This supplement contains important information for correcting manual errors and for adapting the manual to instruments containing improvements made after the printing of the manual.

To use this supplement:

Make all ERRATA corrections.

Make all appropriate serial number related changes indicated in the tables below.

<table>
<thead>
<tr>
<th>Model No. 3781B</th>
<th>Serial Prefix of Number</th>
<th>Make Manual Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2219U & below</td>
<td>no change</td>
</tr>
<tr>
<td></td>
<td>2228U & below</td>
<td>no change</td>
</tr>
<tr>
<td></td>
<td>2228U</td>
<td>no change</td>
</tr>
<tr>
<td></td>
<td>2408U00486 & ABOVE</td>
<td>no change</td>
</tr>
<tr>
<td></td>
<td>2417U00516 & ABOVE</td>
<td>no change</td>
</tr>
<tr>
<td></td>
<td>2523U & ABOVE</td>
<td>no change</td>
</tr>
<tr>
<td></td>
<td>2703U</td>
<td>no change</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model No. 3782B</th>
<th>Serial Prefix of Number</th>
<th>Make Manual Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2218U & below</td>
<td>no change</td>
</tr>
<tr>
<td></td>
<td>2231U & below</td>
<td>no change</td>
</tr>
<tr>
<td></td>
<td>2310U & below</td>
<td>no change</td>
</tr>
<tr>
<td></td>
<td>2341U00491</td>
<td>change 1</td>
</tr>
<tr>
<td></td>
<td>2417U00531 & ABOVE</td>
<td>no change</td>
</tr>
<tr>
<td></td>
<td>2523U & ABOVE</td>
<td>no change</td>
</tr>
<tr>
<td></td>
<td>2703U</td>
<td>no change</td>
</tr>
</tbody>
</table>

* NEW ITEM

NOTE

Manual change supplements are revised as often as necessary to keep manuals as current and accurate as possible. Hewlett-Packard recommends that you periodically request the latest edition of the supplement. Free copies are available from all HP offices. When requesting copies quote the manual identification information from your supplement or the model number and print date from the title page of the manual.
ERRATA

*Page 1-6:
Add: OPTION W30 This option is available at the time of purchase and gives 3 year Extended Hardware Support. It provides 2 additional years of return-to-HP hardware service support (for 2nd and 3rd years).

Page 1-11, Synchronisation Specifications
The specification reads as follows:

Frame Sync:
When framing and control bits are present in the input data, the 37828 will synchronise onto the frame pulses and remove them from the input data. Framing may be inhibited by a switch. The 37828 is designed to the following nominal specification for frame sync.

DS-1
Frame sync loss: 3 out of 8 consecutive F lines bits in error
Multiframe sync loss: 2 consecutive Fs bits in error
Frame sync gain: 12 consecutive F lines bits correct
Multiframe sync gain: 12 consecutive Fs bits correct

DS-1C
F Frame sync loss: 3 out of 15 consecutive F bits in error
M Frame sync loss: 2 out of 3 M1, M2, M3 (011) sequences in error
F Frame sync gain: 15 consecutive F bits correct
M Frame sync gain: 2 consecutive M1, M2, M3 (011) sequences correct

DS-2: sync loss: same as DS-1C
sync gain: same as DS-1C

DS-3
F Frame sync loss: 3 out of 15 consecutive F bits in error
M Frame sync loss: 2 out of 3 consecutive M5, M6, M7 (010) sequences in error
F Frame sync gain: 15 consecutive F bits correct
M Frame sync gain: 2 consecutive M5, M6, M7 (010) sequences in error
CHANGE 1 (Applicable to S/N 2341U00491 & above).

Page 1-9: 3782B "DS-3 INPUT" specification.
Remove reference to "DS-3 LO" and relevant paragraphs.

Insert the following:
"DSX-3 MON: Input accepts DSX-3 waveform (auto-threshold) with up to 22dB of flat loss".

Remove "DS-3 MON" and replace with "DS-3HI MON" wording.

Page 3-3, Paragraph 3-11(B):
Change to the following:

B DS-3 DATA INPUT accepts signals and levels from the appropriate hierarchy levels, depending on the position of the DATA INPUT switch (3). The signal applied to the 3782B should be 44.736Mb/s with a signal format of B3ZS. There are four positions on the DATA INPUT switch (3) controlling the DS-3 DATA INPUT signal. The positions are DSX-3 MON, DSX-3, DS-3 HI and DS-3 HI MON. "The input signal for DSX-3 MON should be a shaped pulse equivalent to a DSX-3 pulse with up to 22dB of flat loss." For DSX-3, the input signal should be standard cross-connect waveform (CCITT Rec G703 Para 4). For DS-3 HI, the input signal should be of 11.2ns width and 909mV amplitude. DS-3HI MON accepts the equivalent of a DS-3HI pulse attenuated by 13.8dB. An LED above the input (2) is illuminated if data transitions are present. Data loss is detected within 100ms. This input uses a WEEO Type 440A, 75ohms connector.

Page 3-4, Section 3-11(3):
Change the following:
DATA INPUT switch selects the appropriate interface (line code, framing structure and bit rate) depending on where in the hierarchy the 3782b is connected. The hierarchy levels available are DSX-1, DSX-IC, DSX-2, DSX-3 MON, DSX-3, DS3-HI, and HI MON DS-3.

Page 3-15, Section 3-57 ("Basic Functional checks") Step 13:
Remove reference to DS-3(LO).

Note: In-lid operating instructions (p/n 03781-90002) will require change as follows:

3782B ERROR DETECTOR

Change "DATA INPUT" paragraph to:

"DATA INPUT - "DSX-1" accepts DS-1 cross-connect waveform. "DSX-IC" accepts DS-IC cross-connect waveform. "DSX-2" accepts DS-2 cross-connect waveform. "DSX-3" accepts DS-3 cross-connect waveform. "DS-3 HI" accepts DS-3HI waveform as defined in Bell Standard at DS-3 level. DSX-3 MON accepts DSX-3 waveform with up to 22dB of attenuation. DS-3 HI MON setting for connection to multiplexer output monitor port (DS-3HI through 13.8dB flat loss).
ERRATA (continued)

Page 3-16, Paragraph 3-57 BASIC FUNCTIONAL CHECKS
Alter the following paragraph and steps accordingly:

Step 15 Set the 3782B GATING PERIOD switch to MAN. Press the 3782B START pushbutton. The 3782B parameter display window reading should read typically between 9.7 and 9.9 x 10^-6. Wait 30 seconds before accepting display reading.

Step 17 Set 3781B ERROR ADD switch to CODE. Press the 3782B START pushbutton. The 3782B parameter display window reading should read typically between 9.7 and 9.9 x 10^-6. Wait approximately 30 seconds before accepting display reading.

Step 19 Set 3781B ERROR ADD switch to BIN. Press the 3782B START pushbutton. The 3782B parameter display window reading should read typically between 9.7 and 9.9 x 10^-6. Wait approximately 60 seconds before accepting display reading.
Quick Reference Guide
for 3781B Pattern Generator
and 3782B Error Detector

INTRODUCTION

The Quick Reference Guide contains all the basic information required to operate the HP Models 3781B Pattern Generator and 3782B Error Detector over the Hewlett-Packard Interface Bus (HP-IB).

If more detailed information is required about the 3781B and 3782B, and HP-IB operation — refer to the Operating Manual and HP-IB Users Guide.
LEARN

In response to a Learn Actual (LA) or Learn Remote (LR) command, the instruments output the settings of the switches and masks in a compact form. It is not necessary for the operator to know the internal format of this information, as its normal use is to allow a subsequent load instruction to reload the switches and masks with their earlier values.

Each controllable switch is allocated the bits defined in the RESPONSE CODES section (undefined bits are not necessarily output as zero). The information output signal comprises 14 bytes for the 3781B and 35 bytes for the 3782B. All slide switch codes start with zero at the lefthand side.

LOAD

In response to a load (LD) command, the instruments load the 'remote' switches and masks with data.

TRIGGER

The instruments do not respond to a device trigger.

CLEAR

Both instruments are designed to respond to the Device Clear or Selected Device Clear commands. After issuing either of these commands, the Controller must give the instruments time to react and settle. A wait of 0.5 second is recommended. (The issue of either of these commands does not affect the setting of the 3782B real-time clock.)

The Remote-to-Local change is programmed by the Go-To-Local (GTL) command or by setting the REN line false (high). In the 'remote' state, the front-panel switch settings can be changed to any position — as given in the MNEMONICS section. However, on going 'local', the physical position of the switch is the start position. These instruments can also be set to Local by pressing the LOCAL push-button. Note: these instruments do not respond to the LOCAL push-button, if the Local Lockout command has been issued. (This command disables the LOCAL push-button function and consequently all front-panel controls are disabled.)

SERVICE REQUEST

Both instruments are designed to issue a Service Request (SRQ) when service from the Controller is required. Programmable masks govern whether each request is generated.

It is possible for a service request to be generated before the Controller has had time to service any previous requests. In such instances, the instruments stack the requests in an orderly manner. It makes good programming sense to keep the length of this stack as short as possible by promptly responding to requests and not issuing further commands until the stack is empty. (However, it is not mandatory for the request to be serviced immediately if at all.) An instrument should not be serially polled within 20 milliseconds of a previous serial poll of that instrument.

STATUS BYTE

The instruments respond to a Serial Poll by sending their status byte. If an instrument is requesting service, bit 6 of the status byte is set. If an instrument is not requesting service, the bit is not set. For detailed information, refer to SERVICE REQUEST CODES.

PASS CONTROL

The instruments do not have the ability to take or pass control.

UNADDRESS COMMANDS

The instruments respond to the Unaddress Commands (Interface Clear — IFC true) by unlistening and untalking all Listener and Talker functions.
MNEMONICS

3781B/3782B General Mnemonics

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>LD (load)</td>
<td>Request that the instruments load the 'remote' switches and masks with data.</td>
</tr>
<tr>
<td>CA (current answer)</td>
<td>3781B only, Request that the current jitter measurement display be issued in Controller format (i.e., in the form "4N.NNNNNN").</td>
</tr>
<tr>
<td></td>
<td>3782B only, Request that the current answer indicated by the DISPLAY MODE switch be issued.</td>
</tr>
<tr>
<td>QA (query annunciators)</td>
<td>3781B only, Request that the current status of the front-panel CLOCK (transitions present) LED be issued.</td>
</tr>
<tr>
<td></td>
<td>3782B only, Request that the current status of the front-panel LEDs be issued (except ERRORS LED).</td>
</tr>
<tr>
<td>EC (error count)</td>
<td>3782B only, Request that the number of errors counted, up till the last error second occurred, be issued.</td>
</tr>
<tr>
<td>IC (initialize clock)</td>
<td>3782B only, Request that the internal clock of the 3782B be initialized.</td>
</tr>
<tr>
<td>LA (learn actual)</td>
<td>Request that the current status of all 'actual' front-panel and rear-panel switches (except push-buttons) and masks be issued. (14 bytes for 3781B and 35 bytes for 3782B.)</td>
</tr>
<tr>
<td>LR (learn remote)</td>
<td>Request that the current positions of all 'remote' switches and masks be issued. (14 bytes for 3781B and 35 bytes for 3782B.)</td>
</tr>
<tr>
<td>MK (mask)</td>
<td>The masks are programmed by quoting the mnemonic and parameter number.</td>
</tr>
<tr>
<td>CF (query firmware)</td>
<td>Request that the cyclic redundancy check word (CRC word) of each part of the firmware be issued.</td>
</tr>
</tbody>
</table>

3781B Switch Mnemonics

<table>
<thead>
<tr>
<th>SWITCH NAME</th>
<th>MNEMONIC</th>
<th>PARAMETER RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PATTERN</td>
<td>PTn</td>
<td>1 ≤ n ≤ 10</td>
</tr>
<tr>
<td>DATA OUTPUT</td>
<td>DOn</td>
<td>1 ≤ n ≤ 6</td>
</tr>
<tr>
<td>ZERO SUB. (VALUE)</td>
<td>ZVn</td>
<td>0 ≤ n ≤ 999</td>
</tr>
<tr>
<td>ERROR ADD FORMAT</td>
<td>EFn</td>
<td>1 ≤ n ≤ 2</td>
</tr>
<tr>
<td>ERROR ADD RATE</td>
<td>ERn</td>
<td>1 ≤ n ≤ 3</td>
</tr>
<tr>
<td>JITTER</td>
<td>JTrn</td>
<td>1 ≤ n ≤ 2</td>
</tr>
<tr>
<td>CLOCK</td>
<td>CKn</td>
<td>1 ≤ n ≤ 4</td>
</tr>
<tr>
<td>FRAMING</td>
<td>FRn</td>
<td>1 ≤ n ≤ 2</td>
</tr>
<tr>
<td>ERROR ADD SINGLE SHOT</td>
<td>ES</td>
<td></td>
</tr>
</tbody>
</table>

3782B Switch Mnemonics

<table>
<thead>
<tr>
<th>SWITCH NAME</th>
<th>MNEMONIC</th>
<th>PARAMETER RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PATTERN</td>
<td>PTn</td>
<td>1 ≤ n ≤ 9</td>
</tr>
<tr>
<td>ZERO SUB. (VALUE)</td>
<td>ZVn</td>
<td>0 ≤ n ≤ 999</td>
</tr>
<tr>
<td>DATA/DATA</td>
<td>DOn</td>
<td>1 ≤ n ≤ 2</td>
</tr>
<tr>
<td>MEASUREMENT MODE</td>
<td>MMn</td>
<td>1 ≤ n ≤ 3</td>
</tr>
<tr>
<td>DISPLAY MODE</td>
<td>DMn</td>
<td>1 ≤ n ≤ 4</td>
</tr>
<tr>
<td>DATA INPUT</td>
<td>Din</td>
<td>1 ≤ n ≤ 7</td>
</tr>
<tr>
<td>SYNC</td>
<td>SYn</td>
<td>1 ≤ n ≤ 2</td>
</tr>
<tr>
<td>GATING PERIOD</td>
<td>GPn</td>
<td>1 ≤ n ≤ 10</td>
</tr>
<tr>
<td>BINARY/TERNARY</td>
<td>BTn</td>
<td>1 ≤ n ≤ 2</td>
</tr>
<tr>
<td>FRAMING</td>
<td>FRn</td>
<td>1 ≤ n ≤ 2</td>
</tr>
<tr>
<td>THRESHOLD</td>
<td>THn</td>
<td>0 ≤ n ≤ 15</td>
</tr>
<tr>
<td>MANUAL SYNC</td>
<td>MS</td>
<td></td>
</tr>
<tr>
<td>START</td>
<td>ST</td>
<td></td>
</tr>
<tr>
<td>STOP</td>
<td>SP</td>
<td></td>
</tr>
</tbody>
</table>

The following switches are not remotely controllable:

- POWER (ON/OFF)
- LOCAL (on front panel)
- HP-IB ADDRESS (on rear panel)
- TALK ONLY/ADDRESSABLE (3782B only)
- REAL TIME CLOCK (3782B only)
- LINE VOLTAGE SELECTOR
MASK DEFAULT VALUES

3781B Mask Default Values

<table>
<thead>
<tr>
<th>Mask Number</th>
<th>Meaning</th>
<th>Parameter Number</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Issue EOI concurrent with terminator.</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Do not issue EOI concurrent with terminator.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Do not SRO on command Syntax Error.</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Do not SRO on command Syntax OK.</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>SRO on command Syntax OK.</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Do not SRO when "LOCAL" pushbutton pressed.</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>SRO when "LOCAL" pushbutton pressed.</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

3782B Mask Default Values

<table>
<thead>
<tr>
<th>Mask Number</th>
<th>Meaning</th>
<th>Parameter Number</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MESSAGE SET._issue answers in Peripheral format.</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Issue answers in Controller format.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Do not issue answer at end of Gating Period.</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Issue answer at end of Gating Period only if rear-panel RESULT PRINT THRESHOLD switch is satisfied.</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Do not issue general control messages.</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Issue general control messages.</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Issue four answers at end of Gating Period.</td>
<td>7</td>
<td>see Note 1</td>
</tr>
<tr>
<td>4</td>
<td>(see Note 2). Issue just the answer indicated by DISPLAY MODE switch at end of Gating Period.</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>Do not prefix messages with Time.</td>
<td>9</td>
<td>see Note 1</td>
</tr>
<tr>
<td>5</td>
<td>Prefix messages with Time.</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>Use () as message terminator.</td>
<td>11</td>
<td>see Note 1</td>
</tr>
<tr>
<td>6</td>
<td>Use CR/LF as message terminator.</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>Issue EOI concurrent with terminator.</td>
<td>13</td>
<td>see Note 1</td>
</tr>
<tr>
<td>7</td>
<td>Do not issue EOI concurrent with terminator.</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>8</td>
<td>Do not issue Error Second messages.</td>
<td>15</td>
<td>see Note 1</td>
</tr>
<tr>
<td>8</td>
<td>Issue Error Second messages.</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>9</td>
<td>Do not prefix Error Rate answers in Controller format with status of "<100 ERRORS" LED.</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>9</td>
<td>Prefix Error Rate answers in Controller format with status of "<100 ERRORS" LED (see Note 3).</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

SERVICE REQUEST SET

<table>
<thead>
<tr>
<th>Mask Number</th>
<th>Meaning</th>
<th>Parameter Number</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Do not SRO when Error Second occurs.</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>10</td>
<td>SRO when Error Second occurs.</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Do not SRO on command errors.</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>11</td>
<td>SRO on command errors.</td>
<td>22</td>
<td>22</td>
</tr>
</tbody>
</table>
3782B Mask Default Values (continued)

<table>
<thead>
<tr>
<th>Mask Number</th>
<th>Meaning</th>
<th>Parameter Number</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Do not SRQ at end of normal Gating Period. SRQ at end of normal Gating Period only if rear panel RESULT PRINT THRESHOLD switch is satisfied (see Note 4).</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>13</td>
<td>Do not SRQ if Gating Period ends because of data integrity loss. SRQ if Gating Period ends because of data integrity loss.</td>
<td>24</td>
<td>25</td>
</tr>
<tr>
<td>14</td>
<td>Do not SRQ if Gating Period ends because of an invalid switch movement. SRQ if Gating Period ends because of an invalid switch movement.</td>
<td>26</td>
<td>27</td>
</tr>
<tr>
<td>15</td>
<td>Do not SRQ on command Syntax Error. SRQ on command Syntax Error.</td>
<td>28</td>
<td>29</td>
</tr>
<tr>
<td>16</td>
<td>Do not SRQ on command Syntax OK. SRQ on command Syntax OK.</td>
<td>30</td>
<td>31</td>
</tr>
<tr>
<td>17</td>
<td>Do not SRQ on loss/gain of data integrity. SRQ on loss/gain of data integrity.</td>
<td>32</td>
<td>33</td>
</tr>
<tr>
<td>18</td>
<td>Do not SRQ after each 24-hour period elapsed on internal clock. SRQ after each 24-hour period elapsed on internal clock.</td>
<td>34</td>
<td>35</td>
</tr>
<tr>
<td>19</td>
<td>Do not SRQ when "LOCAL" pushbutton pressed. SRQ when "LOCAL" pushbutton pressed.</td>
<td>36</td>
<td>37</td>
</tr>
</tbody>
</table>

RESTART SET

<table>
<thead>
<tr>
<th>Mask Number</th>
<th>Meaning</th>
<th>Parameter Number</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Automatically restart repetitive gating. Automatically restart repetitive gating unless rear panel RESULT PRINT THRESHOLD switch satisfied.</td>
<td>39</td>
<td>39</td>
</tr>
<tr>
<td>21</td>
<td>Do not restart gating following loss/gain of data integrity. Automatically restart gating following loss/gain of data integrity.</td>
<td>40</td>
<td>41</td>
</tr>
<tr>
<td>22</td>
<td>Do not hold-off automatic restart until output buffer empty. Hold-off automatic restart until output buffer empty.</td>
<td>42</td>
<td>43</td>
</tr>
<tr>
<td>23</td>
<td>Do not hold-off automatic restart until SRQ buffer empty. Hold-off automatic restart until SRQ buffer empty.</td>
<td>44</td>
<td>45</td>
</tr>
</tbody>
</table>

Note 1: Talk Only values of Masks 4 thru 8 are controlled by bits 0 thru 4 respectively, of the rear panel HP-IB ADDRESS switch. Position "1" of the switch selects the even value of parameter number.

Note 2: When the GATING PERIOD switch is set to SECONDS, EXTERNAL, or MANUAL and the BINARY INPUTS are used, only three answers are issued.

Note 3: If the "<100 ERRORS" annunciator is OFF, Error Rate answers are prefixed with character "0", if annunciator is ON, answers are prefixed with character "1". If Mask 5 is set to prefix messages with Time, the Time message comes before the "<100 ERRORS" annunciator character.

Note 4: "NORMAL END" means a non-abortive end, with the GATING PERIOD switch set to SECONDS, CLKS, or EXTERNAL.
SERVICE REQUEST CODES

3781B Service Request Codes

<table>
<thead>
<tr>
<th>Octal</th>
<th>Code Decimal</th>
<th>Hex</th>
<th>Meaning</th>
<th>Controlling Mask Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>1</td>
<td>01</td>
<td>NEUTRAL — ALL OK</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>64</td>
<td>40</td>
<td>Command Syntax Error In Line</td>
<td>2</td>
</tr>
<tr>
<td>101</td>
<td>65</td>
<td>41</td>
<td>Command Syntax of Line OK</td>
<td>3</td>
</tr>
<tr>
<td>102</td>
<td>66</td>
<td>4R</td>
<td>"LOCAL" push-button pressed</td>
<td>4</td>
</tr>
</tbody>
</table>

3782B Service Request Codes

<table>
<thead>
<tr>
<th>Octal</th>
<th>Code Decimal</th>
<th>Hex</th>
<th>Meaning</th>
<th>Controlling Mask Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>1</td>
<td>01</td>
<td>NEUTRAL — ALL OK</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>64</td>
<td>40</td>
<td>An Error—Second has occurred</td>
<td>10</td>
</tr>
<tr>
<td>101</td>
<td>65</td>
<td>41</td>
<td>Cannot start — "ERROR 1" displayed</td>
<td>11</td>
</tr>
<tr>
<td>102</td>
<td>66</td>
<td>42</td>
<td>Cannot start — "ERROR 2" displayed</td>
<td>11</td>
</tr>
<tr>
<td>103</td>
<td>67</td>
<td>43</td>
<td>Cannot start — "ERROR 3" displayed</td>
<td>11</td>
</tr>
<tr>
<td>104</td>
<td>68</td>
<td>44</td>
<td>Cannot start — "ERROR 4" displayed</td>
<td>11</td>
</tr>
<tr>
<td>105</td>
<td>69</td>
<td>45</td>
<td>End of Gating Period — Normal</td>
<td>12</td>
</tr>
<tr>
<td>106</td>
<td>70</td>
<td>46</td>
<td>End of Gating Period — Data Integrity Loss.</td>
<td>13</td>
</tr>
<tr>
<td>107</td>
<td>71</td>
<td>47</td>
<td>End of Gating Period — Invalid Switch Movement</td>
<td>14</td>
</tr>
<tr>
<td>110</td>
<td>72</td>
<td>4B</td>
<td>Command Syntax Error In Line</td>
<td>15</td>
</tr>
<tr>
<td>111</td>
<td>73</td>
<td>49</td>
<td>Command Syntax of Line OK</td>
<td>16</td>
</tr>
<tr>
<td>112</td>
<td>74</td>
<td>4A</td>
<td>Data Loss has occurred.</td>
<td>17</td>
</tr>
<tr>
<td>113</td>
<td>75</td>
<td>4B</td>
<td>AIS has occurred.</td>
<td>17</td>
</tr>
<tr>
<td>114</td>
<td>76</td>
<td>4C</td>
<td>Frame Sync Loss has occurred.</td>
<td>17</td>
</tr>
<tr>
<td>115</td>
<td>77</td>
<td>4D</td>
<td>Pattern Sync Loss has occurred</td>
<td>17</td>
</tr>
<tr>
<td>116</td>
<td>78</td>
<td>4E</td>
<td>Data integrity regained.</td>
<td>17</td>
</tr>
<tr>
<td>117</td>
<td>79</td>
<td>4F</td>
<td>A further 24-hours has elapsed on internal real-time clock.</td>
<td>18</td>
</tr>
<tr>
<td>120</td>
<td>80</td>
<td>50</td>
<td>"LOCAL" push-button pressed.</td>
<td>19</td>
</tr>
</tbody>
</table>
RESPONSE CODES

3781B Response Codes

<table>
<thead>
<tr>
<th>Switch</th>
<th>Byte Number</th>
<th>BITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PATTERN</td>
<td>1</td>
<td>0:3</td>
</tr>
<tr>
<td>DATA OUTPUT</td>
<td>8</td>
<td>0:2</td>
</tr>
<tr>
<td>ZERO SUB. (HUNDREDS)</td>
<td>3</td>
<td>0:3</td>
</tr>
<tr>
<td>ZERO SUB. (TEENS)</td>
<td>4</td>
<td>0:3</td>
</tr>
<tr>
<td>ZERO SUB. (UNITS)</td>
<td>5</td>
<td>0:3</td>
</tr>
<tr>
<td>ERROR ADD (FORMAT)</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>ERROR ADD (RATE)</td>
<td>10</td>
<td>0:1</td>
</tr>
<tr>
<td>JITTER</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>CLOCK</td>
<td>6</td>
<td>0:1</td>
</tr>
<tr>
<td>FRAMING</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>MASKS (1→4)</td>
<td>11→14</td>
<td>0</td>
</tr>
</tbody>
</table>

OUTPUT MESSAGES

(3782B only)

<table>
<thead>
<tr>
<th>Message</th>
<th>Controlling Mask (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>An Answer</td>
<td>1,2,4</td>
</tr>
<tr>
<td>ERROR SECOND</td>
<td>8</td>
</tr>
<tr>
<td>"NO ANSWER" (in response to CA, when no answer available - Peripheral format)</td>
<td>1</td>
</tr>
<tr>
<td>"+9.9999E + 99" (in response to CA, when no answer available - Controller format)</td>
<td>1</td>
</tr>
<tr>
<td>"< 100 ERRORS"</td>
<td>1,2,4</td>
</tr>
<tr>
<td>"START"</td>
<td>3</td>
</tr>
<tr>
<td>"STOP"</td>
<td>3</td>
</tr>
<tr>
<td>"RESTART"</td>
<td>3</td>
</tr>
<tr>
<td>"DATA LOSS"</td>
<td>3</td>
</tr>
<tr>
<td>"AIS"</td>
<td>3</td>
</tr>
<tr>
<td>"FRAME LOSS"</td>
<td>3</td>
</tr>
<tr>
<td>"PATTERN LOSS"</td>
<td>3</td>
</tr>
<tr>
<td>"RECOVERY"</td>
<td>3</td>
</tr>
<tr>
<td>"RUN ABORT"</td>
<td>3</td>
</tr>
<tr>
<td>"DAY N"</td>
<td>3</td>
</tr>
<tr>
<td>"POWER ON"</td>
<td>3</td>
</tr>
<tr>
<td>TIME (as prefix to message)</td>
<td>5</td>
</tr>
</tbody>
</table>

3782B Response Codes

<table>
<thead>
<tr>
<th>Switch</th>
<th>Byte Number</th>
<th>BITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PATTERN</td>
<td>1</td>
<td>0:3</td>
</tr>
<tr>
<td>ZERO SUB. (HUNDREDS)</td>
<td>3</td>
<td>0:3</td>
</tr>
<tr>
<td>ZERO SUB. (TEENS)</td>
<td>4</td>
<td>0:3</td>
</tr>
<tr>
<td>ZERO SUB. (UNITS)</td>
<td>5</td>
<td>0:3</td>
</tr>
<tr>
<td>DATA/DATA</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>MEASUREMENT MODE</td>
<td>7</td>
<td>0:1</td>
</tr>
<tr>
<td>DISPLAY MODE</td>
<td>9</td>
<td>0:1</td>
</tr>
<tr>
<td>DATA INPUT</td>
<td>6</td>
<td>0:2</td>
</tr>
<tr>
<td>SYNC</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>GATING PERIOD</td>
<td>10</td>
<td>0:3</td>
</tr>
<tr>
<td>BINARY/TERNARY INPUT</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>FRAMING</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>RESULT PRINT THRESHOLD</td>
<td>12</td>
<td>0:2,4</td>
</tr>
<tr>
<td>REAL TIME CLOCK</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>MASKS (1→23)</td>
<td>13→35</td>
<td>0</td>
</tr>
</tbody>
</table>

RESULT-PRINT THRESHOLD

(3782B only)

<table>
<thead>
<tr>
<th>Switch Position</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>Threshold satisfied only if ERROR RATE is worse than 1 OE-N</td>
</tr>
<tr>
<td>N - 13</td>
<td>Threshold satisfied only if one or more errors have occurred</td>
</tr>
<tr>
<td>N - 15</td>
<td>Threshold always satisfied.</td>
</tr>
</tbody>
</table>
For more information, contact your local HP Sales Office or —

In US: Call • East (301) 948-6370 • Midwest (312) 255-9800 • South (404) 955-1500 • West (213) 877-1262
Or, write Hewlett-Packard, 1501 Page Mill Road, Palo Alto, California 94304.

