROR" in the last few lines, or the oscilloscope does not appear to be functioning, check the motherboard jumper settings and the ribbon cable connectors. Proceed to the Primary Trouble Isolation flowchart. Otherwise, continue with the next step.

5. **Press F1 to run the WINBIOS setup.**
 - During the setup program, you can control the cursor with the mouse. If the mouse does not appear to work, press the Esc key on the external keyboard to exit the setup program. Turn off the oscilloscope, and ensure that the mouse is properly connected to the rear panel connector. You may also need to remove the cover and ensure that the mouse connector is correctly connected to the motherboard by the PS/2 Mouse Cable W22.
You can use the keyboard in the WINBIOS setup to perform various functions. Refer to the following table:

<table>
<thead>
<tr>
<th>WINBIOS Keyboard Commands</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td><Tab></td>
<td>Change or select a global field.</td>
</tr>
<tr>
<td>←, ↑, →, ↓</td>
<td>Change or select the current field.</td>
</tr>
<tr>
<td><Enter></td>
<td>Perform an operation in the current field.</td>
</tr>
<tr>
<td>+</td>
<td>Increment a value.</td>
</tr>
<tr>
<td>-</td>
<td>Decrement a value.</td>
</tr>
<tr>
<td><Esc></td>
<td>Abort any window function.</td>
</tr>
<tr>
<td><PgUp></td>
<td>Return to the previous page.</td>
</tr>
<tr>
<td><PgDn></td>
<td>Advance to the next page.</td>
</tr>
<tr>
<td><Home></td>
<td>Returns to the beginning of the text.</td>
</tr>
<tr>
<td><End></td>
<td>Advance to the end of the text.</td>
</tr>
<tr>
<td><Ctrl><Alt><-></td>
<td>Change to high speed.</td>
</tr>
<tr>
<td><Ctrl><Alt><<></td>
<td>Change to low speed.</td>
</tr>
</tbody>
</table>

6 Do the following within the setup program:

- **a** Double-click on Optimal Defaults. Click Yes in response to “Load Optimal Values?”
- **b** Double-click on Standard Setup, then select Date/Time. Use the mouse to set the current month, day, year, and time. When finished, exit the Date/Time block.
- **c** Under Standard Setup, select Floppy A. Select 1.44 MB 3-1/2. Exit the Floppy A block.
- **d** Under Standard Setup, select Floppy B. Select Not Installed. Exit the Floppy B block, then exit Standard Setup.
- **e** Select Advanced Setup, then select System Keyboard. Select Absent (not installed).

System Keyboard Absent
This tells the computer not to check the keyboard during the power-on self test. The keyboard will still function after this.

- **f** Exit the Advanced Setup.
- **g** Double-click PCI/PnP Setup, then scroll down to select IRQ9. Select ISA, then exit PCI/PnP Setup.
- **h** Double-click on Peripheral Setup, then select OnBoard Primary/Secondary IDE. Select Primary, then exit Peripheral Setup by clicking on the box in the upper left corner.

When to Do this Procedure
Perform steps i through m only if your instrument has 64 Mb of RAM installed. If your instrument has less than 64 Mb of RAM, skip to step n.

- **i** Double-click on Power Management.
- **j** Click Power Management/APM and select Enabled.
- **k** Click Hard Disk Power Down Mode and select Suspend.
- **l** Click Hard disk Time Out (Minute) and select 15 min.
- **m** Exit Power Management Setup.
- **n** Hold down the Insert key on the external keyboard while exiting the Setup program and save the changes you have made. Continue to hold the Insert key until the monitor shows the same information as in step 4.
7 Re-enter the WINBIOS to change one parameter that could not be set in step 6.
 a Press F1 to enter the BIOS Setup.
 b Double-click on Detect IDE Utility. The line labeled “Pri. Master” should contain numeric
 information indicating that it has found a hard drive. Exit this utility.
 If a hard drive was not found, check Motherboard Hard Drive Cable W9 and SVGA to Hard
 Drive Cable W10. If the drive is still not found, replace the hard disk drive.
 c Exit the BIOS Setup and save the changes you made.

Table 5-8 summarizes the settings for the system configuration.

<table>
<thead>
<tr>
<th>Configuration Item</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load Optimal Defaults</td>
<td>YES</td>
</tr>
<tr>
<td>Standard Setup—Date/Time</td>
<td>Enter current values</td>
</tr>
<tr>
<td>Standard Setup—Floppy Drive A</td>
<td>1.44 MB, 3-1/2</td>
</tr>
<tr>
<td>Standard Setup—Floppy Drive B</td>
<td>Not Installed</td>
</tr>
<tr>
<td>Advanced Setup—System Keyboard</td>
<td>Absent</td>
</tr>
<tr>
<td>PCI/PnP Setup—IRQ 9</td>
<td>ISA</td>
</tr>
<tr>
<td>Peripheral Setup (OnBoard Primary/Secondary IDE)</td>
<td>Primary</td>
</tr>
<tr>
<td>Detect IDE Utility (Hard drive Primary Master)</td>
<td>Data</td>
</tr>
<tr>
<td>Power Management/APM*</td>
<td>Enabled</td>
</tr>
<tr>
<td>Hard Disk Power Down Mode*</td>
<td>Suspend</td>
</tr>
<tr>
<td>Hard Disk Time Out (minute)*</td>
<td>15 min</td>
</tr>
</tbody>
</table>

* These configurations are only for instruments with 64 Mb or more of RAM.

The oscilloscope should now reboot, load Windows 95, and come up with the scope display. If it
does not, recheck your steps in the above procedure. If all the settings are correct, return to the
Primary Troubleshooting Procedure.
Chapter 5: Troubleshooting

To configure the motherboard jumpers and set up the BIOS

Configuring the AMI Series 757 Motherboard for 300 MHz CPU

There are several jumpers on the motherboard that must be configured to the correct settings for the AMD-K6 300 MHz microprocessor. Figure 5-11 shows the series 757 Rev D motherboard.

Figure 5-11

Series 757 Atlas PCI-III

Series 757 Rev D Motherboard Jumpers
The jumpers you must check are J5, J6, J7, J8, J14, J15 and J16. You must also install a 2.2 V VRM module in the VRM socket. In addition, you need to ensure that the CPU fan is connected to J13 once the CPU is installed. Failure to connect the fan will cause the CPU to overheat and malfunction.

CAUTION

AVOID DAMAGE TO THE CPU BY CORRECTLY CONFIGURING THE JUMPERS!

You must configure J5, J6, J7, J8, J14, J15 and J16 before installing the CPU and applying power to the motherboard. Failure to configure these jumpers correctly may damage the CPU.

- To configure the jumpers, set J5, J6, J7, J8, J14 and J16 as shown in the following figure. Note that the pairs of pins on J6, J7, J8 and J16 are shorted; the pairs of pins on J5 are open; and all pins on J14 are open.

- The processor must be configured for a 66 (33) MHz PCI bus clock speed by shorting pins 1 and 2 on J15 as shown in the following figure.

- Install a 2.2 V Voltage Regulator Module (VRM) in the VRM socket. Use Agilent Technologies part number 0950-3399 (VXI part number 073-20723-22).

- To connect the fan, connect the fan cable to J13. The colored fan lead must connect to Pin 1.
Chapter 5: Troubleshooting

To configure the motherboard jumpers and set up the BIOS

To configure the AMI Series 757 WINBIOS Parameters with 120 Mbyte floppy drive

Use this procedure to set the motherboard system setup parameters, also known as the WINBIOS setup.

1. Connect the power cable to the oscilloscope.
2. Connect an external VGA monitor to the rear panel connector of the oscilloscope.
3. Connect an external keyboard and a mouse to the oscilloscope.
4. Hold down the Insert key on the external keyboard, then power-on the oscilloscope.
 Continue to hold down the Insert key until information begins to appear on the external VGA monitor.
 a. You should hear a burst of clicks from the internal hard disk drive as it executes its internal self tests.
 b. After approximately 10 seconds, the text on the external VGA monitor should read as follows below the caution.

 CAUTION

 DO NOT PRESS F2!

 When the listing instructs you to “Press F2 to load default values and continue,”
 DO NOT press F2 to load the default values since some units will not boot with default values.

 AMI Atlas-III PCI/ISA
 BIOS Release 757XXXXXX
 AMD-K6 (tm)-/200
 Checking NVRAM
 65536 KB OK

 WAIT...

 <INS> Pressed

 RUN SETUP

 Press F1 to Run SETUP
 Press F2 to load default values and continue

 Messages Vary Slightly

 These messages may vary slightly depending on the motherboard version.

 If you see the word "ERROR" in the last few lines, or the oscilloscope does not appear to be functioning, check the motherboard jumper settings and the ribbon cable connectors. Proceed to the Primary Trouble Isolation flowchart. Otherwise, continue with the next step.

5. Press F1 to run the WINBIOS setup.

During the setup program, you can control the cursor with the mouse. If the mouse does not appear to work, press the Esc key on the external keyboard to exit the setup program. Turn off the oscilloscope, and ensure that the mouse is properly connected to the rear panel connector. You may also need to remove the cover and ensure that the mouse connector is correctly connected to the motherboard by the PS/2 Mouse Cable W22.
You can use the keyboard in the WINBIOS setup to perform various functions. Refer to the following table:

<table>
<thead>
<tr>
<th>WINBIOS Keyboard Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keystroke</td>
</tr>
<tr>
<td><Tab></td>
</tr>
<tr>
<td>←, ↑, →, ↓</td>
</tr>
<tr>
<td><Enter></td>
</tr>
<tr>
<td>+</td>
</tr>
<tr>
<td>-</td>
</tr>
<tr>
<td><Esc></td>
</tr>
<tr>
<td><PgUp></td>
</tr>
<tr>
<td><PgDn></td>
</tr>
<tr>
<td><Home></td>
</tr>
<tr>
<td><End></td>
</tr>
<tr>
<td><Ctrl><Alt><-></td>
</tr>
<tr>
<td><Ctrl><Alt><<></td>
</tr>
</tbody>
</table>

6 Do the following within the setup program:

a. Double-click on Optimal Defaults. Click Yes in response to “Load Optimal Values?”
b. Double-click on Standard Setup, then select Date/Time. Use the mouse to set the current month, day, year, and time. When finished, exit the Date/Time block.
e. Under Standard Setup, select Pri Slave, select Type and change to Floptical. Exit the Primary Slave Hard Disk, then exit Standard Setup.
f. Select Advanced Setup, then select System Keyboard. Select Absent (not installed).
g. Under Advanced Setup, scroll down to 1st Boot Device and select Floptical.
h. Under Advanced Setup, select 2nd Boot Device and select IDE-0.
i. Exit the Advanced Setup.
j. Double-click PCI/PnP Setup, then scroll down to select IRQ9. Select ISA, then exit PCI/PnP Setup.
k. Double-click on Peripheral Setup, then select OnBoard Primary/Secondary IDE. Select Primary, then exit Peripheral Setup by clicking on the box in the upper left corner.
l. Double-click on Power Management.
m. Click Power Management/APM and select Enabled.
n. Click Hard Disk Power Down Mode and select Suspend.
o. Click Hard Disk Time Out (Minute) and select 15 min.
q. Hold down the Insert key on the external keyboard while exiting the Setup program and save the changes you have made. Continue to hold the Insert key until the monitor shows the same information as in step 4.
7 Re-enter the WINBIOS to change one parameter that could not be set in step 6.
 a Press F1 to enter the BIOS Setup.
 b Double-click on Detect IDE Utility. The line labeled “Pri. Master” should contain numeric
 information indicating that it has found a hard drive. Exit this utility.
 If a hard drive was not found, check Motherboard Hard Drive Cable W9 and SVGA to Hard
 Drive Cable W10. If the drive is still not found, replace the hard disk drive.
 c Exit the BIOS Setup and save the changes you made.

Table 5-9 summarizes the settings for the system configuration.

<table>
<thead>
<tr>
<th>Configuration Item</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load Optimal Defaults</td>
<td>YES</td>
</tr>
<tr>
<td>Standard Setup—Date/Time</td>
<td>Enter current values</td>
</tr>
<tr>
<td>Standard Setup—Floppy Drive A</td>
<td>Not Installed</td>
</tr>
<tr>
<td>Standard Setup—Floppy Drive B</td>
<td>Not Installed</td>
</tr>
<tr>
<td>Standard Setup—Pri Slave</td>
<td>Floptical</td>
</tr>
<tr>
<td>Advanced Setup—System Keyboard</td>
<td>Absent</td>
</tr>
<tr>
<td>Advanced Setup—1st Boot Device</td>
<td>Floptical</td>
</tr>
<tr>
<td>Advanced Setup—2nd Boot Device</td>
<td>IDE-0</td>
</tr>
<tr>
<td>PCI/PnP Setup—IRQ 9</td>
<td>ISA</td>
</tr>
<tr>
<td>Peripheral Setup (OnBoard Primary/Secondary IDE)</td>
<td>Primary</td>
</tr>
<tr>
<td>Power Management/APM</td>
<td>Enabled</td>
</tr>
<tr>
<td>Hard Disk Power Down Mode</td>
<td>Suspend</td>
</tr>
<tr>
<td>Hard Disk Time Out (minute)</td>
<td>15 min</td>
</tr>
<tr>
<td>Detect IDE Utility (Hard drive Primary Master)</td>
<td>Data</td>
</tr>
</tbody>
</table>

The oscilloscope should now reboot, load Windows 95, and come up with the scope display. If it
does not, recheck your steps in the above procedure. If all the settings are correct, return to the
Primary Troubleshooting Procedure.
Configuring the FIC VA-503A motherboard switches for the 400 MHz CPU and 120 Mbyte floppy drive

There are switches and a jumper on the FIC VA-503A motherboard that must be configured to the correct settings for the AMD K6-2/400 MHz microprocessor. The FIC VA-503A motherboard is shown in the following figure.

Figure 5-12

S1 CPU voltage select

S2 frequency select

Power select jumper

FIC VA-503A Motherboard

The dip switches and jumper are set as follows for the AMD K6-2/400 MHz processors:

1. Set the PWR (Power supply type select) jumper to 1-2.
2. Set S1 (CPU voltage select) for CPU core voltage; see core voltage on processor top.

<table>
<thead>
<tr>
<th>2.2 V Core</th>
<th>S1-1</th>
<th>S1-2</th>
<th>S1-3</th>
<th>S1-4</th>
<th>S1-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
</tr>
</tbody>
</table>

S2 (System Frequency select) Switches S2-1 through S2-3 set the ratio of CPU Frequency/Bus Frequency. This is set to 4X for the K6-2/400 MHz processor.

<table>
<thead>
<tr>
<th>Ratio</th>
<th>S2-1</th>
<th>S2-2</th>
<th>S2-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>K6-2/400 (4X)</td>
<td>Off</td>
<td>On</td>
<td>On</td>
</tr>
</tbody>
</table>

S2 (System Frequency select) Switches S2-4 through S2-10 are set to correspond to the CPU/SDRAM/PCI/AGP frequency.

<table>
<thead>
<tr>
<th>S2-4</th>
<th>S2-5</th>
<th>S2-6</th>
<th>S2-7</th>
<th>S2-8</th>
<th>S2-9</th>
<th>S2-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>On</td>
<td>On</td>
</tr>
</tbody>
</table>
To Configure the FIC Series VA-503A Motherboard BIOS Parameters

Use this procedure to set the FIC VA-503A motherboard BIOS.

1. Connect the power cable to the Infiniium oscilloscope.
2. Connect the mouse to the rear panel of the oscilloscope.
3. Connect the external keyboard to the rear panel.
4. Power up the Infiniium. A message similar to the following should appear on the screen.

```
Award Modular BIOS v. 4.51PG - An Energy Star Friend
Copyright © 1984-99 Award Software
Version JN4104
AMD K6T-2/X00 CPU Found
Memory Test: 65536K OK
```

Press DEL to enter SETUP, ALT + F2 to enter AWDFLASH.

Note: If you see the word “ERROR” in the last few lines, or the oscilloscope does not appear to be functioning, check the motherboard jumper, switch settings, and the ribbon cable connectors. Otherwise, continue with the next step.

