LIMITED WARRANTY & LIMITATION OF LIABILITY

Each Fluke product is warranted to be free from defects in material and workmanship under normal use and service. The warranty period is one year and begins on the date of shipment. Parts, product repairs and services are warranted for 90 days. This warranty extends only to the original buyer or end-user customer of a Fluke authorized reseller, and does not apply to fuses, disposable batteries or to any product which, in Fluke’s opinion, has been misused, altered, neglected or damaged by accident or abnormal conditions of operation or handling. Fluke warrants that software will operate substantially in accordance with its functional specifications for 90 days and that it has been properly recorded on non-defective media. Fluke does not warrant that software will be error free or operate without interruption.

Fluke authorized resellers shall extend this warranty on new and unused products to end-user customers only but have no authority to extend a greater or different warranty on behalf of Fluke. Warranty support is available if product is purchased through a Fluke authorized sales outlet or Buyer has paid the applicable international price. Fluke reserves the right to invoice Buyer for importation costs of repair/replacement parts when product purchased in one country is submitted for repair in another country.

Fluke’s warranty obligation is limited, at Fluke’s option, to refund of the purchase price, free of charge repair, or replacement of a defective product which is returned to a Fluke authorized service center within the warranty period.

To obtain warranty service, contact your nearest Fluke authorized service center or send the product, with a description of the difficulty, postage and insurance prepaid (FOB Destination), to the nearest Fluke authorized service center. Fluke assumes no risk for damage in transit. Following warranty repair, the product will be returned to Buyer, transportation prepaid (FOB Destination). If Fluke determines that the failure was caused by misuse, alteration, accident or abnormal condition of operation or handling, Fluke will provide an estimate of repair costs and obtain authorization before commencing the work. Following repair, the product will be returned to the Buyer transportation prepaid and the Buyer will be billed for the repair and return transportation charges (FOB Shipping Point).

THIS WARRANTY IS BUYER’S SOLE AND EXCLUSIVE REMEDY AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FLUKE SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES OR LOSSES, INCLUDING LOSS OF DATA, WHETHER ARISING FROM BREACH OF WARRANTY OR BASED ON CONTRACT, TORT, RELIANCE OR ANY OTHER THEORY.

Since some countries or states do not allow limitation of the term of an implied warranty, or exclusion or limitation of incidental or consequential damages, the limitations and exclusions of this warranty may not apply to every buyer. If any provision of this Warranty is held invalid or unenforceable by a court of competent jurisdiction, such holding will not affect the validity or enforceability of any other provision.

Fluke Corporation
P.O. Box 9090
Everett, WA 98206-9090
U.S.A.

Fluke Europe B.V.
P.O. Box 1186
5602 BD Eindhoven
The Netherlands
SAFETY TERMS IN THIS MANUAL

This instrument has been designed and tested in accordance with IEC publication 1010-1 (1992-1), Safety Requirements for Electrical Measuring, Control and Laboratory Equipment, and ANSI/ISA-S82.01-1994, and CAN/CSA-C22.2 No. 1010.1-92. This User Manual contains information, warning, and cautions that must be followed to ensure safe operation and to maintain the instrument in a safe condition. Use of this equipment in a manner not specified herein may impair the protection provided by the equipment.

This instrument is designed for IEC 1010-1 Installation Category II use. It is not designed for connection to circuits rated over 4800 VA.

WARNING statements identify conditions or practices that could result in personal injury or loss of life.

CAUTION statements identify conditions or practices that could result in damage to equipment.

SYMBOLS MARKED ON EQUIPMENT

⚠️ WARNING Risk of electric shock. Refer to the manual (see the Index for references).

⚠️ GROUND Ground terminal to chassis (earth).

⚠️ Attention Refer to the manual (see the Index for references). This symbol indicates that information about usage of a feature is contained in the manual.

AC POWER SOURCE

The instrument is intended to operate from an ac power source that will not apply more than 264V ac rms between the supply conductors or between either supply conductor and ground. A protective ground connection by way of the grounding conductor in the power cord is required for safe operation.

USE THE PROPER FUSE

To avoid fire hazard, for fuse replacement use only the specified unit: 100 or 120 V operation, 2 ampere/250 volt time delay; 200 or 240 V operation, 1 ampere/250 volt time delay.

GROUNDING THE INSTRUMENT

The instrument utilizes controlled overvoltage techniques that require the instrument to be grounded whenever normal mode or common mode ac voltages or transient voltages may occur. The enclosure must be grounded through the grounding conductor of the power cord, or through the rear panel ground binding post.
USE THE PROPER POWER CORD
Use only the power cord and connector appropriate for the voltage and plug configuration in your country.
Use only a power cord that is in good condition.
Refer power cord and connector changes to qualified service personnel.

DO NOT OPERATE IN EXPLOSIVE ATMOSPHERES
To avoid explosion, do not operate the instrument in an atmosphere of explosive gas.

DO NOT REMOVE COVER DURING OPERATION
To avoid personal injury or death, do not remove the instrument cover without first removing the power source connected to the rear panel. Do not operate the instrument without the cover properly installed. Normal calibration is accomplished with the cover closed. Access procedures and the warnings for such procedures are contained both in this manual and in the Service Manual. Service procedures are for qualified service personnel only.

DO NOT ATTEMPT TO OPERATE IF PROTECTION MAY BE IMPAIRED
If the instrument appears damaged or operates abnormally, protection may be impaired. Do not attempt to operate the instrument under these conditions. Refer all questions of proper instrument operation to qualified service personnel.
Table of Contents

1 Introduction and Specifications

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction and Specifications</td>
<td>1-1</td>
</tr>
<tr>
<td></td>
<td>1-1. Introduction</td>
<td>1-3</td>
</tr>
<tr>
<td></td>
<td>1-2. Operation Overview</td>
<td>1-4</td>
</tr>
<tr>
<td></td>
<td>1-3. Local Operation</td>
<td>1-4</td>
</tr>
<tr>
<td></td>
<td>1-4. Remote Operation (RS-232)</td>
<td>1-4</td>
</tr>
<tr>
<td></td>
<td>1-5. Remote Operation (IEEE-488)</td>
<td>1-5</td>
</tr>
<tr>
<td></td>
<td>1-6. Where To Go from Here</td>
<td>1-5</td>
</tr>
<tr>
<td></td>
<td>1-7. Instruction Manuals</td>
<td>1-6</td>
</tr>
<tr>
<td></td>
<td>1-8. 5800A Operators Manual</td>
<td>1-6</td>
</tr>
<tr>
<td></td>
<td>1-9. 5800A Service Manual</td>
<td>1-6</td>
</tr>
<tr>
<td></td>
<td>1-10. Specifications</td>
<td>1-6</td>
</tr>
<tr>
<td></td>
<td>1-11. General Specifications</td>
<td>1-8</td>
</tr>
<tr>
<td></td>
<td>1-12. Voltage Output Specifications</td>
<td>1-9</td>
</tr>
<tr>
<td></td>
<td>1-13. Edge Specifications</td>
<td>1-10</td>
</tr>
<tr>
<td></td>
<td>1-14. Leveled Sine Wave Specifications</td>
<td>1-11</td>
</tr>
<tr>
<td></td>
<td>1-15. Time Marker Specifications</td>
<td>1-12</td>
</tr>
<tr>
<td></td>
<td>1-16. Wave Generator Specifications</td>
<td>1-13</td>
</tr>
<tr>
<td></td>
<td>1-17. Pulse Generator Specifications</td>
<td>1-14</td>
</tr>
<tr>
<td></td>
<td>1-18. Trigger Signal Specifications (Pulse Function)</td>
<td>1-14</td>
</tr>
<tr>
<td></td>
<td>1-19. Trigger Signal Specifications (Time Marker Function)</td>
<td>1-15</td>
</tr>
<tr>
<td></td>
<td>1-20. Trigger Signal Specifications (Edge Function)</td>
<td>1-15</td>
</tr>
<tr>
<td></td>
<td>1-21. Trigger Signal Specifications (Square Wave Voltage Function)</td>
<td>1-15</td>
</tr>
<tr>
<td></td>
<td>1-22. Trigger Signal Specifications</td>
<td>1-15</td>
</tr>
<tr>
<td></td>
<td>1-23. Tunnel Diode Drive Capability</td>
<td>1-15</td>
</tr>
<tr>
<td></td>
<td>1-25. Oscilloscope Input Capacitance Measurement Specifications</td>
<td>1-16</td>
</tr>
<tr>
<td></td>
<td>1-26. Overload Measurement Specifications</td>
<td>1-16</td>
</tr>
<tr>
<td></td>
<td>1-27. External Reference Input Specifications</td>
<td>1-16</td>
</tr>
<tr>
<td></td>
<td>1-28. Auxiliary Input/Output Specifications</td>
<td>1-16</td>
</tr>
</tbody>
</table>

2 Preparing for Operation

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Preparing for Operation</td>
<td>2-1</td>
</tr>
<tr>
<td></td>
<td>2-1. Introduction</td>
<td>2-3</td>
</tr>
<tr>
<td></td>
<td>2-2. Unpacking and Inspection</td>
<td>2-5</td>
</tr>
<tr>
<td></td>
<td>2-3. Replacing The Fuse</td>
<td>2-5</td>
</tr>
</tbody>
</table>
2-4. Selecting Line Voltage ... 2-4
2-5. Connecting To Line Power .. 2-4
2-6. Service Information .. 2-6
2-7. Placement and Rack Mounting ... 2-7
2-8. Cooling Considerations ... 2-7

3 Features .. 3-1
 3-1. Introduction ... 3-3
 3-2. Front Panel Features ... 3-3
 3-3. Rear Panel Features ... 3-3
 3-4. Setup Softkey Menu Trees ... 3-10

4 Front Panel Operation .. 4-1
 4-1. Introduction ... 4-3
 4-2. Turning on the Calibrator .. 4-3
 4-3. Warming up the Calibrator ... 4-4
 4-4. Using the Softkeys .. 4-4
 4-5. Using the Setup Menu ... 4-4
 4-6. Using the Instrument Setup Menu ... 4-5
 4-7. Utility Functions Menu .. 4-5
 4-8. Using the Format EEPROM Menu ... 4-6
 4-9. Resetting the Calibrator .. 4-6
 4-10. Using the Operate and Standby Modes 4-7
 4-11. Connecting the Calibrator to the UUT 4-7
 4-12. Starting the Calibrator .. 4-7
 4-13. The Output Signal ... 4-8
 4-14. Editing and Error Output Settings .. 4-8
 4-15. Adjusting the Output Signal ... 4-9
 4-16. Keying in a Value .. 4-9
 4-17. Adjusting Values with the Rotary Knob 4-9
 4-18. Using V and D ... 4-10
 4-19. Displaying the Output Error ... 4-10
 4-20. Resetting the Calibrator .. 4-11
 4-21. Calibrating the Voltage Amplitude on an Oscilloscope 4-11
 4-22. The VOLTAGE Function ... 4-11
 4-23. The V/DIV Menu ... 4-12
 4-24. Shortcuts for Setting the Voltage Amplitude 4-12
 4-25. The TRIG (Trigger) Menu .. 4-13
 4-26. Oscilloscope Amplitude Calibration Procedure 4-13
 4-27. Calibrating the Pulse and Frequency Response on an Oscilloscope... 4-14
 4-28. The Edge Function ... 4-14
 4-29. The TRIG (Trigger) Menu .. 4-15
 4-30. Oscilloscope Pulse Response Calibration Procedure 4-16
 4-31. Pulse Response Calibration Using a Tunnel Diode Pulser 4-17
 4-32. The Leveled Sine Wave Function ... 4-18
 4-33. Shortcuts for Setting the Frequency and Voltage 4-19
 4-34. The MORE OPTIONS Menu .. 4-19
 4-35. Sweeping Through a Frequency Range 4-20
 4-36. Oscilloscope Frequency Response Calibration Procedure 4-21
 4-37. Calibrating the Time Base of an Oscilloscope 4-22
 4-38. The Time Marker ... 4-23
 4-39. The TRIG (Trigger) Menu .. 4-24
 4-40. Time Base Marker Calibration Procedure for an Oscilloscope ... 4-24
 4-41. Testing the Trigger ... 4-25
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-43.</td>
<td>Serial Poll Status Byte (STB) .. 5-38</td>
</tr>
<tr>
<td>5-44.</td>
<td>Service Request (SRQ) Line.. 5-40</td>
</tr>
<tr>
<td>5-45.</td>
<td>Service Request Enable Register (SRE) .. 5-40</td>
</tr>
<tr>
<td>5-46.</td>
<td>Programming the STB and SRE .. 5-41</td>
</tr>
<tr>
<td>5-47.</td>
<td>Event Status Register (ESR) .. 5-41</td>
</tr>
<tr>
<td>5-48.</td>
<td>Event Status Enable (ESE) Register .. 5-41</td>
</tr>
<tr>
<td>5-49.</td>
<td>Bit Assignments for the ESR and ESE .. 5-41</td>
</tr>
<tr>
<td>5-50.</td>
<td>Programming the ESR and ESE .. 5-42</td>
</tr>
<tr>
<td>5-51.</td>
<td>Instrument Status Register (ISR) ... 5-43</td>
</tr>
<tr>
<td>5-52.</td>
<td>Instrument Status Change Registers .. 5-43</td>
</tr>
<tr>
<td>5-53.</td>
<td>Instrument Status Change Enable Registers 5-43</td>
</tr>
<tr>
<td>5-54.</td>
<td>Bit Assignments for the ISR, ISCR, and ISCE 5-43</td>
</tr>
<tr>
<td>5-55.</td>
<td>Programming the ISR, ISCR, and ISCE 5-45</td>
</tr>
<tr>
<td>5-56.</td>
<td>Output Queue... 5-45</td>
</tr>
<tr>
<td>5-57.</td>
<td>Error Queue.. 5-46</td>
</tr>
<tr>
<td>5-58.</td>
<td>Remote Program Examples .. 5-46</td>
</tr>
<tr>
<td>5-59.</td>
<td>Guidelines for Programming the Calibrator 5-46</td>
</tr>
<tr>
<td>5-60.</td>
<td>Writing an SRQ and Error Handler ... 5-47</td>
</tr>
<tr>
<td>5-61.</td>
<td>Using *OPC?, *OPC, and *WAI ... 5-48</td>
</tr>
<tr>
<td>5-62.</td>
<td>Taking an Impedance Measurement .. 5-48</td>
</tr>
<tr>
<td>5-63.</td>
<td>Using the RS-232 UUT Port to Control an instrument 5-49</td>
</tr>
<tr>
<td>5-64.</td>
<td>Input Buffer Operation... 5-49</td>
</tr>
<tr>
<td>6-1.</td>
<td>Remote Commands ... 6-1</td>
</tr>
<tr>
<td>6-2.</td>
<td>Command Summary by Function... 6-3</td>
</tr>
<tr>
<td>6-3.</td>
<td>Summary of Commands and Queries ... 6-8</td>
</tr>
<tr>
<td>7-1.</td>
<td>Maintenance .. 7-1</td>
</tr>
<tr>
<td>7-2.</td>
<td>Replacing the Line Fuse .. 7-3</td>
</tr>
<tr>
<td>7-3.</td>
<td>Cleaning the Air Filter.. 7-4</td>
</tr>
<tr>
<td>7-4.</td>
<td>General Cleaning.. 7-6</td>
</tr>
<tr>
<td>7-5.</td>
<td>Verification Tables... 7-6</td>
</tr>
<tr>
<td>7-6.</td>
<td>DC Voltage Verification.. 7-6</td>
</tr>
<tr>
<td>7-7.</td>
<td>AC Voltage Amplitude Verification... 7-7</td>
</tr>
<tr>
<td>7-8.</td>
<td>AC Voltage Frequency Verification... 7-8</td>
</tr>
<tr>
<td>7-9.</td>
<td>Wave Generator Amplitude Verification: 1 MΩ Output Impedance 7-8</td>
</tr>
<tr>
<td>7-10.</td>
<td>Wave Generator Amplitude Verification: 50Ω Output Impedance 7-9</td>
</tr>
<tr>
<td>7-11.</td>
<td>Wave Generator Frequency Verification: 1 MΩ Output Impedance 7-10</td>
</tr>
<tr>
<td>7-12.</td>
<td>Leveled Sinewave Verification: Amplitude.. 7-10</td>
</tr>
<tr>
<td>7-13.</td>
<td>Leveled Sinewave Verification: Frequency.. 7-10</td>
</tr>
<tr>
<td>7-14.</td>
<td>Leveled Sinewave Verification: Harmonics... 7-11</td>
</tr>
<tr>
<td>7-15.</td>
<td>Leveled Sinewave Verification: Flatness... 7-12</td>
</tr>
<tr>
<td>7-16.</td>
<td>Edge Verification: Amplitude.. 7-18</td>
</tr>
<tr>
<td>7-17.</td>
<td>Edge Verification: Frequency.. 7-18</td>
</tr>
<tr>
<td>7-18.</td>
<td>Edge Verification: Duty Cycle.. 7-18</td>
</tr>
<tr>
<td>7-19.</td>
<td>Edge Verification: Rise Time .. 7-19</td>
</tr>
<tr>
<td>7-20.</td>
<td>Tunnel Diode Pulser Verification.. 7-19</td>
</tr>
<tr>
<td>7-21.</td>
<td>Marker Generator Verification... 7-19</td>
</tr>
<tr>
<td>7-22.</td>
<td>Pulse Generator Verification: Period.. 7-20</td>
</tr>
<tr>
<td>7-23.</td>
<td>Pulse Generator Verification: Pulse Width.. 7-20</td>
</tr>
<tr>
<td>7-24.</td>
<td>Input Impedance Verification: Resistance .. 7-20</td>
</tr>
<tr>
<td>7-25.</td>
<td>Input Impedance Verification: Capacitance .. 7-20</td>
</tr>
</tbody>
</table>

iv
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>Voltage Output Specifications</td>
<td>1-9</td>
</tr>
<tr>
<td>1-2</td>
<td>Edge Specifications</td>
<td>1-10</td>
</tr>
<tr>
<td>1-3</td>
<td>Leveled Sine Wave Specifications</td>
<td>1-11</td>
</tr>
<tr>
<td>1-4</td>
<td>Time Marker Specifications</td>
<td>1-12</td>
</tr>
<tr>
<td>1-5</td>
<td>Wave Generator Specifications</td>
<td>1-13</td>
</tr>
<tr>
<td>1-6</td>
<td>Pulse Generator Specifications</td>
<td>1-14</td>
</tr>
<tr>
<td>1-7</td>
<td>Trigger Signal Specifications (Pulse Function)</td>
<td>1-14</td>
</tr>
<tr>
<td>1-8</td>
<td>Trigger Signal Specifications (Time Marker Function)</td>
<td>1-15</td>
</tr>
<tr>
<td>1-9</td>
<td>Trigger Signal Specifications (Edge Function)</td>
<td>1-15</td>
</tr>
<tr>
<td>1-10</td>
<td>Trigger Signal Specifications (Square Wave Voltage Function)</td>
<td>1-15</td>
</tr>
<tr>
<td>1-11</td>
<td>TV Trigger Signal Specifications</td>
<td>1-15</td>
</tr>
<tr>
<td>1-12</td>
<td>Tunnel Diode Drive Capability</td>
<td>1-15</td>
</tr>
<tr>
<td>1-13</td>
<td>Oscilloscope Input Resistance Measurement Specifications</td>
<td>1-15</td>
</tr>
<tr>
<td>1-14</td>
<td>Oscilloscope Input Capacitance Measurement Specifications</td>
<td>1-16</td>
</tr>
<tr>
<td>1-15</td>
<td>Overload Measurement Specifications</td>
<td>1-16</td>
</tr>
<tr>
<td>1-16</td>
<td>Auxiliary Input Performance</td>
<td>1-16</td>
</tr>
<tr>
<td>2-1</td>
<td>Standard Equipment</td>
<td>2-3</td>
</tr>
<tr>
<td>2-2</td>
<td>Line Power Cord Types Available from Fluke</td>
<td>2-6</td>
</tr>
<tr>
<td>3-1</td>
<td>Front Panel Features</td>
<td>3-4</td>
</tr>
<tr>
<td>3-2</td>
<td>Rear Panel Features</td>
<td>3-9</td>
</tr>
<tr>
<td>3-3</td>
<td>Factory Default Settings for the SETUP Menus</td>
<td>3-20</td>
</tr>
<tr>
<td>4-1</td>
<td>Factory Defaults for SETUP</td>
<td>4-6</td>
</tr>
<tr>
<td>4-2</td>
<td>Keys That Exit Error Mode</td>
<td>4-8</td>
</tr>
<tr>
<td>5-1</td>
<td>Operating State Transitions</td>
<td>5-24</td>
</tr>
<tr>
<td>5-2</td>
<td>RS-232 Interface Wiring</td>
<td>5-24</td>
</tr>
<tr>
<td>5-3</td>
<td>RS-232 Emulation of IEEE-488 Messages</td>
<td>5-25</td>
</tr>
<tr>
<td>5-4</td>
<td>IEEE-488 Interface Messages (Receive)</td>
<td>5-30</td>
</tr>
<tr>
<td>5-5</td>
<td>Interface Messages (Send)</td>
<td>5-31</td>
</tr>
<tr>
<td>5-6</td>
<td>Commands for RS-232 Only</td>
<td>5-33</td>
</tr>
<tr>
<td>5-7</td>
<td>Commands for IEEE-488 Only</td>
<td>5-33</td>
</tr>
<tr>
<td>5-8</td>
<td>Units Accepted in Parameters and Used in Responses</td>
<td>5-34</td>
</tr>
<tr>
<td>5-9</td>
<td>Terminator Characters</td>
<td>5-36</td>
</tr>
<tr>
<td>5-10</td>
<td>Response Data Types</td>
<td>5-37</td>
</tr>
<tr>
<td>5-11</td>
<td>Status Register Summary</td>
<td>5-38</td>
</tr>
<tr>
<td>6-1</td>
<td>Command Summary by Function</td>
<td>6-3</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>6-2</td>
<td>SCOPE Command Parameters</td>
<td>6-32</td>
</tr>
<tr>
<td>7-1</td>
<td>Replacement Fuses</td>
<td>7-3</td>
</tr>
<tr>
<td>7-2</td>
<td>DC Voltage Verification</td>
<td>7-6</td>
</tr>
<tr>
<td>7-3</td>
<td>AC Voltage Amplitude Verification</td>
<td>7-7</td>
</tr>
<tr>
<td>7-4</td>
<td>AC Voltage Frequency Verification</td>
<td>7-8</td>
</tr>
<tr>
<td>7-5</td>
<td>Wave Generator Amplitude Verification (into 1 M(\Omega) impedance)</td>
<td>7-8</td>
</tr>
<tr>
<td>7-6</td>
<td>Wave Generator Amplitude Verification (into 50 (\Omega) impedance)</td>
<td>7-9</td>
</tr>
<tr>
<td>7-7</td>
<td>Wave Generator Frequency Verification (into 1 M(\Omega) Impedance)</td>
<td>7-10</td>
</tr>
<tr>
<td>7-8</td>
<td>Leveled Sinewave Verification: Amplitude</td>
<td>7-10</td>
</tr>
<tr>
<td>7-9</td>
<td>Leveled Sinewave Verification: Frequency</td>
<td>7-10</td>
</tr>
<tr>
<td>7-10</td>
<td>Leveled Sinewave Verification: Harmonics</td>
<td>7-11</td>
</tr>
<tr>
<td>7-11</td>
<td>Leveled Sinewave Verification: Flatness</td>
<td>7-12</td>
</tr>
<tr>
<td>7-12</td>
<td>Edge Verification: Amplitude</td>
<td>7-18</td>
</tr>
<tr>
<td>7-13</td>
<td>Edge Verification: Frequency</td>
<td>7-18</td>
</tr>
<tr>
<td>7-14</td>
<td>Edge Verification: Duty Cycle</td>
<td>7-18</td>
</tr>
<tr>
<td>7-15</td>
<td>Edge Verification: Rise Time</td>
<td>7-19</td>
</tr>
<tr>
<td>7-16</td>
<td>Tunnel Diode Pulser Verification</td>
<td>7-19</td>
</tr>
<tr>
<td>7-17</td>
<td>Marker Generator Verification</td>
<td>7-19</td>
</tr>
<tr>
<td>7-18</td>
<td>Pulse Generator Verification: Period</td>
<td>7-20</td>
</tr>
<tr>
<td>7-19</td>
<td>Pulse Generator Verification: Pulse Width</td>
<td>7-20</td>
</tr>
<tr>
<td>7-20</td>
<td>Input Impedance Verification: Resistance</td>
<td>7-20</td>
</tr>
<tr>
<td>7-21</td>
<td>Input Impedance Verification: Capacitance</td>
<td>7-20</td>
</tr>
<tr>
<td>9-1</td>
<td>Options and Accessories</td>
<td>9-3</td>
</tr>
<tr>
<td>9-2</td>
<td>IEEE-488 Connection Cables</td>
<td>D-1</td>
</tr>
<tr>
<td>9-3</td>
<td>Serial Port Connection Cables</td>
<td>D-2</td>
</tr>
<tr>
<td>9-4</td>
<td>Error Message Format</td>
<td>F-1</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>5800A Multi-Product Calibrator</td>
<td>1-3</td>
</tr>
<tr>
<td>1-2</td>
<td>RS-232 Remote Connections</td>
<td>1-5</td>
</tr>
<tr>
<td>1-3</td>
<td>5800A Calibrator Dimensional Outline</td>
<td>1-7</td>
</tr>
<tr>
<td>2-1</td>
<td>Accessing the Fuse and Selecting Line Voltage</td>
<td>2-5</td>
</tr>
<tr>
<td>2-2</td>
<td>Line Power Cord Types Available from Fluke</td>
<td>2-6</td>
</tr>
<tr>
<td>3-1</td>
<td>Front Panel View</td>
<td>3-4</td>
</tr>
<tr>
<td>3-2</td>
<td>Rear Panel View</td>
<td>3-9</td>
</tr>
<tr>
<td>3-3</td>
<td>SETUP Softkey Menu Tree</td>
<td>3-11</td>
</tr>
<tr>
<td>3-4</td>
<td>SETUP Softkey Menu Displays</td>
<td>3-12</td>
</tr>
<tr>
<td>4-1</td>
<td>Oscilloscope connection: channel</td>
<td>4-7</td>
</tr>
<tr>
<td>4-2</td>
<td>Tunnel Diode Pulser Connections</td>
<td>4-17</td>
</tr>
<tr>
<td>5-1</td>
<td>Typical IEEE-488 Remote Control Connections</td>
<td>5-5</td>
</tr>
<tr>
<td>5-2</td>
<td>Typical RS-232 Remote Control Connections</td>
<td>5-6</td>
</tr>
<tr>
<td>5-3</td>
<td>Testing the IEEE-488 Port</td>
<td>5-8</td>
</tr>
<tr>
<td>5-4</td>
<td>Testing the RS-232 Host Port</td>
<td>5-13</td>
</tr>
<tr>
<td>5-5</td>
<td>Testing the RS-232 UUT Port via the RS-232 Host Port</td>
<td>5-18</td>
</tr>
<tr>
<td>5-6</td>
<td>Testing the RS-232 UUT Port via IEEE-488 Port</td>
<td>5-21</td>
</tr>
<tr>
<td>5-7</td>
<td>IEEE-488 Remote Message Coding</td>
<td>5-27</td>
</tr>
<tr>
<td>5-8</td>
<td>Status Register Overview</td>
<td>5-39</td>
</tr>
<tr>
<td>5-9</td>
<td>Serial Poll Status Byte (STB) and Service Request Enable (SRE)</td>
<td>5-40</td>
</tr>
<tr>
<td>5-10</td>
<td>Event Status Register (ESR) and Event Status Enable (ESE)</td>
<td>5-42</td>
</tr>
<tr>
<td>5-11</td>
<td>Bit Assignments for the ISR, ISCEs and ISCRs</td>
<td>5-44</td>
</tr>
<tr>
<td>7-1</td>
<td>Accessing the Fuse</td>
<td>7-4</td>
</tr>
<tr>
<td>7-2</td>
<td>Accessing the Air Filter</td>
<td>7-5</td>
</tr>
<tr>
<td>C-1</td>
<td>IEEE-488 Single-Board Configuration (non-MET/CAL)</td>
<td>C-2</td>
</tr>
<tr>
<td>C-2</td>
<td>IEEE-488 Dual-Board Configuration, Port 0, Electronic Key</td>
<td>C-3</td>
</tr>
<tr>
<td>C-3</td>
<td>IEEE-488 Dual Board Configuration, Port 0, No Electronic Key</td>
<td>C-3</td>
</tr>
<tr>
<td>C-4</td>
<td>IEEE-488 Dual Board Configuration, Port 1, Electronic Key</td>
<td>C-4</td>
</tr>
<tr>
<td>C-5</td>
<td>IEEE-488 Dual Board Configuration, Port 1, No Electronic Key</td>
<td>C-4</td>
</tr>
<tr>
<td>D-1</td>
<td>IEEE-488 Connector Pinout (connection side)</td>
<td>D-1</td>
</tr>
<tr>
<td>D-2</td>
<td>SERIAL 1 FROM HOST Port Connector Pinout</td>
<td>D-2</td>
</tr>
<tr>
<td>D-3</td>
<td>SERIAL 2 TO UUT Port Connector Pinout (connection side)</td>
<td>D-2</td>
</tr>
<tr>
<td>D-4</td>
<td>Serial Port Connections (DB-9/DB-9)</td>
<td>D-3</td>
</tr>
<tr>
<td>D-5</td>
<td>Serial Port Connections (DB-9/DB-25)</td>
<td>D-4</td>
</tr>
</tbody>
</table>
Chapter 1
Introduction and Specifications

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1. Introduction</td>
<td>1-3</td>
</tr>
<tr>
<td>1-2. Operation Overview</td>
<td>1-4</td>
</tr>
<tr>
<td>1-3. Local Operation</td>
<td>1-4</td>
</tr>
<tr>
<td>1-4. Remote Operation (RS-232)</td>
<td>1-4</td>
</tr>
<tr>
<td>1-5. Remote Operation (IEEE-488)</td>
<td>1-5</td>
</tr>
<tr>
<td>1-6. Where To Go from Here</td>
<td>1-5</td>
</tr>
<tr>
<td>1-7. Instruction Manuals</td>
<td>1-6</td>
</tr>
<tr>
<td>1-8. 5800A Operators Manual</td>
<td>1-6</td>
</tr>
<tr>
<td>1-9. 5800A Service Manual</td>
<td>1-6</td>
</tr>
<tr>
<td>1-10. Specifications</td>
<td>1-6</td>
</tr>
<tr>
<td>1-11. General Specifications</td>
<td>1-8</td>
</tr>
<tr>
<td>1-12. Voltage Output Specifications</td>
<td>1-9</td>
</tr>
<tr>
<td>1-13. Edge Specifications</td>
<td>1-10</td>
</tr>
<tr>
<td>1-14. Leveled Sine Wave Specifications</td>
<td>1-11</td>
</tr>
<tr>
<td>1-15. Time Marker Specifications</td>
<td>1-12</td>
</tr>
<tr>
<td>1-16. Wave Generator Specifications</td>
<td>1-13</td>
</tr>
<tr>
<td>1-17. Pulse Generator Specifications</td>
<td>1-14</td>
</tr>
<tr>
<td>1-18. Trigger Signal Specifications (Pulse Function)</td>
<td>1-14</td>
</tr>
<tr>
<td>1-19. Trigger Signal Specifications (Time Marker Function)</td>
<td>1-15</td>
</tr>
<tr>
<td>1-20. Trigger Signal Specifications (Edge Function)</td>
<td>1-15</td>
</tr>
<tr>
<td>1-21. Trigger Signal Specifications (Square Wave Voltage Function)</td>
<td>1-15</td>
</tr>
<tr>
<td>1-22. Trigger Signal Specifications</td>
<td>1-15</td>
</tr>
<tr>
<td>1-23. Tunnel Diode Drive Capability</td>
<td>1-15</td>
</tr>
<tr>
<td>1-25. Oscilloscope Input Capacitance Measurement Specifications</td>
<td>1-16</td>
</tr>
<tr>
<td>1-26. Overload Measurement Specifications</td>
<td>1-16</td>
</tr>
<tr>
<td>1-27. External Reference Input Specifications</td>
<td>1-16</td>
</tr>
<tr>
<td>1-28. Auxiliary Input/Output Specifications</td>
<td>1-16</td>
</tr>
</tbody>
</table>
1-1. Introduction

The Fluke Model 5800A Oscilloscope Calibrator (Figure 1-1) is a precise instrument that calibrates analog and digital oscilloscopes. Specifications are provided in this chapter.

⚠️ Warning

To prevent electric shock or other possible injuries, the 5800A Calibrator must be operated in the way specified by this manual or other documentation provided by Fluke. To avoid personal injury and equipment damage, do not apply signals to any output terminal.

Features of the 5800A Calibrator include the following:

- Automatic meter error calculation.
- MULT and DIV keys that change the output value to pre-determined cardinal values for various functions.
- Programmable entry limits that prevent invalid amounts from being entered.
- Edge, Leveled Sine, Pulse, Marker, and Wave Generation modes.
- Accurate oscilloscopic input impedance measurement.
- Tunnel Diode Pulse compatibility.

Figure 1-1. 5800A Oscilloscope Calibrator
• External reference.
• Auxiliary input.
• 5-channel output (5-channel option). The 5-channel option allows you to calibrate up to five oscilloscope channels simultaneously without changing cables.
• Simultaneous output of a signal and a trigger signal.
• 600 MHz, Leveled Sine wave output.
• EIA Standard RS-232-C serial data interface for printing, displaying, or transferring internally stored calibration constants, and for remote control of the 5800A.
• Pass-through RS-232-C serial data interface for communicating with the Unit Under Test (UUT).
• Extensive automatic internal self testing and diagnostics of analog and digital functions.

1-2. Operation Overview

The 5800A Calibrator may be operated at the front panel in the local mode, or remotely using RS-232 or IEEE-488 ports. For remote operations, several software options are available to integrate 5800A operation into a wide variety of calibration requirements.

1-3. Local Operation

Typical local operations include front panel connections to the Unit Under Test (UUT), and then manual keystroke entries at the front panel to place the calibrator in the desired output mode. The front panel layout facilitates hand movements from left to right, and multiply and divide keys make it easy to step up or down at the press of a single key. The backlit liquid crystal display is easy to read from many different viewing angles and lighting conditions, and the large, easy-to-read keys are color-coded and provide tactile feedback when they are pressed.

1-4. Remote Operation (RS-232)

The Calibrator has two rear-panel serial data RS-232 ports: SERIAL 1 FROM HOST, and SERIAL 2 TO UUT (Figure 1-2). Each port is dedicated to serial data communications for operating and controlling the 5800A during calibration procedures. For complete information on remote operations, see Chapter 5.

The SERIAL 1 FROM HOST serial data port connects a host terminal or personal computer to the 5800A. You have several choices for sending commands to the 5800A: you can enter commands from a terminal (for example, using the Terminal accessory from Windows using a PC), you can write your own programs using BASIC, or you can run optional Windows-based software such as 5500/CAL or MET/CAL. The 5500/CAL software includes more than 200 example procedures covering a wide range of test tools the 5800A can calibrate. (See Chapter 6 for a discussion of the RS-232 commands.)

The SERIAL 2 TO UUT serial data port connects a UUT to a PC or terminal via the 5800A (see Figure 1-2). This “pass-through” configuration eliminates the requirement for two COM ports at the PC or Terminal. A set of four commands control the operation of the SERIAL 2 TO UUT serial port. See Chapter 6 for a discussion of the UUT_* commands.
1-5. Remote Operation (IEEE-488)

The 5800A rear panel IEEE-488 port is a fully programmable parallel interface bus meeting standard IEEE-488.1 and supplemental standard IEEE-488.2. Under the remote control of an instrument controller, the 5800A Calibrator operates exclusively as a “talker/listener.” You can write your own programs using the IEEE-488 command set or run the optional Windows-based MET/CAL software. (See Chapter 6 for a discussion of the commands available for IEEE-488 operation.)

1-6. Where To Go from Here

To locate specific information concerning the installation and operation of the 5800A calibrator, refer to the following list:

- Unpacking and setup: see Chapter 2
- Installation and rack mounting: see Chapter 2 and the rack mount kit instruction sheet
- AC line power and interface cabling: see Chapter 2,
- Controls, indicators, and displays: see Chapter 3
- Front panel operation: see Chapter 4
- Cabling to a UUT (Unit Under Test): see Chapter 4
- Using the auxiliary amplifier: see Chapter 4
• Remote operation (IEEE-488 or serial): see Chapter 5
• Accessories to the 5800A Calibrator: see Chapter 9
• Instrument specifications: see Chapter 1

1-7. Instruction Manuals
The 5800A Manual Set provides complete information for operators and service or maintenance technicians. The set includes:
• 5800A Operators Manual (PN 686318)
• 5800A Service Manual (PN 689411)

The operator manual ships with the instrument. The 5800A Service Manual is optional. Order additional copies of the manuals separately using the part number provided. For ordering instructions, refer to the Fluke Catalog, or ask a Fluke sales representative (see Chapter 2 for more information).

1-8. 5800A Operators Manual
This 5800A Operators Manual provides complete information for installing the 5800A Oscilloscope Calibrator and operating it from the front panel keys and in remote configurations. This manual also provides a glossary of calibration, specifications, and error code information. The 5800A Operators Manual includes the following topics:
• Installation
• Operating controls and features, including front panel operation
• Remote operation (IEEE-488 bus or serial port remote control)
• Serial port operation (printing, displaying, or transferring data, and setting up for serial port remote control)
• Operator maintenance, including verification procedures and calibration approach for the 5800A
• Accessories
• Error Messages

1-9. 5800A Service Manual
The 5800A Service Manual can be ordered through your local Fluke Sales or Service representative (see Chapter 2 for more information). The 5800A Service Manual includes: appropriate theory of operation, performance testing, maintenance, calibration, parts lists, and schematic diagrams.

1-10. Specifications
The following paragraphs describe the details for the 5800A specifications. All specifications are valid after allowing a warm-up period of 30 minutes, or twice the time the 5800A has been turned off. (For example, if the 5800A has been turned off for 5 minutes, the warm-up period is 10 minutes.)

All specifications apply for the temperature and time period indicated. For temperatures outside of tcal ± 5 °C (tcal is the ambient temperature when the 5800A was calibrated), the temperature coefficient is less than 0.1 times the 1-year specification per °C (limited to 0 °C - 50 °C).
If you ordered the GHz Option, the following specification tables are superseded by the tables with the same headings in Chapter 8:

- Voltage Output Specifications
- Edge Specifications
- Leveled Sine Wave Specifications
- Pulse Generator Specifications
- Oscilloscope Input Capacitance Measurement Specifications

Refer to Figure 1-3 for the dimensional outline of the 5800A Calibrator.
1-11. General Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warmup Time</td>
<td>Twice the time since last warmed up, to a maximum of 30 minutes</td>
</tr>
<tr>
<td>Settling Time</td>
<td>5 seconds or faster for all functions and ranges</td>
</tr>
<tr>
<td>Standard Interfaces</td>
<td>IEEE-488 (GPIB), RS-232</td>
</tr>
<tr>
<td>Temperature Performance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Operating: 0 °C to 50 °C</td>
</tr>
<tr>
<td></td>
<td>Calibration (tcal): 15 °C to 35 °C</td>
</tr>
<tr>
<td></td>
<td>Storage: -20 °C to 70 °C</td>
</tr>
<tr>
<td>Electromagnetic Compatibility</td>
<td>Designed to operate in Standard Laboratory environments where the Electromagnetic environment is highly controlled. If used in areas with Electromagnetic fields > 1 V/m, there could be errors in output values.</td>
</tr>
<tr>
<td>Temperature Coefficient</td>
<td>Temperature Coefficient for temperatures outside tcal ± 5 °C is 0.1X/°C of 1-year specification.</td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>Operating: <80 % to 30 °C, <70 % to 40 °C, <40 % to 50 °C</td>
</tr>
<tr>
<td></td>
<td>Storage: <95 %, noncondensing</td>
</tr>
<tr>
<td>Altitude</td>
<td>Operating: 3,050 m (10,000 ft) maximum</td>
</tr>
<tr>
<td></td>
<td>Nonoperating: 12,200 m (40,000 ft) maximum</td>
</tr>
<tr>
<td>Safety</td>
<td>Designed to comply with IEC 1010-1 (1992-1); ANSI/ISA-S82.01-1994; CAN/CSA-C22.2 No. 1010.1-92</td>
</tr>
<tr>
<td>Analog Low Isolation</td>
<td>20 V</td>
</tr>
<tr>
<td>EMC</td>
<td>Complies with EN 61326-1</td>
</tr>
<tr>
<td>Line Power</td>
<td>Line Voltage (selectable): 100 V, 120 V, 220 V, 240 V</td>
</tr>
<tr>
<td></td>
<td>Line Frequency: 47 to 63 Hz</td>
</tr>
<tr>
<td></td>
<td>Line Voltage Variation: ±10 % about line voltage setting</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>250 VA</td>
</tr>
<tr>
<td>Dimensions</td>
<td>Height: 17.8 cm (7 inches), standard rack increment, plus 1.5 cm (0.6 inch) for feet on bottom of unit; Width: 43.2 cm (17 inches), standard rack width Depth: 47.3 cm (18.6 inches) overall.</td>
</tr>
<tr>
<td>Weight</td>
<td>20 kg (44 pounds)</td>
</tr>
</tbody>
</table>
Voltage Output Specifications

Note

If you ordered the GHz Option, the following specification table is superseded by the table with the same heading in Chapter 8.

Table 1-1. Voltage Output Specifications

<table>
<thead>
<tr>
<th>Amplitude Characteristics</th>
<th>DC Signal</th>
<th>Square Wave Signal [1]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50 Ω Load</td>
<td>1 MΩ Load</td>
</tr>
<tr>
<td>Adjustment Range (continuous)</td>
<td>0 V to ±6.6 V</td>
<td>0 V to ±130 V</td>
</tr>
<tr>
<td>1-Year Absolute Uncertainty, tcal ± 5 °C</td>
<td>± (0.25 % of output + 40 μV)</td>
<td>± (0.025 % of output + 25 μV)</td>
</tr>
<tr>
<td>Adjustment Sequence</td>
<td>1-2-5 (e.g., 10 mV, 20 mV, 50 mV)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Resolution</th>
<th>1 mV to 24.999 mV</th>
<th>25 mV to 109.99 mV</th>
<th>110 mV to 2.1999 V</th>
<th>2.2 V to 10.999 V</th>
<th>11 V to 130 V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 μV</td>
<td>10 μV</td>
<td>100 μV</td>
<td>1 mV</td>
<td>10 mV</td>
</tr>
</tbody>
</table>

Square Wave Frequency Characteristics

<table>
<thead>
<tr>
<th>Range</th>
<th>10 Hz to 10 kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Year Absolute Uncertainty, tcal ± 5 °C</td>
<td>± (1 ppm of setting)</td>
</tr>
</tbody>
</table>

Typical Aberration (from 50 % of leading/trailing edge)

| 25 mV to 130 V: within 4 μs | < (0.5 % of output + 100 μV) |
| 10 mV to 25 mV: within 8 μs |
| 1 mV to 10 mV: within 14 μs |

[1] Positive or negative, zero-referenced square wave.

[2] Above 1 kHz, ± (0.25 % of output + 40 μV).
1-13. **Edge Specifications**

Note

If you ordered the GHz Option, the following specification table is superseded by the table with the same heading in Chapter 8.

Table 1-2. Edge Specifications

<table>
<thead>
<tr>
<th>Edge Characteristics into 50 Ω Load</th>
<th>1-Year Absolute Uncertainty, $t_{cal} \pm 5 ^\circ C$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rise Time</td>
<td>250 ps [1]</td>
</tr>
<tr>
<td>Amplitude Range (p-p)</td>
<td>4.0 mV to 2.5 V</td>
</tr>
<tr>
<td>Resolution</td>
<td>4 digits</td>
</tr>
<tr>
<td>Adjustment Range</td>
<td>± 10 % around each sequence value (indicated below)</td>
</tr>
<tr>
<td>Sequence Values</td>
<td>5 mV, 10 mV, 25 mV, 50 mV, 60 mV, 80 mV, 100 mV, 200 mV, 250 mV, 300 mV, 500 mV, 600 mV, 1 V, 2.5 V</td>
</tr>
<tr>
<td>Frequency Range</td>
<td>1 kHz to 10 MHz</td>
</tr>
<tr>
<td>Typical Jitter, edge to trigger</td>
<td>< 5 ps (p-p)</td>
</tr>
<tr>
<td>Leading Edge Aberrations[2]</td>
<td>within 2 ns from 50 % of rising edge</td>
</tr>
<tr>
<td></td>
<td>2 to 5 ns</td>
</tr>
<tr>
<td></td>
<td>5 to 15 ns</td>
</tr>
<tr>
<td></td>
<td>after 15 ns</td>
</tr>
<tr>
<td>Typical Duty Cycle</td>
<td>45 % to 55 %</td>
</tr>
</tbody>
</table>

[1] Frequency range above 2 MHz has rise time specification 300 ps typical.

[2] Below 250 mV, the leading edge aberrations are typical. All readings are referenced to a Tek TDS820 8 GHz scope or a Tek 11801 mainframe with an SD26 or SD22 option.
1-14. **Leveled Sine Wave Specifications**

Note

If you ordered the GHz Option, the following specification table is superseded by the table with the same heading in Chapter 8.

Table 1-3. Leveled Sine Wave Specifications

<table>
<thead>
<tr>
<th>Leveled Sine Wave Characteristics into 50 Ω</th>
<th>Frequency Range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50 kHz (reference)</td>
</tr>
<tr>
<td>Amplitude Characteristics</td>
<td></td>
</tr>
<tr>
<td>Range (p-p)</td>
<td>5 mV to 5.5 V</td>
</tr>
<tr>
<td>Resolution</td>
<td>< 100 mV: 3 digits</td>
</tr>
<tr>
<td></td>
<td>≥ 100 mV: 4 digits</td>
</tr>
<tr>
<td>Adjustment Range</td>
<td>continuously adjustable</td>
</tr>
<tr>
<td>1-Year Absolute Uncertainty, tcal ± 5 °C</td>
<td>± (2 % of output + 300 µV)</td>
</tr>
<tr>
<td>Flatness [1] (relative to 50 kHz)</td>
<td>± (3.5 % of output + 300 µV)</td>
</tr>
<tr>
<td>Short-Term Amplitude Stability</td>
<td>≤ 1 % [2]</td>
</tr>
<tr>
<td>Frequency Characteristics</td>
<td></td>
</tr>
<tr>
<td>Resolution</td>
<td>10 kHz</td>
</tr>
<tr>
<td>1-Year Absolute Uncertainty, tcal ± 5 °C</td>
<td>± 1 ppm</td>
</tr>
<tr>
<td>Distortion Characteristics [3]</td>
<td></td>
</tr>
<tr>
<td>2nd Harmonic</td>
<td>≤ -33 dBC</td>
</tr>
<tr>
<td>3rd and Higher Harmonics</td>
<td>≤ -38 dBC</td>
</tr>
</tbody>
</table>

[1] As measured near Oscilloscope bandwidth frequency.

[2] Within one hour after reference amplitude setting, provided temperature varies no more than ± 5 °C.

[3] Harmonics above 500 MHz are typical.
1-15. **Time Marker Specifications**

Note

If you ordered the GHz Option, the following specification table is superseded by the table with the same heading in Chapter 8.

Table 1-4. Time Marker Specifications

<table>
<thead>
<tr>
<th>Wave Shape</th>
<th>Time Marker into 50 Ω</th>
<th>5 s to 50 ms</th>
<th>20 ms to 100 ns</th>
<th>50 ns to 20 ns</th>
<th>10 ns</th>
<th>5 ns to 2 ns</th>
</tr>
</thead>
<tbody>
<tr>
<td>spike or square</td>
<td>5 s to 50 ms</td>
<td>spike, square, or 20%-pulse</td>
<td>spike or square</td>
<td>square or sine</td>
<td>sine</td>
<td></td>
</tr>
<tr>
<td>Typical Jitter (p-p)</td>
<td><10 ppm</td>
<td>< 1 ppm</td>
<td>< 1 ppm</td>
<td>< 1 ppm</td>
<td>< 1 ppm</td>
<td></td>
</tr>
<tr>
<td>Sequence</td>
<td>5-2-1 from 5 s to 2 ns (e.g., 500 ms, 200 ms, 100 ms)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjustment Range</td>
<td>At least ± 10% around each sequence value indicated above.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amplitude Resolution</td>
<td>4 digits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-Year Absolute Uncertainty, tcal ± 5 °C [3]</td>
<td>± (2.5 ppm + 5 µHz) [2]</td>
<td>± 1 ppm</td>
<td>± 1 ppm</td>
<td>± 1 ppm</td>
<td>± 1 ppm</td>
<td></td>
</tr>
</tbody>
</table>

[1] Typical rise time of square wave and 20%-pulse (20% duty cycle pulse) is < 1.5 ns.
[2] With 10 MHz external reference selected, the uncertainty becomes that of the external clock plus 5 µHz.
[3] Time marker uncertainty is ±50 ppm when measured off of cardinal points:

5 s, 2 s, 1 s, 500 ms, 200 ms, 100 ms, 50 ms, 20 ms, 10 ms, 5 ms, 2 ms, 1 ms, 500 µs, 200 µs, 100 µs, 50 µs, 20 µs, 10 µs, 5 µs, 2 µs, 1 µs, 500 ns, 200 ns, 100 ns, 50 ns, 20 ns, 10 ns, 5 ns, 2 ns
1-16. Wave Generator Specifications

Table 1-5. Wave Generator Specifications

<table>
<thead>
<tr>
<th>Wave Generator Characteristics</th>
<th>Square Wave and Sine Wave into 50 Ω or 1 MΩ</th>
<th>Triangle Wave into 50 Ω or 1 MΩ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplitude</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>into 1 MΩ: 1.8 mV to 55 V p-p</td>
<td>into 1 MΩ: 1.8 mV to 55 V p-p</td>
</tr>
<tr>
<td></td>
<td>into 50 Ω: 1.8 mV to 2.5 V p-p</td>
<td>into 50 Ω: 1.8 mV to 2.5 V p-p</td>
</tr>
<tr>
<td>1-Year Absolute Uncertainty, tcal ± 5 °C, 10 Hz to 10 kHz</td>
<td>± (3 % of p-p output + 100 µV)</td>
<td>± (3 % of p-p output + 100 µV)</td>
</tr>
<tr>
<td>Sequence</td>
<td>1-2-5 (e.g., 10 mV, 20 mV, 50 mV)</td>
<td>1-2-5 (e.g., 10 mV, 20 mV, 50 mV)</td>
</tr>
<tr>
<td>Typical DC Offset Range</td>
<td>0 to ± (≥40 % of p-p amplitude) [1]</td>
<td>0 to ± (≥40 % of p-p amplitude) [1]</td>
</tr>
<tr>
<td>Ramp Linearity [2]</td>
<td></td>
<td>better than 0.1 % 10 Hz to 10 kHz</td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>0.01 Hz to 100 kHz</td>
<td>0.01 Hz to 100 kHz</td>
</tr>
<tr>
<td>Resolution</td>
<td>4 or 5 digits depending upon frequency</td>
<td>4 or 5 digits depending upon frequency</td>
</tr>
<tr>
<td>1-Year Absolute Uncertainty, tcal ± 5 °C [3]</td>
<td>± (2.5 ppm + 5 µHz) [4]</td>
<td>± (2.5 ppm + 5 µHz) [4]</td>
</tr>
</tbody>
</table>

[1] The DC offset plus the wave signal must not exceed 30 V rms.
[2] Applies to the 10 % to 90 % of the triangle waveform 500 mV p-p to 10 V p-p.
[3] Uncertainty below 10 Hz is typical.
[4] With 10 MHz external reference selected, the uncertainty becomes that of the external clock plus 5 µHz.
1-17. Pulse Generator Specifications

Note
If you ordered the GHz Option, the following specification table is superseded by the table with the same heading in Chapter 8.

Table 1-6. Pulse Generator Specifications

<table>
<thead>
<tr>
<th>Pulse Generator Characteristics</th>
<th>Positive pulse into 50 Ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rise Time</td>
<td>500 ps typical</td>
</tr>
<tr>
<td>Available Amplitudes (typical)</td>
<td>1.5 V, 600 mV, 150 mV, 60 mV, 15 mV</td>
</tr>
<tr>
<td>Pulse Width</td>
<td></td>
</tr>
<tr>
<td>Range [1]</td>
<td>1 ns to 500 ns</td>
</tr>
<tr>
<td>Uncertainty</td>
<td>5 % ±200 ps</td>
</tr>
<tr>
<td>Pulse Period</td>
<td></td>
</tr>
<tr>
<td>Pulse width < 1 ns</td>
<td>20 ms to 200 ns</td>
</tr>
<tr>
<td>1 ns = Pulse width = 9.9 ns</td>
<td>20 ms to 200 ns</td>
</tr>
<tr>
<td>10 ns = Pulse width = 79.9 ns</td>
<td>20 ms to 1 µs</td>
</tr>
<tr>
<td>80 ns = Pulse width = 500 ns</td>
<td>20 ms to 10 µs</td>
</tr>
<tr>
<td>Resolution</td>
<td>4 or 5 digits depending upon frequency and width</td>
</tr>
<tr>
<td>1-Year absolute Uncertainty, tcal ± 5°C</td>
<td>± 1 ppm</td>
</tr>
<tr>
<td>Pulse Skew with Trigger [3]</td>
<td></td>
</tr>
<tr>
<td>Range [2]</td>
<td>+30 ns to -10 ns with 250 ps resolution</td>
</tr>
<tr>
<td>Uncertainty</td>
<td>± 500 ps</td>
</tr>
</tbody>
</table>

[1] May generate pulses below 1 ns but pulse width accuracy is not specified.

[2] Assumes that trigger used in divide by 1 mode. Other divide modes are not specified.

[3] Pulse skew measured from 30% of trigger signal amplitude to 30% of pulse amplitude range.