In Europe: Hewlett-Packard S.A., 7 rue du Bois-du-Lain, P.O. Box, CH-1217 Meyrin 2 • Geneva, Switzerland.
In Japan: Yokogawa-Hewlett-Packard Ltd., 29-21 Takaido-Higashi, 3-Chome, Suginami-Ku, Tokyo, 168, Japan.
OPERATING MANUAL

3781B
PATTERN GENERATOR
and
3782B
ERROR DETECTOR
(Including Options 001, 061 and 062)

SERIAL NUMBERS

This manual applies directly to instruments with serial numbers prefixed 2020U.

For additional important information about serial numbers see INSTRUMENTS COVERED BY MANUAL in Section I.

© Copyright HEWLETT-PACKARD LIMITED 1980
SOUTH QUEENSFERRY, WEST LoTHIAN, SCOTLAND

Manual Part Number: 03781-90001
Microfiche Part Number: 03781-90026

Printed: July 1980
WARNING

READ THE FOLLOWING NOTES BEFORE INSTALLING OR SERVICING THE INSTRUMENT.

1. IF THIS INSTRUMENT IS TO BE ENERGIZED VIA AN AUTO-TRANSFORMER MAKE SURE THAT THE COMMON TERMINAL OF THE AUTO-TRANSFORMER IS CONNECTED TO THE NEUTRAL POLE OF THE POWER SOURCE.

2. THE INSTRUMENT MUST ONLY BE USED WITH THE MAINS CABLE PROVIDED. IF THIS IS NOT SUITABLE, CONTACT YOUR NEAREST HP SERVICE OFFICE. THE MAINS PLUG SHALL ONLY BE INSERTED IN A SOCKET OUTLET PROVIDED WITH A PROTECTIVE EARTH CONTACT. THE PROTECTIVE ACTION MUST NOT BE NEGATED BY THE USE OF AN EXTENSION CORD (POWER CABLE) WITHOUT A PROTECTIVE CONDUCTOR (GROUNDING).

3. THE SERVICE INFORMATION FOUND IN THIS MANUAL IS OFTEN USED WITH POWER SUPPLIED TO AND PROTECTIVE COVERS REMOVED FROM THE INSTRUMENT. ENERGY AVAILABLE AT MANY POINTS MAY, IF CONTACTED, RESULT IN PERSONAL INJURY.

4. BEFORE SWITCHING ON THIS INSTRUMENT:

 (a) Make sure the instrument input voltage selector is set to the voltage of the power source.

 (b) Ensure that all devices connected to this instrument are connected to the protective (earth) ground.

 (c) Ensure that the line power (mains) plug is connected to a three-conductor line power outlet that has a protective (earth) ground. (Grounding one conductor of a two-conductor outlet is not sufficient).

 (d) Check that the instrument fuse(s) is of the correct type and rating.

5. SERVICING INFORMATION:

 (a) This manual contains information, cautions, and warnings which must be followed to ensure safe operation and to retain the instrument in safe condition. Service and adjustments should be performed only by qualified service personnel.

 (b) Any adjustment, maintenance, and repair of the opened instrument under voltage should be avoided as much as possible and, when inevitable, should be carried out only by a skilled person who is aware of the hazard involved.

 (c) Capacitors inside the instrument may still be charged even if the instrument has been disconnected from its source of supply.

 (d) Whenever it is likely that the protection has been impaired, the instrument must be made inoperative and be secured against any unintended operation.
LIST OF CONTENTS

SECTION I

GENERAL INFORMATION

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>INTRODUCTION</td>
<td>1-1</td>
</tr>
<tr>
<td>1-5</td>
<td>SPECIFICATIONS</td>
<td>1-1</td>
</tr>
<tr>
<td>1-7</td>
<td>SAFETY CONSIDERATIONS</td>
<td>1-1</td>
</tr>
<tr>
<td>1-10</td>
<td>INSTRUMENTS COVERED BY MANUAL</td>
<td>1-1</td>
</tr>
<tr>
<td>1-15</td>
<td>DESCRIPTION</td>
<td>1-2</td>
</tr>
<tr>
<td>1-21</td>
<td>Binary Errors.</td>
<td>1-2</td>
</tr>
<tr>
<td>1-23</td>
<td>Code Errors</td>
<td>1-2</td>
</tr>
<tr>
<td>1-26</td>
<td>Parity Errors</td>
<td>1-3</td>
</tr>
<tr>
<td>1-29</td>
<td>Jitter Modulation</td>
<td>1-3</td>
</tr>
<tr>
<td>1-32</td>
<td>PRBS Zero Substitution</td>
<td>1-3</td>
</tr>
<tr>
<td>1-34</td>
<td>Programmability</td>
<td>1-3</td>
</tr>
<tr>
<td>1-36</td>
<td>HEWLETT-PACKARD INTERFACE BUS (HP-IB)</td>
<td>1-3</td>
</tr>
<tr>
<td>1-37</td>
<td>Compatibility</td>
<td>1-3</td>
</tr>
<tr>
<td>1-41</td>
<td>Selecting the HP-IB Address</td>
<td>1-4</td>
</tr>
<tr>
<td>1-43</td>
<td>HP-IB Controllers</td>
<td>1-4</td>
</tr>
<tr>
<td>1-45</td>
<td>Printer</td>
<td>1-4</td>
</tr>
<tr>
<td>1-47</td>
<td>Real-Time Clock</td>
<td>1-4</td>
</tr>
<tr>
<td>1-49</td>
<td>DEFINITION OF TERMS</td>
<td>1-4</td>
</tr>
<tr>
<td>1-51</td>
<td>AMI</td>
<td>1-4</td>
</tr>
<tr>
<td>1-53</td>
<td>BER</td>
<td>1-4</td>
</tr>
<tr>
<td>1-55</td>
<td>Binary Data</td>
<td>1-4</td>
</tr>
<tr>
<td>1-57</td>
<td>RZ</td>
<td>1-4</td>
</tr>
<tr>
<td>1-59</td>
<td>NRZ</td>
<td>1-4</td>
</tr>
<tr>
<td>1-61</td>
<td>Bi-polar Violations</td>
<td>1-5</td>
</tr>
<tr>
<td>1-63</td>
<td>Codes</td>
<td>1-5</td>
</tr>
<tr>
<td>1-65</td>
<td>B3ZS</td>
<td>1-5</td>
</tr>
<tr>
<td>1-67</td>
<td>B6ZS</td>
<td>1-5</td>
</tr>
<tr>
<td>1-69</td>
<td>Delay Data</td>
<td>1-5</td>
</tr>
<tr>
<td>1-71</td>
<td>Error Add</td>
<td>1-5</td>
</tr>
<tr>
<td>1-74</td>
<td>PRBS</td>
<td>1-5</td>
</tr>
<tr>
<td>1-76</td>
<td>Recovered Clock</td>
<td>1-5</td>
</tr>
<tr>
<td>1-78</td>
<td>Ternary Data</td>
<td>1-5</td>
</tr>
<tr>
<td>1-80</td>
<td>Word</td>
<td>1-6</td>
</tr>
<tr>
<td>1-82</td>
<td>Synchronization</td>
<td>1-6</td>
</tr>
<tr>
<td>1-84</td>
<td>Zero Substitution</td>
<td>1-6</td>
</tr>
<tr>
<td>1-86</td>
<td>OPTIONS</td>
<td>1-6</td>
</tr>
<tr>
<td>1-90</td>
<td>ACCESSORIES SUPPLIED</td>
<td>1-6</td>
</tr>
<tr>
<td>1-92</td>
<td>ELECTRICAL EQUIPMENT AVAILABLE</td>
<td>1-6</td>
</tr>
</tbody>
</table>

Figure

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>3781B Pattern Generator and 3782B Error Detector</td>
<td>1-0</td>
</tr>
<tr>
<td>1-2</td>
<td>Serial Number Plate</td>
<td>1-1</td>
</tr>
<tr>
<td>1-3</td>
<td>Binary Errors</td>
<td>1-2</td>
</tr>
<tr>
<td>1-4</td>
<td>Code Errors</td>
<td>1-3</td>
</tr>
</tbody>
</table>
SECTION II
INSTALLATION

Paragraph
2.1 INTRODUCTION ... Page 2-1
2.3 INITIAL INSPECTION 2-1
2.5 PREPARATION FOR USE 2-1
2.6 Power Requirements 2-1
2.8 Line Voltage Selection 2-1
2.10 Power Cord ... 2-2
2.12 HP-IB Address Selection 2-3
2.15 Interconnections .. 2-3
2.17 Mating Connectors .. 2-3
2.20 Operating Environment 2-5
2.22 RACK MOUNTING ... 2-5
2.25 STORAGE AND SHIPMENT 2-6
2.26 Environment ... 2-6
2.28 Repackaging for Shipment 2-6

Figure
2.1 Line Voltage Selection 2-1
2.2 Power Cable and Mains Plug Part Numbers 2-2
2.3 HP-IB Address Switches 2-3
2.4 Hewlett-Packard Interface Bus Connection 2-3
2.5 Rack Mounting ... 2-5

Table
2-1 Fuses ... 2-2
2-2 Allowable HP-IB Address Codes 2-4

SECTION III
OPERATION

Paragraph
3.1 INTRODUCTION ... Page 3-1
3.4 POWER CONTROLS AND CONNECTORS 3-1
3.7 3781B Pattern Generator CONTROLS, CONNECTORS AND INDICATORS ... 3-2
3.8 Front-Panel Description 3-2
3.9 Rear-Panel Description 3-3
3.10 3782B Error Detector CONTROLS, CONNECTORS AND INDICATORS .. 3-3
Figure 1-1 3781B Pattern Generator and 3782B Error Detector
SECTION I
GENERAL INFORMATION

1-1 INTRODUCTION

1-2 This Operating Manual contains information required to install, check and operate the Hewlett-Packard Models 3781B Pattern Generator and 3782B Error Detector. Figure 1-1 shows the 3781B, 3782B and accessories supplied.

1-3 Supplied with the instruments are separate Service Manuals – for use by the maintenance engineer. This Operating Manual should be kept with the instrument for use by the operator. Additional copies of 3781B/3782B publications may be ordered through your nearest Hewlett-Packard Office.

1-4 On the title page of this manual, below the manual part number, is a Microfiche part number. This number can be used to order this manual in 4 x 6-inch microfilm transparency, each transparency contains up to 96 photoduplicates of the manual pages. The Microfiche package also includes the latest Manual Changes supplement as well as all pertinent Service Notes.

1-5 SPECIFICATIONS

1-6 Instrument specifications are listed in Table 1-1. These specifications are performance standards or limits, against which the instrument is tested.

1-7 SAFETY CONSIDERATIONS

1-8 The HP Models 3781B Pattern Generator and 3782B Error Detector are Safety Class 1 (IEC) instruments. These instruments have been designed according to international safety standards. The instruments and manuals should be reviewed for safety markings and instructions before operation.

1-9 This manual contains information, cautions and warnings which must be followed by the user to ensure safe operation and retain the instruments in a safe condition.

Refer to Service Manual: This symbol on the instrument means the user must refer to the instrument’s Service Manual to protect the instrument from damage.

Protective Earth Ground: Indicates protective earth ground terminal of the A.C. power source or the instrument. All exposed metal surfaces on the instrument must connect to a protective earth ground terminal.

Frame or Chassis Terminal: This symbol identifies a terminal that is normally common to all exposed metal surfaces on the instrument.

WARNING

The WARNING sign denotes a hazard to the operator. It calls attention to a procedure, practice, or the like, which, if not correctly performed or adhered to, could result in injury or loss of life. Do not proceed beyond a WARNING sign until the indicated conditions are fully understood and met.

CAUTION

The CAUTION sign denotes a hazard to the instrument. It calls attention to an operating or maintenance procedure, practice, or the like, which, if not correctly performed or adhered to, could result in damage to or destruction of part or all of the instrument. Do not proceed beyond a CAUTION sign until the indicated conditions are fully understood and met.

1-10 INSTRUMENTS COVERED BY MANUAL

1-11 Attached to the rear-panel of the instrument is a serial number plate. The serial number plate has a four-digit serial prefix, a reference letter denoting country of origin (U = United Kingdom) and a five-digit serial number. The serial prefix is the same for all identical instruments, it changes only when a change is made to the instrument. The serial number is unique to each instrument.

![Figure 1-2 Serial Number Plate](image-url)
1-12 The contents of this manual apply directly to all instruments with a serial number prefix listed under SERIAL NUMBERS on the title page. An instrument manufactured after the printing of this manual may have a serial number prefix that is not listed on the title page. This unlisted serial number prefix indicates that the instrument is different from those described in this manual. The Service Manuals for these instruments are supplied with a blue Manual Changes supplement, which contains the change information that documents the differences and explains how to adapt these manuals to the newer instruments.

1-13 In addition to change information, the Manual Changes supplement may contain information for correcting errors in the manuals. To keep this manual as current and as accurate as possible, Hewlett-Packard recommends that you periodically request the latest Manual Changes supplement — quoting this manual's print date and part number (both of which appear on the title page). Complementary copies of the supplement are available from Hewlett-Packard.

1-14 For information concerning a serial number prefix which is not listed on the title page or in a Manual Changes supplement, contact your nearest Hewlett-Packard Office.

1-15 DESCRIPTION

1-16 The HP Models 3781B Pattern Generator and 3782B Error Detector comprise an error performance measurement system dedicated to the testing and evaluation of digital transmission terminal and link equipment up to and including DS-3 level (44.736Mb/s) in the BELL digital hierarchy.

1-17 Both instruments are microprocessor based and HP-IB* compatible thus allowing operational simplicity and measurement flexibility. (*HP-IB — Hewlett-Packard Interface Bus — is Hewlett-Packard’s implementation of IEEE Standard 488-1978.)

1-18 The 3781B and 3782B operate at the DS-1, DS-1C, DS-2 and DS-3 levels in the digital hierarchy. The 3781B also contains jitter modulation as a standard feature. At the DS-3 level, four different configurations are provided, enabling the instruments to interface at all locations in the DS-3 network.

- **DS-3 (HI)** — the waveform found at the DS-3 multiplexer output.
- **DSX-3** — the standard waveform found at the cross-connect bay.
- **DS-3 (MON)** — which is the same signal as DS-3 (HI) but with 13.8 dB flat loss (ie., the 3782B input has 13.8 dB flat gain).
- **DS-3 (LO)** — which is equivalent to a DSX-3 signal having passed through approximately 450 feet of Type 728A Cable. (This simulates the distorted signal found at the input to the receiving equipment in a DS-3 System.)

1-19 At the other hierarchy levels, the instruments may be connected at the standard cross-connect bay. In addition, the instruments can operate at any bit rate in the range 1kb/s to 50Mb/s using external clock and, binary clock and data interfaces in ECL format.

1-20 The 3781B/3782B system measures binary errors, code errors and parity errors in a digital system.

1-21 Binary Errors

1-22 The 3781B transmits a digital pattern at the selected rate with correct framing structure (if required), appropriate ternary coding and interface voltage levels automatically applied. Simultaneously, the 3782B compares the output from the system under test with a separate internally generated error-free pattern (identical to the 3781B pattern). This comparison is made at the binary level after any interface ternary coding and frame structure have been removed. Differences between the two patterns are counted over a selected gating period and displayed in one of four modes — error rate (error ratio), error count, error seconds or error free seconds. (Figure 1-3 shows binary error detection.)

![Binary Errors Diagram](image)

Figure 1-3 Binary Errors

1-23 Code Errors

1-24 The 3782B monitors interface or line-coded information for code errors. These errors are detected during decoding into binary data and counted and displayed in the same way as binary errors.
1-25 Binary information is nearly always coded before it reaches the digital transmission line. In the BELL System, the codes are:

<table>
<thead>
<tr>
<th>Transmission Line</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1, T1C</td>
<td>AMI (Alternate Mark Inversion)</td>
</tr>
<tr>
<td>T2</td>
<td>B62S (Bi-polar with 6 Zero Substitution)</td>
</tr>
<tr>
<td>T3</td>
<td>B32S (Bi-polar with 3 Zero Substitution)</td>
</tr>
</tbody>
</table>

The 3782B detects violations in the following manner:

![Figure 1-4 Code Errors](image)

Figure 1-4 shows that code errors may not be an accurate measure of the error performance of a digital transmission system.

1-26 Parity Errors

1-27 At the DS-3 level in the BELL System digital hierarchy, two frame bits are used to indicate the link performance. The digital sum of the information bits in one frame is used to set two frame bits in the following frame to either 11 or 00 (depending on whether the digital sum was even or odd respectively). At the receiving end of the link, the digital sum of the received information bits can be re-calculated and compared to the value indicated by the corresponding parity bits in the following frame. A difference causes a parity error, i.e., the maximum parity error rate is 1 per frame.

1-28 The measurement of parity errors does not require the use of a 3781B Pattern Generator and can be made on live traffic at the DS-3 level. This allows the 3782B to become an in-service measuring instrument for maintenance and surveillance — especially when used in conjunction with its HP-IB capability.

1-29 Jitter Modulation

1-30 The 3781B has the built-in facility of applying a controlled amount of jitter to the output bit stream (using a simple external modulating signal source). This is displayed as jitter amplitude (in bits peak-to-peak) on a 4-digit LED display which flashes when the jitter is out-of-range. The frequency and amplitude of jitter depends on the frequency and amplitude respectively of the modulating signal. The resultant effect of the jitted data stream on the transmission system can be measured by the 3782B in terms of error performance.

1-31 This feature is particularly useful in simulating real traffic conditions since jitter tends to accumulate as a function of the length of a digital link due to the action of digital regenerators. Jitter impairments also become more noticeable as the bit rate increases. The jitter modulation facility thus allows the jitter tolerance of PCM equipment to be tested.

1-32 PRBS Zero Substitution

1-33 This allows the PRBS to be gated off for a number of clock periods determined by the setting of the PRBS ZERO SUBSTITUTION switch. Gating occurs every sequence following the PRBS trigger pulse. By measuring the error performance, using PRBS patterns with zero substitution, the pattern sensitive parts of a system can be examined — for example, regenerator clock recovery circuits.

1-34 Programmability

1-35 The Pattern Generator and Error Detector are completely programmable via the Hewlett-Packard Interface Bus (HP-IB). This, coupled with the diversity of measurements the Pattern Generator/Error Detector combination can make, makes the instruments ideal for ‘systems’ applications.

1-36 HEWLETT-PACKARD INTERFACE BUS (HP-IB)

1-37 Compatibility

1-38 The extent to which the instruments are compatible with the HP-IB is given by the following list of interface functions:

Pattern Generator: SH1, AH1, T6, L4, SR1, RL1, DC1
Error Detector: SH1, AH1, T5, L4, SR1, RL1, DC1

1-39 The instruments interface with the HP-IB via open-collector TTL circuitry. An explanation of the implementation code may be found in IEEE Standard 488 “IEEE Standard and Digital Interface for Programmable Instrumentation”, or the identical ANSI Standard MC1.1.
1-41 Selecting the HP-IB Address

1-42 The HP-IB ADDRESS switches are located on the rear-panels of the 3781B and 3782B. The switches represent a five-digit binary number. This number represents the talk and listen address characters which an HP-IB Controller can generate. Table 2-2 (in Section II) shows all HP-IB talk and listen addresses. Also refer to HP-IB ADDRESS SELECTION (Paragraph 2-12).

1-43 HP-IB Controllers

1-44 The HP-IB interface enables the 3781B and 3782B to be used with any HP-IB compatible Computing Controller or Computer for automatic 'systems' applications.

1-45 Printer

1-46 An HP-IB compatible Printer may be connected to the 3782B for either the 'Talk Only' or 'Addressable' modes.

1-47 Real-Time Clock

1-48 The 3782B has a built-in, crystal-controlled, real-time clock. This permits peripheral devices to receive timed messages from the 3782B.

1-49 DEFINITION OF TERMS

1-50 The following paragraphs give brief definitions of terms which relate to the functions of the instrument and are commonly used in this manual.

1-51 AMI

1-52 Alternate Mark Inversion (often called “bi-polar” coding) is a form of ternary data in which data “marks” (normally representing ‘1’s) are alternatively positive and negative. The main advantages of this basic code are that the average dc potential on the line is zero and, that this code can be used to detect if one data bit has been changed during transmission (as two consecutive bits would then have the same polarity). (See Figure 1-5.)

1-53 BER

1-54 Bit Error Rate (or Bit Error Ratio) is the ratio of the number of errors detected to the total number of clock periods measured over a selected gating period.

1-55 Binary Data

1-56 Data ‘ones’ and ‘zeros’ are represented by a two-level signal (see RZ and NRZ).

1-57 RZ

1-58 Return-to-Zero data is at the ‘one’ level for the duration of the clock mark and returns to ‘zero’ for the duration of the clock space. This is the format used for ternary data interface in the 3781B/3782B. (See Figure 1-6.)

1-59 NRZ

1-60 Non-Return-to-Zero data remains at the ‘one’ level for the whole clock period. The data level is continuous between consecutive ‘ones’. This is the format used for binary data interfaces in the 3781B/3782B. (See Figure 1-7.)
1-61 Bi-polar Violations

1-62 Bi-polar violations are violations of the AMI coding rule in which two consecutive marks have the same polarity. A bi-polar violation is normally designated “V”. (See Figure 1-8).

1-63 Codes

1-64 Refinements of the AMI code in which long sequences of zeros are eliminated by substituting a fixed pattern for the sequence of zeros. The substitution allows the clock signal to be more easily recovered from the data when long runs of zeros occur. The codes referred to in this manual are B3ZS and B6ZS.

1-65 B3ZS

1-66 Bi-polar with 3-Zeros Substitution is a pseudo-ternary code in which a specific pattern is substituted for each block of three consecutive zeros in the data stream. The substituted code is either “00V” or “B0V” (where “V” is a bi-polar violation and “B” is an extra bi-polar mark). The choice depends on the number of marks (“n”) since the last “V” – as they must alternate in polarity in order to maintain the average dc content at zero. Hence, “00V” is used when “n” is odd and “B0V” when “n” is even.

1-67 B6ZS

1-68 Bi-polar with 6-Zeros Substitution – similar to B3ZS, but the substitution is made for each block of six consecutive zeros in the data stream. In this case, the substitution is always “0VB0VB” where “V” is a bi-polar violation and “B” is an extra bi-polar mark. Since two “V’s” are introduced of opposing polarity, the average dc content is maintained at zero.

1-69 Delayed Data

1-70 As applied to these instruments, delayed data is data which is delayed by 22 bits from normal data.

1-71 Error Add

1-72 Binary data bits changed to produce an error without increasing the sequence length. The errors introduced take the form of the complement of 1 data bit in each 10^6 bits or single-shot errors.

1-73 Coded data bits are changed to produce a code error without increasing the sequence length or the binary error rate. The errors introduced take the form of a positive mark changed to a negative mark or vice-versa. This results in code errors. The 3782B measures code errors as defined below.

AMI - two consecutive marks of the same polarity i.e., a bi-polar violation (“V”).
B3ZS - 000, 1V and 010V.
B6ZS - 0V0, 1V0, 1V1 and 000000.

1-74 PRBS

1-75 A PRBS (Pseudo Random Binary Sequence) is a repetitive sequence 2^n-1 bits long generated by an n-stage shift register with modulo-two gating. For example, a 9-stage shift register produces a sequence 2^9-1 (or 511) bits long.

1-76 Recovered Clock

1-77 The Error Detector clock signal is recovered from the ternary input data.

1-78 Ternary Data

1-79 “One” and “zero” are represented by a three-level signal. Ternary data is a general term which includes AMI and the codes described in this section. All of these are more correctly described as “pseudo-ternary” codes, as positive and negative marks mean the same thing.
1-80 Word

1-81 A repetitive fixed sequence.

1-82 Synchronization

1-83 In order to function correctly, the 3782B Error Detector must have:

- bit synchronization — recovered clock from input data or correctly phased external clock and binary data.
- pattern synchronization — the reference pattern must be in phase with the input data pattern.
- frame synchronization — the framing bits must be correctly detected in order to separate the pattern data bits from the composite frame.