5. Press the Delete key when prompted by the message above to enter the BIOS setup menu.

6. Using the keyboard down arrow, key down to LOAD SETUP DEFAULTS and type “Y” to load the setup defaults.

7. Go to the standard CMOS setup and verify or change these settings:
 a. Set Date and Time
 b. Primary Master Type
 Auto
 c. Primary Master Mode
 Auto
 d. Primary Slave
 None
 e. Secondary Master
 None
 f. Secondary Slave
 None
 g. Drive A
 None
 h. Drive B
 None
 i. Floppy 3 Mode Support
 Disabled
 j. Video
 EGA/VGA
 k. Halt On
 All, But Keyboard

When you are finished, press Esc to exit the menu.

8. Go to the BIOS Features Setup and verify or change these settings:
 a. Anti-Virus
 Disabled
 b. Boot from LAN First
 Disabled
 c. Boot Sequence
 LS/ZIP,C
 d. Boot Up Floppy Seek
 Disabled
 e. Boot Up Numlock Status
 Off
 f. Cyrix 6x86/MII CPUID
 Disabled

When you are finished, press Esc to exit the menu.

9. Go to the Chipset Features menu and change this setting:
 a. OnChip Modem
 Disabled

10. Under the Power Management Setup, change these settings:
 a. Modem use IRQ
 NA
 b. HDD Power Down
 15 min

11. Under the PnP/PCI Configuration, change these settings:
 a. PnP OS Installed
 Yes
 b. Resources Controlled By
 Manual
 c. IRQ-9 assigned to
 Legacy ISA
12 Under Integrated Peripherals, change these settings:
 a. Onboard FDD Controller Disabled
 b. Onchip IDE second channel Disabled

 When you are finished, press Esc to exit the menu.
13 Press F10 to save and exit the setup. Type “Y” to save changes.

To troubleshoot the acquisition system

This procedure will help you isolate problems to the assembly or firmware level when the built-in Self Test routine shows acquisition system failures. Using this procedure, you can determine whether one or more of the attenuator assemblies, one or more of the A/D hybrids, the Probe board, the acquisition interface assembly, or the entire acquisition assembly is at fault. If you cannot isolate the fault to attenuator(s) or A/D hybrid(s), you must replace the entire acquisition assembly, including the attenuators and hybrids.

A built-in counter keeps track of the number of times the attenuator contacts have been opened and closed. This is a direct indicator of the usage level of the attenuator and is useful for scheduling preventative maintenance. When you replace the acquisition assembly with a factory rebuilt exchange assembly, you must record the contact closure information for each channel, using the labels attached to each attenuator. If you later exchange the acquisition assembly, Agilent Technologies uses this information to determine when to replace the attenuators to insure quality of future exchange assemblies.

Determining the Acquisition Contact Closure Count

1. Select Self Test from the Utilities menu.
2. Check the "Service Extensions" check box.
3. Select Attenuator Contacts from the Self Test drop down list box.
4. Click Start Test to run the test.

 The accumulated contact closure information will be displayed on screen for each channel. Write this information on the label attached to each attenuator before returning the failed acquisition assembly.

Isolating Acquisition Problems

The Infiniium acquisition system has been designed to work with firmware selftest routines, which provide pass/fail indications for each subsystem. Use the Passed/FAILED information and the trouble isolation chart to determine the appropriate assemblies to replace.

To run a particular test for troubleshooting, do the following:

1. Select Self Test from the Utilities menu.
2. Check the "Service Extensions" check box.
3. Select the desired test from the Self Test drop-down list box.
4. Click Start Test to run the test.

 Run the tests in the following order, as shown by the flowchart.
Chapter 5: Troubleshooting

To troubleshoot the acquisition system

Acquisition Trouble Isolation (1 of 4)
Acquisition Trouble Isolation (2 of 4)
Chapter 5: Troubleshooting
To troubleshoot the acquisition system

Acquisition Trouble Isolation (3 of 4)
Chapter 5: Troubleshooting

To troubleshoot the acquisition system

Acquisition Trouble Isolation (4 of 4)

A A to D Converter Failed

Failure of this test may involve failure in the Gain test. If the Gain test also fails, first attempt to correct the cause of the Gain test failure by running the Extended Service test for Gain. If any of the channels pass the extended service gain test, you can either use an attenuator from a known good channel to verify the problem in a failing channel, or simply replace the attenuator in a failing channel with a new one.

Return the Known Good Attenuator to Original Channel

If you swap attenuators to verify that the failure follows the attenuator assembly, return the known good attenuator to its original channel so that the attenuator contact counter is consistent with the specific attenuator.

When you replace one or more attenuators, you must reset the attenuator contact counter for the affected channel(s) to zero. This enables continued monitoring of the repaired channel.

If the Gain test passes, run the Extended Service test for the A to D Converter. If any of the channels pass the extended service A to D Converter test, you can swap an A to D hybrid from a known good channel to a suspected failing channel to verify the problem, or simply replace the failing A to D hybrid with a new hybrid.
Chapter 5: Troubleshooting

To troubleshoot the acquisition system

B FISO failed
 When this test fails, run the Extended Service test for the A to D Converter. If any of the channels pass the extended service A to D Converter test, you can swap an A to D hybrid from a known good channel to a suspected failing channel to verify the problem, or simply replace the failing A to D hybrid with a new hybrid.

C Probe Board failed
 Replace the Probe Power and Control assembly.

D Offset DAC failed
 Either an Attenuator Assembly failure or Acquisition Assembly failure can cause this test to fail. If the Offset DAC test fails, first attempt to correct the failure by swapping in known good attenuator assemblies and then running the Offset DAC Service Extension. If the Offset DAC test continues to fail, exchange the acquisition assembly, which includes attenuator assemblies. Before you replace the acquisition assembly with a factory rebuilt exchange assembly, record the contact closure information for each channel onto the labels attached to each attenuator. Agilent Technologies uses this to determine when to replace the attenuators to insure quality of future exchange assemblies.

E Temperature Sense failed
 Replace the acquisition assembly when this test fails. Before you replace the acquisition assembly with a factory rebuilt exchange assembly, record the contact closure information for each channel onto the labels attached to each attenuator. Agilent Technologies uses this to determine when to replace the attenuators to insure quality of future exchange assemblies.

F Trigger level failed
 Replace the acquisition assembly when this test fails. Before you replace the acquisition assembly with a factory rebuilt exchange assembly, record the contact closure information for each channel onto the labels attached to each attenuator. Agilent Technologies uses this to determine when to replace the attenuators to insure quality of future exchange assemblies.

G Logic Level failed
 Replace the acquisition assembly when this test fails. Before you replace the acquisition assembly with a factory rebuilt exchange assembly, record the contact closure information for each channel onto the labels attached to each attenuator. Agilent Technologies uses this to determine when to replace the attenuators to insure quality of future exchange assemblies.

H Pattern Trigger failed
 Replace the acquisition assembly when this test fails. Before you replace the acquisition assembly with a factory rebuilt exchange assembly, record the contact closure information for each channel onto the labels attached to each attenuator. Agilent Technologies uses this to determine when to replace the attenuators to insure quality of future exchange assemblies.

I State Trigger failed
 Replace the acquisition assembly when this test fails. Before you replace the acquisition assembly with a factory rebuilt exchange assembly, record the contact closure information for each channel onto the labels attached to each attenuator. Agilent Technologies uses this to determine when to replace the attenuators to insure quality of future exchange assemblies.

J Time Tag failed
 Replace the acquisition assembly when this test fails. Before you replace the acquisition assembly with a factory rebuilt exchange assembly, record the contact closure information for each channel onto the labels attached to each attenuator. Agilent Technologies uses this to determine when to replace the attenuators to insure quality of future exchange assemblies.
K Interpolator failed
Replace the acquisition assembly when this test fails. Before you replace the acquisition assembly with a factory rebuilt exchange assembly, record the contact closure information for each channel onto the labels attached to each attenuator. Agilent Technologies uses this to determine when to replace the attenuators to insure quality of future exchange assemblies.

L Timebase failed
Replace the acquisition assembly when this test fails. Before you replace the acquisition assembly with a factory rebuilt exchange assembly, record the contact closure information for each channel onto the labels attached to each attenuator. Agilent Technologies uses this to determine when to replace the attenuators to insure quality of future exchange assemblies.

M Attenuator contact warning
The oscilloscope software monitors closures for each set of attenuator contacts and accumulates the closure count. The set of contacts with the highest number of closures is the one reported for the channel. When the accumulation for any set of contacts for a channel reaches two million closures, this test displays a warning message. This warning is not an indication of attenuator failure. This warning does advise you that the attenuator is near the mean of its range of reliable usage. You should plan your maintenance strategy based on this contact closure information and your application. For example, in an automated test application, you might want to replace attenuators as soon as the warning appears; this will help prevent costly production line stops. In a bench test application, you might choose to take the warning as an advisory only, and continue to monitor the oscilloscope’s measurement accuracy. You can then replace attenuators when measurement accuracy changes dramatically or when a failure occurs.

N Scroll Mode Counter failed
Replace the scope interface board.

O Nonvolatile SRAM failed
Replace the scope interface board.

P Video RAM failed
Replace the scope interface board.

Q Video SRAM failed
Replace the scope interface board.

R Tri-State Register failed
Replace the scope interface board.

S Timer failed
Replace the scope interface board.

T Video Control Register failed
Replace the scope interface board.

U Test Acquisition State/Control Register failed
Replace the scope interface board.
To troubleshoot attenuator failures

The best method for troubleshooting attenuator assembly failures is to swap the suspected one with a known good one. This discussion will help you determine whether the attenuator or acquisition board is causing a problem.

The attenuator assembly consists of attenuators and a preamplifier for two channels. The attenuator assembly contains the following:

- A relay for selecting input resistance (50 Ω or 1 MΩ)
- Two switchable attenuators (1:1/5:1 and 1:1/10:1) which can be cascaded to provide attenuation ranges of 1:1, 5:1, 10:1, and 50:1 in the 50 Ω path
- An impedance conversion circuit in the 1 MΩ path
- A programmable preamplifier and multiplexer for 1x and 2x gain

Defective attenuators can cause a variety of symptoms.

- Wrong input resistance
- Low bandwidth/slow rise time
- Signal distortion
- Calibration failures
- Self-test failures

Firmware Calibration should also be done after attenuator replacement (see chapter 4, “Calibrating and Adjusting”).

Attenuator Click Test

The solenoids for the passive attenuators can be heard switching when the vertical sensitivity is changed. However, the gain calibration will give different switching points to different attenuator assemblies. Individual attenuator assemblies will not necessarily switch at the same sensitivities. Check for switching sounds between the following range changes:

- 20 to 50 mV/div
- 100 to 200 mV/div
- 200 to 500 mV/div
- 1.0 to 2.0 V/div

You can hear relays switching when going either direction through the transitions. You can hear the input path relay when the input resistance is changed. Toggle the input resistance button for each channel.

If either of the click tests fail, the attenuator assembly may be defective.
Swapping Attenuators
Attenuator swapping is the best method of finding a faulty attenuator. All input channels of the Infiniium oscilloscope use identical attenuator assemblies. The attenuators for channels 1/2 and 3/4 have been manufactured into assemblies to enhance sampling performance. This troubleshooting method provides fast trouble isolation because it is unlikely that multiple channels will experience the same attenuator failure.

Swap suspected and good attenuators, and rerun the tests. The good attenuator can be a separate, known good part, or the attenuator assembly for the other channels of the oscilloscope. If the swap test reveals a faulty attenuator assembly, then install a new attenuator assembly to replace the faulty one, and return the swapped attenuator assembly to its original channels. Following this procedure will maintain the integrity of the attenuator actuation counters.

The attenuator actuation counter is maintained by the oscilloscope software to keep track of the number of times an individual attenuator has switched. Each attenuator is capable of 2 million or more actuations (switches of contacts) before the reliability of the contacts begins to degrade. This provides useful preventative maintenance information for keeping the Infiniium oscilloscope in peak measurement condition. If you replace or permanently swap an attenuator, you may need to reset the attenuator counter. See “To reset the attenuator contact counter” on page 6-30.

Attenuator Connectivity Test
The attenuator assembly scales incoming signals so that the acquisition system can accurately digitize the signal. The Click Test verifies that the relays for switching input resistance and the passive attenuators are working. This connectivity test provides a qualitative assessment of attenuator operation.

1 Connect the Aux Out signal from the front panel to the Channel 1 input using a 50 Ω BNC cable.
2 Press the Default Setup key, then the Autoscale key.
3 The connected channel should display the 715 Hz square wave of the Aux Out signal in both the 50 Ω and 1 MΩ path. If the waveform is not found, or is not stable horizontally and vertically, the attenuator’s internal connectivity is suspect. Swap the attenuator assembly with a new or known good assembly (see “Swapping Attenuators”).
4 Repeat steps 1 through 3 for the remaining input channels.

If swapping attenuators into malfunctioning channels does not correct the problem, perform the procedure in “To run the self-calibration” in chapter 4. Then repeat the above procedure for the malfunctioning channels.
Chapter 5: Troubleshooting

To troubleshoot attenuator failures

1. **Perform Connectivity Test on all channels**
2. **Do channels fail?**
 - Yes: **Swap failing channel attenuator assembly with known good assembly.**
 - No: **Perform Click Test on all channels**
 - **Do channels fail?**
 - Yes: **Swap failing channel attenuator assembly with known good assembly.**
 - No: **Set attenuator contact counter to zero for channels where attenuator assembly replaced**
3. **Does same channel fail?**
 - Yes: **Replace faulty attenuator assembly and put good assembly back in original channel.**
 - No: **Perform Click Test on all channels**
 - **Does same assembly fail?**
 - Yes: **Set attenuator contact counter to zero**
 - No: **Write attenuator contact information on attenuator labels of defective assembly**
4. **Exchange or replace acquisition assembly**

Go to Attenuator Assembly Troubleshooting if assemblies replaced
Chapter 5: Troubleshooting

Software Revisions

- Select About Infiniium... from the Help Menu.

Enable the Graphical Interface
The graphical interface must be enabled to select this command.

A dialog box appears showing the current version number for the scope software and on-line information system software. This information may be useful when contacting Agilent Technologies for further service information. See figure 5-13.

Figure 5-13

![About Infiniium Information](image-url)

About Infiniium... Information
ESD Precautions 6-2
Tools Required 6-2
To return the instrument to Agilent Technologies for service 6-3
To remove and replace the cover 6-4
To disconnect and connect Mylar flex cables 6-5
To remove and replace the AutoProbe assembly 6-6
To remove and replace the probe power and control assembly 6-8
To remove and replace the backlight inverter board 6-9
To remove and replace the front panel assembly 6-9
To remove and replace the keyboard and flat-panel display assemblies 6-12
To remove and replace the acquisition board assembly 6-14
To remove and replace the LAN interface board 6-15
To remove and replace the GPIB interface board 6-16
To remove and replace the scope interface board and SVGA display board 6-17
To separate the scope interface board and SVGA display board 6-18
To remove and replace the Option 200 sound card 6-19
To remove and replace the hard disk drive 6-20
To remove and replace the floppy disk drive 6-21
To remove and replace the motherboard 6-21
To remove and replace the power supply 6-24
To remove and replace the fan 6-25
To remove and replace the CPU 6-26
To remove and replace RAM SIMMs or SDRAM DIMMs 6-27
To remove and replace an attenuator 6-28
To reset the attenuator contact counter 6-30
To remove and replace an acquisition hybrid 6-32
 To remove the acquisition hybrid 6-32
 To replace the acquisition hybrid 6-33
The Hybrid Connector 6-34

Replacing Assemblies
Replacing Assemblies

Use the procedures in this chapter when removing and replacing assemblies and parts in the Agilent Technologies 54835A/45A oscilloscope.

In general, the procedures that follow are placed in the order to be used to remove a particular assembly. The procedures listed first are for assemblies that must be removed first.

ESD Precautions
When using any of the procedures in this chapter you must use proper ESD precautions. As a minimum you must place the instrument on a properly grounded ESD mat and wear a properly grounded ESD wrist strap.