1-18. Trigger Signal Specifications (Pulse Function)

Table 1-7. Trigger Signal Specifications (Pulse Function)

<table>
<thead>
<tr>
<th>Pulse Period</th>
<th>Division Ratio</th>
<th>Amplitude into 50 Ω (p-p)</th>
<th>Typical Rise Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 ms to 200 ns</td>
<td>off/1/10/100</td>
<td>≥ 1 V</td>
<td>≤ 2 ns</td>
</tr>
</tbody>
</table>
1-19. **Trigger Signal Specifications (Time Marker Function)**

<table>
<thead>
<tr>
<th>Time Marker Period</th>
<th>Division Ratio</th>
<th>Amplitude into 50 Ω (p-p)</th>
<th>Typical Rise Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 s to 750 ns</td>
<td>off/1</td>
<td>≥ 1 V</td>
<td>≤ 2 ns</td>
</tr>
<tr>
<td>34.9 ms to 7.5 ns</td>
<td>off/1/10</td>
<td>≥ 1 V</td>
<td>≤ 2 ns</td>
</tr>
<tr>
<td>34.9 ms to 2 ns</td>
<td>off/1/10/100</td>
<td>≥ 1 V</td>
<td>≤ 2 ns</td>
</tr>
</tbody>
</table>

1-20. **Trigger Signal Specifications (Edge Function)**

<table>
<thead>
<tr>
<th>Edge Signal Frequency</th>
<th>Division Ratio</th>
<th>Typical Amplitude into 50 Ω (p-p)</th>
<th>Typical Rise Time</th>
<th>Typical Lead Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 kHz to 10 MHz</td>
<td>off/1</td>
<td>≥ 1 V</td>
<td>≤ 2 ns</td>
<td>40 ns</td>
</tr>
</tbody>
</table>

1-21. **Trigger Signal Specifications (Square Wave Voltage Function)**

<table>
<thead>
<tr>
<th>AC Voltage Frequency</th>
<th>Division Ratio</th>
<th>Typical Amplitude into 50 Ω (p-p)</th>
<th>Typical Rise Time</th>
<th>Typical Lead Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Hz to 10 kHz</td>
<td>off/1</td>
<td>≥ 1 V</td>
<td>≤ 2 ns</td>
<td>1 μs</td>
</tr>
</tbody>
</table>

1-22. **Trigger Signal Specifications**

<table>
<thead>
<tr>
<th>Trigger Signal Type</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame Formats</td>
<td>Selectable NTSC, SECAM, PAL, PAL-M</td>
</tr>
<tr>
<td>Polarity</td>
<td>Positive or negative</td>
</tr>
<tr>
<td>Amplitude into 50 Ω (p-p)</td>
<td>Adjustable 0 to 1.5 V p-p into 50 ohm load, (±7 % accuracy)</td>
</tr>
<tr>
<td>Line Marker</td>
<td>Selectable Line Video Marker</td>
</tr>
</tbody>
</table>

1-23. **Tunnel Diode Drive Capability**

<table>
<thead>
<tr>
<th>TD Pulse Drive</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Square wave at 100 Hz to 100 kHz with variable amplitude of 60 V to 100 V p-p</td>
<td></td>
</tr>
</tbody>
</table>

1-24. **Oscilloscope Input Resistance Measurement Specifications**

<table>
<thead>
<tr>
<th>Scope Input Selected</th>
<th>50 Ω</th>
<th>1 MΩ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement Range</td>
<td>40 Ω to 60 Ω</td>
<td>500 kΩ to 1.5 MΩ</td>
</tr>
<tr>
<td>Uncertainty</td>
<td>0.1 %</td>
<td>0.1 %</td>
</tr>
</tbody>
</table>
1-25. **Oscilloscope Input Capacitance Measurement Specifications**

Note

If you ordered the GHz Option, the following specification table is superseded by the table with the same heading in Chapter 8.

Table 1-14. Oscilloscope Input Capacitance Measurement Specifications

<table>
<thead>
<tr>
<th>Scope Input Selected</th>
<th>1 MΩ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement Range</td>
<td>5 pF to 50 pF</td>
</tr>
<tr>
<td>Uncertainty</td>
<td>± (5 % of input + 0.5 pF) [1]</td>
</tr>
</tbody>
</table>

1-26. **Overload Measurement Specifications**

The Overload test function applies dc or ac (1 kHz square wave) power into the 50 Ω oscilloscope input and monitors the current. A time measurement counter indicates the time duration of the applied overload signal. When the input protection circuit reacts and opens up the 50 Ω load, the calibrator indication is set to ‘off’ on the right hand display. In order to prevent front end damage to the oscilloscope, a limited amount of energy is applied by a user selectable time limit.

Table 1-15. Overload Measurement Specifications

<table>
<thead>
<tr>
<th>Source Voltage</th>
<th>Typical ‘On’ current indication</th>
<th>Typical ‘Off’ current indication</th>
<th>Maximum Time Limit DC or (1 kHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 V to 9 V</td>
<td>100 mA to 180 mA</td>
<td>10 mA</td>
<td>setable 1 s to 60 s</td>
</tr>
</tbody>
</table>

1-27. **External Reference Input Specifications**

The External Reference Input selection allows the user to provide their own high stability 10 MHz reference clock for the 5800A for all functions except the Wave Generator function. For all other modes, the frequency stability is determined by the external reference stability. The external reference input must be between 1 to 5 V p-p.

1-28. **Auxiliary Input/Output Specifications**

Maximum input voltage into the auxiliary input is 40 V p-p.

Table 1-16. Auxiliary Input Performance

<table>
<thead>
<tr>
<th>Channel Configuration</th>
<th>Frequency</th>
<th>Typical Loss</th>
<th>Typical VSWR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Channel</td>
<td>< 600 MHz</td>
<td>≤ 1.1 dB</td>
<td>≤ 1.2:1</td>
</tr>
<tr>
<td>1-Channel</td>
<td>600 MHz to 1 GHz</td>
<td>≤ 1.3 dB</td>
<td>≤ 1.4:1</td>
</tr>
<tr>
<td>1-Channel</td>
<td>1 GHz to 2.0 GHz</td>
<td>≤ 2.0 dB</td>
<td>≤ 1.7:1</td>
</tr>
<tr>
<td>5-Channel</td>
<td>< 600 MHz</td>
<td>≤ 1.1 dB</td>
<td>≤ 1.2:1</td>
</tr>
<tr>
<td>5-Channel</td>
<td>600 MHz to 1 GHz</td>
<td>≤ 1.3 dB</td>
<td>≤ 1.4:1</td>
</tr>
<tr>
<td>5-Channel</td>
<td>1 GHz to 2.0 GHz</td>
<td>≤ 2.0 dB</td>
<td>≤ 1.7:1</td>
</tr>
</tbody>
</table>
Chapter 2
Preparing for Operation

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1. Introduction</td>
<td>2-3</td>
</tr>
<tr>
<td>2-2. Unpacking and Inspection</td>
<td>2-3</td>
</tr>
<tr>
<td>2-3. Replacing The Fuse</td>
<td>2-3</td>
</tr>
<tr>
<td>2-4. Selecting Line Voltage</td>
<td>2-4</td>
</tr>
<tr>
<td>2-5. Connecting To Line Power</td>
<td>2-4</td>
</tr>
<tr>
<td>2-6. Service Information</td>
<td>2-6</td>
</tr>
<tr>
<td>2-7. Placement and Rack Mounting</td>
<td>2-7</td>
</tr>
<tr>
<td>2-8. Cooling Considerations</td>
<td>2-7</td>
</tr>
</tbody>
</table>
2-1. Introduction

This chapter provides instructions for unpacking and installing the 5800A, selecting the line voltage, replacing the fuse, and connecting to line power. For instructions for cable connections other than line power, refer to the following chapters:

- UUT (Unit Under Test) connections: Chapter 4
- IEEE-488 parallel interface connection: Chapter 5
- RS-232-C serial interface connection: Chapter 5
- Auxiliary amplifier connections: Chapter 4

2-2. Unpacking and Inspection

Inspect the calibrator carefully for damage and immediately report any damage to the shipper. The shipping container includes instructions for inspection and claims.

When you unpack the calibrator, check for all the standard equipment listed in Table 2-1 and check the shipping order for any additional items ordered. Refer to Chapter 9 for more information. Report any shortage to the place of purchase or to the nearest Fluke Technical Service Center (see “Service Information” in this chapter). For a performance test, refer to Chapter 7.

If reshipping the calibrator, use the original container. If it is not available, you can order a new container from Fluke by indicating the calibrator’s model and serial number.

<table>
<thead>
<tr>
<th>Item</th>
<th>Model or Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibrator</td>
<td>5800A</td>
</tr>
<tr>
<td>Line Power Cord</td>
<td>See Table 2-2 and Figure 2-2</td>
</tr>
<tr>
<td>5800A Operator Manual</td>
<td>686318</td>
</tr>
<tr>
<td>Certificate of Calibration</td>
<td>Form G749</td>
</tr>
<tr>
<td>Cable assembly, COAX, N(M), BNC (M), 1M</td>
<td>P/N 688960</td>
</tr>
<tr>
<td>2 EA with 5800A, 5 EA with 5800A-5</td>
<td>P/N 603115</td>
</tr>
<tr>
<td>Soft Case for storage of output cables</td>
<td></td>
</tr>
</tbody>
</table>

2-3. Replacing The Fuse

⚠️ Warning

To avoid fire, be sure to install the proper fuse and to set the voltage select switch to the proper voltage. For 100 V and 120 V, use 2A/250V SB (time delay). For 220 V and 240 V, use 1A/250V SB (time delay).

The line power fuse is accessible on the rear panel. The fuse rating is 2A/250V time delay fuse for the 100V/120V line voltage setting; 1A/250V time delay fuse for the
220V/240V line voltage setting. For fuses that are not user replaceable, refer to Chapter 7 for a list.

To check or replace the fuse, refer to Figure 2-1 and proceed as follows:

1. **Disconnect line power.**
2. Open the fuse compartment by inserting a screwdriver blade in the tab located at the left side of the compartment and gently pry until it can be removed with the fingers.
3. Remove the fuse from the compartment for replacement or verification. Be sure the correct fuse is installed.
4. Reinstall the fuse compartment by pushing it back into place until the tab locks.

2-4. Selecting Line Voltage

The calibrator arrives from the factory configured for the line voltage normally appropriate for the country of purchase, or as specified at the time of your purchase order. You can operate the 5800A Calibrator from one of four line voltage settings: 100 V, 120 V, 200 V, and 240 V (47 to 63 Hz). To check the line voltage setting, note the voltage setting visible through the window in the power line fuse compartment cover (Figure 2-1). The allowed line voltage variation is 10% above or below the line voltage setting.

To change the line voltage setting, complete the following procedure:

1. **Disconnect line power.**
2. Open the fuse compartment by inserting a screwdriver blade in the tab located at the left side of the compartment and gently pry until it can be removed with the fingers.
3. Remove the line voltage selector assembly by gripping the line voltage indicator tab with pliers and pulling it straight out of its connector.
4. Rotate the line voltage selector assembly to the desired voltage and reinsert.
5. Verify the appropriate fuse for the selected line voltage and reinstall the fuse compartment by pushing it back into place until the tab locks.

2-5. Connecting To Line Power

⚠️ **Warning**

To avoid shock hazard, connect the factory supplied three-conductor line power cord to a properly grounded power outlet. Do not use a two-conductor adapter or extension cord; this will break the protective ground connection.

Use the rear-panel ground terminal for a protective grounding wire if there is any question as to instrument earth grounding.

The calibrator is shipped with the appropriate line power plug for the country of purchase. If you need a different type, refer to Table 2-2 and Figure 2-2 for a list and illustration of the line power plug types available from Fluke.

After you verify that the line voltage selection is set correctly and that the correct fuse for that line voltage is installed, connect the calibrator to a properly grounded three-prong outlet.
Figure 2-1. Accessing the Fuse and Selecting Line Voltage
Table 2-2. Line Power Cord Types Available from Fluke

<table>
<thead>
<tr>
<th>Type</th>
<th>Voltage/Current</th>
<th>Fluke Option Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America</td>
<td>120 V/15 A</td>
<td>LC-1</td>
</tr>
<tr>
<td>North America</td>
<td>240 V/15 A</td>
<td>LC-2</td>
</tr>
<tr>
<td>Universal Euro</td>
<td>220 V/16 A</td>
<td>LC-3</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>240 V/13 A</td>
<td>LC-4</td>
</tr>
<tr>
<td>Switzerland</td>
<td>220 V/10 A</td>
<td>LC-5</td>
</tr>
<tr>
<td>Australia</td>
<td>240 V/10 A</td>
<td>LC-6</td>
</tr>
<tr>
<td>South Africa</td>
<td>240 V/5 A</td>
<td>LC-7</td>
</tr>
</tbody>
</table>

Figure 2-2. Line Power Cord Types Available from Fluke

2-6. Service Information

The warranty for the original purchaser of each Model 5800A Calibrator is 1 year beginning on the date received. The warranty is located at the front of this manual.

To contact Fluke, call:

USA and Canada: 1-888-99-FLUKE (1-888-993-5853)
Europe: +31 402-678-200
Japan: +81-3-3434-0181
Singapore: +65-7385655
Anywhere in the world: +1-425-356-5500

For additional information about Fluke, its products, and services, visit Fluke’s web site at:

www.fluke.com

Refer to the Fluke catalog or contact a Technical Service Center representative for the module exchange procedure.
2-7. **Placement and Rack Mounting**

You may place the calibrator on a bench top or mount it in a standard-width, 24-inch (61-cm) deep equipment rack. For bench-top use, the calibrator has non-slipping, non-marring feet. To mount the calibrator in an equipment rack, use the 5800A Rack Mount Kit, Model Y5537. The rack mount kit has instructions for rack mounting the calibrator.

2-8. **Cooling Considerations**

⚠️ **Warning**

To avoid risk of injury, never operate or power the 5800A Calibrator without the fan filter in place.

Caution

To avoid damage to the calibrator, make sure the calibrator is kept at the coolest possible temperature and air flow is not restricted. Damage caused by overheating may occur if the area around the air intake is restricted, the intake air is too warm, or the air filter becomes clogged.

Baffles direct cooling air from the fan throughout the chassis to internally dissipate heat during operation. The accuracy and dependability of all internal parts of the calibrator are enhanced by maintaining the coolest possible internal temperature. You can lengthen the life of the calibrator and enhance its performance by observing the following rules:

- The area around the air filter must be at least 3 inches from nearby walls or rack enclosures.
- The exhaust perforations on the sides of the calibrator must be clear of obstructions.
- The air entering the instrument must be at room temperature: make sure the exhaust air from another instrument is not directed into the fan inlet.

Clean the air filter every 30 days or more frequently if you operate the calibrator in a dusty environment. (See Chapter 7 for instructions on cleaning the air filter.)
Chapter 3
Features

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-1. Introduction</td>
<td>3-5</td>
</tr>
<tr>
<td>3-2. Front Panel Features</td>
<td>3-3</td>
</tr>
<tr>
<td>3-3. Rear Panel Features</td>
<td>3-3</td>
</tr>
<tr>
<td>3-4. Setup Softkey Menu Trees</td>
<td>3-10</td>
</tr>
</tbody>
</table>
3-1. **Introduction**

This chapter is a reference for the functions and locations of the 5800A Calibrator’s front and rear panel features. Please read this information before operating the calibrator. Chapter 4 provides the front panel operating instructions for the calibrator; Chapter 5 provides the remote operating instructions.

3-2. **Front Panel Features**

Refer to Figure 3-1 for the front panel features (including all controls, displays, indicators, and terminals) and Table 3-1 for a description of each front panel feature.

3-3. **Rear Panel Features**

Refer to Figure 3-2 for panel features (including all terminals, sockets, and connectors) and Table 3-2 for a description of each rear panel feature.
Figure 3-1. Front Panel View

Table 3-1. Front Panel Features

Output Display

The Output Display is a two-line backlit LCD that shows output amplitudes, frequency and calibrator status. Output values (or potential output values if in standby) display using up to seven digits plus a polarity sign. Output frequencies (or potential output frequencies if the 5800A is in standby) display using four digits. Calibrator status is indicated by displaying the following abbreviations:

- OPR: Displayed when an output is active at the front panel terminals or auxiliary amplifier terminals.
- SBY: Displayed when the 5800A is in standby.
- ADDR: Displayed when the 5800A is addressed over the IEEE-488 interface.
- u: When you change the output, a “u” (unsettled) displays for a second or two until the output settles to within the specified accuracy.
- m: Displayed when the calibrator is making a measurement.
- ?: Displayed when the amplitude is specified as typical only, and/or reduced resolution. This occurs when operating the 5800A in the extended bandwidth mode.
- Cx: Shows which channel is selected if the 5-channel option is installed. The channel is indicated by a “C” in the lower right corner of the output display.
Control Display

The Control Display is a multipurpose backlit LCD used for displaying data entries, UUT error adjustments, softkey labels, and other prompts and messages. When there isn’t enough room on the Output Display, output frequency displays on the Control Display. Softkey labels identify the function of the softkey directly below them. Several softkey labels together are called a menu. The changing menus provide access to many different functions through the five softkeys plus the PREV MENU key. (See Figure 3-3, Softkey Menu Tree.)

OPR (Operate) Key

The OPR (Operate) key places the 5800A in the operate mode. The operate mode is indicated by “OPR” in the lower left corner of the output display and the lit indicator on the OPR key.

STBY (Standby) Key

The STBY (Standby) key places the 5800A in the standby mode. Standby mode is indicated by “SBY” in the lower left corner of the output display. In standby mode, the NORMAL and AUX output terminals are internally disconnected from the 5800A. The 5800A normally starts up in the standby mode. The 5800A automatically switches to standby if one of the following occurs:

- Pressing the RESET key.
- Selecting a voltage at rms value \(\geq 33 \) V when the previous output voltage was less than 33 V.

VOLTAGE Key

The VOLTAGE key lets you select the voltage mode so you can calibrate the voltage gain by applying a dc or low frequency square wave signal and adjusting its gain to meet the height specified for different voltage levels, as designated by the graticle line divisions on the oscilloscope.

EDGE Key

The EDGE key lets you select the edge mode so you can calibrate the edge response for your oscilloscope by using a square wave signal that has a fast leading edge rise-time.

LEVEL SINE Key

The LEVEL SINE key lets you select the level sine mode so you can use a leveled sine wave, whose amplitude remains relatively constant over a range of frequencies, to check the oscilloscope’s bandwidth.

MARKER Key

The MARKER key lets you select the marker mode so you can generate a time marker signal from the Calibrator and match the time interval to the time divisions on the oscilloscope in order to calibrate the timing response.

PREV MENU (Previous Menu) Key

The PREV MENU (Previous Menu) key recalls the previous set of menu choices. Each press of this key backs up one level of the menu tree until the display indicates the top level menu selection of the function selected.

Softkeys

The functions of the five unlabeled blue softkeys are identified by labels on the Control Display directly above each key. The functions change during operation so that many different functions are accessible through these keys. A group of softkey labels is called a menu. A group of interconnected menus is called a menu tree.
The MORE MODES key allows you to change to additional modes not shown on the front panel keys.

The CE (Clear Entry) key clears a partially completed keypad entry from the Control Display.

The RESET (Reset Calibrator) key aborts the current operating state of the 5800A and returns it to the power-up default state, except when operating under remote control.

The SETUP (Setup Menu) key puts the 5800A in the setup mode, displaying the setup menu in the control display. Setup options can be selected using the softkeys under the control display.

The EDIT FIELD (Edit Output Display Field) key and associated left/right arrow keys provide step adjustment of the output signals. If you press any of these keys or rotate the knob, a digit on the Output Display becomes highlighted and the output increments or decrements as the knob is rotated. If a digit rolls past 0 or 9, the digit to its left or right is carried. An error display appears on the Control Display, showing the difference between the original (reference) output and the new output.
Table 3-1. Front Panel Features (cont.)

- **The** [↓] and [↑] keys adjust the magnitude of changes by moving the highlighted digit. The [EDIT] key allows you to move from voltage or current to frequency and back. In practice, for voltage and current outputs, the knob and arrow keys are used to adjust output until the UUT reads correctly. The error display then displays UUT deviation from the reference.

- The **POWER** (Primary Power) switch turns the power on and off. The switch is a latching push-push type. When the switch is latched, power is applied.

- The **AUX INPUT** key allows you to set the calibrator to AUX INPUT mode which passes the signal present at the AUX INPUT connector to the selected output channel.

- The **DIV** (Divide) key immediately changes the output to one tenth the reference value or the next lower cardinal value, depending on the mode.

- The **MULT** (Multiply) key immediately changes the output to ten times the reference value or the next higher cardinal value, depending on the mode.

- The **CHANNEL** key lets you select the different available channels with the 5-channel option.

- The **NEW REF** (New Reference) key is active during error mode operation, and establishes the present output value as a new reference for UUT error computation.

Output Units Keys

- The output units keys determine the function of the 5800A. The output units are as follows:

 - **V**
 - **Hz**
 - **dBm**

- When you enter a frequency (Hz) value, the 5800A automatically switches to ac. When you enter a new signed (+ or -) output value without specifying Hz, the 5800A automatically switches back to dc (or enter “0” Hz to move back to volts dc).

Multiplier Keys

- Select output value multipliers. The multiplier keys are as follows:

 - **m** milli (10⁻³ or 0.001)
 - **μ** micro (10⁻⁶ or 0.000001)
 - **k** kilo (10⁻³ or 1,000)
 - **n** nano (10⁻⁹ or 0.000000001)
 - **M** mega (10⁻⁶ or 1,000,000)
The ENTER (Enter Value) key loads a newly entered output value shown on the Control Display into the 5800A, which appears on the Output Display. The new value can come from the numeric keypad. If you press ENTER without identifying the units for the entry, in most cases the 5800A keeps the units that were last used. This allows you, for example, to enter 1 mV, and then later enter 10 to obtain 10 V. (The "V" units were saved from the last entry, but not the multiplier, "m"). In the Error (edit) mode, ENTER with no value restores the output to the value of the reference.

Numeric Keypad

Used to enter the digits of the output amplitude and frequency. The proper sequence to enter a value is to press the digits of the output value, a multiplier key (if necessary), an output units key, then ENTER. Pressing a digit key once the entry field is full, and pressing the decimal point key more than once in a single number sounds the beeper.

+/− (Polarity)

The +/− (Polarity) key changes the polarity of the output for voltage mode. Press the +/− key then ENTER to toggle the output polarity.

1-Channel (Standard Configuration)

The 1-Channel configuration supports automated calibration of oscilloscopes. The EXT TRIG (External Trigger) connector supports calibrating any oscilloscope requiring external triggering simultaneously with the output channel. The other three connectors are not connected.

5-Channel Option

The 5-Channel option supports automated calibration of multi-channel oscilloscopes without requiring connection changes. The two EXT TRIG (External Trigger) channel connectors support calibrating any oscilloscope requiring external triggering simultaneously with the output channels. In this option, you must select either Channel 1 or 5 to be the external trigger.

AUX INPUT

The AUX INPUT (Auxiliary Input) connector allows you to connect an external signal generator to perform bandwidth checks up to 2.4 GHz. AUX INPUT works for 1- and 5-channel configurations.
The **Fan Filter** covers the air intake to keep dust and debris out of the chassis air baffles. The 5800A fan provides a constant cooling air flow throughout the chassis. Fan filter maintenance is described in Chapter 7.

The **CALIBRATION NORMAL/ENABLE** slide switch selects write enable and disable the nonvolatile memory that stores calibration constants. Switching to ENABLE allows changes to be written into memory, and switching to NORMAL protects data in memory from being overwritten. The switch is recessed to allow it to be covered with a calibration sticker to guarantee calibration integrity.

The **SERIAL 2 TO UUT** connector is for transmitting and receiving RS-232 serial data between the 5800A and an RS-232 port on a Unit Under Test (UUT). Chapter 6 describes how to use the RS-232 serial interface for UUT communications.

The **SERIAL 1 FROM HOST** connector is for remote control of the 5800A and for transmitting internal-constant RS-232 serial data to a monitor or host computer. Chapter 5 describes how to use the RS-232 serial interface for remote control.
Table 3-2. Rear Panel Features (cont.)

5. The **External Reference** connector is for applying an optional external clock signal to the 5800A. This replaces the normal internal 10 MHz clock signal in the 5800A. Frequency accuracy of the 5800A is governed by the frequency accuracy of the clock signal internal or external.

6. The **IEEE-488** connector is a standard parallel interface for operating the 5800A in remote control as a Talker/Listener on the IEEE-488 bus. Refer to Chapter 5 for bus connection and remote programming instructions.

7. **Warning**

 To avoid shock hazard, connect the factory supplied three-conductor line power cord to a properly grounded power outlet. Do not use a two-conductor adapter or extension cord; this will break the protective ground connection.

 Use the rear-panel ground terminal for a protective grounding wire if there is any question as to instrument earth grounding.

 The **CHASSIS GROUND** binding post is internally grounded to the chassis. If the 5800A is the location of the ground reference point in a system, this binding post can be used for connecting other instruments to earth ground. Refer to “Connecting the Calibrator to a UUT” in Chapter 4 for details.

8. The **AC Power Input Module** provides a grounded three-prong connector that accepts the line power cord, a switch mechanism to select the operating line voltage, and a line power fuse. See Chapter 2 for information on selecting the operating line voltage, and fuse rating and replacement information.

3-4. **Setup Softkey Menu Trees**

Figures 3-3 and 3-4 identify the Setup softkeys. The Setup softkeys are associated with the 5800A Calibrator front panel **SETUP** key. The functions of the five softkeys are identified by label information displayed directly above each key. The softkey labels change during operation so that many different functions are quickly accessible.

A group of softkey labels is called a menu. A group of interconnected menus is called a menu tree. Figure 3-3 shows the SETUP menu tree structure; Figure 3-4 describes each SETUP menu tree display. Table 3-3 shows the factory default settings for the SETUP menu tree. To return the SETUP menus to their default values, use the softkey SETUP in the Format NV Memory menu (see Figure 3-4, menu F).
Figure 3-3. SETUP Softkey Menu Tree
Error codes display if self-test does not pass. (See Chapter 7 for more information.)

SERIAL # displays the serial number of the instrument. When corresponding with the factory, always include the serial number of the instrument.
Actual revision numbers replace X.X for each of the above.

Use Format NV Memory (non-volatile) with caution. Changes are non-reversible. The softkeys function only when the rear-panel CALIBRATION switch is set to ENABLE, except for the softkey SETUP, which is not dependent on the CALIBRATION switch position.

HOST selects the IEEE-488 (gpib) (factory default) parallel port or RS-232 (serial) port. You cannot operate both IEEE-488 and RS-232 simultaneously. All factory defaults are underlined.

Figure 3-4. SETUP Softkey Menu Displays (cont.)
REMOTE I/F (Interface) has selections term (terminal) (factory default) and comp (computer). EOL (End of Line character) is either CRLF (Carriage Return/Line Feed) or LF (Line Feed). Factory defaults are **underlined**.
GPIB (General Purpose Interface Bus) selects the port address when using the IEEE-488 bus. The factory default is 4.

DISPLAY BRIGHTNESS and DISPLAY CONTRAST apply to both the Output Display and Control Display.

The Output Display and Control Display has eight levels of brightness, 0 to 7, for. Each may have its own level of contrast. The factory defaults are 1 and 0.

Figure 3-4. SETUP Softkey Menu Displays (cont.)
The values set here become the new limits and can be changed only with new entries or returned to factory defaults using SETUP (see menu S).

Select your date and time.

Figure 3-4. SETUP Softkey Menu Displays (cont.)
Select the desired CAL (Calibration) feature: STORE CONSTS to store calibration constants and CAL DATES to review when the 5800A Calibrator was last calibrated. The 5800A-5 option is available if you have the 5-channel option loaded. Otherwise that softkey is blank. START CAL starts the calibration. ERR ACT (Error Action) sets the backup, abort, or cont (continue).
Set up for CHAN 2 leveled sine flatness
See manual for details

Connect voltmeter to Channel 2 &
set it to measure DC.

Note that all channels can be calibrated in this manner.

GO ON and ABORT softkeys are used in the 5800A Calibrator calibration procedure. See the 5800A Service Manual for more information.

Figure 3-4. SETUP Softkey Menu Displays (cont.)
Features

Setup Softkey Menu Trees

<table>
<thead>
<tr>
<th>AF</th>
<th>ABORT</th>
<th>STORE</th>
<th>SKIP</th>
<th>BACK UP</th>
<th>NEXT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CAL</td>
<td>CONS</td>
<td>STEP</td>
<td>STEP</td>
<td>SECTION</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AG</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
</tbody>
</table>

AH

(Future)

<table>
<thead>
<tr>
<th>AH</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
</tbody>
</table>

AJ

<table>
<thead>
<tr>
<th>AJ</th>
<th>KNOB TEST</th>
<th>KEY TEST</th>
<th>BELL TEST</th>
<th>DISPLAY</th>
<th>CONTROL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
</tbody>
</table>

Do not press **RESET**. The **PREV MENU** key returns you to the previous menu.

AK

<table>
<thead>
<tr>
<th>AK</th>
<th></th>
<th></th>
<th>ALL ON</th>
<th>ALL OFF</th>
<th>CURSOR TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
</tbody>
</table>

AL

<table>
<thead>
<tr>
<th>AL</th>
<th></th>
<th></th>
<th>ALL ON</th>
<th>ALL OFF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
</tbody>
</table>

Figure 3-4. SETUP Softkey Menu Displays (cont.)
Table 3-3. Factory Default Settings for the SETUP Menus

<table>
<thead>
<tr>
<th>Features</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Host Connection</td>
<td>GPIB (IEEE-488)</td>
</tr>
<tr>
<td>GPIB Port Address</td>
<td>4</td>
</tr>
<tr>
<td>Display Brightness</td>
<td>level 1.0</td>
</tr>
<tr>
<td>EOL (end of line)</td>
<td>CRLF</td>
</tr>
<tr>
<td>Serial Ports</td>
<td>8 bits, 1 stop bit, xon/xoff, parity none, 9600 baud, wait 30 sec.</td>
</tr>
<tr>
<td>Remote I/F</td>
<td>term</td>
</tr>
<tr>
<td>Remote commands</td>
<td>(see Chapter 6)</td>
</tr>
<tr>
<td>SRQSTR</td>
<td>SRQ: %02x %02x %04x %04x</td>
</tr>
<tr>
<td>PUD string</td>
<td>cleared</td>
</tr>
</tbody>
</table>

* Output Display and Control Display, respectively. There are 8 levels: 0, 1, 2, 3, 4, 5, 6, 7.
Chapter 4
Front Panel Operation

Here is the table of contents for Chapter 4:

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-1. Introduction</td>
<td>4-3</td>
</tr>
<tr>
<td>4-2. Turning on the Calibrator</td>
<td>4-3</td>
</tr>
<tr>
<td>4-3. Warming up the Calibrator</td>
<td>4-4</td>
</tr>
<tr>
<td>4-4. Using the Softkeys</td>
<td>4-4</td>
</tr>
<tr>
<td>4-5. Using the Setup Menu</td>
<td>4-4</td>
</tr>
<tr>
<td>4-6. Using the Instrument Setup Menu</td>
<td>4-5</td>
</tr>
<tr>
<td>4-7. Utility Functions Menu</td>
<td>4-5</td>
</tr>
<tr>
<td>4-8. Using the Format EEPROM Menu</td>
<td>4-6</td>
</tr>
<tr>
<td>4-9. Resetting the Calibrator</td>
<td>4-6</td>
</tr>
<tr>
<td>4-10. Using the Operate and Standby Modes</td>
<td>4-7</td>
</tr>
<tr>
<td>4-11. Connecting the Calibrator to the UUT</td>
<td>4-7</td>
</tr>
<tr>
<td>4-12. Starting the Calibrator</td>
<td>4-7</td>
</tr>
<tr>
<td>4-13. The Output Signal</td>
<td>4-8</td>
</tr>
<tr>
<td>4-14. Editing and Error Output Settings</td>
<td>4-8</td>
</tr>
<tr>
<td>4-15. Adjusting the Output Signal</td>
<td>4-9</td>
</tr>
<tr>
<td>4-16. Keying in a Value</td>
<td>4-9</td>
</tr>
<tr>
<td>4-17. Adjusting Values with the Rotary Knob</td>
<td>4-9</td>
</tr>
<tr>
<td>4-18. Using (\frac{\text{VOLT}}{\text{DIV}})</td>
<td>4-10</td>
</tr>
<tr>
<td>4-19. Displaying the Output Error</td>
<td>4-10</td>
</tr>
<tr>
<td>4-20. Resetting the Calibrator</td>
<td>4-11</td>
</tr>
<tr>
<td>4-21. Calibrating the Voltage Amplitude on an Oscilloscope</td>
<td>4-11</td>
</tr>
<tr>
<td>4-22. The VOLTAGE Function</td>
<td>4-11</td>
</tr>
<tr>
<td>4-23. The V/DIV Menu</td>
<td>4-12</td>
</tr>
<tr>
<td>4-24. Shortcuts for Setting the Voltage Amplitude</td>
<td>4-12</td>
</tr>
<tr>
<td>4-25. The TRIG (Trigger) Menu</td>
<td>4-13</td>
</tr>
<tr>
<td>4-26. Oscilloscope Amplitude Calibration Procedure</td>
<td>4-13</td>
</tr>
<tr>
<td>4-27. Calibrating the Pulse and Frequency Response on an Oscilloscope</td>
<td>4-14</td>
</tr>
<tr>
<td>4-28. The Edge Function</td>
<td>4-14</td>
</tr>
<tr>
<td>4-29. The TRIG (Trigger) Menu</td>
<td>4-15</td>
</tr>
<tr>
<td>4-30. Oscilloscope Pulse Response Calibration Procedure</td>
<td>4-16</td>
</tr>
<tr>
<td>4-31. Pulse Response Calibration Using a Tunnel Diode Pulser</td>
<td>4-17</td>
</tr>
<tr>
<td>4-32. The Leveled Sine Wave Function</td>
<td>4-18</td>
</tr>
<tr>
<td>4-33. Shortcuts for Setting the Frequency and Voltage</td>
<td>4-19</td>
</tr>
<tr>
<td>4-34. The MORE OPTIONS Menu</td>
<td>4-19</td>
</tr>
<tr>
<td>4-35. Sweeping Through a Frequency Range</td>
<td>4-20</td>
</tr>
<tr>
<td>4-36.</td>
<td>Oscilloscope Frequency Response Calibration Procedure</td>
</tr>
<tr>
<td>4-37.</td>
<td>Calibrating the Time Base of an Oscilloscope</td>
</tr>
<tr>
<td>4-38.</td>
<td>The Time Marker</td>
</tr>
<tr>
<td>4-39.</td>
<td>The TRIG (Trigger) Menu</td>
</tr>
<tr>
<td>4-40.</td>
<td>Time Base Marker Calibration Procedure for an Oscilloscope</td>
</tr>
<tr>
<td>4-41.</td>
<td>Testing the Trigger</td>
</tr>
<tr>
<td>4-42.</td>
<td>Testing Video Triggers</td>
</tr>
<tr>
<td>4-43.</td>
<td>Verifying Pulse Capture</td>
</tr>
<tr>
<td>4-44.</td>
<td>The TRIG (Trigger) Menu</td>
</tr>
<tr>
<td>4-45.</td>
<td>Measuring Input Impedance and Capacitance</td>
</tr>
<tr>
<td>4-46.</td>
<td>Input Impedance Measurement</td>
</tr>
<tr>
<td>4-47.</td>
<td>Input Capacitance Measurement</td>
</tr>
<tr>
<td>4-48.</td>
<td>Testing Overload Protection</td>
</tr>
<tr>
<td>4-49.</td>
<td>Using Auxiliary Input (AUXIN)</td>
</tr>
<tr>
<td>4-50.</td>
<td>Setting the Output Channel</td>
</tr>
<tr>
<td>4-51.</td>
<td>Using an External Reference</td>
</tr>
</tbody>
</table>
4-1. Introduction

⚠️ Warning

To avoid electric shock, do not make connections to the output terminals when any voltage is present. The 5800A Calibrator is capable of supplying lethal voltages. Placing the instrument in standby may not be enough to avoid shock hazard, since the operate key could be pressed accidentally. Press the reset key and verify that the 5800A Calibrator is in standby before making connections to the output terminals.

This chapter presents instructions for operating the 5800A Calibrator from the front panel. For a description of front panel controls, displays, and terminals, see Chapter 3 for more information.

4-2. Turning on the Calibrator

⚠️ Warning

To avoid electric shock, make sure the 5800A Calibrator is safely grounded as described in Chapter 2.

Caution

To avoid damage to the Calibrator, before turning the 5800A Calibrator on, make sure that the line voltage selection is set properly. Refer to Chapter 2 to check the line voltage setting.

When you power up the 5800A Calibrator, the initial display is “Starting Up...” (see below) and it completes a self-test routine. If a self-test fails, the Control Display identifies an error code. For a description of error codes, see Chapter 7 for more information.

Starting up...

After self-test, the Control Display shows the default condition (below).

<table>
<thead>
<tr>
<th>CHANGE to DC</th>
<th>SCOPE Z</th>
<th>U/DIV</th>
<th>TRIG</th>
<th>MODE</th>
<th>volt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
4-3. **Warming up the Calibrator**

When you turn on the 5800A, allow a warm-up period of at least 30 minutes for the internal components to stabilize. This ensures that the calibrator meets or exceeds the specifications listed in Chapter 1.

If you turn the 5800A Calibrator off after warm-up and then on again, allow a warm-up period of at least twice the length of time it was turned off (maximum of 30 minutes). For example, if the calibrator is turned off for 10 minutes and then on again, allow a warm-up period of at least 20 minutes.

4-4. **Using the Softkeys**

The five keys just to the right of the (Previous Menu) key are called softkeys. Softkey key functions appear directly above the key in the Control Display. Pressing a softkey either changes a value or causes a submenu with new selections to appear on the Control Display. Softkey menus are arranged in varying levels, as described in Chapter 3. You can move backwards to previous menu selections by repeatedly pressing . Although pressing also returns you to the top level menu, it also resets all volatile settings and return the Calibrator to the voltage mode. Use the key and the mode keys (, etc.) as your main navigating tool for moving around the menu levels.

4-5. **Using the Setup Menu**

Press the front panel key for access to various operations and changeable parameters. Some parameters are volatile, meaning they will be lost during reset or when power is turned off. The following descriptions indicates which parameters are “nonvolatile.”

When you press from the power-up state, the display changes as follows:

```
<table>
<thead>
<tr>
<th></th>
<th></th>
<th>CAL</th>
<th>INSTMT</th>
<th>UTILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>SETUP</td>
<td>FUNCTNS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

This is the primary instrument setup menu. The list below describes submenus available through each softkey and tells you where you can find further information in the manuals.

- **CAL (Calibration)** Opens the calibration menu. Softkeys in this menu activate calibration to external standards and calibration check. Another softkey displays calibration date information and another opens a calibration report menu.

- **INSTMT SETUP (Instrument Setup)** Selects the desired temperature standard and opens submenus to access Output, Display, and Remote Setups.

- **UTILITY FUNCTNS (Utility Functions)** Allows you to initiate a self-test, format the nonvolatile memory, and review the instrument configuration software versions and user report string. Refer to “Utilities Function Menu” for an explanation of these features.
4-6. **Using the Instrument Setup Menu**

Refer to the softkeys in the instrument setup menu (accessed by pressing INSTMT SETUP softkey in the Setup Menu) shown below.

```
<table>
<thead>
<tr>
<th></th>
<th>OTHER SETUP</th>
<th>DISPLAY SETUP</th>
<th>REMOTE SETUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
</tbody>
</table>
```

The list below describes submenus accessed by each softkey.

- **OTHER SETUP** Opens the Other Setup menu to set the clock and other miscellaneous parameters.
- **DISPLAY SETUP** Opens submenus to set the brightness and contrast of both the Control Display and Output Display.
- **REMOTE SETUP** Allows you to change the configuration of the two RS-232 ports, SERIAL 1 FROM HOST and SERIAL 2 TO UUT, and IEEE-488 General Purpose Interface Bus (GPIB). (See Chapter 5 for more information.)

4-7. **Utility Functions Menu**

The Setup Menu softkey labeled UTILITY FUNCTNS (Utility Functions) provides access to Self Test, Format Nonvolatile Memory, and Instrument Configuration.

```
<table>
<thead>
<tr>
<th></th>
<th>SELF TEST</th>
<th>FORMAT NV MEM</th>
<th>INSTMT CONFIG</th>
</tr>
</thead>
<tbody>
<tr>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
</tbody>
</table>
```

- **SELF TEST** This softkey gives access to several calibrator selftests.
- **FORMAT NV MEM** (Format Nonvolatile Memory) Opens a menu to restore all or part of the data in the nonvolatile memory (EEPROM) to factory defaults.
- **INSTMT CONFIG** (Instrument Configuration) Allows you to view the versions of software installed in the calibrator as well as the user-entered report string.
4-8. **Using the Format EEPROM Menu**

Caution

To avoid losing calibration constants, use with extreme care. The format nonvolatile memory menu softkeys permanently erase calibration constants. Pressing ALL or CAL invalidates the state of calibration of the 5800A.

Pressing FORMAT NV MEM in the utility functions menu opens the following:

```
<table>
<thead>
<tr>
<th>Format NV Memory</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>All CAL SETUP</td>
<td></td>
</tr>
</tbody>
</table>
```

All the softkeys in this menu require the rear panel CALIBRATION switch to be in the ENABLE position. The nonvolatile memory contains calibration constants and dates, setup parameters, and the user report string. In the case of calibration constants, factory defaults are the same for all Calibrators. They are not the calibration constants obtained when the 5800A was calibrated by the factory before shipment. The softkeys are:

- **ALL** Replaces the entire contents of the EEPROM with factory defaults. This would be used by service personnel after replacing the EEPROM, for example. It is not required in normal use.
- **CAL** Replaces all calibration constants with factory defaults but leaves all the setup parameters unchanged. This is also not required in normal use.
- **SETUP** Replaces the setup parameters with factory defaults (Table 4-1) but leaves the state of calibration unchanged. You do not have to break the calibration sticker for this operation. Note that remote commands can change the setup parameters. (See these commands in Chapter 6: SRQSTR, SPLSTR, *PUD, SP_SET, UUT_SET.)

<table>
<thead>
<tr>
<th>Features</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Host Connection</td>
<td>gpib (IEEE-488)</td>
<td>Display Brightness</td>
</tr>
<tr>
<td>GPIB Port Address</td>
<td>4</td>
<td>EOL (end of line)</td>
</tr>
<tr>
<td>Serial Ports</td>
<td>8 bits, 1 stop bit, xon/xoff, parity none, 9600 baud, wait 30 sec.</td>
<td>Remote I/F</td>
</tr>
<tr>
<td>Remote commands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRQSTR</td>
<td>SRQ: %02x %02x %04x %04x</td>
<td>PUD string</td>
</tr>
</tbody>
</table>

* Output Display and Control Display, respectively. There are 8 levels: 0,1,2,3,4,5,6,7.

4-9. **Resetting the Calibrator**

At any time during front panel operation (not remote operation), you can return the 5800A Calibrator to the power-up state by pressing [RESET]. Pressing the [RESET] key returns the calibrator to the power-up state: 20 mV, 1 kHz standby, 1 MΩ scope impedances, and returns all other mode settings to their defaults.
4-10. Using the Operate and Standby Modes

When OPR displays in the Output Display, the output value and function shown is active at the selected terminals. When SBY displays in the Output Display, all calibrator outputs are open-circuited. To enable the operate mode or put the calibrator into standby, press \textbf{OPR} or \textbf{SBY}.

4-11. Connecting the Calibrator to the UUT

Using the cable supplied, connect the Calibrator to the channel connectors on your oscilloscope (see Figure 4-1). If you have a 5-channel Calibrator, you can connect the Calibrator using any of the 5 channels available.

![Figure 4-1. Oscilloscope Connection: Channel and External Trigger](image)

4-12. Starting the Calibrator

Press the Power button to start the Calibrator. The menu, shown below, defaults to the VOLTAGE menu in the Control Display. You can press the first four keys to go directly to the VOLTAGE, EDGE, LEVEL SINE, and MARKER calibration menus. Press the MORE MODES key to view the other selections (also shown below), allowing access to WAVEGEN, VIDEO, PULSE, MEAS Z (Impedance/Capacitance measurement), and OVERLD (Overload) menus. Press the AUX INPUT key to put the 5800A into auxiliary input mode. Press \textbf{VOLTAGE} to return to the VOLTAGE menu from the OTHER menu. This chapter describes each of these menus in detail.

```
<table>
<thead>
<tr>
<th>CHANGE to DC</th>
<th>SCOPE Z</th>
<th>U/DIV MENU</th>
<th>TRIG off</th>
<th>MODE volt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
4-13. The Output Signal

The following description assumes that the Voltage mode is on. The Control Display appears as follows:

<table>
<thead>
<tr>
<th>Change to DC</th>
<th>Scope Z 1 MΩ</th>
<th>V/DIV MENU</th>
<th>TRIG off</th>
<th>MODE volt</th>
</tr>
</thead>
</table>

The Control Display (the display on the right side) indicates the location of the output signal. If you connected your Calibrator, but the output does not appear on the oscilloscope, the Calibrator may be in standby mode. The Output Display (the display on the left side) indicates settings for the output signal.

If SBY is displayed, press [OPR/STBY]. The Output Display shows OPR and the output should appear on the oscilloscope.

4-14. Editing and Error Output Settings

Note

When you use the Edit mode, a new reference point must be available. Because Voltage and Marker modes are the only two modes that create new reference points, Edit works only in those two modes.

All 5800A Calibrator outputs can be edited using the front panel Edit Field knob and associated [L], [W], and [e] keys. The difference between the original output (reference) and edited output is displayed as an “error” between the two settings. This allows you to edit a value to achieve a correct reading at the UUT and thereby calculate an error in ±% or ppm (parts per million) if it is less than ±1000 ppm. Table 4-2 lists the actions that cause the calibrator to exit the error mode and return to the original reference output, or to output a new reference, as selected.

Table 4-2. Keys That Exit Error Mode

<table>
<thead>
<tr>
<th>Keys</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTER</td>
<td>Returns to the previous reference value.</td>
</tr>
<tr>
<td>+/- ENTER</td>
<td>Inverts the output polarity in Voltage mode.</td>
</tr>
<tr>
<td>A new keypad entry</td>
<td>Changes the output.</td>
</tr>
<tr>
<td>NEW REF</td>
<td>Establishes the present output as a new reference.</td>
</tr>
<tr>
<td>MUL</td>
<td>Sets the calibrator to the next higher cardinal point.</td>
</tr>
<tr>
<td>DIV</td>
<td>Sets the calibrator to the next lower cardinal point.</td>
</tr>
<tr>
<td>RESET</td>
<td>Returns to the power-up state.</td>
</tr>
</tbody>
</table>
4-15. Adjusting the Output Signal

The Calibrator provides several ways to change the settings for the output signal during calibration. Since oscilloscope calibration requires many adjustments of the output signal, the three available methods for changing these settings for oscilloscope calibration are summarized below. These methods provide the means of jumping to a new value or sweeping through a range of values.

4-16. Keying in a Value

The following example is for use in the Voltage mode. To key a specific value directly into the Calibrator from its front panel:

1. Key in the value you want to enter, including the units and prefixes. For example, to enter 120 mV, press \textcolor{blue}{120}\textcolor{red}{mV}. The Control Display shows:

\begin{center}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
 & & & & & & \\
\hline
\end{tabular}
\end{center}

If you make an error, press \textcolor{blue}{CE} to clear the Control Display and return to the menu.

2. Press \textcolor{blue}{ENTER} to activate the value and move it to the Output Display.

Other settings in the display remains unaltered unless you key in an entry and specify the units for that setting.

4-17. Adjusting Values with the Rotary Knob

To adjust values in the Output Display using the rotary knob:

1. Turn the rotary knob. A cursor appears in the Output Display under the lowest digit and begins changing that digit. If you wish to place the cursor in the field without changing the digit, press \textcolor{blue}{EDIT FIELD}.

2. To move the cursor between the voltage and frequency fields, press \textcolor{blue}{EDIT FIELD}.

3. Use the \textcolor{blue}{\downarrow} and \textcolor{blue}{\uparrow} keys to move the cursor to the digit you want to change.
4. Turn the rotary knob to change the value.

When you use the rotary knob in either Voltage mode or Marker mode, the Control Display shows the new value’s percentage change from the reference value. This is useful for determining the percentage of error on the oscilloscope. You can set the reference value to the new value by pressing \texttt{NEW REF}.

![image]

5. Press \texttt{ENTER} to remove the cursor from the Output Display and save the new value as the reference value.

\textit{Note}

\textit{If you attempt to use the rotary knob to adjust a value to an amount that is invalid for the function you are using, or is outside the value’s range limit, the value will not change and the Calibrator will beep.}

4-18. \textit{Using \texttt{MULT} and \texttt{DIV}}

The \texttt{MULT} and \texttt{DIV} keys cause the current value of the signal to jump to a predetermined cardinal value, whose amount is determined by the current function. These keys are described in more detail under the descriptions for each function.

4-19. \textit{Displaying the Output Error}

When you edit the output value in the Voltage or Marker mode, the Control Display shows the difference between the reference value (the value you originally entered) and the edit value (the value shown in the Output Display), displaying error difference in parts per million (ppm). This allows you to edit the output such that the UUT displays the expected value and thus give an indication of the UUT accuracy.

![image]

For example, an edited difference of .00030 volts for an output of 10.00000 V represents .00030/10.00000=.000030, or 30 parts per million. The sign is negative (-30.0 ppm) because the output necessary to display 10.00000 at the UUT shows the UUT is reading below the output value. When the reference is negative, the error sign is relative to the magnitude. For example, if the reference is -10.00000V and the output display is -10.00030, the error is -30 ppm.
4-20. **Resetting the Calibrator**

You can reset all parameters in the Calibrator to their default settings at any time during front panel operations by pressing the `RESET` key on the front panel.

After resetting the Calibrator, press `RST` to reconnect the signal output.

4-21. **Calibrating the Voltage Amplitude on an Oscilloscope**

Calibrate the oscilloscope voltage (vertical) gain by applying a dc or low frequency square wave signal and adjusting its gain to meet the height specified for different voltage levels, as designated by the graticule line divisions on the oscilloscope. The applied signal from the Calibrator is in Voltage mode. The specific voltages that you should use for calibration, and the graticule line divisions that need to be matched, vary for different oscilloscopes and are specified in your oscilloscope’s service manual.

4-22. **The VOLTAGE Function**

You can calibrate the Voltage gain using the VOLTAGE function. To access the VOLTAGE menu, press `VOLTAGE` or press the softkey under MODE until “volt” appears.

The following describes each menu item:

- **DC<->AC** Toggles from ac to dc, producing the dc equivalent output. **DC->AC** Toggles from dc to ac (1 kHz).
- **1 MΩ** Toggles between 1 MΩ and 50 Ω to match the input impedance of the oscilloscope.
- **V/DIV MENU** Opens the voltage scaling menu, which lets you select the signal amplitude in volts per division. For more details, refer to “V/DIV Menu” described below.
- **TRIG** If you are using square wave to calibrate the external trigger, use this key to toggle the trigger off and on. When on, the reading shows “/1”, which indicates that the external trigger is at the same frequency as the volt output. If you have the 5-channel option, you must select which connector to use for the external trigger and the channel connector for the output. For details, refer to “The TRIG (Trigger) Menu” later in this chapter. The external trigger can be useful for many oscilloscopes that have difficulty triggering on low amplitude signals. You can also toggle the trigger off.
- **MODE** Indicates you are in “volt” mode. Use the softkey to change modes as an alternative to the dedicated MODE keys.
4-23. The V/DIV Menu

The V/DIV menu, shown below, sets the number of volts denoted by each division on the oscilloscope. This menu provides alternative methods for changing the output amplitude that may be more convenient for certain oscilloscope applications. To access the V/DIV menu, press V/DIV from the VOLTAGE menu.

<table>
<thead>
<tr>
<th>20.00 mV/div</th>
<th>up</th>
<th>down</th>
<th>#DIV = 1</th>
<th>up</th>
<th>down</th>
<th>MODE</th>
<th>volt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following describes each item in the V/DIV menu:

• **V/div** Changes the number of volts per division in the Output Display so that the values selected correspond to the oscilloscope’s input sensitivity (VOLTS/DIV.) The available settings, shown in the figure above, are provided in 1-2-5 step increments. Press the softkey under UP to increase the volts per division. Press the softkey under DOWN to decrease the volts per division.

• **#DIV** Specifies the number of divisions that establish the peak-to-peak value of the waveform. The value can be adjusted from one to eight divisions. The amount denoted by each division is displayed in the V/div field. Press the softkey under UP to increase the signal’s height, and press the softkey under DOWN to decrease it.

4-24. Shortcuts for Setting the Voltage Amplitude

The X and D keys step the voltages through cardinal point values of an oscilloscope in a 1-2-5 step sequence. For example, if the voltage is 40 mV, pressing X increases the voltage to the nearest cardinal point, which is 50 mV. Pressing D decreases the voltage to the nearest cardinal point, which is 20 mV.
4-25. **The TRIG (Trigger) Menu**

The TRIG menu shown below allows you to set the external trigger to either Channel 1 or Channel 5 and select the number of divisions that establish the peak to peak value of the wave form.

<table>
<thead>
<tr>
<th>TRIG CH</th>
<th>TIMEDIV</th>
<th>MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>off</td>
<td>edge</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If you have the 5-channel option, the following describes each item in the TRIG menu:

- **TRIG CH** Allows you to select either Channel 5 (C5) or Channel 1 (C1) as the external trigger channel, with C5 being the default. When you select one channel as an external trigger, the other channel becomes a source.

- **TIMEDIV** Allows you to select the trigger settings, with “off” being the default. When the trigger is on, the instrument does not allow the signal output and trigger output to be on the same output. If you change the external trigger from C5 to C1 and select a trigger setting other than “off,” the Calibrator automatically changes the source from C1 to C2. This change prevents a conflict between the external trigger and the source.

If you change the external trigger from C1 to C5 and select a trigger setting other than “off,” the Calibrator automatically changes the source from C5 to C1.

4-26. **Oscilloscope Amplitude Calibration Procedure**

The following example describes how to use the VOLTAGE menu to calibrate the oscilloscope’s amplitude gain. During calibration, you need to set different voltages and verify that the gain matches the graticule lines on the oscilloscope according to the specifications for your particular oscilloscope. See your oscilloscope manual for the recommended calibration settings and appropriate gain values.

<table>
<thead>
<tr>
<th>CHANGE to DC</th>
<th>SCOPE Z</th>
<th>V/DIV</th>
<th>TRIG</th>
<th>MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 MΩ</td>
<td>MENU</td>
<td>off</td>
<td>volt</td>
</tr>
</tbody>
</table>

Perform the following sample procedure to calibrate the vertical gain:

1. Connect the calibrator to Channel 1 on the oscilloscope, making sure the oscilloscope is terminated at the proper impedance (1 MΩ for this example). Verify that OPR appears in the Output Display, indicating that the signal is connected.