1-84 Zero Substitution

1-85 Zeros are substituted for part of the PRBS without increasing the sequence length. The zeros overwrite a section of the pattern. (See Figure 1-9.)

1-87 Option 001 (3781B Only) provides four DSX-3 outputs on the rear panel (via BNC connectors). With this option, the front-panel WECO Type 440A connectors are also replaced by BNC connectors.

1-88 Option 061 Basic Rack Mount Kit. If this kit was not ordered with the original shipment and is now desired, it can be ordered from your nearest Hewlett-Packard Office. (03771-20056 for 3781B and 3782B.)

1-89 Option 062 Rack Mount Kit enables front-panel control of some rear-panel switches and inputs/outputs. (Consequently, the 3781B and 3782B Option 062 Rack Mount Kits have different part numbers.)

3781B Option 062 enables the four rear-panel DSX-3 OUTPUTS (Option 001) to be accessed from the front panel.

3782B Option 062 enables the rear-panel BINARY/TERNARY and REAL-TIME CLOCK switches and the BINARY CLOCK, BINARY DATA and EXTERNAL GATING INPUTS to be accessed from the front panel.

These rack mount kits can be ordered from your nearest Hewlett-Packard Office. (03781-20042 for 3781B and 03782-20041 for 3782B.)

1-90 ACCESSORIES SUPPLIED

1-91 Figure 1-1 shows the HP Models 3781B, 3782B and the accessories supplied. The accessories supplied comprise:

- Storage Covers (which house In-lid Instructions)
- Power Cables
- Extender Boards (one per instrument)

1-92 ELECTRICAL EQUIPMENT AVAILABLE

1-93 HP-IB Controllers

1-94 The 3781B Pattern Generator and 3782B Error Detector have an HP-IB interface and can be used with any HP-IB Computing Controller or Computer for automatic 'systems' applications.

1-95 Printer

1-96 An HP-IB compatible Printer (eg., HP Model 5150A Option 001) can be connected to the 3782B to provide a hard-copy print-out of measurement results.

1-97 Cartridge Tape Unit

1-98 The HP Model 9875A Cartridge Tape Unit can be connected, via the HP-IB, to the 3782B to collect result data.
Table 1-1 Specifications

Except where otherwise indicated, the following parameters are warranted performance specifications. Parameters described as "typical" or "nominal" are supplemental characteristics which provide a useful indication of typical, but non-warranted, performance characteristics.

3781B Pattern Generator

DATA OUTPUTS

DSX-1, DSX-1C, DSX-2, and DS-3 compatible ternary outputs, and ECL compatible binary outputs.

DSX-1 Output — Bell standard cross-connect waveform meeting CCITT Rec. G.703 para. 1 (see Page 1-13).

- **Bit Rate**: 1.544 Mbit/s (tolerance — see Internal Clock).
- **Data Structure**: max of 14 consecutive zeros permitted regardless of pattern selection.
- **Format**: coded AMI.
- **Impedance**: nominal 110Ω balanced to GND.
- **Connector**: WECO type 310A.
- **Amplitude**: 5V ± 0.25V pk.
- **+ve/-ve Amplitude Unbalance**: less than 0.15V.
- **Width** (at half amplitude): 324 ns ± 30 ns.
- **+ve/-ve Width Unbalance**: less than ± 5 ns.
- **Transition Times** (10% to 90%): < 50 ns.
- **Trailing Edge Overshoot**: 10% to 30% of pulse amplitude, decaying to < 10% of base line-to-peak value in < 400 ns.

DSX-1C Output — Bell standard cross-connect waveform of nominally rectangular shape (see Page 1-13).

- **Bit Rate**: 3.152 Mbit/s (tolerance — see Internal Clock).
- **Width** (at half amplitude): 159 ns ± 20 ns.
- **Transition Times** (20% to 80%): < 50 ns.

Other specifications same as DSX-1 Output.

DSX-2 Output — Bell standard cross-connect waveform meeting CCITT Rec. G.703 para. 2 (see Page 1-13).

- **Bit Rate**: 6.312 Mbit/s (tolerance — see Internal Clock).
- **Format**: coded 862S.
- **Impedance**: nominal 110Ω balanced to GND.
- **Connector**: WECO type 310A.
- **Shape**: meets Bell standard mask.

DS-3 — Bell standard interface waveforms available on two separate outputs.

DS-3 Output

- **Bit Rate**: 44.736 Mbit/s (tolerance — see Internal Clock).
- **Format**: coded B8ZS.
- **Impedance**: nominal 75Ω unbalanced to GND.
- **Connector**: WECO type 440A,
- **Amplitude**: 3 switch-selectable settings HI, DSX-3, LO.

- **DS-3 HI**: amplitude, 900mV ± 1 dB pk; width (at half amplitude): 11.2 ns ± 1.1 ns; transition times, 4.5 ns ± 1.5 ns; overshoot/undershoot, < 10% of pulse amplitude.
- **DSX-3**: Bell standard cross-connect waveform meeting CCITT Rec. G.703 para. 4 (see Page 1-13), corresponds to DS-3 HI signal passed through equivalent of 450 ft of WECO type 728A cable.
- **DS-3LO**: corresponds to DSX-3 signal passed through equivalent of further 450 ft of WECO type 728A cable.

Delayed DS-3 Output

- **Delay**: 22 bits.

Other specifications same as DS-3 Output.

Data Monitor Output

Data: same as DSX-1, DSX-1C, DSX-2, DS-3 Outputs, but preceding them by 4 bits.

- **Format**: binary NRZ with framing bits.
- **Impedance**: nominal low unbalanced to GND.
- **Connector**: BNC.
- **Amplitude**: nominal ECL levels.
- **External Load**: 50Ω into –2V, dc coupled; 50Ω into GND, ac coupled.
- **Protection**: 100 mA fuse.

CLOCK

Internal Clock

- **Frequency**: four crystal-controlled clocks at 1.544 MHz (DS-1), 3.152 MHz (DS-1C), 6.312 MHz (DS-2) and 44.736 MHz (DS-3).
- **Accuracy**: settling tolerance better than ± 3 ppm at ambient temperature.
- **Stability**: typically better than ± 12 ppm, 0°C to 56°C; typically better than ± 5 ppm/year aging.

External Clock

- **Frequency**: 1 kHz to 50 MHz.
- **Impedance**: nominal 75Ω unbalanced.
- **Connector**: BNC.
- **Termination**: GND or –2V, nominal levels.
- **Triggering**: 8 ns min. pulse width, choice of AUTO, GND or ECL nominal thresholds.
- **Sensitivity**: better than 500 mV pk-pk.
- **Amplitude**: 5V pk-pk max. within limits of ± 5V.
- **Indicator**: LED illuminated if clock transitions present.

Clock Monitor Output

- **Source**: internal or external clock.
- **Format**: continuous.
- **Impedance**: nominal low unbalanced to GND.
- **Connector**: BNC.
- **Amplitude**: nominal ECL levels.
- **External Load**: 50Ω into –2V, dc coupled; 50Ω into GND, ac coupled.
- **Protection**: 100 mA fuse.
PATTERNS

PRBS

Polynomials: $2^8 - 1$ to CCITT Rec. V.52 $(D^8 + D^7 + 1 = 0)$; $2^{14} - 1$ to CCITT Rec. 0.151 $(D^{14} + D^9 + 1 = 0)$; $2^{28} - 1$ to Bell standards $(D^{28} + D^{15} + 1 = 0)$.

WORD

Fixed Patterns: 0000, 1000, 1010, 1100, 1111; 17/15 (17 ones, 15 zeros). AIS — Alarm Indication Signal (all ones without framing bits).

Zero Substitution (PRBS only)

Sequence can be gated off for a number of clock periods, variable over the range 0 to 999 in unit steps. Gating occurs every sequence 6 bits after the PRBS trigger pulse, when viewed at the Data Monitor Output.

Framing

Framing and control bits are added to the output pattern according to the bit rate selected (DS-1, DS-1C, DS-2 or DS-3). Framing may be inhibited by a switch.

Zero Limit

When the DS-1 or DS-1C bit rates are selected, the max. run length of zeros in the output pattern is limited to 14.

Error Add

Binary or code errors are added as an error rate of 10^{-5} or a single error via a push-button switch.

Notes. (a) binary errors are inserted after parity generation in the case of DS-3 framing thus causing a parity error.
(b) AML code errors do not cause binary errors (ie. the +ve mark changes to -ve mark and vice-versa).
(c) binary or code errors do not violate the 14 zero limit rule which may result in a modified added error rate.

JITTER MODULATION

Timing jitter can be added to the clock and data output signals by applying an external modulating source. The typical jitter amplitude/frequency response available is shown below for constant modulation input amplitude.

TRIGGER OUTPUTS

Pattern Trigger Output

Format: one pulse every PRBS or WORD.
Position (with respect to Data Monitor Output): for DS-2 and DS-3, nominally coincident with bit preceding longest run of zeros in PRBS, or with 2nd bit of 4-bit WORD, or with 9th zero in 17/15 pattern, for DS-1 and DS-1C, nominally 15 bits before equivalent DS-2 and DS-3 position.

Impedance: nominal 50 Ohms unbalanced to GND.
Connector: BNC.

Jitter Modulation Input

Frequency Range: dc to 5% of bit rate (DS-1, DS-1C, DS-2); dc to 2.5% of bit rate (DS-3).

Impedance: nominal 50 Ohms unbalanced to GND.
Connector: BNC.

Sensitivity: nominal 2 bits/2V (pk-pk figures at 5 Hz for DS-1, DS-1C, DS-2); nominal 4 bits/2V (pk-pk figures at 6 Hz for DS-3).

Display: AB.CD LED display of pk-pk jitter (bits); flashes when out of range; valid for periodic modulating frequencies down to 5 Hz; accurate to ± 1% ± 0.1 bits.

Jitter Output Amplitude: 10-10 bits pk-pk max. (DS-1, DS-1C, DS-2); 20-20 bits pk-pk max. (DS-3).
Frame Trigger Output

Format: one pulse per frame.

Position (delayed by 4 bits with respect to Data Monitor Output): for DS-1C, DS-2, DS-3, nominally 4 bits before M_2 position; for DS-1, nominally 4 bits before P bit in frame 1 of the multiframe.

Width: one clock period.

Other specifications same as Pattern Trigger Output.

HP-IB FACILITIES

General

Mode: "ADDRESSABLE" only.

LOCAL Switch: allows switching from "remote" to "local" control, except when the controller has issued a "local lockout" command.

Flags: Local, Remote, Listen, Talk, SRO.

Implementation:
- SH1 (complete capability): AH1 (complete capability);
- T6 (basic talker, serial poll, unaddress if MLA);
- TE0 (no capability);
- L4 (basic listener, unaddress if MTA);
- LE0 (no capability);
- SR1 (complete capability);
- RL1 (complete capability);
- PP0 (no capability);
- DC1 (complete capability);
- DT0 (no capability);
- C0 (no capability).

Controlling Masks

To permit flexibility in the use of the 3781B, some operating parameters are governed by "masks". At power-on, these masks are given default values which may be overwritten in the local and remote states. Full details are given in the 3781B/3782B HP-IB Users Guide or Operating Manual.

ADDRESSABLE Mode

Scope: used when 3781B operates with an external controller, allows control of all switches except Power, Line Voltage Selection, Local and HP-IB Address.

Functions: overwrite a slide-switch or pushbutton; request the current jitter amplitude display; request the current external clock status; request the current switch positions and masks; load the switch positions and masks; "local lockout" facility; power-on reset; service requests controllable by masks.

3782B Error Detector

DATA INPUTS

DSX-1, DSX-1C, DSX-2, and DSX-3 compatible ternary inputs and ECL compatible binary inputs (rear panel).

DSX-1 Input — Bell standard cross-connect waveform meeting CCITT Rec. G.703 para. 1 (see Page 1-13).

- **Bit rate:** 1.544 Mbps ± 50 ppm.
- **Data Structure:** max of 14 consecutive zeros permitted regardless of input pattern.
- **Format:** coded AMI.
- **Polarity:** DATA or DATA, switched at binary level.
- **Impedance:** nominal 110Ω balanced to GND.
- **Connector:** WECO type 310A.
- **Triggering:** fixed level.
- **Sensitivity:** accepts Bell standard cross-connect waveform.
- **Indicator:** LED illuminated if data transitions present.

DSX-1C Input — Bell standard cross-connect waveform of nominally rectangular shape (see Page 1-13).

- **Bit Rate:** 3.152 Mbps ± 50 ppm.
- Other specifications same as DSX-1.

DSX-2 Input — Bell standard cross-connect waveform meeting CCITT Rec. G.703 para. 2 (see Page 1-13).

- **Bit Rate:** 6.312 Mbps ± 30 ppm.
- **Format:** coded B6ZS.
- **Polarity:** DATA or DATA switched at binary level.
- **Impedance:** nominal 110Ω balanced to GND.
- **Connector:** WECO type 310A.
- **Triggering:** fixed level with equalization.
- **Sensitivity:** accepts Bell standard cross-connect waveform.
- **Indicator:** LED illuminated if data transitions present.

DS-3 Input — Bell standard interface waveforms.

- **Bit Rate:** 44.736 Mbps ± 20 ppm.
- **Format:** coded B3ZS.
- **Polarity:** DATA or DATA switched at binary level.
- **Impedance:** nominal 75Ω unbalanced to GND.
- **Connector:** WECO type 440A.
- **Triggering:** fixed level with or without equalization as appropriate (see below).
- **Sensitivity:** 4 selectable settings H1, DSX-3, LO, MON.
- **DS-3 H1:** amplitude, 0.001 mV ± 1 dB pk; width (at half amplitude), 11.2 ns ± 1.1 ns; transition times, 4.5 ns ± 1.5 ns; overshoot/undershoot, <10% of pulse amplitude.
- **DSX-3:** Bell standard cross-connect waveform meeting CCITT Rec. G.703 para. 4 (see Page 1-13), corresponds to DS-3 H1 signal passed through equivalent of 450 ft of WECO type 728A cable.
- **DS-3LO:** corresponds to DSX-3 signal passed through equivalent of a further 450 ft of WECO type 728A cable.
- **DS-3 MON:** same as DS-3H1 but with 13.8 dB of attenuation.
- **Indicator:** LED illuminated if data transitions present.
Ternary Data Input Jitter Tolerance

The DSX-1, DSX-1C, DSX-2, and DS-3 data inputs operate without error in the presence of a signal with a jitter content within the nominal mask shown below.

CLOCK

Recovered Clock

Frequency: recovered from ternary data inputs at 1.544 MHz (DS-1), 3.152 MHz (DS-1C), 6.312 MHz (DS-2) and 44.736 MHz (DS-3).

Binary Clock Input (rear panel, switch selected)

Frequency: 1 kHz to 50 MHz.
Impedance: nominal 50Ω unbalanced.
Connector: BNC.
Termination: nominal –2V.
Amplitude: nominal ECL levels.

Clock Monitor Output

Source: recovered clock from Ternary Data Inputs or rear-panel Binary Clock Input.
Format: continuous or gated when using framing.
Impedance: nominal low unbalanced to GND.
Connector: BNC.
Amplitude: nominal ECL levels.
Duty Cycle: nominal 50% on recovered clock.
External Load: 50Ω into –2V, dc coupled; 50Ω into GND, ac coupled.
Protection: 100 mA fuse.

PATTERNS

PRBS

Polynomials: $2^8 - 1$ to CCITT Rec. V.52 (D^9 + D^8 + 1 = 0); $2^{15} - 1$ to CCITT Rec. 0.151 (D^16 + D^8 + 1 = 0); $2^{25} - 1$ to Bell standards (D^28 + D^11 + 1 = 0).

WORD

Fixed Patterns: 0000, 1000, 1010, 1100, 1111; 17/15 (17 ones, 15 zeros).

Zero Substitution (PRBS only)

Sequence can be gated off for a number of clock periods, variable over the range 0 to 999 in unit steps. Gating occurs every sequence following the PRBS trigger. For unambiguous synchronization, the zero block should be limited to 250 zeros on $2^8 - 1$ PRBS. The display will flash repeatedly as a warning if 250 or more zeros are selected with this pattern.

Zero Limit

When the DS-1 or DS-1C bit rates are selected, the max. run length of zeros in the reference pattern is limited to 14.

DATA OUTPUTS

Data Monitor Output

Source: decoded ternary, or binary, input data.
Format: binary NRZ without framing bits.
Impedance: nominal low unbalanced to GND.

Connector: BNC.
Amplitude: nominal ECL levels.
 External Load: 50Ω into –2V, dc coupled; 50Ω into GND, ac coupled.
Protection: 100 mA fuse.
SYNCHRONIZATION

Manual or automatic (for bit rate > 30 kb/s) are provided.

Frame Sync

When framing and control bits are present in the input data, the 3782B will synchronize onto the frame pulses and remove them from the input data. Framing may be inhibited by a switch.

DS-1 Frame Sync Loss: 3 out of 8 F1 bits in error.
Multiframe Sync Loss: 2 consecutive Fg bits in error.
Frame Sync Gain: 12 correct F1 bits.
Multiframe Sync Gain: 12 correct Fg bits.

DS-1C F Frame Sync Loss: 3 out of 15 F1 bits in error.
M Frame Sync Loss: 2 of 3 M1, M2, M3 (0111) sequences in error.
F Frame Sync Gain: 15 consecutive F1 bits correct.
M Frame Sync Gain: 2 consecutive M1, M2, M3 (0111) sequences correct.

DS-2 Sync Loss: same as DS-1C.
Sync Gain: same as DS-1C.

DS-2 C Frame Sync Loss: 3 out of 15 F1 bits in error.
M Frame Sync Loss: 2 of 3 M1, M2, M3 (0110) sequences in error.
F Frame Sync Gain: 15 consecutive F1 bits correct.
M Frame Sync Gain: 2 consecutive M1, M2, M3 (0110) sequences correct.

Pattern Sync

Sync Loss: > 1000 errors in 30,000 clock periods.
Sync Gain: < 10 errors in 300 clock periods.

TRIGGER OUTPUTS

Pattern Trigger Output

Format: one pulse every PRBS or WORD.
Position (with respect to Data Monitor Output): nominally 10 bits before longest run of zeros in PRBS, or nominally coincident with start of 4-bit WORD, or with 17th one in 17/15 pattern.
Impedance: nominal 50Ω unbalanced to GND.
Connector: BNC.
Amplitude: min. 1Vp.k.
Width: one clock period, except with zero substitution when width stretched to approx. that of zero block.
Protection: open/short circuit protected; ± 5V max. short term voltage.

Frame Trigger Output

Format: one pulse per frame.
Position (with respect to Ternary Data Input): for DS-1, nominally 11 bits after last Fg bit in frame 12 of multiframe; for DS-1C, DS-2, nominally 12 bits after M4 bit; for DS-3, nominally 12 bits after M1 bit.
Width: one clock period.
Other specifications same as Pattern Trigger Output.

MEASUREMENTS

Binary Errors

Closed loop bit-by-bit detection at binary level.

Code Errors

Code violation detection as follows:
- AMI: bipolar violations are code errors.
- B672S: 0V0, 1V0, 1V1, 0001 and 000000 are code errors (000001 and 000000 are counted as single code errors).
- B32S: 1V, 000 and 010V are code errors.

Parity Errors (DS-3 only)

Parity errors occur when parity bits in one frame are not equal to the digital sum of the data bits in the previous frame.

DISPLAY MODES

Error Rate

Method: totals errors over selected gating period and automatically scales the answer.
Internal Gating: 10^6, 10^8, 10^10 clock periods or 1, 10, 10^3, 10^6, 10^4 seconds, repetitive.
Manual Gating: START and STOP pushbutton switches.
External Gating: ECL compatible rear panel BNC input, high level enables count, nominal 50Ω unbalanced impedance with nominal ~2V termination and 100 mA fuse protection.
Display: A.B 10^-6 LED.
Range: mm = 1 to 9 with automatic scaling.
Accuracy: indication given if measurement results is based on < 100 errors.
Note: Internal seconds, manual and external gating periods can be used only for Ternary Data Inputs. Other switch settings are flagged by an Error Code.

Error Count

Method: totals errors over selected gating period.
Gating: same as Error Rate.
Display: 5 digit LED with leading zero blanking.
Range: when count exceeds 99999, display automatically changes to A.B 10^-6 with automatic round-up to a max count of 99 10^-6

Error Seconds

Method: totals the number of seconds which contain one or more errors.
Gating: same as Error Rate.
Display: same as Error Count.
Range: same as Error Count.

Error Free Seconds

Method: totals the number of seconds during which no errors occur.
Gating: same as Error Rate.
Display: same as Error Count.
Range: same as Error Count.

Error Codes

1. Error Rate display not permitted for Binary Inputs when Gating Period set to 1, 10, 10^3, 10^6, 10^4 seconds, external or manual.
2. Parity Error measurements not permitted for DSX-1, DSX-1C or DSX-2 Data Inputs.
3. Parity Error measurements not permitted for DS-3 Data Inputs without framing.
5. Code "31" not permitted for HP-IB address.
6. Talk Only mode not permitted when controller connected.
7. Power interrupt and measurement restarted.

Real-Time Clock

When rear panel switch set to VIEW/SET, local time can be viewed or set on the display in hours and minutes.

Display: HH MM.
Setting: START pushbutton sets Hours; STOP pushbutton sets Minutes; hold activated by depressing both pushbuttons, which also sets Seconds to zero.
Accuracy: setting tolerance better than ± 3 ppm at ambient temperature.
Stability: typically better than ± 12 ppm, 0°C to 55°C, typically better than ± 5 ppm/year aging.

LED Flags

Gating: indicates measurement in progress.
Errors: indicates errors being detected, each error pulse stretched to approx 500 ms.
Pattern Sync Loss: indicates local reference pattern has lost sync; LED remains lit for at least 500 ms.
Frame Sync Loss: indicates loss of frame alignment; LED remains lit for at least 500 ms.
AIS: indicates < 3 zeros in 3438 ones; LED remains lit for at least 500 ms.
< 100 Errors: indicates Error Rate result based on < 100 errors.

OTHER OUTPUTS

Error Output

Format: one pulse per error.
Impedance: nominal 50Ω unbalanced to GND.
Connector: BNC.
Amplitude: min 1V pk-pk about GND.
Protection: open/short circuit protected; ± 5V max short-term voltage.

HP-IB FACILITIES

General

Modes: "ADDRESSABLE" or "TALK ONLY", switch-selected (rear panel).
LOCAL Switch: allows switching from "remote" to "local" control except when the controller has issued a "local lockout" command.
Flags: Local, Remote, Listen, Talk, SRQ.
Implementation: SH1 (complete capability); AH1 (complete capability); T5 (basic talker, serial poll, talk only mode, unaddress if MLA); TE0 (no capability); L4 (basic listener, unaddress if MTA); LE0 (no capability); SR1 (complete capability); RL1 (complete capability); PP0 (no capability); DC1 (complete capability); DT0 (no capability); C0 (no capability).

Controlling Masks

To permit flexibility in the use of the 3782B, many of the important operating parameters are governed by "masks". At power-on, these masks are given default values which may be overwritten in the local and remote states of the "ADDRESSABLE" mode. In the "TALK ONLY" mode, five of the masks are controlled by the five parts of the HP-IB Address switch. Full details are given in the 3781B/3782B HP-IB Users Guide or Operating Manual.

ADDRESSABLE Mode

Scope: used when 3782B operates with an external controller, allows control of all switches except Power, Line Voltage Selection, Local, HP-IB Address, ADDRESSABLE/TALK ONLY and Real-Time Clock.
Functions: overwrite a slide-switch or pushbutton; request the current display answer; request the flag information (except Errors); initialise the internal real-time clock; request the current switch positions and masks; load the switch positions and masks; "local lockout" facility; power-on reset; service requests controllable by masks.

TALK ONLY Mode

Scope: used when 3782B operates without an external controller.
Function: provides output messages to a peripheral such as 5150A Thermal Printer or 9875A Cartridge Tape Unit connected in "LISTEN ONLY" mode.

Result Print Threshold Switch

Function: governs whether results are issued (TALK ONLY and ADDRESSABLE modes), a service request is generated and another gating period started automatically (ADDRESSABLE mode only).
Switch Positions: N = 15 threshold always satisfied; N = 14 threshold satisfied only if one or more errors have occurred; 0 ≤ N ≤ 13 threshold satisfied only if error rate is less than 1.0 x 10^{-N}.

General (3781B and 3782B)

Power Supply

Input Voltages: 115V -22%, +10%; 230V -18%, +10%.
Frequency: ac 48 to 66 Hz.
Consumption: approx. 150 VA, each.

Dimensions

Width: 335 mm (13.2 in).
Height: 195 mm (7.7 in).
Depth: 475 mm (18.7 in).

Weight

Net: 11 kg (24.2 lb).
Shipping: 13.6 kg (29.7 lb).

Environment

Operating Temperature Range: 0°C to 55°C.
Storage Temperature Range: -40°C to 75°C.
Bell standard cross-connect waveforms

DSX-1 Isolated Pulse Template

DSX-1C Isolated Pulse Template

DSX-2 Isolated Pulse Template

DSX-3 Isolated Pulse Template
SECTION II
INSTALLATION

2-1 INTRODUCTION

2-2 This section contains information and instructions required to prepare the 3781B and 3782B for use. Included in this section are the initial inspection procedures, power and grounding requirements, fuse selection procedure, installation information and instructions on repacking for shipment.

2-3 INITIAL INSPECTION

WARNING

To avoid hazardous electrical shock, do not perform electrical tests when there are signs of shipping damage to any portion of the outer enclosure (covers, panels, meters).

2-4 Inspect the shipping container for damage. If the shipping container or cushioning material is damaged, it should be kept until the contents of the shipment have been checked for completeness and the instrument has been checked both mechanically and electrically. The contents of the shipment should be as shown in Figure 1-1 and listed in Paragraph 1-90. Procedures for checking electrical operation are given in Section IV of the Service Manuals.

If the contents of the shipment are incomplete, if there is mechanical damage or defect, notify the nearest Hewlett-Packard Office. If the instrument does not pass the electrical performance checks given in Section IV of the Service Manual, notify the nearest Hewlett-Packard Office. If the shipping container is also damaged, or the cushioning material shows signs of stress, notify the carrier as well as the Hewlett-Packard Office. Keep the shipping materials for carrier's inspection. The Hewlett-Packard Office will arrange for repair or replacement without waiting for claim settlement.