CAUTION
AVOID DAMAGE TO THE INSTRUMENT!
Failure to implement proper antistatic measures may result in damage to the instrument.

Tools Required
The following tools are required for these procedures.

- Torx drivers: T8, T10, T15
- Socket wrench: 5/8 inch
- Medium size (3/16-in) flat-blade screwdriver
- Nut Drivers: 3/16-in, 9/32-in, 5/16-in, 5/8-in
- Torque driver, 0.34 Nm (3 in-lbs), 5 mm or 3/16-in hex drive
- Torque driver, 0.34 Nm (3 in-lbs), Torx T6 drive

CAUTION
REMOVE POWER BEFORE REMOVING OR REPLACING ASSEMBLIES!
Do not remove or replace any circuit board assemblies in this instrument while power is applied. The assemblies contain components which may be damaged if the assembly is removed or replaced while power is connected to the instrument.

WARNING
SHOCK HAZARD!
To avoid electrical shock, adhere closely to the following procedures. Also, after disconnecting the power cable, wait at least three minutes for the capacitors on the power supply and sweep boards to discharge before servicing this instrument. Hazardous voltages exist on the inverter for the display monitor.
To return the instrument to Agilent Technologies for service

Before shipping the instrument to Agilent Technologies, contact your nearest Agilent Technologies Instrument Support Center (or Agilent Technologies Service Center if outside the United States) for additional details.

1 Write the following information on a tag and attach it to the instrument.
- Name and address of owner
- Instrument model numbers
- Instrument serial numbers
- Description of the service required or failure indications

2 Remove all accessories from the instrument.
Accessories include all cables. Do not include accessories unless they are associated with the failure symptoms.

3 Protect the instrument by wrapping it in plastic or heavy paper.

4 Pack the instrument in foam or other shock absorbing material and place it in a strong shipping container.
You can use the original shipping materials or order materials from an Agilent Technologies Sales Office. If neither are available, place 8 to 10 cm (3 to 4 inches) of shock-absorbing material around the instrument and place it in a box that does not allow movement during shipping.

5 Seal the shipping container securely.

6 Mark the shipping container as FRAGILE.
In any correspondence, refer to instrument by model number and full serial number.
To remove and replace the cover

Use these steps to remove and replace the cover. When necessary, refer to other removal procedures.

1. Disconnect the power cable.
2. Disconnect all scope probes and BNC input cables from the front panel.
3. Disconnect any other cables, such as mouse, keyboard, printer, or GPIB cables.
4. Remove the two Torx T15 screws securing the side handle.
5. Remove the four Torx T15 screws that secure the rear feet (two in each foot).
6. Remove the four Torx T15 screws that secure the cover to the chassis.
7. Set the unit on its side. Carefully slide the cabinet off of the frame by pulling the front panel and the cover away from each other.
8. To replace the cover, reverse the above procedure. Be sure to keep ribbon cables out of the way when replacing the cover, particularly the flex cable and connector for the AutoProbe assembly at the bottom front of the oscilloscope.

CAUTION
PROPERLY TIGHTEN HANDLE AND SCREWS!
Tighten the side handle and rear feet screws to 2 Nm (18 in-lbs).

Figure 6-1

Cover Fasteners
To disconnect and connect Mylar flex cables

Use this procedure when you are instructed to disconnect or connect a Mylar flex cable. Such cables and their connectors are fragile; mishandling may damage the cable or connector.

To disconnect the cable

1. Pry up the retainer slightly at either end of the connector using a small flat-blade screwdriver. Do not force the retainer; it should remain attached to the body of the socket.

2. Gently pull the flex cable out of the connector.

To reconnect the cable

1. Ensure that the cable retainer is up, then insert the ribbon cable into the socket, making sure to observe polarity of the cable with respect to the connector.

2. Push the ends of the retainer down onto the connector body, using a small flat-bladed screwdriver. The retainer should be flush with the connector body when you are finished.
To remove and replace the AutoProbe assembly

Use this procedure to remove and replace the AutoProbe assembly. When necessary, refer to other removal procedures.

1. Disconnect the power cable and remove the cover.
2. Remove the AutoProbe connector assembly, the subpanel, and the probe connector assembly that fits around the front-panel BNC connectors, by doing the following:
 a. Disconnect the mylar ribbon cable W13 from the Probe Power and Control Board, A11. See “To disconnect and connect Mylar flex cables” in this chapter.

 ![Disconnecting W13](image)

 Figure 6-4

 Disconnecting W13

 b. Locate the access hole in the front-panel assembly below and almost between channel two and channel three attenuators.

 ![Access Hole](image)

 Figure 6-5

 Access Hole
c From the back of the front panel, use a small screw driver or other slender pointed object through the access hole to push the AutoProbe assembly faceplate away from the front panel assembly.

Figure 6-6
Pushing Out the AutoProbe Faceplate

CAUTION

AVOID DAMAGE TO THE RIBBON CABLE AND FACEPLATE!
Do not pry around the edge of the assembly. Doing so may damage the ribbon cable or faceplate.

d Finish removing the AutoProbe assembly by feeding the mylar ribbon cable through the front panel slot.

3 To replace the AutoProbe assembly, reverse the above procedure.
To remove and replace the probe power and control assembly

Use this procedure to remove the probe power and control assembly. When necessary, refer to other removal procedures.

1. Disconnect the power cable and remove the cover.
2. Disconnect the mylar flex cable W13 that connects the probe power and control assembly to the AutoProbe assembly.
 The connector must be unlocked before you can remove the flex cable. See “To disconnect and connect Mylar flex cables” in this chapter.
3. Disconnect the mylar flex cable W12 from the probe power and control assembly.
4. Remove the two Torx T10 screws securing the probe power and control assembly to the front panel chassis.

Avoid Interference with the Fan
You may need to use a Torx key or stubby Torx driver to avoid interference with the fan.

5. Lift the probe power and control assembly out and away from the chassis.
6. To replace the probe power and control assembly, reverse the above procedure.
 When inserting the assembly, be sure the two tabs on the circuit board engage the two slots in the sheet metal. Also, be sure to carefully lock in the connector for the mylar flex cable when reattaching the cable. See “To disconnect and reconnect mylar flex cables” in this chapter.

Figure 6-7

Removing the Probe Power and Control Assembly
To remove and replace the backlight inverter board

Use this procedure to remove and replace the backlight inverter board. When necessary, refer to other removal procedures.

WARNING

SHOCK HAZARD!
The backlight inverter assembly, which is mounted at the front corner of the instrument near the flat-panel display, operates at high voltages from 300-1 kV ac rms. DO NOT handle this assembly while it is in operation.

1. Disconnect the power cable and remove the cover.
2. Disconnect the two backlight cables from the top and bottom of the backlight inverter board.

 You can either stand the chassis on end or turn it over to gain access to both cables.
3. Disconnect the backlight primary cable W17 from the side of the backlight inverter board.
4. Remove the 2 Torx T10 screws that secure the backlight inverter board to the chassis.
5. Lift the backlight inverter board out through the top of the chassis.
6. To replace the backlight inverter board, reverse the assembly procedure.

Figure 6-8

![Removing the Backlight Inverter Board](image)

To remove and replace the front panel assembly

Use these steps to remove and replace the front panel assembly. When necessary, refer to other removal procedures.

1. Disconnect the power cable and remove the cover.
2. Remove the Quick-Probe assembly and Mylar flex cable W13.
3. Remove the hex nuts that secure the BNC connectors to the front panel.

 Use a 9/16” nut-driver to remove the hex nuts.
Chapter 6: Replacing Assemblies

To remove and replace the front panel assembly

Figure 6-9

Removing the BNC Nuts

4 Disconnect the Aux Out SMB cable W18 from J10 and the black Comp wire W19 from J4. Push them to the side.

These cables are located behind the Aux Trigger Input BNC connector on the Acquisition board.

Figure 6-10

SMB Cable W18 and Comp Wire W19

5 Disconnect all the cables to the front panel assembly including the backlight cables, flat-panel display driver cable W20, and keyboard cable W16.
To remove and replace the front panel assembly

6 Remove the 4 Torx T15 screws that secure the chassis sides to the front panel assembly.

7 Remove the 2 Torx T10 screws that secure the chassis front to the front panel assembly.

8 Pull the front panel assembly away from the chassis, being careful to feed the ribbon cables W16 and W20 out through the slot in the front of the chassis.

9 To replace the front panel assembly, reverse the above procedure.
 Ensure that you observe polarity designations when reconnecting the ribbon cables.
To remove and replace the keyboard and flat-panel display assemblies

Use these steps to disassemble and re-assemble the front panel assembly, including the keyboard and flat-panel display. Where necessary, refer to other removal procedures.

1. Disconnect the power cable and remove the cover.
2. Remove the front panel assembly from the chassis.
3. Remove the ten Torx T10 screws that secure the front panel cover plate to the front casting.

4. Carefully feed the front-panel keyboard cable W16 and the flat-panel display driver cable W20 through the cable access hole while separating the front panel cover plate from the front casting.

Keep Long Screws Separate for Re-assembly
The four screws that fasten the keyboard to the front panel plate are longer than those around the perimeter of the plate. Keep them separate for re-assembly.

5. To remove the main keyboard, disconnect the cursor keyboard cable W15, pull off the knobs, and lift out the keyboard.
To remove and replace the keyboard and flat-panel display assemblies

6 To remove the flat-panel display from the front-panel cover plate, remove the four Torx fasteners.

7 To remove the cursor keyboard and flat lens, remove the four Torx T10 screws that secure the lens corners, then carefully remove the lens. You can lift the cursor keyboard directly out of the front casing.

8 To remove the backlights, lift the tab and slide each backlight out of the flat-panel display.

9 To re-assemble the front panel assembly, reverse the above procedure. The cursor keyboard has holes that fit over locating pins in the front panel casting.

CAUTION
PREVENT GLASS BREAKAGE!
Use care when handling the Lens Glass and the FPD monitor to prevent glass breakage.

Inspect the inside surfaces of the Lens Glass and the Display Monitor closely for dust, smudges, and finger prints. Viewing these with line-of-sight 45 degrees to the surface is the best method for seeing subtle faults. Clean the inside surfaces with glass cleaner and lint-free lens paper before re-assembly. Clean the front of the FPD monitor by applying the glass cleaner to the lint-free lens paper or soft lens cloth. Do not apply glass cleaner directly to the FPD monitor. This will prevent cleaner from corroding FPD connections.
To remove and replace the acquisition board assembly

Use this procedure to remove and replace the acquisition assembly. When necessary, refer to other removal procedures.

1. Disconnect the power cable and remove the cover.
2. Remove the Quick-Probe subpanel assembly.
3. Remove the hex nuts that secure the BNC connectors to the front panel. Use a 9/16" nut-driver to remove the hex nuts. See figure 6-9.
4. Disconnect the Aux Out SMB cable W18 from J10 and the black Comp wire W19 from J4 on the Acquisition assembly. These cables are located behind the Aux Trigger Input BNC connector. See figure 6-10.
5. Disconnect the following cables from the inside edge of the Acquisition assembly:
 - Power supply control cable W2
 - Probe control cable W12
 - Auxiliary power supply cable W4
 - +5 V power supply cable W3
 - PC power cable W5
 - Line sync cable W6
 - Acquisition cable W11
 - Fan cable W21
 These cables are attached to J2, J3, J5, and J11 through J16.
6. Remove the 9 Torx T10 screws that secure the acquisition board to the chassis, then slide the board back from the front panel until the BNC connectors clear the panel. Lift the board away from the chassis.
7. To re-install the acquisition board assembly, reverse the above procedure. Be sure to observe correct polarity for all cables.

Figure 6-16

Removing the Acquisition Assembly
To remove and replace the LAN interface board

Use this procedure to remove and replace the LAN interface board. When necessary, refer to other removal procedures.

1. Disconnect the power cable and remove the cover.
2. Remove the Torx T15 screw that secures the LAN board to the rear of the chassis.
3. Pull the board up to disengage it from the motherboard, then up and out of the chassis.

CAUTION

BE CAREFUL TO NOT SNAG THE CABLE!
Be careful not to snag the acquisition cable W11.

4. To replace the board, reverse the removal procedure.

Figure 6-17

Removing the LAN Interface Board
To remove and replace the GPIB interface board

Use this procedure to remove and replace the GPIB interface board. When necessary, refer to other removal procedures.

1. Disconnect the power cable and remove the cover.
2. Remove the Torx T15 screw that secures the GPIB board to the rear of the chassis.
3. Pull the board up to disengage it from the motherboard, then up and out of the chassis.

CAUTION

BE CAREFUL TO NOT SNAG THE CABLE!

Be careful not to snag the acquisition cable W11.

4. To replace the board, reverse the removal procedure.
 If you are replacing the board with a new one, ensure that the new board has the correct switch settings. See figure 6–18.

Figure 6-18

Removing the GPIB Interface Board
To remove and replace the scope interface board and SVGA display board

Use these steps to remove and replace the scope interface board and SVGA display boards. These boards must be removed and replaced as a unit. When necessary, refer to other removal procedures.

1. Disconnect the power cable and remove the cover.
2. Disconnect these cables from the scope interface board:
 - Acquisition cable W11
 - Keyboard cable W16
3. Disconnect these cables from the SVGA display board:
 - Display board to floppy cable W8
 - Display board to hard drive cable W10
 - Motherboard floppy cable W7
 - Motherboard hard drive cable W9
 - Backlight primary cable W17
 - Display video cable W20
4. Remove the two Torx T15 screws that secure the scope interface and SVGA display boards to the chassis.
 These screws are at the rear of the chassis.

5. Grasp the scope interface and SVGA display boards at the top corners and pull them straight up until they are free of the card cage.
6. To replace the scope interface and SVGA display boards, reverse the above procedure. Be sure to observe correct polarity on all cables when replacing the boards.
To separate the scope interface board and SVGA display board

Use this procedure to separate the scope interface board from the SVGA display board. When necessary, refer to other removal procedures.

1. Remove the scope interface board and the SVGA display board from the card cage.
2. Remove the display board jumper cable W14.
3. Use a small pair of pliers to gently compress each of the four studs at the back of the scope interface board until the stud slips through the board. (Later versions do not use the four studs — skip this step.)
 See figure 6–19.

CAUTION

AVOID DAMAGE TO STUDS!
Be careful not to scratch the circuit board. Also, do not compress the fingers of the studs too far, or they will be damaged. Compress the studs just far enough to allow them to slip through the board.

4. To re-assemble the boards, reverse the above procedure.
To remove and replace the Option 200 sound card

Use this procedure to remove and replace the sound card.

1. Disconnect the power cable and remove the cover.
2. Remove the Torx T15 screw that secures the sound card to the rear of the chassis.
3. Pull the card up to disengage it from the motherboard, then up and out of the chassis.

CAUTION

AVOID DAMAGE TO CABLES!
Be careful to not snag any of the cables.

4. To replace the card, reverse the removal procedure.
To remove and replace the hard disk drive

Use these steps to remove and replace the hard disk drive. When necessary, refer to other removal procedures.

1. Disconnect the power cable and remove the cover.
2. Disconnect the hard disk interface cable W10 from the hard disk drive.
3. Remove the 4 Torx T15 screws that secure the hard disk drive bracket to the chassis.
4. Remove the 4 Torx T10 screws that secure the HDD to the bracket.

CAUTION

DO NOT LET THE DISK DRIVE FALL!
Support the drive while removing the screws so that the drive does not fall.

5. Lift the hard disk out of the chassis. Store the disk in a safe place where it will not be bumped or dropped.
6. To replace the hard disk drive, reverse the above procedure. Ensure that you reconnect the disk cable with the correct polarity.

CAUTION

DO NOT OVER TIGHTEN SCREWS!
Do not overtighten the T10 screws that secure the HDD to the bracket. Torque to 3 in-lbs.

7. Run the WINBIOS setup, discussed under “To configure the motherboard jumpers and set up the BIOS” in chapter 5.

Figure 6-20

Removing the Hard Disk Drive
To remove and replace the floppy disk drive

Use this procedure to remove and replace the floppy disk drive. When necessary, refer to other removal procedures.