2. Key in the voltage level that is recommended for your oscilloscope. For example to enter 30 mV, press \[30 \text{ mV}\], then press \[\text{ENTER}\]. See “Keying in a Value” earlier in this chapter.

3. Adjust the oscilloscope as necessary. The waveform should be similar to the one shown below, with the gain at exactly the amount specified for the calibration settings for your oscilloscope. This example shows the gain at 30 mV to be 6 divisions, at 5 mV per division.
4. Change the voltage to the next value recommended for calibrating your oscilloscope model, and repeat this procedure at the new voltage level, verifying the gain is correct according to the specifications in your manual.

5. Repeat the procedure for each channel.

4-27. Calibrating the Pulse and Frequency Response on an Oscilloscope

Calibrate the pulse response with a square-wave signal that has a fast leading edge rise-time. Using this signal, you adjust the oscilloscope as necessary until it meets its particular specifications for rise time and pulse aberrations.

Following pulse verification, check the frequency response by applying a leveled sine wave and acquiring a frequency reading at the -3 dB point, when the amplitude drops approximately 30%.

4-28. The Edge Function

Use the EDGE function for calibrating the pulse response for your oscilloscope. To access the EDGE menu, press [EDGE] or press the softkey under MODE until “edge” appears.
The following describes each option in the EDGE menu:

You cannot change the output impedance in EDGE function.

- **TD PULSE** Press once to turn the Tunnel Diode Pulser drive signal on, again to turn the Pulser drive off. This signal sources up to 100 V p-p to drive a Tunnel Diode Pulser (Fluke Part Number 606522 or equivalent.)

- **TRIG** If you are using the external trigger, use this key to toggle the trigger off and on. When on, the reading will show “/1” which indicates that the external trigger is at the same frequency as the edge output. If you have the 5-channel option, you must select which connector to use for the external trigger and the channel connector for the output. For details, refer to “The TRIG (Trigger) Menu” below. The external trigger can be useful for many oscilloscopes that have difficulty triggering on low amplitude signals.

- **MODE** Indicates you are in “edge” mode. Use the softkey to change modes and open menus for other oscilloscope calibration modes.

4-29. The TRIG (Trigger) Menu

The TRIG menu shown below allows you to set the external trigger to either Channel 1 or Channel 5.

<table>
<thead>
<tr>
<th>TRIG CH</th>
<th>TIMEDIV</th>
<th>MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>off</td>
<td>edge</td>
</tr>
<tr>
<td>1</td>
<td>/1</td>
<td></td>
</tr>
</tbody>
</table>

If you have the 5-channel option, the following describes each item in the TRIG menu:

- **TRIG CH** Allows you to select either Channel 5 (C5) or Channel 1 (C1) as the external trigger channel, with C5 being the default. When you select one channel as an external trigger, the other channel becomes a source.

- **TIMEDIV** Allows you to select the trigger settings, with ”off” being the default. When the trigger is on, the instrument does not allow the signal output and trigger output to be on the same output. If you change the external trigger from C5 to C1 and select a trigger setting other than “off,” the Calibrator automatically changes the source from C1 to C2. This change prevents a conflict between the external trigger and the source.

If you change the external trigger from C1 to C5 and select a trigger setting other than “off,” the Calibrator automatically changes the source from C5 to C1.
4-30. Oscilloscope Pulse Response Calibration Procedure

This sample procedure shows how to check the oscilloscope’s pulse response. Before you check your oscilloscope, see your oscilloscope’s manual for the recommended calibration settings.

Before you start this procedure, verify that you are in Edge mode. If you are, the Control Display shows the following menu:

<table>
<thead>
<tr>
<th>TDPULSE</th>
<th>TRIG</th>
<th>MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>off</td>
<td>off</td>
<td>edge</td>
</tr>
</tbody>
</table>

Perform the following sample procedure to calibrate the pulse response:

1. Connect the Calibrator to Channel 1 on the oscilloscope. Select 50 Ω impedance or use a 50 Ω termination directly at the oscilloscope input. Verify that OPR appears in the Output Display, indicating that the signal is connected.

2. Alter the voltage setting for the signal so it matches the amplitude value recommended by your oscilloscope manufacturer for calibrating the edge response. The default setting is 25.00 mV p-p, 1.0000 MHz.

 For example, on an HP 54522C oscilloscope, start with a signal of 1 V @ 1 MHz.

3. Adjust the scale on your oscilloscope to achieve a good picture of the edge.

4. Adjust the time base on your oscilloscope to the fastest position available (≤ 1 ns/div).

5. Verify that your oscilloscope exhibits the proper rise time and pulse aberration characteristics.

6. Remove the input signal by pressing OPR STRG.
4-31. **Pulse Response Calibration Using a Tunnel Diode Pulser**

You can use the calibrator to drive a tunnel diode pulser (Fluke Part Number 606522 or equivalent), allowing you to check for pulse edge rise times as fast as 125 ps.

The calibrator sources a maximum pulser drive signal of 100 V p-p at 100 kHz. The recommended (and default) output setting is 80 V p-p at 100 kHz.

Perform the following procedure to use a tunnel diode pulser:

1. Connect the calibrator, tunnel diode pulser, and oscilloscope as shown in Figure 4-2.
2. In Edge mode, press the TDPULSE softkey to “on”.
3. Press **ON**.
4. Rotate the control on the pulser box to the minimum setting necessary to trigger a reading.

![Figure 4-2. Tunnel Diode Pulser Connections](oq041f.eps)
4-32. **The Leveled Sine Wave Function**

The Leveled Sine Wave (LEVEL SINE) function uses a leveled sine wave, whose amplitude remains relatively constant over a range of frequencies, to check the oscilloscope’s bandwidth. When you check your oscilloscope, you change the wave’s frequency until the amplitude displayed on the oscilloscope drops 30%, which is the amplitude that corresponds to the -3 dB point. Default values are 30 mV p-p, 50 kHz.

To access the LEVEL SINE menu, press [LEVEL SINE] or press the softkey under MODE until “levsine” appears.

The following describes each option in the LEVEL SINE menu:

- **FREQ CHG** (Frequency Change) Toggles between two settings that control the way the output signal adjusts to a new frequency. “Jump” is the default setting.
 - “Jump” causes the output signal to jump immediately to a new frequency setting.
 - “Sweep” causes the signal to sweep through a series of frequency values, over a range you set. Use the sweep function to watch the signal gradually change over a given bandwidth and see the point at which its amplitude changes. Details for using the sweep function are provided under “Sweeping Through a Frequency Range.”

- **RATE** Use when you set FREQ CHG to “sweep” to select a sweep speed of 100 kHz, 1 MHz, or 10 MHz.
 - A slower sweep rate lets you watch the frequency change very slowly. After a faster sweep, you may want to pinpoint a certain frequency with a slower sweep over a subset of your previous frequency range.

- **MORE OPTIONS** Opens additional menu items, which are described in detail under “The MORE OPTIONS Menu.”

- **SET TO LAST F** Toggles between the current frequency setting and the reference value of 50 kHz. This option allows you to revert to the reference to check the output after you make adjustments at another frequency.

- **MODE** Indicates you are in “levsine” mode. Use the softkey to change modes and open menus for other calibration modes.
4-33. **Shortcuts for Setting the Frequency and Voltage**

The following three options allow you to control the sine wave settings:

- **SET TO LAST F** toggles between the last frequency used and the reference frequency of 50 kHz, letting you check the output at the reference after you make adjustments at a different frequency.

- **MORE OPTIONS** lets you lock the voltage range, if necessary. The following section provides details on this menu.

- The \[\text{MULT} \] and \[\text{DIV} \] keys step frequencies up or down in amounts that let you quickly access a new set of frequencies. For example, if the value is 250 kHz, \[\text{MULT} \] changes it to 300 kHz, and \[\text{DIV} \] changes it to 200 kHz. For voltage values, \[\text{MULT} \] and \[\text{DIV} \] step through cardinal point values in a 1.2-3-6 sequence.

4-34. **The MORE OPTIONS Menu**

When you press the MORE OPTIONS softkey, you open a menu that allows you to see and lock the amplitude range.

<table>
<thead>
<tr>
<th>Range = 40 mV</th>
<th>MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>auto</td>
<td>lev sine</td>
</tr>
</tbody>
</table>

 ranging from | volt edge |
 auto locked lev sine marker wave gen |
 10 mV video pulse |
 40 mV meas Z |
 100 mV overl d |
 400 mV auxin |
 1.3V |
 5.5V |

The following describes each option in the MORE OPTIONS menu:

- **RANGE** The softkeys toggle between two settings. The first setting ("auto") changes the range limit automatically in accordance with the voltage level. The second setting ("locked") freezes the present range limit; subsequent changes in voltage level are then measured with this range limit.

The Level Sine mode has six range limits: 10 mV, 40 mV, 100 mV, 400 mV, 1.3 V, and 5.5 V. When set to "auto" the calibrator uses your voltage setting to automatically set the range limit that provides the most accurate output.

When set to "locked" the range limit remains fixed and you can decrease the voltage down to the bottom of the range.
For example, assume the range limit is 40 mV. If you enter 5 mV with “auto” selected, the calibrator automatically changes the range limit to 10 mV and output 5 mV from within the 10 mV range. However, if you start with the 40 mV range “locked” and then enter 5 mV, the calibrator outputs 5 mV from within the 40 mV range.

The default range setting is “auto,” which should always be used unless you are troubleshooting discontinuities in your oscilloscope’s vertical gain. The range setting always returns to “auto” after you leave Level Sine mode.

- **MODE** Indicates you are in “levsine” mode. Use the softkey to change modes and open menus for other calibration modes.

4-35. Sweeping Through a Frequency Range

When you change frequencies using the sweep method, the output sine wave sweeps through a specified range of frequencies. This feature lets you identify the frequency at which the oscilloscope’s signal exhibits certain behavior; you can quickly see the frequency response of the oscilloscope. Before you start this procedure, make sure you are in the MORE OPTIONS menu and the sine wave is displayed on the oscilloscope.

Perform the following procedure to sweep through frequencies:

1. Make sure the output signal shows the starting frequency. If not, key in the starting frequency; then press **[ENTER]**.
2. Toggle FREQ CHG to “sweep.” Toggle the RATE to a lower frequency if you want to observe a very slow sweep over a small range.
3. Key in the end frequency; then press **[ENTER]**. After you press **[ENTER]**, the signal sweeps through frequencies between the two values you entered, and the Sweep menu (“Sweeping from previous to displayed frequency”) appears on the Control Display.
4. You can let the signal sweep through the entire range, or you can halt the sweep if you need to record the frequency at a certain point.

To interrupt the sweep, press the softkey under HALT SWEEP. The current frequency appears on the Output Display and the MORE OPTIONS menu will reappear on the Control Display.

Note

When you interrupt the frequency sweep by pressing HALT SWEEP, the FREQ CHG method switches back to “jump.”

5. Repeat the procedure if necessary. For example, if you did a fast sweep, you may want to pinpoint a certain frequency with a slow sweep over a subset of your previous frequency range.
4-36. Oscilloscope Frequency Response Calibration Procedure

Perform this sample procedure, which verifies the frequency response on your oscilloscope, after the pulse response verification.

This procedure checks the bandwidth by finding the frequency at the -3 dB point for your oscilloscope. The reference sine wave in this procedure has an amplitude of 6 divisions, so that the -3 dB point can be found when the amplitude drops to 4.2 divisions.

Before you start this example procedure, verify that you are in Level Sine mode. If you are, the Control Display shows the following menu:

```
FREQ CHG jump
RATE 1 MHz
MORE OPTIONS
SET TO LAST F
MODE levsine
```

Perform the following sample procedure to calibrate the frequency response:

1. Reconnect the signal by pressing `O` on the Calibrator. Select 50 Ω impedance or use a 50 Ω external termination directly at the oscilloscope input.

2. Adjust the sine wave settings in the Output Display according to the calibration recommendations in your oscilloscope manual. For example, for the HP 54522C oscilloscope, start at 600 mV @ 1 MHz. To enter 600 mV, press `6 0 0 m V`; then press `ENTER`.

3. Adjust the oscilloscope as necessary. The sine wave should appear at exactly six divisions, peak-to-peak, as shown below.

 If necessary, make small adjustments to the voltage amplitude until the wave reaches exactly six divisions. To fine-tune the voltage, press `EDIT` to bring a cursor into the Output Display, move the cursor with the `key`, and turn the rotary knob to adjust the value. (See “Adjusting Values with the Rotary Knob” earlier in this chapter.)
4. Increase the frequency to 400 MHz (for 500-MHz instruments), or 500 MHz (for 600-MHz instruments). To enter 400 MHz, press \texttt{400MHZ}; then press \texttt{ENTER}.

5. Continue to increase the frequency slowly until the waveform decreases to 4.2 divisions, as shown below.

To increase the frequency slowly, fine-tune it using the rotary knob. To do this, press \texttt{EDIT FIELD} to place a cursor in the Output Display. Press \texttt{EDIT FIELD} again to place it in the frequency field, and use the \texttt{	extless} and \texttt{	extgreater} keys to move it to the digit you want to change. Then change the value by turning the rotary knob. Continue making small increments in the frequency until the signal drops to 4.2 divisions. At 4.2 divisions, the signal is at the frequency that corresponds to the -3 dB point.

6. Remove the input signal by pressing \texttt{OPR STRY}.

7. Repeat this procedure for the remaining channels on your oscilloscope.

\textbf{4-37. Calibrating the Time Base of an Oscilloscope}

Calibrate the horizontal deflection (time base) of an oscilloscope using a method similar to the vertical gain calibration. The Calibrator generates a time marker signal and the signal’s peaks are matched to the graticule line divisions on the oscilloscope.
4-38. **The Time Marker**

The Time MARKER function, which is available through the MARKER menu, lets you calibrate the timing response of your oscilloscope. To access the MARKER menu, press or the softkey under MODE until “marker” appears.

<table>
<thead>
<tr>
<th>SHAPE</th>
<th>TRIG</th>
<th>MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>spike</td>
<td>off</td>
<td>marker</td>
</tr>
</tbody>
</table>

- **SHAPE** Selects the marker waveform. Depending on frequency setting, possible selections are sine, spike, square (50 % duty cycle square wave), and sq20% (20 % duty cycle square wave.) Note that selections available under SHAPE depend on the selected marker period (frequency), as follows:

<table>
<thead>
<tr>
<th>Selection</th>
<th>Period (Frequency)</th>
</tr>
</thead>
<tbody>
<tr>
<td>sine</td>
<td>10 ns - 2 ns (100 MHz - 500 MHz)</td>
</tr>
<tr>
<td>spike</td>
<td>5s - 20 ns (0.2 Hz - 50 MHz)</td>
</tr>
<tr>
<td>square</td>
<td>5s - 10 ns (0.2 Hz - 100 MHz)</td>
</tr>
<tr>
<td>sq20%</td>
<td>20 ms - 100 ns (50 kHz - 10 MHz)</td>
</tr>
</tbody>
</table>

- **TRIG** If you are using the external trigger, use this key to cycle through the trigger settings. The available trigger settings are: off, /1 (trigger signal appears on each marker), /10 (trigger signal appears on every tenth marker), and /100 (trigger signal appears at every 100th marker). If you have the 5-channel option, you must select which connector to use for the external trigger and the channel connector for the output.

- **MODE** Indicates you are in “marker” mode. Use the softkey to change modes and open menus for other oscilloscope calibration modes.

Default marker values are 1.000 ms, SHAPE = spike.

The M°LT and div keys step the voltages through cardinal point values of an oscilloscope in a 1-2-5 step sequence. For example, if the period is 1.000 ms, pressing M°LT increases the period to the nearest cardinal point, which is 2.000 ms. Pressing DIV decreases the voltage to the nearest cardinal point, which is 500 µs.
4-39. The TRIG (Trigger) Menu

The TRIG menu shown below allows you to set the external trigger to either Channel 1 or Channel 5.

<table>
<thead>
<tr>
<th>TRIG CH</th>
<th>TIMEDIV</th>
<th>MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>off</td>
<td>edge</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If you have the 5-channel option, the following describes each item in the TRIG menu:

- **TRIG CH** Allows you to select either Channel 5 (C5) or Channel 1 (C1) as the external trigger channel, with C5 being the default. When you select one channel as an external trigger, the other channel becomes a source.

- **TIMEDIV** Allows you to select the trigger settings, with “off” being the default. When the trigger is on, the instrument does not allow the signal output and trigger output to be on the same output. If you change the external trigger from C5 to C1 and select a trigger setting other than “off,” the Calibrator automatically changes the source from C1 to C2. This change prevents a conflict between the external trigger and the source.

 If you change the external trigger from C1 to C5 and select a trigger setting other than “off,” the Calibrator automatically changes the source from C5 to C1.

4-40. Time Base Marker Calibration Procedure for an Oscilloscope

This sample procedure uses the Time MARKER function to check the horizontal deflection (time base) of your oscilloscope. See your oscilloscope’s manual for the exact time base values recommended for calibration.

Before you begin this procedure, verify that you are in Marker mode. If you are, the Control Display shows the following menu.

<table>
<thead>
<tr>
<th>SHAPE</th>
<th>TRIG</th>
<th>MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>spike</td>
<td>off</td>
<td>marker</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Perform the following sample procedure to calibrate the time base:

1. Connect the calibrator to Channel 1 on the oscilloscope. Select 50 Ω impedance or use an external 50 Ω termination. Make sure the oscilloscope is dc-coupled.

2. Apply a time marker value according to the recommended calibration settings in your oscilloscope manual. For example, to enter 200 ns, press `2 0 0 n sec`, then press [ENTER].

 Note

 You may enter the equivalent frequency instead of the time marker value.
 For example, instead of entering 200 ns, you may enter 5 MHz.

3. Set your oscilloscope’s time base to show 10 time markers. The time markers should align with the oscilloscope divisions, as shown in the example below.

 For an accurate reading, align the signal’s peaks with the horizontal center axis.
4. Repeat this procedure for all time marker values recommended for your oscilloscope. Repeat for digital and analog mode as required. Some oscilloscopes may need the magnification changed while calibrating in analog mode.

5. Remove the signal by pressing [Opr].

4-41. Testing the Trigger

The oscilloscope’s ability to trigger on different waveforms can be tested using the wave generator. When you use the wave generator, a square, sine, or triangle wave transmits and the wave’s output impedance, offset, and voltage can be varied in order to test the triggering capability at different levels.

Note

The wave generator should not be used for checking the accuracy of your oscilloscope.

The wave generator is available through the WAVEGEN menu, shown below. To access this function, press [More Modes] and then select “wavegen” or press the softkey under MODE until “wavegen” appears.

<table>
<thead>
<tr>
<th>SCOPE Z</th>
<th>WAVE</th>
<th>OFFSET</th>
<th>MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 MΩ</td>
<td>square</td>
<td>+0 V</td>
<td>wavegen</td>
</tr>
<tr>
<td>50Ω</td>
<td>sine</td>
<td>0 mV</td>
<td>volt</td>
</tr>
<tr>
<td>tri</td>
<td></td>
<td>0 V</td>
<td>edge</td>
</tr>
</tbody>
</table>

Levsine marker

wavegen

video

pulse

meas Z

overld

auxin
The following describes each option in the WAVEGEN menu:

- **WAVE** Scrolls through the three types of waveforms that are available. You can select a square, sine, or triangle wave as the output.

- **SCOPE Z** Toggles the calibrator’s output impedance setting between 50 Ω and 1 MΩ.

- **OFFSET** Displays the offset of the generated wave. To change the offset, key in the new value, and press [ENTER]. Using the rotary knob does not change the offset; it changes the actual voltage output.

 When you change the offset, you must remain within certain limits to avoid clipping the peaks. The limit depends on the wave’s peak-to-peak value. Specifically, the peak excursion equals the absolute value of the offset plus half of the wave’s peak-to-peak value. See “Wave Generator Specifications” in Chapter 1.

- **MODE** Indicates you are in “wavegen” mode. Use the softkey to change modes and open menus for other oscilloscope calibration modes.

Default WAVEGEN settings are 20 mV p-p, 1000.0 Hz, WAVE = square, and offset = 0.0V.

4-42. Testing Video Triggers

<table>
<thead>
<tr>
<th></th>
<th>LINE MK</th>
<th>Format</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 ODD</td>
<td>ntsc</td>
<td>video</td>
</tr>
</tbody>
</table>

ntsc | volt
pal | edge
pal-m| levsine
secam| marker
wavegen | wavegen
video | video
overld | overld
meas Z | meas Z
pulse | pulse
auxin | auxin

Mark = 10
New mark =

<table>
<thead>
<tr>
<th></th>
<th>FIELD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>odd</td>
</tr>
</tbody>
</table>

odd
even

To access the VIDEO menu, press \text{MORE} and then select VIDEO or press the softkey under MODE until “video” appears.

The following describes each option in the VIDEO menu:

- **LINE MK** Allows you to select the marker line number. For ntsc and pal-m formats, you can also select field (“odd” or “even”). For pal and secam formats, the field (“ODD” or “EVEN”) is selected automatically based on marker line number.

- **FORMAT** Scrolls through the available formats. You can select ntsc, pal, pal-m, and secam.

- **MODE** Indicates the calibrator is in “video” mode. Use the softkey to change modes and open menus for other oscilloscope calibration modes.

Default video settings are $+100\%$, format = NTSC, and videomark = 10.

4-43. Verifying Pulse Capture

<table>
<thead>
<tr>
<th>AMPL</th>
<th>TRIG</th>
<th>MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5V</td>
<td>off</td>
<td>pulse</td>
</tr>
</tbody>
</table>

\begin{tabular}{ll|ll|ll}
 & & & & & \\
1.5V & off & volt & & & \\
600 mV & Trigger Skew & edge & & & \\
150 mV & Trig CH x & levsine & & & \\
60 mV & TIMEDIV & marker & & & \\
15 mV & MODE pulse & wavegen & & & \\
& & video & & & \\
& & pulse & & & \\
& & meas Z & & & \\
& & overl & & & \\
& & auxin & & & \\
\end{tabular}

To access the PULSE menu, press \text{MORE} key and then select PULSE or press the softkey under MODE until “pulse” appears.
The following describes each option in the PULSE menu:

- **AMPL** Indicates the output level. You can change the pulse amplitude by pressing the blue key under the “Ampl” menu item. Each press toggles through the available pulse amplitudes. Max amplitude is 1.5 Vpp.

 To change the pulse width, press once and move the cursor to the pulse width digit you wish to modify. Alternatively, you can enter in the pulse width value directly on the 5800A numeric keypad.

 To change the pulse period, press until the cursor is on the second line of the output display (unlabeled line). Use the cursor and edit wheel to change the value.

 Note that periods are not always compatible with the pulse width selected. A beep sounds if the pulse period is reduced to too low a value. As an example, the pulse period can not be less then 1 µs for a pulse width of 25 ns. Alternatively, you can enter the pulse period as a frequency (for example, 1 MHz sets a pulse period of 1 µs).

 To change both the width and period, use the keyboard to enter in the pulse width first immediately followed by the period value. For example, 50ns 1µs sets a 50 ns pulse width with a 1 µs period. Next, press . Both values will be entered. Default settings are 100 ns pulse width with a 10 µs period.

- **TRIG** For skew or external trigger, use this menu item.

 - **TRIGGER SKEW** Trigger skew modifies the relationship of the output trigger (channel 5 default) with the output pulse signal. If positive values are selected, the trigger occurs before the pulse (LEAD). If negative values are selected, the trigger moves after the pulse (LAG).

 - **TRIG CH x** This selection is used for the five channel option to determine whether the trigger comes out of channel 1 or channel 5.

 - **TIMEDIV** This selection is used to cycle through the settings. “OFF” shuts off the external trigger and disables the skew function. “/1” allows the trigger to appear on every 10th pulse. “/100” allows the trigger to appear on each pulse. “/10” allows the trigger to appear on every 100th pulse. Note that skew only works with the “/1” selection.

- **MODE** Indicates you are in “pulse” mode. Use the softkey to change modes and open menus for other oscilloscope calibration modes.
4-44. **The TRIG (Trigger) Menu**

The TRIG menu shown below allows you to set the external trigger to either Channel 1 or Channel 5.

<table>
<thead>
<tr>
<th>TRIG CH</th>
<th>TIMEDIV</th>
<th>MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>off</td>
<td>edge</td>
</tr>
</tbody>
</table>

If you have the 5-channel option, the following describes each item in the TRIG menu:

- **TRIG CH** Allows you to select either Channel 5 (C5) or Channel 1 (C1) as the external trigger channel, with C5 being the default. When you select one channel as an external trigger, the other channel becomes a source.

- **TIMEDIV** Allows you to select the trigger settings, with "off" being the default. When the trigger is on, the instrument does not allow the signal output and trigger output to be on the same output. If you change the external trigger from C5 to C1 and select a trigger setting other than “off,” the Calibrator automatically changes the source from C1 to C2. This change prevents a conflict between the external trigger and the source.

If you change the external trigger from C1 to C5 and select a trigger setting other than “off,” the Calibrator automatically changes the source from C5 to C1.

4-45. **Measuring Input Impedance and Capacitance**

<table>
<thead>
<tr>
<th>NO OFFSET</th>
<th>MEASURE</th>
<th>MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>res 50Ω</td>
<td>meas Z</td>
</tr>
</tbody>
</table>

To access the MEAS Z menu, press MORE MODE and then select MEAS Z or press the softkey under MODE until “meas z” appears.

You can press the MODE softkey to cycle through the functions in the order shown, or you can press PREV to return directly to the OTHER modes menu.

The following describes each option in the Impedance/Capacitance (MEAS Z) menu:

- **MEASURE** Indicates the type of test. You can select res 50Ω or res 1 MΩ termination (for impedance) or cap (capacitance).
• **MODE** Indicates the Calibrator is in “meas z” mode. Use the softkey to change modes and open menus for other oscilloscope calibration modes.

If you select Capacitance measurement, the menu appears as follows:

<table>
<thead>
<tr>
<th>SET OFFSET</th>
<th>MEASURE cap</th>
<th>MODE meas Z</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CLEAR OFFSET

• **SET OFFSET** With the cable disconnected at the oscilloscope but still connected at the Calibrator, press to cancel the capacitance of the Calibrator. Press again to **CLEAR OFFSET** and return to the capacitance reading.

• **NO OFFSET** appears for res 50Ω and res 1MΩ and the softkey beeps.

Default Impedance Measurement range = 50 ohm.

4-46. Input Impedance Measurement

With Meas Z mode selected, perform the following procedure to measure the input impedance of an oscilloscope:

1. Use the MEASURE softkey to select “res 50Ω“ or “res 1MΩ“ termination.
2. Connect the calibrator to Channel 1 on the oscilloscope.
3. Press \(\text{[OK]} \) to initiate the measurement.

4-47. Input Capacitance Measurement

With Meas Z mode selected, perform the following procedure to measure the input capacitance of an oscilloscope:

1. Set the oscilloscope for 1 MΩ input impedance. Note that input capacitance testing cannot be done with 50 Ω input impedance.
2. Use the MEASURE softkey to select “cap”.
3. With the output cable connected to the Calibrator but not connected to the oscilloscope, press the SET OFFSET softkey to cancel stray capacitances.
4. Connect the output cable to Channel 1 on the oscilloscope.
5. Press \(\text{[OK]} \) to initiate the measurement.
4-48. Testing Overload Protection

Caution

To avoid damage to your oscilloscope, use this test to check the power handling capability of the 50 Ω input of your oscilloscope. Before proceeding, ensure that the power rating of your oscilloscope can handle the voltages and currents that this test can output.

<table>
<thead>
<tr>
<th>UUTTRIP</th>
<th>T LIMIT</th>
<th>OUT VAL</th>
<th>MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>in 4.1s</td>
<td>10s</td>
<td>DC</td>
<td>overld</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DC
AC
volt
dc
ac
et
levsine
marker
wavegen
video
pulse
meas Z
overld
auxin

To access the OVERLD (overload) menu, press key and then select OVERLD or press the softkey under MODE until “overld” appears.

The following describes each option in the OVERLD menu:

- **UUTTRIP** Indicates test results. “NO” appears if the overload protection did not trip within the selected time limit. A value in seconds appears (e.g. “4.1 s”) if the overload protection has tripped within the time limit.

- **T LIMIT** Selects the selected time limit for application of the output value. The 5800A goes to standby either when a UUT trip is detected or the time limit is reached. Press this softkey to key in or edit a different time limit (1 s to 60 s allowed.)

- **OUT VAL** Selects the output voltage type. You can select dc or ac and a value ranging from 5 V to 9 V (shown in Output Display). Key in or edit this value.

- **MODE** Indicates you are in “overld” mode. Use the softkey to change modes and open menus for other oscilloscope calibration modes.
Default overload settings are +5.000 V and dc.

At any time, you can also set the default overload time limit with the following command sequence:

```
INSTMT
SETUP
OTHER
SETUP
TLIMDEF
```

(Choose 1s to 60s.)

Perform the following procedure to test the overload protection of an oscilloscope:

1. Connect the calibrator to Channel 1 on the oscilloscope.
2. Select the voltage type (dc or ac) using the OUT VAL softkey.
3. Key in the voltage level. (The default value is 5 V.)
4. If necessary, change the duration. (Refer to the procedure described above.) The default duration is 10 s.
5. Check for test results displayed with the UUTTRIP softkey.

4-49. Using Auxiliary Input (AUXIN)

Using an external generator, the AUX INPUT selection allows you to perform bandwidth checks up to 2.4 GHz.

<table>
<thead>
<tr>
<th>See source instrument for output value.</th>
<th>MODE auxin</th>
</tr>
</thead>
<tbody>
<tr>
<td>▲</td>
<td>▲</td>
</tr>
</tbody>
</table>

To access the AUX INPUT menu, press ```AUX INPUT``` or press the softkey under MODE until “auxin” appears.
4-50. Setting the Output Channel

This can be done only with the 5-channel option. This feature allows you to select the output channel. To select a channel, press \textit{CHANNEL}. The following menu appears:

```
Select Channel:
CHAN 1  |  CHAN 2  |  CHAN 3  |  CHAN 4  |  CHAN 5
```

Select the desired menu and press \textit{CHANNEL} again to go back to the original menu.

4-51. Using an External Reference

The calibrator uses an internal 10 MHz clock signal as a reference for all ac functions. Although this internal clock is very accurate and stable, you may have a lab standard that you want to govern the frequency performance of the calibrator. To apply an external clock to the calibrator, you can make external reference the power-up and reset default condition.

To make external reference the power-up and reset default setting, proceed as follows:

1. Connect a 10 MHz squarewave signal of 5 V p-p (maximum) to the EXTERNAL REFERENCE connector.
2. Press \textit{SETUP}.
3. Press the following sequence of softkeys: INSTMT SETUP | OTHER SETUP | REF SETUP.
4. Press the REF CLK softkey to select “external.”
5. Press \textit{PREV MENU}.
Chapter 5
Remote Operation

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-1. Introduction ...</td>
<td>5-4</td>
</tr>
<tr>
<td>5-2. Setting up the IEEE-488 Port for Remote Control</td>
<td>5-4</td>
</tr>
<tr>
<td>5-3. IEEE-488 Port Setup Procedure ..</td>
<td>5-7</td>
</tr>
<tr>
<td>5-4. Testing the IEEE-488 Port ..</td>
<td>5-8</td>
</tr>
<tr>
<td>5-5. Setting up the RS-232 Host Port for Remote Control</td>
<td>5-11</td>
</tr>
<tr>
<td>5-6. RS-232 Host Port Setup Procedure ..</td>
<td>5-11</td>
</tr>
<tr>
<td>5-7. Testing the RS-232 Host Port ...</td>
<td>5-13</td>
</tr>
<tr>
<td>5-8. Testing RS-232 Host Port Operation using a Terminal</td>
<td>5-13</td>
</tr>
<tr>
<td>5-10. Setting up the RS-232 UUT Port for Remote Control</td>
<td>5-16</td>
</tr>
<tr>
<td>5-11. RS-232 UUT Port Setup Procedure ..</td>
<td>5-16</td>
</tr>
<tr>
<td>5-12. Testing the RS-232 UUT Port via RS-232 Host Port</td>
<td>5-17</td>
</tr>
<tr>
<td>5-15. Testing the RS-232 UUT Port via IEEE-488 Port</td>
<td>5-21</td>
</tr>
<tr>
<td>5-16. Changing between Remote and Local Operation</td>
<td>5-23</td>
</tr>
<tr>
<td>5-17. Local State ..</td>
<td>5-23</td>
</tr>
<tr>
<td>5-18. Local with Lockout State ..</td>
<td>5-23</td>
</tr>
<tr>
<td>5-19. Remote State ...</td>
<td>5-23</td>
</tr>
<tr>
<td>5-20. Remote with Lockout State ...</td>
<td>5-23</td>
</tr>
<tr>
<td>5-21. RS-232 Interface Overview ..</td>
<td>5-24</td>
</tr>
<tr>
<td>5-22. IEEE-488 Interface Overview ...</td>
<td>5-25</td>
</tr>
<tr>
<td>5-23. Using Commands ...</td>
<td>5-28</td>
</tr>
<tr>
<td>5-24. Types of Commands ..</td>
<td>5-28</td>
</tr>
<tr>
<td>5-25. Device-Dependent Commands ...</td>
<td>5-28</td>
</tr>
<tr>
<td>5-26. Common Commands ...</td>
<td>5-29</td>
</tr>
<tr>
<td>5-27. Query Commands ...</td>
<td>5-29</td>
</tr>
<tr>
<td>5-28. Interface Messages (IEEE-488) ...</td>
<td>5-29</td>
</tr>
<tr>
<td>5-29. Compound Commands ..</td>
<td>5-31</td>
</tr>
<tr>
<td>5-30. Coupled Commands ..</td>
<td>5-31</td>
</tr>
<tr>
<td>5-31. Overlapped Commands ...</td>
<td>5-32</td>
</tr>
<tr>
<td>5-32. Sequential Commands ...</td>
<td>5-32</td>
</tr>
<tr>
<td>5-33. Commands that Require the Calibration Switch to be Enabled</td>
<td>5-32</td>
</tr>
<tr>
<td>5-34. Commands for RS-232 Only ...</td>
<td>5-32</td>
</tr>
<tr>
<td>5-35. Commands for IEEE-488 Only ...</td>
<td>5-33</td>
</tr>
</tbody>
</table>
Warning

To prevent hazardous voltages from being produced without sufficient warning to the operator, the 5800A Calibrator must be programmed with caution. The Calibrator can produce voltages up to 130 V.

Programs should be written carefully and tested extensively to ensure safe operation of the 5800A Calibrator.

Fluke suggests that you include error catching routines in your programs. These error catching routines will assist in detecting programming errors that could result in the instrument behaving differently to your intention. By setting the Service Request Enable (SRQ) register, described in paragraph 5-60, the 5800A Calibrator can be programmed to cause an SRQ when an error is detected. The following program example shows a skeleton program including error catching:

```
10 PRINT @4, "*CLS" ! Clear status
20 PRINT @4, "*SRE 8" ! Set SRE Error Available
30 ON SRQ GOTO 1000 ! Enable SRQ Function
100 ! Place body of program here
900 STOP ! End of program
1000 REM Start of SRQ Handler ! Start routine
1010 PRINT @4, "FAULT?" ! Request fault code
1020 INPUT @4, A% ! Input fault code
1030 PRINT @4, "EXPLAIN? ";A% ! Request fault text
1040 INPUT @4, A$ ! Input fault text
1050 PRINT "Fault ";A$" detected" ! Print message
1060 PRINT @4, "STBY" ! Place 5800A in standby
1070 STOP
```
5-1. **Introduction**

This chapter describes methods for operating the 5800A Calibrator by remote control. Remote control can be interactive, with the user controlling each step from a terminal, or under the control of a computer program running the calibrator in an automated system. The 5800A Calibrator rear panel has three ports for remote operations: IEEE-488 parallel port (also known as a General Purpose Interface Bus, or GPIB port), and two RS-232 serial ports, SERIAL 1 FROM HOST and SERIAL 2 TO UUT.

IEEE-488 The IEEE-488 parallel port is usually used in larger control and calibration systems. An IEEE-488 system is more costly to set up, but has the ability to serve multiple 5800A Calibrators and multiple UUTs. Also, parallel system throughput is faster than serial system throughput. The controller in an IEEE-488 system is typically a MS-DOS compatible personal computer (PC) equipped with one or more IEEE-488 ports. You can write your own computer programs for system operation using the command set, or you can purchase optional Fluke calibration software MET/CAL or 5500A/CAL, and property management software MET/TRACK. Typical IEEE-488 configurations are shown in Figure 5-1. The configuration showing the PC with two IEEE-488 ports is used with MET/CAL, which prefers UUTs on a separate IEEE-488 port. You can also “piggy-back” the connectors on a single IEEE-488 port.

RS-232 The SERIAL 1 FROM HOST serial port connects the PC and 5800A Calibrator, while the SERIAL 2 TO UUT serial port acts as a pass-through port, passing commands from the PC to UUT via the 5800A Calibrator. You can write your own computer programs using the command set, or operate the PC as a terminal and enter individual commands, or you can purchase optional Fluke MET/CAL or 5500/CAL software for RS-232 system operations. Typical RS-232 remote configurations are shown in Figure 5-2.

After configuring the IEEE-488 or RS-232 port for remote operation, you are ready to begin using the command set. The operation of the command set is described under “Using Commands” in this chapter. A summary of remote commands are listed in Chapter 6.

5-2. **Setting up the IEEE-488 Port for Remote Control**

The 5800A Calibrator is fully programmable for use on the IEEE Standard 488.1 interface bus. The IEEE-488 interface is also designed in compliance with supplemental standard IEEE-488.2, which describes additional IEEE-488 features. Devices connected to the IEEE-488 bus are designated as talkers, listeners, talker/listeners, or controllers. Under remote control of an instrument, the 5800A Calibrator operates as a talker/listener.

A PC equipped with an IEEE-488 interface, controls the 5800A Calibrator. Compatible software for IEEE-488 operation may be purchased from Fluke, including METCAL and METRACK. Another software package, 5500/CAL, is also available but operates only on the RS-232 serial interface.

When using the IEEE-488 remote control interface, there are two restrictions:

1. **Number of Devices** A maximum of 15 devices can be connected in a single IEEE-488 bus system. For example, one instrument controller, one 5800A Calibrator, and thirteen units under test (UUTs).

2. **Cable Length** The total length of IEEE-488 cables used in one IEEE-488 system is 2 meters times the number of devices in the system, or 20 meters, whichever is less. For example, if 8 devices are connected, the maximum cable length is 2 x 8 = 16 meters. If 15 devices are connected, the maximum cable length is 20 meters.
Remote Operation
Setting up the IEEE-488 Port for Remote Control

Figure 5-1. Typical IEEE-488 Remote Control Connections
System for a UUT without a remote port.

System for a UUT with an RS-232 port (via PC).

System for a UUT with an RS-232 remote port (via 5500A).

Figure 5-2. Typical RS-232 Remote Control Connections
5-3. **IEEE-488 Port Setup Procedure**

Complete the following procedure to set up the 5800A Calibrator for remote operations using the IEEE-488 remote control port. The purpose is to select GPIB as the interface and to select the GPIB address for the interface.

1. Turn the 5800A Calibrator power on. You may operate the calibrator during warmup, but specifications are not guaranteed until warmup is complete.

2. Press the **SETUP** key on the 5800A Calibrator front panel.

3. Negotiate the softkey selections shown below. Verify the HOST port selection is gpib. Select the desired GPIB port address (0 to 30) using the UP/DOWN softkeys. The factory default is 8.

 ![Softkey Selections](image)

4. Press **PREV** (not **ENTER**) several times until the message STORE CHANGES/DISCARD CHANGES appears or, if there were no changes, the reset display. If you select STORE CHANGES, the gpib and host port setting are saved in the instrument non-volatile memory.
5-4. **Testing the IEEE-488 Port**

The procedure below tests IEEE-488 communications between the PC and the 5800A Calibrator using the GPIBTEST utility. (See Figure 5-3.) This utility is supplied with the Ziatech ZT-1444A IEEE-488 interface for the PC, which is the recommended interface. (See Chapter 9.) As a reference, Appendix C shows the correct configuration of the ZT-1444A jumpers and DIP switches for various installation configurations. A typical connection is shown below.

![IEEE-488 Port Connection Diagram](image)

Figure 5-3. Testing the IEEE-488 Port

Complete the following procedure to test IEEE-488 operation using GPIBTEST.

1. Complete the “IEEE-488 Port Setup Procedure” earlier in this chapter to set up the 5800A for GPIB operation. Note the GPIB Address Port (default is 4).
3. Open Windows to the Program Manager screen on your PC.
4. To start the GPIBTEST utility, open GPIB Test from the GPIB group of Program Manager (below).

If you have not yet created this group and icon, complete the following:

a. In Program Manager, select New from the File menu. Check Program Group, then click OK. In the Description box, enter GPIB then click OK. This creates and opens the GPIB group.

b. With the GPIB group still open, select New from the File menu. Check Program Item, then click OK. In the Description box, enter GPIB Test. In the Command
Remote Operation

Setting up the IEEE-488 Port for Remote Control

5. In the Main Control Window (below), select the GPIB Board command from the Initialize menu, which opens the Parameter Input Window.

6. In the Parameter Input Window (below), make the following selections:
 - Board No.: First
 - Board Type: ZT 1444A
 - DMA Channel: 0
 - Initialization: Controller
 - T1 Delay: Fast
 - I/O Address: (default) (appears when Board Type is selected)

7. Click OK. The Parameter Input Window is modeless so it will remain on screen.
8. Verify the 5800A Calibrator is powered and in the reset condition. (If in doubt, press the [RESET] key on the 5800A Calibrator front panel.)

9. In the Main Control Window, select the Remote command from the Control menu. This brings the focus back to the Parameter Input Window with the only selectable item the Listeners or Device List check boxes. Check box 4, or the corresponding GPIB Port Address you selected for the 5800A Calibrator. (Below is typical.)

10. Click OK. Observe the 5800A Calibrator Control Display changes to REMOTE CONTROL (below).

If the Control Display does not change to REMOTE CONTROL, the IEEE-488 interface is not working properly. Check Step 3 of the “IEEE-488 Port Setup Procedure” to verify gpib is selected as the Host port, and to verify the gpib port address used in this procedure. If all is correct, check the ZT-1444A jumper and DIP switch settings (Appendix C), and finally cabling between the PC and 5800A.

11. In a similar manner, select the Local command from the Control menu, then click OK in the Parameter Input Window. Observe the 5800A Calibrator Control Display changes back to the reset condition (below).

12. In the Main Control Window, select the End GPIB Test command from the Exit menu.
5-5. Setting up the RS-232 Host Port for Remote Control

The 5800A Calibrator is fully programmable over an RS-232 link with a PC the rear panel SERIAL 1 FROM HOST port (Figure 5-2). You can enter individual commands from a terminal, write your own programs using, for example, a Windows-based language such as Visual Basic, or run optional Windows-based Fluke software such as 5500/CAL or MET/CAL.

The RS-232 cable length for the port should not exceed 15 meters (50 feet), although longer cable lengths are permitted if the load capacitance measured at a connection point (including signal terminator) does not exceed 2500 pF.

5-6. RS-232 Host Port Setup Procedure

Complete the following procedure to set up the SERIAL 1 FROM HOST port. The RS-232 parameters you select here must match the parameters set for the PC COM port. The factory defaults (shown below in **bold**) are 9600 baud, 8 data bits, 1 stop bit, and no parity. Other parameters include flow control, EOL (end-of-line) character, and EOF (end-of-file) characters.

1. Turn the 5800A Calibrator power on. You may operate the calibrator during warmup, but specifications are not guaranteed until warmup is complete.
2. Press **setup** on the 5800A Calibrator front panel.
3. Negotiate the softkey selections shown below to select the serial port for remote operation, then continue to Step 4.
4. Negotiate the softkey selections shown below to select the HOST serial port parameters to match the PC COM parameters. (Individual softkey functions are discussed in Chapter 3.) If operating the port with a computer program instead of individual commands from a terminal, select Remote I/F comp.

From Step 3

<table>
<thead>
<tr>
<th>8 DATA BITS</th>
<th>1 STOP BIT</th>
<th>STALL</th>
<th>PARITY</th>
<th>NEXT MENU</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>1</td>
<td>xon/off</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>none</td>
<td>odd</td>
<td>even</td>
</tr>
<tr>
<td></td>
<td></td>
<td>rts/cts</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9600 BAUD</th>
<th>REMOTE I/F</th>
<th>EOL</th>
<th>FIRST MENU</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>term</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>comp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9600</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. Press PREV (not ENTER) several times until the message STORE CHANGES/DISCARD CHANGES appears or, if there were no changes, the reset displays. If you select STORE CHANGES, the serial and host port setting are saved in the instrument non-volatile memory.
5-7. Testing the RS-232 Host Port

Choose or adapt one of the following test procedures to test the 5800A Calibrator RS-232 Host port connected to a PC COM port. (See Figure 5-4.) A typical connection is shown below. Note the use of a null modem cable for connection. (See Appendix D for information about RS-232 cables and connectors.)

![Figure 5-4. Testing the RS-232 Host Port](cgp037f.eps)

Terminal This procedure uses the Terminal accessory supplied with Windows (or equal) to test RS-232 Host port operation. To use this method, you must select `term` as the Remote I/F in Step 4 in the procedure “RS-232 Host Port Setup Procedure.”

Visual Basic This procedure uses Visual Basic (see Appendix E) to test RS-232 Host port and RS-232 UUT port operation.

5-8. Testing RS-232 Host Port Operation using a Terminal

Complete the following procedure to test RS-232 Host port operation using the Windows Terminal accessory (or equal).

1. Complete the “RS-232 Host Port Setup Procedure” earlier in this chapter to set up the 5800A for RS-232 Host port operation. Note the RS-232 Host port parameters that you selected in this procedure.

2. Connect the selected COM port on the PC to the 5800A SERIAL 1 FROM HOST port using a standard null-modem RS-232 cable. (See Appendix D for information on RS-232 cables and connectors.)

3. Open Windows to the Program Manager screen on your PC.
4. Open Terminal from the Accessory group of Program Manager (below). If a terminal configuration file already exists, e.g., host.trm, select the desired file using the Open command from the File menu and go to Step 7. Otherwise, go to Step 5.

![Terminal - (Untitled)](image1)

5. Select the Communications command from the Setting menu. Enter the RS-232 parameters that match those selected at the 5800A Calibrator for the Host port. If using the 5800A factory defaults, the Communications dialog box for COM1 will appear as shown below. Select COM as required. Click OK.

![Communications](image2)

6. Verify the 5800A Calibrator is powered and in the reset condition. (If in doubt, press [RESET] on the 5800A Calibrator front panel.)

7. On the Terminal screen, type the command REMOTE and press [ENTER]. Observe the 5800A Calibrator Control Display changes to REMOTE CONTROL (below).

![REMOTE CONTROL](image3)

Go to Local
The characters REMOTE should have appeared on the terminal screen as they were entered. If they did not appear on the screen, but the Control Display changed to REMOTE CONTROL, then refer to step 4 of the “RS-232 Host Port Setup Procedure” and change the REMOTE I/F setting from comp to term.

If nonsense characters appeared on the screen, then you have a mismatch in RS-232 parameters. Refer to step 4 of the “RS-232 Host Port Setup Procedure” procedure for the correct RS-232 settings and then repeat this procedure starting at Step 5.

If no characters appeared on the screen, then refer to step 3 of the “RS-232 Host Port Setup Procedure” procedure to verify serial was selected for the Host port. Check that you used the correct RS-232 cable. It must be in a null-modem configuration where the RX and TX lines are reversed (see Appendix D). Also verify you have connected to the correct COM port on the PC.

8. Type the command LOCAL and press ENTER. Observe the 5800A Calibrator Control Display changes back to the reset condition (below).

<table>
<thead>
<tr>
<th>CHANGE to DC</th>
<th>SCOPE 2</th>
<th>U/DIV</th>
<th>TRIG</th>
<th>MODE</th>
<th>volt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If you want to experiment with other commands in the command set, see Chapter 6. When finished, select the Exit command from the File menu to close the Terminal accessory.

Hint: To save the communication parameters in Terminal for future operations, first select Save from the File menu and then assign a name, for example, host.trm.

Complete the following procedure to test RS-232 (Host) operation using the Windows-based programming language Visual Basic. This procedure assumes you have completed Appendix E to create the group RS-232 Test.

Complete the following procedure to test RS-232 operation using Visual Basic.

1. Complete the “RS-232 Host Port Setup Procedure” earlier in this chapter to set up the 5800A for RS-232 Host port operation. Note the RS-232 Host port parameters that you selected in this procedure.

2. Connect the selected COM port on the PC to the 5800A SERIAL 1 FROM HOST port using a standard null-modem RS-232 cable. (See Appendix D for information on RS-232 cables and connectors.)

3. To start the program, open the Test Ports icon from the RS-232 Test group (below).
4. Verify the 5800A Calibrator is powered and in the reset condition (if in doubt, press \textit{Reset}), then click the Command1 button (below).

5. Observe the 5800A Calibrator Control Display changes to REMOTE CONTROL (below).

6. Click the Command2 button. Observe the 5800A Calibrator Control Display changes back to the reset condition (below).

(The Command3 button is used for RS-232 UUT port testing later in this chapter.)

7. Close the program by clicking the top-left corner and Close.

5-10. Setting up the RS-232 UUT Port for Remote Control

The SERIAL 2 TO UUT serial data port connects a UUT to a PC or terminal via the 5800A Calibrator (Figures 5-1 and 5-2). This “pass-through” configuration eliminates the requirement for two COM ports at the PC or Terminal. The UUT_* commands (see Chapter 6) handle the UUT port data flow.

The RS-232 cable length for each port should not exceed 15 meters, although longer cable lengths are permitted if the load capacitance measured at a connection point (including signal terminator) does not exceed 2500 pF.

5-11. RS-232 UUT Port Setup Procedure

Complete the following procedure to set up the SERIAL 2 TO UUT port (defaults in \textbf{bold}). The RS-232 parameters you are selecting must match the RS-232 parameters of the UUT. This port operates independently, whether the 5800A Calibrator is controlled from the IEEE-488 port or from the RS-232 Host serial port. (See Figures 5-1 and 5-2.)
1. Turn the 5800A Calibrator power on. You may operate the calibrator during warmup, but specifications are not guaranteed until warmup is complete.

2. Press **setup** on the 5800A Calibrator front panel.

3. Negotiate the softkey selections shown below to configure the UUT serial port to match the settings of the UUT RS-232 port. The factory defaults (shown below in **bold**) are 9600 baud, 8 data bits, 1 stop bit, and no parity. Other parameters include flow control (STALL).

<table>
<thead>
<tr>
<th>CAL</th>
<th>INSTMT SETUP</th>
<th>UTILITY FUNCTNS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OTHER SETUP</th>
<th>DISPLAY SETUP</th>
<th>REMOTE SETUP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HOST gpib</th>
<th>GPIB SETUP</th>
<th>HOST SETUP</th>
<th>UUT SETUP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8 DATA BITS</th>
<th>1 STOP BIT</th>
<th>STALL xon/off</th>
<th>PARITY none</th>
<th>9600 BAUD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7 1 xon/off</th>
<th>none 300</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 2 none</td>
<td>odd 600</td>
</tr>
<tr>
<td></td>
<td>rts/cts</td>
</tr>
<tr>
<td></td>
<td>even 1200</td>
</tr>
<tr>
<td></td>
<td>2400</td>
</tr>
<tr>
<td></td>
<td>4800</td>
</tr>
<tr>
<td></td>
<td>9600</td>
</tr>
</tbody>
</table>

5-12. **Testing the RS-232 UUT Port via RS-232 Host Port**

Choose or adapt one of the following test procedures to test the 5800A Calibrator RS-232 UUT port via the RS-232 Host port. (See Figure 5-5.) Connect the UUT and PC as shown below. Note the use of a modem cable (NOT null modem) for UUT connection. (See Appendix D for information about RS-232 cables and connectors.)
System for a UUT without a remote port.

System for a UUT with an IEEE-488 remote port.

System for a UUT with an RS-232 remote port.

Figure 5-5. Testing the RS-232 UUT Port via the RS-232 Host Port
Terminal This procedure uses the Terminal accessory supplied with Windows (or equal) to test RS-232 UUT port operation.

Visual Basic This procedure uses Visual Basic (see Appendix E) to test RS-232 Host port and RS-232 UUT port operation.

5-13. Testing RS–232 UUT Port Operation via a Terminal

Complete the following procedure to test RS-232 UUT port operation via the RS-232 Host port using the Windows Terminal accessory (or equal).

2. Complete “Testing RS-232 Host Port Operation using a Terminal” to set up the 5800A RS-232 Host port to match the parameters of the PC COM port. After Step 9, return to this procedure and continue to Step 3 below.

3. On the Terminal screen, type `UUT_SEND "<uut command>"` where `<uut command>` is the command you selected for the UUT response, then press <Enter>. Observe the UUT responds. For example, to send the command REMS to a UUT, use `UUT_SEND "REMS\n"` and press <Enter>.

 Note the use of \n, which indicates a Carriage Return (CR) as the end-of-line character. Other characters include \r (Line Feed), \t (Tab), \b (Backspace) and \f (Form Feed). If your UUT commands require an end-of-line character, select one or more of the above.

 The characters UUT_SEND “<uut command>” should have appeared as they were entered. If they did not appear on the screen, the RS-232 interface between the PC and 5800A Host port is not operating. Review the “RS-232 Host Port Setup Procedure” and correct the problem.

 If the UUT command does not execute, refer to step 3 of the “RS-232 UUT Port Setup Procedure” procedure to verify the RS-232 UUT port parameters. Also check the cable for UUT connection was a modem (not null modem) cable. Be sure your command was entered correctly had the proper end-of-line character(s), if required.

4. When finished testing UUT commands, select the Exit command from the File menu to close the Terminal accessory.
5-14. **Testing RS-232 UUT Port Operation using Visual Basic**

Complete the following procedure to test RS-232 UUT port operation via the RS-232 Host port using a Visual Basic test program. This procedure assumes you have already completed Appendix E to create the program used for this test.

Complete the following procedure to test RS-232 operation using Visual Basic.

1. Complete the “RS-232 UUT Port Setup Procedure” earlier in this chapter to set up the 5800A RS-232 UUT port to match the parameters of the UUT RS-232 port.

2. Complete “Testing RS-232 Host Port Operation using Visual Basic” to prepare the 5800A Calibrator RS-232 Host port. After Step 6, return to this procedure and continue to Step 3 below.

3. Click the Command3 button (below is typical). Observe the UUT responds to the command you used when you completed Appendix E, which discusses how to create a Visual Basic program.