2-5 PREPARATION FOR USE

2-6 Power Requirements

2-7 The 3781B and 3782B each requires a power source of 115V (+10%, -22%) or 230V (+10%, -18%) at a frequency between 48 to 66Hz. Total power consumption of each is less than 150VA.

CAUTION

Before connecting these instruments to a power outlet ensure that the voltage selector is correctly set for the voltage of the power source and a fuse of the correct rating is fitted.

2-8 Line Voltage Selection

2-9 Figure 2-1 provides instructions on the setting of the voltage selector. Fuse ratings for the different power source voltages are given in Table 2-1.

![Figure 2-1 Line Voltage Selection](image-url)

1. Remove power cord.
2. Insert screwdriver into slot of voltage selector and push to left or right (depending on supply voltage).
3. Unscrew fuse compartment and cap, fit appropriate fuse and replace end cap.
Table 2-1 Fuses

<table>
<thead>
<tr>
<th>Nominal Line Voltage</th>
<th>Fuse Rating</th>
<th>HP Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>115V +10% −22%</td>
<td>*3A 250V (TIME DELAY)</td>
<td>2110-0381</td>
</tr>
<tr>
<td>230V +10% −18%</td>
<td>*1.5A 250V (TIME DELAY)</td>
<td>2110-0304</td>
</tr>
</tbody>
</table>

*Appropriate fuse supplied with instrument.

2-10 Power Cord

2-11 The power cord supplied with each instrument varies with the country of destination. Figure 2-2 illustrates the standard power plug and cord configurations that are commonly used. The part number shown beneath each plug is the part number of the appropriate power cord and plug. If the appropriate power cord is not included with the instrument notify the nearest HP Sales/Service Office and a replacement will be provided.

![Image of various power plugs and part numbers]

Note*: In order to pass German Std. FTZ527 Power cord 8120-2857 must be fitted to the instrument. Colour codes for each cable are: LINE-Brown, NEUTRAL-Blue, EARTH-Green/Yellow.

Figure 2-2 Power Cable and Mains Plug Part Numbers

WARNING

TO AVOID THE POSSIBILITY OF INJURY OR DEATH, THE FOLLOWING PRECAUTIONS MUST BE FOLLOWED BEFORE THE INSTRUMENT IS SWITCHED ON:

(a) Note that the protection provided by grounding the instrument cabinet may be lost if any power cable other than the three-pronged type supplied is used to couple the ac line voltage to the instrument.

(b) If this instrument is to be energized via an auto-transformer to reduce or increase the line voltage, make sure that the common terminal is connected to the neutral pole of the power source.

(c) The power cable plug shall only be inserted into a socket outlet provided with a protective earth contact. The protective action must not be negated by the use of an extension cord without a protective conductor (grounding).
2-12 HP-IB Address Selection

2-13 The 3781B and 3782B HP-IB talk and listen address switches are located on the rear panel.

2-14 Use a pencil to set the switches to the desired HP-IB address. The switches are illustrated in Figure 2-3. The allowable HP-IB address codes are given in Table 2-2.

2-15 Interconnections

2-16 Interconnection data for the Hewlett-Packard Interface Bus (HP-IB) is provided in Figure 2-4.

2-17 Matting Connectors

2-18 Interface Connector. The HP-IB mating connector is shown in Figure 2-4. (Note that the two securing screws are metric.)

2-19 Coaxial Connectors. Coaxial mating connectors used with the Pattern Generator should be 50Ω coaxial BNC male connectors or WECO Type 310A or 440A connectors. (75Ω coaxial BNC connectors with the 3781B Option 001.)

Figure 2-3 HP-IB Address Switches

Figure 2-4 Hewlett-Packard Interface Bus Connection

Logic Levels
The Hewlett-Packard Interface Bus logic levels are TTL compatible, i.e., the true (1) state is 0.0 V dc to +0.4 V dc and the false (0) state is +2.5 V dc to +5.0 V dc.

Programming and Output Data Format
Refer to Section III (Operation).

Mating Connector
HP1251-0293; Amphenol 57-30240.

Mating Cables Available
HP10631A, 1 metre (3.3 ft)
HP10631B, 2 metres (6.6 ft)
HP10631C, 4 metres (13.2 ft)
HP10631D, 0.5 metres (1.6 ft)

Cabling Restrictions
1. An HP-IB System may contain no more than 2 metres (6 ft) of connecting cable per instrument.
2. The maximum cumulative length of connecting cable for any HP-IB System is 20.0 metres (65.6 ft).
Table 2-2 Allowable HP-IB Address Codes

<table>
<thead>
<tr>
<th>Address Switches</th>
<th>Talk Address Character</th>
<th>Listen Address Character</th>
<th>Decimal Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0 0 0</td>
<td>@</td>
<td>SP</td>
<td>0</td>
</tr>
<tr>
<td>0 0 0 0 1 0</td>
<td>A</td>
<td>!</td>
<td>1</td>
</tr>
<tr>
<td>0 0 0 1 1 1</td>
<td>C</td>
<td>#</td>
<td>3</td>
</tr>
<tr>
<td>0 0 1 0 0 1</td>
<td>D</td>
<td>$</td>
<td>4</td>
</tr>
<tr>
<td>0 0 1 0 1 0</td>
<td>E</td>
<td>%</td>
<td>5</td>
</tr>
<tr>
<td>0 0 1 1 0 0</td>
<td>F</td>
<td>&</td>
<td>6</td>
</tr>
<tr>
<td>0 0 1 1 1 1</td>
<td>G</td>
<td>'</td>
<td>7</td>
</tr>
<tr>
<td>0 1 0 0 0 0</td>
<td>H</td>
<td>(</td>
<td>8</td>
</tr>
<tr>
<td>0 1 0 0 1 1</td>
<td>I</td>
<td>)</td>
<td>9</td>
</tr>
<tr>
<td>0 1 0 1 0 0</td>
<td>J</td>
<td>*</td>
<td>10</td>
</tr>
<tr>
<td>0 1 0 1 1 1</td>
<td>K</td>
<td>+</td>
<td>11</td>
</tr>
<tr>
<td>0 1 1 0 0 0</td>
<td>L</td>
<td>,</td>
<td>12</td>
</tr>
<tr>
<td>0 1 1 0 1 1</td>
<td>M</td>
<td>-</td>
<td>13</td>
</tr>
<tr>
<td>0 1 1 1 0 0</td>
<td>N</td>
<td>.</td>
<td>14</td>
</tr>
<tr>
<td>0 1 1 1 1 1</td>
<td>O</td>
<td>/</td>
<td>15</td>
</tr>
<tr>
<td>1 0 0 0 0 0</td>
<td>P</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>1 0 0 0 1 1</td>
<td>Q</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>1 0 0 1 0 0</td>
<td>R</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>1 0 0 1 1 1</td>
<td>S</td>
<td>3</td>
<td>19</td>
</tr>
<tr>
<td>1 0 1 0 0 0</td>
<td>T</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>1 0 1 0 1 1</td>
<td>U</td>
<td>5</td>
<td>21</td>
</tr>
<tr>
<td>1 0 1 1 0 0</td>
<td>V</td>
<td>6</td>
<td>22</td>
</tr>
<tr>
<td>1 0 1 1 1 1</td>
<td>W</td>
<td>7</td>
<td>23</td>
</tr>
<tr>
<td>1 1 0 0 0 0</td>
<td>X</td>
<td>8</td>
<td>24</td>
</tr>
<tr>
<td>1 1 0 0 1 1</td>
<td>Y</td>
<td>9</td>
<td>25</td>
</tr>
<tr>
<td>1 1 0 1 0 0</td>
<td>Z</td>
<td>:</td>
<td>26</td>
</tr>
<tr>
<td>1 1 1 0 1 1</td>
<td>[</td>
<td>;</td>
<td>27</td>
</tr>
<tr>
<td>1 1 1 1 0 0</td>
<td>\</td>
<td><</td>
<td>28</td>
</tr>
<tr>
<td>1 1 1 0 1 1</td>
<td>}</td>
<td>=</td>
<td>29</td>
</tr>
<tr>
<td>1 1 1 1 1 0</td>
<td>\</td>
<td>></td>
<td>30</td>
</tr>
</tbody>
</table>
2-20 Operating Environment

2-21 The instrument should be operated in temperatures within the range 0°C to +55°C and at altitudes up to 4,500 metres (15,000ft). At all times the instrument should be protected from temperature extremes and environments which cause condensation within the instrument.

2-22 RACK MOUNTING

2-23 A Rack Mount Kit is available for use with the 3781B and 3782B and can be purchased from your nearest Hewlett-Packard Office. For more detailed information, refer to Paragraph 1-86.

2-24 Instructions on conversion to rack mounting are included with the rack mount kit and are also reproduced in Figure 2-5 for convenience.

Figure 2-5 Rack Mounting (3781B)
2.25 STORAGE AND SHIPMENT

2.26 Environment

2.27 The instrument may be stored or shipped in environments within the following limits:

Temperature -40°C to +65°C
Altitude Up to 15,200 metres (50,000 feet)

The instrument should also be protected from temperature extremes which cause condensation within the instrument.

2.28 Repackaging for Shipment

2.29 Tagging for Service. If the instrument is being returned to Hewlett-Packard for service, please complete one of the blue repair tags located at the beginning of the Service Manual and attach it to the instrument.

2.30 Original Packaging. Containers and materials identical to those used in factory packaging are available through Hewlett-Packard Offices. If the instrument is being returned to Hewlett-Packard for servicing, attach a tag indicating the type of service required, return address, Model number, and full serial number. Also, mark the container FRAGILE to ensure careful handling. In any correspondence, refer to the instrument by Model number and full serial number.

2.31 Other Packaging. The following general instructions should be used for re-packing with commercially available materials:

(a) Wrap instrument in heavy paper or plastic. (If shipping to Hewlett-Packard Office or Service Centre, attach a tag indicating type of service required, return address, model number and full serial number.)

(b) Use strong shipping container. A double wall carton made of 350-pound test material is adequate.

(c) Use a layer of shock-absorbing material 70 to 100 mm (3- to 4-inch) thick around all sides of the instrument to provide firm cushioning and prevent movement inside container. Protect control panel with cardboard.

(d) Seal shipping container securely.

(e) Mark shipping container FRAGILE to ensure careful handling.

(f) In any correspondence, refer to instrument by Model number and full serial number.
SECTION III
OPERATION

3-1 INTRODUCTION

3-2 This section explains the functions of the controls, connectors and indicators of the HP Models 3781B Pattern Generator and 3782B Error Detector. Also included in this section is an explanation of the HP-IB functions of both instruments and a check procedure on the main functions of the instrument. At the rear of this section are instructions for maintenance of the air filters.

3-3 For convenience, the fold-out contains the key to all front-panel controls, etc.

3-4 POWER CONTROLS AND CONNECTORS

3-5 Details of setting the supply voltage and fuse selection are given in Section II.

WARNING

Before the instrument is switched on, all protective earth terminals, extension cords, auto-transformers and devices connected to it should be connected to a protective earth ground socket. Any interruption of the protective earth grounding will cause a potential shock hazard that could result in personal injury.

Only fuses with the required rated current and of specified type should be used. Do not use repaired fuses or short-circuited fuse holders. To do so could cause a shock or fire hazard.

CAUTION

Before the instrument is switched-on, it must be set to the voltage of the power source or damage to the instrument may result.

3-6 The POWER switch (5) in 3781B and (7) in 3782B controls the ac power input to the instrument.
3-7 3781B Pattern Generator CONTROLS, CONNECTORS AND INDICATORS

3-8 Front-Panel Description

A JITTER INPUT operates at the DS-1, DS-1C, DS-2 or DS-3 rates. The frequency range of the JITTER INPUT for the DS-1, DS-1C and DS-2 rates is 0.1% to 5% of bit rate. The frequency range of the JITTER INPUT for the DS-3 rates is 0.5% to 5% of bit rate. The maximum jitter amplitude obtainable on the DS-1, DS-1C and DS-2 signals is 10.1 bits pk-pk and the maximum jitter on the DS-3 signals is 20.2 bits pk-pk.

B CLOCK INPUT accepts an external clock input signal in the range 1kHz to 50MHz. The maximum acceptable input amplitude is 0.5V pk-pk within excursion limits of ±3V. The 75Ω unbalanced input is triggered by automatic GND or ECL threshold levels with a minimum pulse width of 5ns.

C CLOCK MONITOR OUTPUT ECL allows the clock signal to be monitored or used with binary data. It is a low-impedance output giving nominal ECL levels. The external loading should be 50Ω to ±0.2V or ±0.3V to GND ac.

D DATA MONITOR OUTPUT ECL supplies the same information as the DSX-1, DSX-1C, DSX-2 and DSX-3 OUTPUTS, but in a binary NRZ format. It is a low-impedance output giving nominal ECL levels. The external loading should be 50Ω to ±0.2V or ±0.3V to GND ac.

E PATTERN TRIG OUTPUT supplies one pulse every 32 or 64 clock periods. The DSX-1, DSX-1C, DSX-2 and DSX-3 output signals are delayed by 4 bits from the DATA MONITOR OUTPUT. The PATTERN TRIG OUTPUT pulse, in the DSX-2 and DSX-3 modes, is in one of three positions. These positions, with respect to the DATA MONITOR OUTPUT signal, are:

(1) coincident with the bit preceding the longest run of zeros in PRBS.

(2) coincident with the 2nd bit of the 4-bit word.

(3) coincident with the 9th zero in the 17/15 pattern. The amplitude of the PATTERN TRIG OUTPUT signal is ±0.5V pk-pk and is ±0.8V unbalanced signal.

The DSX-1, DSX-1C TRIG OUTPUT signal is 5 bits before equivalent DSX-2 or DSX-3 position.

F FRAME TRIG OUTPUT supplies one pulse per frame. It is in its position, with respect to the DATA MONITOR OUTPUT, 4 bits before the M position when DSX-1, DSX-2 or DSX-3 rates selected or 4 bits before the first F bit at the DS-1 rate. The amplitude of the FRAME TRIG OUTPUT is ±0.5V pk-pk and is ±0.8V unbalanced signal.

G DSX-1, DSX-1C, DSX-2 DATA OUTPUT supplies the necessary signals and levels, depending on the position of the DATA OUTPUT switch (16), to interface with the terminal equipment and TBB System cross-connect points. For a DSX-1 output signal, the frequency is 1.544MHz and for DSX-1C the frequency is 3.125MHz. For DSX-1 and DSX-1C, the format is coded AMI and the data structure allows a maximum of 14 consecutive zeros in the output — regardless of pattern selection. The output signal amplitude is ±0.3V pk-pk at a nominal 110Ω. The connector is WECO type 310A.

H and J DS-3 and DELAYED DS-3 DATA OUTPUTS supply the necessary signals and levels, depending on the position of the DATA OUTPUT switch (16), to interface with the terminal equipment and TBB System cross-connect points. The DS-3 output signal frequency is 44.736MHz and the format is B2Zs. These positions are on the DATA OUTPUT switch (16) controlling the DS-3 outputs. These positions are DS-3-0, DS-3-1, DS-3-2 and DS-3-3H. The output signal in the DS-3-1 mode is a shaped pulse equivalent to a DS-3 pulse passed through a further 450 ft of WECO Type 728A cable. The output signal in the DS-3-2 mode is the standard cross-connect waveform (CCITT Rec. G703 Para 4). In the DS-3-3H mode, the output signal is a pulse of 11.5ns width and 90μV amplitude. The DELAYED DS-3 OUTPUT signal has the same characteristics as the DS-3 OUTPUT, except that the signal is delayed by 22 bits. The connectors are WECO Type 446A.

1 JITTER switch activates the jitter modulation circuitry and the amount of jitter added to the output data is displayed in the JITTER LED display (2).

2 JITTER LED display gives a 4-digit display of pk-pk jitter (bits). The display flashes when the signal is out-of-range. The display is valid for periodic modulating frequencies down to ±3Hz.

3 FRAMING switch adds a framing pulse sequence, depending on the DATA OUTPUT selected, to the output pattern.

4 PRBS ZERO SUBSTITUTION switch, when used in conjunction with the PRBS modes of the PATTERN switch (12) substitutes any number of zeros (up to 199) in the PRBS. When the DS-1 or DS-1C rates are selected, the maximum run length of zeros in the output pattern is limited to 14.
5 POWER switch activates the entire instrument by controlling the ac supply.

6 TALK LED (HP-IB function) indicates that the 3781B is able to pass information over the HP-IB.

7 REMOTE LED (HP-IB function) indicates that the 3781B is being controlled from an external source.

8 SRQ LED (HP-IB function) indicates that the 3781B is requesting service from the HP-IB.

9 LISTEN LED (HP-IB function) indicates that the 3781B is listening to information from the HP-IB.

10 LOCAL switch (HP-IB function) allows the 3781B to be switched from Remote to Local control (indicated by the REMOTE and LOCAL LEDs), except when a Local Lockout signal has been issued by the Controller. The LOCAL LED indicates that the 3781B is being controlled via the front panel.

11 CLOCK switch selects which CLOCK SOURCE will be used in the 3781B. If the INT mode is selected, a clock rate dependent on the position of the DATA OUTPUT switch (16) is internally generated. For a hierarchy level of DS-1, the internally-generated clock is 1.544MHz; for DS-1C, the clock is 3.152MHz; for DS-2, the clock is 6.312MHz; for DS-3, the clock is 44.736MHz. In the EXT mode, one of three positions is available (AUTO, GND and ECL) giving a choice of input termination and trigger level. This allows the 3781B to be operated over the frequency range 1kHz to 50MHz.

12 PATTERN switch can be segmented into three groups – PRBS, 4-bit words and miscellaneous.

PRBS: the 3781B offers a choice of three PRBS modes – 2^9-1 (511 bits), $2^{15}-1$ (32767 bits) and $2^{20}-1$ (1048575 bits). The PRBS patterns are also used in conjunction with the PRBS ZERO SUBSTITUTION switch (4).

4-bit words: the 3781B offers a choice of five 4-bit words – 0000, 1000, 1010, 1100 and 1111.

miscellaneous: these patterns consist of 17/15 and AIS. 17/15 is a pattern of 17 'ones' and 15 'zeros'. AIS is a pattern of all 'ones' without framing.

13 Part of the ERROR ADD facility which selects between binary or code errors.

14 and 15 Part of the ERROR ADD facility selecting the degree of induced error in the signal. A single error, or one error in every 10^5 (100,000) clock periods may be introduced.

16 DATA OUTPUT switch selects the appropriate interface (line code, framing structure, interface voltage levels and bit rate) depending on where in the hierarchy the 3781B is connected. The hierarchy levels available are DSX-1, DSX-1C, DSX-2, DS-3 LO, DSX-3 and DS-3 HI.

3-9 Rear-Panel Description

HP-IB. The 3781B accepts and supplies information via this rear-panel socket. The HP-IB facility can control all switches except POWER and LOCAL. The REMOTE, LOCAL, TALK, LISTEN and SRQ LEDs indicate the HP-IB status of the 3781B. The 3781B is designed to operate in the addressable mode. The HP-IB address is set by the rear-panel, dual-in-line ADDRESS switch. If no Controller is connected, the setting of this switch is immaterial.

3-10 3782B Error Detector CONTROLS, CONNECTORS AND INDICATORS

3-11 Front-Panel Description

A DSX-1, DSX-1C, DSX-2 DATA INPUT accepts signals and levels from the appropriate hierarchy levels, depending on the position of the DATA INPUT switch (3). In the DSX-1 position, the signal applied to the 3782B should be 1.544Mb/s; and in the DSX-1C position, the signal should be 3.152Mb/s. The signal format for both positions is coded AMI. In the DSX-2 position, the signal applied to the 3782B should be 6.312Mb/s with a signal format of B6ZS. For all signals, the maximum amplitude should be 5V pk within excursion limits of ± 5V. An LED above the input (1) is illuminated if data transitions are present. This input uses a WECO Type 310A, 110Ω balanced connector.

B DS-3 DATA INPUT accepts signals and levels from the appropriate hierarchy levels, depending on the position of the DATA INPUT switch (3). The signal applied to the 3782B should be 44.736Mb/s with a signal format of B3ZS. There are four positions on the DATA INPUT switch (3) controlling the DS-3 DATA INPUT signal. The positions are DS-3 LO, DSX-3, DS-3 HI and DS-3 MON. The input signal for DS-3 LO should be a shaped pulse equivalent to a DS-3 pulse passed through a further 450 ft of WECO Type 728A cable. For DS-3, the input signal should be the standard cross-connect waveform (CCITT Rec G703 Para 4). For DS-3 HI, the input signal should be of 11.2ns width and 909mV amplitude. DS-3 MON accepts the equivalent of a DS-3 HI pulse attenuated by 13.8dB. An LED above the input (2) is illuminated if data transitions are present. Data loss is detected within 100ms. This input uses a WECO Type 440A, 75Ω connector.
C CLOCK MONITOR OUTPUT ECL signal is the recovered clock from the DATA INPUT signal (A) or (B), or the rear-panel BINARY CLOCK INPUT signal. This output signal is continuous except when the input signal has a frame signal superimposed. When a frame signal is present, the CLOCK MONITOR OUTPUT signal is gated off whenever a framing bit occurs.

D DATA MONITOR OUTPUT ECL supplies the same data as that accepted by the DATA INPUT (A) or (B). The format of the output signal is binary (without framing bits) and has ECL levels.

E PATTERN TRIG OUTPUT supplies one pulse every PRBS or WORD. The output pattern is related to the DATA INPUT signal (A) or (B). There is approximately 6 bits delay between the DATA INPUT signal and the PATTERN TRIG OUTPUT signal. The amplitude of the PATTERN TRIG OUTPUT signal is 1V pk and is a 50Ω unbalanced signal.

F FRAME TRIG OUTPUT supplies one pulse per frame. The position of the output pulse (with respect to the ternary input) is as follows:

- DSX-1 approx 11 bits after last f₀ bit
- DSX-1C approx 12 bits after M₄ bit
- DSX-2 approx 12 bits after M₄ bit
- DS-3 approx 12 bits after M₄ bit

The amplitude of the FRAME TRIG OUTPUT signal is 1V pk and is a 50Ω unbalanced signal.

G ERROR OUTPUT supplies one pulse per error at a minimum amplitude of 1V pk-pk.

1 DSX-1, DSX-1C, DSX-2 LED illuminates if data transitions are present at the DSX-1, DSX-1C, DSX-2 DATA INPUT (A).

2 DS-3 LED illuminates if data transitions are present at the DS-3 DATA INPUT (B).

3 DATA INPUT switch selects the appropriate interface (line code, framing structure and bit rate) depending on where in the hierarchy the 3782B is connected. The hierarchy levels available are DSX-1, DSX-1C, DSX-2, DS-3LO, DSX-3, DS-3HI and MON DS-3.

4 DATA/DATA switch can invert the input data signal. Inversion occurs at the binary signal level.

5 FRAMING switch is set to IN, if the input data contains the frame pulse sequence. The Error Detector thus looks for frame synchronization before making measurements.

6 PRBS ZERO SUBSTITUTION switch, when used in conjunction with the PRBS modes of the PATTERN switch (13), substitutes any number of zeros (up to 999) in the PRBS reference pattern.

7 POWER switch activates the entire instrument by controlling the ac supply.

8 TALK LED (HP-IB function) indicates that the 3782B is able to pass information over the HP-IB.

9 REMOTE LED (HP-IB function) indicates that the 3782B is being controlled from an external source.

10 SRQ LED (HP-IB function) indicates that the 3782B is requesting service from the HP-IB.

11 LISTEN LED (HP-IB function) indicates that the 3782B is listening to information from the HP-IB.

12 LOCAL switch (HP-IB function) allows the 3782B to be switched from Remote to Local control (indicated by the REMOTE and LOCAL LEDs) except when a Local Lockout signal has been issued by the Controller. The LOCAL LED indicates that the 3782B is being controlled via the front panel.

13 PATTERN switch can be segmented into three groups – PRBS, 4-bit words, and miscellaneous.

- PRBS: the 3782B offers a choice of three PRBS modes: \(2^9-1\) (511 bits), \(2^{15}-1\) (32767 bits) and \(2^{29}-1\) (1048575 bits). The PRBS patterns are also used in conjunction with the PRBS ZERO SUBSTITUTION switch (6).

- 4-bit words: the 3782B offers a choice of five 4-bit words: 0000, 1000, 1010, 1100, and 1111. Miscellaneous: these patterns consist of 17/15, which is a pattern of 17 'ones' and 15 'zeros'.

14 SYNC switch selects the method of detecting loss of synchronization and how a search for synchronization will be initiated. When the SYNC switch is in the AUTO mode, PATTERN SYNC and FRAME SYNC (if FRAMING switch set to IN) are monitored independently. After Pattern Sync Loss or Frame Sync Loss is detected, a search for synchronization is automatically initiated. Pattern Sync Loss will only be detected correctly if there are at least 30,000 clock periods in the selected gating period. If the 3782B is operated at low frequencies, via the BINARY CLOCK and DATA INPUTs, Frame Sync Gain may take an excessive time. However, this time can be minimized by switching to MAN SYNC. In the MAN SYNC mode, automatic sync loss detection is removed. Pressing the MAN SYNC pushbutton (15) initiates a search for synchronization. Before full synchronization is achieved, Frame Sync and Pattern Sync must be achieved.
Frame Sync must be achieved when framing and control bits are present in the input data. The 3782B synchronizes onto the frame pulses and removes them from the input data. The framing on the DSX-1, DSX-1C, DSX-2 and DSX-3 signals may be disabled by the FRAMING switch (5). If frame sync loss occurs (sync loss criterion depends on frame type), the FRAME SYNC LOSS LED (21) illuminates.

Pattern Sync is monitored by the 3782B. If pattern sync loss occurs (>1000 errors in 30,000 clock periods) the PATTERN SYNC LOSS LED (22) illuminates. Pattern sync gain is achieved when there are <10 errors in 300 clock periods.

This push-button, with the SYNC switch (14) in the MANUAL mode, enables the operator to re-synchronize the 3782B.

MEASUREMENT MODE switch has three positions — depending on the measurement required. The measurements available are BIN ERRORS (binary errors) CODE ERRORS and PARITY ERRORS.

Binary Errors are detected by closed-loop, bit-by-bit error detection at the binary level after interface coding has been removed. Binary errors are detected in pseudo-random data sequences and fixed word patterns.

Code Errors are defined as follows:

AMI (DSX-1, DSX-1C rates) — a bi-polar violation is a code error.

B6ZS (DSX-2 rate) — 0VO, 1VO, 1V1 and 000000 are code errors, where V is a bi-polar violation.

Note that 000000V1 and 000000V0 are counted as single errors.

B3ZS (DS-3 rate) — 1V, 000 and 010V are code errors.