1. Disconnect the power cable and remove the cover.
2. Disconnect the ribbon cable W8 at the disk drive.
3. Remove the two Torx T8 screws that secure the disk drive to the chassis.

To replace the floppy disk drive, reverse the above procedure.

To remove and replace the motherboard

Use the following procedure to remove and replace the motherboard assembly. When necessary, refer to other removal procedures.

CAUTION

REPLACE MOTHERBOARD WITH THE SAME TYPE!
Be sure to order the correct motherboard, and replace the motherboard with the same type.

1. Disconnect the power cable and remove the cover.
2. Disconnect the floppy disk drive cable W8 from the SVGA display board, then remove the floppy drive.
3. Disconnect the hard disk drive cable W10 from the SVGA display board, then remove the hard disk drive.
4. Remove the SVGA display board and the scope interface board assembly.
5. Remove the GPIB interface board.
6. Disconnect the power supply cable W5 from the motherboard. There are two connectors to unplug.
7 Disconnect these cables from the motherboard:
 • Hard disk motherboard cable W9
 • Floppy motherboard cable W7
 • Serial port cables W24 and W25
 • Parallel port cable W23
 • Mouse connector cable W22
 Set all cables out of the way.

8 Remove the Torx T15 screw that holds the mouse connector plate to the back panel of
 the chassis and remove the mouse connector plate.

9 Remove the 8 Torx T10 screws that secure the motherboard to the chassis.

10 Remove the motherboard from the chassis by lifting and tilting it over the power supply,
 being careful to clear the floppy drive bracket and all remaining cables.

11 To replace the motherboard assembly, reverse the above procedure. Note the
 following:
 • Replacement motherboards come without a CPU or RAM SIMMs. Transfer these from the old
 motherboard using the procedures in this chapter. Be sure to take appropriate antistatic
 measures.
 • Newer motherboards may require a new CPU and the installation of a Voltage Regulator Module
 (VRM). RAM SIMMs may be transferred from the old motherboard.
 • The corner of the motherboard underneath the floppy drive bracket fits into a small plastic
 bracket attached to the chassis.
 • Be sure to observe polarity when reconnecting all the cables.
 • Ensure that all jumpers are set correctly on the new motherboard before installation. See “To
 configure the motherboard jumpers and set up the BIOS” in chapter 5.

12 Once an upgraded motherboard has been installed, turn on the instrument and run the
 WINBIOS setup procedure. See “To configure the motherboard jumpers and set up the
 BIOS” in chapter 5.
13 Once the WINBIOS has been configured, cycle power to start the Windows '95 operating system and begin the plug-and-play driver installation. Note the following:

- Expect several iterations of the plug-and-play recognition and driver installation. Use the Windows '95 drivers when available.
- Obtain the 548xx driver disk by contacting the Agilent factory. When Windows '95 finds "Unknown PCI card" and displays the message "Insert Agilent Technologies 548XX Scope Installation Disk", insert the floppy disk, select drive A:, and click OK to load the oscilloscope driver.
- The instrument will reboot several times to recognize all of the hardware.

14 Run the self-test to verify the instrument is operating properly. See "Self-Test Verification" in chapter 3.
Chapter 6: Replacing Assemblies

To remove and replace the power supply

Use these steps to remove the power supply assembly. When necessary, refer to other removal procedures.

WARNING

SHOCK HAZARD!

If the power supply is defective it could have a dangerous charge on some capacitors. This charge could remain for many days after removing power from the supply.

1. Disconnect the power cable and remove the cover.
2. Disconnect the cables W2, W3, and W4 from the front of the supply.
 Two of these (W3 and W4) have retaining latches underneath. Press the latch to release the plug from the connector.
3. Disconnect the line sync cable W6 from the rear of the supply.
4. Remove the Torx T15 screw that secures the power supply ground wire to the chassis.

Figure 6-23

Removing Power Supply Cables

5. Remove the two Torx T10 screws that secure the front of the supply to the chassis.
6. Remove the two Torx T10 screws that secure the power supply to the back of the chassis.
7. Lift the supply up and out of the chassis.
8. To replace the supply, reverse the installation procedure. Ensure that the AC power connector is aligned with the cutout in the rear panel, that the supply chassis rests on the two tabs in the instrument chassis, and that the ground wire is routed through the notch at the rear of the power supply chassis.

Cable W2, which is the middle connector in front, connects to the pins toward the top of the supply.
To ensure electrical safety, you must reconnect the ground wire to the chassis.
To remove and replace the fan

WARNING

AVOID INJURY!
The fan blades are exposed both inside and outside the chassis. Disconnect the power cable before working around the fan. Use extreme caution in working with the instrument. Failure to observe these precautions may result in injury.

Use this procedure to remove and replace the fan. When necessary, refer to other removal procedures.

1. Disconnect the power cable and remove the cover.
2. Disconnect the fan cable W21 from the acquisition board.
3. Remove the four fasteners securing the fan to the chassis.

 To remove a fastener, unscrew the center pin using a #1 Posidrive screwdriver. You may need to apply upward pressure at the point of the pin with a small screwdriver. After removing the center pin, compress the fastener body and push it up and out of the fan and chassis. Be sure to support the fan before removing the last fastener.

 Alternatively, you can cut the fastener at the outside of the chassis with a pair of diagonal cutters, then install new fasteners when you replace the fan.

Figure 6-24

Removing Fan Fasteners

CAUTION

AVOID OVERHEATING THE INSTRUMENT!
When replacing the fan, be sure the direction of the fan air flow is coming from the outside to the inside of the instrument. Check the flow arrows on the fan and check for proper flow once power is applied to the instrument. Improper air flow can overheat the instrument.

4. To install the fan, reverse this procedure.
To remove and replace the CPU

Use this procedure to remove and replace the CPU. When necessary, refer to other removal procedures.

1. Disconnect the power cable and remove the cover.
2. Disconnect the CPU fan cable from the motherboard.
3. Pull the CPU socket release lever laterally away from the socket to disengage the lever from the locking tab. Then rotate the lever upward to release the CPU assembly from the socket.

4. Carefully lift the CPU assembly out of the socket. Place it into antistatic IC foam or another protective carrier.
5. To replace the CPU, reverse the assembly procedure. Be sure to re-assemble the CPU so that pin 1 of the CPU aligns with pin 1 of the socket.
To remove and replace RAM SIMMs or SDRAM DIMMs

Use this procedure to remove the cover and disconnect cables, then remove and replace either SIMMs or DIMMs on the motherboard, depending on the type of motherboard in the oscilloscope. When necessary, refer to other removal procedures.

1 Disconnect the power cable and remove the cover.
2 Remove the hard disk drive.
3 Disconnect the following cables from the motherboard connectors and set them aside:
 • Serial port cables W24 and W25
 • Parallel port cable W23
 • Mouse connector cable W22
 • Motherboard floppy cable W7
 • Motherboard hard drive cable W9

Removing and replacing SIMMs on the AMI motherboard
Use this procedure if the oscilloscope has an AMI motherboard.

1 There are four SIMM sockets. Remove SIMMs starting with the SIMM closest to the chassis side panel. To remove each SIMM, push the retaining clips at each end to the side, then tilt the SIMM forward and pull it out.

Removing and replacing SDRAM DIMMs on the FIC motherboard (not pictured)
Use this procedure if the oscilloscope has an FIC motherboard.

1 Locate the DIMM slots on the FIC motherboard. Carefully pull the DIMM straight up and out of the slot.
2 Insert the new DIMM by pushing it straight down into the DIMM slot using both hands.
3 Make sure the clips on the slot close up to hold the DIMM in place when the DIMM touches the bottom of the slot.
To remove and replace an attenuator

Use this procedure to remove and replace an attenuator assembly. When necessary, refer to other removal procedures.

CAUTION

ELEKTROSTATIC DISCHARGE!
Use grounded wrist straps and mats when servicing the acquisition board. Electrostatic discharge can damage electronic components.

Do Not Remove the Attenuators from the Acquisition Board
Attenuators are part of the acquisition board. When replacing the acquisition assembly, do not remove the attenuators.

1. Using ESD procedures, remove the acquisition board assembly from the unit.
2. Using a Torx T6 driver, remove the heatsinks from the associated A/D-FISO hybrids. The heatsinks must be removed first to allow you to disconnect the semi-rigid cables from the hybrid end before disconnecting the cables from the attenuator end.
3. Carefully disconnect the semi-rigid cables from the A/D-FISO hybrids, then disconnect from the attenuator ends.
4. Carefully lift up on the rear of the attenuator boards near the two mating connectors to remove from the acquisition board.
5. Replace the attenuator by reversing this procedure. Torque the semi-rigid cables to no more than 5 in-lbs and the heatsink screws A13H3 to 3 in-lbs.
Chapter 6: Replacing Assemblies

To remove and replace an attenuator

Figure 6-27

Removing an Attenuator

If You Permanently Replace Parts

When you replace acquisition system components, you should rerun the self calibration routines prior to performance verification or use of the instrument.
To reset the attenuator contact counter

1. Turn off the Infiniium oscilloscope.
2. Connect a mouse and a keyboard to the oscilloscope.
3. Insert the service disk in the floppy drive and turn on the oscilloscope.
 For units equipped with a 120 Mbyte floppy drive, do not insert the service disk until the message:
 Starting Windows 9X...
 appears on the screen.
4. The oscilloscope will boot into the Windows® operating system.
5. Press Control-Esc on the keyboard to access the Windows® Start menu.
6. Open the Programs group and click the Infiniium Scope icon.
7. When the oscilloscope application comes up, click the mouse icon in the upper right corner of the screen.
8. Click the Utility pull down menu, then click Self Test. In the Self Test screen click Select Service Extensions.
9. Click the Self Test pull down menu, scroll down and select Atten Set.

Figure 6-28
10 Click the Start Test button. A screen like the following will be displayed.

Figure 6-29

Attenuator Relay Actuations Setup

11 In the Attenuator Channel box, select the channel you are changing.

12 Under Set Value, enter the corrected attenuator value using the keyboard or the drop down keypad, then press the button labeled Apply ‘Set Value’ to Actuation Count.

13 Repeat for each channel you need to change.
To remove and replace an acquisition hybrid

Use the following procedure to remove and replace an acquisition hybrid. When necessary, refer to other removal procedures.

CAUTION

ELECTROSTATIC DISCHARGE!
Use grounded wrist straps and mats when servicing the acquisition board. Electrostatic discharge can damage electronic components.

You do not have to remove the acquisition board before replacing an acquisition hybrid.
To understand the sequence of parts, use the accompanying illustration.

To remove the acquisition hybrid

1. Disconnect the power cable and remove the cover.
2. Use a T-6 Torx driver to remove two screws that secure the heatsink spring, then remove the heatsink.
3. Disconnect the semi-rigid cables from the A/D-FISO hybrids, then disconnect from the attenuator ends.
4. First, use a T-6 Torx driver to remove the four screws that secure the top plate.
5. Use a 3/16 hex driver to remove two standoffs that secure the top plate.
6. Remove the top plate.
7. Grasp the hybrid across the diagonal corners (or sides) using your thumb and index finger. Then lift the hybrid off of the connector assembly.
To replace the acquisition hybrid

The location of pins and other locator features will guide the alignment of parts. This assembly cannot be assembled incorrectly without forcing.

1. Install the hybrid with the three corner holes over the three large locator pins.
2. Install the top plate with the three cut-out corners over the three locator pins.

CAUTION

DO NOT USE EXCESSIVE FORCE!
Tighten the hybrid carefully. Excess force or improper procedure may break the hybrid, which is very expensive to replace.

3. Loosely install the two hex standoffs along the long dimensions of the top plate.
4. Loosely install the two M2 pan-head screws.
5. Use a 5 mm (3/16 in) torque driver set to 0.34 Nm (3 in-lbs) to tighten the standoffs in the following sequence.
 a. Tighten any standoff to specifications.
 b. Tighten the standoff directly opposite the first one to specifications.
 c. Tighten the remaining two screws to specifications, using the Torx T6 torque driver set to 0.34 Nm (3 in-lbs).
6. Connect the semi-rigid cables to the attenuator ends, then connect to the A/D-FISO hybrids.
7. Check for the graphite pad on the underside of the heatsink, then install it with the hole that is near one corner toward the front of the instrument.
8. Install the heatsink spring with the curve down.
9. Install the two heatsink screws. Use a T6 torque driver set to 0.34 Nm (3 in-lbs) to tighten them.

If You Permanently Replace Parts

When you replace acquisition system components, you should rerun the self calibration routines prior to performance verification or use of the instrument.
Chapter 6: Replacing Assemblies

To remove and replace an acquisition hybrid

The Hybrid Connector

As shown in the illustration, two screws through the hybrid connector hold the bottom plate to the underside of the PC board. If you remove the connector, the bottom plate can fall away from the board.

Sometimes the plate will stick to the bottom of the board by itself because of adhesives that fasten an insulator to the plate. If the connector is very gently removed and replaced, you might be able to replace the connector without removing the acquisition board. The key is to apply very little pressure while removing the connector screws. Too much pressure will push the plate away from the bottom of the board. If the plate falls from the board, you will have to remove the acquisition board to re-install the connector. If the plate does not fall from the board, you will have saved some time and work.

To replace a connector:

1. Remove the acquisition board from the instrument.
2. Follow the procedure for removing the hybrid.

3. Remove the two screws to remove the connector.
4. Re-assemble by following all procedures, taking note of the following:
 - Use a T6 torque driver set to 0.34 Nm (3 in-lbs) to tighten the hybrid connector screws.
Replaceable Parts

Ordering Replaceable Parts 7-2
 Listed Parts 7-2
 Unlisted Parts 7-2
 Direct Mail Order System 7-2
 Exchange Assemblies 7-2
Power Cables and Plug Configurations 7-3
Exploded Views 7-4
Replaceable Parts List 7-15
Replaceable Parts

This chapter of the *Agilent Technologies Infiniium Oscilloscope Service Guide* includes information for ordering parts. Service support for this instrument is replacement of parts to the assembly level. The replaceable parts include assemblies and chassis parts.

Ordering Replaceable Parts

Listed Parts

To order a part in the parts list, quote the Agilent Technologies part number, indicate the quantity desired, and address the order to the nearest Agilent Technologies Sales Office.

Unlisted Parts

To order a part not listed in the parts list, include the instrument part number, instrument serial number, a description of the part (including its function), and the number of parts required. Address the order to the nearest Agilent Technologies Sales Office.

Direct Mail Order System

Within the USA, Agilent Technologies can supply parts through a direct mail order system. There are several advantages to this system:

- Direct ordering and shipping from the Agilent Technologies parts center in California, USA.
- No maximum or minimum on any mail order. (There is a minimum amount for parts ordered through a local Agilent Technologies Sales Office when the orders require billing and invoicing.)
- Prepaid transportation. (There is a small handling charge for each order.)
- No invoices.

In order for Agilent Technologies to provide these advantages, please send a check or money order with each order.

Mail order forms and specific ordering information are available through your local Agilent Technologies Sales Office. Addresses and telephone numbers are located in a separate document shipped with the manuals.

Exchange Assemblies

Some parts used in this instrument have been set up for an exchange program. This program allows the customer to exchange a faulty assembly with one that has been repaired, calibrated, and performance-verified by the factory. The cost is significantly less than that of a new part. The exchange parts have a part number in the form XX22X-69522.

After receiving the repaired exchange part from Agilent Technologies, a United States customer has 30 days to return the faulty assembly. For orders not originating in the United States, contact the local Agilent Technologies service organization. If the faulty assembly is not returned within the warranty time limit, the customer will be charged an additional amount. The additional amount will be the difference in price between a new assembly and that of an exchange assembly.
Power Cables and Plug Configurations

This instrument is equipped with a three-wire power cable. The type of power cable plug shipped with the instrument depends on the country of destination. The following figure shows option numbers of available power cables and plug configurations.