 ![Form1](oo0251.bmp)

 If the UUT did not respond, check the RS-232 parameters set for the 5800A Calibrator UUT port and set for the UUT port. Verify you used a modem (not null modem) cable for the 5800A to UUT connection. Check the Visual Basic program to make sure the UUT command was entered correctly, including the end-of-line character, if any.

4. Close the program by clicking the top-left corner and Close.
5-15. **Testing the RS-232 UUT Port via IEEE-488 Port**

This procedure uses the GPIBTEST utility supplied with the recommended Ziatech ZT-1444A IEEE-488 PC interface circuit card. Connect the UUT and PC as shown in Figure 5-6. Note the use of a modem cable (NOT null modem) for UUT connection. (See Appendix D for information about RS-232 cables and connectors.)

![Figure 5-6. Testing the RS-232 UUT Port via IEEE-488 Port](cpg39f.psp)

Complete the following procedure to test RS-232 UUT port operation via the IEEE-488 port using the GPIBTEST utility.

1. Complete the “IEEE-488 Port Setup Procedure” earlier in this chapter to set up the 5800A for GPIB operation.
2. Complete “Testing the IEEE-488 Port” to prepare the 5800A Calibrator IEEE-488 port for testing. After Step 11, return to this procedure and continue to Step 3 below.
3. In the Main Control Window (below), select the Send to command from the Xfer menu. This brings the focus back to the Parameter Input Window.
4. In the Parameter Input Window (below), make the following selections,

- **Listeners or Device List**: (5800A Calibrator GPIB address; default 4)
- **Transfer Type**: I/O, ASCII
- **End of Message**: With EOI
- **Buffer to Send**: ASCII or UUT_SEND “<uut command>“

where `<uut command>` is the command you selected for the UUT response, then click OK. Observe the UUT responds. For example, to send the command `REMS` to a UUT, use `UUT_SEND “REMS\n”`.

Note the use of `\n`, which indicates a Carriage Return (CR) as the end-of-line character. Other characters include `\r` (Line Feed), `\t` (Tab), `\b` (Backspace) and `\f` (Form Feed). If your UUT commands require an end-of-line character, select one or more of the above.
If the UUT command does not execute the command, refer to step 3 of the “RS-232 UUT Port Setup Procedure” procedure to verify the RS-232 UUT port parameters. Also check the cable for UUT connection was a modem (not null modem) cable. Be sure your command was entered correctly and had the correct end-of-line character(s), if required.

5. In the Main Control Window, select the End GPIB Test command from the Exit menu.

5-16. Changing between Remote and Local Operation

In addition to local mode (front panel operation) and remote, the 5800A Calibrator can be placed in a local lockout condition at any time by command of the controller. Combined, the local, remote, and lockout conditions yield four possible operating states described as follows.

5-17. Local State
The 5800A Calibrator responds to local and remote commands. This is normal front panel operation. All remote commands are allowed to execute.

5-18. Local with Lockout State
Local with lockout is identical to local, except the 5800A Calibrator will go into the remote with lockout state instead of the remote state when it receives a remote command.

5-19. Remote State
When the 5800A Calibrator is placed in remote, either via RS-232 REMOTE command, or via IEEE-488 asserting the REN line, it enters the remote state. In the remote state, the Output Display continues to display the output setting or measurement as in local operation. The Control Display changes to:

```
REMOTE CONTROL
Go to Local
```

The left side of the Control Display shows information regarding the present output function. However, front panel operation is restricted to use of the power switch and the "Go To Local" softkeys. Pressing either of these softkeys, using RS-232 to send the command LOCAL, or IEEE-488 to send the GTL (Go To Local) message returns the 5800A Calibrator to the local state.

5-20. Remote with Lockout State
When the 5800A Calibrator is placed in lockout, either via RS-232 LOCKOUT command, or via the IEEE-488 message LLO, the 5800A front panel controls are totally locked out. In remote with lockout, the Control Display changes to:

```
REMOTE CONTROL
LOCAL LOCKOUT
```

The left side of the Control Display shows information regarding the present output function. However, front panel operation is restricted to use of the power switch. To
return the 5800A Calibrator to the local with lockout state, send the RS-232 LOCAL command or the IEEE-488 GTL (Go To Local) message and unasserts the REN line.

Table 5-1 summarizes the possible Remote/Local state transitions. (For more information on IEEE-488 GPIB messages, see “IEEE-488 Overview.”

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Front Panel</th>
<th>GPIB Message</th>
<th>Serial Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local</td>
<td>Remote</td>
<td></td>
<td>MLA + REN</td>
<td>REMOTE</td>
</tr>
<tr>
<td>Local With Lockout</td>
<td>Remote</td>
<td>LLO + REN</td>
<td>LLO + REN</td>
<td>LOCKOUT</td>
</tr>
<tr>
<td>Remote</td>
<td>Local</td>
<td>Go to Local</td>
<td>LOCAL</td>
<td>LOCAL</td>
</tr>
<tr>
<td>Local With Lockout</td>
<td>Remote</td>
<td>LLO + REN</td>
<td>LLO + REN</td>
<td>LOCKOUT</td>
</tr>
<tr>
<td>Remote/lockout</td>
<td>Local</td>
<td>REN not</td>
<td>LOCAL</td>
<td>LOCAL</td>
</tr>
</tbody>
</table>

5-21. RS-232 Interface Overview

The two 5800A Calibrator RS-232 ports are designed in accordance with EIA (Electronic Industries Association) standard RS-232-C. RS-232 is a serial binary data interchange operating from 300 to 9600 baud (selectable), and distances up to 50 feet. The 5800A Calibrator rear panel SERIAL 1 FROM HOST port is configured as DTE (Data Terminal Equipment) while the SERIAL 2 TO UUT is configured as DCE (Data Communications Equipment). See Appendix D for RS-232 cable and connector information. For detailed information, see the EIA standard RS-232-C.

A summary of RS-232 terms, interface lines and mnemonics are shown in Table 5-2.

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTS</td>
<td>Clear to Send</td>
</tr>
<tr>
<td>DB-9</td>
<td>Type DB connector, 9 pins</td>
</tr>
<tr>
<td>DB-25</td>
<td>Type DB connector, 25 pins</td>
</tr>
<tr>
<td>DCD</td>
<td>Data Carrier Detect</td>
</tr>
<tr>
<td>DCE</td>
<td>Data Communications Equipment</td>
</tr>
<tr>
<td>DSR</td>
<td>Data Set Ready</td>
</tr>
<tr>
<td>DTE</td>
<td>Data Terminal Equipment</td>
</tr>
<tr>
<td>DTR</td>
<td>Data Terminal Ready</td>
</tr>
<tr>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>RI</td>
<td>Ring Indicator</td>
</tr>
<tr>
<td>RLSD</td>
<td>Received Line Signal Detector</td>
</tr>
<tr>
<td>RTD</td>
<td>Request to Send</td>
</tr>
<tr>
<td>RX</td>
<td>Receive Line</td>
</tr>
<tr>
<td>TX</td>
<td>Transmit Line</td>
</tr>
</tbody>
</table>
5-22. IEEE-488 Interface Overview

The IEEE-488 parallel interface sends commands as data and receives measurements and messages as data. The maximum data exchange rate is 1 Mbyte, with a maximum distance of 20 meters for the sum length of the connecting cables. A single cable should not exceed 4 meters in length. Some commands are reserved for RS-232 serial operation because these functions must be implemented as IEEE messages per the IEEE Standards. For example, the command REMOTE could be sent as data over the IEEE-488 interface to place the 5800A Calibrator into remote, but it is not because the IEEE Standards call for the remote function to be sent to the device as the uniline message REN. This is also true for several other commands and functions, as shown below, with their equivalent RS-232 emulation. A summary of IEEE-488 messages is shown in Table 5-3.

Table 5-3. RS-232 Emulation of IEEE-488 Messages

<table>
<thead>
<tr>
<th>IEEE-488 Message</th>
<th>RS-232 Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTL</td>
<td>LOCAL command</td>
</tr>
<tr>
<td>GTR</td>
<td>REMOTE command</td>
</tr>
<tr>
<td>LLO</td>
<td>LOCKOUT command</td>
</tr>
<tr>
<td>SDC, DCL</td>
<td>^C (<Cntl> C) character [clear the device]</td>
</tr>
<tr>
<td>GET</td>
<td>^T (<Cntl> T) character [execute a group trigger]</td>
</tr>
<tr>
<td>SPE, SPD</td>
<td>^P (<Cntl> P) character [print the serial poll string]</td>
</tr>
<tr>
<td>UNL, UNT</td>
<td>(not emulated on RS-232)</td>
</tr>
</tbody>
</table>

The IEEE-488 interface is based on the IEEE Standards 488.1 and 488.2. For detailed information, refer to the standards IEEE-488.1 and IEEE-488.2.

IEEE-488.1 IEEE-488.1 is the hardware portion of the interface. The parallel signal lines are divided into eight lines for the data bus, three lines for the handshake, and five lines for bus management. The handshake lines take care of the timing for data exchange. The bus management lines control the operation of data exchange. The ATN line indicates the use of the DIO lines for addresses or messages (true), or for DIO data (false). The EOI line is used with the data lines to mark the end of a message, and with the ATN line for polling. The SRQ line is used by the devices to indicate to the controller that they require service. The IFC line is used by the controller to quickly get all the devices on the bus to stop talking and start listening. The REN line is used to implement the remote/local states.
IEEE-488.2 IEEE-488.2 is the software portion of the interface, specifying data formats, common commands, message exchange protocol and the status register implementation.

Use the following to decode the columns in Figure 5-7. Appendix D shows a typical IEEE-488 connector and pin assignments.

<table>
<thead>
<tr>
<th>Type</th>
<th>M - Multiline</th>
<th>U - Uniline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class</td>
<td>AC - Addressed Command</td>
<td>DD - Device Dependent</td>
</tr>
<tr>
<td></td>
<td>AD - Address (Talk or listen)</td>
<td>HS - Handshake</td>
</tr>
<tr>
<td></td>
<td>UC - Universal Command</td>
<td>SE - Secondary</td>
</tr>
<tr>
<td></td>
<td>ST - Status</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>B1, B2, etc. - Information Bits</td>
<td>Logic Zero = 0 = False</td>
</tr>
<tr>
<td></td>
<td>Blanks - Doesn’t Care condition</td>
<td>Logic One = 1 = True</td>
</tr>
<tr>
<td>MESSAGE NAME</td>
<td>MESSAGE</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>ACG</td>
<td>Addressed Command Group</td>
<td>M AC</td>
</tr>
<tr>
<td>ATN</td>
<td>Attention</td>
<td>U UC</td>
</tr>
<tr>
<td>DAB</td>
<td>Data Byte</td>
<td>M DD</td>
</tr>
<tr>
<td>DAC</td>
<td>Data Accepted</td>
<td>U HS</td>
</tr>
<tr>
<td>DAV</td>
<td>Data Valid</td>
<td>U HS</td>
</tr>
<tr>
<td>DCL</td>
<td>Device Clear</td>
<td>M UC</td>
</tr>
<tr>
<td>END</td>
<td>End</td>
<td>U ST</td>
</tr>
<tr>
<td>EOS</td>
<td>End Of String</td>
<td>M DD</td>
</tr>
<tr>
<td>GET</td>
<td>Group Execute Trigger</td>
<td>M AC</td>
</tr>
<tr>
<td>GTL</td>
<td>Go To Local</td>
<td>M AC</td>
</tr>
<tr>
<td>IDY</td>
<td>Identify</td>
<td>U UC</td>
</tr>
<tr>
<td>IFC</td>
<td>Interface Clear</td>
<td>U UC</td>
</tr>
<tr>
<td>LAG</td>
<td>Listen Address Group</td>
<td>M AD</td>
</tr>
<tr>
<td>LLO</td>
<td>Local Lock Out</td>
<td>M UC</td>
</tr>
<tr>
<td>MLA</td>
<td>My Listen Address</td>
<td>M AD</td>
</tr>
<tr>
<td>MTA</td>
<td>My Talk Address</td>
<td>M AD</td>
</tr>
<tr>
<td>MSA</td>
<td>My Secondary Address</td>
<td>M SE</td>
</tr>
<tr>
<td>NUL</td>
<td>Null Byte</td>
<td>M DD</td>
</tr>
<tr>
<td>OSA</td>
<td>Other Secondary Address</td>
<td>M SE</td>
</tr>
<tr>
<td>OTA</td>
<td>Other Talk Address</td>
<td>M AD</td>
</tr>
<tr>
<td>PCG</td>
<td>Primary Command Group</td>
<td>M ----</td>
</tr>
<tr>
<td>PPC</td>
<td>Parallel Poll Configure</td>
<td>M AC</td>
</tr>
<tr>
<td>PPE</td>
<td>Parallel Poll Enable</td>
<td>M SE</td>
</tr>
<tr>
<td>PPD</td>
<td>Parallel Poll Disable</td>
<td>M SE</td>
</tr>
<tr>
<td>PPR1</td>
<td>Parallel Poll Response 1</td>
<td>U ST</td>
</tr>
<tr>
<td>PPR2</td>
<td>Parallel Poll Response 2</td>
<td>U ST</td>
</tr>
<tr>
<td>PPR3</td>
<td>Parallel Poll Response 3</td>
<td>U ST</td>
</tr>
<tr>
<td>PPR4</td>
<td>Parallel Poll Response 4</td>
<td>U ST</td>
</tr>
<tr>
<td>PPR5</td>
<td>Parallel Poll Response 5</td>
<td>U ST</td>
</tr>
<tr>
<td>PPR6</td>
<td>Parallel Poll Response 6</td>
<td>U ST</td>
</tr>
<tr>
<td>PPR7</td>
<td>Parallel Poll Response 7</td>
<td>U ST</td>
</tr>
<tr>
<td>PPR8</td>
<td>Parallel Poll Response 8</td>
<td>U ST</td>
</tr>
<tr>
<td>PPU</td>
<td>Parallel Poll Unconfigure</td>
<td>U UC</td>
</tr>
<tr>
<td>REN</td>
<td>Remote Enable</td>
<td>U UC</td>
</tr>
<tr>
<td>RFD</td>
<td>Ready For Data</td>
<td>U HS</td>
</tr>
<tr>
<td>RQS</td>
<td>Request For Service</td>
<td>U ST</td>
</tr>
<tr>
<td>SCG</td>
<td>Secondary Command Group</td>
<td>M SE</td>
</tr>
<tr>
<td>SDC</td>
<td>Selected Device Clear</td>
<td>M AC</td>
</tr>
<tr>
<td>SPD</td>
<td>Serial Poll Disable</td>
<td>M UC</td>
</tr>
<tr>
<td>SPE</td>
<td>Serial Poll Enable</td>
<td>M UC</td>
</tr>
<tr>
<td>SRQ</td>
<td>Service Request</td>
<td>U ST</td>
</tr>
<tr>
<td>STB</td>
<td>Status Byte</td>
<td>M ST</td>
</tr>
<tr>
<td>TCT</td>
<td>Take Control</td>
<td>M AC</td>
</tr>
<tr>
<td>TAG</td>
<td>Talk Address Group</td>
<td>M AD</td>
</tr>
<tr>
<td>UCG</td>
<td>Universal Command Group</td>
<td>M UC</td>
</tr>
<tr>
<td>UNL</td>
<td>Unlisten</td>
<td>M AD</td>
</tr>
<tr>
<td>UNT</td>
<td>Untalk</td>
<td>M AD</td>
</tr>
</tbody>
</table>

Figure 5-7. IEEE-488 Remote Message Coding
5-23. Using Commands

Communications between the controller and the 5800A Calibrator consists of commands, queries, and interface messages. Although the commands are based on the 488.2 standard, they can be used on either the IEEE-488 or RS-232 interface, except for a few specialized RS-232 commands described in “Commands for RS-232 Only.” (For more information on command structures, see the IEEE 488.2 standard.)

Refer to Chapter 6, when you require additional information about command references used in this chapter.

All commands and units may be entered in UPPER or lower case.

There are four specific remote control configurations that use commands, queries and interface messages: IEEE-488, RS-232 Terminal Mode, RS-232 Computer Mode, and RS-232 Pass-Through Mode. (Setting up and testing each mode is discussed earlier in this chapter.)

IEEE-488 Mode The IEEE-488 mode is used when the 5800A Calibrator is operated by computer program. In this mode, requested information is returned by query, and interface messages are queued and returned by command.

RS-232 Terminal Mode The RS-232 terminal mode is an interactive mode where an operator inputs commands, with immediate returns for requested information (queries) and interface messages.

RS-232 Computer Mode The RS-232 computer mode is used when the 5800A Calibrator is operated by computer program. In this mode, requested information is returned by query, and interface messages are queued and returned by command.

RS-232 Pass-Through Mode The RS-232 pass-through mode is used to pass commands from the PC to a UUT, but via the 5800A Calibrator. This configuration is used when the UUT has an RS-232 port. Commands are sent to the UUT by using the UUT_SEND command, returns use the UUT_RECV? query, and UUT_FLUSH clears the UUT receive buffer in the 5800A Calibrator.

5-24. Types of Commands

The commands for the 5800A Calibrator can be grouped into one or more categories, depending on how they function. Each category is described below.

5-25. Device–Dependent Commands

Device-dependent commands are unique to the 5800A Calibrator. An example of a device-dependent command is,

```
SCOPE MARKER
```

instructing the 5800A Calibrator to the TIME MARKER function.
5-26. **Common Commands**

Common commands are defined by the IEEE 488.2 standard and are common to most bus devices. Common commands always begin with an * character. Common commands are available whether you are using the IEEE-488 or RS-232 interface for remote control. An example of a common command is,

\[\ast \text{IDN} \]

indicating the 5800A Calibrator to return the instrument identification string.

5-27. **Query Commands**

Query commands request information, which is returned as the command executes, or placed in a buffer until requested. An example of a query, which always ends with a question mark, is,

\[\text{SCOPE} \]

inquiring about the 5800A mode of operation.

5-28. **Interface Messages (IEEE-488)**

Interface messages manage traffic on the IEEE-488 interface bus. Device addressing and clearing, data handshaking, and commands to place status bytes on the bus are all directed by interface messages. Some of the interface messages occur as state transitions of dedicated control lines. The rest of the interface messages are sent over the data lines with the ATN signal true. (All device-dependent and common commands are sent over the data lines with the ATN signal false.)

An important thing to note about interface messages is that unlike device-dependent and common commands, interface messages are not sent literally (in a direct way). For example, when you send a device-dependent query to the 5800A Calibrator, the controller automatically sends the interface message MTA (My Talk Address).

IEEE-488 standards define interface messages. Table 5-4 lists the interface messages that the 5800A Calibrator accepts. Table 5-4 also shows the BASIC statement to generate the interface message. Table 5-5 lists the interface messages that the calibrator sends. The mnemonics listed in the tables are not sent in BASIC PRINT statements as commands are; in this way they are different from device-dependent and common commands.

Interface messages are handled automatically in most cases. For example, handshake messages DAV, DAC, and RFD automatically occur under the direction of an instrument’s interface itself as each byte is sent over the bus.
<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATN</td>
<td>Attention</td>
<td>A control line that, when asserted, notifies all instruments on the bus that the next data bytes are an interface message. When ATN is low, the next data bytes are interpreted as device-dependent or common commands addressed to a specific instrument.</td>
</tr>
<tr>
<td>DAC</td>
<td>Data Accepted</td>
<td>Sets the handshake signal line NDAC low.</td>
</tr>
<tr>
<td>DAV</td>
<td>Data Valid</td>
<td>Asserts the handshake signal line DAV.</td>
</tr>
<tr>
<td>DCL</td>
<td>Device Clear</td>
<td>Clears the input/output buffers</td>
</tr>
<tr>
<td>END</td>
<td>End</td>
<td>A message that occurs when the Controller asserts the EOI signal line before sending a byte.</td>
</tr>
<tr>
<td>GET</td>
<td>Group Execute Trigger</td>
<td>Trigger a TC measurement and put the reading in the output buffer.</td>
</tr>
<tr>
<td>GTL</td>
<td>Go To Local</td>
<td>Transfer control of the 5800A from one of the remote states to one of the local states. (See Table 5-1)</td>
</tr>
<tr>
<td>LLO</td>
<td>Local Lockout</td>
<td>Transfers remote/local control of the 5800A. (See Table 5-1)</td>
</tr>
<tr>
<td>IFC</td>
<td>Interface Clear</td>
<td>A control line that sets the interface to a quiescent state.</td>
</tr>
<tr>
<td>MLA</td>
<td>My Listen Address</td>
<td>Addresses a specific device on the bus as a listener. The controller sends MLA automatically whenever it directs a device-dependent or common command to a specific instrument.</td>
</tr>
<tr>
<td>MTA</td>
<td>My Talk Address</td>
<td>Addresses a specific device on the bus as a talker. The controller sends MTA automatically whenever it directs a device-dependent or common query to a specific instrument.</td>
</tr>
<tr>
<td>REN</td>
<td>Remote Enable</td>
<td>Transfer remote/local control of the 5800A. (See Table 5-1.)</td>
</tr>
<tr>
<td>RFD</td>
<td>Ready For Data</td>
<td>Sets the handshake signal line NRFD low.</td>
</tr>
<tr>
<td>SDC</td>
<td>Selected Device Clear</td>
<td>Does the same thing as DCL, but only if the 5800A is currently addressed as a listener.</td>
</tr>
<tr>
<td>SPD</td>
<td>Serial Poll Disable</td>
<td>Cancels the effect of a Serial Poll Enable.</td>
</tr>
<tr>
<td>SPE</td>
<td>Serial Poll Enable</td>
<td>After the 5800A receives this message, it sends the Status Byte the next it is addressed as a listener, no matter what the command is.</td>
</tr>
<tr>
<td>UNL</td>
<td>Unlisten</td>
<td>“Unaddresses” a specific device on the bus as a listener. The controller sends UNL automatically after the device has successfully received a device-dependent or common command.</td>
</tr>
<tr>
<td>UNT</td>
<td>Untalk</td>
<td>“Unaddresses” a specific device on the bus as a listener. The controller sends UNL automatically after the device has successfully received a device-dependent or common query.</td>
</tr>
</tbody>
</table>
Table 5-5. IEEE-488 Interface Messages (Send)

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>END</td>
<td>End</td>
<td>A message that occurs when the 5800A asserts the EOI control line. The 5800A asserts EOI while it transmits the ASCII character LF for its termination sequence or terminator.</td>
</tr>
<tr>
<td>DAC</td>
<td>Data Accepted</td>
<td>Set the handshake signal line NDAC low.</td>
</tr>
<tr>
<td>DAV</td>
<td>Data Valid</td>
<td>Asserts the handshake signal line DAV.</td>
</tr>
<tr>
<td>RFD</td>
<td>Ready for Data</td>
<td>Sets the handshake line NRFD low.</td>
</tr>
<tr>
<td>SRQ</td>
<td>Service Request</td>
<td>A control line that any device on the bus can assert to indicate that it requires attention. Refer to “Checking 5800A Status” for details.</td>
</tr>
<tr>
<td>STB</td>
<td>Status Byte</td>
<td>The status byte is what the 5800A sends when it responds to a serial poll (interface message SPE).</td>
</tr>
</tbody>
</table>

5-29. Compound Commands

A compound command is two or more commands in a single command line. For example, the following two commands could be entered individually,

```
SCOPE MARKER
OUT 10 ms
OPER
```

where the 5800A Calibrator outputs the TIME MARKER, with a period of 10 ms, and then goes into operate, or they could be combined into a compound command,

```
SCOPE MARKER ; OUT 10 ms ; OPER
```

using a semi-colon as a separator. Care must be taken when a compound command includes any of the coupled commands. (See “Coupled Commands.”)

5-30. Coupled Commands

A coupled command refers to two or more commands that appear in a compound command (see “Compound Commands”) that perform actions that could interfere with each other causing a fault. Commands in a compound command are separated by using the ; character. Compound commands using only coupled commands are not order-dependent.

In Chapter 6, the command graphic shows a check mark for \(\checkmark\) Coupled commands.

The 12 coupled commands are:

```
CHAN WAVE
DC_OFFSET OUT
TRIG_CHAN OUT_IMP
RANGE SCOPE
TDPULSE TMWAVE
VIDEOFMT VIDEOMRK
```
5-31. **Overlapped Commands**

Commands that begin execution but require slightly more time to complete are called overlapped commands, because they can be overlapped by the next command before they have completed execution.

In Chapter 6, the command graphic shows a check mark for **Overlapped** commands.

The 25 overlapped commands are:

- CHAN
- RANGELCK
- TRIG_CHAN
- *RST
- TRIG
- ZERO_MEAS
- RANGE
- SCOPE
- TDPULSE
- STBY
- TMWAVE
- DC_OFFSET
- INCR
- WAVE
- VIDEOFMT
- VIDEOMRK
- MULT
- OPER
- OUT
- OUT_IMP

You can use the command *WAI to wait until the overlapped command has completed execution before executing the next command. For example,

```
SCOPE MARKER OUT 10 ms ; *WAI
```

You can also use the status commands *OPC and *OPC? to detect completion of overlapped commands. (See “Checking 5800A Status.”)

5-32. **Sequential Commands**

Commands that execute immediately are called sequential commands.

In Chapter 6, the command graphic shows a check mark for **Sequential** commands.

The majority of the commands, 87 of 111 commands, are sequential.

5-33. **Commands that Require the Calibration Switch to be Enabled**

The following commands do not work unless the rear panel CALIBRATION switch is in the ENABLE position:

- FORMAT ALL
- FORMAT CAL
- *PUD

Attempting to use any of these commands with the CALIBRATION switch in the NORMAL position logs an error into the error queue. (Or it returns the error message if in the RS-232 Terminal Mode.)

5-34. **Commands for RS-232 Only**

Commands that are used for the RS-232 interface only are identified in the command graphic by checking the **IEEE-488** and **RS-232** check box.

The IEEE-488 and RS-232 interfaces both send commands to the 5800A Calibrator as data, except for those IEEE-488 functions that must be implemented as a message as specified in the IEEE-488 standards. For example, the RS-232 interface uses the
command REMOTE to place the 5800A Calibrator in the remote mode. Although the IEEE-488 interface could also send a command REMOTE as data, it does not because this is one of the functions that must be implemented per IEEE-488 Standards.

The relationship between these IEEE-488 messages and the equivalent RS-232 emulation is shown in Table 5-6.

Table 5-6. Commands for RS-232 Only

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GTL</td>
<td>LOCAL command</td>
</tr>
<tr>
<td>GTR</td>
<td>REMOTE command</td>
</tr>
<tr>
<td>LLO</td>
<td>LOCKOUT command</td>
</tr>
<tr>
<td>SRQ</td>
<td>SRQSTR command</td>
</tr>
<tr>
<td>SDC, DCL</td>
<td>^C (<Cntl> C) character [clear the device]</td>
</tr>
<tr>
<td>GET</td>
<td>^T (<Cntl> T) character [execute a group trigger]</td>
</tr>
<tr>
<td>SPE, SPD</td>
<td>^P (<Cntl> P) character [print the serial poll string]</td>
</tr>
</tbody>
</table>

In addition to the commands and special characters that emulate the IEEE-488 functions shown above, there are several more commands that are related to operation and control of the actual RS-232 Host port and are therefore completely unrelated to IEEE-488 operations. These include the following six commands.

\[
\begin{align*}
\text{SP_SET} & : \text{SPLSTR} & \text{SRQSTR} \\
\text{SP_SET}\? & : \text{SPLSTR}\? & \text{SRQSTR}\? \\
\end{align*}
\]

5-35. **Commands for IEEE-488 Only**

Commands that are used for the IEEE-488 interface are identified in the command graphic by checking the [IEEE-488] check box. This is all the commands, except for those used for RS-232 operations. (See “Commands for RS-232 Only.”) All commands are transferred over the IEEE-488 as data, except for the commands LOCAL, REMOTE, and LOCKOUT, which are implemented per IEEE Standards as messages (see Table 5-7).

Table 5-7. Commands for IEEE-488 Only

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GTL</td>
<td>LOCAL command</td>
</tr>
<tr>
<td>GTR</td>
<td>REMOTE command</td>
</tr>
<tr>
<td>LLO</td>
<td>LOCKOUT command</td>
</tr>
<tr>
<td>SDC, DCL</td>
<td>Clear the device</td>
</tr>
<tr>
<td>GET</td>
<td>Execute a group trigger</td>
</tr>
<tr>
<td>SPE, SPD</td>
<td>Print the serial poll string</td>
</tr>
</tbody>
</table>

5-36. **Command Syntax**

The following syntax rules apply to all the remote commands. Information about syntax of response messages is also given.

5-37. **Parameter Syntax Rules**

Table 5-8 lists the vocabulary of units accepted in command parameters and used in responses. All commands and units may be entered in UPPER or lower case.

Table 5-8. Units Accepted in Parameters and Used in Responses

<table>
<thead>
<tr>
<th>Units</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>HZ</td>
<td>Frequency in units of hertz</td>
</tr>
<tr>
<td>KHZ</td>
<td>Frequency in units of kilohertz</td>
</tr>
<tr>
<td>MHZ</td>
<td>Frequency in units of megahertz</td>
</tr>
<tr>
<td>UV</td>
<td>Volts in units of microvolts</td>
</tr>
<tr>
<td>MV</td>
<td>Volts in units of millivolts</td>
</tr>
<tr>
<td>V</td>
<td>Volts in units of volts</td>
</tr>
<tr>
<td>KV</td>
<td>Volts in units of kilovolts</td>
</tr>
<tr>
<td>PCT</td>
<td>Percent</td>
</tr>
<tr>
<td>PPM</td>
<td>Parts-per-million</td>
</tr>
<tr>
<td>DBM</td>
<td>Volts in units of decibels referenced to 1 milliwatt into 50 Ω load</td>
</tr>
<tr>
<td>OHM</td>
<td>Resistance in units of ohms</td>
</tr>
<tr>
<td>F</td>
<td>Capacitance in units of farads</td>
</tr>
<tr>
<td>NS</td>
<td>Period in units of nanoseconds</td>
</tr>
<tr>
<td>US</td>
<td>Period in units of microseconds</td>
</tr>
<tr>
<td>MS</td>
<td>Period in units of milliseconds</td>
</tr>
<tr>
<td>S</td>
<td>Period in units of seconds</td>
</tr>
<tr>
<td>GHZ</td>
<td>Gigahertz</td>
</tr>
<tr>
<td>PS</td>
<td>Picoseconds</td>
</tr>
<tr>
<td>KOHMS</td>
<td>Kilohm</td>
</tr>
<tr>
<td>MOHM</td>
<td>Megohm</td>
</tr>
<tr>
<td>PF</td>
<td>Picofarad</td>
</tr>
<tr>
<td>NF</td>
<td>Nanofarad</td>
</tr>
<tr>
<td>UF</td>
<td>Microfarad</td>
</tr>
<tr>
<td>MF</td>
<td>Millifarad</td>
</tr>
</tbody>
</table>
General Rules The general rules for parameter usage is as follows:

1. When a command has more than one parameter, the parameters must be separated by commas. For example: `OUT 1V, 1 KHZ`.

2. Numeric parameters may have up to 15 significant digits and their exponents can be in the range `+/-1.0E+/-20`.

3. Including too many or too few parameters causes a command error.

4. Null parameters cause an error, e.g., the adjacent commas in `OUT 1V, , 1 KHZ`.

5. Expressions, for example `4+2*13`, are not allowed as parameters.

6. Binary Block Data can be in one of two forms: Indefinite Length and Definite Length format (both IEEE-488.2 standards).

 Indefinite Length The Definite Length format accepts data bytes after the #0 until the ASCII Line Feed character is received with an EOI signal (for RS-232 just a line feed or carriage return will terminate the block).

 Definite Length The Definite Length format specifies the number of characters that will follow in the `<digits>` field. These characters must be 0 to 9 (ASCII 48 to 57 decimal). The value of the number in the `<digits>` field defines the number of user data bytes that will follow in the `<user data>` field. For examples, see the `UUT_SEND` and `*PUD` command descriptions in Chapter 6.

5-38. Extra Space or Tab Characters

In the command descriptions in Chapter 6, parameters are shown separated by spaces. One space after a command is required (unless no parameters are required). All other spaces are optional. Spaces are inserted for clarity in the manual and may be left in or omitted as desired. You can insert extra spaces or tabs between parameters as desired. Extra spaces within a parameter are generally not allowed, except for between a number and its associated multiplier or unit. Chapter 6 contains examples for commands whose parameters or responses are not self-explanatory.
5-39. **Terminators**

Table 5-9 summarizes the terminator characters for both the IEEE-488 and RS-232 remote interfaces.

<table>
<thead>
<tr>
<th>Terminator Function</th>
<th>ASCII Character</th>
<th>Control Command Terminator</th>
<th>Language Command Terminator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carriage Return (CR)</td>
<td>13 Chr(13)</td>
<td><Cntl> M</td>
<td>\n</td>
</tr>
<tr>
<td>Line Feed (LF)</td>
<td>10 Chr(10)</td>
<td><Cntl> J</td>
<td>\r</td>
</tr>
<tr>
<td>Backspace (BS)</td>
<td>8 Chr(8)</td>
<td><Cntl> H</td>
<td>\b</td>
</tr>
<tr>
<td>Form Feed (FF)</td>
<td>12 Chr(12)</td>
<td><Cntl> L</td>
<td>\f</td>
</tr>
</tbody>
</table>

Examples:

RS-232 Terminal Mode

```
OUT 1 V, 60 Hz <Enter>
UUT_SEND “REMS\n” <Enter>
UUT_SEND #205REMS^M <Enter> (^M means <Cntl> M)
```

RS-232 Computer Mode

```
Comm1.Output = “OUT 1 V, 60 Hz” + Chr(10)  (typical to Visual Basic)
Comm1.Output = “UUT_SEND “REMS\n” “ + Chr(10)
```

IEEE-488 Mode

```
OUT 1 V, 60 Hz
UUT_SEND “REMS\n”
```

IEEE-488 Interface

The 5800A Calibrator sends the ASCII character Line Feed with the EOI control line held high as the terminator for response messages. The calibrator recognizes the following as terminators when encountered in incoming data:

- ASCII LF character
- Any ASCII character sent with the EOI control line asserted

RS-232 Interface

The 5800A Calibrator returns an EOL (End of Line) character with each response to the PC. This is selectable as Carriage Return (CR), Line Feed (LF) or both CRLF. (See “RS-232 Host Port Setup Procedure” earlier in this chapter.) Commands sent to the 5800A Calibrator must end in either a CR or LF, or both. (See Table 5-9 above.)

5-40. **Incoming Character Processing**

The 5800A Calibrator processes all incoming data as follows (except Binary Block Data as described under Parameter Syntax Rules):

1. The most significant data bit (DIO8) is ignored.
2. All data is taken as 7-bit ASCII.
3. Lower-case or upper-case characters are accepted.
4. ASCII characters whose decimal equivalent is less than 32 (Space) are discarded, except for characters 10 (LF) and 13 (CR) and in the *PUD command argument. Binary Block Data allows all characters in its argument and terminates in a special way.
5-41. **Response Message Syntax**

In the command descriptions in Chapter 6, responses from the 5800A Calibrator are described wherever appropriate. In order to know what type of data to read in, refer to the first part of the entry under "Response" in the tables. The response is identified as one of the data types in Table 5-10.

<table>
<thead>
<tr>
<th>DATA TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integer</td>
<td>Integers for some controllers or computers are decimal numbers in the range -32768 to 32768. Responses in this range are labeled Integer. Example: *ESE 123; *ESE? returns: 123</td>
</tr>
<tr>
<td>Floating</td>
<td>Numbers that may have up to 15 significant figures plus an exponent that may range from ±E20. Example: DC_OFFSET? returns: 1.4293E+00</td>
</tr>
<tr>
<td>String</td>
<td>Any ASCII characters including quotation mark delimiters. Example: SRQSTR "SRQ from 5800A"; SRQSTR? returns: "SRQ from 5800A"</td>
</tr>
<tr>
<td>Character Response Data (CRD)</td>
<td>This type of response is always a keyword. Example: SCOPE MARKER ; SCOPE? returns: ACV</td>
</tr>
<tr>
<td>Indefinite ASCII (IAD)</td>
<td>Any ASCII characters followed by EOM. Queries with this type of response MUST be the last Query in a program message. Example: *OPT? returns: 5800A-5 CAL reports and lists which contains Line Feeds are typically of this type.</td>
</tr>
<tr>
<td>Binary Block Data</td>
<td>A special data type defined by the IEEE-488.2 standard. This type is used in *PUD? query. It is defined as follows: # (non-zero digit) (digits) (user data) The non-zero digit specifies the number of characters that will follow in the <digits> field. Characters allowed in the digits field are 0 through 9 (ASCII 48 through 57 decimal). The value of the number in the <digits> field in decimal defines the number of user data bytes that follow in the <user data> field. The maximum response is 64 characters. Example: *PUD "test1"; *PUD? returns: #205test1</td>
</tr>
</tbody>
</table>
5-42. Checking 5800A Status

The programmer has access to status registers, enable registers, and queues in the 5800A Calibrator to indicate various conditions in the instrument as shown in Figure 5-8. Some registers and queues are defined by the IEEE-488.2 standard. The rest are specific to the calibrator. In addition to the status registers, the Service Request (SRQ) control line, and a 16-element buffer called the Error Queue provide status information. Table 5-11 lists the status registers and gives the read/write commands and associated mask registers.

Table 5-11. Status Register Summary

<table>
<thead>
<tr>
<th>Status Register</th>
<th>Read Command</th>
<th>Write Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial Poll Status Byte (STB)</td>
<td>*STB?</td>
<td>—</td>
</tr>
<tr>
<td>Service Request Enable Register (SRE)</td>
<td>*SRE?</td>
<td>*SRE</td>
</tr>
<tr>
<td>Event Status Register (ESR)</td>
<td>*ESR?</td>
<td>—</td>
</tr>
<tr>
<td>Event Status Enable Register (ESE)</td>
<td>*ESE?</td>
<td>*ESE</td>
</tr>
<tr>
<td>Instrument Status Register (ISR)</td>
<td>ISR?</td>
<td>—</td>
</tr>
<tr>
<td>Instrument Status Change Register (ISCR)</td>
<td>ISCR?</td>
<td>—</td>
</tr>
<tr>
<td>ISCR 1 to 0 transition</td>
<td>ISCR0?</td>
<td>—</td>
</tr>
<tr>
<td>ISCR 0 to 1 transition</td>
<td>ISCR1?</td>
<td>—</td>
</tr>
<tr>
<td>Instrument Status Change Enable Register (ISCE)</td>
<td>ISCE?</td>
<td>ISCE</td>
</tr>
<tr>
<td>ISCE 1 to 0 transition</td>
<td>ISCE0?</td>
<td>ISCE0</td>
</tr>
<tr>
<td>ISCE 0 to 1 transition</td>
<td>ISCE1?</td>
<td>ISCE1</td>
</tr>
</tbody>
</table>

Each status register and queue has a summary bit in the Serial Poll Status Byte. Enable registers are used to mask various bits in the status registers and generate summary bits in the Serial Poll Status Byte. For IEEE-488 interface operation, the Service Request Enable Register is used to assert the SRQ control line on detection of any status condition or conditions the programmer chooses. For RS-232 interface operation, the SRQSTR string is sent over the serial interface when the SRQ line is set. (See the *STB command description in Chapter 6 for more information.)

5-43. Serial Poll Status Byte (STB)

The 5800A Calibrator sends the serial poll status byte (STB) when it responds to a serial poll. This byte is cleared (set to 0) when the power is turned on. The value of this byte at power-on is determined by the value of the service request enable register (SRE), which is saved in nonvolatile memory. The STB byte is defined as shown in Figures 5-8. If you are using the RS-232 as the remote control interface, transmitting the ^P character (in the Terminal mode, hold down the <Cntl> key and press P) returns the SPLSTR (Serial Poll String) and the status byte. Refer to the *STB command, and for RS-232 interface operation, the SPLSTR and SPLSTR? commands, in Chapter 6 for more information.
Figure 5-8. Status Register Overview
RQS Requesting service. The RQS bit is set to 1 whenever bits ESB, MAV, EAV, or ISCB change from 0 to 1 and are enabled (1) in the SRE. When RQS is 1, the 5800A asserts the SRQ control line on the IEEE-488 interface. You can do a serial poll to read this bit to see if the 5800A is the source of an SRQ.

MSS Master summary status. Set to 1 whenever bits ESB, MAV, EAV, or ISCB are 1 and enabled (1) in the SRE. This bit can be read using the *STB? command in serial remote control in place of doing a serial poll.

ESB Set to 1 when one or more enabled ESR bits are 1.

MAV Message available. The MAV bit is set to 1 whenever data is available in the 5800A’s IEEE-488 interface output buffer.

EAV Error available. An error has occurred and an error is available to be read from the error queue by using the ERR? query.

ISCB One or more enabled ISCR bits are 1.

Figure 5-9. Serial Poll Status Byte (STB) and Service Request Enable (SRE)

5-44. Service Request (SRQ) Line

IEEE-488 Service Request (SRQ) is an IEEE-488.1 bus control line that the 5800A Calibrator asserts to notify the controller that it requires some type of service. Many instruments can be on the bus, but they all share a single SRQ line. To determine which instrument set SRQ, the Controller normally does a serial poll of each instrument. The calibrator asserts SRQ whenever the RQS bit in its Serial Poll Status Byte is 1. This bit informs the controller that the calibrator was the source of the SRQ.

RS-232 Remote operations using the RS-232 interface emulate the IEEE-488 SRQ line by sending the SRQSTR string over the serial interface when the SRQ line is set. (See the SRQSTR command description in Chapter 6 for more information.)

The 5800A Calibrator clears SRQ and RQS whenever the controller/host performs a serial poll, sends *CLS, or whenever the MSS bit is cleared. The MSS bit is cleared only when ESB, MAV, EAV, and ISCB are 0, or they are disabled by their associated enable bits in the SRE register being set to 0.

5-45. Service Request Enable Register (SRE)

The Service Request Enable Register (SRE) enables or masks the bits of the Serial Poll Status Byte. The SRE is cleared at power up. Refer to Figure 5-9 for the bit functions.
5-46. **Programming the STB and SRE**

By resetting (to 0) the bits in the SRE, you can mask (disable) associated bits in the serial poll status byte. Bits set to 1 enable the associated bit in the serial poll status byte. The following sample BASIC program enables the Error Available (EAV) bit.

```
10 ! THIS PROGRAM SETS EAV IN THE SRE
20 PRINT @6,"SRE 8"           ! LOAD THE REGISTER
30 PRINT @6,"SRE?"             ! ASK FOR THE SRE CONTENTS
40 INPUT @6, A%                ! RETRIEVE THE REGISTER CONTENTS
50 PRINT "SRE = ";A%
60 RETURN
```

The following BASIC program generates an error and checks the Serial Poll Status Byte. Enable the EAV bit with the example above.

```
10 ! THIS PROGRAM GENERATES AN ERROR AND CHECKS IT
20 PRINT @6, "OUT 1300V"       ! 1300V IS OUT OF 5800A RANGE
30 A% = SPL(6)                 ! DO A SERIAL POLL
40 IF ((A% AND 72%)=0%)THEN PRINT "EAV and RQS should have been set"
50 PRINT @6, "STB?"            ! RETRIEVE BYTE
60 INPUT @6, A%
70 IF ((A% AND 8%)=0%) THEN PRINT "EAV should have been set"
```

5-47. **Event Status Register (ESR)**

The Event Status Register is a two-byte register in which the higher eight bits are always 0, and the lower eight bits represent various conditions of the 5800A Calibrator. The ESR is cleared (set to 0) when the power is turned on, and every time it is read.

Many of the remote commands require parameters. Improper use of parameters causes command errors to occur. When a command error occurs, bit CME (5) in the Event Status Register (ESR) goes to 1 (if enabled in ESE register), and the error is logged in the error queue.

5-48. **Event Status Enable (ESE) Register**

A mask register called the Event Status Enable register (ESE) allows the controller to enable or mask (disable) each bit in the ESR. When a bit in the ESE is 1, the corresponding bit in the ESR is enabled. When any enabled bit in the ESR is 1, the ESB bit in the Serial Poll Status Byte also goes to 1. The ESR bit stays 1 until the controller reads the ESR or does a device clear, a selected device clear, or sends the reset or *CLS command to the calibrator. The ESE is cleared (set to 0) when the power is turned on.

5-49. **Bit Assignments for the ESR and ESE**

The bits in the Event Status Register (ESR) and Event Status Enable register (ESE) are assigned as shown in Figure 5-10.
5-50. Programming the ESR and ESE

To read the contents of the ESR, send the remote command, \(^*\text{ESR}?\). The ESR is cleared (set to 0) every time it is read. To read the contents of the ESE, send the remote command, \(^*\text{ESE}?\). The ESE is not cleared when it is read. When you read either register, the 5800A Calibrator responds by sending a decimal number that when converted to binary represents bits 0 through 15. The following sample BASIC program retrieves the contents of both registers:

```basic
10 ! THIS PROGRAM READS THE ESR AND THE ESE REGISTERS
20 PRINT @6, "*ESR?" ! ASK FOR THE ESR CONTENTS
30 INPUT @6, A% ! RETRIEVE THE REGISTER CONTENTS
40 PRINT @6, "*ESE?" ! ASK FOR THE ESE CONTENTS
50 INPUT @6, B% ! RETRIEVE THE REGISTER CONTENTS
60 PRINT "ESR = ";A% ! DISPLAY THE ESR REGISTER CONTENTS VALUE
70 PRINT "ESE = ";B% ! DISPLAY THE ESE REGISTER CONTENTS VALUE
80 END
```

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PON</td>
<td>0</td>
<td>CME</td>
<td>EXE</td>
<td>DDE</td>
<td>QYE</td>
<td>0</td>
<td>OPC</td>
</tr>
</tbody>
</table>

PON
Power on. This bit is set to 1 if line power has been turned off and on since the last time the ESR was read.

CME
Command error. The 5800A’s IEEE-488 interface encountered an incorrectly formed command. (The command ERR? fetches the earliest error code in the error queue, which contains error codes for the first 15 errors that have occurred.)

EXE
Execution error. An error occurred while the 5800A tried to execute the last command. This could be caused, for example, by a parameter being out of range. (The command ERR? fetches the earliest error in the error queue, which contains error codes for the first 15 errors that have earliest error in the error queue, which contains error codes for the first 15 errors that have occurred.)

DDE
Device-dependent error. An error related to a device-dependent command has occurred.

QYE
Query error. The 5800A was addressed to talk when no response data was available or appropriate, or when the controller failed to retrieve data on the output queue.

OPC
Operation complete. All commands previous to reception of a *OPC command have been executed, and the interface is ready to accept another message.

Figure 5-10. Event Status Register (ESR) and Event Status Enable (ESE)
Convert the contents of variables A and B into binary, and you can read the status of the registers. For example if A is 32, its binary equivalent is: 00000000 00100000. Therefore, bit 5 (CME) in the ESR is set (1) and the rest of the bits are reset (0). This means that the calibrator tried to execute an incorrectly formed command.

By setting the bits in the ESE, you can mask (disable) the associated bits in the ESR. For example, to prevent the occurrence of a command error from causing bit 5 (ESB) in the serial poll status byte to go to 1, you can reset (to 0) bit 5 in the ESE register. The following sample program accomplishes this by checking the status of the CME bit, then toggling it if it is 1.

```plaintext
10 ! THIS PROGRAM RESETS BIT 5 (CME) IN THE ESE
20 PRINT @6,"*ESE 33" ! INITIAL ESE IS CME + OPC
30 GOSUB 100 ! GET AND PRINT INITIAL ESE
40 IF (A% AND 32%) THEN A% = A% - 32% ! CLEAR CME (BIT 5)
50 PRINT @6, "*ESE ";A% ! LOAD ESE WITH NEW VALUE
60 GOSUB 100 ! GET AND PRINT NEW ESE
70 END
100 PRINT @6, "*ESE?" ! ASK FOR ESE CONTENTS
110 INPUT @6, A% ! RETRIEVE REGISTER CONTENTS
120 PRINT "ESE = ";A%
130 RETURN
```

5-51. Instrument Status Register (ISR)

The Instrument Status Register (ISR) gives the controller access to the state of the 5800A Calibrator, including some of the information presented to the operator on the Control Display and the display annunciators during local operation.

5-52. Instrument Status Change Registers

There are two registers dedicated to monitoring changes in the ISR. These are the ISCR0 (Instrument Status 1-0 Change Register) and the ISCR1 (Instrument Status 0-1 Change Register). Each status change register has an associated mask register. Each ISCR is cleared (set to 0) when the 5800A Calibrator is turned on, every time it is read, and at each *CLS (Clear Status) command.

5-53. Instrument Status Change Enable Registers

The Instrument Status Change Enable registers (ISCE0 and ISCE1) are mask registers for the ISCR0 and ISCR1 registers. If a bit in the ISCE is enabled (set to 1) and the corresponding bit in the ISCR makes the appropriate transition, the ISCB bit in the Status Byte is set to 1. If all bits in the ISCE are disabled (set to 0), the ISCB bit in the Status Byte never goes to 1. The contents of the ISCE registers are set to 0 at power-up.

5-54. Bit Assignments for the ISR, ISCR, and ISCE

The bits in the Instrument Status, Instrument Status Change, and Instrument Status Change Enable registers are assigned as shown in Figure 5-11.
Bit Assignments for the ISR, ISCEs and ISCRs

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>SETTLED</td>
</tr>
<tr>
<td>14</td>
<td>REMOTE</td>
</tr>
<tr>
<td>13</td>
<td>UUTBFUL</td>
</tr>
<tr>
<td>12</td>
<td>UUTDATA</td>
</tr>
<tr>
<td>11</td>
<td>HIVOLT</td>
</tr>
<tr>
<td>10</td>
<td>MAGCHG</td>
</tr>
<tr>
<td>9</td>
<td>TMPCAL</td>
</tr>
<tr>
<td>8</td>
<td>OPER</td>
</tr>
</tbody>
</table>

- **SETTLED**: Set to 1 when the output has stabilized to within specification or the TC measurement has settled and is available.
- **REMOTE**: Set to 1 when the 5800A is under remote control.
- **UUTBFUL**: Set to 1 when data from the UUT port has filled up the UUT buffer.
- **UUTDATA**: Set to 1 when there is data available from the UUT port.
- **HIVOLT**: Set to 1 when the 5800A is programmed to a voltage above 33 Volts.
- **MAGCHG**: Set to 1 when the output magnitude has changed as a result of another change. This bit is always 0 in the ISR. It changes to 1 only in the ISCR0 and ISCR1 registers.
- **TMPCAL**: Set to 1 when the 5800A is using temporary (non-stored) calibration data.
- **OPER**: Set to 1 when the 5800A is in operate, 0 when it is in standby.

Figure 5-11. Bit Assignments for the ISR, ISCEs and ISCRs
5-55. **Programming the ISR, ISCR, and ISCE**

To read the contents of the ISR, send the remote command, **ISR?**. To read the contents of the ISCR0 or 1, send the remote command, **ISCR0?** or **ISCR1?**. To read the contents of the ISCE0 or 1, send the remote command, **ISCE0?** or **ISCE1?**. The 5800A Calibrator responds by sending a decimal number that represents bits 0 through 15. Every time you read the ISCR0 or 1, its contents are zeroed. The following sample program reads all five registers:

```
10  ! THIS PROGRAM READS THE ISR, ISCR, AND ISCE REGISTERS
20  ! NOTE THAT THE ICSR? COMMANDS CLEAR THE ISCR CONTENTS
30  PRINT @6, "ISR?" ! ASK ISR CONTENTS
40  INPUT @6, A% ! RETRIEVE REGISTER CONTENTS FROM 5800A
50  PRINT @6, "ISCR0?" ! ASK FOR AND CLEAR ISCR0 CONTENTS
60  INPUT @6, B% ! RETRIEVE REGISTER CONTENTS FROM 5800A
70  PRINT @6, "ISCE0?" ! ASK FOR ISCE0 CONTENTS
80  INPUT @6, C% ! ASK FOR ISCE1 CONTENTS
90  PRINT @6, "ISCR1?" ! ASK FOR AND CLEAR ISCR1 CONTENTS
100 PRINT @6, A% ! DISPLAY ISR
110 PRINT "ISCR0 = ";B% ! DISPLAY ISCR0
120 PRINT "ISCE0 = ";C% ! DISPLAY ISCE0
130 PRINT "ISCR1 = ";D% ! DISPLAY ISCR1
140 PRINT "ISCE1 = ";E% ! DISPLAY ISCE1
150 END
```

Convert the returned variables into binary, and you can read the status of the instrument. For example if a register contains 4, its binary equivalent is: 00000000 00000100. Therefore, bit 3 (VBOOST) is set (1) and the rest of the bits are reset (0).

By setting the bits in an ISCE register, you can mask (disable) the associated bits in the ISCR. For example, to cause an SRQ interrupt when the output has settled, bit 12 (SETTLED) in the ISCE1 register must be 1. (The ISCB bit must also be enabled in the SRE.) The following sample program loads a decimal 1024 into the ISCE, which sets bit 12 and resets the other bits:

```
10  ! THIS PROGRAM LOADS 00010000 00000000 BINARY INTO THE ISCE
20  PRINT @6, "ISCE 4096" ! LOAD DECIMAL 4096 INTO ISCE
30  PRINT @6, "ISCE?" ! READ BACK ISCE VALUE
40  INPUT @6, A% ! "
50  PRINT "ISCE = ";A% ! PRINT IT, IT SHOULD BE 4096
60  END
```

5-56. **Output Queue**

The output queue is loaded whenever a query is processed, and holds up to 800 characters. The controller reads it with a statement such as a BASIC INPUT statement, removing what it reads form the queue. If the queue is empty, the 5800A Calibrator does not respond to the INPUT statement from the controller. The Message Available (MAV) bit in the Serial Poll Status Byte is 1 if there is something in the output queue and 0 if the output queue is empty.
5-57. **Error Queue**

When a command error, execution error, or device-dependent error occurs, its error code is placed in the error queue where it can be read by the `ERR?` command. (See Appendix F for a list of error messages.) A way to decode an error code is to send the command, `EXPLAIN?`, which returns a description of a error code. Reading the first error with the `ERR?` command removes that error from the queue. A response of 0 means the error queue is empty. The Error Available (EAV) bit in the Serial Poll Status Byte indicates whether the queue is empty. The error queue is cleared when you turn off the power, and when you use the `*CLS` (Clear Status) common command.

The error queue contains up to 16 entries. If many errors occur, only the first 15 errors are kept in the queue. A 16th entry in the queue is always an "error queue overflow" error, and all later errors are discarded until the queue is at least partially read. The first errors are kept, because if many errors occur before the user can acknowledge and read them, the earliest errors are the most likely to point to the problem. The later errors are usually repetitions or consequences of the original problem.