Code errors can be measured on live traffic as well as on patterns generated by the 3781B. However, they only have significance for the section following the previous interface encoder.

Parity Errors relate to the DS-3 rate. These errors occur when parity bits in one frame are not equal to the digital sum of the data bits in the previous frame.

DISPLAY MODE switch selects how the measured errors (binary, code or parity) may be displayed. Four error modes are provided — ERROR RATE, ERROR COUNT, ERROR SECS or ERROR FREE SECS. The result is displayed, by LEDs, in the parameter display window (18). Note that for each measurement over a selected gating period, any one of the four modes may be selected to show the result i.e., all four calculations are made simultaneously and the processor displays the desired result.

The only exception occurs when binary inputs are used. ERROR RATE is available only when the CLOCKS gating period is selected.

The result display window gives an LED display of the measured errors. The five-digit LED display, with leading zero blanking, automatically changes to A B 10^MN format when a count of 99999 is exceeded. The display for error rate is formatted A B 10^-MN (where M can be blank or 1).

At the end of the gating period, the display will automatically show the measurement result that has been selected by the DISPLAY MODE switch. Any of the four measurement results can be displayed by simply setting the DISPLAY MODE switch to the appropriate position, as all four measurements are made simultaneously. This feature can be used irrespective of the selected gating period and does not affect the current measurement.

Besides displaying measurement results, the display can also be used to display the real-time clock. Also, the display will give a flashing single-digit error code, if the operator has inadvertently selected incompatible switch settings.

ERRORS LED, when illuminated, indicates that error pulses are being detected. Each error pulse is stretched to approximately 500ms.

AIS (Alarm Indication Signal) LED illuminates when less than 3 zeros are detected in a run of 1390 ones. The LED remains illuminated for at least 500ms.

FRAME SYNC LOSS LED, when illuminated, indicates a loss of framing (as defined by BELL Standards). This facility is used in conjunction with the SYNC switch (14). The LED remains illuminated for at least 500ms.

PARALLEL SYNC LOSS LED, when illuminated, indicates that the local pattern reference has lost sync with the incoming pattern. This facility is used in conjunction with the SYNC switch (14). The LED remains illuminated for at least 500ms.

<100 ERRORS LED indicates that an Error Rate measurement result has been based on less than 100 errors i.e., the statistical variance in the result is greater than 10%.

GATING LED indicates that a measurement is in process.

GATING PERIOD switch selects the measurement gating period either in SECONDS, number of CLOCKS, MANUALLY or EXTERNALLY operated.
26 START push-button initiates a gating period, when the GATING PERIOD switch (25) is in the MAN mode. When the rear-panel REAL TIME CLOCK switch is set to VIEW/SET, the START push-button is used to set HOURS on the local time display.

27 STOP push-buttons terminates a gating period, when the GATING PERIOD switch (25) is in the MAN mode. When the rear-panel REAL TIME CLOCK switch is set to VIEW/SET, the STOP push-button is used to set MINUTES on the local time display.

When the REAL TIME CLOCK switch set to VIEW/SET, pressing both push-buttons (25) and (26) simultaneously holds the clock display with the seconds count at zero – ready for initialization when the push-buttons are released.

3-12 Rear-Panel Description

BINARY DATA INPUT is an alternative data input to the 3782B, via the rear-panel BIN/TERNARY switch. The frequency range available is 1kb/s to 50Mb/s with a binary, ECL, NRZ format.

BINARY CLOCK INPUT is used to supply clock to the 3782B via the rear-panel BIN/TERNARY switch (when the BINARY DATA INPUT is used). The clock rate should be in the range 1kHz to 50MHz, with an ECL format.

EXT GATING INPUT. When the GATING PERIOD switch (25) is set to EXT, a high ECL logic level applied to the EXT GATING INPUT will initiate a gating period while a low ECL logic level will terminate the gating period.

HP-IB. The 3782B accepts and supplies information via this rear-panel socket. The HP-IB facility can control all switches except POWER and LOCAL. The REMOTE, LOCAL, TALK, LISTEN and SRQ LEDs indicate the HP-IB status of the 3782B.

The 3782B is designed to operate in two distinct modes – “Talk Only” and “Addressable”. The HP-IB address is set by the rear-panel, dual-in-line ADDRESS switch. The “Talk Only” mode allows the measurement results to be output to a peripheral device (such as a Printer or Cassette Recorder) connected in a “Listen” mode.

BIN/TERNARY switch allows data to be input either in ternary format at the four hierarchy levels (via the front-panel inputs (A) or (B)) or alternatively via the BINARY CLOCK and DATA INPUTs on the rear panel.

RESULT PRINT THRESHOLD switch. At the end of each gating period, this switch (in conjunction with some software masks – see Section 3-31) governs whether measurement results are issued via the HP-IB connector. If the value set on the switch is 15 — threshold always satisfied (always prints). If set to 14 — threshold satisfied if one or more errors have occurred. If set to a value N (where 0 ≤ N ≤13) the answer will only be issued if the measured error rate during that gating period was worse than 1.0 x 10^-N.

REAL TIME CLOCK switch. When set to VIEW/SET, local time can be set via the STOP (27) and START (26) push-buttons and viewed on the parameter display (18). If a measurement is in progress, it will not be affected by setting the clock. When set to the NORMAL position, the parameter display and STOP and START push-buttons return to their normal functions, however, the processor continues to calculate the local time.

3-13 SWITCH-ON PROCEDURE

3-14 The 3781B and 3782B each require ac power supply of 115V (+10%, −22%) or 230V (+10%, −18%) at 48 to 66Hz and each consume less than 150VA.

WARNING

Before the instrument is switched on, all protective earth terminals, extension cords, auto-transformers and devices connected to it should be connected to a protective earth grounded socket. Any interruption of the protective earth grounding will cause a potential shock hazard that could result in personal injury.

Only fuses with the rated current and specified type should be used. Do not use repaired fuses or short-circuited fuse-holders. To do so could cause a shock or fire hazard.

CAUTION

Before the instrument is switched on, it must be set to the voltage of the power source or damage to the instrument may result.

Fuses: 220/240V — 1.5AT (slow-blow)
hp 2110-0304
100/120V — 3AT (slow-blow)
hp 2110-0381

3-15 The instruments are ready for operation immediately after switch-on.
3-16 HP-IB MODES OF OPERATION

3-17 The 3781B is designed to operate in the Addressable mode and the 3782B is designed to operate in two distinct modes — Talk Only and Addressable. The HP-IB address is set by the rear-panel dual-in-line ADDRESS switch.

3-18 Operation in the Talk Only Mode (3782B only).

3-19 This is the simplest mode of operation and the mode used if no Controller is connected to the HP-IB. The front-panel controls are responsive and actively control the instrument. The 3782B automatically outputs messages relevant to its operation. For example, if an HP Model 5150A Option 001 Thermal Printer were connected to the 3782B it could be used to print-out measurement results. The 3782B rear-panel HP-IB ADDRESS switch must be set to Talk Only and any peripheral must be set to Listen Only. In this mode, the five HP-IB ADDRESS switches on the 3782B are used instead to control the format of the OUTPUT messages. They should normally all be set to the “1” position.

3-20 Operation in the Addressable Mode

3-21 The addressable mode of operation is more easily understood by imagining the concept that two front panels exist.

1. The ‘actual’ front panel.
2. A ‘remote’ front panel.

3-22 The instruments can be used to perform measurements under one of two modes of operation.

1. Under ‘local’ control — where the ‘actual’ front panel is responsive and used to control the instrument.
2. Under ‘remote’ control — where the ‘remote’ front panel is used to control the instrument and the ‘actual’ front panel is inoperative.

3-23 Programming codes sent by the Controller are used to set-up the ‘remote’ front panel. (At power-on, the instrument assumes the local state.) On going remote, the ‘remote’ front panel is initialized with the current switch settings of the ‘actual’ front panel.

3-24 PRINCIPAL FEATURES OF HP-IB OPERATION

1. Ability to overwrite a switch or push-button position by remote control.
2. Output results in one or all of the four display modes.
3. Flexibility and operational simplicity achieved using pre-programmed control masks.

4. HP-IB Bus Extenders and suitable modems may be used to increase the distance between instruments.

5. The current positions of all front and rear-panel switches (except push-buttons) or all remote switches and masks be issued.

3-25 IMPLEMENTATION OF HP-IB

3781B:
SH1 complete capability
AH1 complete capability
T6 basic talker, serial poll, unaddress is MLA
TE0 no capability
L4 basic listener, unaddress is MTA
LE0 no capability
SR1 complete capability
RL1 complete capability
PP0 no capability
DC1 complete capability
DT0 no capability
C0 no capability

3782B:
SH1 complete capability
AH1 complete capability
T5 basic talker, serial poll, talk only mode, unaddress if MLA
TE0 no capability
L4 basic listener, unaddress if MTA
LE0 no capability
SR1 complete capability
RL1 complete capability
PP0 no capability
DC1 complete capability
DT0 no capability
C0 no capability

3-26 REPERTOIRE OF REMOTE COMMANDS

3-27 The ‘remote’ commands require a code to be sent to the instruments from the HP-IB Controller. The format of this code is a two-character, upper or lower case mnemonic which specifies the action needed or the switch to be set. Sometimes the switch mnemonic is followed by a parameter which indicates the new position of the switch. For slide switches, this number is the position of the switch — starting with ‘1’ at the left-hand side (see Figure 3-2).

Figure 3-2 Slide Switch Position Numbering
3-28 For rear-panel toggle switches, the “up” position has code ‘1’ and the “down” position has code ‘2’.

3-29 Successive commands may be separated by a comma (,) semi-colon (;) colon (:) or space (). Commands may be sent either whilst gating or not gating. If commands contained in Paragraph 3-30 (1) or (2) are received whilst under ‘local’ control, they will be accepted but ignored.

3-30 The following remote commands are available:

1. Over-write a switch or push-button on the ‘remote’ front panel. Tables 3-1 and 3-2 give the switch mnemonics.

<table>
<thead>
<tr>
<th>Table 3-1 3781B Switch Mnemonics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SWITCH NAME</td>
<td>MNEMONIC</td>
</tr>
<tr>
<td>PATTERN</td>
<td>PTn</td>
</tr>
<tr>
<td>DATA OUTPUT</td>
<td>DOn</td>
</tr>
<tr>
<td>ZERO, (VALUE)</td>
<td>ZVn</td>
</tr>
<tr>
<td>ERROR ADD (FORMAT)</td>
<td>EFn</td>
</tr>
<tr>
<td>ERROR ADD (RATE)</td>
<td>ERn</td>
</tr>
<tr>
<td>JITTER</td>
<td>JTN</td>
</tr>
<tr>
<td>CLOCK</td>
<td>CKn</td>
</tr>
<tr>
<td>FRAMING</td>
<td>FRn</td>
</tr>
<tr>
<td>ERROR ADD SINGLE SHOT</td>
<td>ES</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 3-2 3782B Switch Mnemonics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SWITCH NAME</td>
<td>MNEMONIC</td>
</tr>
<tr>
<td>PATTERN</td>
<td>PTn</td>
</tr>
<tr>
<td>ZERO (VALUE)</td>
<td>ZVn</td>
</tr>
<tr>
<td>DATA/DATA</td>
<td>DDn</td>
</tr>
<tr>
<td>MEASUREMENT MODE</td>
<td>MMn</td>
</tr>
<tr>
<td>DISPLAY MODE</td>
<td>DMn</td>
</tr>
<tr>
<td>DATA INPUT</td>
<td>DIN</td>
</tr>
<tr>
<td>SYNC</td>
<td>SYn</td>
</tr>
<tr>
<td>GATING PERIOD</td>
<td>GPn</td>
</tr>
<tr>
<td>BINARY/TERNARY</td>
<td>BTn</td>
</tr>
<tr>
<td>FRAMING</td>
<td>FRn</td>
</tr>
<tr>
<td>THRESHOLD</td>
<td>THn</td>
</tr>
<tr>
<td>MANUAL SYNC</td>
<td>MS</td>
</tr>
<tr>
<td>START</td>
<td>ST</td>
</tr>
<tr>
<td>STOP</td>
<td>SP</td>
</tr>
</tbody>
</table>

The following switches are not remotely controllable:

POWER (ON/OFF)
LOCAL (on front panel)
HP-IB ADDRESS (on rear-panel)
TALK ONLY/ADDRESSABLE (3782B only)
REAL-TIME CLOCK (3782B only)
LINE VOLTAGE SELECTOR

3-8
2. Request that the instruments load the ‘remote’ switches and masks with data. The mnemonic is LD (load).

3. 3781B only. Request that the current jitter measurement display be issued in Controller format (ie in the form “+N.NNNN+NN”). If the current display is blank, an out-of-range answer (“+9.9999E+99”) is sent to the Controller. (The jitter measurement display takes a few seconds to stabilize after movement of the DATA OUTPUT, JITTER or CLOCK switches). The mnemonic is CA (current answer).

4. 3781B only. Request that the current status of the front-panel CLOCK TRANSITIONS PRESENT annunciator (LED) be issued. A single-byte reply is given.
 Byte = 0, when LED is OFF.
 Byte = 1, when LED is ON.
 The mnemonic is QA (query annunciator).

5. 3782B only. Request that the current answer indicated by the DISPLAY MODE switch be issued. This command provides answers in addition to those provided by Masks 2 and 4 and can also provide answers while the instrument is gating. (For information on Masks, see Paragraph 3-31). Mask 1 controls the format – either in Controller format (“N.NNNN±NN”) or Peripheral format, in which case, one of the following will be sent, depending on the position of the DISPLAY MODE switch.
 1. ER N.NE-N
 <100 ERRORS (sometimes)
 2. EC NNNNN
 3. ES NNNNN
 4. FS NNNNN

If the current display is blank, or is used to display an erroneous switch position, an out-of-range answer (“+9.9999E+99”) is sent in Controller format or the message “NO ANSWER” is sent in Peripheral format.
 The mnemonic is CA (current answer).

6. 3782B only. Request that the number of errors counted, up till the last error-second occurred, be issued. This command provides answers in addition to those provided by Mask 8. Mask 1 permits selection between Controller format and Peripheral format “EC (NNNNN)”. The mnemonic is EC (error count).

7. 3782B only. Request that the current status of the front panel annunciators (LED’s) is issued (except the ERRORS annunciator). A single byte reply is given. The meaning of each bit is given in Table 3-3.

<table>
<thead>
<tr>
<th>BIT</th>
<th>MEANING</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>AIS</td>
</tr>
<tr>
<td>1</td>
<td>FSL (Frame Sync Loss)</td>
</tr>
<tr>
<td>2</td>
<td>PSL (Pattern Sync Loss)</td>
</tr>
<tr>
<td>3</td>
<td>not used</td>
</tr>
<tr>
<td>4</td>
<td><=100 Errors</td>
</tr>
<tr>
<td>5</td>
<td>Gating</td>
</tr>
<tr>
<td>6</td>
<td>DSX-1, DSX-1C, DSX-2</td>
</tr>
<tr>
<td>7</td>
<td>DS-3</td>
</tr>
</tbody>
</table>

If any bit = 0, the appropriate LED is OFF.
If any bit = 1, the appropriate LED is ON.
 The mnemonic is QA (query annunciators).

8. 3782B only. Request that the internal clock of the 3782B be initialized. This command must be followed by a six-digit parameter. (The clock is set to the desired time by six digits.) For example, IC 235958 will set the clock to 23 hours, 59 minutes, 58 seconds.
 The mnemonic is IC (initialize clock).

9. Request that the current status of all ‘actual’ front-panel and rear-panel switches (except push-buttons) and masks be issued. Fourteen bytes of data are output for the 3781B and thirty-five bytes of data are output for the 3782B in response to this command. The mnemonic is LA (learn actual).

10. Request that the current positions of all ‘remote’ switches and masks be issued. Fourteen bytes of data are output for the 3781B and thirty-five bytes of data are output for the 3782B in response to this command. The mnemonic is LR (learn remote).
11. Issue a signal to set ‘Local Lockout’.

12. Issue a signal to clear ‘Local Lockout’. (Note: it is implicit in HP-IB protocol that this command will also cause the instrument to go ‘local’.)

13. Issue an HP-IB signal to cause the instruments to completely clear themselves and return to the power-on state (using Device Clear or Selected Device Clear). It is recommended that every program used to remotely control these instruments starts with either of these commands. After issuing either of these commands, the Controller must give the instruments time to react and settle. A wait of 0.5 second is recommended. The issue of either of these commands does not affect the setting of the 3782B real-time clock.

3-31 CONTROLLING MASKS

3-32 To permit flexibility in the use of these instruments many of the important operating parameters are governed by Masks. At power-on, these masks are given default values — as specified in Tables 3-4 and 3-5. These default values may be overwritten at any time for the 3781B or, in the ‘local’ and ‘remote’ states of the Addressable mode for the 3782B. (For the 3782B only, in the Talk Only mode, five of the masks are controlled by the five rear-panel HP-IB ADDRESS switches.) The masks are programmed by the mnemonic MK followed by the parameter number.

Table 3-4 3781B Mask Default Values

<table>
<thead>
<tr>
<th>Mask Number</th>
<th>Meaning</th>
<th>Parameter Number</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Issue EOI concurrent with terminator</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Do not issue EOI concurrent with terminator</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Do not SRQ on command Syntax Error</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>SRQ on command Syntax Error</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Do not SRQ on command Syntax OK</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>SRQ on command Syntax OK</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Do not SRQ when “LOCAL” pushbutton pressed</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>SRQ when “LOCAL” pushbutton pressed</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Table 3-5 3782B Mask Default Values

<table>
<thead>
<tr>
<th>Mask Number</th>
<th>Meaning</th>
<th>Parameter Number</th>
<th>Default Value</th>
<th>Talk Only</th>
<th>Addressable</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MESSAGE SET</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Issue answers in Peripheral format.</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Do not issue answer at end of Gating Period.</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Issue answer at end of Gating Period only if</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>rear-panel RESULT PRINT THRESHOLD switch is</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>satisfied.</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Do not issue general control messages.</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Issue general control messages.</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Issue four answers at end of Gating Period.</td>
<td>7</td>
<td>see Note 1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(see Note 2).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Issue just the answer indicated by DISPLAY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MODE switch at end of Gating Period.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Do not prefix messages with Time.</td>
<td>9</td>
<td>see Note 1</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prefix messages with Time.</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Use (.) as message terminator.</td>
<td>11</td>
<td>see Note 1</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Use CR/LF as message terminator.</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3-5 3782B Mask Default Values (continued)

<table>
<thead>
<tr>
<th>Mask Number</th>
<th>Meaning</th>
<th>Parameter Number</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Issue EOI concurrent with terminator. Do not issue EOI concurrent with terminator.</td>
<td>13</td>
<td>see Note 1</td>
</tr>
<tr>
<td>8</td>
<td>Do not issue Error-Second messages. Issue Error-Second messages.</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>9</td>
<td>Do not prefix Error-Rate answers in Controller format with status of "<<100 ERRORS" LED. Prefix Error-Rate answers in Controller format with status of "<<100 ERRORS" LED (see Note 3)</td>
<td>15</td>
<td>see Note 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>SERVICE REQUEST SET</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>10</td>
<td>Do not SRQ when Error-Second occurs. SRQ when Error-Second occurs.</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>11</td>
<td>Do not SRQ on command errors. SRQ on command errors.</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>12</td>
<td>Do not SRQ at end of normal Gating Period. SRQ at end of normal Gating Period only if rear-panel RESULT PRINT THRESHOLD switch is satisfied (see Note 4).</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>13</td>
<td>Do not SRQ if Gating Period ends because of data integrity loss. SRQ if Gating Period ends because of data integrity loss.</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>14</td>
<td>Do not SRQ if Gating Period ends because of an invalid switch movement. SRQ is Gating Period ends because of an invalid switch movement.</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>15</td>
<td>Do not SRQ on command Syntax Error. SRQ on command Syntax Error.</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>16</td>
<td>Do not SRQ on command Syntax OK. SRQ on command Syntax OK.</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>17</td>
<td>Do not SRQ on loss/gain of data integrity. SRQ on loss/gain of data integrity.</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>18</td>
<td>Do not SRQ after each 24-hour period elapsed on internal clock; SRQ after each 24-hour period elapsed on internal clock;</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>19</td>
<td>Do not SRQ when "LOCAL" pushbutton pressed. SRQ when "LOCAL" pushbutton pressed.</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>RESTART SET</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>20</td>
<td>Automatically restart repetitive gating. Automatically restart repetitive gating unless rear-panel RESULT PRINT THRESHOLD switch satisfied.</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>21</td>
<td>Do not restart gating following loss/gain of data integrity. Automatically restart gating following loss/gain of data integrity.</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>22</td>
<td>Do not hold-off automatic restart until output buffer empty. Hold-off automatic restart until output buffer empty.</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>23</td>
<td>Do not hold-off automatic restart until SRQ buffer empty. Hold-off automatic restart until SRQ buffer empty.</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>38</td>
<td>38</td>
</tr>
</tbody>
</table>

Notes 1 to 4 are given on Page 3-12.
Note 1: Talk Only values of Masks 4 thru 8 are controlled by bits 0 thru 4 respectively, of the rear-panel HP-IB ADDRESS switch. Position "1" of the switch selects the even value of parameter number.

Note 2: When the GATING PERIOD switch is set to SECONDS, EXTERNAL, or MANUAL and the BINARY INPUTS are used, only three answers are issued.

Note 3: If the "<100 ERRORS" annunciator is OFF, Error-Rate answers are prefixed with character "0". If annunciator is ON, answers are prefixed with character "1". If Mask 5 is set to prefix messages with Time, the Time message comes before the "<100 ERRORS" annunciator character.

Note 4: "NORMAL END" means a non-abortive end, with the GATING PERIOD switch set to SECONDS, CLKS, or EXTERNAL.

3-33 RESULT PRINT THRESHOLD SWITCH (3782B only)

3-34 At the end of each Gating Period, the rear-panel RESULT PRINT THRESHOLD switch (in conjunction with Masks 2, 12 and 20) governs whether:

(a) answers are issued,
(b) an SRQ is generated,
(c) another Gating Period will start automatically.

The sixteen positions of the RESULT PRINT THRESHOLD switch govern whether the threshold is satisfied at the end of a Gating Period according to Table 3-6.

If the BINARY INPUT is used with the GATING PERIOD switch set to SECONDS, EXTERNAL, or MANUAL, an ERROR RATE answer is not available and a switch setting of 0 to 13 is treated as though a switch setting of 14 had been selected.

3-35 REPERTOIRE OF MESSAGES (3782B only)

3-36 The 3782B is designed to issue a number of messages during the progress of a measurement. Each message is controlled by one or more Masks. Table 3-7 lists the messages and appropriate controlling masks.

<p>| Table 3-6 Result-Print Threshold |</p>
<table>
<thead>
<tr>
<th>Switch Position</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$<N<13$</td>
<td>Threshold satisfied only if ERROR RATE is worse than 10E-N</td>
</tr>
<tr>
<td>$N = 14$</td>
<td>Threshold satisfied only if one or more errors have occurred.</td>
</tr>
<tr>
<td>$N = 15$</td>
<td>Threshold always satisfied.</td>
</tr>
</tbody>
</table>

<p>| Table 3-7 Output Messages |</p>
<table>
<thead>
<tr>
<th>Message</th>
<th>Controlling Mask(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>An Answer</td>
<td>1,2,4</td>
</tr>
<tr>
<td>ERROR SECOND</td>
<td>8</td>
</tr>
<tr>
<td>"NO ANSWER" (in response to CA, when no answer available — Peripheral format)</td>
<td>1</td>
</tr>
<tr>
<td>"+9.9999E+99" (in response to CA, when no answer available — Controller format)</td>
<td>1</td>
</tr>
<tr>
<td>"< 100 ERRORS"</td>
<td>1,2,4</td>
</tr>
<tr>
<td>"START"</td>
<td>3</td>
</tr>
<tr>
<td>"STOP"</td>
<td>3</td>
</tr>
<tr>
<td>"RESTART"</td>
<td>3</td>
</tr>
<tr>
<td>"DATA LOSS"</td>
<td>3</td>
</tr>
<tr>
<td>"AIS"</td>
<td>3</td>
</tr>
<tr>
<td>"FRAME LOSS"</td>
<td>3</td>
</tr>
<tr>
<td>"PATTERN LOSS"</td>
<td>3</td>
</tr>
<tr>
<td>"RECOVERY"</td>
<td>3</td>
</tr>
<tr>
<td>"RUN ABORT"</td>
<td>3</td>
</tr>
<tr>
<td>"DAY N"</td>
<td>3</td>
</tr>
<tr>
<td>"POWER ON"</td>
<td>3</td>
</tr>
<tr>
<td>TIME (as prefix to message)</td>
<td>5</td>
</tr>
</tbody>
</table>

3-12
3-37 TERMINATION OF A BUFFER (3782B only)

3-38 Sometimes an instrument having an internal input buffer (e.g., the HP Model 9875A Cartridge Tape Unit) is used to receive the 3782B output messages. At the end of a sequence of measurements, and before powering down, any partially-filled input buffer needs to be written onto tape. This is achieved using a CR/LF code. A CR/LF will be issued if the 3782B “STOP” pushbutton is pressed (either manually or remotely) while Mask 6 is set to use the code “;” as message terminator and the rear-panel REAL-TIME CLOCK switch is set to NORMAL.

3-39 SERVICE REQUESTS

3-40 Both instruments are designed to issue a service request (SRQ) when service from the Controller is required. Programmable masks govern whether each request is generated.

3-41 It is possible for a service request to be generated before the Controller has had time to service any previous requests. In such instances, the instruments stack the requests in an orderly manner. It makes good programming sense to keep the length of this stack as short as possible by promptly responding to requests and not issuing further commands until the stack is empty. (However, it is not mandatory for the request to be serviced immediately if at all.) An instrument should not be serially polled within 20 milliseconds of a previous serial poll of that instrument.

3-42 REPERTOIRE OF SERVICE REQUESTS

3-43 Tables 3-8 and 3-9 list the service request codes that are used to indicate the reason for service. The mask number that controls each service request is also given.