<table>
<thead>
<tr>
<th>Plug Type</th>
<th>Cable Part No.</th>
<th>Plug Description</th>
<th>Length (in/cm)</th>
<th>Color</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opt 900 250V</td>
<td>8120-1351</td>
<td>Straight *BS1363A</td>
<td>90/228</td>
<td>Gray</td>
<td>United Kingdom, Cyprus, Nigeria, Zimbabwe, Singapore</td>
</tr>
<tr>
<td></td>
<td>8120-1073</td>
<td>90°</td>
<td>90/228</td>
<td>Mint Gray</td>
<td></td>
</tr>
<tr>
<td>Opt 901 250V</td>
<td>8120-1369</td>
<td>Straight *NZSS198/ASC</td>
<td>79/200</td>
<td>Gray</td>
<td>Australia, New Zealand</td>
</tr>
<tr>
<td></td>
<td>8120-0669</td>
<td>90°</td>
<td>87/221</td>
<td>Mint Gray</td>
<td></td>
</tr>
<tr>
<td>Opt 902 250V</td>
<td>8120-1689</td>
<td>Straight *CEE7-Y11</td>
<td>79/200</td>
<td>Mint Gray</td>
<td>East and West Europe, Saudi Arabia, So. Africa, India (unpolarized in many nations)</td>
</tr>
<tr>
<td></td>
<td>8120-1521</td>
<td>90°</td>
<td>79/200</td>
<td>Mint Gray</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8120-2857</td>
<td>Straight (Shielded)</td>
<td>79/200</td>
<td>Coco Brown</td>
<td></td>
</tr>
<tr>
<td>Opt 903** 125V</td>
<td>8120-1378</td>
<td>Straight *NEMA5-15P</td>
<td>90/228</td>
<td>Jade Gray</td>
<td>United States, Canada, Mexico, Philippines, Taiwan</td>
</tr>
<tr>
<td></td>
<td>8120-1531</td>
<td>90°</td>
<td>90/228</td>
<td>Jade Gray</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8120-1532</td>
<td>Straight (Medical) UL544</td>
<td>96/244</td>
<td>Black</td>
<td></td>
</tr>
<tr>
<td>Opt 904** 250V</td>
<td>8120-0688</td>
<td>Straight *NEMA6-15P</td>
<td>90/228</td>
<td>Black</td>
<td>United States, Canada</td>
</tr>
<tr>
<td>Opt 905 250V</td>
<td>8120-1396</td>
<td>CEE22-V1 (System Cabinet Use) 250V</td>
<td>30/76</td>
<td>Jade Gray</td>
<td>For interconnecting system components and peripherals. United States and Canada only.</td>
</tr>
<tr>
<td></td>
<td>8120-1625</td>
<td>96/244</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opt 906 250V</td>
<td>8120-2104</td>
<td>Straight *SEV1011 1958-24507 Type 12 90°</td>
<td>79/200</td>
<td>Mint Gray</td>
<td>Switzerland</td>
</tr>
<tr>
<td></td>
<td>8120-2206</td>
<td>79/200</td>
<td>Mint Gray</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opt 912 220V</td>
<td>8120-2956</td>
<td>Straight *DHCK107 90°</td>
<td>79/200</td>
<td>Mint Gray</td>
<td>Denmark</td>
</tr>
<tr>
<td></td>
<td>8120-2957</td>
<td>79/200</td>
<td>Mint Gray</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opt 917 250V</td>
<td>8120-4211</td>
<td>Straight SABS164 90°</td>
<td>79/200</td>
<td>Jade Gray</td>
<td>Republic of South Africa India</td>
</tr>
<tr>
<td></td>
<td>8120-4600</td>
<td>79/200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opt 918 150V</td>
<td>8120-4753</td>
<td>Straight MIT1 90°</td>
<td>90/230</td>
<td>Dark Gray</td>
<td>Japan</td>
</tr>
<tr>
<td></td>
<td>8120-4754</td>
<td>90/230</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Part number shown for plug is industry identifier for plug only. Number shown for cable is Agilent Technologies part number for complete cable including plug.
** These cords are included in the CSA certification approval of the equipment.
E = Earth Ground
L = Line
N = Neutral
Chapter 7: Replaceable Parts
Exploded Views

Fan and Acquisition Assembly
Power Supply and PC Motherboard
AMI Series 727 (Atlas PCI-II) Motherboard for PC Motherboard Configuration 1
AMI Series 757 Rev C and Rev D (Atlas PCI-III) Motherboard for PC Motherboard Configurations 2, 3, and 4
1.44 Mbyte Floppy Drive Configuration for PC Motherboard Configurations 1, 2, and 3
Chapter 7: Replaceable Parts
Exploded Views

120 Mbyte Floppy Drive Configuration for PC Motherboard Configuration 4
FIC VA-503A Motherboard for PC Motherboard Configuration 5
Chapter 7: Replaceable Parts
Exploded Views

120 Mbyte Floppy Drive Configuration with FIC Motherboard for PC Motherboard Configuration 5
Chapter 7: Replaceable Parts
Exploded Views

Sleeve and Accessory Pouch

MP14

MP52

MP70

MP72

MP70

MP13

H10

MP20

MP12

MP19

Old version

MP38
Chapter 7: Replaceable Parts
Exploded Views

Attenuator Assembly
Replaceable Parts List

The following table is a list of replaceable parts and is organized as follows:

- Exchange assemblies in alphanumeric order by reference designation.
- External chassis parts in alphanumeric order by reference designation. These parts are generally those that take the physical wear and tear of use.
- Internal parts in several categories. Each category is in alphanumeric order by reference designation. Replacing these parts generally requires opening the cabinet.

The information given for each part consists of the following:

- Reference designation.
- Agilent Technologies part number.
- Total quantity (QTY) in instrument or on assembly. The total quantity is given once and at the first appearance of the part number in the list.
- Description of the part.
Replaceable Parts

<table>
<thead>
<tr>
<th>Ref. Des.</th>
<th>Agilent Part Number</th>
<th>QTY</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exchange Assemblies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A13</td>
<td>54835-69527</td>
<td>1</td>
<td>4-CH ACQUISITION ASSEMBLY W/ATTENUATORS (Agilent Model 54835A)</td>
</tr>
<tr>
<td>A13</td>
<td>54845-69527</td>
<td>1</td>
<td>4-CH ACQUISITION ASSEMBLY W/ATTENUATORS (Agilent Model 54845A)</td>
</tr>
<tr>
<td>A13</td>
<td>54846-69527</td>
<td>1</td>
<td>4-CH ACQUISITION ASSEMBLY W/ATTENUATORS (Agilent Model 54846A)</td>
</tr>
<tr>
<td>External Chassis Parts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MP1</td>
<td>54801-47401</td>
<td>2</td>
<td>KNOB 12 MM GRAY</td>
</tr>
<tr>
<td>MP3</td>
<td>54801-47403</td>
<td>1</td>
<td>KNOB 24 MM GRAY</td>
</tr>
<tr>
<td>MP4</td>
<td>54801-47404</td>
<td>1</td>
<td>KNOB 12 MM YELLOW</td>
</tr>
<tr>
<td>MP5</td>
<td>54801-47405</td>
<td>1</td>
<td>KNOB 12 MM GREEN</td>
</tr>
<tr>
<td>MP6</td>
<td>54801-47406</td>
<td>1</td>
<td>KNOB 12 MM PURPLE</td>
</tr>
<tr>
<td>MP7</td>
<td>54801-47407</td>
<td>1</td>
<td>KNOB 12 MM PINK</td>
</tr>
<tr>
<td>MP8</td>
<td>54801-47408</td>
<td>1</td>
<td>KNOB 18 MM YELLOW</td>
</tr>
<tr>
<td>MP9</td>
<td>54801-47409</td>
<td>1</td>
<td>KNOB 18 MM GREEN</td>
</tr>
<tr>
<td>MP10</td>
<td>54801-47410</td>
<td>1</td>
<td>KNOB 18 MM PURPLE</td>
</tr>
<tr>
<td>MP11</td>
<td>54801-47411</td>
<td>1</td>
<td>KNOB 18 MM PINK</td>
</tr>
<tr>
<td>MP12</td>
<td>54810-44901</td>
<td>1</td>
<td>MOLDED-OVER HANDLE</td>
</tr>
<tr>
<td>MP13</td>
<td>54810-45001</td>
<td>2</td>
<td>END CAP - HANDLE</td>
</tr>
<tr>
<td>MP14</td>
<td>54810-88701</td>
<td>1</td>
<td>ACCESSORY POUCH</td>
</tr>
<tr>
<td>MP15</td>
<td>54815-94301</td>
<td>1</td>
<td>LABEL-KNOBS AND KEYS</td>
</tr>
<tr>
<td>MP16</td>
<td>54845-94304</td>
<td>1</td>
<td>LABEL BNC-4 CH (Agilent 548/35A/45A/46A - 1 MΩ = 12pF 100V Max)</td>
</tr>
<tr>
<td>MP17</td>
<td>54845-94305</td>
<td>1</td>
<td>LABEL-LOGO (Infiniium 1.5 GHz, 8 GSa/s) for 54845A</td>
</tr>
<tr>
<td>MP17</td>
<td>54835-94302</td>
<td>1</td>
<td>LABEL-LOGO (Infiniium 1.0 GHz, 4 GSa/s) for 54835A</td>
</tr>
<tr>
<td>MP17</td>
<td>54846-94305</td>
<td>1</td>
<td>LABEL-LOGO (Infiniium 2.25 GHz, 8 GSa/s) for 54846A</td>
</tr>
<tr>
<td>MP19</td>
<td>5041-9167</td>
<td>2</td>
<td>FOOT-BOTTOM (Old Version)</td>
</tr>
<tr>
<td>MP19</td>
<td>5041-9168</td>
<td>2</td>
<td>FOOT-BOTTOM NON-SKID (Old Version)</td>
</tr>
<tr>
<td>MP20</td>
<td>5042-1753</td>
<td>2</td>
<td>FOOT-REAR</td>
</tr>
<tr>
<td>MP21</td>
<td>C3751-60201</td>
<td>1</td>
<td>MOUSE</td>
</tr>
<tr>
<td>MP22</td>
<td>54810-85903</td>
<td>1</td>
<td>MOUSE PAD</td>
</tr>
<tr>
<td>MP23</td>
<td>E2610-60001</td>
<td>1</td>
<td>KEYBOARD (OPTIONAL ON SERIAL NUMBERS US37349999 AND BELOW)</td>
</tr>
<tr>
<td>MP38</td>
<td>1460-1345</td>
<td>2</td>
<td>TILT STAND (Old Version)</td>
</tr>
<tr>
<td>MP70</td>
<td>54810-61001</td>
<td>4</td>
<td>FOOT W/INSERT (New Version)</td>
</tr>
<tr>
<td>MP72</td>
<td>54810-03700</td>
<td>1</td>
<td>TILT STAND (New Version)</td>
</tr>
<tr>
<td>W1</td>
<td>8120-1521</td>
<td>1</td>
<td>CABLE-POWER (standard 125V USA)</td>
</tr>
<tr>
<td>W1</td>
<td>8120-1703</td>
<td>1</td>
<td>CABLE-POWER (Option 900-UK)</td>
</tr>
<tr>
<td>W1</td>
<td>8120-0896</td>
<td>1</td>
<td>CABLE-POWER (Option 901-AUSTL)</td>
</tr>
<tr>
<td>W1</td>
<td>8120-1892</td>
<td>1</td>
<td>CABLE-POWER (Option 902-EUR)</td>
</tr>
<tr>
<td>W1</td>
<td>8120-0898</td>
<td>1</td>
<td>CABLE-POWER (Option 904-250V USA/CANADA)</td>
</tr>
<tr>
<td>W1</td>
<td>8120-2296</td>
<td>1</td>
<td>CABLE-POWER (Option 906-SWIT)</td>
</tr>
<tr>
<td>W1</td>
<td>8120-2957</td>
<td>1</td>
<td>CABLE-POWER (Option 912-DEN)</td>
</tr>
<tr>
<td>W1</td>
<td>8120-4600</td>
<td>1</td>
<td>CABLE-POWER (Option 917-AFRICA)</td>
</tr>
<tr>
<td>W1</td>
<td>8120-4754</td>
<td>1</td>
<td>CABLE-POWER (Option 918-JAPAN)</td>
</tr>
<tr>
<td>Electrical Assemblies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>0950-3252</td>
<td>1</td>
<td>POWER SUPPLY</td>
</tr>
<tr>
<td>A2</td>
<td>2090-0396</td>
<td>1</td>
<td>COLOR FLAT-PANEL DISPLAY</td>
</tr>
<tr>
<td>A3</td>
<td>0950-3235</td>
<td>1</td>
<td>INVERTER-DISPLAY BACKLIGHT</td>
</tr>
</tbody>
</table>
To identify the motherboard configuration, see "To configure the motherboard jumpers and set up the BIOS in chapter 5. Depending on the motherboard configuration, determine which hard drive, motherboard, CPU, RAM, floppy drive, chassis, and cables are used in your unit.

PC Motherboard Configuration 1 (AMI 727 Motherboard w/1.44 MByte Floppy Drive)(serial prefix range US37349999 and below)

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Agilent Part Number</th>
<th>QTY</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A4</td>
<td>54810-66510</td>
<td>1</td>
<td>PC Motherboard AMI Series 727 (Atlas PCI-II)</td>
</tr>
<tr>
<td>A4A1</td>
<td>1821-3602</td>
<td>1</td>
<td>Microprocessor - AMD-K5-PR133 (100 MHz)</td>
</tr>
<tr>
<td>A4A2-3</td>
<td>1818-6172</td>
<td>2</td>
<td>DRAM-SIMM 2MX32 (8 MB SIMM)</td>
</tr>
<tr>
<td>A9</td>
<td>54810-68726</td>
<td>1</td>
<td>2.5" Hard Drv kit w/ Win98 Cert (compatible only with AMI motherboards)</td>
</tr>
<tr>
<td>A10</td>
<td>0950-2782</td>
<td>1</td>
<td>3.5" Disk drive (1.44 MByte)</td>
</tr>
<tr>
<td>MP80</td>
<td>54801-60102</td>
<td>1</td>
<td>Chassis assembly (used w/AMI motherboards)</td>
</tr>
<tr>
<td>W7</td>
<td>54801-61610</td>
<td>1</td>
<td>Cable - Motherboard floppy port to display board</td>
</tr>
<tr>
<td>W8</td>
<td>54801-61625</td>
<td>1</td>
<td>Cable - Display board to floppy drive</td>
</tr>
<tr>
<td>W10</td>
<td>54801-61636</td>
<td>1</td>
<td>Cable - Display board to 2.5" HDD</td>
</tr>
<tr>
<td>W22</td>
<td>54801-61637</td>
<td>1</td>
<td>Cable - PS/2 mouse connector assy</td>
</tr>
<tr>
<td>W23-25</td>
<td>54801-68701</td>
<td>1</td>
<td>AMI motherboard cable kit - serial and parallel cables</td>
</tr>
</tbody>
</table>

PC Motherboard Configuration 2 (AMI 757 Motherboard w/16 MByte RAM and 1.44 MByte Floppy Drive)(serial prefix range US3805 through US3838 with rear-panel label VIN # 020)

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Agilent Part Number</th>
<th>QTY</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A4</td>
<td>54810-66512</td>
<td>1</td>
<td>PC Motherboard AMI Series 757 REV C (Atlas PCI-III)</td>
</tr>
<tr>
<td>A4A1</td>
<td>1821-3848</td>
<td>1</td>
<td>Microprocessor - AMD-K6/200MHz</td>
</tr>
<tr>
<td>A4A2-3</td>
<td>1818-6172</td>
<td>2</td>
<td>DRAM-SIMM 2MX32 (8 MB SIMM)</td>
</tr>
<tr>
<td>A4A4</td>
<td>0950-2794</td>
<td>1</td>
<td>Voltage Regulator Module (VRM) 2.9 V</td>
</tr>
<tr>
<td>A9</td>
<td>54810-68726</td>
<td>1</td>
<td>2.5" Hard Drv kit w/ Win98 Cert (compatible only w/AMI motherboards)</td>
</tr>
<tr>
<td>A10</td>
<td>0950-2782</td>
<td>1</td>
<td>3.5" Floppy Disk Drive - 1.44 MByte</td>
</tr>
<tr>
<td>A15</td>
<td>0950-2064</td>
<td>1</td>
<td>Ethernet Adapter Card - ISA</td>
</tr>
<tr>
<td>MP60</td>
<td>54801-60102</td>
<td>1</td>
<td>Chassis assembly (compatible only w/AMI motherboard configurations)</td>
</tr>
<tr>
<td>W7</td>
<td>54801-61610</td>
<td>1</td>
<td>Cable - Motherboard floppy port to display board</td>
</tr>
<tr>
<td>W8</td>
<td>54801-61625</td>
<td>1</td>
<td>Cable - Display board to floppy drive</td>
</tr>
<tr>
<td>W10</td>
<td>54801-61636</td>
<td>1</td>
<td>Cable - Display board to 2.5" HDD</td>
</tr>
<tr>
<td>W22</td>
<td>54801-61637</td>
<td>1</td>
<td>Cable - PS/2 mouse connector assy</td>
</tr>
<tr>
<td>W23-25</td>
<td>54801-68701</td>
<td>1</td>
<td>AMI motherboard cable kit - serial and parallel cables</td>
</tr>
</tbody>
</table>