5-58. **Remote Program Examples**

The following programming examples illustrate ways to handle errors, to take measurements, take a number of successive readings, lock the range, and calibrate the calibrator. These excerpts from programs are written in DOS BASIC.

5-59. **Guidelines for Programming the Calibrator**

Commands are processed one at a time as they are received. Some commands require a previous condition be set before the command will be accepted by the 5800A Calibrator. Using the following programming guidelines will insure that the output is programmed to the desired state.

- The SCOPE command should be programmed first.
- The output should be programmed next with the OUT command.
- All other output parameters such as offset and waveform should be programmed next.
- The error status should be checked with the `ERR?` command. The calibrator will not process the OPER command if an unacknowledged error exists.
- Finally, the calibrator should be placed in operate with the OPER command.

A controller program first needs to initialize the interface and the 5800A Calibrator. Refer to following sample program:

```
10 INIT PORT 0 \ REMOTE 06 ! PUT THE 5800A INTO THE ! REMOTE STATE
20 PRINT 06, "*RST;SCOPE VOLT; OUT 1v, 0HZ;OPER" ! RESET THE 5800A, ! PROGRAM IT TO OUTPUT ! 1 V DC
```

If you wish to use SRQs, first use the `*SRE`, `*ESE`, and `ISCE` commands to enable the desired event. Refer to “Checking 5800A Status.”
You retrieve instrument parameters with a query (a programming command that ends with a question mark):

```
200 PRINT @6, "FUNC?"         ! RETRIEVE OUTPUT FUNCTION
210 INPUT LINE @6, A$
220 PRINT "Function is: "; A$
230 PRINT @6, "ONTIME?"         ! RETRIEVE ON TIME
240 INPUT LINE @6, A$
250 PRINT "The instrument has been on for "; A$;" hours"
```

This program generates the following sample output:

```
Function is: DCV
The instrument has been on for 0 days, 02:23:58 hours
```

Check for programming errors as in the following sample programs. Check the Error Available (EAV) bit in the serial poll register using a serial poll.

```
300 A = SPL(6)                       ! CHECK FOR ERRORS
310 IF (A AND 8) THEN PRINT "There was an error"
320 PRINT @6, "*CLS"                    ! CLEAR ERRORS
```

Retrieve errors and explanations as follows. Since errors are accumulated in a queue, you must read the entire queue to retrieve and clear all the errors.

```
400 PRINT @6, "ERR?"                 ! CHECK FOR ERRORS
410 INPUT @6, A, A$                  ! READ IN THE ERROR
420 IF (A = 0) THEN GOTO 500        ! NO MORE ERRORS
430 PRINT "Error# :";A, A$           ! PRINT ERROR# AND EXPLANATION
440 GOTO 400
500 END
```

5-60. Writing an SRQ and Error Handler

It is good practice to include fault (error) handling routines in your applications. The following sample program lines show a method for halting program execution on occurrence of an SRQ (Service Request) on the bus, checking to see if the calibrator is the source of the SRQ, retrieving its fault messages, and acting on the faults. You should modify and extend this code as necessary for your application.

If you want to use SRQs, first use the *SRE, *ESE, and ISCE commands to enable the desired event. Refer to "Checking 5800A Status" for more information.

```
10 INIT PORT0                       ! IFC the bus
20 CLEAR PORT0                      ! DCL the bus
30 ! INITIALIZE THE 5800A SRQ HANDLER
40 PRINT @6, "*SRE 8"              ! Enable STB.EAV (error available)
50 ON SRQ GOTO 1100                ! Install SRQ handler
60 ! Body of the application goes here
1100 ! Bus SRQ handler
1110 CLEAR PORT0                    ! Make sure devices are not confused
1120 IF (SPL(6) AND 64) THEN GOSUB 1200 ! If (STB.RQS) call SRQ
1130 ! TEST OTHER DEVICES RQS BITS IF DESIRED
1140 RESUME
1200 ! 5800A SRQ handler
1210 IF (SPL(6) AND 8) THEN GOSUB 1300 ! If (STB.EAV) call handler
1220 ! Test other STB bits if desired here
1299 RETURN
1300 ! 5800A STB.EAV (error) handler
1320 PRINT @6, "ERR?"               ! Read and clear error
1330 INPUT @6, E%, E$               ! Read in error # and explanation
1340 PRINT "Error# :";E, E$          ! Print error # and explanation
1350 IF (E% <> 0) THEN GOTO 1320 ! Until no more errors
1360 STOP                          ! Other commands for your app
1370 END
```
5-61. Using *OPC?, *OPC, and *WAI

The *OPC?, *OPC, and *WAI commands let you maintain control of the order of execution of commands that could otherwise be passed up by subsequent commands.

If you had sent an OUT command, you can check if the output has settled by sending the query *OPC?. As soon as the OUT command has completed (output settled), a “1” appears in the output buffer. You should always follow an *OPC? command with a read command. The read command causes program execution to pause until the addressed instrument responds. The following sample program shows how you can use *OPC?.

```plaintext
10 PRINT @4, "OUT 1V,1KHZ;OPER; *OPC?" ! 5800A ADDRESS IS 4
20 INPUT @4, A ! READ THE "1" FROM THE 5800A
30 IF (A AND 1) = 0 GOTO 20 ! TRY AGAIN IF NO OUT
40 PRINT "OUTPUT SETTLED"
```

The *OPC command is similar in operation to the *OPC? query, except that it sets bit 0 (OPC for “Operation Complete”) in the Event Status Register to 1 rather than sending a 1 to the output buffer. One simple use for *OPC is to include it in the program in order for it to generate an SRQ (Service Request). Then an SRQ handler written into the program can detect the operation complete condition and respond appropriately. You can use *OPC similarly to *OPC?, except your program must read the ESR to detect the completion of all operations. The following sample program shows how you can use *OPC.

```plaintext
10 REMOTE
20 PRINT @4, "OUT 1V,1KHZ;OPER;*OPC" ! 5800A ADDRESS IS 4
30 PRINT @4, "*ESR?" ! PUT THE ESR BYTE IN BUFFER
40 INPUT @4, A% ! READ THE ESR BYTE
50 IF (A% AND 1%) = 0% GOTO 30 ! TRY AGAIN IF NO OPC
60 PRINT "OUTPUT SETTLED"
70 END
```

The *WAI command causes the 5800A Calibrator to wait until any prior commands have been completed before continuing on to the next command, and takes no other action. Using *WAI is a convenient way to halt operation until the command or commands preceding it have completed. The following sample program shows how you can use *WAI.

```plaintext
10 REMOTE
20 PRINT @4, "OUT 100V,1KHZ;OPER;*WAI" ! 5800A ADDRESS IS 4
30 PRINT @4, "OUT?" ! READ THE OUTPUT VALUE
40 PRINT @4, A$,B$,C$ ! A$ CONTAINS THE OUTPUT VALUE
50 PRINT "OUTPUT IS: ";A$;B$;" at ";C$
70 END
```

5-62. Taking an Impedance Measurement

The following program takes one measurement at a time.

```plaintext
10 REM Set Bus Timeout to 20 seconds, Init IEEE Bus
20 TIMEOUT 20 * 1000
30 INIT PORT 0
40 CLEAR @6
100 REM Reset 5800A, impedance measurement mode
110 PRINT @6,"*RST; SCOPE MEAS2; RANGE T250OHM"
200 PRINT "Hit Carriage Return to take a Reading"
210 INPUTLINE A$
220 REM Trigger and wait for measurement
230 PRINT @6,"*TRG"
240 REM Read measurement, unit
250 INPUT @6, M,U$
260 GOTO 200
```
5-63. **Using the RS-232 UUT Port to Control an instrument**

The SERIAL 2 TO UUT RS-232 port is used to pass commands on to another instrument. For example, a meter that is being calibrated can have its RS-232 port connected the calibrator SERIAL 2 TO UUT serial port. Commands sent from a controller can be routed through the calibrator’s UUT port and received by the meter or UUT. There are six special `UUT_*` commands incorporated into the calibrator for passing commands on to an instrument connected to the UUT port. Refer to Chapter 6 for more information.

5-64. **Input Buffer Operation**

As the 5800A Calibrator receives each data byte from the controller, it places the bytes in a portion of memory called the input buffer. The input buffer holds up to 350 data bytes and operates in a first in, first out fashion.

IEEE-488 The 5800A Calibrator treats the EOI IEEE-488 control line as a separate data byte and inserts it into the input buffer if it is encountered as part of a message terminator. Input buffer operation is transparent to the program running on the controller. If the controller sends commands faster than the calibrator can process them, the input buffer fills to capacity. When the input buffer is full, the calibrator holds off the IEEE-488 bus with the NRFD (Not Ready For Data) handshake line. When the calibrator has processed a data byte from the full input buffer, it then completes the handshake, allowing the controller to send another data byte. The calibrator clears the input buffer on power-up and on receiving the DCL (Device Clear) or SDC (Selected Device Clear) messages from the controller.

RS-232 Under RS-232-C serial port remote control using `^S (<Cntl> S) XOFF` protocol, the calibrator issues a `^S XOFF` when the input buffer becomes 80% full. The calibrator issues a `^Q (<Cntl> Q)` when it has read enough of the input buffer so that it is less than 40% full. When using RTS (Request to Send) protocol (selected as part of the “RS-232 Host Port Setup Procedure”), the serial interface asserts and unasserts RTS in response to same conditions as for XON/XOFF protocol.
Chapter 6
Remote Commands

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-1. Introduction</td>
<td>6-3</td>
</tr>
<tr>
<td>6-2. Command Summary by Function</td>
<td>6-3</td>
</tr>
<tr>
<td>6-3. Summary of Commands and Queries</td>
<td>6-8</td>
</tr>
</tbody>
</table>
6-1. **Introduction**

This chapter documents the IEEE-488/RS-232 remote commands for the 5800A Calibrator. Remote commands duplicate activities that can be initiated from the front panel in local operation. Table 6-1 summarizes the commands by function. Following the summary table is a complete alphabetical listing of all commands complete with protocol details. Separate headings in the alphabetical listing provide the parameters and responses, plus an example for each command. For information on using commands, see Chapter 5.

6-2. **Command Summary by Function**

Note

The following commands are not useful over the remote interface, but are provided to imitate the front panel more completely.

Table 6-1. Command Summary by Function

<table>
<thead>
<tr>
<th>Error Mode Commands</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDIT</td>
<td>Sets the edit field. PRI is specified for the output value in single output functions and the primary output value in dual output functions.</td>
</tr>
<tr>
<td>EDIT?</td>
<td>Returns the edit field setting.</td>
</tr>
<tr>
<td>ERR_UNIT</td>
<td>Choose how UUT error is shown.</td>
</tr>
<tr>
<td>ERR_UNIT?</td>
<td>Return presently selected value of ERR_UNIT.</td>
</tr>
<tr>
<td>INCR</td>
<td>Increments or decrements the output (as selected by the edit field) and enters error mode, the same as using the output adjustment knob in local operation.</td>
</tr>
<tr>
<td>MULT</td>
<td>Multiplies the reference magnitude (as selected by the edit field).</td>
</tr>
<tr>
<td>NEWREF</td>
<td>Sets the reference value to be the present 5800A output value, the same as pressing the NEW REF key in local operation.</td>
</tr>
<tr>
<td>OLDREF</td>
<td>Sets the 5800A output to the previously programmed reference value, the same as pressing the ENTER key in local operation.</td>
</tr>
<tr>
<td>OUT_ERR?</td>
<td>Returns the UUT error computed by the 5800A after shifting the output with the INCR command.</td>
</tr>
<tr>
<td>REFOUT?</td>
<td>Returns the value of the reference, which is the output values of the 5800A the last time a new reference was established with an OUT, NEWREF, or MULT.</td>
</tr>
</tbody>
</table>
Common Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*CLS</td>
<td>(Clear status.) clears the ESR, ISCR0, ISCR1, the error queue, and the RQS bit in the status byte. This command terminates pending operation complete commands (*OPC or *OPC?).</td>
</tr>
<tr>
<td>*ESE</td>
<td>Loads a byte into the Event Status Enable register.</td>
</tr>
<tr>
<td>*ESE?</td>
<td>Returns the contents of the Event Status Enable register.</td>
</tr>
<tr>
<td>*ESR?</td>
<td>Returns the contents of the Event Status Register and clears the register.</td>
</tr>
<tr>
<td>*IDN?</td>
<td>Identification query. Returns instrument model number, serial number, and firmware revision levels for the main, front panel, and inguard.</td>
</tr>
<tr>
<td>*OPC</td>
<td>Enables setting of bit 0 (OPC for "Operation Complete") in the Event Status Register to 1 when all pending device operations are complete.</td>
</tr>
<tr>
<td>*OPC?</td>
<td>Returns a 1 after all pending operations are complete. This command causes program execution to pause until all operations are complete. (See also *WAI.)</td>
</tr>
<tr>
<td>*OPT?</td>
<td>Returns a list of the installed hardware and software options, including any 5725A Amplifiers that are attached.</td>
</tr>
<tr>
<td>*PUD</td>
<td>Protected user data command. This command allows you to store a string of bytes in nonvolatile memory. This command works only when the CALIBRATION switch is in the ENABLE position.</td>
</tr>
<tr>
<td>*PUD?</td>
<td>Returns the contents of the *PUD (Protected User Data) memory.</td>
</tr>
<tr>
<td>*RST</td>
<td>Reset. Resets the state of the instrument to the power-up state. This command holds off execution of subsequent commands until it is complete. (Overlapped command.)</td>
</tr>
<tr>
<td>*SRE</td>
<td>Loads a byte into the Service Request Enable register (SRE).</td>
</tr>
<tr>
<td>*SRE?</td>
<td>Returns the byte from the Service Request Enable register.</td>
</tr>
<tr>
<td>*STB?</td>
<td>Returns the status byte.</td>
</tr>
<tr>
<td>*TST?</td>
<td>Initiates a series of self-tests, then returns a "0" for pass or a "1" for fail. If any faults are detected, they are logged into the fault queue where they can be read by the ERR? query.</td>
</tr>
<tr>
<td>*WAI</td>
<td>Wait-to-Continue command. This command prevents further remote commands from being executed until all previous remote commands have been executed.</td>
</tr>
</tbody>
</table>
Table 6-1. Command Summary by Function (cont.)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUNC?</td>
<td>Returns the present calibration function.</td>
</tr>
<tr>
<td>OL_TRIP?</td>
<td>Returns the detected state of scope overload protection.</td>
</tr>
<tr>
<td>OPER</td>
<td>Activates the 5800A output if it is in standby.</td>
</tr>
<tr>
<td>OPER?</td>
<td>Returns the operate/standby setting.</td>
</tr>
<tr>
<td>OUT</td>
<td>Sets the output of the 5800A and establishes a new reference point for the error mode.</td>
</tr>
<tr>
<td>OUT?</td>
<td>Returns the output amplitudes and frequency of the 5800A.</td>
</tr>
<tr>
<td>OUT_IMP</td>
<td>Sets the output impedance of the SCOPE BNC.</td>
</tr>
<tr>
<td>OUT_IMP?</td>
<td>Returns the output impedance of the SCOPE BNC.</td>
</tr>
<tr>
<td>RANGE</td>
<td>Programs the range in PULSE, MEAS Z, and OVERLD modes.</td>
</tr>
<tr>
<td>RANGE?</td>
<td>Returns the present output ranges.</td>
</tr>
<tr>
<td>RANGELCK</td>
<td>Locks in the present range, or selects auto ranging.</td>
</tr>
<tr>
<td>RANGELCK?</td>
<td>Returns whether or not the preset output range is locked.</td>
</tr>
<tr>
<td>SCOPE</td>
<td>Sets the calibrator output to an oscilloscope mode.</td>
</tr>
<tr>
<td>SCOPE?</td>
<td>Returns the present oscilloscope mode.</td>
</tr>
<tr>
<td>STBY</td>
<td>Puts the 5800A in standby.</td>
</tr>
<tr>
<td>TDPULSE</td>
<td>Turns the tunnel diode pulse drive on or off in EDGE mode.</td>
</tr>
<tr>
<td>TLIMIT</td>
<td>Sets the OPERATE time limit for the OVERLD mode signal.</td>
</tr>
<tr>
<td>TLIMIT?</td>
<td>Returns the OPERATE time limit for the OVERLD mode signal.</td>
</tr>
<tr>
<td>TMWAVE</td>
<td>Selects the waveform for MARKER mode.</td>
</tr>
<tr>
<td>TMWAVE?</td>
<td>Returns the MARKER mode waveform setting.</td>
</tr>
<tr>
<td>*TRG</td>
<td>Triggers and returns a new impedance measurement.</td>
</tr>
<tr>
<td>TRIG</td>
<td>Sets the divider (and location if the 5-channel option is installed) of the signal at the TRIG OUT BNC.</td>
</tr>
<tr>
<td>TRIG?</td>
<td>Returns the divider (and location if the 5-channel option is installed) of the signal at the TRIG OUT BNC.</td>
</tr>
<tr>
<td>TRIGSKEW</td>
<td>Sets the skew between the trigger and the pulse outputs.</td>
</tr>
<tr>
<td>TRIGSKEW?</td>
<td>Returns the skew value between the trigger and pulse outputs.</td>
</tr>
<tr>
<td>VAL?</td>
<td>Returns the last impedance measurement value.</td>
</tr>
<tr>
<td>VIDEOFMT</td>
<td>Selects the format for VIDEO mode.</td>
</tr>
<tr>
<td>VIDEOFMT?</td>
<td>Returns the VIDEO mode format.</td>
</tr>
<tr>
<td>VIDEOMARK</td>
<td>Programs the VIDEO mode line marker location.</td>
</tr>
<tr>
<td>VIDEOMARK?</td>
<td>Returns the VIDEO mode line marker location.</td>
</tr>
<tr>
<td>WAVE</td>
<td>Sets the waveform for wavegen output.</td>
</tr>
<tr>
<td>WAVE?</td>
<td>Returns the waveform of the output.</td>
</tr>
<tr>
<td>ZERO_MEAS</td>
<td>Sets the measurement offset to the capacitance value.</td>
</tr>
</tbody>
</table>
Table 6-1. Command Summary by Function (cont.)

<table>
<thead>
<tr>
<th>RS-232 Host Port Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCAL</td>
</tr>
<tr>
<td>LOCKOUT</td>
</tr>
<tr>
<td>REMOTE</td>
</tr>
<tr>
<td>SPLSTR</td>
</tr>
<tr>
<td>SPLSTR?</td>
</tr>
<tr>
<td>SRQSTR</td>
</tr>
<tr>
<td>SRQSTR?</td>
</tr>
<tr>
<td>^P (<cntl>p)</td>
</tr>
<tr>
<td>^C (<cntl>c)</td>
</tr>
<tr>
<td>^T (<cntl>t)</td>
</tr>
</tbody>
</table>

Setup and Utility Commands

FORMAT	*Use with extreme care.* Restores the contents of the nonvolatile memory device to factory defaults.
ONTIME?	Returns the time since the 5800A was powered up last.
SP_SET	Sets the RS-232-C serial port settings and saves them in nonvolatile memory. The settings apply only to HOST port.
SP_SET?	Returns the HOST serial port settings contained in nonvolatile memory.
TLIMIT_D	Sets the default OPERATE time limit for the OVERLD mode signal.
TLIMIT_D?	Returns the default overload time limit.
ERR_UNIT	Chooses how the UUT error is shown.
ERR_UNIT?	Returns presently selected values of ERR_UNIT.
Status Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERR?</td>
<td>Returns the first error code contained in the 5800A error queue, then removes that error code from the queue.</td>
</tr>
<tr>
<td>EXPLAIN?</td>
<td>Explains an error code. This command returns a string that explains the error code furnished as the parameter.</td>
</tr>
<tr>
<td>FAULT?</td>
<td>Returns the first error code contained in the 5800A error queue, then removes that error from the queue.</td>
</tr>
<tr>
<td>ISCE</td>
<td>Loads two bytes into both the Instrument Status 1 to 0 Change Enable register and the Instrument Status 0 to 1 Change Enable register.</td>
</tr>
<tr>
<td>ISCE?</td>
<td>Returns the OR of the contents of the Instrument Status 1 to 0 Change Enable register and the Instrument Status 0 to 1 Change Enable register.</td>
</tr>
<tr>
<td>ISCE0</td>
<td>Loads two bytes into the Instrument Status 1 to 0 Change Enable register.</td>
</tr>
<tr>
<td>ISCE0?</td>
<td>Returns the contents of the Instrument Status 1 to 0 Change Enable register.</td>
</tr>
<tr>
<td>ISCE1</td>
<td>Loads two bytes into the Instrument Status 0 to 1 Change Enable register.</td>
</tr>
<tr>
<td>ISCE1?</td>
<td>Returns the contents of the Instrument Status 0 to 1 Change Enable register.</td>
</tr>
<tr>
<td>ISCR?</td>
<td>Returns the OR of the contents of the Instrument Status 1 to 0 Change Register and the Instrument Status 0 to 1 Change Register and clears both registers.</td>
</tr>
<tr>
<td>ISCR0?</td>
<td>Returns and clears the contents of the Instrument Status 1 to 1 Change Register.</td>
</tr>
<tr>
<td>ISCR1?</td>
<td>Returns and clears the contents of the Instrument Status 0 to 0 Change Register.</td>
</tr>
<tr>
<td>ISR?</td>
<td>Returns the contents of the Instrument Status Register.</td>
</tr>
</tbody>
</table>

RS-232 UUT Port Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UUT_FLUSH</td>
<td>Flush the UUT receive buffer.</td>
</tr>
<tr>
<td>UUT_RECV?</td>
<td>Return data from the UUT serial port.</td>
</tr>
<tr>
<td>UUT_SEND</td>
<td>Sends a string to the UUT serial port.</td>
</tr>
<tr>
<td>UUT_SET</td>
<td>Sets the UUT serial port settings and saves them in nonvolatile memory.</td>
</tr>
<tr>
<td>UUT_SET?</td>
<td>Returns the UUT serial port settings contained in nonvolatile memory.</td>
</tr>
</tbody>
</table>
6-3. **Summary of Commands and Queries**

The following is an alphabetical list of all 5800A Calibrator commands and queries, including common commands and device-dependent commands. Each command title includes a graphic that indicates remote interface applicability, IEEE-488 and RS-232, and command group: Sequential, Overlapped, and Coupled.

IEEE-488 (GPIB) and RS-232 Applicability Each command and query has a check box indicating applicability to IEEE-488 (general purpose interface bus, or GPIB) and RS-232 remote operations. For sorting purposes, this list ignores the * character that precedes the common commands.

Sequential Commands Commands executed immediately as they are encountered in the data stream are called sequential commands. For more information, see Chapter 5.

Overlapped Commands Commands that require additional time to execute are called overlapped commands because they can overlap the next command before completing execution. To be sure an overlapped command is not interrupted during execution, use the *OPC, *OPC?, and *WAI commands to detect command completion. For more information, see Chapter 5.

Coupled Commands The commands OUT, WAVE, and DC_OFFSET, are coupled commands because they “couple” in a compound command sequence. Care must be taken to be sure the action of one command does not disable the action of a second command and thereby cause a fault. For more information, see Chapter 5.
CAL_ABORT
(IEEE-488, RS-232, Overlapped)
(Calibration Abort query) Instructs 5800A to abort calibration procedure after present step.
Example: CAL_ABORT

CAL_BACKUP
Skips to the next entry point in the calibration procedure.

CAL_CONST?
(IEEE-488, RS-232, Overlapped)
(Calibration Constant command/query) Retrieves the value in use of the given calibration constant.
Parameter: The name of the calibration constant
Response: (float) The value of the constant
Example: CAL_CONST? VDAC_G

CAL_DATE?
(IEEE-488, RS-232, Overlapped)
(Calibration Date command) Returns date associated with active calibration constants as entered on the front panel or entered with the CAL_STORE command.
Parameter: See CAL_STORE for more on significance of the date (there is none).

CAL_FACT
(IEEE-488, RS-232, Overlapped)
(Calibration Fact command) Sets the procedure “fault action” flag.
Parameter: (char) CONT to continue on faults or ABORT to abort on faults
Example: CAL_FACT ABORT (this is the default)

CAL_FACT?
(IEEE-488, RS-232, Overlapped)
(Calibration Fact query) Gets the procedure “fault action” flag.
Response: (char) CONT or ABORT
Example: ABORT
CAL_FAULT?

(IEEE-488, RS-232, Overlapped)

(Calibration Fault query) Gets information about calibration error (if one occurred).

Response: 1. error number (use EXPLAIN? command to interpret)
2. name of step where error occurred

CAL_INFO?

(IEEE-488, RS-232, Overlapped)

(Calibration Information query) Returns message or instructions associated with running step.

Response: (string) the message string

CAL_NEXT

(IEEE-488, RS-232, Overlapped)

(Calibration Next command) Continues a calibration procedure if it is waiting.

Parameter: (Optional) Reference value (used if it’s waiting for a reference). If the reference value has no unit, the unit is assumed to be that returned by the CAL_REF? command.

Example: CAL_NEXT
CAL_NEXT 2.999987

CAL_REF?

(IEEE-488, RS-232, Overlapped)

(Calibration Reference query) Returns nominal value expected for reference entry.

Response: 1. the nominal value
2. the accepted or implied unit

Example: 3.000000e+00,V

CAL_SKIP

Skips to the next entry point in calibration procedure.

CAL_SECT

Skips to the next section of the calibration procedure.
CAL_START

(IEEE-488, RS-232, Overlapped)

(Calibration Start command) Starts a calibration procedure.

Parameter:
1. Procedure name (MAIN or OPT5):
 - MAIN is the procedure for the 5800.
 - OPT5 is available if you have the 5-channel option
2. (Optional) name of the step at which to start.
 - If this parameter is not provided, it starts at the beginning.

Example:
CAL_START MAIN

CAL_STATE?

(IEEE-488, RS-232, Overlapped)

(Calibration State query) Returns state of calibration.

Response:
- RUN - running a calibration step.
- REF - waiting for a CAL_NEXT with reference (measurement) value.
- INS - instruction available, waiting for a CAL_NEXT.
- NOT - not in a calibration procedure (or at end of one).
- ADJ - waiting for a CAL_NEXT after output is adjusted to match something.

CAL_STEP?

(IEEE-488, RS-232, Overlapped)

(Calibration Step query) Returns name of step currently running.

Response:
- (chart) The step name

Example:
IDAC_RATIO (running IDAC ratio calibration)
NOT (not running a calibration procedure now)

CAL_STORE

(IEEE-488, RS-232, Overlapped)

(Calibration Store command) Stores new calibration constants (CAL switch must be ENABLED).
CAL_STORE?

(IEEE-488, RS-232, Overlapped)

(Calibration Store query) Returns whether a cal store is needed.

Response: 1 is yes, 0 if no

CAL_SW?

(IEEE-488, RS-232, Overlapped)

(Calibration Switch query) Returns the setting of the calibration enable switch.

Response: (integer) 1 for enable, 0 for normal

Example: 1

CCO?

Same as CAL_CONST?.

CHAN

Selects the output channel.

Parameter: C1, C2, C3, C4, or C5

CHAN?

Returns the output channel.

Parameter: C1, C2, C3, C4, or C5

CLOCK

Sets the real time clock. The time may be set whenever desired. To set the date, the CALIBRATION switch must be set in the ENABLE position.

Parameter:

1. (int) year (1992-2091 valid)
2. (int) month (1 - 12)
3. (int) day (1 - 31)
4. (int) hour (0 - 23)
5. (int) minute (0 - 59)
6. (int) second (0 - 59)

OR

1. (int) hour (0 - 23)
2. (int) minute (0 - 59)
3. (int) second (0 - 59)
CLOCK?

Returns the date and item according to the real time clock.

Parameter: None

Response: See “CLOCK” above

CLS

(IEEE-488, RS-232, Sequential)

(Clear Status command) Clears the ESR, ISCR0, ISCR1, the error queue, and the RQS bit in the status byte. This command terminates pending operation complete commands (*OPC or *OPC?).

Parameter: (None)

Example: *CLS

D_SP_SET

Temporarily sets the host serial settings until reset.

D_UUTSET

Temporarily sets the UUT serial settings until reset.
DC_OFFSET

(Overlapped command)
Applies a dc offset to an ac signal in WAVEGEN mode only.
Parameter: Offset amplitude with optional multiplier and voltage unit.
Example: DCOFFSET 1.44 MV.

DC_OFFSET?
Returns the dc offset voltage.
Response: (Float) signed offset amplitude.
Example: +1.44E-03 (1.44 mV)
 +0.00E-03 (No dc offset)

EDIT

(IEEE-488, RS-232, Sequential)
(Edit command) Sets the edit field. PRI is specified for the output value in single output functions and the primary output value in dual output functions. SEC is specified for the secondary value in dual output functions. FREQ is specified for the frequency in single ac output functions. The frequency cannot be edited in dual ac output functions. EDIT OFF is the same as using the NEWREF command.
Parameters: PRI (edit the value in single output functions and the pulse width in PULSE mode)
 SEC (edit the pulse period in PULSE mode)
 FREQ (edit the frequency value in single ac output functions)
 OFF (edit is off, which is the same as using the NEWREF command)
Example: EDIT FREQ
Load FREQ into the edit field to edit frequency.
EDIT?

(IEEE-488, RS-232, Sequential)

(Edit query) Returns the edit field setting.

Responses:
- **PRI** (value in single output functions, and the primary output value in dual output functions is in edit.)
- **SEC** (secondary value in dual output functions is in edit.)
- **FREQ** (frequency value in single ac output functions is in edit.)
- **OFF** (no value is in edit.)

Example: EDIT? returns OFF

Return OFF when no value is in edit.

ELIST?

Returns a list of error codes and error explanations.

Parameter: None

Response: (Indefinite ASCII) message

Example:
- 0 No error
- 1 Error queue overflow
- ...
- 1300 Bad syntax
- 1301 Unknown command
- 1302 Bad parameter count
- 1303 Bad keyword
- 1304 Bad parameter type
- 1305 Bad parameter unit
- 1306 Bad parameter value
- ...
- 65535 Unknown error %d

ERR?

(IEEE-488, RS-232, Sequential)

(Error query) Returns the first error code contained in the 5800A Calibrator error queue, then removes that error code from the queue. Following the error code is an explanation of the error code, similar to but sometimes containing more specific information than the EXPLAIN? command. The explanation sent in response to this query can contain variables specific to a particular error event. See Appendix F for a list of error codes and error messages.
A zero value is returned when the error queue is empty. To read the entire contents of the error queue, repeat \texttt{ERR?} until the response 0, “No Error” is returned. For terminal users, the error queue return for \texttt{ERR?} is always 0, “No Error” because error messages are returned instead of queued.

Response: \texttt{<value>, (error code value)}
\texttt{<string> (text string explaining the error)}

Example: \texttt{ERR? returns 0, “No Error”}

Return 0, “No Error” when the error queue is empty.

\texttt{ERR_UNIT}

(IEEE-488, RS-232, Overlapped)

(UUT Error Unit Thresh Hold command) Chooses how UUT error is shown (this in nonvolatile).

Parameter:
- \texttt{GT1000} UUT error is displayed in % above 1000 ppm, ppm below
- \texttt{GT100} UUT error is displayed in % above 100 ppm, ppm below
- \texttt{GT10} UUT error is displayed in % above 10 ppm, ppm below
- \texttt{PPM} UUT error is displayed in ppm always
- \texttt{PCT} UUT error is displayed in % always

\texttt{ERR_UNIT?}

(IEEE-488, RS-232, Sequential)

(UUT Error Unit Thresh Hold query) Returns presently selected values of \texttt{ERR_UNIT} as one of the choices.

Responses:
- \texttt{GT1000} UUT error is displayed in % above 1000 ppm, ppm below
- \texttt{GT100} UUT error is displayed in % above 100 ppm, ppm below
- \texttt{GT10} UUT error is displayed in % above 10 ppm, ppm below
- \texttt{PPM} UUT error is displayed in ppm always
- \texttt{PCT} UUT error is displayed in % always

\texttt{*ESE}

(IEEE-488, RS-232, Sequential)

(Event Status Enable command) Loads a byte into the Event Status Enable (ESE) register. (See Chapter 5 for more information.)

Parameter: \texttt{<value>} (decimal equivalent of the 8-bit binary number to load into the register.)

Example: \texttt{*ESE 140}

Enables bits 2 (QYE), 3 (DDE), and 7 (PON), and disables all the other bits.
ESE?

(IEEE-488, RS-232, Sequential)

(Event Status Enable query) Returns the contents of the Event Status Enable (ESE) register. (See Chapter 5 for more information.)

Parameter: None

Response: (Integer) Decimal equivalent of the register byte.

Example: *ESE?

Returns "140" if bits 2 (QYE), 3 (DDE), and 7 (PON) are enabled (1) and the rest of the bits are disabled (0).

ESR?

(IEEE-488, RS-232, Sequential)

(Event Status Register query) Returns the contents of the Event Status Register (ESR) and clears the register. (See Chapter 5 for more information.)

Response: (Integer) Decimal equivalent of the register byte.

Example: **ESR?

Returns "140" if bits 2 (QYE), 3 (DDE), and 7 (PON) are set (1) and the rest of the bits are reset (0).

EXPLAIN?

(IEEE-488, RS-232, Sequential)

(Explain Error query) Explains an error code. This command returns a string that explains the error code furnished as the parameter. The error code (same as the parameter) is originally obtained by sending the FAULT? query. (See the ERR? command, which returns both the error code and the explanation string.) See Appendix F for a list of error codes and error messages.

Parameter: <value> if the error code (an integer)

Response: <string> that explains the error code, with the parameter (if there is one) shown as a percent sign followed by d (integer parameter), f (floating point parameter), or s (string parameter)

Example: EXPLAIN? 539 returns “Can’t change compensation now.”

Return the explanation of error 539: “Can’t change compensation now.”
FAULT?

(IEEE-488, RS-232, Sequential)

Note

This is provided for 5700A compatibility. ERR? is preferred.

(Fault query) Returns the first error code contained in the 5800A Calibrator error queue, then remove that error from the queue. After obtaining the error code, use the EXPLAIN? command to view an explanation. A zero value is returned when the error queue is empty. To read the entire contents of the error queue, repeat FAULT? until the response is 0. (Only system errors appear in the error queue.)

Response: `<value>` of the error code

Example:
FAULT? returns 539

Return the first error code in the error queue, number 539. To view an explanation of the error, enter the command EXPLAIN? 539.

FORMAT

(IEEE-488, RS-232, Sequential)

(Format command) Use with extreme care. Restores the contents of the nonvolatile memory device to factory defaults. The memory holds calibration constants and setup parameters. You lose all calibration data permanently. The CALIBRATION switch on the rear panel of the 5800A Calibrator must be set in the ENABLE position or an execution error occurs, except for FORMAT SETUP.

Parameter:
ALL (replaces the whole contents with factory defaults)
CAL (replaces all cal constants with factory defaults)
SETUP (replaces setup parameters with factory defaults)

Example:
FORMAT SETUP

Replace the setup parameters with the default setup values (below). (The FORMAT ALL command is the same as FORMAT CAL and then FORMAT SETUP.) The FORMAT SETUP command also clears the *PUD string (see the *PUD command) and SRQSTR is set to “SRQ: %02x %02x %04x %04x” (see the SRQSTR command) and SPLSTR is set to “SPL: %02x %02x %04x %04x” (see the SPLSTR command).

Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host Connection</td>
<td>gpib (IEEE-488)</td>
</tr>
<tr>
<td>GPIB Port Address</td>
<td>4</td>
</tr>
<tr>
<td>Serial Ports</td>
<td>8 bits, 1 stop bit, xon/xoff, parity none, 9600 baud, wait 30 sec.</td>
</tr>
<tr>
<td>Remote commands</td>
<td>Remote I/F term</td>
</tr>
<tr>
<td>SRQSTR</td>
<td>SRQ: %02x %02x %04x %04x *PUD string cleared</td>
</tr>
</tbody>
</table>

* Output Display and Control Display, respectively. There are 8 levels: 0,1,2,3,4,5,6,7.
FUNC?

(IEEE-488, RS-232, Sequential)

(Function query) Returns the present output, measurement, or calibration function. See the response below for output & measurement modes.

Responses:
- SACV (oscilloscope ac volts function)
- SDCV (oscilloscope dc volts function)
- SDORM (no function active)
- WAVEGEN (oscilloscope wave generating function)
- VIDEO (oscilloscope video function)
- OVERLD (oscilloscope overload function)
- MEAS Z (oscilloscope measure capacitance/impedance function)
- AUXIN (oscilloscope auxiliary input function)
- PULSE (oscilloscope pulse function)
- MARKER (oscilloscope marker function)
- LEVSINE (oscilloscope leveled sine function)
- EDGE (oscilloscope edge function)

Example: FUNC? returns SACV

^IDN?

(IEEE-488, RS-232, Sequential)

(Identification query.) Returns instrument model number, serial number and firmware revision levels for the main, and front panel CPUs.

Response: (Indefinite ASCII) A message containing five fields separated by commas as follows:

- Manufacturer (FLUKE)
- Model number (5800A)
- Serial number
- Firmware revision level for the Main CPU
- Firmware revision level for the Front Panel CPU
- Firmware revision level for the Inguard PGA

INCR

(IEEE-488, RS-232, Overlapped)

(Increment command) Increments or decrements the output (as selected using the EDIT command) and enters error mode; the same as using the output adjustment knob in local operation.

Parameters: Increment step size; positive for incremental step, negative for decremental step. Units (optional) specify magnitude. The units must match those units in the selected edit field.

Example: INCR -.00001 mV

Enter the error mode and decrement the output by .00001.
ISCE

(IEEE-488, RS-232, Sequential)

(Instrument Status Change Enable command) Loads two bytes into the two 16-bit ISCE mask registers (ISCE1 and ISCE0). (See Chapter 5 for more information.)

Parameter: `<value>` (decimal equivalent of the 16 bits, 0 to 32767)

Example: `ISCE 4108`

Load decimal 4108 (binary 0001000000001100) to enable bit 12 (SETTLED). This is equivalent to sending the commands ISCE0 4108 and ISCE1 4108 (see below).

ISCE?

(IEEE-488, RS-232, Sequential)

(Instrument Status Change Enable query) Returns the two bytes from the two 16-bit ISCE mask registers (ISCE1 and ISCE0). (See Chapter 5 for more information.)

Response: `<value>` (decimal equivalent of the 16 bits, 0 to 32767)

Example: `ISCE? returns 4108`

Return decimal 4108 (binary 0001000000001100) if bit 12 (SETTLED) is set to 1.

ISCE0

(IEEE-488, RS-232, Sequential)

(Instrument Status 0 to 1 Change Enable command) Loads the two bytes into the 16-bit ISCE0 register. (See Chapter 5 for more information.)

Parameter: `<value>` (decimal equivalent of the 16 bits, 0 to 32767)

Example: `ISCE0 4108`

Load decimal 4108 (binary 0001000000001100) to enable bit 12 (SETTLED).

ISCE0?

(IEEE-488, RS-232, Sequential)

(Instrument Status 0 to 1 Change Enable query) Returns the two bytes from the 16-bit ISCE0 register. (See Chapter 5 for more information.)

Response: `<value>` (decimal equivalent of the 16 bits, 0 to 32767)

Example: `ISCE0? returns 4108`

Return decimal 4108 (binary 0001000000001100) if bit 12 (SETTLED) is set to 1.
ISCE1

(IEEE-488, RS-232, Sequential)

(Instrument Status 1 to 0 Change Enable command) Loads the two bytes into the 16-bit ISCE1 register. (See Chapter 5 for more information.)

Parameter: <value> (decimal equivalent of the 16 bits, 0 to 32767)

Example: \texttt{ISCE1 4108}

Load decimal 4108 (binary 0001000000001100) to enable bit 12 (SETTLED).

ISCE1?

(IEEE-488, RS-232, Sequential)

(Instrument Status 1 to 0 Change Enable query) Returns the two bytes from the 16-bit ISCE1 register. (See Chapter 5 for more information.)

Response: <value> (decimal equivalent of the 16 bits, 0 to 32767)

Example: \texttt{ISCE1? returns 4108}

Return decimal 4108 (binary 0001000000001100) if bit 12 (SETTLED) is set to 1.

ISCR?

(IEEE-488, RS-232, Sequential)

(Instrument Status Change Register query) Returns and clears the contents of the Instrument Status 0 to 1 Change Register (ISCR0) and Instrument Status 1 to 0 Change Register (ISCR1). (See Chapter 5 for more information.)

Response: <value> (decimal equivalent of the 16 bits, 0 to 32767)

Example: \texttt{ISCR? returns 4108}

Return decimal 4108 (binary 0001000000001100) if bit 12 (SETTLED) is enabled (set to 1) in the Instrument Status 0 to 1 Change Register and bit 12 (SETTLED) is enabled (set to 1) in the Instrument Status 1 to 0 Change Register.

ISCR0?

(IEEE-488, RS-232, Sequential)

(Instrument Status 0 to 1 Change Register query) Returns and clears the contents of the Instrument Status 0 to 1 Change Register.

Response: <value> (decimal equivalent of the 16 bits, 0 to 32767)

Example: \texttt{ISCR0? returns 4108}

Return decimal 4108 (binary 0001000000001100) if bit 12 (SETTLED) is set to 1.

ISCR1?

(IEEE-488, RS-232, Sequential)

(Instrument Status 1 to 0 Change Register query) Returns and clears the contents of the Instrument Status 1 to 0 Change Register.
Response: <value> (decimal equivalent of the 16 bits, 0 to 32767)
Example: ISCR1? returns 4108
Return decimal 4108 (binary 0001000000001100) if bit 12 (SETTLED) is set to 1.

ISR?
(IEEE-488, RS-232, Sequential)
(Instrument Status Register query) Returns contents of the Instrument Status Register.
Response: <value> (decimal equivalent of the 16 bits, 0 to 32767)
Example: ISR? returns 4108
Return decimal 4108 if bit 12 (SETTLED) is set to 1.

LOCAL
(RS-232, Sequential)
(Local command) Puts the 5800A Calibrator into the local state, clearing the remote state (see the REMOTE command) and front panel lockout (see the LOCKOUT command). This command duplicates the IEEE-488 GTL (Go To Local) message.
Parameter: (None)
Example: LOCAL
Set the instrument into the local state, clearing the remote state and front panel lockout (if enable).

LOCKOUT
(RS-232, Sequential)
(Lockout command) Puts the 5800A Calibrator into the lockout state when in remote control (see the REMOTE command). This means no local operation at the front panel is allowed during remote control. To clear the lockout condition, use the LOCAL command. This command duplicates the IEEE-488 LLO (Local Lockout) message.
Parameter: (None)
Example: LOCKOUT
Set the instrument into the front panel lockout state. The front panels controls cannot be used.
MEAS_OFFSET?

Returns the capacitance measurement offset (in farads).

MULT

(IEEE-488, RS-232, Overlapped)

(Multiply command) Multiplies the reference magnitude (as selected with the EDIT command). The reference magnitude is the present output in direct mode and the reference in error mode.

Parameter: Floating point number acts as a multiplier.

Example: MULT 1.9

If the output is 10 V with error mode off and you send the command, “MULT 1.9,” the output changes to 19 V.

NEWREF

(IEEE-488, RS-232, Sequential)

(New Reference command) Sets the new reference to be the present 5800A Calibrator output value and exit the error mode (if selected). For example, you might edit the 5800A Calibrator output using the EDIT and INCR commands, and then use the NEWREF command to establish a new reference point and exit the error mode. This is the same as pressing the 5800A Calibrator front panel [NEW] key.

Parameter: (None)

Example: NEWREF

Set the reference value to the current 550A Calibrator output value.

OLDREF

(IEEE-488, RS-232, Overlapped)

(Old Reference command) Sets the 5800A Calibrator output to the previously programmed reference value and exit the error mode (if selected). This is the same as pressing the [ENTER] key in local operation.

Parameter: (None)

Example: OLDREF

Set the output to the existing reference value, clearing editing changes.
OL_TRIP?

(IEEE-488, RS-232, Sequential)
Returns the detected state of scope overload protection.

Parameters: (None)

Response: Returns the number of seconds before protection was tripped. Returns 0 if protection has not been tripped or if OVERLD mode not active.

ONTIME?

(IEEE-488, RS-232, Sequential)
(Calibrator On Time query) Returns the time since the 5800A Calibrator was most recently powered up.

Response: <days>,<hours> (24-hour clock)

Example: ONTIME? returns 5 DAYS, 19:57:45

Return the time since the 5800A Calibrator was last powered up: 5 days, 19 hours, 57 minutes and 45 seconds.

OPC

(IEEE-488, RS-232, Sequential)
(Operations Complete command) Enables setting of bit 0 (OPC for "Operation Complete") in the Event Status Register to 1 when all pending device operations are complete.

Parameter: (None)

Example: *OPC

Set bit 0 of the Event Status Register to 1 when all pending device operations are done.

OPC?

(IEEE-488, RS-232, Sequential)
(Operations Complete query) Returns a 1 after all pending operations are complete. This command causes program execution to pause until all operations are complete. (See also *WAI.)

Response: 1 (all operations are complete)

Example: *OPC? returns 1

Return 1 when all pending operations are complete.
OPER

(IEEE-488, RS-232, Overlapped)

(Operate command) Activate the 5800A Calibrator output if it is in standby. If there are errors in the error queue, the OPER command is inhibited for outputs 33 V rms and over. (Also see the ERR? command and STBY command.)

Parameter: (None)

Example: OPER

Connect the selected output to the 5800A Calibrator front panel terminals.

OPER?

(IEEE-488, RS-232, Sequential)

(Operate query) Return the operate/standby setting.

Response: 1 (Operate)
0 (Standby)

Example: OPER? returns 1

Return 1 when the 5800A Calibrator is in operate.

OPT?

(IEEE-488, RS-232, Sequential)

Returns a list of the installed hardware and software options, including any auxiliary amplifiers that are attached.

Responses: <option string>,<option string>,..., (options list, separated by commas)
0 (no options are installed)

Example: 0

OUT

(IEEE-488, RS-232, Overlapped, Coupled)

Sets the output of the 5800A Calibrator and establishes a new reference point for the error mode. If the frequency is not supplied, the 5800A Calibrator will use the frequency that is presently in use. One amplitude or the frequency must be supplied. (Overlapped command.)
Use multipliers e.g., k, M, µ with the OUT command, as desired.

Parameters:

- `<value>` V: Volts dc or update volts ac
- `<value>` DBM: Volts ac dBm update
- `<value>` V, `<value>` HZ: Volts ac or volts dc with 0 Hz
- `<value>` DBM, `<value>` HZ: Volts ac in dBm
- `<value>` HZ: Update frequency
- `<value>` S: Pulse width
- `<value>` S, `<value>` S: Pulse width or update pulse width
- `<value>` S, `<value>` Hz: Pulse width or update period
- `<value>` PCT: Update percentage
- `<value>` HZ, `<value>` S: Period or update pulse width
- `<value>`: For single output, changes amplitude keeping unit and frequency the same.

Examples:

VOLT, EDGE, LEVSINE, and WAVEGEN modes:

- OUT 1.2 V, 1 kHZ output 1.2 V, 1 kHz
- OUT 8 kHZ output 8 kHz, same amplitude as before
- OUT 0 Hz output dc, same amplitude as before
- OUT 1 V output 1 V, same frequency as before

(The frequencies have to differ for LEVSINE, its minimum being 50 kHz)

MARKER mode:

- OUT 1 ms output 1 millisecond time marker
- OUT 1 kHZ same thing

VIDEO mode:

- OUT 100 pct output 100 % (1 V) video signal
- OUT 1 V same thing

PULSE mode:

- OUT 100 ns, 1µ output 100 nanosecond width pulse, 1 microsecond period
- OUT 100 ns, 1MHz output 100 nanosecond width pulse, 1 microsecond period
- OUT 100 ns output 100 nanosecond width pulse, same period as before
- OUT 1 Mhz output 1 microsecond period, same pulse width as before

OVERLD mode:

- OUT 5 V output 5 V ac or dc signal, depending on RANGE selection

Each example shows a value and unit, e.g., -15.2 V. If a value is entered without a unit, the value of the existing output is changed, when logically allowed.
OUT?

(IEEE-488, RS-232, Sequential)

Returns the output amplitudes and frequency of the 5800A Calibrator. Multipliers (e.g., K or M) are not used in the response.

Response:
<primary amplitude value>,<primary units>,
<secondary amplitude value>,<secondary units>,
<fundamental frequency value>

Examples:
-1.520000E+01,V,+0.000000E+00,00.000E+00 (-15.2V)
+1.883000E-01,A,+0.000000E+00,04.420E+02 (188.3 mA, 442 Hz)
+1.924000E+06,OHM,+0.000000E+00,00.000E+00 (1.924 MQ)
-1.520000E+01,V,+1.883000E-01,A,4.420E+02 (-15.2V, 188.3 mA, 442 Hz)

OUT_ERR?

(IEEE-488, RS-232, Sequential)

(Output Error query) Returns the UUT error and units computed by the 5800A Calibrator after shifting the output with the INCR command. The UUT error is computed only when editing VOLTAGE mode amplitude and MARKER period.

Response:
1. (Float) UUT error magnitude
2. (Character) Units for the above number (PPM, PCT, DB, or 0)

Example: OUT_ERR? returns -1.00000E+01,PCT

Return -10 % when the UUT is reading low by 10 %.

OUT_IMP

(IEEE-488, RS-232, Coupled, Overlapped Command)

Programs the oscilloscope’s output impedance. The scope output impedance is selectable only in the volt scope mode.

Parameters:
Z50 (Programs the oscilloscope’s output impedance to 50 Ω.)
Z1M (Programs the oscilloscope’s output impedance to 1 MΩ.)

Example: OUT_IMP Z50
OUT_IMP?

(IEEE-488, RS-232, Sequential)

Returns the impedance setting of the oscilloscope’s output.

Parameters: (None)

Response: (Character) Z50 or Z1M

PUD

(IEEE-488, RS-232, Sequential)

(Protected User Data command) Protected user data command. This command allows you to store a string of bytes in nonvolatile memory. This command works only when the CALIBRATION switch is in the ENABLE position.

Parameter:

- #2<nn> <nn characters string> (definite length)
- #0<character string> (indefinite length)
- "<character string>" (character string)

Example: Binary Block Data

PUD #0CAL LAB NUMBER 1 \<Line Feed with EOI>

or

PUD #216CAL LAB NUMBER 1

Note

The 2 indicates that there is are two digits to follow (in this case "16"), and the 16 indicates that there are 16 characters including space characters in the remainder of the *PUD message (in this case "CAL LAB NUMBER 1")

This type of data is called Binary Block Data in the IEEE-488.2 Standard. In the 5800A, you may also use String Data. The parameter "CAL LAB NUMBER 1" works exactly the same.
Remote Commands

Summary of Commands and Queries

6-29

PUD?

(IEEE-488, RS-232, Sequential)

Returns the contents of the *PUD (Protected User Data) memory.

Response: *(Binary Block) The maximum response is 64 characters.*

Example:

```
PUD? returns #216CAL LAB NUMBER 1
```

Assuming that this is stored as in the example for *PUD above.

RANGE

(IEEE-488, RS-232, Coupled, Overlapped Command)

Explicitly programs the instrument range in PULSE, MEAS Z, OVERLD modes. It provides functionality similar to the range or amplitude select softkeys in those modes.

Parameters:

The range name, from the following choices (by mode):

<table>
<thead>
<tr>
<th>Pulse</th>
<th>TP0DB</th>
<th>TP8DB</th>
<th>TP20DB</th>
<th>TP28DB</th>
<th>TP40DB</th>
<th>TP48DB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>2.5 V</td>
<td>1.0 V</td>
<td>250 mV</td>
<td>100 mV</td>
<td>25 mV</td>
<td>10 mV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Impedance Measure</th>
<th>TZ50OHM</th>
<th>TZ1MOHM</th>
<th>TZCAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>res 50Ω</td>
<td>res 1MΩ</td>
<td>cap</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Overload</th>
<th>TOLDI</th>
<th>TOLAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>dc signal</td>
<td>1 kHz squarewave, ac signal</td>
</tr>
</tbody>
</table>

Example:

```
RANGE TP20DB
```

RANGE?

Returns the present output ranges.

Parameter: None

Response: 1. (Character) Symbolic name of the range of single or first output.

2. (Character) Symbolic name of the range of second output (0 if no second output).
RANGELCK
(IEEE-488, RS-232, Overlapped command)
(Range Lock command) Locks in the present range or selects auto ranging for leveled sine mode. The range automatically unlocks if the output function changes. When RANGELCK is on, this is equivalent to the softkey range lock showing locked. When RANGELCK is off, this is equivalent to the softkey range lock showing auto.

Parameter: ON (Locks the range)
 OFF (Unlocks the range for autoranging)

Example: RANGELCK OFF

RANGELCK?
(IEEE-488, RS-232, Sequential)
(Range Lock query) Returns whether or not the preset output range is locked.

Response: ON (range is locked and autoranging is not allowed)
 OFF (range is not locked and autoranging is allowed)

REFCLOCK
(Reference Clock) Sets the reference clock source. This is a nonvolatile setup parameter.

Parameter: INT (Sets the internal reference clock)
 EXT (Sets the external reference clock)

REFCLOCK?
Returns the reference clock source.

Response: (Character) INT (Reference clock is internal)
 EXT (Reference clock is external)

REFOUT?
(IEEE-488, RS-232, Sequential)
(Reference Output query) Returns the present value of the reference which is the output values of the 5800A the last time a new reference was established with an OUT, NEWREF, or MULT. This applies only to VOLTAGE and MARKER mode.

Response: (Float) Reference amplitude

Example: REFOUT? returns 0E+00
 Return 0 when the output is not being edited.

Example: REFOUT? returns 2.500000E-01
 Return .250 when the output is being edited and the reference is, for example, 250 mV.
REMOTE

(RS-232, Sequential)

(Remote command) Places the 5800A Calibrator into the remote state. This command duplicates the IEEE-488 REN (Remote Enable) message. When in the remote state, the Control Display shows the softkey “REMOTE CONTROL Go to Local.” Pressing this softkey returns the 5800A Calibrator to local operation. If the front panel is locked out, the Control Display shows the softkey “REMOTE CONTROL LOCAL LOCK OUT.” (See the LOCKOUT command.) To unlock the front panel, use the LOCAL command, or cycle the 5800A Calibrator power switch.

Parameter: (None)

Example: REMOTE

Place the 5800A Calibrator in the remote state and display this state on the front panel Control Display with a softkey REMOTE CONTROL.