<table>
<thead>
<tr>
<th>Octal</th>
<th>Code</th>
<th>Hex</th>
<th>Meaning</th>
<th>Controlling Mask Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>1</td>
<td>01</td>
<td>NEUTRAL — ALL OK</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>64</td>
<td>40</td>
<td>Command Syntax Error In Line</td>
<td>2</td>
</tr>
<tr>
<td>101</td>
<td>65</td>
<td>41</td>
<td>Command Syntax of Line OK</td>
<td>3</td>
</tr>
<tr>
<td>102</td>
<td>66</td>
<td>42</td>
<td>“LOCAL” pushbutton pressed</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Octal</th>
<th>Code</th>
<th>Hex</th>
<th>Meaning</th>
<th>Controlling Mask Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>1</td>
<td>01</td>
<td>NEUTRAL — ALL OK</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>64</td>
<td>40</td>
<td>An Error Second has occurred.</td>
<td>10</td>
</tr>
<tr>
<td>101</td>
<td>65</td>
<td>41</td>
<td>Cannot start — “ERROR 1” displayed</td>
<td>11</td>
</tr>
<tr>
<td>102</td>
<td>66</td>
<td>42</td>
<td>Cannot start — “ERROR 2” displayed</td>
<td>11</td>
</tr>
<tr>
<td>103</td>
<td>67</td>
<td>43</td>
<td>Cannot start — “ERROR 3” displayed</td>
<td>11</td>
</tr>
<tr>
<td>104</td>
<td>68</td>
<td>44</td>
<td>Cannot start — “ERROR 4” displayed</td>
<td>11</td>
</tr>
<tr>
<td>105</td>
<td>69</td>
<td>45</td>
<td>End of Gating Period — Normal.</td>
<td>12</td>
</tr>
<tr>
<td>106</td>
<td>70</td>
<td>46</td>
<td>End of Gating Period — Data Integrity Loss.</td>
<td>13</td>
</tr>
<tr>
<td>107</td>
<td>71</td>
<td>47</td>
<td>End of Gating Period — Invalid Switch Movement.</td>
<td>14</td>
</tr>
<tr>
<td>110</td>
<td>72</td>
<td>48</td>
<td>Command Syntax Error in Line.</td>
<td>15</td>
</tr>
<tr>
<td>111</td>
<td>73</td>
<td>49</td>
<td>Command Syntax of Line OK.</td>
<td>16</td>
</tr>
<tr>
<td>112</td>
<td>74</td>
<td>4A</td>
<td>Data Loss has occurred.</td>
<td>17</td>
</tr>
<tr>
<td>113</td>
<td>75</td>
<td>4B</td>
<td>AIS has occurred.</td>
<td>17</td>
</tr>
<tr>
<td>114</td>
<td>76</td>
<td>4C</td>
<td>Frame Sync Loss has occurred.</td>
<td>17</td>
</tr>
<tr>
<td>115</td>
<td>77</td>
<td>4D</td>
<td>Pattern Sync Loss has occurred.</td>
<td>17</td>
</tr>
<tr>
<td>116</td>
<td>78</td>
<td>4E</td>
<td>Data integrity regained.</td>
<td>17</td>
</tr>
<tr>
<td>117</td>
<td>79</td>
<td>4F</td>
<td>A further 24-hours has elapsed on internal real-time clock.</td>
<td>18</td>
</tr>
<tr>
<td>120</td>
<td>80</td>
<td>50</td>
<td>“LOCAL” pushbutton pressed.</td>
<td>19</td>
</tr>
</tbody>
</table>
3-44 LOCAL Push-button

3-45 The LOCAL push-button is situated on the front-panel of both instruments. The function of this control is to cause either instrument to return to the “Local” state (manually controllable). The Controller can, however, issue a Local Lockout command in which case the LOCAL push-button becomes inoperative. (In the 3782B, this control is functionally inoperative in the Talk Only mode.)

3-46 Internal Real-Time Clock (3782B only)

3-47 The 3782B has a built-in, crystal-controlled, real-time clock. The instrument can be programmed to prefix messages with the time from this internal clock. The format of this message is “HH-MM-SS”. Peripheral devices having no internal clock of their own (e.g. the HP Model 9875A Cartridge Tape Unit) can thus receive timed messages from the 3782B.

3-48 The clock can be initialized in one of three ways:

1. At device power-on, the clock is set to zero.

2. Under “Local” control (either in the Talk Only or Addressable modes) the rear-panel REAL-TIME CLOCK switch can be set to VIEW/SET. The front-panel START and STOP push-buttons now take the subsidiary role of fast advance of Hours and Minutes respectively. The main LED display window simultaneously shows the time in hours and minutes. If both push-buttons are held down together, the internal clock is held at the current time.

3. Under “Remote” control, using the command “IC”.

Initializing the clock sets the day count to ‘1’ and (for steps 1 and 2 only) sets the seconds count to zero.

3-49 Whenever the clock rolls over, after each 24-hour period, an output message gives the day count and an SRQ is generated under control of the programmable masks. The total range of the clock is 99 days, 23 hours, 59 minutes and 59 seconds.

3-50 USING THE HP 37201A BUS EXTENDER

3-51 The HP Model 37201A Bus Extender and suitable modems may be used to increase the distance between instruments. However, these long-distance communication paths must remain connected for the entire period that the instruments are expected to function remotely. Remember, that for each “local” 37201A Bus Extender used, only one “remote” 37201A Bus Extender and HP-IB instrument cluster can be active at any one time.

3-52 DEFINITION OF ‘LEARN’ TRANSFER

3-53 In response to a Learn Actual (LA) or Learn Remote (LR) command, the instruments output the settings of the switches and masks in a compact form. It is not necessary for the operator to know the internal format of this information, as its normal use is to allow a subsequent load instruction to re-load the switches and masks with their earlier values. However, Tables 3-10 and 3-11 define the structures—should a need arise to know the internal structure.

3-54 Each controllable switch is allocated the bits given in Tables 3-10 and 3-11 (undefined bits are not necessarily output as zero). Information output signal comprises 14 bytes for the 3781B and 35 bytes for the 3782B. All slide switch codes start with zero at the left-hand side.

Table 3-10 3781B Response Codes

<table>
<thead>
<tr>
<th>Switch</th>
<th>Byte Number</th>
<th>BITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PATTERN</td>
<td>1</td>
<td>0-3</td>
</tr>
<tr>
<td>DATA OUTPUT</td>
<td>8</td>
<td>0-2</td>
</tr>
<tr>
<td>ZERO SUB. (HUNDREDS)</td>
<td>3</td>
<td>0-3</td>
</tr>
<tr>
<td>ZERO SUB. (TENS)</td>
<td>4</td>
<td>0-3</td>
</tr>
<tr>
<td>ZERO SUB. (UNITS)</td>
<td>5</td>
<td>0-3</td>
</tr>
<tr>
<td>ERROR ADD (FORMAT)</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>ERROR ADD (RATE)</td>
<td>10</td>
<td>0-1</td>
</tr>
<tr>
<td>JITTER</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>CLOCK</td>
<td>6</td>
<td>0-1</td>
</tr>
<tr>
<td>FRAMING</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>MASKS (1→4)</td>
<td>11→14</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 3-11 3782B Response Codes

<table>
<thead>
<tr>
<th>Switch</th>
<th>Byte Number</th>
<th>BITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PATTERN</td>
<td>1</td>
<td>0-3</td>
</tr>
<tr>
<td>ZERO SUB. (HUNDREDS)</td>
<td>3</td>
<td>0-3</td>
</tr>
<tr>
<td>ZERO SUB. (TENS)</td>
<td>4</td>
<td>0-3</td>
</tr>
<tr>
<td>ZERO SUB. (UNITS)</td>
<td>5</td>
<td>0-3</td>
</tr>
<tr>
<td>DATA/DATA</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>MEASUREMENT MODE</td>
<td>7</td>
<td>0-1</td>
</tr>
<tr>
<td>DISPLAY MODE</td>
<td>9</td>
<td>0-1</td>
</tr>
<tr>
<td>DATA INPUT</td>
<td>6</td>
<td>0-2</td>
</tr>
<tr>
<td>SYNC</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>GATING PERIOD</td>
<td>10</td>
<td>0-3</td>
</tr>
<tr>
<td>BINARY/TERNARY INPUT</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>FRAMING</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>RESULT PRINT THRESHOLD</td>
<td>12</td>
<td>0-2.4</td>
</tr>
<tr>
<td>REAL-TIME CLOCK</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>MASKS (1→23)</td>
<td>13→35</td>
<td>0</td>
</tr>
</tbody>
</table>
3-55 OPERATORS CHECKS

3-56 The Operators Checks allow the operator to check the main functions of the instruments prior to use. These checks comprise Basic Functional Checks and HP-IB Functional Checks. (A complete specification check is given in Section IV of the Service Manuals.)

3-57 BASIC FUNCTIONAL CHECKS

Setting-up Procedure

1. Ensure the mains selector setting and fuse rating are correct for the power line in use (see Section II).

2. Set all 3781B front-panel switches to the left-hand side except for:
 CLOCK INT
 PRBS ZERO SUBSTITUTION 000

3. Set all 3782B front-panel switches to the left-hand side except for:
 GATING PERIOD 10^6 CLKS
 PRBS ZERO SUBSTITUTION 000

4. Set the 3782B rear-panel switches as follows:
 REAL TIME CLOCK OFF
 BINARY I/P/TERNARY I/P TERNARY I/P
 RESULT PRINT THRESHOLD 0 1
 HP-IB ADDRESS 0 1

5. Connect the 3781B and 3782B to the line supply and switch on. (If instruments are already powered-up, switch off and then switch on.) Allow an initialization period of approximately 5 seconds.

6. Check that the 3782B LOCAL and TALK LEDs are illuminated and a flashing “?” is displayed in the 3782B parameter display window.

7. Press the 3782B STOP push-button and the flashing “?” will cease, leaving the parameter display window blank.

8. Connect the 3781B DSX-1, DSX-1C, DSX-2 DATA OUTPUT to the 3782B DSX-1, DSX-1C, DSX-2 DATA INPUT using a WECO Type 310A cable. The 3782B pattern display window should illuminate.

9. The 3782B parameter display window should give the display “0.0”. Check that the GATING LED is flashing and the <100 ERRORS LED is illuminated.

10. Check that the 3782B parameter display window reading is “0.0” with the 3781B and 3782B PATTERN switches set to 2^15-1, 2^20-1, 0000, 1000, 1010, 1100, 1111 and 17/13. (Ensure the 3781B and 3782B PATTERN switches are set to identical settings.) Check that the GATING LED is flashing and the <100 ERRORS LED is illuminated. (Note: the 3782B SYNC LOSS LED may illuminate briefly during synchronisation when the PATTERN switch settings are changed.)

11. Set the 3781B PATTERN switch to AIS. The 3782B AIS and ERRORS LEDs should illuminate (ignore the 3782B parameter display window reading).

12. Reset the 3781B and 3782B PATTERN switches to 2^5-1. Set the 3781B ERROR ADD switch to 1 in 10^6. The 3782B parameter display window should read “1.0 10^-5”. Check that the GATING LED is flashing and the ERRORS and <100 ERRORS LEDs are illuminated.

13. Connect the 3781B DS-3 DATA OUTPUT to the 3782B DS-3 DATA INPUT using a WECO Type 440A cable. The 3782B parameter display window should read “1.0 10^-5”. Check that the GATING LED is flashing and the ERRORS and <100 ERRORS LEDs are illuminated. Ensure that these displays are achieved with the DATA OUTPUT/INPUT switches set to DSX-1C, DSX-2, DS-3(LO), DSX-3 and DS-3(HI). (Ensure the 3781B DATA OUTPUT AND 3782B DATA INPUT switches are set to identical settings.) A brief synchronisation period is required after changing the switch settings.

14. With the 3781B and 3782B DATA OUTPUT/INPUT switches set to DS-3(HI), set the 3781B and 3782B PATTERN switches to 1111. The 3782B parameter display window should read “1.0 10^-5” with the GATING LED flashing and the ERRORS and <100 ERRORS LEDs illuminated.

3-15
15. Set the 3782B GATING PERIOD switch to MAN. Press the 3782B START push-button. The 3782B parameter display window reading should average to \(1.0 \times 10^{-5}\) with the GATING and ERRORS LEDs illuminated. (Note: the 3782B display may take approximately 30 seconds to settle.)

16. Set the 3782B MEASUREMENT MODE switch to CODE ERRORS. Press the 3782B START push-button. The 3782B parameter display window should read "0.0" with the GATING and <100 ERRORS LEDs illuminated.

17. Set the 3781B ERROR ADD switch to CODE. Press the 3782B START push-button. The 3782B parameter display window reading should average to \(1.0 \times 10^{-5}\) with the GATING and ERRORS LEDs illuminated. (Note: the 3782B display may take approximately 30 seconds to settle.)

18. Set the 3782B MEASUREMENT MODE switch to PARITY ERRORS. Press the 3782B START push-button. The 3782B parameter display window should read "0.0" with the GATING and <100 ERRORS LEDs illuminated.

19. Set the 3781B ERROR ADD switch to BIN. Press the 3782B START push-button. The 3782B parameter display window reading should average to \(1.0 \times 10^{-5}\) with the GATING and ERRORS LEDs illuminated. (Note: the 3782B display may take approximately 60 seconds to settle.)

3-58 HP-IB FUNCTIONAL CHECKS

3-59 To check that the 3782B Error Detector is functioning properly in the "Talk Only" mode (without an HP-IB Controller) perform the following set-up.

1. Perform the procedures contained in Paragraph 3-57. Only if not previously performed.

2. Set the 3782B HP-IB ADDRESS switches to the following positions (as viewed from the rear).

 01

3. Set the 3781B and 3782B front-panel switches as contained in Paragraph 3-57 steps 2 and 3. Connect the 3781B DSX-1, DSX-1C, DSX-2 DATA OUTPUT to the 3782B DSX-1, DSX-1C, DSX-2 DATA INPUT using a WECO Type 310A cable.

4. Set the 3782B GATING PERIOD switch to MAN. Connect a suitable peripheral (e.g., HP-IB compatible Thermal Printer, Cassette Recorder, etc) to the 3782B HP-IB connector and set the peripheral to "Listen Only". (In this example, an HP Model 5150A Option 001 Thermal Printer is used.)

5. Press the 3782B START push-button. Wait approximately 5 seconds and press the 3782B STOP push-button. The Thermal Printer print-out should be similar to Figure 3-3 (i.e., with no local time).

 \[
 \begin{array}{c}
 FS \ 5 \\
 ES \ 0 \\
 EC \ 0 \\
 \langle 100 \text{ ERROR} \\
 ER \ 0,0 \\
 \text{STOP} \\
 \text{START}
 \end{array}
 \]

 Figure 3-3 Error Print-out Without Time

6. Set the HP-IB ADDRESS switches to 01 and press the 3782B START push-button. Wait approximately 5 seconds and press the 3782B STOP push-button. The Thermal Printer print-out should be similar to Figure 3-4 (i.e., with local time).

 \[
 12-50-24 \ FS \ 5 \\
 12-50-24 \ ES \ 0 \\
 12-50-24 \ EC \ 0 \\
 12-50-24 \ \langle 100 \text{ ERROR} \\
 12-50-24 \ ER \ 0,0 \\
 12-50-24 \ \text{STOP} \\
 12-50-19 \ \text{START}
 \]

 Figure 3-4 Error Print-out With Time
7. With the HP-IB ADDRESS switches set to 0 1 set the 3781B ERROR ADD switch to SINGLE. Press the 3782B START push-button. Press the 3781B SINGLE push-button three times. Press the 3782B STOP push-button. A print-out similar to Figure 3-5 should be obtained.

```
00-45-01 FS  2
00-45-01 ES  3
00-45-01 EC  42
00-45-01 (100 ERROR
00-45-01 ER 5.6E-6
00-45-01 STOP
00-45-00 ES(  42)
00-44-59 ES(  28)
00-44-58 ES(  14)
00-44-56 START
```

Figure 3-5 Print Every Error Second

8. Set the HP-IB ADDRESS switches to 0 1 with the GATING PERIOD switch set to MAN. Press the 3782B START push-button. Press the 3781B SINGLE push-button three times. Press the 3782B STOP push-button. A print-out similar to Figure 3-6 should be obtained.

```
14-50-48 FS  11
14-50-48 ES  7
14-50-48 EC  10
14-50-48 (100 ERROR
14-50-48 ER 1.2E-8
14-50-48 STOP
14-50-30 START
```

Figure 3-6 Print Cumulative Errors

9. Set the 3781B ERROR ADD switch to 1 in 10^5 and press the 3782B START push-button. Change the 3782B PATTERN switch mode to 1000 and a print-out similar to Figure 3-7 should be obtained.

```
00-49-17 FS  0
00-49-17 ES  2
00-49-17 EC  1447
00-49-17 ER 4.6E-4
00-49-17 RUN ABORT
00-49-17 PATN LOSS
00-49-15 START
```

Figure 3-7 Print Pattern Loss

3-60 ERROR CODES (3782B only)

3-61 Certain combinations of switch positions are invalid. These invalid positions generate an error code which flashes in the left-hand position of the main LED display window. The significance of these codes is given in the Table 3-12.

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ERROR RATE display not permitted for BINARY INPUTS when GATING PERIOD switch set to SECONDS, EXTERNAL or MANUAL.</td>
</tr>
<tr>
<td>2</td>
<td>PARITY ERROR measurements not permitted for DSX-1, DSX-1C or DSX-2 INPUTS.</td>
</tr>
<tr>
<td>3</td>
<td>PARITY ERROR measurements not permitted for DS-3 INPUTS without framing.</td>
</tr>
<tr>
<td>4</td>
<td>CODE ERROR measurements not permitted for BINARY INPUTS.</td>
</tr>
<tr>
<td>5</td>
<td>Code "31" not permitted for HP-1B Address.</td>
</tr>
<tr>
<td>6</td>
<td>"Talk Only" mode not permitted when Controller connected.</td>
</tr>
<tr>
<td>7</td>
<td>Instrument has suffered power interrupt and been powered-up. This code is cancelled by movement of any switch or upon receipt of a 'remote' command.</td>
</tr>
</tbody>
</table>
3-62 OPERATORS MAINTENANCE

3-63 Operators Maintenance consists of replacing defective fuses and cleaning the air filter. These items are discussed in the following paragraphs.

WARNING

It is important that the following maintenance procedures be executed according to the recommended schedule to retain the safety features which have been designed into the instrument.

3-64 Fuses ▼

3-65 The ac line fuse, located at the rear of the instrument may be replaced by the operator. The ac line cord should be disconnected from the power source and the other end disconnected from the instrument. With the power cord removed, the fuse compartment may be opened. The fuse is removed by unscrewing the fuse compartment end cap. For detailed information on fuse replacement and values, refer to Section II.

3-66 Air Filter ▲

3-67 The fan has a filter attached from the outside, for ease of cleaning and replacement. This filter should be removed and cleaned at intervals of approximately one month, depending on the environment. To service the filter, remove the four screws holding the filter to the rear panel.

WARNING

The instrument should not be operated with the air filter removed and the fan blades exposed.

3-68 Wash the filter mesh in clean soapy water, rinse thoroughly and dry before refitting, or, replace the filter with Part Number 03762-60040.
SALES & SUPPORT OFFICES
Arranged alphabetically by country

Product Line Sales/Support Key
Key Product Line
A Analytical
CM Components
C Computer Systems Sales only
CH Computer Systems Hardware Sales and Services
CS Computer Systems Software Sales and Services
E Electronic Instruments & Measurement Systems
M Medical Products
MP Medical Products Primary SRO
MS Medical Products Secondary SRO
P Personal Computer Products
Sales only for specific product line
Support only for specific product line

IMPORTANT: These symbols designate general product line capability. They do not
insure sales or support availability for all products within a line, at all locations.
Contact your local sales office for information regarding locations where HP support is
available for specific products.
HP distributors are printed in italics.

HEADQUARTERS OFFICES
If there is no sales office listed for your area, contact one of these headquarters offices.

NORTH/CENTRAL AFRICA
Hewlett-Packard S.A.
7, Rue du Bois-du-Lan
CH-1217 MEYRIN 2, Switzerland
Tel: (022) 83 12 12
Telex: 27835 hpco ch
Cable: HPWAPackSA Geneva

ASIA
Hewlett-Packard Asia Ltd.
6th Floor, Sun Hung Kai Centre
30 Harbour Rd.
G.P.O. Box 705
HONG KONG
Tel: 5-832 3211
After Jan. 1, 1984
47th Floor, China Resources Bldg.
26 Harbour Rd., Wan chai
HONG KONG
Telex: 68678 HEWPA HX
Cable: HPWAPACK HONG KONG

CANADA
Hewlett-Packard (Canada) Ltd.
6877 Gateway Drive
MISSISSAUGA, Ontario L4V 1M8
Tel: (416) 678-9430
Telex: 610-452-4246

EASTERN EUROPE
Hewlett-Packard Ges.m.b.h.
Liebgeisse 1
P.O.Box 72
A-1222 VIENNA, Austria
Tel: (222) 2365 110
Telex: 1 3 4 425 HEPA A

NORTHERN EUROPE
Hewlett-Packard S.A.
Uilensteede 475
P.O.Box 999
NL-1180 AZ AMSTELVEEN
The Netherlands
Tel: 20 437717

SOUTH EAST EUROPE
Hewlett-Packard S.A.
7, Rue du Bois-du-Lan
CH-1217 MEYRIN 2, Switzerland
Tel: (022) 83 12 12
Telex: 27835 hpco ch
Cable: HPWAPackSA Geneva

OTHER EUROPE
Hewlett-Packard S.A.
P.O. Box
150, Rue du Nant-O'Divier
CH-1217 MEYRIN 2, Switzerland
Tel: (022) 83 8111
Telex: 22486 hpco
Cable: HPWAPackSA Geneva

MEDITERRANEAN AND MIDDLE EAST
Hewlett-Packard S.A.
Mediterranean and Middle East
Afnina Centre
32 Kilifares Avenue
Parosissos-Aramousion, ATHENS
Greece
Tel: 662 88 11
Telex: 21-0586 HPAT GR
Cable: HPWAPackSA Athens

EASTERN USA
Hewlett-Packard Co.
4 Choike Cherry Road
ROCKVILLE, MD 20850
Tel: (301) 258-2000

MIDWESTERN USA
Hewlett-Packard Co.
5001 Tovilview Drive
ROLLING MEADOWS, IL 60008
Tel: (312) 255-9600

SOUTHERN USA
Hewlett-Packard Co.
2000 South Park Place
P.O. Box 105005
ATLANTA, GA 30348
Tel: (404) 955-1500

WESTERN USA
Hewlett-Packard Co.
3099 Lankershim Blvd.
P.O. Box 3919
LOS ANGELES, CA 91604
Tel: (213) 506-3700

OTHER INTERNATIONAL AREAS
Hewlett-Packard Co.
Intercontinental Headquarters
3495 Deer Creek Road
PALO ALTO, CA 94304
Tel: (415) 857-1501
Telex: 034-6300
Cable: HPWAPack

ANGOLA
Telecpra
Empresa Técnica de Equipamentos
R. Barbosa Rodrigues, 411 D DT.
Caixa Postal 6487
LUANDA
Tel: 35515, 35516
E.P.

ARGENTINA
Hewlett-Packard Argentina S.A.
Av. Paseo Colon 221
Piso 9
1389 BUENOS AIRES
Tel: 30-4846, 30-1851
Telex: 17895 BIONAR

AUSTRALIA
Adelaide, South Australia Office
Hewlett-Packard Australia Ltd.
153 Greenhill Road
PARKSIDE, S.A. 5063
Tel: 272-6911
Telex: 62536
Cable: HEWPAR Adelaide
A.CH.CM,CE,EM,P

Brisbane, Queensland Office
Hewlett-Packard Australia Ltd.
10 Payne Road
THE GAP, Queensland 4061
Tel: 30-4133
Telex: 42133
Cable: HEWPARD Brisbane
A.CH.CM,CE,EM,P

Canberra, Australia
Capital Territory Office
Hewlett-Packard Australia Ltd.
121 Wollongong Street
FYSWICK, A.C.T. 2609
Tel: 80 4224
Telex: 62850
Cable: HEWPAR Canberra
A.CH.CM,CE,EM,P

Melbourne, Victoria Office
Hewlett-Packard Australia Ltd.
31-1 Joseph Street
BLACKBURN, Victoria 3130
Tel: 895-2895
Telex: 31-024
Cable: HEWPARD Melbourne
A.CH.CM,CE,EM,P

Perth, Western Australia Office
Hewlett-Packard Australia Ltd.
261 Stirling Highway
CLAREMON, W.A. 6010
Tel: 383-2186
Telex: 90385
Cable: HEWPARD Perth
A.CH.CM,CE,EM,P

Sydney, New South Wales Office
Hewlett-Packard Australia Ltd.
17-23 Talavera Road
P.O. Box 308
NORTH RYDE, N.S.W. 2113
Tel: 887-1611
Telex: 21561
Cable: HEWPAR Sydney
A.CH.CM,CE,EM,P

AUSTRIA
Hewlett-Packard Ges.m.b.h.
Grotenhofstrasse 94
A-5802 GRAZ
Tel: (0318) 291 5 66
Telex: 32575
A.CH.