PC Motherboard Configuration 3 (AMI Motherboard w/64 MByte RAM and 1.44 MB Floppy Drive)(serial prefix range US3845 through US3909 with rear-panel label VIN # 025)

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Agilent Part Number</th>
<th>QTY</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A4</td>
<td>54810-66524</td>
<td>1</td>
<td>PC Motherboard AMI Series 757 REV D (Atlas PCI-III)</td>
</tr>
<tr>
<td>A4A1</td>
<td>1821-4976</td>
<td>1</td>
<td>Microprocessor - AMD-K6-2/300MHz</td>
</tr>
<tr>
<td>A4A2-3</td>
<td>1818-7682</td>
<td>2</td>
<td>DRAM-SIMM 8MX32 (32 MB SIMM)</td>
</tr>
<tr>
<td>A4A4</td>
<td>0950-3399</td>
<td>1</td>
<td>Voltage Regulator Module (VRM) 2.2 V</td>
</tr>
<tr>
<td>A9</td>
<td>54810-68726</td>
<td>1</td>
<td>2.5" Hard Drv kit w/ Win98 Cert (compatible only w/AMI motherboards)</td>
</tr>
<tr>
<td>A10</td>
<td>0950-2782</td>
<td>1</td>
<td>3.5" Floppy Disk Drive - 1.44 MByte</td>
</tr>
<tr>
<td>A15</td>
<td>0950-2064</td>
<td>1</td>
<td>Ethernet Adapter Card - ISA</td>
</tr>
<tr>
<td>MP80</td>
<td>54801-60102</td>
<td>1</td>
<td>Chassis assembly (compatible only w/AMI motherboard configurations)</td>
</tr>
<tr>
<td>W7</td>
<td>54801-61610</td>
<td>1</td>
<td>Cable - Motherboard floppy port to display board</td>
</tr>
<tr>
<td>W8</td>
<td>54801-61625</td>
<td>1</td>
<td>Cable - Display board to floppy drive</td>
</tr>
<tr>
<td>W10</td>
<td>54801-61636</td>
<td>1</td>
<td>Cable - Display board to 2.5" HDD</td>
</tr>
<tr>
<td>W22</td>
<td>54801-61637</td>
<td>1</td>
<td>Cable - PS/2 mouse connector assy</td>
</tr>
<tr>
<td>W23-25</td>
<td>54801-68701</td>
<td>1</td>
<td>AMI motherboard cable kit - serial and parallel cables</td>
</tr>
</tbody>
</table>

1. If the PC motherboard was replaced with a newer type, please be sure to use the new BIOS setup procedure and jumper settings that apply to that PC motherboard configuration.
Replaceable Parts

<table>
<thead>
<tr>
<th>Ref. Des.</th>
<th>Agilent Part Number</th>
<th>QTY</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A4</td>
<td>54810-66524</td>
<td>1</td>
<td>PC Motherboard AMI Series 757 REV D (Atlas PCI-III)</td>
</tr>
<tr>
<td>A4A1</td>
<td>1821-4876</td>
<td>1</td>
<td>Microprocessor - AMD-K6-2/300 MHz</td>
</tr>
<tr>
<td>A4A2-3</td>
<td>1818-7682</td>
<td>2</td>
<td>DRAM-SIMM 8MX32 (32 MB SIMM)</td>
</tr>
<tr>
<td>A4A4</td>
<td>0950-3399</td>
<td>1</td>
<td>Voltage Regulator Module (VRM) 2.2 V</td>
</tr>
<tr>
<td>A9</td>
<td>54810-68726</td>
<td>1</td>
<td>2.5" Hard Drv kit w/ Win98 Cert (compatible only w/AMI motherboards)</td>
</tr>
<tr>
<td>A10</td>
<td>0950-3931</td>
<td>1</td>
<td>3.5" LS-120 Floppy Disk Drive - 120 MByte</td>
</tr>
<tr>
<td>A15</td>
<td>0950-2064</td>
<td>1</td>
<td>Ethernet Adapter Card - ISA</td>
</tr>
<tr>
<td>A18</td>
<td>54810-68530</td>
<td>1</td>
<td>Adapter board w/ 2 connectors - 120 MB drive to ribbon cable</td>
</tr>
<tr>
<td>A19</td>
<td>1150-2091</td>
<td>1</td>
<td>Sound card - 16-bit ISA (Option 200 only)</td>
</tr>
<tr>
<td>MP60</td>
<td>54801-60102</td>
<td>1</td>
<td>Chassis assembly (compatible only w/AMI motherboard configurations)</td>
</tr>
<tr>
<td>W7</td>
<td>not used</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W8</td>
<td>not used</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W10</td>
<td>54801-61641</td>
<td>1</td>
<td>Cable - Display board to 120 MB floppy to 2.5" HDD</td>
</tr>
<tr>
<td>W22</td>
<td>54801-61637</td>
<td>1</td>
<td>Cable - PS/2 mouse connector assy</td>
</tr>
<tr>
<td>W23-25</td>
<td>54801-68701</td>
<td>1</td>
<td>AMI motherboard cable kit - serial and parallel cables</td>
</tr>
</tbody>
</table>

PC Motherboard Configuration 5 (FIC Motherboard w/120 MByte Floppy Drive)(serial prefix range US3949 and above with rear-panel label VIN # 03X)

<table>
<thead>
<tr>
<th>Ref. Des.</th>
<th>Agilent Part Number</th>
<th>QTY</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A4</td>
<td>54810-66534</td>
<td>1</td>
<td>PC Motherboard FIC VA-503A</td>
</tr>
<tr>
<td>A4A1</td>
<td>1821-4776</td>
<td>1</td>
<td>Microprocessor - AMD-K6-2/400 MHz</td>
</tr>
<tr>
<td>A4A2</td>
<td>1818-8073</td>
<td>1</td>
<td>DRAM-DIMM 16MX32 (64 MB DIMM)</td>
</tr>
<tr>
<td>A9</td>
<td>54810-68520</td>
<td>1</td>
<td>2.5" Hard Drv w/ software installed (compatible only w/FIC motherboard configuration)</td>
</tr>
<tr>
<td>A10</td>
<td>0950-3931</td>
<td>1</td>
<td>3.5" LS-120 Floppy Disk Drive - 120 MByte</td>
</tr>
<tr>
<td>A15</td>
<td>1150-2110</td>
<td>1</td>
<td>Ethernet Adapter Card - PCI 10/100Base-T</td>
</tr>
<tr>
<td>A18</td>
<td>54810-66531</td>
<td>1</td>
<td>Adapter board w/ 4 connectors - 120 MB drive to ribbon cables</td>
</tr>
<tr>
<td>A19</td>
<td>54810-66533</td>
<td>1</td>
<td>Sound riser card (for FIC motherboard configuration only)</td>
</tr>
<tr>
<td>MP60</td>
<td>54801-60103</td>
<td>1</td>
<td>Chassis assembly (compatible w/FIC motherboard configuration)</td>
</tr>
<tr>
<td>W7</td>
<td>not used</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W8</td>
<td>not used</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W10</td>
<td>54801-61643</td>
<td>1</td>
<td>Cable - A18 adapter board to 2.5" HDD</td>
</tr>
<tr>
<td>W22-25</td>
<td>54801-68706</td>
<td>1</td>
<td>FIC motherboard cable kit (serial, parallel, and PS/2 mouse cables)</td>
</tr>
<tr>
<td>W27</td>
<td>54801-61644</td>
<td>1</td>
<td>USB cable assy</td>
</tr>
</tbody>
</table>

2. Option 8ZE, remanufactured unit, may be an older configuration than indicated by the serial prefix number. Refer to the rear-panel VIN # label, floppy drive and BIOS screen to determine the configuration.
Replaceable Parts

Replaceable Parts List

<table>
<thead>
<tr>
<th>Ref. Des.</th>
<th>Agilent Part Number</th>
<th>QTY</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Configurations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td>54810-66525</td>
<td>1</td>
<td>DISPLAY BOARD</td>
</tr>
<tr>
<td>A6</td>
<td>54801-68703</td>
<td>1</td>
<td>SCOPE INTERFACE BOARD KIT (includes W11 and 54810-66523 pc board or newer)</td>
</tr>
<tr>
<td>A7</td>
<td>54815-66504</td>
<td>1</td>
<td>FRONT-PANEL KEYBOARD</td>
</tr>
<tr>
<td>A8</td>
<td>54810-66507</td>
<td>1</td>
<td>KEYBOARD - CURSOR</td>
</tr>
<tr>
<td>A9</td>
<td>See PC Motherboard Configurations earlier in this table.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A10</td>
<td>See PC Motherboard Configurations earlier in this table.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A11</td>
<td>54810-66506</td>
<td>1</td>
<td>AUTO PROBE CONTROL BOARD</td>
</tr>
<tr>
<td>A13</td>
<td>54835-66527</td>
<td>1</td>
<td>4-CH ACQ. BD. (4 GSa/s) Agilent 54835A W/ATTENUATORS AND A/D FISOS</td>
</tr>
<tr>
<td>A13</td>
<td>54845-66527</td>
<td>1</td>
<td>4-CH ACQ. BD. (8 GSa/s) Agilent 54845A W/ATTENUATORS AND A/D FISOS</td>
</tr>
<tr>
<td>A13</td>
<td>54846-66527</td>
<td>1</td>
<td>4-CH ACQ. BD. (8 GSa/s) Agilent 54846A W/ATTENUATORS AND A/D FISOS</td>
</tr>
<tr>
<td>A14</td>
<td>E2073-66701</td>
<td>1</td>
<td>GPIB INTERFACE (82341C)</td>
</tr>
<tr>
<td>A15</td>
<td>See PC Motherboard Configurations earlier in this table.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A16</td>
<td>54810-66511</td>
<td>1</td>
<td>AUTO PROBE INTERFACE BOARD (part of A17 new style)</td>
</tr>
<tr>
<td>A17</td>
<td>54845-68701</td>
<td>1</td>
<td>PROBE I/O ASSEMBLY (older style) consists of MP16, MP54, and W13.</td>
</tr>
<tr>
<td>A17</td>
<td>54845-68702</td>
<td>1</td>
<td>PROBE I/O ASSEMBLY (new style) consists of A16, H30, MP16, MP69, and W30.</td>
</tr>
<tr>
<td>A18</td>
<td>See PC Motherboard Configurations earlier in this table.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A19</td>
<td>See PC Motherboard Configurations earlier in this table.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Attenuator Assemblies And A/D Hybrids (P/O Acquisition Board)

<table>
<thead>
<tr>
<th>Ref. Des.</th>
<th>Agilent Part Number</th>
<th>QTY</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A13A1</td>
<td>54845-66502</td>
<td>2</td>
<td>2-CH ATTENUATOR ASSY (54835A and 54845A)</td>
</tr>
<tr>
<td>A13A2</td>
<td>54846-66502</td>
<td>2</td>
<td>2-CH ATTENUATOR ASSY (54846A)</td>
</tr>
<tr>
<td>A13A5</td>
<td>1NB7-8348</td>
<td>4</td>
<td>A/D CONVERTER HYBRID</td>
</tr>
<tr>
<td>A13MP1</td>
<td>54803-04103</td>
<td>4</td>
<td>BOTTOM PLATE</td>
</tr>
<tr>
<td>A13MP2</td>
<td>54803-04102</td>
<td>4</td>
<td>TOP PLATE</td>
</tr>
<tr>
<td>A13MP3</td>
<td>54542-22401</td>
<td>4</td>
<td>STANDOFF SCREW</td>
</tr>
<tr>
<td>A13MP4</td>
<td>54803-21101</td>
<td>4</td>
<td>A/D HEATSINK</td>
</tr>
<tr>
<td>A13MP5</td>
<td>54803-09101</td>
<td>4</td>
<td>HEATSINK SPRING</td>
</tr>
<tr>
<td>A13MP6</td>
<td>54803-04104</td>
<td>4</td>
<td>HYBRID SPACER</td>
</tr>
<tr>
<td>A13E1</td>
<td>54803-67601</td>
<td>4</td>
<td>CONNECTOR ASSY</td>
</tr>
<tr>
<td>A13W1</td>
<td>54803-61601</td>
<td>1</td>
<td>CABLE SEMI-RIGID CH 1</td>
</tr>
<tr>
<td>A13W2</td>
<td>54803-61602</td>
<td>1</td>
<td>CABLE SEMI-RIGID CH 2</td>
</tr>
<tr>
<td>A13W3</td>
<td>54803-61603</td>
<td>1</td>
<td>CABLE SEMI-RIGID CH 3</td>
</tr>
<tr>
<td>A13W4</td>
<td>54803-61604</td>
<td>1</td>
<td>CABLE SEMI-RIGID CH 4</td>
</tr>
</tbody>
</table>

Fans

<table>
<thead>
<tr>
<th>Ref. Des.</th>
<th>Agilent Part Number</th>
<th>QTY</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>3160-1013</td>
<td>1</td>
<td>FAN- 12V- 120mm</td>
</tr>
<tr>
<td>B2</td>
<td>54810-68501</td>
<td>1</td>
<td>CPU HEATSINK W/FAN</td>
</tr>
<tr>
<td>B3</td>
<td>3160-1013</td>
<td>1</td>
<td>FAN- 12V- 120mm</td>
</tr>
</tbody>
</table>

Internal Chassis Parts

<table>
<thead>
<tr>
<th>Ref. Des.</th>
<th>Agilent Part Number</th>
<th>QTY</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>0361-1823</td>
<td>8</td>
<td>FASTENER-PLASTIC PUSH</td>
</tr>
<tr>
<td>H2</td>
<td>0515-0372</td>
<td>37</td>
<td>MS M3X0.5 8MM-LG T10</td>
</tr>
<tr>
<td>H3</td>
<td>0515-0383</td>
<td>6</td>
<td>MS M4X0.7 16MM-LG PAN-HD T10</td>
</tr>
<tr>
<td>H4</td>
<td>0515-0430</td>
<td>17</td>
<td>MS M3 8MM-LG PAN-HD T10</td>
</tr>
<tr>
<td>H5</td>
<td>0515-0433</td>
<td>5</td>
<td>MS M4X0.7 8MM-LG PAN-HD T15</td>
</tr>
<tr>
<td>H7</td>
<td>0515-1025</td>
<td>6</td>
<td>MS M3X0.5 26MM-LG PAN-HD T10</td>
</tr>
<tr>
<td>H8</td>
<td>0515-1403</td>
<td>4</td>
<td>M4X.7 6MM 90DEG FLAT-HD T15</td>
</tr>
</tbody>
</table>
Replaceable Parts