RST

(IEEE-488, RS-232, Overlapped)

(Reset Instrument command) Reset the 5800A Calibrator to the power-up state. *RST holds off execution of subsequent commands until the reset operation is complete. This command is the same as pressing the front panel R key.

A reset action evokes the following commands and values:

<table>
<thead>
<tr>
<th>Command</th>
<th>Value</th>
<th>Command</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>STBY</td>
<td>(No output)</td>
<td>TRIG</td>
<td>OFF</td>
</tr>
<tr>
<td>OUT</td>
<td>0 V, 0 HZ</td>
<td>OVLD</td>
<td>10 s</td>
</tr>
<tr>
<td>DC_OFFSET</td>
<td>0 V</td>
<td>OUT_CHAN</td>
<td>1</td>
</tr>
<tr>
<td>VIDEOFMT</td>
<td>NTSC</td>
<td>TRIG_CHAN</td>
<td>5</td>
</tr>
<tr>
<td>VIDEOMKR</td>
<td>line 10</td>
<td>OUTPUT</td>
<td>20 mV</td>
</tr>
<tr>
<td>TRIGLMT</td>
<td>10 s</td>
<td>SCOPEMODE</td>
<td>V</td>
</tr>
<tr>
<td>RANGELOCK</td>
<td>OFF</td>
<td>TDPULSE</td>
<td>OFF</td>
</tr>
<tr>
<td>MARKER</td>
<td>spike</td>
<td>SCOPE</td>
<td>OFF</td>
</tr>
<tr>
<td>WAVEGEN</td>
<td>square</td>
<td>OUT_IMP</td>
<td>Z1M</td>
</tr>
</tbody>
</table>

Leveled Sine goes to “jump” at a rate of 1 MHz. Refer to Chapter 4 for more information. Changes made to the setup menus that are not saved in memory are discarded on reset.

Response: (None)

Example: *RST

Place the 5800A Calibrator in a reset condition, evoking the commands and values shown above.
SCOPE
(IEEE-488, RS-232, Overlapped command)
Selects the scope mode.

Table 6-2. SCOPE Command Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description/Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOLT</td>
<td>Oscilloscope ac and dc VOLT mode. Programs 20 mV peak-to-peak, 1 kHz, output at the SCOPE BNC, output impedance 1 MΩ, standby if from OFF or previously in standby. FUNC? returns SACV (for ac) or SDCV (for dc). Example: SCOPE VOLT; OUT 4 V, 1 kHz (ac voltage, 4 V peak-to-peak, 1 kHz.)</td>
</tr>
<tr>
<td>EDGE</td>
<td>Oscilloscope EDGE mode. Programs 20 mV peak-to-peak, 1 MHz, output at the SCOPE BNC, standby if from OFF or previously in standby. FUNC? returns EDGE. Example: SCOPE EDGE; OUT 0.5 V, 5 kHz (Edge, 0.5 V peak-to-peak, 5 kHz.)</td>
</tr>
<tr>
<td>LEVSINE</td>
<td>Oscilloscope LEVSINE mode. Programs 30 mV peak-to-peak, 50 kHz, output at the SCOPE BNC, standby if from OFF or previously in standby. FUNC? returns LEVSINE. Example: SCOPE LEVSINE; OUT 1 V, 50 kHz (Leveled sine wave, 1 V peak-to-peak, 50 kHz.)</td>
</tr>
<tr>
<td>MARKER</td>
<td>Oscilloscope MARKER mode. Programs the period to 1 ms, output at the SCOPE BNC, standby if from OFF or previously in standby. FUNC? returns MARKER. Example: SCOPE MARKER; OUT 2 ms (Marker, period of 2 ms.)</td>
</tr>
<tr>
<td>WAVEGEN</td>
<td>Oscilloscope WAVEGEN mode. Programs 20 mV peak-to-peak, square wave, 1 kHz, no offset, output impedance 1 MΩ, standby if from OFF or previously in standby. FUNC? returns WAVEGEN. Example: SCOPE WAVEGEN; OUT 1 V, 1 kHz (Wave Generator, 1 V peak-to-peak, 1 kHz.)</td>
</tr>
<tr>
<td>VIDEO</td>
<td>Oscilloscope VIDEO mode. Programs 100 % output (1 V p/p), line marker 10, format NTSC. FUNC? returns VIDEO. Examples: SCOPE VIDEO; OUT 90PCT (Video, 90 % output) SCOPE VIDEO; OUT -70PCT (Video, -70 % output, inverse video)</td>
</tr>
</tbody>
</table>
Table 6-2. SCOPE Command Parameters (cont.)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description/Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>PULSE</td>
<td>Oscilloscope PULSE mode. Programs 100 ns pulse width, 1.000 µs period, 2.5V range. FUNC? returns PULSE.</td>
</tr>
</tbody>
</table>
| | Example: SCOPE PULSE; OUT 50 ns, 500 ns; RANGE TP8DB
| | (Pulse, 50 ns pulse width, 500 ns period, 1.5 V range) |
| MEASZ | Oscilloscope Impedance/Capacitance measurement (MEAS Z) mode. Programs 50 Ω range. FUNC? returns MEASZ. |
| | Example: SCOPE MEASZ; RANGE TZCAP
| | (MEAS Z mode, capacitance range) |
| OVERLD | Oscilloscope Overload mode. Programs 5 V dc range. FUNC? returns OVERLD. |
| | Example: SCOPE OVERLD; OUT 7 V; RANGE TOLAC
| | (Overload, 7 V output, ac range) |
| AUXIN | Oscilloscope AUXIN mode: Passed auxiliary input through to selected output channel. |

Example:

- SCOPE VOLT; OUT -2 V, 0HZ
 (dc voltage, -2 V)
- SCOPE VOLT; OUT 2 V, 1KHZ
 (ac voltage, 2 V peak-to-peak, 1 kHz)
- SCOPE LEVSINE; OUT 5 V, 60KHZ
 (Leveled sine, 5 V peak-to-peak, 60 kHz)
- SCOPE MARKER; OUT 2MS
 (Marker, period of 2 ms)
- SCOPE EDGE; OUT .5 V, 5KHZ
 (Edge, .5 V peak-to-peak, 5 kHz)
- SCOPE WAVEGEN; OUT 1V, 10KHZ; WAVE TRI
 (Wave gen, triangle wave 1 V pp)
- SCOPE VIDEO; OUT 50 PCT; VIDEOMFT PAL; VIDEOMARK 150
 (Video, PAL format, 50 % video signal, mark at line 150)
- SCOPE PULSE; OUT 5 NS, 10US; RANGE TP8DB
 (Pulse, 5 ns width, 10 µs period, 1.5 V amplitude)
- SCOPE MEASZ; RANGE TZCAP
 (Capacitance measurement)
- SCOPE OVERLD; RANGE TOLAC; OUT 8V
 (Overload test, 8 V pp ac signal)
SCOPE?
(IEEE-488, RS-232, Sequential)
Returns the oscilloscope’s current mode of operation. Returns OFF if the oscilloscope is off.
Parameter: (None)
Response: <character> (Returns OFF, VOLT, EDGE, LEVSINE, MARKER, WAVEGEN, VIDEO, PULSE, MEASZ, or OVERLD.)

SP_SET
(RS-232, Sequential)
(Host Serial Port Set command) Sets the RS-232-C settings for the 5800A Calibrator rear panel SERIAL 1 FROM HOST serial port, which is saved in the 5800A non-volatile memory. (While saving configuration data in the non-volatile memory, a period of about 2 seconds, the 5800A does not respond to remote commands.) (To set the parameters for the rear panel SERIAL 2 TO UUT serial port, see the UUT_SET command.) The factory default values are shown below in bold type. (To return to the factory defaults, see the FORMAT SETUP command.)
The interface selection sets the command response, with command echo back for commands and error messages with TERM (terminal) or no echo back with COMP (computer).
Parameters: <baud rate value>, 300, 600, 1200, 2400, 4800, 9600
<interface>, TERM (terminal), COMP (computer)
<flow control>, XON (xon/xoff), NOSTALL (none), RTS (rts/cts)
<number data bits>, DBIT7 (7 bits) or DBIT8 (8 bits)
<number stop bits>, SBIT1 (1 bit) or SBIT2 (2 bits)
<parity>, PNONE (none), PODD (odd), PEVEN (even)
<end of line char.> CR (carriage return), LF (line feed), CRLF (carriage return/line feed)
Example: SP_SET 9600,TERM, XON, DBIT8, SBIT1, PNONE, CRLF
Set the parameters for the rear panel SERIAL 1 FROM HOST serial port to the factory default values.
SP_SET?

(RS-232, Sequential)

(Host Serial Port Set query) Returns the RS-232-C settings for the 5800A Calibrator rear panel SERIAL 1 FROM HOST serial port. (To return the parameters for the rear panel SERIAL 2 TO UUT serial port, see the UUT_SET? command.) The factory default values are shown below in bold type. (To return to the factory defaults, see the FORMAT SETUP command.)

Responses:
- <baud rate value>, 300, 600, 1200, 2400, 4800, 9600
- <interface>, TERM (terminal), COMP (computer)
- <flow control>, XON (xon/xoff), NOSTALL (none), RTS (rts/cts)
- <number data bits>, DBIT7 (7 bits) or DBIT8 (8 bits)
- <number stop bits>, SBIT1 (1 bit) or SBIT2 (2 bits)
- <parity>, PNONE (none), PODD (odd), PEVEN (even)
- <end of line char.>, CR (carriage return), LF (line feed), CRLF (carriage return/line feed)

Example: SP_SET? returns 9600,TERM,XON,DBIT8,SBIT1,PNONE,CRLF

Return the parameters for the rear panel SERIAL 1 FROM HOST serial port, as shown, when set to the factory default values.

SPLSTR

(IEEE-488, RS-232, Sequential)

(Serial Poll String command) Sets the Serial Poll String (string up to 40 characters) which is saved in the 5800A non-volatile memory. (While saving configuration data in the non-volatile memory, a period of about 2 seconds, the 5800A does not respond to remote commands.) The SPLSTR is sent to the host over the serial interface when a ^P (<cntl> P) character is sent. The default format is:

SPL: %02x %02x %04x %04x

where the term %02x (8 bits) means print the value in hexadecimal with exactly 2 hex digits, and %04x (16 bits) means print the value in hexadecimal with exactly 4 hex digits. The string representations are:

SPL: (STB) (ESR) (ISCR0) (ISCR1)

See the commands, respectively, *STB?, *ESR?, ISCR0?, and ISCR1?. A typical string in the default format sent to the host is: SPL: 44 00 0000 1000. This command is for format. For values instead of format, enter a ^P (<cntl> p) character. Also see the SRQSTR command.

Parameter: “<string>\n” (\n represents the NEWLINE character, hex 0A)

Example: SPLSTR “SPL: %02x %02x %04x %04x\n”

Set the SPLSTR to the default values SPL: %02x %02x %04x %04x\n.
SPLSTR?

(IEEE-488, RS-232, Sequential)
(Serial Poll Response String query) Returns the string programmed for Serial Poll response. For values, enter a ^P (<cntl> p) character. Also see the SRQSTR command.

Response: <string>

Example: SRQSTR returns SRQ: %02x %02x %04x %04x

Return the SPLSTR string format (default settings in this example).

SRE

(IEEE-488, RS-232, Sequential)
(Service Request Enable command) Loads a byte into the Service Request Enable (SRE) register. (See Chapter 5 for more information. Since bit 6 is not used (decimal value 64), the maximum entry is 255 - 64 = 191.

Parameter: <value> (The decimal equivalent of the binary number to load into the register.)

Example: *SRE 56

Enable bits 3 (IIR), 4 (MAV), and 5 (ESR).

SRE?

(IEEE-488, RS-232, Sequential)
(Service Request Enable query) Returns the byte in the Service Request Enable (SRE).

Response: <value> (Integer) The decimal equivalent of the register byte.

Example: *SRE? returns 56

Return 56 when bits 3 (EAV), 4 (MAV), and 5 (ESR) are enabled (1) and the rest of the bits are disabled (0).
SRQSTR

(IEEE-488, RS-232, Sequential)

(Service Request String command) Sets the Serial Mode SRQ (Service Request) response (up to 40 characters) in the 5800A non-volatile memory. (While saving configuration data in the non-volatile memory, a period of about 2 seconds, the 5800A does not respond to remote commands.) The SRQSTR is sent to the host over the serial interface when the SRQ line is asserted (terminal mode only). Default format is:

```
SRQ: %02x %02x %04x %04x
```

where the term %02x (8 bits) means print the value in hexadecimal with exactly 2 hex digits, and %04x (16 bits) means print the value in hexadecimal with exactly 4 hex digits. The string representations are:

```
SRQ: (STB) (ESR) (ISCR0) (ISCR1)
```

See the commands, respectively, *STB?, *ESR?, ISCR0?, and ISCR1? A typical string in the default format sent to the host is: SRQ: 44 00 0000 1000. This command is for format. See the SPLSTR command for the serial poll response.

Parameter: “<string>n”

(\n represents the Line Feed character, hex 0A)

Example: SRQSTR “SRQ: %02x %02x %04x %04x\n”

Set the SRQSTR to the default values SRQ: %02x %02x %04x %04x\n.

SRQSTR?

(IEEE-488, RS-232, Sequential)

(Service Request String query) Returns the string programmed for Serial Mode SRQ response. This is the format of the Service Request String; actual values come from the registers. Also see the SPLSTR command.

Response: <string>

Example: SRQSTR returns SRQ: %02x %02x %04x %04x\n
Return the SRQSTR string format (default settings in this example).

*STB?

(IEEE-488, RS-232, Sequential)

(Status Byte Register command) Returns the byte for the Status Byte Register. (See Chapter 5 for more information.)

Response: <value>

(the decimal equivalent of the status byte)

Example: *STB? returns 72

Return 72 if bits 3 (EAV) and 6 (MSS) are set (1) and the rest of the bits are reset (0).
STBY

(IEEE-488, RS-232, Overlapped)

(Standby command) Deactivates the 5800A Calibrator output if it is in operate.

Parameter: (None)

Example: STBY

Disconnect the selected output from the 5800A Calibrator front panel terminals.

TDPULSE

(IEEE-488, RS-232, Overlapped command)

Turns tunnel diode pulser drive on/off in EDGE mode.

Parameters: ON (or non-zero) or OFF (or zero)

Example: TDPULSE ON

Returns the tunnel diode pulse drive setting in EDGE mode.

Parameters: None

Response: 1 if ON, 0 if OFF.

TDPULSE?

Returns the tunnel diode pulser drive setting.

Response: 1 if ON, 0 if OFF

TLIMIT

(IEEE-488, RS-232, Sequential)

Sets the OPERATE time limit for the OVERLD mode signal. The Calibrator automatically returns to STANDBY if the UUT protection trips within this interval or at the end of this interval if the protection has not tripped.

Parameters: 1 to 60 (seconds)

Example: TLIMIT 30

TLIMIT?

(IEEE-488, RS-232, Sequential)

Returns the programmed OPERATE time limit for the OVERLD mode signal.

Response: <Integer> Time limit in seconds.
TLIMIT_D

(IEEE-488, RS-232, Sequential)

Sets the default OPERATE time limit for the OVERLD mode signal. At the end of the specified interval, the instrument will automatically to STANDBY.

Parameters: 1 to 60 (seconds)

Example: TLIMIT_D 15

TLIMIT_D?

(IEEE-488, RS-232, Sequential)

Returns the default overload time limit.

Response: <Integer> Default time limit in seconds.

TMWAVE

(IEEE-488, RS-232, Coupled, Overlapped command)

Selects the waveform for MARKER mode.

Parameters:

- SINE: Sine wave (2 ns to 15 ns)
- SPIKE: Triangular/sawtooth pulse (15 ns to 5s)
- SQUARE: Square wave (50 % duty cycle) (4 ns to 5s)
- SQ20PCT: Square wave (20 % duty cycle) (85 ns to 5s)

Example: TMWAVE SPIKE

TMWAVE?

(IEEE-488, RS-232, Sequential)

Returns the MARKER mode waveform setting.

Parameters: None

Response: <character>(Returns SINE, SPIKE, SQUARE, or SQ20PCT.)
TRG

(IEEE-488, RS-232, Sequential)

Triggers and returns a new impedance measurement value when used in MEAS Z mode.

Responses:
- `<measurement value>, OHM` (input impedance value in ohms)
- `<measurement value>, F` (input capacitance value in farads)
- `<measurement value>, NONE` (no measurement is available)

Example:
TRG returns 1.00E+03,OHM (1 kΩ input impedance).

Note

You can also use the VAL? query to return an impedance measurement value. VAL? returns the last measurement, whereas *TRG* gets a new measurement. Responses are the same as shown above for the *TRG* command.

TRIG

(IEEE-488, RS-232, Overlapped)

Programs the oscilloscope’s trigger output BNC. The oscilloscope trigger output is only available in the MARKER, VOLT, PULSE, and EDGE modes.

Parameters:
- **OFF** (Turns the trigger output off.)
- **DIV1** (Turns the trigger output on. Frequency is the same as the signal at SCOPE output.)
- **DIV10** (Turns the trigger output on. Frequency is 1/10 of the signal at SCOPE output.)
- **DIV100** (Turns the trigger output on. Frequency is 1/100 of the signal at SCOPE output.)

Example:
TRIG DIV10

TRIG?

(IEEE-488, RS-232, Sequential)

Returns the output setting of the oscilloscope’s trigger.

Parameters:
- (None)

Response:
- `<character>` (Returns OFF, DIV1, DIV10, or DIV100.)
TRIG_CHAN

Selects the output channel.

Parameters: C1 or C5

TRIG_CHAN?

Returns the output channel.

Response: C1 or C5

TRIGSKEW (IEEE-488, RS232, Overlapped, and Coupled)

Set the trigger skew for pulse output.

Parameter: `<value>` of the skew in seconds. A positive value means the trigger leads the output pulse.

Example: TRIGSKEW 10.0ns
Sets the trigger to lead the pulse by 10 nano-seconds

TRIGSKEW? (IEEE-488 AND RS232)

Return the present setting of the trigger skew for pulse output.

Response: `<value>` of the skew in seconds.

Example: TRIGSKEW? returns -2.00e-8
Trigger lags the pulse by 20 nano-seconds.

TST?

(IEEE-488, RS-232, Sequential)

(Self Test command) Initiates self-test and return a 0 for pass or a 1 for fail. If any faults are detected, they are logged into the fault queue where they can be read by the ERR? query (computer mode).

Response: 0 (pass self test)
1 (fail self test)

Example: *TST? returns 1
Return 1 when self test is successful.
UUT_FLUSH

(IEEE-488, RS-232, Sequential)

(Flush UUT Receive Buffer command) Flushes the UUT receive buffer for data received from the UUT over the 5800A Calibrator rear panel SERIAL 2 TO UUT serial port. The command may be sent over gpib or RS-232 ports, but applies to SERIAL 2 TO UUT serial port operation.

Parameter: (None)

Example: UUT_FLUSH

Flush the 5800A Calibrator receive data buffer for the UUT.

UUT_RECV?

(IEEE-488, RS-232, Sequential)

(Return UUT Receive Data command) Returns data from the UUT serial port. The command may be sent over gpib or RS-232 ports, but applies to SERIAL 2 TO UUT serial port operation.

Response: (String) Data from the UUT serial port.

Example: UUT_RECV? returns #211+1.99975E+0

Return (for example) a measurement from the UUT. The format is #2 (two numbers follow) 11 (characters follow) +1.99975E+0 (11 characters).

UUT_RECVB?

Returns binary data as integers from the UUT serial port.

Parameter: (Integer) Optional maximum number of integers per line

Response: (Indefinite ASCII) Comma separated integers as follows:

1. (Integer) Number of data bytes being returned not including the count
2-n. (Integer) Data from the UUT serial port as integers.

Example: In a Fluke 45 is hooked up to the UUT port and it returns => followed by a carriage return and a line feed, UUT_RECVB will return 4, 61, 62, 13, 10.
UUT_SEND

(Send UUT Data command) Sends data to the UUT serial port in binary block or string data format over the 5800A Calibrator rear panel SERIAL 2 TO UUT serial port. The command may be sent over gpib or RS-232 ports, but applies to SERIAL 2 TO UUT serial port operation. Include a line feed (RS-232) character to terminate the block data or End or Identify (EOI) command (IEEE-488).

Parameter:
- #2<nn><nn characters string> (definite length)
- #0<character string> (indefinite length)
- "<character string>" (character string)

Examples:

- **UUT_SEND #206F1S2R0** (definite length format)
 Send the data F1S2R0 to the UUT in definite length format. The format is #2 (two numbers follow) 06 (characters follow) F1S2R0 (6 characters).

- **UUT_SEND #0F1S2R0** (indefinite length format)
 Send the data F1S2R0 to the UUT in indefinite length format. The format is #0 then the characters.

- **UUT_SEND "F1S2R0"** (character string)
 Send the data F1S2R0 to the UUT as a character string.

Special Case When the character string sent to a UUT must end in a carriage return (CR) command or line feed (LF) command or both, you must use the following:

Definite Length Format Follow the instructions above and after the character string add a command ^J for CR or ^M for LF or both, where ^J means hold down the <Cntl> key and type the letter J. For example, sending the string REMS in this format with both CR and LF, you would count 4 characters for REMS and 1 character each for ^J and ^M for a total of 6 characters. The command would be UUT_SEND #206REMS^J^M then <enter>. (The ^J and ^M “characters” actually perform the CR and LF functions.)

Indefinite Length Format This format may not be used when a character string requires CR and LF commands.

Character String Follow the instructions above and after the character string, add a \n for CR or \r for LF or both, where the alpha character is entered in lower case. For example, in the terminal mode to send the string REMS in this format with both CR and LF, the command would be UUT_SEND “REMS\n\r”. In the computer mode where commands are entered as part of a command string, use double quotes to show embedded quotes. For example, "uut_send "REMS\n\r" ".

The following characters and commands may be implemented as described above:

<table>
<thead>
<tr>
<th>Character Return</th>
<th>^J</th>
<th>\n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line Feed</td>
<td>^M</td>
<td>\r</td>
</tr>
<tr>
<td>Tab</td>
<td>Tab</td>
<td>\t</td>
</tr>
<tr>
<td>Backspace</td>
<td>^H</td>
<td>\b</td>
</tr>
<tr>
<td>Form Feed</td>
<td>^L</td>
<td>\f</td>
</tr>
</tbody>
</table>
UUT_SENDB
Sends binary data as integers to the UUT serial port.
Parameter: 1 to 10 (Integer) Integers to send to the UUT port.
Example: To send "*IND?", followed by a new line (ASCII 10), use:
UUTSENDB 42, 73, 68, 78, 63, 10

UUT_SET
(IEEE-488, RS-232, Sequential)
(UUT Serial Port Set command) Sets the RS-232-C settings for the 5800A Calibrator rear panel SERIAL 2 TO UUT serial port, which is saved in the 5800A non-volatile memory. (While saving configuration data in the non-volatile memory, a period of about 2 seconds, the 5800A does not respond to remote commands.) (To set the parameters for the rear panel SERIAL 1 FROM HOST serial port, see the SP_SET command.) The factory default values are shown below in bold type. (To return to the factory defaults, see the FORMAT SETUP command.)
The interface selection sets the command response, with command echo back with TERM (terminal) and no echo back with COMP (computer).
Parameters:
- `<baud rate value>`, 300, 600, 1200, 2400, 4800, 9600
- `<flow control>`, XON (xon/xoff), NOSTALL (none), RTS (rts/cts)
- `<number data bits>`, DBIT7 (7 bits) or DBIT8 (8 bits)
- `<number stop bits>`, SBIT1 (1 bit) or SBIT2 (2 bits)
- `<parity>`, PNONE (none), PODD (odd), PEVEN (even)
Example: UUT_SET 9600,XON,DBIT8,SBIT1,PNONE
Set the parameters for the rear panel SERIAL 2 TO UUT serial port to the factory default values.

UUT_SET?
(IEEE-488, RS-232, Sequential)
(UUT Serial Port Set query) Returns the RS-232-C settings for the 5800A Calibrator rear panel SERIAL 2 TO UUT serial port. (To return the parameters for the rear panel SERIAL 1 FROM HOST serial port, see the SP_SET? command.) The factory default values are shown below in bold type. (To return to the factory defaults, see the FORMAT SETUP command.)
Responses:
- `<baud rate value>`, 300, 600, 1200, 2400, 4800, 9600
- `<flow control>`, XON (xon/xoff), NOSTALL (none), RTS (rts/cts)
- `<number data bits>`, DBIT7 (7 bits) or DBIT8 (8 bits)
- `<number stop bits>`, SBIT1 (1 bit) or SBIT2 (2 bits)
- `<parity>`, PNONE (none), PODD (odd), PEVEN (even)
Example: UUT_SET? returns 9600,XON,DBIT8,SBIT1,PNONE
Return the parameters for the rear panel SERIAL 2 TO UUT serial port, as shown, when set to the factory default values.
VAL?

(IEEE-488, RS-232, Sequential)

Returns an impedance measurement value. VAL? returns the last measurement, whereas *TRG gets a new measurement.

Responses:
- `<measurement value>, OHM` (input impedance value in ohms)
- `<measurement value>, F` (input capacitance value in farads)
- `<measurement value>, NONE` (no measurement is available)

Example: VAL? returns 1.00E+03,OHM (1 kΩ input impedance).

VIDEOFMT

(IEEE-488, RS-232, Coupled, Overlapped command)

Selects the format for VIDEO mode. (Coupled, Overlapped command.)

Parameters: NTSC, PAL, PALM (for PAL-M), or SECAM

Example: VIDEOFMT SECAM

VIDEOFMT?

(IEEE-488, RS-232, Sequential)

Returns the VIDEO mode format.

Parameters: None

Response: NTSC, PAL, PALM (for PAL-M), or SECAM

VIDEOMARK

(IEEE-488, RS-232, Coupled, Overlapped command)

Programs the VIDEO mode line marker location. To select a line in the even frame for NTSC or PAL-M, add 262 to the line number. (Coupled, Overlapped command.)

Parameters: (number) Line marker location.

Example: VIDEOFMT NTSC; VIDEOMARK 272 (line 10, even frame)
VIDEOFMT PALM; VIDEOMARK 75 (line 75, odd frame)
VIDEOFMT PAL; VIDEOMARK 413 (line 413)
VIDEOMARK?
(IEEE-488, RS-232, Sequential)
Returns the VIDEO line marker location.
Parameters: None.
Response: (number) Line marker location.

*WAI
(IEEE-488, RS-232, Sequential)
(Wait-to-Continue command) Prevents further remote commands from being executed until all previous remote commands have been executed. For example, if you send an OUT command, you can cause the 5800A Calibrator to wait until the output has settled before continuing on to the next command if you follow OUT with a *WAI command. The *WAI command is useful with any overlapped command, preventing the 5800A Calibrator from processing other commands until the overlapped command is processed.
Example: *WAI
Process all existing commands before continuing.

WAVE
(IEEE-488, RS-232, Overlapped, Coupled)
(Waveform command) Sets the output waveforms for WAVEGEN mode. Waveform choices are SINE (sinewave), TRI (trianglewave), SQUARE (squarewave), or NONE (waveform does not apply).
Parameter: <waveform>, (SINE, TRI, SQUARE, NONE)
Example: WAVE SINE

WAVE?
(IEEE-488, RS-232, Sequential)
(Waveform query) Returns the output waveform. Waveform choices are SINE (sinewave), TRI (trianglewave), SQUARE (squarewave), or NONE (waveform does not apply).
Responses: < waveform>, (SINE, TRI, SQUARE, NONE)
Example: WAVE? returns SQUARE
Return SQUARE when the WAVEGEN ac primary output is a squarewave.

ZERO_MEAS
(IEEE-488, RS-232, Sequential)
Sets the measurement offset to the capacitance value to the most recent measurement if ON, to zero if OFF.
Parameters: (boolean) ON or OFF.
Chapter 7
Maintenance

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-1. Introduction ..</td>
<td>7-3</td>
</tr>
<tr>
<td>7-2. Replacing the Line Fuse ...</td>
<td>7-3</td>
</tr>
<tr>
<td>7-3. Cleaning the Air Filter ..</td>
<td>7-4</td>
</tr>
<tr>
<td>7-4. General Cleaning ...</td>
<td>7-6</td>
</tr>
<tr>
<td>7-5. Verification Tables ...</td>
<td>7-6</td>
</tr>
<tr>
<td>7-6. DC Voltage Verification ...</td>
<td>7-6</td>
</tr>
<tr>
<td>7-7. AC Voltage Amplitude Verification ..</td>
<td>7-7</td>
</tr>
<tr>
<td>7-8. AC Voltage Frequency Verification ..</td>
<td>7-8</td>
</tr>
<tr>
<td>7-9. Wave Generator Amplitude Verification: 1 MΩ Output Impedance</td>
<td>7-8</td>
</tr>
<tr>
<td>7-10. Wave Generator Amplitude Verification: 50Ω Output Impedance</td>
<td>7-9</td>
</tr>
<tr>
<td>7-11. Wave Generator Frequency Verification: 1 MΩ Output Impedance</td>
<td>7-10</td>
</tr>
<tr>
<td>7-12. Leveled Sinewave Verification: Amplitude ...</td>
<td>7-10</td>
</tr>
<tr>
<td>7-13. Leveled Sinewave Verification: Frequency ...</td>
<td>7-10</td>
</tr>
<tr>
<td>7-14. Leveled Sinewave Verification: Harmonics ..</td>
<td>7-11</td>
</tr>
<tr>
<td>7-15. Leveled Sinewave Verification: Flatness ...</td>
<td>7-12</td>
</tr>
<tr>
<td>7-16. Edge Verification: Amplitude ...</td>
<td>7-18</td>
</tr>
<tr>
<td>7-17. Edge Verification: Frequency ..</td>
<td>7-18</td>
</tr>
<tr>
<td>7-18. Edge Verification: Duty Cycle ...</td>
<td>7-18</td>
</tr>
<tr>
<td>7-19. Edge Verification: Rise Time ...</td>
<td>7-19</td>
</tr>
<tr>
<td>7-20. Tunnel Diode Pulser Verification ..</td>
<td>7-19</td>
</tr>
<tr>
<td>7-21. Marker Generator Verification ..</td>
<td>7-19</td>
</tr>
<tr>
<td>7-22. Pulse Generator Verification: Period ..</td>
<td>7-20</td>
</tr>
<tr>
<td>7-23. Pulse Generator Verification: Pulse Width ...</td>
<td>7-20</td>
</tr>
<tr>
<td>7-24. Input Impedance Verification: Resistance ...</td>
<td>7-20</td>
</tr>
<tr>
<td>7-25. Input Impedance Verification: Capacitance ..</td>
<td>7-20</td>
</tr>
</tbody>
</table>
7-1. **Introduction**

This chapter explains how to perform the routine maintenance and calibration task required to keep a normally operating 5800A Calibrator in service. These tasks include:

- Replacing the fuse
- Cleaning the air filter
- Cleaning the external surfaces
- Calibration verification

Refer to the Service manual for intensive maintenance tasks such as calibration or repair, and all procedures that require opening the cover of the instrument. The Service Manual also contains complete verification procedures for checking that traceability to national standards maintained by the normal calibration procedure.

7-2. **Replacing the Line Fuse**

The line power fuse is accessible on the rear panel. The fuse rating label above the ac power input module shows the correct replacement fuse for each line voltage setting. Table 7-1 lists the fuse part numbers for each line voltage setting.

To check or replace the fuse, refer to Figure 7-1 and proceed as follows:

1. **Disconnect line power.**
2. The line power fuse and line voltage switch are located in a compartment on the right end of the ac input module. To open the compartment and remove the fuse, insert the blade of a standard screwdriver to the left of the tab located at the left side of the compartment cover.
3. Pry the tab out of the slot and the compartment cover will pop part way out.
4. Remove the compartment cover with your fingers.
5. The fuse comes out with the compartment cover and can be easily replaced.
6. To reinstall the fuse, push the compartment cover back into the compartment until the tab locks with the ac input module.

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Fuse Description</th>
<th>Line Voltage Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>109181</td>
<td>2A/250V SB (Time Delay)</td>
<td>100 V or 120 V</td>
</tr>
<tr>
<td>109272</td>
<td>1A/250V SB (Time Delay)</td>
<td>200 V or 240 V</td>
</tr>
</tbody>
</table>
7-4

7-3. Cleaning the Air Filter

⚠️ Warning
To avoid risk of injury, never operate or power the 5800A calibrator without the fan filter in place.

⚠️ Caution
To avoid possible damage caused by overheating, keep the area around the fan unrestricted. If the air intake becomes restricted, the intake air will be too warm, or the filter will become clogged.

The air filter must be removed and cleaned every 30 days or more frequently if the calibrator is operated in a dusty environment. The air filter is accessible from the rear panel of the calibrator.
To clean the air filter, refer to Figure 7-2 and proceed as follows:

1. **Disconnect line power.**

2. Remove the filter element.
 a. Grasp the top and bottom of the air filter frame.
 b. Squeeze the edges of the frame towards each other to disengage the filter tabs from the slots in the calibrator.
 c. Pull the filter frame straight out from the calibrator.

3. Clean the filter element.
 a. Wash the filter element in soapy water.
 b. Rinse the filter element thoroughly.
 c. Shake out the excess water, then allow the filter element to dry thoroughly before reinstalling it.

4. Reinstall the filter element by performing the filter removal steps in reverse order.
7-4. General Cleaning

For general cleaning, wipe the case, front panel keys, and lens using a soft cloth slightly dampened with water or a non-abrasive mild cleaning solution that does not harm plastics.

Caution

To prevent damage, do not use aromatic hydrocarbons or chlorinated solvents for cleaning. They can damage the plastic materials used in the calibrator.

7-5. Verification Tables

The verification test points are provided here as a guide when verification to one-year specifications is desired.

7-6. DC Voltage Verification

<table>
<thead>
<tr>
<th>Nominal Value (V dc)</th>
<th>Measured Value (V dc)</th>
<th>Deviation (V dc)</th>
<th>1-Year Spec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00125</td>
<td>25 µV</td>
<td></td>
</tr>
<tr>
<td>0.00249</td>
<td>-0.00125</td>
<td>25.3 µV</td>
<td></td>
</tr>
<tr>
<td>0.00249</td>
<td>-0.00249</td>
<td>25.6 µV</td>
<td></td>
</tr>
<tr>
<td>0.0025</td>
<td>-0.0025</td>
<td>25.6 µV</td>
<td></td>
</tr>
<tr>
<td>0.00625</td>
<td>0.0025</td>
<td>25.6 µV</td>
<td></td>
</tr>
<tr>
<td>0.00625</td>
<td>0.0025</td>
<td>26.5 µV</td>
<td></td>
</tr>
<tr>
<td>0.0099</td>
<td>-0.0099</td>
<td>27.5 µV</td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>-0.01</td>
<td>27.5 µV</td>
<td></td>
</tr>
<tr>
<td>0.0175</td>
<td>-0.0175</td>
<td>29.4 µV</td>
<td></td>
</tr>
<tr>
<td>0.0249</td>
<td>-0.0249</td>
<td>31.2 µV</td>
<td></td>
</tr>
<tr>
<td>0.0249</td>
<td>-0.0249</td>
<td>31.2 µV</td>
<td></td>
</tr>
<tr>
<td>0.025</td>
<td>0.025</td>
<td>31.2 µV</td>
<td></td>
</tr>
<tr>
<td>0.0675</td>
<td>-0.0675</td>
<td>41.8 µV</td>
<td></td>
</tr>
<tr>
<td>0.1099</td>
<td>-0.1099</td>
<td>52.5 µV</td>
<td></td>
</tr>
<tr>
<td>0.11</td>
<td>-0.11</td>
<td>52.5 µV</td>
<td></td>
</tr>
<tr>
<td>0.305</td>
<td>-0.305</td>
<td>101.50 µV</td>
<td></td>
</tr>
<tr>
<td>0.499</td>
<td>0.499</td>
<td>150 µV</td>
<td></td>
</tr>
<tr>
<td>-0.499</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 7-2. DC Voltage Verification (cont.)

<table>
<thead>
<tr>
<th>Nominal Value (V dc)</th>
<th>Measured Value (V dc)</th>
<th>Deviation (V dc)</th>
<th>1-Year Spec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td></td>
<td></td>
<td>150 µV</td>
</tr>
<tr>
<td>-0.5</td>
<td></td>
<td></td>
<td>150 µV</td>
</tr>
<tr>
<td>1.35</td>
<td></td>
<td></td>
<td>362.5 µV</td>
</tr>
<tr>
<td>-1.35</td>
<td></td>
<td></td>
<td>362.5 µV</td>
</tr>
<tr>
<td>2.19</td>
<td></td>
<td></td>
<td>572 µV</td>
</tr>
<tr>
<td>-2.19</td>
<td></td>
<td></td>
<td>572 µV</td>
</tr>
<tr>
<td>2.2</td>
<td></td>
<td></td>
<td>572 µV</td>
</tr>
<tr>
<td>-2.2</td>
<td></td>
<td></td>
<td>572 µV</td>
</tr>
<tr>
<td>6.6</td>
<td></td>
<td></td>
<td>1.67 mV</td>
</tr>
<tr>
<td>-6.6</td>
<td></td>
<td></td>
<td>1.67 mV</td>
</tr>
<tr>
<td>10.99</td>
<td></td>
<td></td>
<td>2.77 mV</td>
</tr>
<tr>
<td>-10.99</td>
<td></td>
<td></td>
<td>2.77 mV</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>2.77 mV</td>
</tr>
<tr>
<td>-11</td>
<td></td>
<td></td>
<td>2.77 mV</td>
</tr>
<tr>
<td>70.5</td>
<td></td>
<td></td>
<td>17.65 mV</td>
</tr>
<tr>
<td>-70.5</td>
<td></td>
<td></td>
<td>17.65 mV</td>
</tr>
<tr>
<td>130</td>
<td></td>
<td></td>
<td>32.5 mV</td>
</tr>
<tr>
<td>-130</td>
<td></td>
<td></td>
<td>32.5 mV</td>
</tr>
<tr>
<td>6.599 (50 Ω)</td>
<td></td>
<td></td>
<td>16.5 mV</td>
</tr>
</tbody>
</table>

7-7. AC Voltage Amplitude Verification

Table 7-3. AC Voltage Amplitude Verification

<table>
<thead>
<tr>
<th>Nominal Value (V p-p)</th>
<th>Frequency (Hz)</th>
<th>Measured Value (V p-p)</th>
<th>Deviation (V p-p)</th>
<th>1-year Spec. (V p-p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>1000</td>
<td></td>
<td>5.5 µV</td>
<td>5.5 µV</td>
</tr>
<tr>
<td>-0.001</td>
<td>1000</td>
<td></td>
<td>5.5 µV</td>
<td>5.5 µV</td>
</tr>
<tr>
<td>0.025</td>
<td>1000</td>
<td></td>
<td>17.5 µV</td>
<td>17.5 µV</td>
</tr>
<tr>
<td>-0.025</td>
<td>1000</td>
<td></td>
<td>17.5 µV</td>
<td>17.5 µV</td>
</tr>
<tr>
<td>0.11</td>
<td>1000</td>
<td></td>
<td>60 µV</td>
<td>60 µV</td>
</tr>
<tr>
<td>-0.11</td>
<td>1000</td>
<td></td>
<td>60 µV</td>
<td>60 µV</td>
</tr>
<tr>
<td>0.5</td>
<td>1000</td>
<td></td>
<td>255 µV</td>
<td>255 µV</td>
</tr>
<tr>
<td>-0.5</td>
<td>1000</td>
<td></td>
<td>255 µV</td>
<td>255 µV</td>
</tr>
<tr>
<td>2.2</td>
<td>1000</td>
<td></td>
<td>1.1 mV</td>
<td>1.1 mV</td>
</tr>
<tr>
<td>-2.2</td>
<td>1000</td>
<td></td>
<td>1.1 mV</td>
<td>1.1 mV</td>
</tr>
<tr>
<td>11</td>
<td>1000</td>
<td></td>
<td>5.5 mV</td>
<td>5.5 mV</td>
</tr>
<tr>
<td>-11</td>
<td>1000</td>
<td></td>
<td>5.5 mV</td>
<td>5.5 mV</td>
</tr>
<tr>
<td>130</td>
<td>1000</td>
<td></td>
<td>6.5 mV</td>
<td>6.5 mV</td>
</tr>
<tr>
<td>-130</td>
<td>1000</td>
<td></td>
<td>6.5 mV</td>
<td>6.5 mV</td>
</tr>
<tr>
<td>6.599 (50 Ω)</td>
<td>1000</td>
<td></td>
<td>16.5 mV</td>
<td>16.5 mV</td>
</tr>
</tbody>
</table>
7-8. **AC Voltage Frequency Verification**

Table 7-4. AC Voltage Frequency Verification

<table>
<thead>
<tr>
<th>Nominal Value (V p-p)</th>
<th>Frequency (Hz)</th>
<th>Measured Value (Hz)</th>
<th>Deviation (Hz)</th>
<th>1-year Spec. (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>10</td>
<td></td>
<td>1E-5</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>100</td>
<td></td>
<td>1E-4</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>1000</td>
<td></td>
<td>1E-3</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>10000</td>
<td></td>
<td>1E-2</td>
<td></td>
</tr>
</tbody>
</table>

7-9. **Wave Generator Amplitude Verification: 1 MΩ Output Impedance**

Table 7-5. Wave Generator Amplitude Verification (into 1 MΩ impedance)

<table>
<thead>
<tr>
<th>Wave Shape</th>
<th>Nominal Value (V p-p)</th>
<th>Frequency (Hz)</th>
<th>Measured Value (V p-p)</th>
<th>Deviation (V p-p)</th>
<th>1-Year Spec. (V p-p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>square</td>
<td>0.0018</td>
<td>1000</td>
<td></td>
<td>0.000154</td>
<td></td>
</tr>
<tr>
<td>square</td>
<td>0.0119</td>
<td>1000</td>
<td></td>
<td>0.000457</td>
<td></td>
</tr>
<tr>
<td>square</td>
<td>0.0219</td>
<td>1000</td>
<td></td>
<td>0.000757</td>
<td></td>
</tr>
<tr>
<td>square</td>
<td>0.022</td>
<td>1000</td>
<td></td>
<td>0.00076</td>
<td></td>
</tr>
<tr>
<td>square</td>
<td>0.056</td>
<td>1000</td>
<td></td>
<td>0.00178</td>
<td></td>
</tr>
<tr>
<td>square</td>
<td>0.0899</td>
<td>1000</td>
<td></td>
<td>0.002797</td>
<td></td>
</tr>
<tr>
<td>square</td>
<td>0.09</td>
<td>1000</td>
<td></td>
<td>0.0028</td>
<td></td>
</tr>
<tr>
<td>square</td>
<td>0.155</td>
<td>1000</td>
<td></td>
<td>0.00475</td>
<td></td>
</tr>
<tr>
<td>square</td>
<td>0.219</td>
<td>1000</td>
<td></td>
<td>0.00667</td>
<td></td>
</tr>
<tr>
<td>square</td>
<td>0.22</td>
<td>1000</td>
<td></td>
<td>0.0067</td>
<td></td>
</tr>
<tr>
<td>square</td>
<td>0.56</td>
<td>1000</td>
<td></td>
<td>0.0169</td>
<td></td>
</tr>
<tr>
<td>square</td>
<td>0.899</td>
<td>1000</td>
<td></td>
<td>0.02707</td>
<td></td>
</tr>
<tr>
<td>square</td>
<td>0.9</td>
<td>1000</td>
<td></td>
<td>0.0271</td>
<td></td>
</tr>
<tr>
<td>square</td>
<td>3.75</td>
<td>1000</td>
<td></td>
<td>0.1126</td>
<td></td>
</tr>
<tr>
<td>square</td>
<td>6.59</td>
<td>1000</td>
<td></td>
<td>0.1978</td>
<td></td>
</tr>
<tr>
<td>square</td>
<td>6.6</td>
<td>1000</td>
<td></td>
<td>0.1981</td>
<td></td>
</tr>
<tr>
<td>square</td>
<td>30.8</td>
<td>1000</td>
<td></td>
<td>0.9241</td>
<td></td>
</tr>
<tr>
<td>square</td>
<td>55</td>
<td>10</td>
<td></td>
<td>1.6501</td>
<td></td>
</tr>
<tr>
<td>square</td>
<td>55</td>
<td>100</td>
<td></td>
<td>1.6501</td>
<td></td>
</tr>
<tr>
<td>square</td>
<td>55</td>
<td>1000</td>
<td></td>
<td>1.6501</td>
<td></td>
</tr>
<tr>
<td>sine</td>
<td>0.0018</td>
<td>1000</td>
<td></td>
<td>0.000154</td>
<td></td>
</tr>
<tr>
<td>sine</td>
<td>0.0219</td>
<td>1000</td>
<td></td>
<td>0.000757</td>
<td></td>
</tr>
<tr>
<td>sine</td>
<td>0.0899</td>
<td>1000</td>
<td></td>
<td>0.002797</td>
<td></td>
</tr>
<tr>
<td>sine</td>
<td>0.219</td>
<td>1000</td>
<td></td>
<td>0.00667</td>
<td></td>
</tr>
<tr>
<td>sine</td>
<td>0.899</td>
<td>1000</td>
<td></td>
<td>0.02707</td>
<td></td>
</tr>
<tr>
<td>sine</td>
<td>6.59</td>
<td>1000</td>
<td></td>
<td>0.1978</td>
<td></td>
</tr>
<tr>
<td>sine</td>
<td>55</td>
<td>1000</td>
<td></td>
<td>1.6501</td>
<td></td>
</tr>
<tr>
<td>triangle</td>
<td>0.0018</td>
<td>1000</td>
<td></td>
<td>0.000154</td>
<td></td>
</tr>
<tr>
<td>triangle</td>
<td>0.0219</td>
<td>1000</td>
<td></td>
<td>0.000757</td>
<td></td>
</tr>
<tr>
<td>triangle</td>
<td>0.0899</td>
<td>1000</td>
<td></td>
<td>0.002797</td>
<td></td>
</tr>
<tr>
<td>triangle</td>
<td>0.219</td>
<td>1000</td>
<td></td>
<td>0.00667</td>
<td></td>
</tr>
<tr>
<td>triangle</td>
<td>0.899</td>
<td>1000</td>
<td></td>
<td>0.02707</td>
<td></td>
</tr>
<tr>
<td>triangle</td>
<td>6.59</td>
<td>1000</td>
<td></td>
<td>0.1978</td>
<td></td>
</tr>
<tr>
<td>triangle</td>
<td>55</td>
<td>1000</td>
<td></td>
<td>1.6501</td>
<td></td>
</tr>
</tbody>
</table>
7-10. Wave Generator Amplitude Verification: 50Ω Output Impedance

Table 7-6. Wave Generator Amplitude Verification (into 50 Ω impedance)

<table>
<thead>
<tr>
<th>Wave Shape</th>
<th>Nominal Value (V p-p)</th>
<th>Frequency (Hz)</th>
<th>Measured Value (V p-p)</th>
<th>Deviation (V p-p)</th>
<th>1-Year Spec. (V p-p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>square</td>
<td>0.0018</td>
<td>1000</td>
<td></td>
<td></td>
<td>0.000154</td>
</tr>
<tr>
<td>square</td>
<td>0.0064</td>
<td>1000</td>
<td></td>
<td></td>
<td>0.000292</td>
</tr>
<tr>
<td>square</td>
<td>0.0109</td>
<td>1000</td>
<td></td>
<td></td>
<td>0.000427</td>
</tr>
<tr>
<td>square</td>
<td>0.0111</td>
<td>1000</td>
<td></td>
<td></td>
<td>0.00043</td>
</tr>
<tr>
<td>square</td>
<td>0.028</td>
<td>1000</td>
<td></td>
<td></td>
<td>0.00094</td>
</tr>
<tr>
<td>square</td>
<td>0.0449</td>
<td>1000</td>
<td></td>
<td></td>
<td>0.001447</td>
</tr>
<tr>
<td>square</td>
<td>0.045</td>
<td>1000</td>
<td></td>
<td></td>
<td>0.00145</td>
</tr>
<tr>
<td>square</td>
<td>0.078</td>
<td>1000</td>
<td></td>
<td></td>
<td>0.00244</td>
</tr>
<tr>
<td>square</td>
<td>0.109</td>
<td>1000</td>
<td></td>
<td></td>
<td>0.00337</td>
</tr>
<tr>
<td>square</td>
<td>0.11</td>
<td>1000</td>
<td></td>
<td></td>
<td>0.0034</td>
</tr>
<tr>
<td>square</td>
<td>0.28</td>
<td>1000</td>
<td></td>
<td></td>
<td>0.0085</td>
</tr>
<tr>
<td>square</td>
<td>0.449</td>
<td>1000</td>
<td></td>
<td></td>
<td>0.01357</td>
</tr>
<tr>
<td>square</td>
<td>0.45</td>
<td>1000</td>
<td></td>
<td></td>
<td>0.0136</td>
</tr>
<tr>
<td>square</td>
<td>0.78</td>
<td>1000</td>
<td></td>
<td></td>
<td>0.0235</td>
</tr>
<tr>
<td>square</td>
<td>1.09</td>
<td>1000</td>
<td></td>
<td></td>
<td>0.0328</td>
</tr>
<tr>
<td>square</td>
<td>1.1</td>
<td>1000</td>
<td></td>
<td></td>
<td>0.0331</td>
</tr>
<tr>
<td>square</td>
<td>1.8</td>
<td>1000</td>
<td></td>
<td></td>
<td>0.0541</td>
</tr>
<tr>
<td>square</td>
<td>2.5</td>
<td>10</td>
<td></td>
<td></td>
<td>0.0751</td>
</tr>
<tr>
<td>square</td>
<td>2.5</td>
<td>100</td>
<td></td>
<td></td>
<td>0.0751</td>
</tr>
<tr>
<td>square</td>
<td>2.5</td>
<td>1000</td>
<td></td>
<td></td>
<td>0.0751</td>
</tr>
<tr>
<td>sine</td>
<td>0.0018</td>
<td>1000</td>
<td></td>
<td></td>
<td>0.000154</td>
</tr>
<tr>
<td>sine</td>
<td>0.0109</td>
<td>1000</td>
<td></td>
<td></td>
<td>0.000427</td>
</tr>
<tr>
<td>sine</td>
<td>0.0449</td>
<td>1000</td>
<td></td>
<td></td>
<td>0.001447</td>
</tr>
<tr>
<td>sine</td>
<td>0.109</td>
<td>1000</td>
<td></td>
<td></td>
<td>0.00337</td>
</tr>
<tr>
<td>sine</td>
<td>0.449</td>
<td>1000</td>
<td></td>
<td></td>
<td>0.01357</td>
</tr>
<tr>
<td>sine</td>
<td>1.09</td>
<td>1000</td>
<td></td>
<td></td>
<td>0.0328</td>
</tr>
<tr>
<td>sine</td>
<td>2.5</td>
<td>1000</td>
<td></td>
<td></td>
<td>0.0751</td>
</tr>
<tr>
<td>triangle</td>
<td>0.0018</td>
<td>1000</td>
<td></td>
<td></td>
<td>0.000154</td>
</tr>
<tr>
<td>triangle</td>
<td>0.0109</td>
<td>1000</td>
<td></td>
<td></td>
<td>0.000427</td>
</tr>
<tr>
<td>triangle</td>
<td>0.0449</td>
<td>1000</td>
<td></td>
<td></td>
<td>0.001447</td>
</tr>
<tr>
<td>triangle</td>
<td>0.109</td>
<td>1000</td>
<td></td>
<td></td>
<td>0.00337</td>
</tr>
<tr>
<td>triangle</td>
<td>0.449</td>
<td>1000</td>
<td></td>
<td></td>
<td>0.01357</td>
</tr>
<tr>
<td>triangle</td>
<td>1.09</td>
<td>1000</td>
<td></td>
<td></td>
<td>0.0328</td>
</tr>
<tr>
<td>triangle</td>
<td>2.5</td>
<td>1000</td>
<td></td>
<td></td>
<td>0.0751</td>
</tr>
</tbody>
</table>
7-11. Wave Generator Frequency Verification: 1 MΩ Output Impedance

Table 7-7. Wave Generator Frequency Verification (into 1 MΩ Impedance)

<table>
<thead>
<tr>
<th>Nominal Value (V p-p)</th>
<th>Frequency</th>
<th>Measured Value (Hz)</th>
<th>Deviation (Hz)</th>
<th>1-Year Spec. (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>1</td>
<td></td>
<td>7.5000E-06</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>10</td>
<td></td>
<td>3.0000E-05</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>100</td>
<td></td>
<td>2.5500E-04</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>1000</td>
<td></td>
<td>2.5050E-03</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>10000</td>
<td></td>
<td>2.5005E-02</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>100000</td>
<td></td>
<td>2.5001E-01</td>
<td></td>
</tr>
</tbody>
</table>

7-12. Leveled Sinewave Verification: Amplitude

Table 7-8. Leveled Sinewave Verification: Amplitude

<table>
<thead>
<tr>
<th>Nominal Value (V p-p)</th>
<th>Frequency</th>
<th>Measured Value (V p-p)</th>
<th>Deviation (V p-p)</th>
<th>1-Year Spec. (V p-p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.005</td>
<td>50 kHz</td>
<td></td>
<td>0.0004</td>
<td></td>
</tr>
<tr>
<td>0.0075</td>
<td>50 kHz</td>
<td></td>
<td>0.00045</td>
<td></td>
</tr>
<tr>
<td>0.0099</td>
<td>50 kHz</td>
<td></td>
<td>0.000498</td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>50 kHz</td>
<td></td>
<td>0.0005</td>
<td></td>
</tr>
<tr>
<td>0.025</td>
<td>50 kHz</td>
<td></td>
<td>0.0008</td>
<td></td>
</tr>
<tr>
<td>0.039</td>
<td>50 kHz</td>
<td></td>
<td>0.00108</td>
<td></td>
</tr>
<tr>
<td>0.04</td>
<td>50 kHz</td>
<td></td>
<td>0.0011</td>
<td></td>
</tr>
<tr>
<td>0.07</td>
<td>50 kHz</td>
<td></td>
<td>0.0017</td>
<td></td>
</tr>
<tr>
<td>0.099</td>
<td>50 kHz</td>
<td></td>
<td>0.00228</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>50 kHz</td>
<td></td>
<td>0.0023</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>50 kHz</td>
<td></td>
<td>0.0053</td>
<td></td>
</tr>
<tr>
<td>0.399</td>
<td>50 kHz</td>
<td></td>
<td>0.00828</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>50 kHz</td>
<td></td>
<td>0.0083</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>50 kHz</td>
<td></td>
<td>0.0163</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>50 kHz</td>
<td></td>
<td>0.0243</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>50 kHz</td>
<td></td>
<td>0.0263</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>50 kHz</td>
<td></td>
<td>0.0683</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>50 kHz</td>
<td></td>
<td>0.1103</td>
<td></td>
</tr>
</tbody>
</table>