Hewlett-Packard Ges.m.b.h.
Liebiggasse 1
P.O. Box 72
A-1222 VIENNA
Tel: (0222) 23 65 11-0
Telex: 134425 HEPA A
A.CH.CM,CE,EM,P

BAHRAIN
Green Salon
P.O. Box 357
Manama

BAHRAIN
Tel: 255503-255590
Telex: 84419
P

Wael Pharmacy
P.O. Box 648

BELGIUM
Hewlett-Packard Belgium S.A./N.V.
Blvd de la Woluwe, 100
Woluwe-Saint-Lambert
B-1200 BRUSSELS
Tel: (02) 782-32-00
Telex: 23-494 pasibru
A.CH.CM,CE,EM,P

BRAZIL
Hewlett-Packard do Brasil I.C.E. Ltda.
Alameda Rio Negro, 750
Alphaville
06400 BARUEN SP
Tel: (011) 421-1311
Telex: (011) 38327 HPBR-BR
Cable: HPWAPack Sac Paulo
A.CH.CM,CE,EM,P

Hewlett-Packard do Brasil I.C.E. Ltda.
Avenida Epitacio Pessoa, 4664
22471 RIO DE JANEIRO-RJ
Tel: (021) 296-0237
Telex: 021-21905 HPBR-BR
Cable: HEWPAR Pack Rio de Janeiro
A.CH.CM,CE,MS,P

ANNADE C.I.E. Ltda.
Rua Barão, 103
04012 SAO PAULO
Tel: (011) 570-5726
Telex: 021-21905 HPBR-BR
F
SALES & SUPPORT OFFICES
Arranged alphabetically by country

CANADA
Alberta
Hewlett-Packard (Canada) Ltd.
3030 3rd Avenue N.E.
CALGARY, Alberta T2A 6T7
Tel: (403) 235-3100
A,CH,CM,CS,E,M*P

Hewlett-Packard (Canada) Ltd.
11120A-178th Street
EDMONTON, Alberta T5S 1P2
Tel: (403) 480-6586
A,CH,CM,CS,E,MP

British Columbia
Hewlett-Packard (Canada) Ltd.
10961 Shellbridge Way
RICHMOND
British Columbia V6X 2W7
Tel: (604) 270-2277
Telex: 610-922-5059
A,CH,CM,CS,E,M*,P

Manitoba
Hewlett-Packard (Canada) Ltd.
380-950 Century Street
WINNIPEG, Manitoba R3G 0Y1
Tel: (204) 786-6701
A,CH,CM,CS,E,MP

Nova Scotia
Hewlett-Packard (Canada) Ltd.
P.O. Box 93
900 Windmill Road
DARTMOUTH, Nova Scotia B2Y 3S5
Tel: (902) 469-7982
CH,CM,CS,E,M*,P

Ontario
Hewlett-Packard (Canada) Ltd.
5325 N. Service Rd., Unit 1
BURLINGTON, Ontario L7A 2A3
Tel: (416) 335-8644
CS,M

Hewlett-Packard (Canada) Ltd.
552 Newbold Street
LONDON, Ontario N6E 2S5
Tel: (519) 866-9201
A,CH,CM,CS,E,M*,P

Hewlett-Packard (Canada) Ltd.
6877 Gowerview Drive
MISSISSAUGA, Ontario L4V 1M8
Tel: (416) 876-9439
A,CH,CM,CS,E,MP

Hewlett-Packard (Canada) Ltd.
2670 Queenview St.
OTTAWA, Ontario K2B 6K1
Tel: (613) 820-6433
A,CH,CM,CS,E,M*,P

Hewlett-Packard (Canada) Ltd.
220 Yorkland Blvd., Unit #11
WILLOWDALE, Ontario M2J 1R5
Tel: (416) 499-9333
CH

Quebec
Hewlett-Packard (Canada) Ltd.
17500 Service Road South
Trans-Canada Highway
KIRKLAND, Quebec H9J 2M5
Tel: (514) 697-4232
A,CH,CM,CS,E,MP

Hewlett-Packard (Canada) Ltd.
Les Galeries du Vallon
2323 Du Versant Nord
STE. FOY, Quebec G1N 4C2
Tel: (418) 687-4570
CH

CHILE
Jorge Caldaghi y CIA. Ltda.
Av. Italia 634 Santiago
Casilla 16475
SANTIAGO S
Tel: 222-0222
Telex: Public Booth 440001
A,CM,E,M

Olympia (Chile) Ltda.
Av. Rodrigo de Araya 1045
Casilla 256-V
SANTIAGO 21
Tel: (02) 22 55 644
Telex: 240-565 OL YMP CL
Cable: Olympichile Santiagochile
CHC.S.P

CHINA, People’s Republic of
China Hewlett-Packard Rep. Office
P.O. Box 418
1A Lane 2, Luchang St.
Beijing Rd., Xuanwu District
BEIJING
Tel: 33-1947, 33-7426
Telex: 222001 CTSHSP CN
Cable: 1920
A,CH,CM,CS,E,P

COLOMBIA
Instrumentacion
H. A. Langebaek & Kier S.A.
Carrera 44 No. 50A-26
Apartado Aereo 6627
BOGOTA 1, D.E.
Tel: 212-1486
Telex: 44400 INST CO
Cable: AARES Bogota
CHM,E,M

Casa Humboldt Ltda.
Carrera 14 No. 98-60
Apartado Aereo 51283
BOGOTA 1, D.E.
Tel: 256-1696
Telex: 45403 CALCO CO.
A

COSTA RICA
Cientifica Costarricense S.A.
Avenida 2, Calle 5
San Pedro de Monte de Oca
Apartado 10159
SAN JOSE
Tel: 24-38-20, 24-08-19
Telex: 2387 CALQUR CR
CH,M,E,M

CYPRUS
Telereas Ltd.
P.O. Box 4809
140 Stassinos Avenue
MICOSA
Tel: 28998
Telex: 2894 LEVDIO CY
EMP

DENMARK
Hewlett-Packard A/S
Dalsvej 52
DK-3480 BIRKEROD
Tel: (02) 81-66-40
Telex: 37409 hpa dk
A,CH,CM,CS,E,MP

Hewlett-Packard A/S
Rolighedsvej 32
DK-6240 RISSIKON
Tel: (06) 17-66-00
Telex: 37409 hpa dk
CH,E

DOMINICAN REPUBLIC
Micropack S.A.
Juan Tomás Mejía y Cotes No. 60
Arroyo Hondo
SANTO DOMINGO
Tel: 565-6968
Telex: 4510 ARENTA DR (RCA) P

Ecuador
CYDEE Cia. Ltda.
Avenida Eloy Alfaro 1749
Casilla 84233 C3I
QUITO
Tel: 450-975, 243-052
Telex: 2548 CYDEE ED
CM,E,P

Hotel Spa.
Casilla 3590
QUITO
Tel: 545-250, 545-122
Telex: 2435 HOSPITAL ED
Cable: HOSPITALAR-QUITO M

EGYPT
International Engineering Associates
24 Hussien Hegazi Street
Kasr-al-Aini
CAIRO
Tel: 23829, 21641
Telex: 8A UN 93830
CH,CS,E,M

EGYPT
P.O.Box 2558
Al Ei Jannaa Street
CAIRO, Egypt
Tel: 65 00 21
Telex: 93 3373
P

EL SALVADOR
PESA De El Salvador S.A.
29 Avenida Norte 1218
SAN SALVADOR
Tel: 26-6858, 26-6868
Telex: 20539 PESASAL
A,CM,CS,E,P

FINLAND
Hewlett-Packard Oy
Ryovalintie 7
Pl 24
SF-02011 ESPOO 10
Tel: (90) 45500211
Telex: 125633 hewas sf
CH,CM,CS,P

Hewlett-Packard Oy
Olariuromia 7
Pl 24
SF-02101 ESPOO 10
Tel: (90) 452-1022
A,ES

Hewlett-Packard Oy
Aitokoskenkalv 10-C
SF-40720-72 JYVASKyla
Tel: (941) 216318
CH

Hewlett-Packard Oy
Klavunlinna 1-C
SF-90140-14 OULU
Tel: (981) 338785
CH

FRANCE
Hewlett-Packard France
Z.I. Mercure B
Rue Barbeyl
F-13765 Les Milles Cedex
AIX-EN-PROVENCE
Tel: (16) (42) 59-41-02
Telex: 41070F
A,CH,CS,E,M,P

Hewlett-Packard France
64, rue Marchand Saillant
F-61000 ALENCON
Tel: (16) (33) 29-04-42
CH,M

Hewlett-Packard France
13, Place Napoleon III
F-29000 BREST
Tel: (16) (98) 03-38-35
CH,M

Hewlett-Packard France
Chemin des Moulins
Boele Postale 162
F-69130 ECOULY Cedex (lyon)
Tel: (16) (78) 833-81-25
Telex: 310917F
A,CH,CS,E,MP

Hewlett-Packard France
Tour Lorraine
Boulevard de France
F-91035 EVRY Cedex
Tel: (16) 6 077-96-60
Telex: 692315F
E

Hewlett-Packard France
Parc d’Activite du Bois Brillard
Ave. du Lac
F-91040 EVRY Cedex
Tel: (16) 6 077-8383
Telex: 892315F
E

Hewlett-Packard France
5, avenue Raymond Chanas
F-33320 EYSINES (Grenoble)
Tel: (16) (76) 25-61-41
Telex: 980124 HP GRENOS EYBE CH

Hewlett-Packard France
Centre d’Affaire Paris-Nord
Bâtiment Ampiére 5 étage
Rue de la Commune de Paris
Boele Postale 300
F-93153 LE BLANC MESNIL
Tel: (16) (1) 865-44-52
Telex: 211032F
CH,CS,E,MS

Hewlett-Packard France
Parc d’Activités Caderia
Quartier Jean Mermoz
Avenue du President JF Kennedy
F-33700 MERICNAC (Bordeaux)
Tel: (16) (55) 34-90-84
Telex: 550105F
CH,E,MS

Hewlett-Packard France
Immeuble “Les 3 E”
Nouveau Chemin de la Garde
ZAC de Bois Brillard
F-44085 NANTES Cedex
Tel: (16) (40) 50-32-22
CH*
SALES & SUPPORT OFFICES
Arranged alphabetically by country

FRANCE (Cont'd)
Hewlett-Packard France
125, rue du Faubourg Banner
F-45000 ORLEANS
Tel: 03 (88) 86 01 63
Fax: 03 (88) 86 01 63
Tel: 60004AB
A,CH,M,CS,E,MP
Hewlett-Packard France
Paris Porte-Maillot
15, Avenue de L'Amiral Bruix
F-75762 PARIS CEDEX 16
Tel: 01 (1) 502-12-20
Telex: 615363F
CH,M,SP
Hewlett-Packard France
124, Boulevard Tourasse
F-64000 Pau
Tel: 05 (59) 50 38 02
Fax: 05 (59) 50 38 02
Hewlett-Packard France
4 Allée de la Bourgonnette
F-35100 RENNES
Tel: 02 (49) 51-42-44
Fax: 740912F
CH,M,CS,M,P
Hewlett-Packard France
98 Avenue de Bretagne
F-76100 ROUEN
Tel: 02 (35) 63-57-36
CH,M,CS
Hewlett-Packard France
4 Rue Thomas Mann
Boite Postale 56
F-67033 STRASBOURG Cedex
Tel: 03 (88) 28-56-46
Fax: 890144F
CH,M,CS,M,P
Hewlett-Packard France
Le Périole
20, Chemin du Pigeonnier de la Cédre
F-31083 TOULOUSE Cedex
Tel: 05 (61) 80-41-12
Fax: 5351639F
A,CH,M,CS,M,P
Hewlett-Packard France
9, rue Baudin
F-26000 VALENCE
Tel: 04 (75) 42 76 16
Fax: 04 (75) 42 76 16
Hewlett-Packard France
Carroir
ZAC de Bois Brion
F-57640 WOY (Natix)
Tel: 03 (87) 71 20 22
Fax: 03 (87) 71 20 22
CH
Hewlett-Packard France
Immeuble Péricentre
F-56598 VILLENEUVE D'ASCQ Cedex
Tel: 03 (20) 91-14-25
Fax: 160124F
CH,M,CS,M,P

GERMAN FEDERAL REPUBLIC
Hewlett-Packard GmbH
Geschäftstelle
Kellnerstrasse 12
D-1000 BERLIN 30
Tel: (030) 24-90-86
Fax: 018 3405 hpbh.d
A,CH,M,MP
Hewlett-Packard GmbH
Geschäftstelle
Herrenberger Strasse 130
D-7030 BÖBLINGER
Tel: (7031) 15-0
Fax: A,CH,M,CS,E,MP
Hewlett-Packard GmbH
Geschäftstelle
Emanu-El:Ue:Strasse 1
D-4000 DUSSERDORF
Tel: (0211) 5971-1
Fax: 085-85 332 hpbh.d
A,CH,M,CS,E,MP
Hewlett-Packard GmbH
Geschäftstelle
Schelestift 26a
D-4600 DORTMUND-Aplerbeck
Tel: (0231) 45001
Hewlett-Packard GmbH
Vertriebszentrale Frankfurt
Berliner Strasse 117
Postfach 560 160
D-60000 FRANKFURT 56
Tel: (069) 600-41
Fax: 73224 hpbh.d
A,CH,M,CS,E,MP
Hewlett-Packard GmbH
Geschäftstelle
Aussenstelle Bad Homburg
Luisenstrasse 115
D-6380 BAD HOMBURG
Tel: (06172) 195-0
Fax: A,CH,M,CS,E,MP
Hewlett-Packard GmbH
Geschäftstelle
Kapstading 5
D-2200 HAMBURG 60
Tel: (040) 69380-1
Fax: 021-63-032 hpbh.d
A,CH,M,CS,E,MP
Hewlett-Packard GmbH
Geschäftstelle
Hedering 37-39
D-3000 HANOVER 61
Tel: (0511) 5706-0
Fax: 092-3250
A,CH,M,CS,E,MP
Hewlett-Packard GmbH
Geschäftstelle
Rossleauer Weg 2-4
D-5090 MANNHEIM
Tel: (0621) 72000
Fax: 0482-105
A,CH,M,CS,E,MP
Hewlett-Packard GmbH
Geschäftstelle
Meierstrasse 7
D-7910 NEU ULM
Tel: 0731-7020
Fax: 07126-16 ULM-M-D
A,CH,M,CS,E,MP
Hewlett-Packard GmbH
Geschäftstelle
Heinrichstrasse 13
D-8500 MUNCHEN 10
Tel: (0181) 5200-0
Fax: 05223-360
A,CH,M,CS,E,MP
Hewlett-Packard GmbH
Geschäftstelle
Eschenerstrasse 5
D-80028 TAUFKIRCHEN
Tel: (089) 6117-1
Fax: 05249885
A,CH,M,CS,E,MP

GREAT BRITAIN
See United Kingdom

GREECE
Kostas Karayannis S.A.
8 Omiou Street
ATHENS 133
Tel: 32 30 303, 32 37 37
Fax: 215982 RKR2 GR
A,CH,M,CS,E,MP
PLEASO S.A.
G. Geradis
24 Stournara Street
ATHENS
Tel: 36-11-160
Fax: 231871

GUATEMALA
IPESA
Avenida Reforma 3-48, Zona 9
GUATEMALA CITY
Tel: 319627, 314766
Fax: 4152 TEL.3742 GR
A,CH,M,CS,E,MP

HONG KONG
Hewlett-Packard Hong Kong Ltd.,
G.P.O. Box 795
5th Floor, Sun Hung Kai Centre
33 Harbour Road
HONG KONG
Tel: 5-932-3211
Fax: 66678 HEWPA HK
Cable: HEPACK HONG KONG
E,CH,M,CS
CET Ltd.
1402 Tung Wah Mansion
199-203 Hennessy Rd.
Wanchi, HONG KONG
Tel: 5-792937
Fax: 85148 CET HK
O M
Schmidt & Co. (Hong Kong) Ltd.
Wing On Centre, 29th Floor
Causeway Bay Road, C.
HONG KONG
Tel: 5-455-944
Fax: 74786 SCHMY HK
A,M

ICELAND
Edging Trading Company Inc.
Hafnarfjórvík-Trjeggvoguott
P.O. Box 895
IS-REYKJAVIK
Tel: 1-58-20-1, 63-03
A
INDIA
Computer products are sold through
Blue Star Ltd. All computer repairs and
maintenance service is done through
Computer Maintenance Corp.
Blue Star Ltd.
Sabri Complex II Floor
24 Residency Rd.
BANGALORE 560 025
Tel: 35980
Fax: 0394-430
Cable: BLUESTAR
A,CH,M,CS,E,MP

BLUE STAR LTD.
BHANDREW LAKE
BOMBAY 400 025
Tel: 422-3101
Fax: 011-3751
Cable: BLUESTAR
A,M

BLUE STAR LTD.
Saharwah
BOMBAY 400 025
Tel: 422-6155
Fax: 011-4053
Cable: PROSTAR
A,CH,M,CS,E,MP

BLUE STAR LTD.
Kalyan, 19 Vishwas Colony
Akotpur, BORADA, 390 005
Tel: 65325
Cable: BLUESTAR
A,M

BLUE STAR LTD.
7 Hat Street
CALCUTTA 700 001
Tel: 012-6121
Fax: 021-76755
Cable: BLUESTAR
A,M

BLUE STAR LTD.
133 Kodambakkam High Road
MADRAS 600 034
Tel: 82057
Fax: 041-379
Cable: BLUESTAR
A,M

BLUE STAR LTD.
Bunder House
7th&B rd Fl
91 Nehru Place
NEW DELHI 110 024
Tel: 686257
Fax: 031-2463
Cable: BLUESTAR
A,CH,M,CS,E,MP

BLUE STAR LTD.
15/16 C Wellesley Rd.
PUNE 411 011
Tel: 22775
Cable: BLUE STAR
A

BLUE STAR LTD.
2-47/1108 Botanica Rd.
SECUNDERABAD 500 003
Tel: 72057
Fax: 0155-450
Cable: BLUEFROST
A,E

BLUE STAR LTD.
T.C. 7/993 Poomina
Marathankuzhi
TRIVANDRUM 695 013
Tel: 85799
Fax: 0884-259
Cable: BLUESTAR
E

Computer Maintenance Corporation Ltd.
115, Sardar Devi Road
SECUNDERABAD 500 003
Tel: 310-184, 345-774
Fax: 031-2960
CH,M,CS,E
SALES & SUPPORT OFFICES

Arranged alphabetically by country

INDONESIA
BERRA Indonesia P.T.
P.O.Box 492/Jkt.
Jl. Abdul Moe 62
JAKARTA
Tel: 21-372006
Telefax: 46748 BERSAL IA
Cable: BERSAL JAKARTA P

BERRA Indonesia P.T.
P.O.Box 2407/Jkt.
Antara Bldg., 17th Floor
Jl. Medan Merdeka Selatan 17
JAKARTA-PUSAT
Tel: 21-344-151
Telefax: BERSAL IA
A.C.S.E.M.

BERCA Indonesia P.T.
P.O.Box 174/SBY.
Jl. Kuta No. 11
SURABAYA
Tel: 86172
Telefax: 31165 BERSAL SB
Cable: BERSAL-SURABAYA A.C.S.E.M.

IRAQ
Hewlett-Packard Trading S.A.
Service Operation
Al Mansoor City 9B/3/7
BAGHDAD
Tel: 551-49-73
Telefax: 214-455 HEPARQAIK C.S.

IRELAND
Hewlett-Packard Ireland Ltd.
82/83 Lower Leeson Street
DUBLIN 2
Tel: 0011 608-800
Telefax: 30439
A.CH,CM,CS,EM,MP
Cardiac Services Ltd.
Kilmorrope
Attame
DUBLIN 5
Tel: (01) 251820
Telefax: 30439
M

ISRAEL
Eidan Electronic Instrument Ltd.
P.O.Box 1270
JERUSALEM 91000
16, Olshov St.
JERUSALEM 94467
Tel: 533 221, 533 242
Telefax: 25231 AB/PAKRO IL

Electronics Engineering Division
Motorola Israel Ltd.
16 Kremenetski Street
P.O.Box 25016
TEL-AVIV 67999
Tel: 38 388
Telefax: 33569 Motil IL
Cable: BASTEL Tel-Aviv
A.CH,CM,CS,EM,MP

ITALY
Hewlett-Packard Italia S.p.A.
Trevaresa 93C
Via Giulio Petroni, 19
I-70124 BARI
Tel: (080) 41-07-44
M

Hewlett-Packard Italia S.p.A.
Via Martin Luther King, 38/lm
I-40132 BOLOGNA
Tel: (051) 402384
Telefax: 511930
CH,E,MS
Hewlett-Packard Italia S.p.A.
Via Principio Nicola 430/C
I-55126 CATANIA
Tel: (095) 37-10-87
Telefax: 970291
C,P
Hewlett-Packard Italia S.p.A.
Via G. Di Vittorio 9
I-20063 CERNUSCO SUL NAVIGLIO
(Milano)
Tel: (02) 9239361
Telex: 334632
A.CH,CM,CS,EM,MP,P
Hewlett-Packard Italia S.p.A.
Via C. Colombbo 48
I-20090 TREZZANO SUL NAVIGLIO
(Milano)
Tel: (02) 4459041
Telex: 322116
C,M
Hewlett-Packard Italia S.p.A.
Via Nuova San Rocco a Capodimonte, 62/A
I-80131 NAPOLI
Tel: (081) 7143544
Telex: 110566
A.CH,E
Hewlett-Packard Italia S.p.A.
Via G. Modugno 33
I-16156 GENOVA PEGLI
Tel: (010) 68-37-07
Telefax: 215238
E,C
Hewlett-Packard Italia S.p.A.
Via Pelizzo 15
I-35128 PADOVA
Tel: (049) 664688
Telex: 430315
A.CH,EM
Hewlett-Packard Italia S.p.A.
Viale C. Pavese 340
I-20144 ROMA EUR
Tel: (06) 54831
Telex: 610514
A.CH,CM,CS,EM,MP,*
Hewlett-Packard Italia S.p.A.
Via di Casellina 57/C
I-50018 SCANDICCI-FIRENZE
Tel: (055) 750863
Hewlett-Packard Italia S.p.A.
Corso Svizzera, 185
I-10144 TORINO
Tel: (011) 74 4044
Telex: 221079
CH,E

JAPAN
Yokogawa-Hewlett-Packard Ltd.
152-1, Onna
ATSUGI, Kanagawa, 243
Tel: (0462) 28-0451
CM,C,E
Yokogawa-Hewlett-Packard Ltd.
Meji-Seime Bldg., SF
3-1 Hon Chiba-Uto
CHIBA, 280
Tel: 472 25 7701
E.CH,CS

Yokogawa-Hewlett-Packard Ltd.
Yasuda-Seimei Hiroshima Bldg.
61-11, Hon-dori, Naka-ku
HIROSHIMA, 730
Tel: 85-241-0811
Yokogawa-Hewlett-Packard Ltd.
Towa Building
2-3, Kaigan-dori, 2 Chome Chuo-ku
KOBÉ, 550
Tel: (07) 392-4791
C,F
Yokogawa-Hewlett-Packard Ltd.
Kumagaya Asahi 82 Bldg.
3-4 Tsukuba
KUMAGAYA, Saitama 360
Tel: (0485) 24-6583
CH,E
Yokogawa-Hewlett-Packard Ltd.
Asahi Shinbun Daichi Seimei Bldg.
4-7, Hanabata-cho
KUMamoto, 860
Tel: (0963) 54-7311
CH,E

KOREA
Sangwoo Electronics HP Division
12 Fl., Kimam Bldg.
San 75-31, Yeoksam-dong
Kangnam-ku
Yeoungdong P.O. Box 72
SEOUL
Tel: 555-7555, 555-5447
Telex: K27984 SAMSAN
A.CH,EM,CS,MP

KUWAIT
Al-Khaleejy Trading & Contracting
P.O.Box 830 Safat
KUWAIT
Tel: 42-4910, 41-1726
Telex: 22481 IRATKH KD
CH,E
Photo & Cine Equipment
P.O.Box 270 Safat
KUWAIT
Tel: 42-2846, 42-3081
Telex: 22224 Matkh K

LEBANON
G.M. Dalamdjian
Achrafieh
P.O.Box 195, 167
BEIRUT
Tel: 290293
MP*
Computer Information Systems
P.O.Box 11-6274
BEIRUT
Tel: 89 40 73
Telex: 22295
C

LUXEMBOURG
Hewlett-Packard Belguim S.A./N.V.
Bivd. de la Woluwe, 100
Woluwe St. Lambert
B-1200 BRUSSELS
Tel: (02) 762-32-00
Telex: 23-494 pabloen bru
A.CH,CM,CS,EM,MP,P

MALAYSIA
Hewlett-Packard Sales (Malaysia) Sdn. Bhd.
1st Floor, Bangunan British American
Jalan Semantan, Damansara Heights
KUALA LUMPUR 23-03
Tel: 943022
Telex: MA31011
A.CH,EM,P*
SALES & SUPPORT OFFICES

Arranged alphabetically by country

MAYLAVSIA (Cont’d)
Protel Engineering
P.O. Box 1917
Lot 824, Section 64
2344 Pendeng Road
Kuching, SARAWAK
Tel: 36299
Telex: MA 70504 PROMAL
Cable: PROTELGEN
A.E.M.

MALTA
Philip Toledo Ltd.
Notable Rd
MRIRIEL
Tel: 447 47
Telex: Media MI 649
E.P.

MEXICO
Hewlett-Packard Mexicana, S.A. de C.V.
Av. Periférico Sur No. 6501
Tepepan, Xochimilco
14000 MEXICO D.F.
Tel: 2515-1000
Telex: 17-74-507 HEWPACK MEX
A.CH,CS,EM,MS,PS

Hevlett-Packard Mexicana, S.A. de C.V.
Ave. Colonia del Valle 409
Col. del Valle
Municipio de Guadalupe
MONTERREY, Nuevo Leon
Tel: 48 104
Tel: 0305 405
CH

ECISA
José Vasconcelos No 218
Col. Condesa Deleg. Cuauhtémoc
MEXICO D.F. 06140
Tel: 555-1230
Telex: 17-72755 ECE ME
M

MOORCOCO
Dolbeau
81 rue Karachi
CASABLANCA
Tel: 3041-922, 3069-38
Tel: 23051, 22822
E
Gare de la gare d’Agadir
Boulevard de la Poste 156
CASABLANCA
Tel: 272002, 272650
Telex: 23 739
P

NETHERLANDS
Hewlett-Packard Nederland B.V.
P.O. Box 118
1118 AR AMSTELVEEN
P.O. Box 667
NL 1180 AR AMSTELVEEN
Tel: 00 (31) 292-21-21
Telex: 13 216 HEPA NL
A.CH,CS,EM,PS

Hewlett-Packard Nederland B.V.
Boogerd 2
NL 2900 VR CAPELLE A/D USSEL
P.O. Box 41
NL 2900 AA CAPELLE A/D USSEL
Tel: (10) 51-64-44
Telex: 21261 HEPA NL
A.CH,CS,E

Hewlett-Packard Nederland B.V.
Pasoer Peterstraat 134-136
NL 5612 LV EINDHOVEN
P.O. Box 2342
NL 5500 CH EINDHOVEN
Tel: (040) 3269111
Telex: 5146 hepia ni
A.CH ** E.M.

NEW ZEALAND
Hewlett-Packard (N.Z.) Ltd.
5 Owens Road
P.O. Box 26-18
Epsom, AUCKLAND
Tel: 687-159
Telex: HEWPACK Auckland
CH,CM,EM

Hewlett-Packard (N.Z.) Ltd.
4-12 Cruickshank Street
Kilburnie, WELLINGTON 3
P.O. Box 9443
Courtenay Place, WELLINGTON 3
Tel: 677-199
Telex: HEWPACK Wellington
CH,CM,EM

Northrop Instruments & Systems Ltd.
369 Khyber Pass Road
P.O. Box 8802
AUCKLAND
Tel: 794-011
Telex: 60960

Northrop Instruments & Systems Ltd.
110 Mandeville St.
P.O. Box 8398
CHRISTCHURCH
Tel: 486-928
Telex: 4203

Northrop Instruments & Systems Ltd.
Sturdie House
55-87 Ghuznee Street
P.O. Box 2406
WELLINGTON
Tel: 850-051
Telex: NZ 3980

PAKISTAN
Mushko & Company Ltd.
1-B, Street 45
Sector F-8
ISLAMABAD
Tel: 51077
Cable: FEMUS Rawalpindi
A.E.M.