<table>
<thead>
<tr>
<th>Ref. Des.</th>
<th>Agilent Part Number</th>
<th>QTY</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>H9</td>
<td>0515-1410</td>
<td>6</td>
<td>MS 3.0 X 0.50 20MM-LG PAN-HD T10</td>
</tr>
<tr>
<td>H10</td>
<td>0515-2195</td>
<td>4</td>
<td>MS M4 X 0.7 40MM-LG T15</td>
</tr>
<tr>
<td>H11</td>
<td>0515-2891</td>
<td>2</td>
<td>MS M2.6X0.45 6MM-LG PAN-HD T8</td>
</tr>
<tr>
<td>H12</td>
<td>0624-0833</td>
<td>7</td>
<td>SCREW-TGP 6-20 T15</td>
</tr>
<tr>
<td>H14</td>
<td>2190-0027</td>
<td>1</td>
<td>WIL.256 .478 .02</td>
</tr>
<tr>
<td>H15</td>
<td>2190-0068</td>
<td>1</td>
<td>WIL505 .630 .02</td>
</tr>
<tr>
<td>H17</td>
<td>2950-0054</td>
<td>1</td>
<td>NUTH 1/2-28 .125</td>
</tr>
<tr>
<td>H18</td>
<td>2950-0072</td>
<td>1</td>
<td>NUTH 1/4-32 .062</td>
</tr>
<tr>
<td>H19</td>
<td>54801-24702</td>
<td>2</td>
<td>RETAINER-STRAP HANDLE</td>
</tr>
<tr>
<td>H20</td>
<td>54542-26101</td>
<td>1</td>
<td>GROUND LUG</td>
</tr>
<tr>
<td>H21</td>
<td>54503-25701</td>
<td>5</td>
<td>HEX NUT - FRONT PANEL BNC</td>
</tr>
<tr>
<td>H22</td>
<td>0515-1246</td>
<td>2</td>
<td>MS M3X0.5 6MM-LG PATCHLOCK T10</td>
</tr>
<tr>
<td>H23</td>
<td>0403-1052</td>
<td>1</td>
<td>STANDOFF/GUIDE - PC BRD</td>
</tr>
<tr>
<td>H24</td>
<td>0515-1763</td>
<td>2</td>
<td>SCR-THD-RLG M2x0.4 5MM-LG PAN-HD</td>
</tr>
<tr>
<td>H25</td>
<td>8160-1212</td>
<td>1</td>
<td>KEYBOARD GROUNDING SPRING</td>
</tr>
<tr>
<td>H26</td>
<td>5021-4302</td>
<td>4</td>
<td>M4x0.7 20MM-LG PAN-HD PATCHLOCK BLACK</td>
</tr>
<tr>
<td>H27</td>
<td>1401-0202</td>
<td>3</td>
<td>PROTECTOR CAP .224 ID .3125 DEPTH</td>
</tr>
<tr>
<td>H28</td>
<td>0515-1038</td>
<td>3</td>
<td>M3X.05MM 35 MM LG PANHD</td>
</tr>
<tr>
<td>H29</td>
<td>0380-1407</td>
<td>3</td>
<td>SPACER M3X25 MM</td>
</tr>
<tr>
<td>H30</td>
<td>0515-2219</td>
<td>3</td>
<td>MS 2.5X0.45 5 MM-LG FLAT-HD</td>
</tr>
<tr>
<td>MP37</td>
<td>1400-2120</td>
<td>2</td>
<td>ISA SLOT COVER</td>
</tr>
<tr>
<td>MP49</td>
<td>54801-00201</td>
<td>1</td>
<td>FRONT PANEL</td>
</tr>
<tr>
<td>MP50</td>
<td>54801-01205</td>
<td>1</td>
<td>LENS BRACKET</td>
</tr>
<tr>
<td>MP51</td>
<td>54801-01206</td>
<td>1</td>
<td>BRACKET-CAL BNC</td>
</tr>
<tr>
<td>MP52</td>
<td>54803-01705</td>
<td>1</td>
<td>SLEEVE, CABINET (2 FAN)</td>
</tr>
<tr>
<td>MP53</td>
<td>54801-04104</td>
<td>1</td>
<td>FRONT PANEL ASSY INSIDE COVER</td>
</tr>
<tr>
<td>MP54</td>
<td>54801-04102</td>
<td>1</td>
<td>AUTO PROBE PANEL - SNAP-IN (Older style)</td>
</tr>
<tr>
<td>MP54</td>
<td>54801-24701</td>
<td>1</td>
<td>AUTO PROBE PANEL (Newer style)</td>
</tr>
<tr>
<td>MP55</td>
<td>54801-04103</td>
<td>1</td>
<td>KEYBOARD CONNECTOR PLATE - REAR PANEL</td>
</tr>
<tr>
<td>MP56</td>
<td>54801-040502</td>
<td>1</td>
<td>FRONT FRAME</td>
</tr>
<tr>
<td>MP57</td>
<td>54801-01208</td>
<td>1</td>
<td>HARD DRIVE BRACKET-2.5" HD</td>
</tr>
<tr>
<td>MP60</td>
<td>See PC Motherboard Configurations earlier in this table.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MP61</td>
<td>54801-88001</td>
<td>1</td>
<td>LENS - DISPLAY</td>
</tr>
<tr>
<td>MP63</td>
<td>54810-41901</td>
<td>1</td>
<td>FRONT-PANEL KEYPAD-MAIN (4-CH) (Agilent 54835A/45A/46A)</td>
</tr>
<tr>
<td>MP64</td>
<td>54810-41902</td>
<td>1</td>
<td>KEYPAD-CURSOR</td>
</tr>
<tr>
<td>MP65</td>
<td>54803-44101</td>
<td>1</td>
<td>RF ABSORBER SHEET</td>
</tr>
<tr>
<td>MP66</td>
<td>54803-04605</td>
<td>1</td>
<td>SHIELD BNC GROUND</td>
</tr>
<tr>
<td>MP67</td>
<td>54801-47101</td>
<td>1</td>
<td>LENS GASKET</td>
</tr>
<tr>
<td>MP68</td>
<td>54801-47102</td>
<td>1</td>
<td>GASKET, KEYBOARD CABLE</td>
</tr>
<tr>
<td>MP69</td>
<td>54801-09101</td>
<td>1</td>
<td>AUTO PROBE PNL SNAP-IN CLIPS</td>
</tr>
<tr>
<td>MP73</td>
<td>54810-85401</td>
<td>0</td>
<td>INSULATOR-120 Mbyte FLOPPY DRIVE (only on upgraded units)</td>
</tr>
<tr>
<td>MP74</td>
<td>54801-01210</td>
<td>0</td>
<td>BRACKET-ADAPTER BOARD (only on upgraded units)</td>
</tr>
<tr>
<td>MP75</td>
<td>0403-1091</td>
<td>1</td>
<td>Bumper - Self adhesive</td>
</tr>
</tbody>
</table>

Cables

<table>
<thead>
<tr>
<th>Ref. Des.</th>
<th>Agilent Part Number</th>
<th>QTY</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>W2</td>
<td>54801-61605</td>
<td>1</td>
<td>CBL ASSY-POWER SUPPLY CONTROL</td>
</tr>
<tr>
<td>W3</td>
<td>54801-61603</td>
<td>1</td>
<td>CBL ASSY-5V POWER</td>
</tr>
<tr>
<td>W4</td>
<td>54801-61604</td>
<td>1</td>
<td>CBL ASSY-AUX POWER</td>
</tr>
<tr>
<td>W5</td>
<td>54801-61607</td>
<td>1</td>
<td>CBL ASSY-PC POWER</td>
</tr>
<tr>
<td>W6</td>
<td>54801-61601</td>
<td>1</td>
<td>CBL ASSY-LINE SYNC</td>
</tr>
<tr>
<td>W7</td>
<td>See PC Motherboard Configurations earlier in this table.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Replaceable Parts

<table>
<thead>
<tr>
<th>Ref. Des.</th>
<th>Agilent Part Number</th>
<th>QTY</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>W8</td>
<td>See PC Motherboard Configurations earlier in this table.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W9</td>
<td>See PC Motherboard Configurations earlier in this table.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W10</td>
<td>See PC Motherboard Configurations earlier in this table.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W11</td>
<td>54801-61612</td>
<td>1</td>
<td>ACQUISITION CABLE (w/ AMP-LATCH(r) connector on each end. Used with Scope Interface board p/n 54810-66503 and below)</td>
</tr>
<tr>
<td>W11</td>
<td>54801-61640</td>
<td>1</td>
<td>ACQUISITION CABLE (w/ AMP-LATCH(r) connector on one end & Tripolarized connector on other end. Used with Scope Interface board p/n 54810-66523 and above)</td>
</tr>
<tr>
<td>W12</td>
<td>54801-61622</td>
<td>1</td>
<td>PROBE POWER & CONTROL CABLE</td>
</tr>
<tr>
<td>W13</td>
<td>54801-61623</td>
<td>1</td>
<td>FLEX CIRCUIT, PROBE INTERFACE (Older style)</td>
</tr>
<tr>
<td>W13</td>
<td>54801-61642</td>
<td>1</td>
<td>CABLE - AUTOPROBE INTERFACE TO AUTOPROBE BOARD (Newer style)</td>
</tr>
<tr>
<td>W14</td>
<td>54801-61624</td>
<td>1</td>
<td>DISPLAY BD. JUMPER</td>
</tr>
<tr>
<td>W15</td>
<td>54801-61626</td>
<td>1</td>
<td>KEYBOARD INTERCONNECT</td>
</tr>
<tr>
<td>W16</td>
<td>54801-61628</td>
<td>1</td>
<td>KEYBOARD CABLE</td>
</tr>
<tr>
<td>W17</td>
<td>54801-61635</td>
<td>1</td>
<td>BACKLIGHT CABLE</td>
</tr>
<tr>
<td>W18</td>
<td>54801-61638</td>
<td>1</td>
<td>CABLE - 50 Ω</td>
</tr>
<tr>
<td>W19</td>
<td>54801-61634</td>
<td>1</td>
<td>PROBE COMP CABLE</td>
</tr>
<tr>
<td>W20</td>
<td>54801-61609</td>
<td>1</td>
<td>DISPLAY CABLE</td>
</tr>
<tr>
<td>W21</td>
<td>54801-61613</td>
<td>1</td>
<td>FAN CABLE</td>
</tr>
<tr>
<td>W22</td>
<td>See PC Motherboard Configurations earlier in this table.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W23</td>
<td>See PC Motherboard Configurations earlier in this table.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W24/25</td>
<td>See PC Motherboard Configurations earlier in this table.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W26</td>
<td>54801-61613</td>
<td>1</td>
<td>FAN CABLE</td>
</tr>
<tr>
<td>W27</td>
<td>See PC Motherboard Configurations earlier in this table.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Theory of Operation
Instrument Block Diagram Shown for Original Configuration w/1.44 MByte Floppy Drive
This *Service Guide* supports troubleshooting the Agilent Technologies 54835A/45A to assembly level. Theory of operation is included only as supplemental information. It is not comprehensive enough for component-level troubleshooting.

Block-Level Theory

The Agilent Technologies 54835A Oscilloscope has four channels which are individually sampled at 2 GSa/s. Each channel is stored into 32 Kbytes of memory. Pairs of channels can be combined to sample at 4 GSa/s and extend memory to 64 Kbytes.

The Agilent Technologies 54845A Oscilloscope has four channels which are individually sampled at 4 GSa/s. Each channel is stored into 32 Kbytes of memory. Pairs of channels can be combined to sample at 8 GSa/s and extend memory to 64 Kbytes.

The front panel provides:
- Dedicated knobs and pushbuttons for major oscilloscope functions.
- An 8.4-inch (diagonal) color flat panel display for waveform, measurement, and graphical interface display.
- A 3 1/2-inch flexible disk drive.
- BNC connectors for channel input signals, auxiliary trigger input, and auxiliary output.
- AutoProbe interface for probe power and probe control.
- A connection for probe compensation.

The rear panel provides several connections:
- The line power input.
- An GPIB connector, for connection to an instrument controller.
- An RS-232 connection.
- A parallel printer connection.
- VGA monitor connection.
- Mouse and keyboard connections.

The instrument has several assemblies and four attenuators. Use the instrument block diagram on the previous page for the following discussion.

Power Supply Assembly

The switching power supply provides 300 W maximum for the instrument. The ac input to the power supply is 100–240 Vac, +/-10%. Maximum input power is 390W. The ac input frequency is 47 to 440 Hz.

Filtered voltages of +5.1 V, -5.2 V, +12.2 V, and -12.2 V are supplied to the acquisition board, where they are distributed throughout the board and to other assemblies.

FPD Monitor Assembly

The monitor is a thin film liquid-crystal display (TFT-LCD). This FPD is an 8.4-inch diagonal, 640 by 480 pixel VGA Color Monitor. The assembly requires +3.3 V and +12 V from the power supply.

A twin fluorescent back light provides illumination for the LCD. The Backlight Inverter assembly converts the +12 V to +300-1000 volts (ac rms) and drives the back light.
Chapter 8: Theory of Operation

Block-Level Theory

Acquisition System
The acquisition system includes two attenuator assemblies, acquisition board, and scope interface board. The attenuators condition the signal, which is then digitized and stored by the acquisition board. The scope interface board provides the system control interface from the motherboard, and also interfaces the acquisition board to the SVGA display board for display of the acquired data. More detailed theory on the acquisition system follows this top-level block theory.

Front Panel
The front panel is read and controlled by a microcontroller IC. This device contains a microprocessor, RAM, ROM, and a DUART for communication with the microprocessor on the main assembly. The microcontroller is located on the keyboard and communicates with the system control circuitry through a cable and RS-232 interface. It reads the keys and knobs and controls the LED indicators.

The elastomeric keypad has 30 keys, all dedicated to a single function to improve ease of use. A conductive element on the inside of each key closes a gap on the underlying keyboard circuit. The keyboard controller detects this short and sends the proper keypress information to the system controller on the motherboard.

There are eleven dedicated knobs. Each knob controls a mechanical switch. The output of the switch is a 2-bit gray code that is read by the microcontroller for direction and distance turned.

A pushbutton controls the power through a Remote Inhibit sense line that is routed to the power supply. When closed, there is an impedance of approximately 196 Ω to ground from the Remote Inhibit sense line; the power supply detects this and turns on or off as required.

Disk Drives
The flexible disk drive is 1.44 Mbyte, MS-DOS compatible. It is located on the front panel. The disk drive can be used to load a new oscilloscope operating system or to load application-specific software. This disk drive is only available on older Infiniium oscilloscopes.

The LS-120 flexible disk drive is 120 Mbyte, MS-DOS compatible. It is located on the front panel. The disk drive can be used to load a new oscilloscope operating system or to load application-specific software. This disk drive is available on newer Infiniium oscilloscopes or those Infiniium oscilloscopes that have been upgraded.

The hard disk drive is a 2.5" high-capacity, shock-resistant unit. It is used to store the oscilloscope operating system and certain system configuration data.

Either drive can also be used to store and recall instrument setups and waveforms.

Attenuators
The attenuators provide the appropriate impedance matching and all the attenuation and gain selection for each input channel. They connect directly to the acquisition board and are fastened to the acquisition board with screws.

Motherboard
The motherboard provides all system control and interface functions for the instrument. It contains a CPU, ROM, RAM, keyboard and mouse interfaces, serial and parallel interfaces, hard and floppy disk drive interfaces, and interfaces to the IBM-PC industry compatible ISA (Industry Standard Architecture) and PCI (Peripheral Component Interconnect) buses.
SVGA Display Card
The SVGA Display Card controls the flat-panel display monitor. There are two major video paths on this board. The first is used by the system controller on the motherboard to draw all general display elements, including the grid, status indicators, and toolbars and menus for the graphical interface. This is handled through a standard VGA chip, BIOS, and DRAM, similar to a standard PC VGA interface. The other path is the video input from the scope interface board, which is multiplexed with the main video to produce the video signals for the flat-panel display. The video from the scope interface board is the waveform display data. The second path is used to provide the fastest possible display update rate, which would not be possible through the standard bus interface to the display controller.

GPIB Interface Card
The GPIB Interface card provides IEEE-488.2 standard bus services for the oscilloscope. The card interfaces the bus to the motherboard system controller, allowing the system controller to receive and process GPIB commands and return data to the bus. The circuit consists of three main components. The GPIB controller provides an interface between the microprocessor system and the GPIB in accordance with IEEE 488 standards. An 8-bit data buffer and 8-bit control line buffer connect the GPIB controller to the GPIB bus. The GPIB is a 24-conductor shielded cable carrying 8 data lines, 8 control lines, 7 system grounds, and 1 chassis ground.