7-13. Leveled Sinewave Verification: Frequency

Table 7-9. Leveled Sinewave Verification: Frequency

<table>
<thead>
<tr>
<th>Nominal Value (V p-p)</th>
<th>Frequency</th>
<th>Measured Value (Hz)</th>
<th>Deviation (Hz)</th>
<th>1-Year Spec. (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5</td>
<td>50 kHz</td>
<td></td>
<td>.05</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>1 MHz</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>10 MHz</td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>100 MHz</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>600 MHz</td>
<td></td>
<td>600</td>
<td></td>
</tr>
</tbody>
</table>
7-14. Leveled Sinewave Verification: Harmonics

Table 7-10. Leveled Sinewave Verification: Harmonics

<table>
<thead>
<tr>
<th>Harmonic</th>
<th>Nominal Value (V p-p)</th>
<th>Frequency</th>
<th>Measured Value (dB)</th>
<th>Deviation (dB)</th>
<th>1-Year Spec. (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd harmonic</td>
<td>0.0099</td>
<td>50 kHz</td>
<td>-33</td>
<td>-33</td>
<td>-33</td>
</tr>
<tr>
<td>3rd+ harmonic</td>
<td>0.0099</td>
<td>50 kHz</td>
<td>-38</td>
<td>-38</td>
<td>-38</td>
</tr>
<tr>
<td>2nd harmonic</td>
<td>0.0399</td>
<td>50 kHz</td>
<td>-33</td>
<td>-33</td>
<td>-33</td>
</tr>
<tr>
<td>3rd+ harmonic</td>
<td>0.0399</td>
<td>50 kHz</td>
<td>-38</td>
<td>-38</td>
<td>-38</td>
</tr>
<tr>
<td>2nd harmonic</td>
<td>0.099</td>
<td>50 kHz</td>
<td>-33</td>
<td>-33</td>
<td>-33</td>
</tr>
<tr>
<td>3rd+ harmonic</td>
<td>0.099</td>
<td>50 kHz</td>
<td>-38</td>
<td>-38</td>
<td>-38</td>
</tr>
<tr>
<td>2nd harmonic</td>
<td>0.399</td>
<td>50 kHz</td>
<td>-33</td>
<td>-33</td>
<td>-33</td>
</tr>
<tr>
<td>3rd+ harmonic</td>
<td>0.399</td>
<td>50 kHz</td>
<td>-38</td>
<td>-38</td>
<td>-38</td>
</tr>
<tr>
<td>2nd harmonic</td>
<td>1.2</td>
<td>50 kHz</td>
<td>-33</td>
<td>-33</td>
<td>-33</td>
</tr>
<tr>
<td>3rd+ harmonic</td>
<td>1.2</td>
<td>50 kHz</td>
<td>-38</td>
<td>-38</td>
<td>-38</td>
</tr>
<tr>
<td>2nd harmonic</td>
<td>5.5</td>
<td>100 kHz</td>
<td>-33</td>
<td>-33</td>
<td>-33</td>
</tr>
<tr>
<td>3rd+ harmonic</td>
<td>5.5</td>
<td>100 kHz</td>
<td>-38</td>
<td>-38</td>
<td>-38</td>
</tr>
<tr>
<td>2nd harmonic</td>
<td>5.5</td>
<td>200 kHz</td>
<td>-33</td>
<td>-33</td>
<td>-33</td>
</tr>
<tr>
<td>3rd+ harmonic</td>
<td>5.5</td>
<td>200 kHz</td>
<td>-38</td>
<td>-38</td>
<td>-38</td>
</tr>
<tr>
<td>2nd harmonic</td>
<td>5.5</td>
<td>400 kHz</td>
<td>-33</td>
<td>-33</td>
<td>-33</td>
</tr>
<tr>
<td>3rd+ harmonic</td>
<td>5.5</td>
<td>400 kHz</td>
<td>-38</td>
<td>-38</td>
<td>-38</td>
</tr>
<tr>
<td>2nd harmonic</td>
<td>5.5</td>
<td>800 kHz</td>
<td>-33</td>
<td>-33</td>
<td>-33</td>
</tr>
<tr>
<td>3rd+ harmonic</td>
<td>5.5</td>
<td>800 kHz</td>
<td>-38</td>
<td>-38</td>
<td>-38</td>
</tr>
<tr>
<td>2nd harmonic</td>
<td>5.5</td>
<td>1 MHz</td>
<td>-33</td>
<td>-33</td>
<td>-33</td>
</tr>
<tr>
<td>3rd+ harmonic</td>
<td>5.5</td>
<td>1 MHz</td>
<td>-38</td>
<td>-38</td>
<td>-38</td>
</tr>
<tr>
<td>2nd harmonic</td>
<td>5.5</td>
<td>2 MHz</td>
<td>-33</td>
<td>-33</td>
<td>-33</td>
</tr>
<tr>
<td>3rd+ harmonic</td>
<td>5.5</td>
<td>2 MHz</td>
<td>-38</td>
<td>-38</td>
<td>-38</td>
</tr>
<tr>
<td>2nd harmonic</td>
<td>5.5</td>
<td>4 MHz</td>
<td>-33</td>
<td>-33</td>
<td>-33</td>
</tr>
<tr>
<td>3rd+ harmonic</td>
<td>5.5</td>
<td>4 MHz</td>
<td>-38</td>
<td>-38</td>
<td>-38</td>
</tr>
<tr>
<td>2nd harmonic</td>
<td>5.5</td>
<td>8 MHz</td>
<td>-33</td>
<td>-33</td>
<td>-33</td>
</tr>
<tr>
<td>3rd+ harmonic</td>
<td>5.5</td>
<td>8 MHz</td>
<td>-38</td>
<td>-38</td>
<td>-38</td>
</tr>
<tr>
<td>2nd harmonic</td>
<td>5.5</td>
<td>10 MHz</td>
<td>-33</td>
<td>-33</td>
<td>-33</td>
</tr>
<tr>
<td>3rd+ harmonic</td>
<td>5.5</td>
<td>10 MHz</td>
<td>-38</td>
<td>-38</td>
<td>-38</td>
</tr>
<tr>
<td>2nd harmonic</td>
<td>5.5</td>
<td>20 MHz</td>
<td>-33</td>
<td>-33</td>
<td>-33</td>
</tr>
<tr>
<td>3rd+ harmonic</td>
<td>5.5</td>
<td>20 MHz</td>
<td>-38</td>
<td>-38</td>
<td>-38</td>
</tr>
<tr>
<td>2nd harmonic</td>
<td>5.5</td>
<td>40 MHz</td>
<td>-33</td>
<td>-33</td>
<td>-33</td>
</tr>
<tr>
<td>3rd+ harmonic</td>
<td>5.5</td>
<td>40 MHz</td>
<td>-38</td>
<td>-38</td>
<td>-38</td>
</tr>
<tr>
<td>2nd harmonic</td>
<td>5.5</td>
<td>80 MHz</td>
<td>-33</td>
<td>-33</td>
<td>-33</td>
</tr>
<tr>
<td>3rd+ harmonic</td>
<td>5.5</td>
<td>80 MHz</td>
<td>-38</td>
<td>-38</td>
<td>-38</td>
</tr>
<tr>
<td>2nd harmonic</td>
<td>5.5</td>
<td>100 MHz</td>
<td>-33</td>
<td>-33</td>
<td>-33</td>
</tr>
<tr>
<td>3rd+ harmonic</td>
<td>5.5</td>
<td>100 MHz</td>
<td>-38</td>
<td>-38</td>
<td>-38</td>
</tr>
<tr>
<td>2nd harmonic</td>
<td>5.5</td>
<td>200 MHz</td>
<td>-33</td>
<td>-33</td>
<td>-33</td>
</tr>
<tr>
<td>3rd+ harmonic</td>
<td>5.5</td>
<td>200 MHz</td>
<td>-38</td>
<td>-38</td>
<td>-38</td>
</tr>
<tr>
<td>2nd harmonic</td>
<td>5.5</td>
<td>400 MHz</td>
<td>-33</td>
<td>-33</td>
<td>-33</td>
</tr>
<tr>
<td>3rd+ harmonic</td>
<td>5.5</td>
<td>400 MHz</td>
<td>-38</td>
<td>-38</td>
<td>-38</td>
</tr>
<tr>
<td>2nd harmonic</td>
<td>5.5</td>
<td>600 MHz</td>
<td>-33</td>
<td>-33</td>
<td>-33</td>
</tr>
<tr>
<td>3rd+ harmonic</td>
<td>5.5</td>
<td>600 MHz</td>
<td>-38</td>
<td>-38</td>
<td>-38</td>
</tr>
</tbody>
</table>
7-15. **Leveled Sinewave Verification: Flatness**

Table 7-11. Leveled Sinewave Verification: Flatness

<table>
<thead>
<tr>
<th>Nominal Value (V p-p)</th>
<th>Frequency</th>
<th>Measured Value (V p-p)</th>
<th>Deviation (V p-p)</th>
<th>1-Year Spec. (V p-p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.005</td>
<td>50 kHz</td>
<td>na</td>
<td>0.000175</td>
<td></td>
</tr>
<tr>
<td>0.005</td>
<td>1 MHz</td>
<td>0.000175</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.005</td>
<td>10 MHz</td>
<td>0.000175</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.015</td>
<td>50 MHz</td>
<td>0.000175</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.015</td>
<td>100 MHz</td>
<td>0.000175</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.015</td>
<td>150 MHz</td>
<td>0.0002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.015</td>
<td>200 MHz</td>
<td>0.0002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.015</td>
<td>250 MHz</td>
<td>0.0002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.015</td>
<td>300 MHz</td>
<td>0.0002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.015</td>
<td>350 MHz</td>
<td>0.0003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.015</td>
<td>400 MHz</td>
<td>0.0003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.015</td>
<td>450 MHz</td>
<td>0.0003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.015</td>
<td>500 MHz</td>
<td>0.0003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.015</td>
<td>550 MHz</td>
<td>0.0003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.015</td>
<td>600 MHz</td>
<td>0.0003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0175</td>
<td>50 kHz</td>
<td>na</td>
<td>0.0002125</td>
<td></td>
</tr>
<tr>
<td>0.0175</td>
<td>1 MHz</td>
<td>0.0002125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0175</td>
<td>10 MHz</td>
<td>0.0002125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0175</td>
<td>50 MHz</td>
<td>0.0002125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0175</td>
<td>100 MHz</td>
<td>0.0002125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0175</td>
<td>150 MHz</td>
<td>0.00025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0175</td>
<td>200 MHz</td>
<td>0.00025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0175</td>
<td>250 MHz</td>
<td>0.00025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0175</td>
<td>300 MHz</td>
<td>0.00025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0175</td>
<td>350 MHz</td>
<td>0.0004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0175</td>
<td>400 MHz</td>
<td>0.0004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0175</td>
<td>450 MHz</td>
<td>0.0004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0175</td>
<td>500 MHz</td>
<td>0.0004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0175</td>
<td>550 MHz</td>
<td>0.0004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0175</td>
<td>600 MHz</td>
<td>0.0004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.020</td>
<td>50 kHz</td>
<td>na</td>
<td>0.0002485</td>
<td></td>
</tr>
<tr>
<td>0.020</td>
<td>1 MHz</td>
<td>0.0002485</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.020</td>
<td>10 MHz</td>
<td>0.0002485</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.020</td>
<td>50 MHz</td>
<td>0.0002485</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.020</td>
<td>100 MHz</td>
<td>0.0002485</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.020</td>
<td>150 MHz</td>
<td>0.0003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.020</td>
<td>200 MHz</td>
<td>0.0003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.020</td>
<td>250 MHz</td>
<td>0.0003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.020</td>
<td>300 MHz</td>
<td>0.0003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.020</td>
<td>350 MHz</td>
<td>0.0004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.020</td>
<td>400 MHz</td>
<td>0.0004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.020</td>
<td>450 MHz</td>
<td>0.0004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.020</td>
<td>500 MHz</td>
<td>0.0004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.020</td>
<td>550 MHz</td>
<td>0.0004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.020</td>
<td>600 MHz</td>
<td>0.0004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.022</td>
<td>50 kHz</td>
<td>na</td>
<td>0.000496</td>
<td></td>
</tr>
<tr>
<td>0.022</td>
<td>1 MHz</td>
<td>0.000496</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.022</td>
<td>10 MHz</td>
<td>0.000496</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.022</td>
<td>50 MHz</td>
<td>0.000496</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.022</td>
<td>100 MHz</td>
<td>0.000496</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.022</td>
<td>150 MHz</td>
<td>0.0005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.022</td>
<td>200 MHz</td>
<td>0.0005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.022</td>
<td>250 MHz</td>
<td>0.0005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.022</td>
<td>300 MHz</td>
<td>0.0005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.022</td>
<td>350 MHz</td>
<td>0.0005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.022</td>
<td>400 MHz</td>
<td>0.0005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.022</td>
<td>450 MHz</td>
<td>0.0005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.022</td>
<td>500 MHz</td>
<td>0.0005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.022</td>
<td>550 MHz</td>
<td>0.0005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.022</td>
<td>600 MHz</td>
<td>0.0005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal Value (V p-p)</td>
<td>Frequency</td>
<td>Measured Value (V p-p)</td>
<td>Deviation (V p-p)</td>
<td>1-Year Spec. (V p-p)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------</td>
<td>------------------------</td>
<td>------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>0.01</td>
<td>50 kHz</td>
<td>na</td>
<td>na</td>
<td>0.000475</td>
</tr>
<tr>
<td>0.01</td>
<td>1 MHz</td>
<td>0.00025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>10 MHz</td>
<td>0.00025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>50 MHz</td>
<td>0.00025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>100 MHz</td>
<td>0.00025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>150 MHz</td>
<td>0.0003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>200 MHz</td>
<td>0.0003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>250 MHz</td>
<td>0.0003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>300 MHz</td>
<td>0.0003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>350 MHz</td>
<td>0.0005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>400 MHz</td>
<td>0.0005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>450 MHz</td>
<td>0.0005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>500 MHz</td>
<td>0.0005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>550 MHz</td>
<td>0.0005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>600 MHz</td>
<td>0.0005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.025</td>
<td>50 kHz</td>
<td>na</td>
<td>na</td>
<td>0.000475</td>
</tr>
<tr>
<td>0.025</td>
<td>1 MHz</td>
<td>0.000475</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.025</td>
<td>10 MHz</td>
<td>0.000475</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.025</td>
<td>50 MHz</td>
<td>0.000475</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.025</td>
<td>100 MHz</td>
<td>0.000475</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.025</td>
<td>150 MHz</td>
<td>0.0006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.025</td>
<td>200 MHz</td>
<td>0.0006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.025</td>
<td>250 MHz</td>
<td>0.0006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.025</td>
<td>300 MHz</td>
<td>0.0006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.025</td>
<td>350 MHz</td>
<td>0.0011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.025</td>
<td>400 MHz</td>
<td>0.0011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.025</td>
<td>450 MHz</td>
<td>0.0011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.025</td>
<td>500 MHz</td>
<td>0.0011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.025</td>
<td>550 MHz</td>
<td>0.0011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.025</td>
<td>600 MHz</td>
<td>0.0011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.039</td>
<td>50 kHz</td>
<td>na</td>
<td>na</td>
<td>0.000685</td>
</tr>
<tr>
<td>0.039</td>
<td>1 MHz</td>
<td>0.000685</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.039</td>
<td>10 MHz</td>
<td>0.000685</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.039</td>
<td>50 MHz</td>
<td>0.000685</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.039</td>
<td>100 MHz</td>
<td>0.000685</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.039</td>
<td>150 MHz</td>
<td>0.00088</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.039</td>
<td>200 MHz</td>
<td>0.00088</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.039</td>
<td>250 MHz</td>
<td>0.00088</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.039</td>
<td>300 MHz</td>
<td>0.00088</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.039</td>
<td>350 MHz</td>
<td>0.00166</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.039</td>
<td>400 MHz</td>
<td>0.00166</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.039</td>
<td>450 MHz</td>
<td>0.00166</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.039</td>
<td>500 MHz</td>
<td>0.00166</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.039</td>
<td>550 MHz</td>
<td>0.00166</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.039</td>
<td>600 MHz</td>
<td>0.00166</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.04</td>
<td>50 kHz</td>
<td>na</td>
<td>na</td>
<td>0.0007</td>
</tr>
<tr>
<td>0.04</td>
<td>1 MHz</td>
<td>0.0007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal Value (V p-p)</td>
<td>Frequency</td>
<td>Measured Value (V p-p)</td>
<td>Deviation (V p-p)</td>
<td>1-Year Spec. (V p-p)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------</td>
<td>------------------------</td>
<td>-------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>0.04</td>
<td>10 MHz</td>
<td></td>
<td>0.0007</td>
<td></td>
</tr>
<tr>
<td>0.04</td>
<td>50 MHz</td>
<td></td>
<td>0.0007</td>
<td></td>
</tr>
<tr>
<td>0.04</td>
<td>100 MHz</td>
<td></td>
<td>0.0007</td>
<td></td>
</tr>
<tr>
<td>0.04</td>
<td>150 MHz</td>
<td></td>
<td>0.0009</td>
<td></td>
</tr>
<tr>
<td>0.04</td>
<td>200 MHz</td>
<td></td>
<td>0.0009</td>
<td></td>
</tr>
<tr>
<td>0.04</td>
<td>250 MHz</td>
<td></td>
<td>0.0009</td>
<td></td>
</tr>
<tr>
<td>0.04</td>
<td>300 MHz</td>
<td></td>
<td>0.0009</td>
<td></td>
</tr>
<tr>
<td>0.04</td>
<td>350 MHz</td>
<td></td>
<td>0.0017</td>
<td></td>
</tr>
<tr>
<td>0.04</td>
<td>400 MHz</td>
<td></td>
<td>0.0017</td>
<td></td>
</tr>
<tr>
<td>0.04</td>
<td>450 MHz</td>
<td></td>
<td>0.0017</td>
<td></td>
</tr>
<tr>
<td>0.04</td>
<td>500 MHz</td>
<td></td>
<td>0.0017</td>
<td></td>
</tr>
<tr>
<td>0.04</td>
<td>550 MHz</td>
<td></td>
<td>0.0017</td>
<td></td>
</tr>
<tr>
<td>0.04</td>
<td>600 MHz</td>
<td></td>
<td>0.0017</td>
<td></td>
</tr>
<tr>
<td>0.07</td>
<td>50 kHz</td>
<td></td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>0.07</td>
<td>1 MHz</td>
<td></td>
<td>0.00115</td>
<td></td>
</tr>
<tr>
<td>0.07</td>
<td>10 MHz</td>
<td></td>
<td>0.00115</td>
<td></td>
</tr>
<tr>
<td>0.07</td>
<td>50 MHz</td>
<td></td>
<td>0.00115</td>
<td></td>
</tr>
<tr>
<td>0.07</td>
<td>100 MHz</td>
<td></td>
<td>0.00115</td>
<td></td>
</tr>
<tr>
<td>0.07</td>
<td>150 MHz</td>
<td></td>
<td>0.0015</td>
<td></td>
</tr>
<tr>
<td>0.07</td>
<td>200 MHz</td>
<td></td>
<td>0.0015</td>
<td></td>
</tr>
<tr>
<td>0.07</td>
<td>250 MHz</td>
<td></td>
<td>0.0015</td>
<td></td>
</tr>
<tr>
<td>0.07</td>
<td>300 MHz</td>
<td></td>
<td>0.0015</td>
<td></td>
</tr>
<tr>
<td>0.07</td>
<td>350 MHz</td>
<td></td>
<td>0.0029</td>
<td></td>
</tr>
<tr>
<td>0.07</td>
<td>400 MHz</td>
<td></td>
<td>0.0029</td>
<td></td>
</tr>
<tr>
<td>0.07</td>
<td>450 MHz</td>
<td></td>
<td>0.0029</td>
<td></td>
</tr>
<tr>
<td>0.07</td>
<td>500 MHz</td>
<td></td>
<td>0.0029</td>
<td></td>
</tr>
<tr>
<td>0.07</td>
<td>550 MHz</td>
<td></td>
<td>0.0029</td>
<td></td>
</tr>
<tr>
<td>0.07</td>
<td>600 MHz</td>
<td></td>
<td>0.0029</td>
<td></td>
</tr>
<tr>
<td>0.099</td>
<td>50 kHz</td>
<td></td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>0.099</td>
<td>1 MHz</td>
<td></td>
<td>0.001585</td>
<td></td>
</tr>
<tr>
<td>0.099</td>
<td>10 MHz</td>
<td></td>
<td>0.001585</td>
<td></td>
</tr>
<tr>
<td>0.099</td>
<td>50 MHz</td>
<td></td>
<td>0.001585</td>
<td></td>
</tr>
<tr>
<td>0.099</td>
<td>100 MHz</td>
<td></td>
<td>0.001585</td>
<td></td>
</tr>
<tr>
<td>0.099</td>
<td>150 MHz</td>
<td></td>
<td>0.00208</td>
<td></td>
</tr>
<tr>
<td>0.099</td>
<td>200 MHz</td>
<td></td>
<td>0.00208</td>
<td></td>
</tr>
<tr>
<td>0.099</td>
<td>250 MHz</td>
<td></td>
<td>0.00208</td>
<td></td>
</tr>
<tr>
<td>0.099</td>
<td>300 MHz</td>
<td></td>
<td>0.00208</td>
<td></td>
</tr>
<tr>
<td>0.099</td>
<td>350 MHz</td>
<td></td>
<td>0.00406</td>
<td></td>
</tr>
<tr>
<td>0.099</td>
<td>400 MHz</td>
<td></td>
<td>0.00406</td>
<td></td>
</tr>
<tr>
<td>0.099</td>
<td>450 MHz</td>
<td></td>
<td>0.00406</td>
<td></td>
</tr>
<tr>
<td>0.099</td>
<td>500 MHz</td>
<td></td>
<td>0.00406</td>
<td></td>
</tr>
<tr>
<td>0.099</td>
<td>550 MHz</td>
<td></td>
<td>0.00406</td>
<td></td>
</tr>
<tr>
<td>0.099</td>
<td>600 MHz</td>
<td></td>
<td>0.00406</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>50 kHz</td>
<td></td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>0.1</td>
<td>1 MHz</td>
<td></td>
<td>0.0016</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>10 MHz</td>
<td></td>
<td>0.0016</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>50 MHz</td>
<td></td>
<td>0.0016</td>
<td></td>
</tr>
<tr>
<td>Nominal Value (V p-p)</td>
<td>Frequency</td>
<td>Measured Value (V p-p)</td>
<td>Deviation (V p-p)</td>
<td>1-Year Spec. (V p-p)</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------</td>
<td>------------------------</td>
<td>------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>0.1</td>
<td>100 MHz</td>
<td></td>
<td>0.0016</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>150 MHz</td>
<td></td>
<td>0.0021</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>200 MHz</td>
<td></td>
<td>0.0021</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>250 MHz</td>
<td></td>
<td>0.0021</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>300 MHz</td>
<td></td>
<td>0.0021</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>350 MHz</td>
<td></td>
<td>0.0041</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>400 MHz</td>
<td></td>
<td>0.0041</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>450 MHz</td>
<td></td>
<td>0.0041</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>500 MHz</td>
<td></td>
<td>0.0041</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>550 MHz</td>
<td></td>
<td>0.0041</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>600 MHz</td>
<td></td>
<td>0.0041</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>50 kHz</td>
<td>na</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>1 MHz</td>
<td></td>
<td>0.00385</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>10 MHz</td>
<td></td>
<td>0.00385</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>50 MHz</td>
<td></td>
<td>0.00385</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>100 MHz</td>
<td></td>
<td>0.00385</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>150 MHz</td>
<td></td>
<td>0.0051</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>200 MHz</td>
<td></td>
<td>0.0051</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>250 MHz</td>
<td></td>
<td>0.0051</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>300 MHz</td>
<td></td>
<td>0.0051</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>350 MHz</td>
<td></td>
<td>0.0101</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>400 MHz</td>
<td></td>
<td>0.0101</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>450 MHz</td>
<td></td>
<td>0.0101</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>500 MHz</td>
<td></td>
<td>0.0101</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>550 MHz</td>
<td></td>
<td>0.0101</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>600 MHz</td>
<td></td>
<td>0.0101</td>
<td></td>
</tr>
<tr>
<td>0.399</td>
<td>50 kHz</td>
<td>na</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>0.399</td>
<td>1 MHz</td>
<td></td>
<td>0.006085</td>
<td></td>
</tr>
<tr>
<td>0.399</td>
<td>10 MHz</td>
<td></td>
<td>0.006085</td>
<td></td>
</tr>
<tr>
<td>0.399</td>
<td>50 MHz</td>
<td></td>
<td>0.006085</td>
<td></td>
</tr>
<tr>
<td>0.399</td>
<td>100 MHz</td>
<td></td>
<td>0.006085</td>
<td></td>
</tr>
<tr>
<td>0.399</td>
<td>150 MHz</td>
<td></td>
<td>0.00808</td>
<td></td>
</tr>
<tr>
<td>0.399</td>
<td>200 MHz</td>
<td></td>
<td>0.00808</td>
<td></td>
</tr>
<tr>
<td>0.399</td>
<td>250 MHz</td>
<td></td>
<td>0.00808</td>
<td></td>
</tr>
<tr>
<td>0.399</td>
<td>300 MHz</td>
<td></td>
<td>0.00808</td>
<td></td>
</tr>
<tr>
<td>0.399</td>
<td>350 MHz</td>
<td></td>
<td>0.01606</td>
<td></td>
</tr>
<tr>
<td>0.399</td>
<td>400 MHz</td>
<td></td>
<td>0.01606</td>
<td></td>
</tr>
<tr>
<td>0.399</td>
<td>450 MHz</td>
<td></td>
<td>0.01606</td>
<td></td>
</tr>
<tr>
<td>0.399</td>
<td>500 MHz</td>
<td></td>
<td>0.01606</td>
<td></td>
</tr>
<tr>
<td>0.399</td>
<td>550 MHz</td>
<td></td>
<td>0.01606</td>
<td></td>
</tr>
<tr>
<td>0.399</td>
<td>600 MHz</td>
<td></td>
<td>0.01606</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>50 kHz</td>
<td>na</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>1 MHz</td>
<td></td>
<td>0.0061</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>10 MHz</td>
<td></td>
<td>0.0061</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>50 MHz</td>
<td></td>
<td>0.0061</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>100 MHz</td>
<td></td>
<td>0.0061</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>150 MHz</td>
<td></td>
<td>0.0081</td>
<td></td>
</tr>
</tbody>
</table>
Table 7-11. Leveled Sinewave Verification: Flatness (cont.)

<table>
<thead>
<tr>
<th>Nominal Value (V p-p)</th>
<th>Frequency</th>
<th>Measured Value (V p-p)</th>
<th>Deviation (V p-p)</th>
<th>1-Year Spec. (V p-p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>200 MHz</td>
<td></td>
<td>0.0081</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>250 MHz</td>
<td></td>
<td>0.0081</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>300 MHz</td>
<td></td>
<td>0.0081</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>350 MHz</td>
<td></td>
<td>0.0161</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>400 MHz</td>
<td></td>
<td>0.0161</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>450 MHz</td>
<td></td>
<td>0.0161</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>500 MHz</td>
<td></td>
<td>0.0161</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>550 MHz</td>
<td></td>
<td>0.0161</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>600 MHz</td>
<td></td>
<td>0.0161</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>50 kHz</td>
<td>na</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>1 MHz</td>
<td></td>
<td>0.0121</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>10 MHz</td>
<td></td>
<td>0.0121</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>50 MHz</td>
<td></td>
<td>0.0121</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>100 MHz</td>
<td></td>
<td>0.0121</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>150 MHz</td>
<td></td>
<td>0.0161</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>200 MHz</td>
<td></td>
<td>0.0161</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>250 MHz</td>
<td></td>
<td>0.0161</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>300 MHz</td>
<td></td>
<td>0.0161</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>350 MHz</td>
<td></td>
<td>0.0161</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>400 MHz</td>
<td></td>
<td>0.0161</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>450 MHz</td>
<td></td>
<td>0.0161</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>500 MHz</td>
<td></td>
<td>0.0161</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>550 MHz</td>
<td></td>
<td>0.0161</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>600 MHz</td>
<td></td>
<td>0.0161</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>50 kHz</td>
<td>na</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>1 MHz</td>
<td></td>
<td>0.0181</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>10 MHz</td>
<td></td>
<td>0.0181</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>50 MHz</td>
<td></td>
<td>0.0181</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>100 MHz</td>
<td></td>
<td>0.0181</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>150 MHz</td>
<td></td>
<td>0.0181</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>200 MHz</td>
<td></td>
<td>0.0181</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>250 MHz</td>
<td></td>
<td>0.0181</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>300 MHz</td>
<td></td>
<td>0.0181</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>350 MHz</td>
<td></td>
<td>0.0181</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>400 MHz</td>
<td></td>
<td>0.0181</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>450 MHz</td>
<td></td>
<td>0.0181</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>500 MHz</td>
<td></td>
<td>0.0181</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>550 MHz</td>
<td></td>
<td>0.0181</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>600 MHz</td>
<td></td>
<td>0.0181</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>50 kHz</td>
<td>na</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>1 MHz</td>
<td></td>
<td>0.0196</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>10 MHz</td>
<td></td>
<td>0.0196</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>50 MHz</td>
<td></td>
<td>0.0196</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>100 MHz</td>
<td></td>
<td>0.0196</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>150 MHz</td>
<td></td>
<td>0.0196</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>200 MHz</td>
<td></td>
<td>0.0261</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>250 MHz</td>
<td></td>
<td>0.0261</td>
<td></td>
</tr>
</tbody>
</table>
Table 7-11. Leveled Sinewave Verification: Flatness (cont.)

<table>
<thead>
<tr>
<th>Nominal Value (V p-p)</th>
<th>Frequency</th>
<th>Measured Value (V p-p)</th>
<th>Deviation (V p-p)</th>
<th>1-Year Spec. (V p-p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3</td>
<td>300 MHz</td>
<td></td>
<td>0.0261</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>350 MHz</td>
<td></td>
<td>0.0521</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>400 MHz</td>
<td></td>
<td>0.0521</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>450 MHz</td>
<td></td>
<td>0.0521</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>500 MHz</td>
<td></td>
<td>0.0521</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>550 MHz</td>
<td></td>
<td>0.0521</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>600 MHz</td>
<td></td>
<td>0.0521</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>50 kHz</td>
<td>na</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>1 MHz</td>
<td></td>
<td>0.0511</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>10 MHz</td>
<td></td>
<td>0.0511</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>50 MHz</td>
<td></td>
<td>0.0511</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>100 MHz</td>
<td></td>
<td>0.0511</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>150 MHz</td>
<td></td>
<td>0.0681</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>200 MHz</td>
<td></td>
<td>0.0681</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>250 MHz</td>
<td></td>
<td>0.0681</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>300 MHz</td>
<td></td>
<td>0.0681</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>350 MHz</td>
<td></td>
<td>0.1361</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>400 MHz</td>
<td></td>
<td>0.1361</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>450 MHz</td>
<td></td>
<td>0.1361</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>500 MHz</td>
<td></td>
<td>0.1361</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>550 MHz</td>
<td></td>
<td>0.1361</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>600 MHz</td>
<td></td>
<td>0.1361</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>50 kHz</td>
<td>na</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>1 MHz</td>
<td></td>
<td>0.0826</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>10 MHz</td>
<td></td>
<td>0.0826</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>50 MHz</td>
<td></td>
<td>0.0826</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>100 MHz</td>
<td></td>
<td>0.0826</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>150 MHz</td>
<td></td>
<td>0.1101</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>200 MHz</td>
<td></td>
<td>0.1101</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>250 MHz</td>
<td></td>
<td>0.1101</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>300 MHz</td>
<td></td>
<td>0.1101</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>350 MHz</td>
<td></td>
<td>0.2201</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>400 MHz</td>
<td></td>
<td>0.2201</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>450 MHz</td>
<td></td>
<td>0.2201</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>500 MHz</td>
<td></td>
<td>0.2201</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>550 MHz</td>
<td></td>
<td>0.2201</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>600 MHz</td>
<td></td>
<td>0.2201</td>
<td></td>
</tr>
</tbody>
</table>
7-16. **Edge Verification: Amplitude**

Table 7-12. Edge Verification: Amplitude

<table>
<thead>
<tr>
<th>Nominal Value (V p-p)</th>
<th>Frequency (Hz)</th>
<th>Measured Value (V p-p)</th>
<th>Deviation (V p-p)</th>
<th>1-Year Spec. (V p-p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.005</td>
<td>1 kHz</td>
<td></td>
<td>0.0003 (typical)</td>
<td></td>
</tr>
<tr>
<td>0.005</td>
<td>10 kHz</td>
<td></td>
<td>0.0003 (typical)</td>
<td></td>
</tr>
<tr>
<td>0.005</td>
<td>100 kHz</td>
<td></td>
<td>0.0003 (typical)</td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>100 kHz</td>
<td></td>
<td>0.0004 (typical)</td>
<td></td>
</tr>
<tr>
<td>0.025</td>
<td>100 kHz</td>
<td></td>
<td>0.0007 (typical)</td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td>100 kHz</td>
<td></td>
<td>0.0012 (typical)</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>100 kHz</td>
<td></td>
<td>0.0022 (typical)</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>100 kHz</td>
<td></td>
<td>0.0052</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>100 kHz</td>
<td></td>
<td>0.0102</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>100 kHz</td>
<td></td>
<td>0.0202</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>100 kHz</td>
<td></td>
<td>0.0502</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>10 kHz</td>
<td></td>
<td>0.0502</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>1 kHz</td>
<td></td>
<td>0.0502</td>
<td></td>
</tr>
</tbody>
</table>

7-17. **Edge Verification: Frequency**

Table 7-13. Edge Verification: Frequency

<table>
<thead>
<tr>
<th>Nominal Value (V p-p)</th>
<th>Frequency (Hz)</th>
<th>Measured Value (Hz)</th>
<th>Deviation (Hz)</th>
<th>1-Year Spec. (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>1 kHz</td>
<td></td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>10 kHz</td>
<td></td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>100 kHz</td>
<td></td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>1 MHz</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>10 MHz</td>
<td></td>
<td>10.0</td>
<td></td>
</tr>
</tbody>
</table>

7-18. **Edge Verification: Duty Cycle**

Table 7-14. Edge Verification: Duty Cycle

<table>
<thead>
<tr>
<th>Nominal Value (V p-p)</th>
<th>Frequency (Hz)</th>
<th>Measured Value (%)</th>
<th>Deviation (from 50 %)</th>
<th>1-Year Spec. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>1 MHz</td>
<td></td>
<td></td>
<td>5 (typical)</td>
</tr>
</tbody>
</table>
7-19. Edge Verification: Rise Time

Table 7-15. Edge Verification: Rise Time

<table>
<thead>
<tr>
<th>Nominal Value (V p-p)</th>
<th>Frequency</th>
<th>Measured Value (s)</th>
<th>Deviation (ns)</th>
<th>1-Year Spec. (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>1 kHz</td>
<td></td>
<td>0.3 ns</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>100 kHz</td>
<td></td>
<td>0.3 ns</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>2 MHz</td>
<td></td>
<td>0.3 ns</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>1 kHz</td>
<td></td>
<td>0.3 ns</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>100 kHz</td>
<td></td>
<td>0.3 ns</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>2 MHz</td>
<td></td>
<td>0.3 ns</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1 kHz</td>
<td></td>
<td>0.3 ns</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>100 kHz</td>
<td></td>
<td>0.3 ns</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2 MHz</td>
<td></td>
<td>0.3 ns</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>1 kHz</td>
<td></td>
<td>0.3 ns</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>100 kHz</td>
<td></td>
<td>0.3 ns</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>2 MHz</td>
<td></td>
<td>0.3 ns</td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>10 MHz</td>
<td></td>
<td>0.35 ns</td>
<td></td>
</tr>
</tbody>
</table>

7-20. Tunnel Diode Pulser Verification

Table 7-16. Tunnel Diode Pulser Verification

<table>
<thead>
<tr>
<th>Nominal Value (V p-p)</th>
<th>Frequency (Hz)</th>
<th>Measured Value (V p-p)</th>
<th>Deviation (V p-p)</th>
<th>1-Year Spec. (V p-p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>100</td>
<td>0.2202</td>
<td></td>
<td>0.2202</td>
</tr>
<tr>
<td>11</td>
<td>10000</td>
<td>0.2202</td>
<td></td>
<td>1.1002</td>
</tr>
<tr>
<td>55</td>
<td>100</td>
<td>1.1002</td>
<td></td>
<td>1.1002</td>
</tr>
<tr>
<td>55</td>
<td>10000</td>
<td>2.0002</td>
<td></td>
<td>2.0002</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td></td>
<td></td>
<td>2.0002</td>
</tr>
<tr>
<td>100</td>
<td>10000</td>
<td></td>
<td></td>
<td>2.0002</td>
</tr>
</tbody>
</table>

7-21. Marker Generator Verification

Table 7-17. Marker Generator Verification

<table>
<thead>
<tr>
<th>Period (s)</th>
<th>Measured Value (s)</th>
<th>Deviation (s)</th>
<th>1-Year Spec. (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td>1.4 x 10^-4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2.5 x 10^-5</td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td></td>
<td>1.4 x 10^-7</td>
<td></td>
</tr>
<tr>
<td>0.02</td>
<td>2.0 x 10^-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>1.0 x 10^-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0 x 10^-7</td>
<td>1.0 x 10^-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0 x 10^-8</td>
<td>5.0 x 10^-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5 x 10^-4</td>
<td>3.5 x 10^-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0 x 1.0^-8</td>
<td>2.0 x 10^-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0 x 10^-9</td>
<td>1.0 x 10^-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0 x 10^-9</td>
<td>5.0 x 10^-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0 x 10^-9</td>
<td>2.0 x 10^-9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7-22. Pulse Generator Verification: Period

Table 7-18. Pulse Generator Verification: Period

<table>
<thead>
<tr>
<th>Nominal Value (V p-p)</th>
<th>Pulse Width (s)</th>
<th>Period (s)</th>
<th>Measured Value (s)</th>
<th>Deviation (s)</th>
<th>1-Year Spec. (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.0 x 10⁻¹</td>
<td>2.0 x 10⁶</td>
<td></td>
<td></td>
<td>2.0 x 10⁻¹²</td>
</tr>
<tr>
<td>1</td>
<td>5.0 x 10⁻¹</td>
<td>0.01</td>
<td></td>
<td></td>
<td>1.0 x 10⁻⁸</td>
</tr>
<tr>
<td>1</td>
<td>5.0 x 10⁻¹</td>
<td>0.02</td>
<td></td>
<td></td>
<td>2.0 x 10⁻⁸</td>
</tr>
</tbody>
</table>

7-23. Pulse Generator Verification: Pulse Width

Table 7-19. Pulse Generator Verification: Pulse Width

<table>
<thead>
<tr>
<th>Nominal Value (V p-p)</th>
<th>Pulse Width (s)</th>
<th>Period (s)</th>
<th>Measured Value (s)</th>
<th>Deviation (s)</th>
<th>1-Year Spec. (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>4.0 x 10⁻¹</td>
<td>2.0 x 10⁶</td>
<td></td>
<td></td>
<td>2.2 x 10⁻³</td>
</tr>
<tr>
<td>0.25</td>
<td>4.0 x 10⁻¹</td>
<td>2.0 x 10⁶</td>
<td></td>
<td></td>
<td>4.0 x 10⁻³</td>
</tr>
<tr>
<td>0.25</td>
<td>4.1 x 10⁻¹</td>
<td>2.0 x 10⁶</td>
<td></td>
<td></td>
<td>4.1 x 10⁻³</td>
</tr>
<tr>
<td>0.25</td>
<td>5.0 x 10⁻¹</td>
<td>2.0 x 10⁶</td>
<td></td>
<td></td>
<td>27.0 x 10⁻⁹</td>
</tr>
<tr>
<td>1</td>
<td>4.0 x 10⁻¹</td>
<td>2.0 x 10³</td>
<td></td>
<td></td>
<td>2.2 x 10⁻²</td>
</tr>
<tr>
<td>1</td>
<td>4.0 x 10⁻¹</td>
<td>2.0 x 10³</td>
<td></td>
<td></td>
<td>4.0 x 10⁻²</td>
</tr>
<tr>
<td>1</td>
<td>4.1 x 10⁻¹</td>
<td>2.0 x 10³</td>
<td></td>
<td></td>
<td>4.1 x 10⁻²</td>
</tr>
<tr>
<td>1</td>
<td>5.0 x 10⁻¹</td>
<td>2.0 x 10³</td>
<td></td>
<td></td>
<td>27.0 x 10⁻⁹</td>
</tr>
</tbody>
</table>

7-24. Input Impedance Verification: Resistance

Table 7-20. Input Impedance Verification: Resistance

<table>
<thead>
<tr>
<th>Nominal Value (Ω)</th>
<th>Measured Value (Ω)</th>
<th>Deviation (Ω)</th>
<th>1-Year Spec. (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td></td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>6000000</td>
<td></td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>1000000</td>
<td></td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>1500000</td>
<td></td>
<td>1500</td>
<td></td>
</tr>
</tbody>
</table>

7-25. Input Impedance Verification: Capacitance

Table 7-21. Input Impedance Verification: Capacitance

<table>
<thead>
<tr>
<th>Nominal Value (pF)</th>
<th>Measured Value (pF)</th>
<th>Deviation (pF)</th>
<th>1-Year Spec. (pF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 pF</td>
<td></td>
<td>0.75 pF</td>
<td></td>
</tr>
<tr>
<td>29 pF</td>
<td></td>
<td>1.95 pF</td>
<td></td>
</tr>
<tr>
<td>49 pF</td>
<td></td>
<td>2.95 pF</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 8
Options

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-1. Introduction</td>
<td>8-3</td>
</tr>
<tr>
<td>8-2. 5800A-5 Option</td>
<td>8-3</td>
</tr>
</tbody>
</table>
8-1. Introduction
The following describes an additional option to the standard 5800A Calibrator.

8-2. 5800A-5 Option
The 5800A-5 option allows you to calibrate up to five oscilloscope channels simultaneously without changing cables. This allows you to perform fast, automated calibrations with documented procedures and results while freeing the operator to complete other work. You can find this option discussed throughout the manual where appropriate.
Chapter 9
Accessories

9-1. Introduction ... 9-3
9-2. Rack Mount Kit .. 9-3
9-3. IEEE-488 Interface Cables 9-4
9-4. RS-232 Null-Modem Cables 9-4
9-5. RS-232 Modem Cables ... 9-4
9-1. Introduction

Table 9-1 summarizes the accessories available for use with the 5800A.

Table 9-1. Options and Accessories

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>689411</td>
<td>5800A Service Manual</td>
</tr>
<tr>
<td>5500/CAL</td>
<td>Calibration Software (RS-232 interface)</td>
</tr>
<tr>
<td>5500A/CASE</td>
<td>5500A Transit Case for calibrator</td>
</tr>
<tr>
<td>5500A/HNDL</td>
<td>5500A Side Handle for transporting the calibrator</td>
</tr>
<tr>
<td>875609</td>
<td>IEEE-488 interface for a PC (Ziatech ZT-1444A)</td>
</tr>
<tr>
<td>943738</td>
<td>RS-232 Modem Cable, 2.44 m (8 ft) (SERIAL 2 TO UUT) to UUT (DB-9)</td>
</tr>
<tr>
<td>686318</td>
<td>5800A Operator Manual</td>
</tr>
<tr>
<td>MET/CAL</td>
<td>Calibration Software (IEEE-488 and RS-232 interface)</td>
</tr>
<tr>
<td>MET/TRACK</td>
<td>Metrology Asset Management Software</td>
</tr>
<tr>
<td>PM2295/05</td>
<td>IEEE-488 Cable, 0.5 m (1.64 ft)</td>
</tr>
<tr>
<td>PM2295/10</td>
<td>IEEE-488 Cable, 1 m (3.28 ft)</td>
</tr>
<tr>
<td>PM2295/20</td>
<td>IEEE-488 Cable, 2 m (6.56 ft)</td>
</tr>
<tr>
<td>PM8914/001</td>
<td>RS-232 Null Modem Cable, 1.5 m (5 ft) (SERIAL 1 FROM HOST) to PC COM (DB-9)</td>
</tr>
<tr>
<td>RS40</td>
<td>RS-232 Null Modem Cable, 1.83 m (6 ft) (SERIAL 1 FROM HOST) to PC COM (DB-25)</td>
</tr>
<tr>
<td>TC100</td>
<td>Test Instrument Cart</td>
</tr>
<tr>
<td>Y5537</td>
<td>24 in. (61 cm) Rack Mount Kit for 5500A</td>
</tr>
<tr>
<td>Y8021</td>
<td>Shielded IEEE-488 Cable 0.5m (1.64 ft)</td>
</tr>
<tr>
<td>Y8022</td>
<td>Shielded IEEE-488 Cable 2m (6.56 ft)</td>
</tr>
<tr>
<td>Y8023</td>
<td>Shielded IEEE-488 Cable 4m (13 ft)</td>
</tr>
</tbody>
</table>

9-2. Rack Mount Kit

The Y5537 rack mount kit provides all the hardware necessary to mount the 5800A on slides in a 24-inch (61 cm) equipment rack. Instructions are provided in the kit.
9-3. **IEEE-488 Interface Cables**

Shielded IEEE-488 cables are available in three lengths (See Table 9-1). The cables attach to the 5800A to any other IEEE-488 device. Each cable has double 24-pin connectors at both ends to allow stacking. Metric threaded mounting screws are provided with each connector. Appendix D shows the pinout for the IEEE-488 connector.

9-4. **RS-232 Null-Modem Cables**

The PM8914/001 and RS40 null modem cables connect the 5800A SERIAL 1 FROM HOST port to a printer, video display terminal, computer, or other serial device configured as DTE (Data Terminal Equipment). Appendix D shows the pinouts for the serial connectors.

9-5. **RS-232 Modem Cables**

The 943738 modem cable connects the 5800A SERIAL 2 TO UUT port to a unit under test serial port (with DB-9 male connector). Appendix D shows the pinouts for the serial connectors.
Appendices

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Glossary</td>
<td>A-1</td>
</tr>
<tr>
<td>B</td>
<td>ASCII and IEEE-488 Bus Codes</td>
<td>B-1</td>
</tr>
<tr>
<td>C</td>
<td>Ziatech ZT-1444A Jumper and DIP Switch Positions</td>
<td>C-1</td>
</tr>
<tr>
<td>D</td>
<td>RS-232/IEEE-488 Cables and Connectors</td>
<td>D-1</td>
</tr>
<tr>
<td>E</td>
<td>Creating a Visual Basic Test Program</td>
<td>E-1</td>
</tr>
<tr>
<td>F</td>
<td>Error Message</td>
<td>F-1</td>
</tr>
</tbody>
</table>
adc (analog-to-digital converter)
A device or circuit that converts an analog signal to digital signals.

absolute uncertainty
Uncertainty specifications that include the error contributions made by all equipment and standards used to calibrate the instrument. Absolute uncertainty is the numbers to compare with the UUT for determining test uncertainty ratio.

accuracy
The degree to which the measured value of a quantity agrees with the true (correct) value of that quantity. For example, an instrument specified to $\pm 1\%$ uncertainty is 99% accurate.

apparent power
The power value obtained by simply multiplying the ac current by the ac voltage on a circuit without consideration of any phase relationship between the two waveforms. (See “true power” for comparison.)

assert
To cause a digital signal to go into a logic true state.

af (audio frequency)
The frequency range of human hearing; normally 15 - 20,000 Hz.

artifact standard
An object that produces or embodies a physical quantity to be standardized, for example a Fluke 732A dc Voltage Reference Standard.

base units
Units in the SI system that are dimensionally independent. All other units are derived from base units. The only base unit in electricity is the ampere.
buffer
1. An area of digital memory for temporary storage of data.
2. An amplifier stage before the final amplifier.

burden voltage
The maximum sustainable voltage across the terminals of a load.

control chart
A chart devised to monitor one or more processes to detect the excessive deviation from a desired value of a component or process.

crest factor
The ratio of the peak voltage to the rms voltage of a waveform (with the dc component removed).

dac (digital-to-analog converter)
A device or circuit that converts a digital waveform to an analog voltage.

dBm
A reference power level of 1 mW expressed in decibels.

derived units
Units in the SI system that are derived from base units. Volts, ohms, and watts are derived from amperes and other base and derived units.

distortion
Undesired changes in the waveform of a signal. Harmonic distortion disturbs the original relationship between a frequency and other frequencies naturally related to it. Intermodulation distortion (IMD) introduces new frequencies by the mixing of two or more original frequencies. Other forms of distortion are phase distortion and transient distortion.

errors
The different types of errors described in this glossary are “offset error,” “linearity error,” “random error,” “scale error,” “systematic errors,” and “transfer error.”

flatness
A measure of the variation of the actual output of an ac voltage source at different frequency points when set to the same nominal output level. A flat voltage source exhibits very little error throughout its frequency range.
floor
The part of the uncertainty specification of an instrument that is typically a fixed offset plus noise. Floor can be expressed as units, such as microvolts or counts of the least significant digit. For the 5800A, the floor specification is combined with fixed range errors in one term to determine total uncertainty.

full scale
The maximum reading of a range of a meter, analog-to-digital converter, or other measurement device, or the maximum attainable output on a range of a calibrator.

gain error
Same as scale error. Scale or gain error results when the slope of the meter’s response curve is not exactly 1. A meter with only gain error (no offset or linearity error), will read 0 V with 0 V applied, but something other than 10 V with 10 V applied.

ground
The voltage reference point in a circuit. Earth ground is a connection through a ground rod or other conductor to the earth, usually accessible through the ground conductor in an ac power receptacle.

ground loops
Undesirable currents induced when there is more than one chassis ground potential in a system of instruments. Ground loops can be minimized by connecting all instruments in a system to ground to one point.

guard
See “voltage guard”

harmonics
A waveform that is an integral multiple of the fundamental frequency. For example, a waveform that is twice the frequency of a fundamental is called the second harmonic.

International Systems of Units
Same as “SI System of Units,” the accepted system of units. See also “units,” “base units,” and “derived units.”

legal units
The highest echelon in a system of units, for example the U.S. National Bureau of Standards volt.
life-cycle cost
The consideration of all elements contributing to the cost of an instrument throughout its useful life. This includes initial purchase cost, service and maintenance cost, and the cost of support equipment.

linearity
The relationship between two quantities when a change is the first quantity is directly proportional to a change in the second quantity.

linearity error
Linearity error occurs when the response curve of a meter is not exactly a straight line. This type of error is measured by fixing two points on the response curve, drawing a line through the points, then measuring how far the curve deviates from the straight line at various points in the response curve.

MAP (Measurement Assurance Program)
A program for measurement process. A MAP provides information to demonstrate that the total uncertainty of the measurements (data), including both random error and systematic components of error relative to national or other designated standards is quantified, and sufficiently small to meet requirements.

MTBF (Mean Time Between Failures)
The time interval in operating hours that can be expected between failure of equipment. MTBF can be calculated from direct observation or mathematically derived through extrapolation.

MTTF (Mean Time To Fail)
The time interval in operating hours that can be expected until the first failure of equipment. MTTF can be calculated from direct observation or mathematically derived through extrapolation.

MTTR (Mean Time to Repair)
The average time in hours required to repair failed equipment.

metrology
The science of, and the field of knowledge concerned with measurement.

minimum use specifications
A compilation of specifications that satisfies the calibration requirements of a measurement system or device. The minimum use specifications are usually determined by maintaining a specified test uncertainty ratio between the calibration equipment and the unit under test.

noise
A signal containing no useful information that is superimposed on a desired or expected signal.

normal mode noise
An undesired signal that appears between the terminals of a device.
offset error
Same as zero error. The reading shown on a meter when an input value of zero is applied is its offset or zero error.

parameters
Independent variables in a measurement process such as temperature, humidity, test lead resistance, etc.

precision
The precision of a measurement process is the coherence, or the closeness to the one result, of all measurement results. High precision, for example would result in a tight pattern of arrow hits on a target, without respect to where on the target the tight pattern falls.

predictability
A measure of how accurately the output value of a device can be assumed after a known time following calibration. If a device is highly stable, it is also predictable. If a device is not highly stable, but its value changes at the same rate every time after calibration, its output has a higher degree of predictability than a device that exhibits random change.

primary standard
A standard defined and maintained by some authority and used to calibrate all other secondary standards.

process metrology
Tracking the accuracy drift of calibration and other equipment by applying statistical analysis to correction factors obtained during calibration.

random error
Any error which varies in an unpredictable manner in absolute value and in sign when measurements of the same value of a quantity are made under effectively identical conditions.

range
The stated upper end of a measurement device’s span. Usually, however, a measurement device can measure quantities for a specified percentage overrange. (The absolute span including overrange capability is called “scale.”) In the 5800A, however, range and scale are identical.

reference amplifier
DC voltage references developed for the 5800A. These are 6.9 V devices consisting of a zener diode and a transistor. These reference amplifiers exhibit extremely low uncertainty and drift, and are superior to zener diode or temperature-compensated zener diode voltage references.
reference standard
The highest-echelon standard in a laboratory; the standard that is used to maintain working standards that are used in routine calibration and comparison procedures.

relative uncertainty
5800A uncertainty specifications that exclude the effects of external dividers and standards, for use when range constants are adjusted. Relative uncertainty includes only the stability, temperature coefficient, noise, and linearity specifications of the 5800A itself.

reliability
A measure of the “uptime” of an instrument.

repeatability
The degree of agreement among independent measurements of a quantity under the same conditions.

resistance
A property of a conductor that determines the amount of current that will flow when a given amount of voltage exists across the conductor. Resistance is measured in ohms. One ohm is the resistance through which one volt of potential will cause one ampere of current to flow.

resolution
The smallest change in quantity that can be detected by a measurement system or device. For a given parameter, resolution is the smallest increment that can be measured, generated, or displayed.

rf (radio frequency)
The frequency range of radio waves; from 150 kHz up to the infrared range.

rms (root-mean-square)
The value assigned to an ac voltage or current that results in the same power dissipation in a resistance as a dc current or voltage of the same value.

rms sensor
A device that converts ac voltage to dc voltage with great accuracy. RMS sensors operate by measuring the heat generated by a voltage through a known resistance (i.e., power); therefore, they sense true rms voltage.

scale
The absolute span of the reading range of a measurement device including overrange capability.
scale error
Same as gain error. Scale or gain error results when the slope of the meter’s response curve is not exactly 1. A meter with only scale error (no offset or linearity error), will read 0 V with 0 V applied, but something other than 10V with 10V applied.

secondary standard
A standard maintained by comparison against a primary standard.

sensitivity
The degree of response of a measuring device to the change in input quantity, or a figure of merit that expresses the ability of a measurement system or device to respond to an input quantity.

shield
A grounded covering device designed to protect a circuit or cable from electromagnetic interference.