Mushko & Company Ltd.
Osman Chambers
Abdulah Haroon Road
KARACHI 3202
Tel: 524131, 524132
Telex: 2694 MUSKO PK
Cable: COOPERATOR Karachi
A.E.M.

PANAMA
Electroferia Balboa, S.A.
Calle Samuel Lewis, Ed. Unia
dApartado 4929
PANAMA 5
Tel: 63-6613, 63-6749
Telex: 3493 ELECTRON P
A.C.M,E.M.

PERU
Cia Elai Electrica S.A.
Los Flamencos 145, San Isidro
Casilla 1030
LIMA 1
Tel: 41-4325, 41-3702
Telex: Pub. Booth 25006
A.M,E.M,P

PHILIPPINES
The Online Advanced Systems
Corporation
Rico House, Amorsolo Co, Herrera Street
Legaspi Village, Makati
P.O. Box 1510
Metro MANILA
Tel: 85-35-61, 85-34-91, 85-32-21
Telex: 3274 ONLINE
A.CH,CS,EM

Electronic Specialists and Proponents Inc.
690-B Epitacio de los Santos Avenue
Cuajin, DZONET CITY
P.O. Box 2649 Manila
Tel: 98-96-61, 98-96-92, 98-96-63
Telex: 40019, 42000 IIT GLOBE
MACKAY BOOTH

PORTUGAL
Mundimenter
Intercambio Mercadual de Comercio
S.A.R.L.
P.O. Box 2761
Av. Antonio Augusto de Aguiar 138
P-LISBON
Tel: (19) 53-21-31, 53-21-31
Telex: 16691 munter m
M

Sogimica
Av. da Liberdade, 220-2
1299 LISBOA Codex
Tel: 58 21 31 2/3
Telex: 13316 SABASA

Telepa-Empresa Técnica de Equipamento S.A.R.L.
Rua Rodrigo de Fonseca 163
P.O. Box 2531
P-LISBON 1
Tel: (19) 66-60-72
Telex: 12598
A.CH,CS,EM

PUERTO RICO
Hewlett-Packard Puerto Rico
Ave. Muñoz Rivera #101
Esq. Calle Ochoa
HATO REY, Puerto Rico 00916
Tel: (809) 754-7800
P.O. Box 5232 Edificio 203
Urban. Country Club
NUEVO RIKAS, Puerto Rico
P.O. Box 4407
Cable: HPSSG R S 34209
A.CH,CS,EM,PS

QATAR
Computecorpia
P.O. Box 2750
DOHA
Tel: 883555
Telex: 4806 CHIPABP
P

Eastern Technical Services
P.O. Box 4747
DOHA
Tel: 329 993
Telex: 4156 EASTEC DH

Nasser Trading & Contracting
P.O. Box 1563
DOHA
Tel: 23170, 23529
Telex: 4439 NASSER DH
M

SAUDI ARABIA
Modern Electronic Establishment
Hewlett-Packard Division
P.O. Box 22015
Thunibah
AL-KHOBAR
Tel: 895-1760, 895-1764
Telex: 671 106 HPMEEK SJ
Cable: ELECTRA AL-KHOBAR
CH,CS,EM

Modern Electronic Establishment
Hewlett-Packard Division
P.O. Box 1228
Redes Plaza, 9th Floor
JEDDAH
Tel: 644 29 48
Telex: 4007 12 FARMAS SJ
Cable: ELECTRA JEDDAH
CH,CS,EM

Modern Electronic Establishment
Hewlett-Packard Division
P.O. Box 22015
RIFAHD
Tel: 491-97 15, 491-63 87
Telex: 2020049 MEYVOD SJ
CH,CS,EM

Abdel Ghan El Ajou
P.O. Box 78
RIYADH
Tel: 40 41 717
Telex: 200 932 EL AJOU
P

SCOTLAND
See United Kingdom

SINGAPORE
Hewlett-Packard Singapore (Sales) Pte. Ltd.
#08-00 Inches House
450 2 Alexandra Road
P.O. Box 58 Alexandra Rd, Post Office
SINGAPORE, 9115
Tel: 651788
Telex: HPSSG R S 34209
Cable: HEWPACK, Singapore
A.CH,CS,EM,PS
SINGAPORE (Cont’d)

Dynamar International Ltd.
Unit 05-11 Block 6
Kolam Ayer Industrial Estate
SINGAPORE 1394
Tel: 747-6186
Telex: RS 26283 CM

SOUTH AFRICA

Hewlett-Packard South Africa (Pty.) Ltd.
P.O. Box 120
Howard Place CAPE PROVINCE 7450
Pine Park Center, Forest Drive, Pinelands

CAPE PROVINCE 7405
Tel: 55-7954
Telex: 57-20008 A,CH,CM,EM,MS,P

Hewlett-Packard South Africa (Pty.) Ltd.
P.O. Box 37099
92 Upper Verge Drive
DURBAN 4016
Tel: 28-4176, 28-4179, 28-4110
Telex: 6-22354 CHCM

Hewlett-Packard South Africa (Pty.) Ltd.
6 Linton Arcade
511 Cape Road
Linton Grange
PORT ELIZABETH 6000
Tel: 041-302148 CH

Hewlett-Packard South Africa (Pty.) Ltd.
P.O. Box 33345
Glenstantia GO10 TRANSVAAL
1st Floor East
Constantia Park Ridge Shopping Centre
Constantia Park
PRETORIA
Tel: 982043 Telex: 32163 CHLE

Hewlett-Packard South Africa (Pty.) Ltd.
Private Bag Westwood
SAN
dTON 2144
Tel: 802-5111, 802-5125 Telex: 4-20877
Cable: HEWPACK Johannesburg A,CH,CM,CS,EM,MS,P

SPAIN

Hewlett-Packard Española S.A.
Calle Antonio Cervantes 5
S-40507 SEVILLE

Hewlett-Packard Española S.A.
Calle San Vicente S/N
Edificio Aiba II
E-BILBAO 1
Tel: 423.85.29
A,CH,CS,EM,MS,P

Hewlett-Packard Española S.A.
Ctra de la Confluencia, Km. 18, 40002
Las Rozas
E-MADRID
Tel: (1) 537.00.11
CHCS,M

Hewlett-Packard Española S.A.
Avda. S. Francisco Javier, S/n
Planta 10, Edificio Sevilla 2,
E-SEVILLA 5
Tel: 64.44.54 Telex: 72335 A,CH,CS,EM,MS,P

SWEDEN

Hewlett-Packard Sverige AB
Sunnanagarva 14K
S-22222 LUND
Tel: (046) 13-69-79
Telex: (854) 17888 (via Spånga office)

Hewlett-Packard Sverige AB
Östra Tullgatan 3
S-2128 MALMÖ
Tel: (040) 70270
Telex: (854) 17888 (via Spånga office)

Hewlett-Packard Sverige AB
Västra Vingatan 2
S-70344 GÖTEBORG
Tel: (19) 10-46-80
Telex: (854) 17888 (via Spånga office)

THAILAND

Undanna
30 Pajpong Ave., Suanwong
BANGKOK 5
Tel: 235-2572
Telex: 64429 SIMCON TH
Cable: UMMESA Bangkok A,CH,CS,EM,MS,P

Hewlett-Packard (Schweiz) AG
Claraffistrasse 12
CH-4058 BASEL
Tel: (61) 33-59-20
A

Hewlett-Packard (Schweiz) AG
7, rue du Bois-du-Luc
Case Postale 365
CH-1217 MORIN
Tel: (021) 22-83-11-11
Telex: 27335 HPAG CH
A,CH,CS,EM,MS,P

Hewlett-Packard (Schweiz) AG
Allmand 2
CH-6067 WIDEN
Tel: (041) 57 31 21 11
Telex: 33933 lhag CH
A,CH,CS,EM,MS,P

General Electronic Inc.
Nuri Basha Ahmad Ebn Kays Street
P.O. Box 578
DAMASCUS
Tel: 33-24-87
Telex: 411 215
A,CH,EM,CS,EM,MS,P

Middle East Electronics
P.O.Box 2308
Abu Ramganah
DAMASCUS
Tel: 33 4 5 92
Telex: 411 304 M

TWA
Hewlett-Packard Far East Ltd.
Kaohsiung Office
2/F 88-2, Chung Cheng 3rd Road
KAOHSIUNG
Tel: (07) 241-2318 CHCS,E
Hewlett-Packard Far East Ltd.
Taiwan Branch
8th Floor
337 Fuxing North Road
TAIPEI
Tel: (02) 712-0404
Telex: 244339 NEWPACK
Cable: HDCPACK Taipei A,CH,CM,CS,EM,MS,P

ING Ling Trading Co.
3rd Floor, 7, Jen-Ai Road, Sec. 2
TAIPEI 100
Tel: (02) 3948191
Cable: WIGLIH TAIPEI
A

THAILAND

Unnessa
31 Avenue de la Liberté
TUNIS
Tel: 260-144 E.P
Cable: Corema I ter. AV. de Carthage

TUNISIA

Tektronix Company Ltd.
Iran Caddesi No. 7
Kavaklidere, ANKARA
Tel: 275802
Telex: 42515 TKMN TR E

UNITED KINGDOM

E.M.A. Media Europe Sokok Ltd.
Medina Eldon Sokok No.41/6
Yukcel Caddesi
ANKARA
Tel: 175 622
Telex: 42 591 M

UNITED ARAB EMIRATES

Emirates Ltd.
P.O. Box 2711
ABU DHABI
Tel: 82 04 19-20
Cable: EMIRAT ABUDHABI
Emirates Ltd.
P.O. Box 1641
SHARJAH
Tel: 591 181
Telex: 69136 Emirat Sh
CH,CS,EM,MS,P

UNITED KINGDOM

Hewlett-Packard Ltd.
Trafalgar House
Navigation Road
ALTRINCHAM
Cheshire WA14 1NJ
Tel: 061 529 6422
Telex: 668058 A,CH,CS,EM,MS,P

Hewlett-Packard Ltd.
Elstree House, Elstree Way
BOREHAMWOOD, Herts WD6 1SG
Tel: 01 207 5000
Telex: 9552716
A,CH,CS,EM,MS,P

Hewlett-Packard Ltd.
Oakfield House, Oakfield Grove
Clifton BRISTOL, Avon BS8 2BN
Tel: 0272 736893
Telex: 444302
CH,CS,EM,MP

Hewlett-Packard Ltd.
Brideo House
Brideo Place
LONDON EC4V 6BS
Tel: 01 583 6505
Telex: 286163
CH,CS,EM,MP

Hewlett-Packard Ltd.
47 Foucher House
257-263 High Street
LONDON COLNEY
Herts, AL2 1HA, St. Albans
Tel: 0722 24401
Telex: 18952176
CH,CS

Hewlett-Packard Ltd.
Pontffract Road
NORMANTON, West Yorkshire WF6 1RN
Tel: 0949 835555
Telex: 557355
CH,CS,EM,MP

Hewlett-Packard Ltd.
The Quadrangle
106-116 Stane Road
REDHILL, Surrey RH1 1PS
Tel: 0737 986655
Telex: 947234
CH,CS,EM,MP
SALES & SUPPORT OFFICES
Arranged alphabetically by country

GREAT BRITAIN (Cont’d)
Hewlett-Packard Ltd.
Aven House
435 Stratford Road
Shirley, SOLIHULL, West Midlands
B90 4BL
Tel: 021 745 8800
Telex: 339105
CH,CS,E,P
Hewlett-Packard Ltd.
West End House
41 High Street, West End
SOUTHWARK
England SE1 9JQ
Tel: 0171 622 3933
Telex: 147728
CH,CS,P
Hewlett-Packard Ltd.
Essex Rd.
Winnersh, WOKINGHAM
Berkshire RG8 7ZB
Tel: 0734 896 222
Telex: 848889
E
Hewlett-Packard Ltd.
King Street Lane
Winnersh, WOKINGHAM
Berkshire RG11 5AR
Tel: 0734 874 777
Telex: 847178
A,CH,CS,E,EP,M,R
Hewlett-Packard Ltd.
Nine Mile Ride
Esher, WOKINGHAM
Berkshire, SR1 3LL
Tel: 0344 773 101
Telex: 848605
CH,CS,P
IRELAND
NORTHERN IRELAND
Hewlett-Packard Ltd.
Cardiac Services Building
95A Finaghy Road South
BELFAST BT10 6BY
Tel: 2223 725-565
Telex: 1747626
CH
SCOTLAND
Hewlett-Packard Ltd.
SOUTH QUEENSFERRY
West Lothian, EH30 9TG
Tel: 031 331 1188
Telex: 72682
CH,CM,CS,E,MP
UNITED STATES
Alabama
Hewlett-Packard Co.
700 Century Park South, Suite 128
BIRMINGHAM, AL 35226
Tel: (205) 822-3802
A CH,M
Hewlett-Packard Co.
420 Wynn Drive
HUNTSVILLE, AL 35805
P.O. Box 7700
HUNTSVILLE, AL 35807
Tel: (205) 530-2600
CH,CM,CS,E,MP,A
Arizona
Hewlett-Packard Co.
8080 Pointe Parkway West
PHOENIX, AZ 85044
Tel: (602) 733-8000
A,CH,CM,CS,E,MP
Hewlett-Packard Co.
2424 East Aragon Road
TUCSON, AZ 85706
Tel: (602) 889-4631
CH,EM,MS

California
Hewlett-Packard Co.
99 South Hill Dr.
BRISBANE, CA 94005
Tel: (415) 330-2500
CH
Hewlett-Packard Co.
P.O. Box 7830 (90747)
5000 E. Clinton Avenue, Suite 102
FRESNO, CA 93727
Tel: (209) 252-9552
CH,CS,MS
Hewlett-Packard Co.
P.O. Box 4230
1430 East Orange Grove
FULLERTON, CA 92831
Tel: (714) 870-1000
CH,CM,CS,E,MP
Hewlett-Packard Co.
320 S. Kellogg, Suite B
GOLETA, CA 93117
Tel: (805) 967-3405
CH
Hewlett-Packard Co.
P.O. Box 92105
LOS ANGELES, CA 90009
Tel: (213) 970-7500
Tel: 910-325-6908
CH,CM,CS,E,MP
Hewlett-Packard Co.
3155 Porter Oaks Drive
PALO ALTO, CA 94304
Tel: (415) 975-6000
CH,CS,E
Hewlett-Packard Co.
4244 So. Market Court, Suite A
P.O. Box 15976
SACRAMENTO, CA 95852
Tel: (916) 929-7222
A,CH,CS,EM,MS
Hewlett-Packard Co.
9600 Aero Drive
P.O. Box 23333
SACRAMENTO, CA 95812
Tel: (916) 279-3200
SACRAMENTO, CA 95812
Tel: (805) 325-6300
CH,CM,CS,E,MP
Hewlett-Packard Co.
2305 Camino Ramon "C"
SAN RAMON, CA 94583
Tel: (415) 838-5900
CH,CS
Hewlett-Packard Co.
3005 Scott Boulevard
SANTA CLARA, CA 95050
Tel: (408) 988-7500
Tel: 913-338-0000
A,CH,CM,CS,E,MP
Hewlett-Packard Co.
5703 Corsa Avenue
WESTLAKE VILLAGE, CA 91362
Tel: (213) 706-8800
E,CH,CS

Colorado
Hewlett-Packard Co.
24 Inverness Place, East
ENGLEWOOD, CO 80112
Tel: (303) 649-5000
A,CH,CM,CS,E,MS

Connecticut
Hewlett-Packard Co.
47 Barnes Industrial Road South
P.O. Box 5007
WALLINGFORD, CT 06492
Tel: (203) 265-7801
A,CH,CM,CS,E,MS

Florida
Hewlett-Packard Co.
2801 N.W. 62nd Street
P.O. Box 24210
FORT LAUDERDALE, FL 33307
Tel: (954) 973-2600
CH,CS,E,MP
Hewlett-Packard Co.
6177 Lake Ellenor Drive
P.O. Box 139-10
ORLANDO, FL 32859
Tel: (305) 409-0100
A,CH,CM,CS,E,MS
Hewlett-Packard Co.
P.O. Box 5708
N. Hoover Blvd., Suite 123
P.O. Box 15000
ATLANTA, GA 30348
Tel: (404) 955-1500
Telex: 810-799-0000
A,CH,CM,CS,E,MP

Georgia
Hewlett-Packard Co.
2000 South Park Place
P.O. Box 100052
ATLANTA, GA 30349
Tel: (404) 944-6499
A,CH,CM,CS,E,MP

Hawaii
Hewlett-Packard Co.
Kawaihae Plaza, Suite 190
567 South King Street
HONOLULU, HI 96813
Tel: (808) 526-1555
A,CH,EM

Illinois
Hewlett-Packard Co.
304 Eldorado Road
P.O. Box 1607
BLOOMINGTON, IL 61701
Tel: (309) 610-4411
CH,CM,MP
Hewlett-Packard Co.
1100 31st Street, Suite 100
DOWNSERS GROVE, IL 60525
Tel: (312) 960-5700
CH,CS
Hewlett-Packard Co.
P.O. Box 224
ROLLING MEADOWS, IL 60008
Tel: (847) 992-3500
Tel: 910-667-1066
A,CH,CM,CS,E,MP

Indiana
Hewlett-Packard Co.
7301 So. Shadeland Avenue
P.O. Box 5007
INDIANAPOLIS, IN 46250
Tel: (317) 842-1000
A,CH,CM,CS,E,MS

Iowa
Hewlett-Packard Co.
1776 22nd Street, Suite 1
WEST DES MOINES, IA 50265
Tel: (515) 224-1435
A,CH,EM

Kansas
Hewlett-Packard Co.
7000 East Funston Road, #531
WICHITA, KS 67207
Tel: (316) 684-6491
CH

Kentucky
Hewlett-Packard Co.
10300 Lincoln Station Road, #100
LOUISVILLE, KY 40223
Tel: (502) 426-1000
A,CH,CS,MS

Louisiana
Hewlett-Packard Co.
160 James Drive East
ST. ROSE, LA 70087
F.O. Box 1448
KENNER, LA 70063
Tel: (504) 467-4100
A,CH,CS,E,MS

Maryland
Hewlett-Packard Co.
3701 Koppers Street
BALTIMORE, MD 21227
Tel: (301) 644-5700
Telex: 710-862-1943
A,CH,CM,CS,E,MP

Massachusetts
Hewlett-Packard Co.
1775 Minuteman Road
ANDOVER, MA 01810
Tel: (617) 992-1500
A,CH,CM,CS,E,MS

Michigan
Hewlett-Packard Co.
14285 Tannahill Street
BEAVERTON, MI 48023
Tel: (313) 460-5100
A,CH,CM,CS,E,MP

Minnesota
Hewlett-Packard Co.
2005 W. Larpenteur Ave.
ST. PAUL, MN 55113
Tel: (612) 644-1100
A,CH,CM,CS,E,MP

Missouri
Hewlett-Packard Co.
11131 Old courthouse Road
KANSAS CITY, MO 64137
Tel: (816) 763-6300
A,CH,CM,CS,E,MS

Mississippi
Hewlett-Packard Co.
13001 Hollebourn Drive
BRIDGEPORT, MO 63044
Tel: (314) 344-1000
A,CH,CS,E,MP
SALES & SUPPORT OFFICES
Arranged alphabetically by country

UNITED STATES (Cont’d)

Nebraska
Hewlett-Packard
10824 Old Mill Rd., Suite 3
OMAHA, NE 68154
Tel: (402) 334-1813
CM,MS

New Jersey
Hewlett-Packard Co.
120 W. Century Road
PARAMUS, NJ 07652
Tel: (201) 265-5000
A,CH,CM,CS,E

Hewlett-Packard Co.
60 New England Ave., West
PISCATAWAY, NJ 08854
Tel: (201) 981-1199
A,CH,CM,CS,E

New Mexico
Hewlett-Packard Co.
11300 Lomas Blvd., N.E.
P.O. Box 11634
ALBUQUERQUE, NM 87112
Tel: (505) 252-1330
CH,CS,E,MS

New York
Hewlett-Packard Co.
5 Computer Drive South
ALBANY, NY 12205
Tel: (518) 456-1550
A,CH,CS,E

Hewlett-Packard Co.
9600 Main Street
P.O. Box AC
CLARENCe, NY 14031
Tel: (716) 755-8621

Hewlett-Packard Co.
200 Cross Keys Office Park
FAIRPORT, NY 14450
Tel: (716) 223-9950
CH,CM,CS,E

Hewlett-Packard Co.
7641 Henry Clay Blvd.
LIVERPOOL, NY 13088
Tel: (315) 451-1820
A,CH,CS,E

Hewlett-Packard Co.
No. 1 Pennsylvania Plaza
55th Floor
34th Street & 6th Avenue
MANHATTAN, NY 10119
Tel: (212) 971-0800
CH,CS,E

Hewlett-Packard Co.
250 Westchester Avenue
WHITE PLAINS, NY 10604
Tel: (914) 684-6100
CM,CH,CS

Hewlett-Packard Co.
3 Crossways Park West
WOODBURY, NY 11797
Tel: (516) 921-0300
A,CH,CM,CS,E,MS

North Carolina
Hewlett-Packard Co.
5005 Roanar Way
P.O. Box 26500
GREENSBORO, NC 27420
Tel: (336) 552-1800
A,CH,CM,CS,E

Ohio
Hewlett-Packard Co.
9920 Carver Road
CINCINNATI, OH 45242
Tel: (513) 681-9870
CH,CS,MS

Hewlett-Packard Co.
16500 Spague Road
CLEVELAND, OH 44130
Tel: (216) 243-7300
A,CH,CS,E,MS

Hewlett-Packard Co.
962 Crapper Ave.
COLUMBUS, OH 43229
Tel: (614) 436-1041
Eff: Nov. 15, 1992
675 Brookside Blvd.
WESTERVILLE, OH 43081
A,CH,CM,CS,E

Hewlett-Packard Co.
330 Progress Rd.
DAYTON, OH 45449
Tel: (513) 859-8202
A,CH,CM,CS,E

Ohio
Hewlett-Packard Co.
304 N. Meridian, Suite A
P.O. Box 75669
OKLAHOMA CITY, OK 73147
Tel: (405) 946-9499
A,CH,CS,E

Hewlett-Packard Co.
3840 S. 103rd E. Avenue, #100
P.O. Box 35742
TULSA, OK 74153
Tel: (918) 665-3300
A,CH,CS,E

Oregon
Hewlett-Packard Co.
9235 S. W. Pioneer Court
P.O. Box 326
WILSONVILLE, OR 97070
Tel: (503) 682-8000
A,CH,CS,E

Pennsylvania
Hewlett-Packard Co.
111 Zena Drive
PITTSBURGH, PA 15238
Tel: (412) 722-0140
A,CH,CS,E

Hewlett-Packard Co.
2750 Monroe Boulevard
P.O. Box 713
VALLEY FORGE, PA 19482
Tel: (215) 686-9000
A,CH,CM,CS,E

South Carolina
Hewlett-Packard Co.
Brookside Park, Suite 122
1 Harbison Way
P.O. Box 21700
COLUMBIA, SC 29221
Tel: (803) 732-0400
CHE,CS

Hewlett-Packard Co.
Koger Executive Center
Chestersfield Blvd., Suite 124
GREENVILLE, SC 29615
Tel: (864) 297-1200
A,CS,E

Texas
Hewlett-Packard Co.
6171 North Mesa
Suite C-110
EL PASO, TX 79902
Tel: (915) 533-3555
CHE,CS,E

Hewlett-Packard Co.
10355 Harwin Drive
P.O. Box 42516
HOUSTON, TX 77204
Tel: (713) 776-6400
A,CH,CM,CS,E

Hewlett-Packard Co.
930 E. Campbell Rd.
P.O. Box 1270
RICHARDSON, TX 75080
Tel: (214) 231-6101
A,CH,CM,CS,E

Hewlett-Packard Co.
1020 Central Parkway South
P.O. Box 32980
SAN ANTONIO, TX 78216
Tel: (512) 494-9336
CH,CS,E

Utah
Hewlett-Packard Co.
3540 W. 2100 South
SALT LAKE CITY, UT 84119
Tel: (801) 974-1700
A,CH,CS,E

Virginia
Hewlett-Packard Co.
4305 Cox Road
GLEN ALLEN, VA 23060
P.O. Box 9669
RICHMOND, VA 23228
Tel: (804) 747-7750
A,CH,CS,E

Washington
Hewlett-Packard Co.
1818 S.E. 37th Street
BELLEVUE, WA 98006
Tel: (206) 643-4000
A,CH,CM,CS,E

Hewlett-Packard Co.
Suite A
708 North Argonne Road
SPOKANE, WA 99212
Tel: (509) 922-7000
CH,CS

West Virginia
Hewlett-Packard Co.
4604 MacKinnon Ave.
P.O. Box 4587
CHARLESTON, WV 25304
Tel: (304) 925-0492
A,CS

Wisconsin
Hewlett-Packard Co.
150 S. Sunny Slope Road
BROOKFIELD, WI 53005
Tel: (414) 784-8800
A,CS,E,MS

URUGUAY
Pablo Ferrando S.A.C. e I.
Avda. Italia 2877
Casilla de Correo 370
MONTEVIDEo
Tel: 80-2586
Telex: Public Booth 901
ACME,M

VENEZUELA
Hewlett-Packard de Venezuela C.A.
3RA Transversal Los Ruices Norte
Edificio Seguro 1, 2 & 3
Aparato 50533
CARACAS 1071
Tel: 238-4133
Telex: 25-1046 HEPACK
A,CH,CS,E,MS

Hewlett-Packard de Venezuela C.A.
Calle 72 Entre 3H y 3Y, No. 3H-40
Edificio Ada-Evelyn, Local B
Aparato 2046
4001, MARACAY, Estado Zulia
Tel: (0610) 921-304
C,E

Hewlett-Packard de Venezuela C.A.
Calle Vargas Rondon
Edificio Seguros Carabobo, Piso 10
VALENCIA
Tel: (041) 51 385
CH,CS,P
Bioelectronica Medica C.A.
Calle Buen Pastor
Edif. Cola Mil-Piso 2 y Semi Solano 1
Boleita Norte
Aparato 507-10 CARACAS 10504
Tel: 239 84 41
Telex: 26516
ZIMBABWE
Field Technical Sales
45 Kelvin Road, North
P.B. 3438
SALISBURY
Tel: 705 231
Telex: 4-122 RH
C,E,MP
July 1983
5952-8600
Indicates main office

HP distributors are printed in italics.