Probe Power and Control
The Probe Power and Control board provides filtered, regulated power to the front-panel AutoProbe interface. It also provides serial communications capability, offset and probe detection and identification circuitry. All of these are interfaced to the probe through the conductive pads surrounding the BNCs. Using the facilities of this board, the Autoprobe interface can supply power for active probes, notify the oscilloscope operating system when a probe is connected or disconnected, identify the probe type to the oscilloscope operating system for automatic configuration, and communicate with the probe to support advanced probe functionality.
Acquisition Block Diagram
Attenuator Theory

The channel input signals are conditioned by the dual channel attenuator assemblies. There are two completely independent attenuators on each assembly, but one channel can be routed in the preamp/multiplexer hybrid to drive both channel outputs for sample rate doubling purposes. Each channel contains passive attenuators, an impedance converter, and a programmable gain amplifier. There are two identical outputs for each channel: one to drive the ADC hybrids and one to drive the trigger circuitry.

The channel input impedance is selectable between 1 M\(\Omega\) and 50 \(\Omega\). The 50 \(\Omega\) path consists of high-frequency 5:1 and 10:1 attenuators and the preamp/multiplexer hybrid, which allows gain-switching between 1:1 and 2:1. This combination of attenuators and gain allows channel sensitivities in the standard 1-2-5 sequence from 10 mV/div to 1 V/div. For sensitivities other than these, full resolution ranges software expansion is performed. The preamp/multiplexer hybrid also provides offset adjustment for the 50 \(\Omega\) path.

The 1 M\(\Omega\) path consists of a 10:1 attenuator and a 1 M\(\Omega\) to 50 \(\Omega\) impedance converter. Once converted to 50 \(\Omega\), the signal is routed back to the 50 \(\Omega\) path (described above) for further attenuation and amplification. Compensation for the 1 M\(\Omega\) 10:1 attenuator is adjusted at the factory and does not require readjustment.

After the passive attenuators, the signal is split into high-frequency and low-frequency components. Low-frequency components are amplified on the main assembly where they are combined with the offset voltage. The ac coupling is implemented in the low-frequency amplifier. The high- and low-frequency components of the signal are recombined and applied to the input FET of the impedance converter. The FET provides a high impedance load for the input attenuators and a low impedance drive for a buffer, which drives 50 \(\Omega\).

Acquisition Theory

The acquisition system includes two major sections. One is the acquisition board, which conditions, stores, and processes the input signals. The other is the scope interface board, which provides the interface from the acquisition to the motherboard and display, and also interfaces the motherboard to the front-panel keyboard.

Acquisition Board

The acquisition circuitry samples, digitizes, and stores the signals from the channel attenuators. The four channels are identical. The trigger signals synchronize acquisition through the trigger and time base circuitry. A reference oscillator and the time base provide the base sample rates.

ADC Hybrid The Agilent Technologies 54845A ADC hybrid provides all of the sampling, digitizing, and high-speed waveform storage. Each ADC hybrid contains two 2 GSa/s ADCs. They can be run in phase to increase resolution, or out-of-phase to sample at 4 GSa/s. The ADC includes a delay-locked loop to synchronize the 2 GHz sample clock to the 100 MHz timebase reference clock. For sample rates < 2 GSa/s, data is decimated.
Trigger There are four main trigger circuits: Trigger Conditioning, Analog Comparators, a Trigger Multiplexer, and Logic Trigger. Trigger signals from the channel are fed to the analog trigger comparators and the trigger conditioning circuit. The trigger conditioning circuitry selects dc, ac, low-frequency reject, high-frequency reject, and noise reject (hysteresis) modes and sets the trigger levels. The trigger multiplexer selects the trigger modes, such as edge, glitch, and pattern trigger.

The channel triggers are sent to the Logic Trigger. The logic trigger provides the advanced triggering functions, such as holdoff, delay, and pattern duration and range. The data delay and clock delay timers are used to implement trigger functions that require timing between 1.5 and 20 ns.

The auxiliary trigger, which cannot be displayed on screen, is compared to the trigger level setting in a separate circuit. The line sync trigger line from the power supply is combined in a multiplexer with the TV trigger and the high frequency reject comparators before being sent to the analog trigger.

Time Base The time base provides the sample clocks and timing necessary for data acquisition. It primarily consists of a reference oscillator, time base IC, and trigger interpolator pulse stretcher.

- The 100-MHz oscillator provides the timebase reference.
- The time base has programmable dividers to provide the rest of the sample frequencies appropriate for the time range selected. The time base uses the time-stretched output of the interpolator pulse stretcher to time-reference the sampling to the trigger point. The time base has counters to control how much data is taken after the trigger event (post-trigger data). After enough pre-trigger samples have occurred, the time base IC sends a signal to the trigger multiplexer (ARM) indicating it is ready for the trigger event. When the trigger condition is satisfied, the trigger multiplexer sends a signal back to the time base (SYSTRIG). The time base IC then starts the post-trigger delay counter. When the countdown reaches zero, the sample clocks are stopped and the CPU is signaled that the acquisition is complete.
- The Interpolator Pulse Stretcher is a dual-slope integrator that acts as a time-interval stretcher. When the trigger system receives a signal that meets the programmed triggering requirements (SYSTRIG), it signals the time base. The time base then sends a pulse to the pulse stretcher. The pulse is equal in width to the time between the trigger (SYSTRIG) and the next sample clock. The pulse stretcher stretches this time by a factor of approximately 1000. Meanwhile, the time base hybrid runs a counter with a clock derived from the sample rate oscillator. When the interpolator indicates the stretch is complete, the counter is stopped. The count represents, with high accuracy, the time between the trigger and the first sample clock. The count is stored and used to place the recently acquired data in relationship to the trigger point.

Calibration The Calibration circuit provides several signals to the Probe Compensation and Aux Out outputs. Which signal is driven to the front panel depends on the current selection from the drop-down menu in the Calibration dialog box. Available signals for Aux Out include a 715 Hz probe compensation signal, a pulse representing the trigger event, the timebase clock, or a dc voltage in the range –2.5 to +2.5 V. The dc voltage is used for self-calibration, and is an output from a 16-channel DAC. The calibration signals are sent to an analog multiplexer, which selects the signal that will be sent to the front panel.

Microprocessor Interface The Microprocessor Interface provides control and interface between the system control and digital functions in the acquisition circuitry.
Analog Interface The Analog Interface provides analog control of functions in the acquisition circuitry. It is primarily DACs with accurate references and filtered outputs. The analog interface controls:

- Channel offsets
- Trigger levels
- Two logic trigger functions

Acquisition Modes

The Agilent Technologies 54835A provides two acquisition modes:

- 2 GSa/s on each of the four channel inputs
- 4 GSa/s on channel 1 and channel 3 inputs

The Agilent Technologies 54845A provides two acquisition modes:

- 4 GSa/s on each of the four channel inputs
- 8 GSa/s on channel 1 and channel 3 inputs

4 GSa/s In this mode, the scope uses all four channel inputs. Each channel can sample up to 4 GSa/s (for Agilent Technologies 54845A).

8 GSa/s In this mode, the scope only uses the channel 1 and channel 3 inputs. The ADC hybrids for the channel 1 inputs are routed to both the channel 1 and channel 2 ADC hybrids. The hybrids are time-aligned to sample 90° out-of-phase to yield a sample rate of 8 GSa/s. Channel 3 and channel 4 are combined in the same way (for Agilent Technologies 54845A).

Scope Interface Board

The Scope Interface Board has three primary functions:

- Interface the acquisition board to the motherboard system controller.
- Manage the waveform display, through an interface to the SVGA display board.
- Implement miscellaneous oscilloscope functions, including an RS-232 interface to the front-panel keyboard, a 32-bit timer, and non-volatile RAM.

Acquisition Board Interface The interface to the acquisition board consists of 16 data lines, 10 address lines, a R/W line, and read and write strobes. A second read strobe is used for reading acquisition data; the address latches are not used when this strobe is active. Three lines are used to indicate run, trigger, and interpolator status; two control lines are used for trigger control and clocking.

There are two address ranges on the acquisition board; the first is used for reading acquisition data, while the second is used to access status and control elements of the board.

Waveform Display Management A PC video connector connects the scope interface board to the SVGA display board. The scope interface board accepts video clock and synchronization signals from the SVGA display board, and drives 16 bits of RGB data in 5,6,5 format to the display controller on the SVGA display board. The display driver will only substitute the PC video RGB data from the scope interface card for the other video data when the screen data matches the value specified in the display driver. In this way, the scope interface card can supply the waveform data from the acquisition system and have it properly multiplexed with regular video data for output on the flat-panel display.

Miscellaneous System Functions An RS-232 interface is used to communicate with the front panel keyboard. The connector routes transmit and receive, power supply bias and inhibit signals, and keyboard power to the keyboard. The interface functionality is contained in the FPGA. The data rate is 19.2 KBAud, with 1 start bit, 8 data bits (LSB first), and one stop bit, no parity. The keyboard itself has a controller that transmits and receives data through this interface.

Non-Volatile RAM (NVRAM) on the scope interface board provides high-speed access to instrument configuration settings.
DECLARATION OF CONFORMITY

according to ISO/IEC Guide 22 and EN 45014

Manufacturer's Name: Agilent Technologies

Manufacturer’s Address: Colorado Springs Division
1900 Garden of the Gods Road
Colorado Springs, CO 80907 USA

declares, that the product

Product Name: Infiniium Oscilloscope

Model Number(s): Agilent Technologies 54835A/45A/46A

Product Option(s): All

conforms to the following Product Specifications:

UL 3111
CSA-C22.2 No. 1010.1:1993

IEC 801-2:1991 / EN 50082-1:1992 4 kV CD, 8 kV AD
IEC 801-3:1984 / EN 50082-1:1992 3 V/m, (1kHz 80% AM, 27-1000 MHz)
IEC 801-4:1988 / EN 50082-1:1992 0.5 kV Sig. Lines, 1 kV Power Lines

Supplementary Information:

This product was tested in a typical configuration with Agilent Technologies test systems.
Colorado Springs, 03/04/97

John Strathman, Quality Manager

European Contact: Your local Agilent Technologies Sales and Service Office or Agilent Technologies GmbH, Department ZQ / Standards Europe, Herrenberger Strasse 130, D-71034 Böblingen Germany (FAX: +49-7031-14-3143)
Product Regulations

Safety
UL 3111
CSA-C22.2 No.1010.1:1993

EMC
This Product meets the requirement of the European Communities (EC)
EMC Directive 89/336/EEC.

EMC
EN55011/CISPR 11 (ISM, Group 1, Class A equipment)

Immunity

<table>
<thead>
<tr>
<th>Immunity</th>
<th>EN50082-1</th>
<th>Code ¹</th>
<th>Notes ²</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC 555-2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEC 555-3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEC 801-2 (ESD) 8kV AD</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEC 801-3 (Rad.) 3 V/m</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEC 801-4 (EFT) 0.5 kV, 1kV</td>
<td>1,2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ Performance Codes:
1 PASS - Normal operation, no effect.
2 PASS - Temporary degradation, self recoverable.
3 PASS - Temporary degradation, operator intervention required.
4 FAIL - Not recoverable, component damage.

² Notes:

Sound Pressure Level
Less than 60 dBA
Warning

- Before turning on the instrument, you must connect the protective earth terminal of the instrument to the protective conductor of the (mains) power cord. The mains plug shall only be inserted in a socket outlet provided with a protective earth contact. You must not negate the protective action by using an extension cord (power cable) without a protective conductor (grounding). Grounding one conductor of a two-conductor outlet is not sufficient protection.
- Only fuses with the required rated current, voltage, and specified type (normal blow, time delay, etc.) should be used. Do not use repaired fuses or short-circuited fuseholders. To do so could cause a shock or fire hazard.
- Service instructions are for trained service personnel. To avoid dangerous electric shock, do not perform any service unless qualified to do so. Do not attempt internal service or adjustment unless another person, capable of rendering first aid and resuscitation, is present.
- If you energize this instrument by an auto transformer (for voltage reduction), make sure the common terminal is connected to the earth terminal of the power source.
- Whenever it is likely that the ground protection is impaired, you must make the instrument inoperative and secure it against any unintended operation.
- Do not operate the instrument in the presence of flammable gasses or fumes. Operation of any electrical instrument in such an environment constitutes a definite safety hazard.
- Do not install substitute parts or perform any unauthorized modification to the instrument.
- Capacitors inside the instrument may retain a charge even if the instrument is disconnected from its source of supply.
- Use caution when exposing or handling the CRT. Handling or replacing the CRT shall be done only by qualified maintenance personnel.

Safety Symbols

⚠️ Instruction manual symbol: the product is marked with this symbol when it is necessary for you to refer to the instruction manual in order to protect against damage to the product.

⚡️ Hazardous voltage symbol.

🌐 Earth terminal symbol: Used to indicate a circuit common connected to grounded chassis.

WARNING

The Warning sign denotes a hazard. It calls attention to a procedure, practice, or the like, which, if not correctly performed or adhered to, could result in personal injury. Do not proceed beyond a Warning sign until the indicated conditions are fully understood and met.

CAUTION

The Caution sign denotes a hazard. It calls attention to an operating procedure, practice, or the like, which, if not correctly performed or adhered to, could result in damage to or destruction of part or all of the product. Do not proceed beyond a Caution symbol until the indicated conditions are fully understood or met.
Product Warranty
This Agilent Technologies product has a warranty against defects in material and workmanship for a period of three years from date of shipment. During the warranty period, Agilent Technologies will, at its option, either repair or replace products that prove to be defective.

For warranty service or repair, this product must be returned to a service facility designated by Agilent Technologies.

For products returned to Agilent Technologies for warranty service, the Buyer shall prepay shipping charges to Agilent Technologies and Agilent Technologies shall pay shipping charges to return the product to the Buyer. However, the Buyer shall pay all shipping charges, duties, and taxes for products returned to Agilent Technologies from another country.

Agilent Technologies warrants that its software and firmware designated by Agilent Technologies for use with an instrument will execute its programming instructions when properly installed on that instrument. Agilent Technologies does not warrant that the operation of the instrument software, or firmware will be uninterrupted or error free.

Limitation of Warranty
The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by the Buyer, Buyer-supplied software or interfacing, unauthorized modification or misuse, operation outside of the environmental specifications for the product, or improper site preparation or maintenance.

No other warranty is expressed or implied. Agilent Technologies specifically disclaims the implied warranties of merchantability or fitness for a particular purpose.

Exclusive Remedies
The remedies provided herein are the buyer’s sole and exclusive remedies. Agilent Technologies shall not be liable for any direct, indirect, special, incidental, or consequential damages, whether based on contract, tort, or any other legal theory.

Assistance
Product maintenance agreements and other customer assistance agreements are available for Agilent Technologies products. For any assistance, contact your nearest Agilent Technologies Sales Office.

Certification
Agilent Technologies certifies that this product met its published specifications at the time of shipment from the factory. Agilent Technologies further certifies that its calibration measurements are traceable to the United States National Institute of Standards and Technology, to the extent allowed by the Institute’s calibration facility, and to the calibration facilities of other International Standards Organization members.

About this edition
This is the Agilent Technologies Infiniium Oscilloscopes Service Guide for Agilent Model 54835A/45A/46A Oscilloscopes.

Publication number 54845-97008, February 2001
Printed in USA.

Print history is as follows:
54845-97000, August 1997
54845-97001, March 1998
54845-97002, May 1998
54845-97003, June 1998
54845-97004, January 1999
54845-97005, May 1999
54845-97006, November 1999
54845-97007, January 2000
54845-97008, February 2001

New editions are complete revisions of the manual. Many product updates do not require manual changes; and, conversely, manual corrections may be done without accompanying product changes. Therefore, do not expect a one-to-one correspondence between product updates and manual updates.

Windows is a trademark of Microsoft Corporation.
Microsoft is a trademark of Microsoft Corporation.
MS-DOS is a trademark of Microsoft Corporation.
Intel and Pentium are registered trademarks of Intel Corporation.
AMD is a registered trademark of Advanced Micro Devices Corporation.
AMI is a trademark of American Megatrends, Incorporated.