SI System of Units
The accepted International System of Units. See also “units,” “base units,” and “derived units.”

specifications
A precise statement of the set of requirements satisfied by a measurement system or device.

stability
A measure of the freedom from drift in value over time and over changes in other variables such as temperature. Note that stability is not the same as uncertainty.

standard
A device that is used as an exact value for reference and comparison.

standard cell
A primary cell that serves as a standard of voltage. The term “standard cell” often refers to a “Weston normal cell,” which is a wet cell with a mercury anode, a cadmium mercury amalgam cathode, and a cadmium sulfate solution as the electrolyte.

systematic errors
Errors in repeated measurement results that remain constant or vary in a predictable way.

temperature coefficient
A factor per °C deviation from a nominal value or range that the uncertainty of an instrument increases. This specification is necessary to account for the thermal coefficients in a calibrator’s analog circuitry.

test uncertainty ratio
The numerical ratio of the uncertainty of the measurement system or device being calibrated to the uncertainty of the measurement system or device used as the calibrator. (Also called “test accuracy ratio.”)

thermal emf
The voltage generated when two dissimilar metals joined together are heated.
traceability
The ability to relate individual measurement results to national standards or nationally
accepted measurement systems through an unbroken chain of comparisons, i.e., a
 calibration “audit trail.”

Measurements, measurement systems or devices have traceability to the designated
 standards if and only if scientifically rigorous evidence is produced in a continuing basis
to show that the measurement process is producing measurement results for which the
total measurement uncertainty relative to national or other designated standards is
qualified.

transfer error
The sum of all new errors induced during the process of comparing one quantity against
another.

transfer standard
Any working standard used to compare a measurement process, system, or device at one
location or level with another measurement process, system, or device at another
location or level.

transport standard
A transfer standard that is rugged enough to allow shipment by common carrier to
another location.

true power
The actual power (real power) used to produce heat or work. Compare to ‘apparent
power.”

true value
Also called legal value, the accepted, consensus, i.e., the correct value of the quantity
being measured.

uncertainty
The maximum difference between the accepted, consensus, or true value and the
measured value of a quantity. Uncertainty is normally expressed in units of ppm (parts
per million) or as a percentage.

units
Symbols or names that define the measured quantities. Examples of units are: V, mV, A,
 kW, and dBm. See also “SI System of Units.”

UUT (Unit Under Test)
An abbreviated name for an instrument that is being tested or calibrated.

var
Symbol for voltampere reactive, the unit of reactive power, as opposed to real power in
watts.
verification
Checking the functional performance and uncertainty of an instrument or standard without making adjustments to it or changing its calibration constants.

volt
The unit of emf (electromotive force) or electrical potential in the SI system of units. One volt is the difference of electrical potential between two points on a conductor carrying one ampere of current, when the power being dissipated between these two points is equal to one watt.

voltage guard
A floating shield around voltage measurement circuitry inside an instrument. The voltage guard provides a low-impedance path to ground for common-mode noise and ground currents, thereby eliminating errors introduced by such interference.

watt
The unit of power in the SI system of units. One watt is the power required to do work at the rate of one joule/second. In terms of volts and ohms, one watt is the power dissipated by one ampere flowing through a one-ohm load.

working standard
A standard that is used in routine calibration and comparison procedures in the laboratory, and is maintained by comparison to reference standards.

zero error
Same as offset error. The reading shown on a meter when an input value of zero is applied is its zero or offset error.
Appendix B

ASCII and IEEE-488 Bus Codes
Appendices
ASCII and IEEE-488 Bus Codes

ASCII
CHAR.

DECIMAL

OCTAL

HEX

NUL
SQH
STX
ETX

0
1
2
3

000
001
002
003

00
01
02
03

0000
0000
0000
0000

0 0 00
0 0 01
0 0 10
0 0 11

EOT
ENQ
ACH
BELL

4
5
6
7

004
005
006
007

04
05
06
07

0000
0000
0000
0000

0 1 00
0 1 01
0 1 10
0 1 11

SDC
PPC

BS
HT
LF
VT

8
9
10
11

010
011
012
013

08
09
0A
0B

0000
0000
0000
0000

1 0 00
1 0 01
1 0 10
1 0 11

GET
TCT

FF
CR
SO
SI

12
13
14
15

014
015
016
017

0C
0D
0E
0F

0000
0000
0000
0000

1 1 00
1 1 01
1 1 10
1 1 11

DLE
DC1
DC2
DC3

16
17
18
19

020
021
022
023

10
11
12
13

0001
0001
0001
0001

0 0 00
0 0 01
0 0 10
0 0 11

DC4
NAK
SYN
ETB

20
21
22
23

024
025
026
027

14
15
16
17

0001
0001
0001
0001

0 1 00
0 1 01
0 1 10
0 1 11

DCL
PPU

CAN
EM
SUB
ESC

24
25
26
27

030
031
032
033

18
19
1A
1B

0001
0001
0001
0001

1 0 00
1 0 01
1 0 10
1 0 11

SPE
SPD

FS
GS
RS
US

28
29
30
31

034
035
036
037

1C
1D
1E
1F

0001
0001
0001
0001

1 1 00
1 1 01
1 1 10
1 1 11

SPACE
!

32
33
34
35

040
041
042
043

20
21
22
23

001 0
001 0
001 0
001 0

0 0 00
0 0 01
0 0 10
0 0 11

0
1
2
3

MLA
MLA
MLA
MLA

36
37
38
39

044
045
046
047

24
25
26
27

001 0
001 0
001 0
001 0

0 1 00
0 1 01
0 1 10
0 1 11

4
5
6
7

MLA
MLA
MLA
MLA

40
41
42
43

050
051
052
053

28
29
2A
2B

001 0
001 0
001 0
001 0

1 0 00
1 0 01
1 0 10
1 0 11

8
9
10
11

MLA
MLA
MLA
MLA

/

44
45
46
47

054
055
056
057

2C
2D
2E
2F

001 0
001 0
001 0
001 0

1 1 00
1 1 01
1 1 10
1 1 11

12
13
14
15

MLA
MLA
MLA
MLA

0
1
2
3

48
49
50
51

060
061
062
063

30
31
32
33

0 0 11
0 0 11
0 0 11
0 0 11

0 0 00
0 0 01
0 0 10
0 0 11

16
17
18
19

MLA
MLA
MLA
MLA

4
5
6
7

52
53
54
55

064
065
066
067

34
35
36
37

0 0 11
0 0 11
0 0 11
0 0 11

0 1 00
0 1 01
0 1 10
0 1 11

20
21
22
23

MLA
MLA
MLA
MLA

8
9

:
;

56
57
58
59

070
071
072
073

38
39
3A
3B

0 0 11
0 0 11
0 0 11
0 0 11

1 0 00
1 0 01
1 0 10
1 0 11

24
25
26
27

<
=
>
?

60
61
62
63

074
075
076
077

3C
3D
3E
3F

0 0 11
0 0 11
0 0 11
0 0 11

1 1 00
1 1 01
1 1 10
1 1 11

28
29
30

$
%
&

'
(
)

*+

,_
.

DEV. MESSAGE
NO. ATN=TRUE

ASCII
CHAR.

DECIMAL

OCTAL

HEX

@
A
B
C

64
65
66
67

100
101
102
103

40
41
42
43

0 100
0 100
0 100
0 100

00 00
00 01
00 10
00 11

0
1
2
3

MTA
MTA
MTA
MTA

D
E
F
G

68
69
70
71

104
105
106
107

44
45
46
47

0 100
0 100
0 100
0 100

01 00
01 01
01 10
01 11

4
5
6
7

MTA
MTA
MTA
MTA

H
I
J
K

72
73
74
75

110
111
112
113

48
49
4A
4B

0 100
0 100
0 100
0 100

10 00
10 01
10 10
10 11

8
9
10
11

MTA
MTA
MTA
MTA

L
M
N
O

76
77
78
79

114
115
116
117

4C
4D
4E
4F

0 100
0 100
0 100
0 100

11 00
11 01
11 10
11 11

12
13
14
15

MTA
MTA
MTA
MTA

P
Q
R
S

80
81
82
83

120
121
122
123

50
51
52
53

0 101
0 101
0 101
0 101

00 00
00 01
00 10
00 11

16
17
18
19

MTA
MTA
MTA
MTA

T
U
V
W

84
85
86
87

124
125
126
127

54
55
56
57

0 101
0 101
0 101
0 101

01 00
01 01
01 10
01 11

20
21
22
23

MTA
MTA
MTA
MTA

X
Y
Z
[

88
89
90
91

130
131
132
133

58
59
5A
5B

0 101
0 101
0 101
0 101

10 00
10 01
10 10
10 11

24
25
26
27

MTA
MTA
MTA
MTA

\
]
^
_

92
93
94
95

134
135
136
137

5C
5D
5E
5F

0 101
0 101
0 101
0 101

11 00
11 01
11 10
11 11

28
29
30

MTA
MTA
MTA
UNT

,

"#

BINARY
7654 3210

a
b
c

96
97
98
99

140
141
142
143

60
61
62
63

0 11 1
0 11 1
0 11 1
0 11 1

00 00
00 01
00 10
00 11

0
1
2
3

MSA
MSA
MSA
MSA

d
e
f
g

100
101
102
103

144
145
146
147

64
65
66
67

0 11 1
0 11 1
0 11 1
0 11 1

01 00
01 01
01 10
01 11

4
5
6
7

MSA
MSA
MSA
MSA

h
i
j
k

104
105
106
107

150
151
152
153

68
69
6A
6B

0 11 1
0 11 1
0 11 1
0 11 1

10 00
10 01
10 10
10 11

8
9
10
11

MSA
MSA
MSA
MSA

l
m
n
o

108
109
110
111

154
155
156
157

6C
6D
6E
6F

0 11 1
0 11 1
0 11 1
0 11 1

11 00
11 01
11 10
11 11

12
13
14
15

MSA
MSA
MSA
MSA

p
q
r
s

112
113
114
115

160
161
162
163

70
71
72
73

0 11 1
0 11 1
0 11 1
0 11 1

00 00
00 01
00 10
00 11

16
17
18
19

MSA
MSA
MSA
MSA

t
u
v
w

116
117
118
119

164
165
166
167

74
75
76
77

0 11 1
0 11 1
0 11 1
0 11 1

01 00
01 01
01 10
01 11

20
21
22
23

MSA
MSA
MSA
MSA

MLA
MLA
MLA
MLA

x
y
z
{

120
121
122
123

170
171
172
173

78
79
7A
7B

0 11 1
0 11 1
0 11 1
0 11 1

10 00
10 01
10 10
10 11

24
25
26
27

MSA
MSA
MSA
MSA

MLA
MLA
MLA
UNL

|
}

124
125
126
127

174
175
176
177

7C
7D
7E
7F

0 11 1
0 11 1
0 11 1
0 11 1

11 00
11 01
11 10
11 11

28
29
30

MSA
MSA
MSA
UNS

GTL

LLO

A
D
D
R
E
S
S
E
D
C
O
M
M
A
N
D
S
U
N
I
V
E
R
S
A
L
C
O
M
M
A
N
D
S

L
I
S
T
E
N
A
D
D
R
E
S
S
E
S

~

BINARY
7654 3210

B

DEV. MESSAGE
NO. ATN=TRUE

T
A
L
K
A
D
D
R
E
S
S
E
S

S
E
C
O
N
D
A
R
Y
A
D
D
R
E
S
S
E
S

oq042f.eps

B-3


Appendix C
Ziatech ZT-1444A Jumper and DIP Switch Positions

Ziatech ZT-1444A Jumper and DIP Switch Positions

The recommended IEEE-488 interface for your PC is the Ziatech ZT-1444A (available from Fluke, PN 875609). This appendix identifies two installation configurations for the ZT-1444A: single IEEE-488 interface, and dual IEEE-488 interface. All configurations support the Ziatech WINGPIB.DLL, a Windows Dynamic Link Library. For other configurations, see the documentation supplied with the ZT-1444A.

The single IEEE-488 interface is the typical configuration for custom programs running programming languages that allow access to a Windows DLL. This includes Borland C, C++, Microsoft C, or Microsoft Visual Basic. The dual IEEE-488 interface is the typical configuration for MET/CAL 4.0 and higher.
Single-Board ZT-1444A Configuration

The configuration of the ZT-1444A jumpers and DIP switch positions for the single-board installation is shown in Figure C-1. This is the Ziatech default configuration. For clarity, the jumpers and switches are shown larger than actual size.

![Figure C-1. IEEE-488 Single-Board Configuration (non-MET/CAL)](cgp43f.eps)

Dual-Board ZT-1444A Configuration for MET/CAL

The configuration of the ZT-1444A jumpers and DIP switch positions for the dual-board MET/CAL installation is shown in Figure C-2 to C-5. One board is designated IEEE-488 Port 0, the other board is designated IEEE-488 Port 1. If an Electronic Key is installed on the board, jumpers W14 to W17 are reversed. For clarity, the jumpers and switches are shown larger than actual size.
Figure C-2. IEEE-488 Dual-Board Configuration, Port 0, Electronic Key

Figure C-3. IEEE-488 Dual Board Configuration, Port 0, No Electronic Key
Figure C-4. IEEE-488 Dual Board Configuration, Port 1, Electronic Key

Figure C-5. IEEE-488 Dual Board Configuration, Port 1, No Electronic Key
Appendix D
RS-232/IEEE-488 Cables and Connectors

IEEE-488 Connector

The IEEE-488 connector on the rear panel mates with an IEEE-488 standard cable. The pin assignments of the rear-panel IEEE-488 connector are shown in Figure D-1. IEEE-488 connection cables are available from Fluke as shown in Table D-1. See Chapter 9 for ordering information.

<table>
<thead>
<tr>
<th>IEEE-488 Connection Cable</th>
<th>Fluke Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 m (1.64 feet)</td>
<td>PM2295/05</td>
</tr>
<tr>
<td>1 m (3.28 feet)</td>
<td>PM2295/10</td>
</tr>
<tr>
<td>2 m (6.56 feet)</td>
<td>PM2295/20</td>
</tr>
</tbody>
</table>

Figure D-1. IEEE-488 Connector Pinout (connection side)
Serial Connectors

The two 9-pin serial connectors on the rear panel of the 5800A Calibrator are used to interface with a computer, or controller, and an instrument serial port. The pin assignments of the rear-panel serial connectors are in conformance to EIA/TIA-574 standard and are shown in Figures D-1 (Host) and D-2 (UUT).

Serial connection cables are available from Fluke are shown in Table D-2. See Chapter 9 for ordering information.

<table>
<thead>
<tr>
<th>Connection Cable</th>
<th>Fluke Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>5800A SERIAL 1 FROM HOST</td>
<td>PM8914/001</td>
</tr>
<tr>
<td>5800A SERIAL 1 FROM HOST</td>
<td>RS40</td>
</tr>
<tr>
<td>5800A SERIAL 2 TO UUT</td>
<td>943738</td>
</tr>
<tr>
<td>5800A SERIAL 2 TO UUT</td>
<td>n/a</td>
</tr>
</tbody>
</table>

![Figure D-2. SERIAL 1 FROM HOST Port Connector Pinout](oq049f.png)

![Figure D-3. SERIAL 2 TO UUT Port Connector Pinout (connection side)](oq050f.png)
Figure D-4. Serial Port Connections (DB-9/DB-9)
Figure D-5. Serial Port Connections (DB-9/DB-25)
Creating a Visual Basic Test Program

The following procedure creates a test program in Visual Basic that you may use to test 5800A Calibrator RS-232 Host port and RS-232 UUT port operation. This procedure assumes you have access to the Custom Control Icons in your edition of Visual Basic, and creates the least complicated program for RS-232 testing.

Complete the following procedure to create an RS-232 test program in Visual Basic.

1. Open Microsoft Visual Basic from the Visual Basic group, displaying the Form1 screen (below).

2. From the Toolbox, double click the Command icon creating a Command1 button on the Form1 screen. Repeat, creating a Command2 button. Repeat again creating a Command3 button.
3. Separate the Command buttons and resize the form for ease of use (below is typical).

![Form1 with Command buttons](image1)

4. From the Toolbox, double click the Communications icon placing the icon on the Form1 screen. This custom control icon provides complete serial communications capabilities for this program. Position the icon anywhere on the Form1 screen that is convenient.

5. Double click on a clear area of the Form1 screen to open the Code window for Form1. Enter the code shown below. If using COM2 on the PC, change the command to Comm1.CommPort = 2. If not using the factory default settings for the RS-232 ports, then change the command Comm1.Settings as required.

```vba
Sub Form_Load()
    Comm1.CommPort = 1       [if using COM2, enter = 2]
    Comm1.Settings = "9600,N,8,1"   [baud, parity, data, stop]
    Comm1.PortOpen = True
End Sub
```

6. While still in the Code window, select Command1 from the Object list. Enter the code shown below. The Chr(10) means ASCII character 10 (line feed).

```vba
Sub Command1_Click()
    Comm1.Output = "REMOTE" + Chr(10)
End Sub
```

7. Select Command2 from the Object list. Enter the code shown below.

```vba
Sub Command2_Click()
    Comm1.Output = "LOCAL" + Chr(10)
End Sub
```

8. Select Command3 from the Object list. Enter the code shown below, where <uut command> is the command you selected for the UUT response.

```vba
Sub Command3_Click()
    Comm1.Output = "UUT_SEND ""<uut command>"" " + Chr(10)
End Sub
```

For example, "UUT_SEND ""REMS\n"" ". Note the use of \n, which indicates a Carriage Return (CR) as the end-of-line character. Other characters include \r (Line Feed), \t (Tab), \b (Backspace) and \f (Form Feed). Also note the double quotes around <uut command> to show embedded quotes.
9. On the Visual Basic Toolbar, click the Start button to run the RS-232 test program (below is typical). If there are no errors, continue to Step 10.

10. Click the Stop button on the Toolbar to stop the program.

(Hint: Before continuing to the next step, connect the 5800A Calibrator and UUT (if applicable) and test the program in actual operation.)

11. Save the program as vb_rs232.exe by selecting the Make EXE File command from the File menu. Save the program files by selecting the Save Program command from the File menu.

12. Select the Exit command from the File menu to exit Visual Basic.

13. In Program Manager, select New from the File menu. Check Program Group, then click OK. In the Description box, enter RS-232 Test then click OK. This creates and opens the RS-232 Test group.

14. With the RS-232 Test group still open, select New from the File menu. Check Program Item, then click OK. In the Description box, enter Test Ports. Use Browse to locate your vb_rs232.exe file, then click OK to enter this file in the Command Line box. Click OK. This creates the Test Ports icon (below).
Error Messages

The following is a list of the 5800A Calibrator error messages. The error message format is shown in Table F-1.

Table F-1. Error Message Format

<table>
<thead>
<tr>
<th>Error Number</th>
<th>Text characters</th>
<th>Syntax</th>
<th>(Message Class : Description)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 65535</td>
<td>Up to 36 text characters</td>
<td>Abbreviated text message</td>
<td>QYE Query Error, caused by a full input buffer, unterminated action or interrupted action</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>F Error is displayed on the front panel as it occurs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DDE Device-Specific Error, caused by the 5800A due to some condition, for example, overrange</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R Error is queued to the remote interface as it occurs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EXE Execution Error, caused by an element outside of, or inconsistent with, the 5800A capabilities</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S Error causes instrument to go to Standby</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CME Command Error, caused by incorrect command syntax, unrecognized header, or parameter of the wrong type</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D Error causes instrument returns to the power up state</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B Error is displayed on both the front panel and remote interface as it occurs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(none) Error is returned to the initiator only (i.e., local initiator or remote initiator)</td>
</tr>
<tr>
<td>0</td>
<td>NONE</td>
<td>"No Error"</td>
<td>0</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>QOVFLOW</td>
<td>"Error queue overflow"</td>
<td>B</td>
</tr>
<tr>
<td>100</td>
<td>GX_SYNC_SEND</td>
<td>"Inguard not responding (send)"</td>
<td>B</td>
</tr>
<tr>
<td>101</td>
<td>GX_SYNC_RECV</td>
<td>"Inguard not responding (recv)"</td>
<td>B</td>
</tr>
<tr>
<td>102</td>
<td>GX_SYNC_SBYTE</td>
<td>"Lost sync with inguard"</td>
<td>B</td>
</tr>
<tr>
<td>103</td>
<td>GX_CMD</td>
<td>"Invalid guard xing command"</td>
<td>B</td>
</tr>
<tr>
<td>104</td>
<td>GX_TRIP</td>
<td>"Hardware relay trip occurred"</td>
<td>B</td>
</tr>
<tr>
<td>105</td>
<td>GX_TIME</td>
<td>"Inguard got impatient"</td>
<td>B</td>
</tr>
<tr>
<td>106</td>
<td>GX_AD</td>
<td>"A/D fell asleep"</td>
<td>B</td>
</tr>
<tr>
<td>107</td>
<td>GX_DOG</td>
<td>"Inguard watchdog timeout"</td>
<td>B</td>
</tr>
<tr>
<td>108</td>
<td>GX_IGOBS</td>
<td>"Inguard is obsolete"</td>
<td>B</td>
</tr>
<tr>
<td>109</td>
<td>IG_PARITY</td>
<td>"Inguard parity error"</td>
<td>B</td>
</tr>
<tr>
<td>110</td>
<td>IG_OVERRUN</td>
<td>"Inguard overrun error"</td>
<td>B</td>
</tr>
<tr>
<td>111</td>
<td>IG_FRAMING</td>
<td>"Inguard framing error"</td>
<td>B</td>
</tr>
<tr>
<td>112</td>
<td>IG_FAULT</td>
<td>"Inguard fault error"</td>
<td>B</td>
</tr>
<tr>
<td>113</td>
<td>IG_FAULT_INPUT</td>
<td>"Inguard fault input error"</td>
<td>B</td>
</tr>
<tr>
<td>114</td>
<td>IG_FAULT_DET</td>
<td>"Inguard fault detect error"</td>
<td>B</td>
</tr>
<tr>
<td>115</td>
<td>IG_READWRITE</td>
<td>"Inguard read/write error"</td>
<td>B</td>
</tr>
<tr>
<td>300</td>
<td>CAL_PROC</td>
<td>"Invalid procedure number"</td>
<td>DDE</td>
</tr>
<tr>
<td>301</td>
<td>CAL_STEP</td>
<td>"No such step in procedure"</td>
<td>DDE</td>
</tr>
<tr>
<td>302</td>
<td>CAL_BUSY</td>
<td>"Can’t change that while busy"</td>
<td>DDE</td>
</tr>
<tr>
<td>303</td>
<td>CAL_ENTRY</td>
<td>"Can’t begin/resume cal there"</td>
<td>DDE</td>
</tr>
<tr>
<td>304</td>
<td>CAL_REFUNIT</td>
<td>"Wrong unit for reference"</td>
<td>DDE</td>
</tr>
<tr>
<td>305</td>
<td>CAL_REFVAL</td>
<td>"Entered value out of bounds"</td>
<td>DDE</td>
</tr>
<tr>
<td>306</td>
<td>CAL_NOREFNOW</td>
<td>"Not waiting for a reference"</td>
<td>DDE</td>
</tr>
<tr>
<td>307</td>
<td>CAL_NOCONTNOW</td>
<td>"Continue command ignored"</td>
<td>DDE</td>
</tr>
<tr>
<td>308</td>
<td>CAL_LIMIT</td>
<td>"Cal constant outside limits"</td>
<td>B</td>
</tr>
<tr>
<td>309</td>
<td>CAL_NULL</td>
<td>"Cal try to null failed"</td>
<td>B</td>
</tr>
<tr>
<td>310</td>
<td>CAL_SEQ</td>
<td>"Sequence failed during cal"</td>
<td>B</td>
</tr>
<tr>
<td>311</td>
<td>CAL_MEAS</td>
<td>"A/D measurement failed"</td>
<td>B</td>
</tr>
<tr>
<td>312</td>
<td>CAL_PARAM</td>
<td>"Invalid cal step parameter"</td>
<td>B</td>
</tr>
<tr>
<td>313</td>
<td>CAL_SWITCH</td>
<td>"Cal switch must be ENABLED"</td>
<td>DDE</td>
</tr>
<tr>
<td>314</td>
<td>CAL_MATH</td>
<td>"Divide by zero encountered"</td>
<td>B</td>
</tr>
<tr>
<td>315</td>
<td>CAL_OPER</td>
<td>"Must be in OPER at this step"</td>
<td>B</td>
</tr>
<tr>
<td>317</td>
<td>CAL_BADZ</td>
<td>"Bad reference Z or entry"</td>
<td>B</td>
</tr>
<tr>
<td>318</td>
<td>CAL_DAUCOMP</td>
<td>"Cal takes DAC over top limit"</td>
<td>B</td>
</tr>
<tr>
<td>399</td>
<td>CAL_WHEN</td>
<td>"Fault during %s"</td>
<td>F</td>
</tr>
<tr>
<td>400</td>
<td>EPD_PROTOCOL0</td>
<td>"Encoder not responding VERS"</td>
<td>B</td>
</tr>
<tr>
<td>401</td>
<td>EPD_PROTOCOL1</td>
<td>"Encoder not responding COMM"</td>
<td>B</td>
</tr>
<tr>
<td>402</td>
<td>EPD_PROTOCOL2</td>
<td>"Encoder not responding STAT"</td>
<td>B</td>
</tr>
<tr>
<td>403</td>
<td>EPD_SELFTEST</td>
<td>"Encoder self-test failed"</td>
<td>B</td>
</tr>
<tr>
<td>405</td>
<td>EPD_OFFDISP</td>
<td>"Message over display R side"</td>
<td>B</td>
</tr>
<tr>
<td>406</td>
<td>EPD_CHARMAP</td>
<td>"Unmappable character #%d"</td>
<td>B</td>
</tr>
<tr>
<td>407</td>
<td>EPD_NORESET</td>
<td>"Encoder did not reset"</td>
<td>B</td>
</tr>
<tr>
<td>408</td>
<td>EPD_CMDErr</td>
<td>"Encoder got invalid command"</td>
<td>B</td>
</tr>
<tr>
<td>409</td>
<td>EPD_RESET</td>
<td>"Encoder unexpectedly reset"</td>
<td>B</td>
</tr>
<tr>
<td>500</td>
<td>STA_CONFUSED</td>
<td>"Internal state error"</td>
<td>DDE</td>
</tr>
<tr>
<td>501</td>
<td>STA_BADENUM</td>
<td>"Invalid keyword or choice"</td>
<td>DDE</td>
</tr>
<tr>
<td>502</td>
<td>STA_NEGF</td>
<td>"Frequency must be >= 0"</td>
<td>DDE</td>
</tr>
<tr>
<td>503</td>
<td>STA_NEGAC</td>
<td>"AC magnitude must be > 0"</td>
<td>DDE</td>
</tr>
<tr>
<td>504</td>
<td>STA_NEGZ</td>
<td>"Impedance must be >= 0"</td>
<td>DDE</td>
</tr>
<tr>
<td>505</td>
<td>STA_NEG2</td>
<td>"Impedance must be >= 0"</td>
<td>DDE</td>
</tr>
<tr>
<td>506</td>
<td>STA_NOFUNC</td>
<td>"Function not available"</td>
<td>DDE</td>
</tr>
<tr>
<td>507</td>
<td>STA_NORANGE</td>
<td>"Value not available"</td>
<td>DDE</td>
</tr>
<tr>
<td>512</td>
<td>STA_EDITLINE</td>
<td>"Can’t select that field now"</td>
<td>DDE</td>
</tr>
</tbody>
</table>
513 STA_EDITDIGIT "Edit digit out of range" DDE
514 STA_EDITCHG "Can’t switch edit field now" DDE
515 STA_NOTEDITING "Not editing output now" DDE
516 STA_BADDOMTIME "dBm not available now" DDE
518 STA_OVERLOCK "Value outside locked range" DDE
519 STA_NOUNIT "Must specify an output unit" DDE
520 STA_TOOMANYF "Can’t do two freqs at once" DDE
521 STA_THREEMAGS "Can’t source 3 values at once" DDE
523 STA_NOEDIT "Can’t edit now" DDE
524 STA_NOCHANGES "No changes except RESET now" DDE
529 STA_EDITACDC "Cannot edit to or from 0 Hz" DDE
530 STA_IMAGE "Bad state image - not loaded" DDE
532 STA_SET_OZ "Can’t set output imp. now" DDE
534 STA_SET_RNGLCK "Can’t lock this range" DDE
536 STA_SET_WAVE "Can’t set wave now" DDE
542 STA_RPTRUN "A report is already printing" DDE
543 STA_SET_TM "Can’t set marker shape now" DDE
544 STA_SET_VIDEO "Can’t set video parameter now" DDE
545 STA_SET_Video "Can’t set video parameter now" DDE
546 STA_SET_OZ "Can’t set output imp. now" DDE
547 STA_SET_TRIG "Can’t set trigger to that now" DDE
548 STA_SET_OZ "Can’t set output imp. now" DDE
549 STA_NEGTIME "Period must be >= 0" DDE
550 STA_RPTRUN "A report is already printing" DDE
553 STA_SET_TM "Can’t set marker shape now" DDE
554 STA_SET_VIDEO "Can’t set video parameter now" DDE
555 STA_BADVIDMARK "Marker location out of range" DDE
556 STA_BADPW "Pulse width must be 1 - 255" DDE
557 STA_SET_TMWAVE "Can’t set range directly now" DDE
558 STA_SET_RNGFUNC "Can’t set range directly now" DDE
559 STA_SETDPULSE "Can’t set TD pulse now" DDE
560 STA_ZEROMEAS "ZERO_MEAS only for C meas" DDE
563 STA_TLIMIT "Time limit must be 1s-60s" DDE
565 STA_SET_RNGFUNC "Can’t set range directly now" DDE
566 STA_SET_RNGFUNC "Can’t set range directly now" DDE
569 STA_SET_DPULSE "Can’t set TD pulse now" DDE
570 MAIN_WATCHDOG "Outguard watchdog timeout" B|D|DDE
571 MAIN_RAMTEST "Power-up RAM test failed" B|D|DDE
572 MAIN_GPIBTEST "Power-up GPIB test failed" B|D|DDE
573 NV_RECORD "Saving to NV memory failed" R|DDE
574 NV_EMPTY "NV memory invalid" R|DDE
575 NV_DEFAULTS "NV invalid so default loaded" R|DDE
576 NV_OUTFUNC "NVobsolete so default loaded" R|DDE
577 SER_PARITY "Serial parity error %s" B|DDE
578 SER_FRAMING "Serial framing error %s" B|DDE
579 SER_OVERRUN "Serial overrun error %s" B|DDE
580 SER_DROPPED "Serial characters dropped %s" B|DDE
581 STA_NO_VALUES "Cannot enter a value in this mode" DDE
to be displayed on front panel, error message must stop here>
582 STA_NO_SACVF "Try F betw. 10 Hz & 10 kHz" DDE
583 STA_NO_SACVV "Try V betw. 1 mV & 130V" DDE
584 STA_NO_SACV "Try V < 130 V" DDE
585 STA_NO_SGF "Try F betw. .01 Hz & 100 kHz" DDE
586 STA_NO_SGF "Try F betw. .01 Hz & 100 kHz" DDE
587 STA_NO_SGV50 "Try V betw. 1.8 mV & 2.5V" DDE
588 STA_NO_SGV1M "Try V betw. 1.8 mV & 55V" DDE
589 STA_NO_SEF "Try F betw. 900 Hz & 11 MHz" DDE
590 STA_NO_SEF "Try F betw. 900 Hz & 11 MHz" DDE
591 STA_NO_SEM "Try V betw. 3.6 mV & 2.75V" DDE
592 STA_NO_SLF "Try F betw. 50 kHz & 600 MHz" DDE
593 STA_NO_SLF "Try F betw. 50 kHz & 600 MHz" DDE
594 STA_NO_SLV "Try V betw. 5 mV & 5.5V" DDE
595 STA_NO_SLV "Try V betw. 5 mV & 5.5V" DDE
5800A
Operators Manual

911 STA_NO_SMV "Try T betw. 1.8 ns & 5s" DDE
912 STA_NO_SVV "Try video ampl < 150%" DDE
913 STA_NO_SPW "Try width betw. 2 & 500 ns" DDE
914 STA_NO_SPP "Try T betw. 200 ns & 22 ms" DDE
915 STA_NO_SOV "Try V betw. 5V & 9V" DDE

to be displayed on front panel, error message must stop here>.

1000 DIAG_SEQ "Sequence failed during diag" B|DDE
1001 DIAG_GX "Guard xing link diag fail" B|DDE
1002 DIAG_IGBUS "Inguard bus r/w diag fail" B|DDE
1300 REM_SYNTAX "Bad syntax" R|CME
1301 REM_BADCMD "Unknown command" R|CME
1302 REM_ARGC "Bad parameter count" R|CME
1303 REM_ARGK "Bad keyword" R|CME
1304 REM_ARGT "Bad parameter type" R|CME
1305 REM_ARGU "Bad parameter unit" R|CME
1306 REM_ARGV "Bad parameter value" R|EXE
1307 REM_DEADLCK "488.2 I/O deadlock" R|QYE
1308 REM_INTRD "488.2 interrupted query" R|QYE
1309 REM_UNTERM "488.2 unterminated command" R|QYE
1310 REM_QAIR "488.2 query after indefinite response" R|QYE
1311 REM_NOGPIB "Invalid from GPIB interface" R|DDE
1312 REM_NOSER "Invalid from serial interface" R|DDE
1313 REM_WIZONLY "Service only" R|DDE
1314 REM_ArgSIZE "Parameter too long" R|EXE
1315 REM_BADGET "Invalid device trigger" R|CME
1316 REM_DDTREC "Device trigger recursion" R|EXE
1317 REM_SERBFULL "Serial buffer full" R|CME
1318 REM_BADNUM "Bad number" R|EXE
1319 REM_WIZFAILURE "Service command failed" R|EXE
1320 REM_LEX_BIN "Bad binary number" R|CME
1321 REM_LEX_BLK "Bad binary block" R|CME
1322 REM_LEX_CHAR "Bad character" R|CME
1323 REM_LEX_DEC "Bad decimal number" R|CME
1324 REM_LEX_EXP "Exponent magnitude too large" R|CME
1325 REM_LEX_HBLK "Bad hexadecimal block" R|CME
1326 REM_LEX_HEX "Bad hexadecimal number" R|CME
1328 REM_LEX_OCT "Bad octal number" R|CME
1329 REM_LEX_SBUFF "Too many characters" R|CME
1330 REM_LEX_STR "Bad string" R|CME
1331 REM_NOOPER "OPER not allowed while error pending" R|DDE
1500 NRM_COMPLIANCE "Compliance voltage exceeded" B|S|DDE
1501 NRM_SHUNTAMP "Shunt amp over or underload" B|S|DDE
1502 NRM_HEATSINK "Heat sink too hot" B|S|DDE
1503 NRM_SHORT "Output current lim exceeded" B|S|DDE
1505 NRM_VDACCNST "VDAC counts out of range" B|S|DDE
1506 NRM_IDACCNST "IDAC counts out of range" B|S|DDE
1507 NRM_ACSDACCT "AC scale dac counts out of range" B|S|DDE
1508 NRM_DCSDACCT "DC scale dac counts out of range" B|S|DDE
1509 NRM_FREQCNTS "Frequency dac counts out of range" B|S|DDE
1510 NRM_IDACOFFSET "IDAC counts (DC OFFSET) out of range" B|S|DDE
1512 NRM_EXTCCLK_RD "Can’t read External Clock register" B|S|DDE
1513 NRM_EXTCCLK_FAST "External Clock too Fast" B|S|DDE
<table>
<thead>
<tr>
<th>Code</th>
<th>Error Code</th>
<th>Error Message</th>
<th>B</th>
<th>S</th>
<th>DDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1514</td>
<td>NRM_EXTCLK_SLOW</td>
<td>"External Clock too Slow"</td>
<td>B</td>
<td>S</td>
<td>DDE</td>
</tr>
<tr>
<td>1600</td>
<td>OPM_TRANSITION</td>
<td>"OPM transition error"</td>
<td>B</td>
<td>D</td>
<td>DDE</td>
</tr>
<tr>
<td>1602</td>
<td>OPM_MEASZ</td>
<td>"Z measurement fault"</td>
<td>B</td>
<td>D</td>
<td>DDE</td>
</tr>
<tr>
<td></td>
<td>to be displayed on front panel, error message must stop here></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65535</td>
<td>UNKNOWN</td>
<td>"Unknown error %d"</td>
<td>B</td>
<td>D</td>
<td>DDE</td>
</tr>
</tbody>
</table>
Index

*
*CLS remote command, 6-13
*ESE remote command, 6-16
*ESE? remote command, 6-17
*ESR? remote command, 6-17
*IDN? remote command, 6-19
*OPC, 5-48
*OPC remote command, 6-24
*OPC? remote command, 6-24
*OPT? remote command, 6-25
PUD remote command, 6-28
PUD? remote command, 6-29
*RST remote command, 6-31
*SRE remote command, 6-36
*SRE? remote command, 6-36
*STB? remote command, 6-37
*TRG, 6-40
*TST? remote command, 6-41
*WAI, 5-48
*WAI remote command, 6-46

1-channel configuration, 3-8

5800A Operator Manual, 1-6
5800A Service Manual, 1-6
5-channel option, 3-8

AC amplitude verification, 7-7
AC power input module, 3-10
AC power input module, location of, 3-10
AC voltage frequency verification, 7-8
Accessing the fuse and selecting line voltage, 2-5
Adjusting output signal, 4-9
Adjusting values with knob, 4-9
Air filter, cleaning the, 7-4
Amplitude calibration, 4-11
AUX INPUT key, 3-7
Auxiliary input specifications, 1-16
using, 4-32

Bus setup procedure, 5-7

CAL_ABORT remote command, 6-9
CAL_BACKUP remote command, 6-9
CAL_CONST remote command, 6-9
CAL_DATE? remote command, 6-9
CAL_FACT remote command, 6-9
CAL_FACT? remote command, 6-9
CAL_FAULT? remote command, 6-10
CAL_INFO remote command, 6-10
CAL_NEXT remote command, 6-10
CAL_REF? remote command, 6-10
CAL_SECT remote command, 6-10
CAL_SKIP remote command, 6-10
CAL_START remote command, 6-11
CAL_STATE? remote command, 6-11
CAL_STEP? remote command, 6-11
CAL_STORE? remote command, 6-11
CAL_SW? remote command, 6-12
Calibrating pulse and frequency response, 4-14
Calibration switch, 3-9
Calibration switch, enabled commands, 5-32
Caution, 2-7
4-3
4-6
7-4
7-6
Operators Manual

5800A

CCP? remote command 6-12
CE key 3-6
CHAN remote command 6-12
CHAN? remote command 6-12
CHANNEL key 3-7
Character processing incoming 5-36
CHASSIS GROUND binding post 3-10
Checking 5800A status 5-38
Cleaning the air filter 7-4
Cleaning general 7-6
CLOCK remote command 6-12 6-13
CLS remote command 6-13
Command summary by function 6-3
Command syntax information 5-34
Commands alphabetical list 6-8
calibration switch enabled 5-32
common 5-29
compound 5-31
coupled 5-31
device dependent 5-28
IEEE-488 only 5-33
overlapped 5-32
query 5-29
RS-232 only 5-32
sequential 5-32
summary by function table of 6-3
types of 5-28
using 5-28
Commands for IEEE-488 only 5-33
Commands for RS-232 only 5-32
Common commands 5-29 6-4
Compound commands 5-31
Control display 3-5
Cooling considerations 3-9
Coupled commands 5-31

D
D_SP_SET remote command 6-13
D_UUT_SET remote command 6-13
DC voltage verification 7-6
DC_OFFSET remote command 6-14
DC_OFFSET? remote command 6-14
Device-dependent commands 5-28
Display control 3-5
output 3-4
Displaying the output error 4-10
DIVIDE key 3-7

E
Edge 7-18
Edge amplitude verification 7-18
Edge duty cycle verification 7-18
Edge function 4-14
specifications 1-10
EDGE key 3-5
Edge rise time verification 7-19
Edit keys 5-6
EDIT remote command 6-14
EDIT? remote command 6-15
Editing settings 4-8
EEPROM format menu 4-6
ELIST? remote command 6-15
ENTER key 3-8
ERR? remote command 6-15
ERR_UNIT remote command 6-16
ERR_UNIT? remote command 6-16
Error messages F-1
Error mode commands 6-3
Error mode keys that exit 4-8
Error output 4-8
Error output displaying the 4-10
Error queue 5-46
ESE bit assignments 5-41
programming the 5-42
ESE remote command 6-16
ESE? remote command 6-17
ESR bit assignments 5-41
explained 5-41
programming the 5-42
register 5-41
ESR? remote command 6-17
Event Status
Enable Register (ESE) 5-41
Register (ESR) 5-41
Register bit assignments 5-41
EXPLAIN? remote command 6-17
External reference input specifications 1-16
Extra space or tab characters 5-35

F
Fan filter 3-9
FAULT? remote command 6-18
Features
front panel 3-4
rear panel 3-9
FORMAT remote command 6-18
Frequency response calibration 4-21
Frequency response calibration 4-18
Frequency sweep, oscilloscope calibration 4-20
Front panel features 3-3
Front panel operation 4-5
FUNC? remote command 6-19
Function generator 4-25
Fuse, accessing the 2-5
Fuse, replacement 2-3
Fuse, replacing the 7-3
---G---
General cleaning. [7-6]
General specifications. [1-8]
Guidelines for programming the calibrator. [5-46]

---I---
IDN remote command. [6-19]
IEEE-488
 bus setup procedure. [5-7]
 using for remote control. [5-4]
IEEE-488 connector. [D-1]
IEEE-488 interface cable. [9-4]
IEEE-488 interface messages. [5-29]
IEEE-488 interface overview. [5-25]
IEEE-488 port, testing the. [5-8]
IEEE-488 remote control connections. [5-5]
Incoming character processing. [5-36]
INCR remote command. [6-19]
Input buffer operation. [5-49]
Input impedance and capacitance, measuring. [4-29]
Input impedance capacitance verification. [7-20]
Input impedance resistance verification. [7-20]
Inspection, [2-3]
Instruction manuals. [1-6]
Instrument setup. [4-5]
Instrument Status
 Change Enable Register (ISCE). [5-43]
 Change Register (ISCR). [5-43]
 Instrument Status Register. [5-43]
Interface messages
 Accepted by 5800A - table of. [5-30]
 that 5800A sends. [5-31]
Interface messages (IEEE-488). [5-29]
Introduction and specifications (Chapter 1). [1-3]
ISCE
 bit assignments. [5-43]
 explained. [5-43]
 programming the. [5-45]
ISCE remote command. [6-20]
ISCE? remote command. [6-20]
ISCE0 remote command. [6-20]
ISCE0? remote command. [6-20]
ISCE1 remote command. [6-21]
ISCE1? remote command. [6-21]
ISCR
 bit assignments. [5-43]
 explained. [5-43]
 programming the. [5-45]
ISCR? remote command. [6-21]
ISCR0? remote command. [6-21]
ISCR1? remote command. [6-21]
ISR
 bit assignments. [5-43]
 explained. [5-43]
 programming the. [5-45]
ISR? remote command. [6-21]
Leveled. [7-10]
LEVELED SINE key. [3-5]
Leveled sine wave function. [4-18]
 specifications. [1-11]
Leveled sinewave flatness verification. [7-12]
Leveled sinewave frequency verification. [7-10]
Leveled sinewave harmonics verification. [7-11]
Levsine menu. [4-18]
 frequency sweep. [4-20]
 MORE OPTIONS menu. [4-19]
Line power cord types. [2-6]
Line power cord types - table of. [2-6]
Line power, connecting to. [2-4]
Line voltage, selecting. [2-4]
Local operation. [1-4]
LOCAL remote command. [6-22]
Local state. [5-23]
Local with lockout state. [5-23]
LOCKOUT remote command. [6-22]
Lockout state
 local with. [5-23]
 remote with. [5-23]
- M -
Marker, 7-19
MARKER key, 3-5
MEAS_OFFSET remote command, 6-23
Measuring input impedance and capacitance, 4-29
Menu tree, softkeys, 3-11
Modem cables, 9-4
MORE MODES key, 3-6
MORE OPTIONS menu, 4-19
MULT remote command, 6-23
MULTIPLY key, 3-7

- N -
NEW REF key, 3-7
NEWREF remote command, 6-23
Null-modem cables, 9-4
NUMERIC keys, 3-8

- O -
OL_TRIP? remote command, 6-24
OLDREF remote command, 6-23
ONTIME? remote command, 6-24
OPC remote command, 6-24
OPC? remote command, 6-24
OPER remote command, 6-25
OPER? remote command, 6-25
Operate and standby modes, using, 4-7
Operating state transitions
local state, 5-23
local with lockout state, 5-23
remote state, 5-23
remote with lockout state, 5-23
table of, 5-24
Operation overview, 1-4
OPR key, 3-5
OPT? remote command, 6-25
Options and accessories, 9-3
Options and accessories, table of, 9-3
Oscilloscope calibration
adjusting output signal, 4-8
amplitude, 4-11, 4-13
delay function, 4-14
delay frequency, 4-18, 4-21
delay frequency sweep, 4-20
delay leveled sine wave function, 4-18
measuring input impedance and capacitance, 4-29
MORE OPTIONS menu, 4-19
oscilloscope connection, 4-7
pulse response, 4-14, 4-16, 4-17
resetting parameters, 4-11
starting, 4-7
testing the trigger, 4-25
time base, 4-22
time marker, 4-23
time marker, 4-24
trigger connection, 4-7
trigger menu, 4-13, 4-15, 4-24
V/DIV menu, 4-12
volt function, 4-11
volt gain, 4-11, 4-13
wave generator, 4-25
Oscilloscope connection
external trigger, 4-7
Oscilloscope Connection
Channel and External Trigger, 4-7
Oscilloscope connections, 4-7
Oscilloscope input capacitance specifications, 1-16
Oscilloscope input resistance specifications, 1-15
OUT remote command, 6-25
OUT? remote command, 6-27
OUT_ERR? remote command, 6-27
OUT_IMP remote command, 6-27
OUT_IMP? remote command, 6-28
Output commands, 6-5
Output display, 3-4
Output queue, 5-45
Output signal
adjusting, 4-9
adjusting for oscilloscope calibration, 4-8
Overlapped commands, 5-32
Overload measurement specifications, 1-16
Overload protection, testing, 4-31

- P -
Parameter syntax rules, 5-34
Placement of calibrator, 2-7
Power cords, 2-6
Preparing for operation (Chapter 2), 2-3
PREV MENU key, 3-5
Program examples
remote, 5-46
using *OPC?, *OPC, and *WAI, 5-48
writing an error handler, 5-47
writing an SRQ handler, 5-47
Program Examples
Taking an impedance measurement, 5-48
Programming
The ESR and ESE, 5-42
the STB and SRE, 5-41
Programming the calibrator, 5-46
PUD remote command, 6-28
PUD? remote command, 6-29
Pulse capture, verifying, 4-27
Pulse generator period verification, 7-20
Pulse generator pulse width verification, 7-20
Pulse generator specifications, 1-14
Pulse response calibration, 4-14, 4-16, 4-17

---Q---
Query commands, 5-29
Queue, output, 5-45

---R---
Rack mount kit, 9-3
Rack mounting, 2-7
RANGE remote command, 6-29
RANGE? remote command, 6-29
RANGELOCK remote command, 6-30
RANGELOCK? remote command, 6-30
Rear panel features, 3-3
REFOUT? remote command, 6-30

Registers
 event status (ESR), 5-41
 Event Status Enable (ESE), 5-41
 Instrument Status (ISR), 5-43
 Instrument Status Change (ISCR), 5-43
 Instrument Status Change Enable (ISCE), 5-43
REMOTE command, 6-31
Remote control
 using host port, 5-11, 5-16
 using IEEE port, 5-4
Remote operation, 1-4
Remote operation (Chapter 5), 5-4
Remote operation (IEEE-488), 1-5
Remote program examples, 5-46
Remote state, 5-23
Remote with lockout state, 5-23
Replacing the line fuse, 7-3
RESET key, 3-6
Reseting the calibrator, 4-6
Response data types
 binary block data, 5-37
 floating, 5-37
 indefinite ASCII, 5-37
 integer, 5-37
 string, 5-37
 table of, 5-37
Response message syntax, 5-37
RS-232
 controlling an instrument, 5-49
 host port setup procedure, 5-11
 using host port, 5-11, 5-16
 UUT port setup procedure, 5-16
RS-232 Host Port commands, 6-6
RS-232 host port operation using a terminal, 5-3
RS-232 host port operation using Visual Basic, 5-15
RS-232 Host port setup procedure, 5-11
RS-232 interface overview, 5-24
RS-232 modem cables, 9-4
RS-232 null-modem cables, 9-4
RS-232 remote control connections, 5-6
RS-232 UUT Port commands, 6-7
RS-232 UUT port operation using Visual Basic, 5-20
RS-232 UUT port operation via a terminal, 5-19
RS-232 UUT port setup procedure, 5-16
RS-232 UUT port testing via IEEE-488 port, 5-21
RS-232 UUT port testing via RS-232 host port, 5-17
RST remote command, 6-31

---S---
SBY key, 3-5
SCOPE remote command, 6-32
SCOPE? remote command, 6-34
Sequential commands, 5-32
Serial connector, D-2
Serial poll, status byte, 5-38
Service information, 2-6
Service request
 SRQ line, 5-40
Service Request
 Enable Register (SRE), 5-40
Setting frequency and voltage, shortcuts, 4-19
Setting up the RS-232 host port for remote control, 5-11
Setting up the RS-232 UUT port for remote control, 5-16
Setting voltage amplitude, shortcuts, 4-12
Setup and utility commands, 6-6
SETUP key, 3-6
Setup menu, 4-4
Setup menus
 format EEPROM menu, 4-6
 IEEE-488 port, 5-7
 instrument setup, 4-5
 RS-232 host port, 5-11
 utility functions menu, 4-5
SETUP softkey menu tree, 3-11
Setup softkey menu trees, 3-10
Signal, adjusting during oscilloscope calibration, 4-8
Softkeys, using, 4-4
SP_SET, 6-34
SP_SET? remote command, 6-35
Specifications, 1-6
Specifications, general, 1-8
SPLSTR remote command, 6-35
SPLSTR? remote command, 6-36
SRE
programming the register, 5-40
SRE remote command, 6-36
SRE? remote command, 6-36
SRQ, service request line, 5-40
SRQSTR remote command, 6-37
SRQSTR? remote command, 6-37
Standard equipment table, 2-3
Starting oscilloscope calibration, 4-7
Status checking 5800A, 5-38
register overview - figure, 5-39
register summary - table, 5-38
serial poll status byte, 5-38
Status commands, 6-7
STB explained, 5-38
programming the, 5-41
STB remote command, 6-37
STBY remote command, 6-38
Summary of commands and queries, 6-8
Syntax
information, general, 5-34
parameter rules, 5-34
response messages, 5-37

____T____
Tab characters, 5-35
Taking an impedance measurement, 5-48
TDPULSE remote command, 6-38
TDPULSE? remote command, 6-38
Terminators, 5-36
Testing overload protection, 4-31
Testing RS-232 host port operation using a terminal, 5-13
Testing RS-232 host port operation using Visual Basic, 5-15
Testing RS-232 UUT port operation using Visual Basic, 5-19
Testing RS-232 UUT port operation via a terminal, 5-21
Testing the IEEE-488 port, 5-8
Testing the RS-232 host port, 5-13
Testing the RS-232 UUT port via IEEE-488 port, 5-21
Testing the RS-232 UUT port via RS-232 host port, 5-17
Testing video triggers, 4-26
Time base calibration, 4-22
Time marker function specifications, 1-12
Time marker, oscilloscope calibration, 4-24
TLIMIT remote command, 6-38
TLIMIT? remote command, 6-38

____U____
Unpacking, 2-3
Using auxiliary input, 4-32
Using commands, 5-28
Using operate and standby modes, 4-7
Using the format EEPROM menu, 4-6
Using the instrument setup menu, 4-5
Using the setup menu, 4-4
Using the softkeys, 4-4
Utility functions menu, 4-5
UUT Port
controlling an instrument, 5-49
UUT_FLUSH remote command, 6-42
UUT_RECV? remote command, 6-42
UUT_SEND remote command, 6-43
UUT_SET remote command, 6-44
UUT_SET? remote command, 6-44

____V____
V/DIV menu, 4-12
VAL? remote command, 6-45
Values, keying in, 4-9
Verification
AC amplitude, 7-7
AC voltage frequency, 7-8
DC voltage, 7-6
edge, amplitude, 7-18
duty cycle, 7-18
edge, frequency, 7-18
edge, rise time, 7-19
input impedance, capacitance, 7-20
Index (continued)

input impedance, resistance 7-20
leveled sine wave, 7-10
leveled sine wave, flatness, 7-12
leveled sine wave, frequency, 7-10
leveled sine wave, harmonics, 7-11
marker generator, 7-19
pulse generator, period, 7-20
pulse generator, pulse width, 7-20
tunnel diode pulser, 7-19
wave generator amplitude, 1 MΩ, 7-8
wave generator amplitude, 50 Ω, 7-9
wave generator frequency, 1 MΩ, 7-10
Verifying pulse capture, 4-27
trigger menu, 4-29
Video triggers, testing, 4-26
VIDEOFMT remote command, 6-45
VIDEOFMT? remote command, 6-45
VIDEOMARK remote command, 6-45
VIDEOMARK? remote command, 6-46
Visual Basic test program, creating, E-1
Volt function, 4-11
V/DIV menu, 4-12
Voltage gain calibration, 4-11, 4-13
VOLTAGE key, 3-5
Voltage, selecting line, 2-4

W
WAI remote command, 6-46
Warming the calibrator, 4-4
Wave generator, 4-25
specifications, 1-13
Wave generator amplitude verification, 1 MΩ, 7-8
Wave generator amplitude verification, 50 Ω, 7-9
Wave generator frequency verification, 1 MΩ, 7-10
WAVE remote command, 6-46
WAVE? remote command, 6-46
Wavegen menu, 4-25
Where to go from here, 1-5

Z
ZERO_MEAS remote command, 6-46
Ziatech ZT-1444A
DIP switch positions, C-1
dual board configuration, C-2
jumper positions, C-1
Single board configuration, C-2